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Abstract—Search based software engineering has been exten-
sively applied to the problem of finding improved modular struc-
tures that maximise cohesion and minimise coupling. However,
there has, hitherto, been no longitudinal study of developers’
implementations, over a series of sequential releases. Moreover,
results validating whether developers respect the fitness functions
are scarce, and the potentially disruptive effect of search-based
re-modularisation is usually overlooked. We present an empirical
study of 233 sequential releases of 10 different systems; the
largest empirical study reported in the literature so far, and
the first longitudinal study. Our results provide evidence that
developers do, indeed, respect the fitness functions used to opti-
mise cohesion/coupling (they are statistically significantly better
than arbitrary choices with p << 0.01), yet they also leave con-
siderable room for further improvement (cohesion/coupling can
be improved by 25% on average). However, we also report that
optimising the structure is highly disruptive (on average more
than 57% of the structure must change), while our results reveal
that developers tend to avoid such disruption. Therefore, we
introduce and evaluate a multiobjective evolutionary approach
that minimises disruption while maximising cohesion/coupling
improvement. This allows developers to balance reticence to
disrupt existing modular structure, against their competing need
to improve cohesion and coupling. The multiobjective approach
is able to find modular structures that improve the cohesion
of developers’ implementations by 22.52%, while causing an
acceptably low level of disruption (within that already tolerated
by developers).

Index Terms—software modularisation, software evolution,
multiobjective search

I. INTRODUCTION

SOFTWARE modularisation is almost as old as the concept
of software engineering itself. The notions of cohesion

and coupling were introduced in the 1970s [1]. Cohesion is
the degree of relatedness enjoyed by code elements residing
in the same abstract module, while coupling is the relatedness
between modules. There is long-established evidence that soft-
ware structure tends to degrade as the system evolves [2][3][4].
Therefore, one goal of software modularisation research, is
to find ways to improve modular structure, by increasing
cohesion and reducing coupling.

Search Based Software Engineering (SBSE) techniques
have been widely-studied and developed as one way to auto-
mate this structural modular improvement process, guided by
fitness functions that capture structural cohesion, coupling and
combinations thereof. Structural cohesion/coupling is typically
measured in terms of dependencies between elements. It is
structural, rather than semantic, because it takes no account of
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the degree of semantic relations between elements, other than
that which is captured through dependence measurements [5].

Many different search techniques have been proposed and
developed that automate the search for improved modular
structure. However, despite more than 30 publications on
search based modularisation, few studies [6][7] have per-
formed an evaluation of the disruptive effects that automated
modular improvement may cause on the original modular
structure of the software systems under study. A thorough
study of the disruption caused by modular restructuring is
needed, because there is evidence that software engineers tend
to resist structural and architectural improvement in favour
of similarity and familiarity [4]. Therefore, high levels of
disruption might undermine the industrial uptake of techniques
for software re-modularisation.

Moreover, most of the surveyed publications on search
based automated re-modularisation consider only a single ver-
sion of the systems under study, ignoring the systems’ history
of previous releases. A study involving a series of consecutive
releases would be required in order to understand software
engineers’ decisions with respect to cohesion/coupling and the
disruption that would have been caused by automated attempts
to improve cohesion/coupling.

In this paper, we provide the first study of search based
modularisation that considers both the opportunities for im-
proving software structure and the consequent disruption that
accrues as a result, over a series of subsequent releases of
software systems. This is also the largest study in search based
modularisation: we study 233 releases of 10 different open
source software systems, from which we extracted the modular
structure data.

We start by investigating the validity of the quality metrics
that previous work on search based modularisation has used
to improve software modularity. Our survey reveals that out of
more than 30 papers that have previously studied this problem,
many have used the Modularisation Quality (MQ) metric
[8][9] to assess modularity quality. We therefore validate the
use of this metric, investigating whether the existing modular
structure implemented by developers respects MQ.

We complement our study of MQ by measuring the raw
cohesion of each system. The raw cohesion is simply the
number of dependencies that reside within a single module,
and therefore do not cross any module boundary. The raw
coupling, is the obverse; the number of dependencies that
cut across module boundaries. Given the proposed modular
structure of a system, we can thus measure raw cohesion/
coupling, simply by counting intra- and inter-dependencies
between elements. Since raw coupling is the obverse of raw
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cohesion, we need only measure one of the two properties.
Traditional search based modularisation does not use raw
cohesion/coupling as a fitness function, because it would result
in the algorithm moving all elements into one single module
(with maximal cohesion and zero coupling). Such a ‘god class’
structure is undesirable [10], and various previous authors
developed techniques to avoid this [9][11][12]. Although raw
cohesion/coupling cannot be used to optimise the modular
structure, it can be used to evaluate the quality of solutions
found by search. Hereinafter, when we refer to ‘cohesion’, we
mean this simple ‘raw cohesion’ metric.

In order to provide an evidence-based assessment of the
degree to which developers’ implementations are cohesion-
respecting and MQ-respecting, we introduce an approach to
validation that is grounded in frequentist inferential statistics,
widely used elsewhere in software engineering, and particu-
larly recommended for SBSE [13][14]. Using this statistical
approach, we provide evidence that developers choose modular
structures that are highly cohesion- and MQ-respecting. Fur-
thermore, we show that although developers choose solutions
in the local neighbourhood that have better cohesion and MQ
values than at least 97.3% of the possible alternatives, in every
release of every system, the developers implementations are,
nevertheless, suboptimal regarding both cohesion and MQ.

This motivates the study of the degree to which search
based modularisation could automatically ‘improve’ on the
developer-implemented modular structure, according to cohe-
sion and MQ. In order to answer this question, we empirically
studied the widely-proposed hill climbing technique (Bunch)
for finding improved modular structures [9]. The hill climb-
ing approach is simple and fast, and has publicly available
implementations, making it an obvious first choice for any
developer seeking to use search based techniques for modular
improvement. After modifications to the original approach to
cope with the large scale real world systems being studied, we
found that, in most releases, automated modularisation does
find modular structures with statistically significantly better
cohesion and MQ values, and with large effect size.

Of course, re-modularisation may not be so straightforward
in practice: if there was a dramatically improved modular
structure available to the developers, then it seems reasonable
to ask why software engineers have not adopted it. There are
two potential explanations for this:

1) The developers are unaware of any better solutions; the
search space is simply too large and it defeats human-
based search.

2) The developers are aware of at least one better solution,
but choose not to implement any of the better solutions.

In all cases, we found that, even within the nearest neigh-
bourhood to the developers’ given implementation, there were
always alternatives with improved cohesion/coupling. That is,
improvement could be achieved simply by moving a single
element from one module to another, in all of the 233
releases studied. This provides evidence that it is unlikely that
developers were unaware of any better solution, so we turn
our attention to the second possible explanation above.

If developers could easily find a better solution, even with
a simple nearest neighbourhood search, why did they choose

not to implement it? One possible explanation we chose to
investigate, relates to the recent observation that developers
are prepared to build up technical debt [15][16]; resisting the
temptation to restructure systems, and tolerating degradation
in structure, in order to obtain fast delivery, retain familiarity
of the existing structure and/or to preserve some other property
of interest. Specifically, we investigate the degree of disruption
that would be caused by moving to an improved modular
structure, that increases cohesion and reduces coupling. We
measure disruption as the number of elements and modules
that would need to be moved or merged, according to the
MoJoFM metric [17]. The results were striking: while a vari-
ation of the well-known Bunch automated re-modularisation
approach can improve cohesion by 25% on average, these
improvements result in 57% disruption.

This provides empirical evidence that developers are reluc-
tant to disrupt the modular structure, even when this might lead
to improved cohesion/coupling. Unfortunately, most of the
previous work on search-based re-modularisation has ignored
this disruptive effect, leaving open many questions that we
seek to answer in the present paper, such as how large the
effect is and how often it occurs, whether it is correlated with
the improvements achievable, and the degree to which it could
be avoided, while maintaining structural improvement.

We found that, although any modular improvement in-
herently inflicts some degree of disruption, in general, the
disruption caused by the best improvement found by stan-
dard SBSE approaches, for every release of every system, is
smaller than the average disruption. Furthermore, we found
no evidence that cohesion improvement is correlated with
disruption increase. This is a particularly attractive finding,
because it points to the possibility that a multiobjective search-
based approach may be able to find balances and trade-
offs between modular disruption and improvement. This more
positive finding, thereby motivated our final set of experiments,
in which we introduced, implemented and evaluated a novel
multiobjective search based modularisation technique.

Our new approach to automated re-modularisation seeks
pareto-optimal balances between disruption, as measured by
MoJoFM, and improvement. On average, within the developer-
determined ‘acceptable’ level of disruption for each system,
which was calculated through longitudinal analysis between
developers-implemented releases, our multiobjective approach
was able to find solutions with average 22.52% and 55.75%
improvements for cohesion and MQ, respectively.

The primary contributions of this paper are the findings con-
cerning the behaviour of both developers and existing SBSE
techniques for automated re-modularisation (on 233 releases of
10 different software systems), the identification of disruption
as an important problem for automated re-modularisation, and
the novel multiobjective approach we introduce and evaluate
to tackle this problem. Our empirical study and evaluation is
the largest study of search-based re-modularisation hitherto
reported in the literature, and its scientific findings have an
actionable conclusion for researchers and practitioners; any
and all approaches to re-modularisation (search based or
otherwise) need to take account of (and balance) the disruption
they cause, against the improvement they offer.
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The rest of this paper is organised as follows: Section
II discusses the related work that was collected during our
survey, alongside some formal definitions and background
of automated software modularisation. Section III describes
how we collected the modular structure data of the systems
we consider, and Section IV presents the empirical study
we performed over the 233 releases of the 10 systems we
collected. In addition, Section V reports a qualitative analysis
of the results achieved. Finally, Section VI discusses the threats
to the validity of our empirical study and Section VII presents
our conclusions and points out some future research directions.

II. RELATED WORK AND BACKGROUND

We collected publications that use search based techniques
to improve the modular structure, where cohesion/coupling
and combinations thereof are used to assess the quality of
the modularisations. We cannot guarantee that we covered
every paper, but we believe this survey presents a reasonable
sample of the work performed by the search based software
modularisation community.

Table I summarizes the 35 papers we collected, and presents
them sorted by year of publication. For each paper we report
whether it employs a Single Objective (SO) or MultiObjective
(MO) optimisation approach, and what fitness functions are
used to guide the search. We also report which search algo-
rithms are used to perform the modularisation, and how many
systems and releases were considered in each evaluation.

As one can see, the work on search based software mod-
ularisation dates back to late 1990s [8][18][19], with the
proposal and first evaluations of the Bunch tool. The MQ
metric was first proposed as Bunch’s fitness function, and it
is still the most used metric in search based modularisation
to date. In fact, suites of quality metrics more recently used
for multiobjective modularisation [12][20][21] include MQ as
one of the metrics to be optimised.

A. Modular Structure Representation

In this paper, the modular structure of each release under
study is represented as a Module Dependency Graph (MDG)
[8]. An MDG is a directed graph G(C,D) where the set
of nodes C represents the code elements of the system and
D represents the dependencies between elements. Usually,
software systems organise their elements into higher level
modules, which are indicated as clusters of nodes in the MDG.
The allocation of nodes of the MDG to different clusters,
alongside the dependencies between the nodes, is one way
to represent the release’s modular structure. An example of a
MDG is presented in Figure 1.

Since all the systems under study are implemented in Java
(see Section III), we are going to use the Java terminology to
refer to the code elements and high level modules; the elements
are thus the classes and interfaces, while the modules are the
packages. In this paper, both classes and interfaces will be
referred to simply as “classes”. Dependencies occur by method
call, field access, inheritance and interface implementation.

For each release of each system, the set of classes C is
represented by C = {c1, c2, . . . , cN}, where N is the number

p1

p2

p3

c1
c2 c3 c6

c4 c5 c8

c9

c7

Fig. 1: Example of a Module Dependency Graph that is
used to represent the modular structure of the systems
under study. Nodes represent code elements and edges rep-
resent dependencies between elements. Clusters of nodes
(grey regions) indicate high level modules.

of classes in the release. A dependency d(cx, cy) indicates
that class cx depends on class cy to correctly deliver its
functionality. The set of all dependencies is represented by
D = {d(cx, cy) | cx, cy ∈ C}. The set of packages P in a
release is depicted by P = {p1, p2, . . . , pM}, where M is the
number of packages in the release.

B. Modular Structure Quality Metrics

The Modularisation Quality (MQ) metric was proposed
by Mancoridis et al. [8] to guide optimisation algorithms
in the allocation of classes to highly cohesive and loosely
coupled packages. In order to improve MQ’s performance
and quality assessment, the metric was re-formulated over the
years [22][47], and its most recent incarnation [9] is adopted.

MQ consists of assigning scores to each package in the
system, measuring the packages’ individual trade-off between
cohesion and coupling. The cohesion of a package pi is
represented by coh(pi), and it is computed as the number of
dependencies between classes within package pi. Accordingly,
the coupling cop(pi) of package pi is computed as the number
of dependencies from classes within pi to classes in other
packages in the system. The MQ value of the overall system
is computed as presented in Equations 1 and 2:

MQ =
P∑
i=1

MF(pi) (1)

and, MF(pi) =


0, if coh(pi) = 0

coh(pi)

coh(pi) +
cop(pi)

2

, if coh(pi) > 0
(2)

The MQ is thus given by the sum of the Modularisation
Factors (MF) of each package pi in the system. MF(pi) repre-
sents the trade-off between cohesion and coupling for package
pi. Since the dependencies involved in the measurement of
the packages’ coupling will be double counted during MQ
computation, cop(pi) is divided by 2.
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TABLE I: Related work in Search Based Software Modularisation sorted by year of publication

Paper Year Optimisation
Approach Fitness Function Search Algorithm

Number of
Different

Systems Used

Number of
Releases
Studied

Mancoridis et al. [8] 1998 SO MQ HC 5 5
Doval et al. [19] 1999 SO MQ GA 1 1
Mancoridis et al. [18] 1999 SO MQ HC 1 2
Mitchell et al. [22] 2001 SO MQ HC 7 7
Harman et al. [23] 2002 SO Coh, Cop HC, GA 7 7
Mitchell et al. [24] 2002 SO MQ HC 5 5
Mahdavi et al. [25] 2003 SO MQ HC 19 19
Mitchell et al. [26] 2003 SO MQ HC 13 13
Harman et al. [11] 2005 SO MQ, EVM HC 6 6
Seng et al. [27] 2005 SO Coh, Cop, Complexity, Cycles, Bottlenecks GGA 1 1
Shokoufandeh et al. [28] 2005 SO MQ HC and Spectral Algorithm 13 13
Mitchell et al. [9] 2006 SO MQ HC 2 2
Mitchell et al. [29] 2008 SO MQ HC 5 5
Abdeen et al. [30] 2009 SO Coh, Cop, Cycles SA 4 4
Mamaghani et al. [31] 2009 SO MQ Hybrid GA 5 5
Praditwong et al. [32] 2011 SO MQ GGA 17 17
Praditwong et al. [12] 2011 MO MCA, ECA Two-Archive GA 17 17
Barros et al. [21] 2012 MO MCA, ECA NSGA-II 13 13
Bavota et al. [20] 2012 SO and MO MQ, MCA, ECA GA, NSGA-II 2 2
Hall et al. [33] 2012 SO MQ HC 5 5
Abdeen et al. [34] 2013 MO Coh, Cop, Modifications NSGA-II 4 4
Kumari et al. [35] 2013 MO MCA, ECA Hyper-heuristics 6 6
Ouni et al. [36] 2013 MO Fixed Defects, Effort NSGA-II 6 6
Hall et al. [6] 2014 MO MQ HC 4 4
Barros et al. [37] 2015 SO MQ, EVM HC 1 241

Jeet et al. [38] 2015 SO MQ BHGA 6 6
Mkaouer et al. [39] 2015 MO Coh, Cop, MO, NCP, NP, SP, NCH, CHC NSGA-III,IBEA, MOEA/D 5 5
Paixao et al. [40] 2015 MO MCA, ECA Two-Archive GA 1 1
Saeidi et al. [41] 2015 SO and MO MQ, CQ HC, Two-Archive GA 10 10
Candela et al. [7] 2016 MO Structural and Contextual Coh/Cop NSGA-II 100 100
Huang et al. [42] 2016 SO and MO MQ, MCA, ECA MAEA-SMCPs, GGA, GNE 17 17
Huang et al. [43] 2016 SO MQ, MS HC, GAs and MAEA 17 17
Jeet et al. [44] 2016 SO MQ HC, five GA variations 7 7
Kumari et al. [45] 2016 MO MCA, ECA Hyper-heuristics 12 12
Ouni et al. [46] 2016 MO Fixed Defects, Coherence, Effort, Change History NSGA-II 6 12

Paixao et al. This
Paper SO and MO MQ, Disruption HC, Two-Archive GA 10 233

MQ is a function of the allocation of classes to packages;
therefore, the MQ search space is composed by all possible
allocations of classes to packages in the system. In this context,
we define the k–neighbourhood as the subset of the MQ search
space that can be achieved by performing k modifications
to the original allocation of classes to packages that was
implemented by the developers.

The raw cohesion/coupling of a system are measured by
summing the cohesion/coupling of its packages. These are
straightforward assessments of how many of the system’s
dependencies are contained in the same package and how
many are cutting across the packages boundaries. Since raw
cohesion/coupling are the obverse of each other, we need to
measure only one of these properties, and for the rest of this
paper the raw cohesion, or simply ‘cohesion’ of the system is
computed as presented in Equation 3.

COH =
P∑
i=1

coh(pi) (3)

Apart from the selected metrics presented above, other
measurements of structural cohesion and coupling have also
been proposed [48] to account for different types of dependen-
cies and different granularity levels. Recent studies reported
quantitative and qualitative assessments of these metrics by
investigating open source systems and interviewing developers

[7][49]. As previously mentioned, MQ is the most used quality
metric in search based re-modularisation (see Table I), yet
evidence that software systems respect this metric is scarce.
Our empirical study performs an incremental assessment of the
level of respect open source systems have to MQ; therefore,
complementing previous literature and providing insights to
the search based modularisation community regarding its most
used fitness function.

C. Modular Structure Disruption

The disruption caused by an automated modularisation
technique can be measured as the amount of change developers
need to perform in order to adopt the solution proposed by
the search algorithm, where such disruption may be assessed
at both source code and modular structure levels. A previous
study by Hall et al. [6] measured how many lines of code
ought to be added/changed in order to apply solutions found by
search based modularisation approaches. Apart from showing
that developers would have to change up to 10% of their code
base to adopt solution proposed by automated approaches, they
also showed that the LOC to be changed strongly correlates
with the modular structure disruption metric MoJoFM [17].

Mkaouer et al. [39] used the number of refactoring op-
erations as a measurement of system disruption to be min-

1Barros et al. [37] uses 24 releases for the system’s evolution analysis, but
the re-modularisation is performed in only one release.
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imised in a search based many-objective approach for re-
modularisation. However, operations at different granularity
levels, such as move method and move class, have the same
weight in the disruption computation, even though coarse
grained and fine grained refactorings have a different impact
in the system’s modularity.

In the work by Ali et al. [36][46], the authors proposed a
disruption assessment of refactoring operations based on the
number of operations to be performed, where each operation
is wheighted by a complexity factor. In this formulation, the
possible refactoring operations also include different granu-
larity levels, e.g. pull up method and extract class, and the
different wheights are based on the authors expertise.

As argued in a recent work by Candela et al. [7], a modular
level disruption metric, such as MoJoFM, better describes the
“mental model” developers have of their systems. Therefore,
we draw inspiration from the study performed by Candela et
al., and adopt a disruption measurement that is based on the
widely used [7][20][50][51] MoJoFM metric.

Given two different modularisations A and B of the same
system, MoJoFM(A,B) accounts for the proportional number
of Move and Join operations that are necessary to transform
A in B, such as presented in Equation 4.

MoJoFM(A,B) = (1− mno(A,B)

max(mno(∀A,B))
)× 100% (4)

In this paper, a Move operation represents moving a class
from its original package to another package in the system,
while the Join operation represents the merge of two packages.
The distance between A and B is the minimal number of op-
erations that transform A in B, computed by mno(A,B), and
this value is normalised by the maximum distance between any
possible modularisation partitioning of the system (denoted by
∀A) and B. MoJoFM is a non-trivial metric to compute, and
for more technical details the reader is referred to [17].

Finally, given the original developers’ implementation A
and a solution B suggested by an automated modularisation
technique, we propose DisMoJo in Equation 5, a disruption
metric based on MoJoFM that measures how much of the
original implementation developers would need to change to
adopt the modular optimised solution.

DisMoJo(A,B) = 100%−MoJoFM(A,B) (5)

III. SOFTWARE SYSTEMS UNDER STUDY

In this section we describe the systems we study in our em-
pirical study of cohesion/coupling behaviour and optimisation,
including the selection criteria we employed, the process for
extracting the modular structure data and a short description
of each system.

The primary criteria for selecting software systems to study
in our empirical investigation was the availability of at least
10 subsequent releases, so that we could evaluate more than
one version of the systems and not only the latest one, like
in most of the related work. We conjectured that 10 releases
would be sufficient for our analysis.

We avoided general libraries and APIs that provide features
that are not necessarily related to each other in terms of code
dependencies. We believe these kind of systems naturally have
a good modular structure in terms of cohesion/coupling, and
therefore, would not be valuable for our investigation. Thus,
libraries such as Commons Math, for example, were avoided.

As a result, we selected 10 open source Java systems, which
are briefly described in Table II. The number of releases of
the systems under study varies from 10 to 47, with a median
of 17 releases per system. Moreover, the median number
of classes varies from 150 to 895 and the median number
of dependencies between classes varies from 568 to 6690,
indicating that these are non-trivial medium to large real world
software systems.

We employed a reverse engineering approach based on static
analysis to obtain the modular structure of each release of each
system. In order to do so, we used the pf-cda [52] tool
to instrument the jar files of each release and subsequently
extract the packages, classes and dependencies.

In order to facilitate replications of this study, we make
available all 233 modularity datasets in our supporting web
page2. In addition, the web page also contains all results from
this investigation, including further details elided for brevity
in this paper.

IV. EMPIRICAL STUDY

This section describes and presents the results of the
empirical study we carried out in this paper to investigate
cohesion/coupling behaviour and optimisation. Each of our
research questions will be presented and answered, followed
by a discussion of the findings.

A. RQ1: Is there any evidence that open source software
systems respect structural measurements of cohesion and
coupling?

By answering RQ1, we seek to investigate whether there is
any evidence that the modular structure of existing software
respects both raw cohesion and the MQ metric. We chose raw
cohesion because it is a simple and intuitive measurement,
and MQ because it is the most used metric in the automated
software modularisation literature. Intuition suggests that de-
velopers do care about cohesion/coupling, and so we expect
existing systems to exhibit some degree of ‘respect’ for these
metrics.

We could survey developers with a questionnaire in order to
discover a subjective self-assessment of the degree to which
they care about these metrics, but such a study would be
vulnerable to bias; developers may believe that they ought
to care about these metrics, since cohesion/coupling have
been recommended for many years [1][53][54]. Such feelings
may lead to implicit or explicit bias that may influence
developers’ self-assessment of the importance that they attach
to measurements of cohesion/coupling. Moreover, any such
assessment would be inherently subjective.

Therefore, although such results would undoubtedly be
interesting, we choose to focus on a quantitative assessment of

2https://mhepaixao.github.io/balancing improvement disruption/
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TABLE II: Open source systems used in the empirical evaluation of cohesion/coupling behaviour and optimisation. For
each system, we report the number of releases and the median number of packages, classes and dependencies over
releases. Finally, we report the median number of releases, packages, classes and dependencies for all systems.

Systems Description Releases Packages Classes Dependencies
Ant Tool to perform the ‘build’ of Java applications 30 25 576 2567

AssertJ Library of assertions for Java 12 15 467 2095
Flume Java logging API 10 17 255 849
Gson Google’s converter of Java objects to JSON 15 6 153 724
JUnit Java unit testing framework 20 23 196 734
Nutch Java web crawler 13 18 272 1007

PDFBox Java PDF manipulation library 31 48 496 3049
Pivot Platform for building Installable Web Applications 12 13 150 568

Procyon Java decompiler 47 36 895 6690
Proguard Java code obfuscator 43 18 329 3513

All - 17 18 300 1551

the degree to which the existing modular structure chosen by
developers respects both the raw cohesion and the MQ metric.

In order to provide such a quantitative assessment of the
degree of agreement with these metrics, we propose three
different techniques, each of which produces a probabilistic
assessment that can be used as the basis for an inferential
statistical argument, concerning the likelihood of rejecting the
Null Hypothesis (that the modular structure takes no account
of the modularity quality metrics).
RQ1.1: How does the solution implemented by developers
compare to a purely random allocation of classes to
packages? As a simple baseline, we start by considering
purely random allocation of classes to packages. Therefore,
we are assuming the following Null Hypothesis H0: The
modularity measurements of the releases of the studied open
source software systems follow a purely random distribution.
That is, we assume, as a Null Hypothesis, that developers
simply allocate classes to packages without any regard for
the cohesion/coupling as captured by the chosen metrics. If
this Null Hypothesis holds, then there is simply no evidence
to suggest that developers care about cohesion or coupling. In
such a situation, any attempt to optimise either raw cohesion or
MQ, using search based or other techniques, would be unlikely
to be viewed as beneficial by developers.

In order to test H0, a random distribution of class allocations
was performed for each release of each system. A random
allocation for a given release is performed by randomly
allocating its set of classes to packages. The probability of
a class to be allocated to a certain package is uniform. One
million random class allocations were performed for each
release of each system, thereby forming a sample of the space
of all possible allocations of classes to packages.

Since we have 233 different releases of the 10 systems
under investigation, this means that the experiment conducted
to answer research question RQ1.1 involves the computation
of 233 million randomly constructed modularisations. One
(very obvious) advantage of our approach, from an inferential
statistical point of view, is the ability to work with such a large
sample. This large sample size enable us to produce precise
assessments of the corresponding p-values.

The first two columns of Table III present the results of this
analysis for each system under consideration, for raw cohesion
and MQ, respectively. Raw coupling is simply the obverse of
raw cohesion so, for brevity, we report only the values for raw

cohesion. The entries in these columns indicate the percentage
of Random modularisations (over all releases) that achieve
cohesion (or MQ) values that are equal to or greater than
those achieved by the developers’ implementation. As can be
seen from these columns, not one of the 233 million randomly
constructed modularisations produce a cohesion or MQ value
equal to or greater than that achieved by the developers.

We can safely reject the Null Hypothesis H0, and claim that
raw cohesion and MQ values of open source software systems
do not follow a random distribution. This result does not pro-
vide evidence that developers actually care about these metrics
(it could simply be that they care about some other property
that happens to correlate to significantly higher cohesion and
MQ values). Nevertheless, these findings do strongly reject
the claim that their allocation of classes to packages fails to
respect modularity measurements; an obvious, yet important
“sanity check” result that has not hitherto been reported upon
in the literature on search based modularisation, despite the
large body of previous work that use these metrics to guide
modular optimisation.

Our Null Hypothesis was based on purely random allocation
of classes to packages, so the rejection of such a ‘weak’
Null Hypothesis can provide only a ‘weak sanity check’ on
the intuition that developers’ modularisation structure respects
modularity measurements. This last observation motivates the
next two research questions, which seek to set a stronger base-
line comparison, against which the developers’ modularisation
structure is compared.
RQ1.2: How does the developers’ modularisation struc-
ture compare to randomly identified k–neighbour modu-
larisations? The k–Random Neighbourhood Search (kRNS)
searches a randomly selected sample of solutions in the “k–
neighbourhood” of the solution implemented by the devel-
opers, as defined in Section II-B. For this investigation, we
use a value k equal to the number of classes in the systems.
Therefore, kRNS proceeds by randomly selecting a subset of
the classes in the system and randomly moving each of these
classes to another package, to produce a single element of
the sample. This process is repeated, using a freshly selected
subset of classes on each occasion, to produce a sample of
solutions from the k–neighbourhood. In our case, as with the
previous experiment, we repeat this process 1 million times,
for each release.

The third and fourth columns of Table III present the per-
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TABLE III: Likelihood of finding a modular structure with superior measurements of structural cohesion/coupling
than that produced by the systems’ developers, according to 3 search strategies. PRD simply searches for random
allocations of classes to packages, while the other two techniques search the neighbourhood of the solution implemented
by the systems’ developers. kRNS randomly searches for solutions in the k–neighbourhood of the developers’ solution,
by moving k classes to randomly selected packages, while SNS systematically searches the k–neighbourhood for k = 1,
by moving each class to one of each of the other packages. Results indicate the percentage of solutions found that
improve the modular structure, as assessed using raw cohesion and MQ.

Systems Purely Random Distribution (PRD) k–Random Neighbourhood Search (kRNS) Systematic Neighbourhood Search (SNS)
Cohesion MQ Cohesion MQ Cohesion MQ

Ant 0.000000 0.000000 0.000590 0.000283 0.023026 0.052496
AssertJ 0.000000 0.000000 0.000344 0.000699 0.025063 0.067731
Flume 0.000000 0.000000 0.000413 0.001359 0.025661 0.072067
Gson 0.000000 0.000000 0.002233 0.013831 0.060578 0.142030
JUnit 0.000000 0.000000 0.000560 0.001616 0.029550 0.097797
Nutch 0.000000 0.000000 0.000125 0.000695 0.019316 0.047951

PDFBox 0.000000 0.000000 0.000587 0.001112 0.028475 0.086138
Pivot 0.000000 0.000000 0.000330 0.001147 0.023383 0.065127

Procyon 0.000000 0.000000 0.000042 0.000164 0.009813 0.049230
Proguard 0.000000 0.000000 0.004786 0.001588 0.083427 0.140490

All 0.000000 0.000000 0.001001 0.000866 0.032829 0.082105

centage of kRNS results that produce equal or higher cohesion
and MQ values than those for the developers’ modularisation.
Consider Flume, for example. For all its releases, 0.000413%
of k–neighbours found by kRNS had higher cohesion than the
original solution, while 0.001359% of the k–neighbours had
higher MQ. As can be seen from Table III, over all the 10
systems, 0.004786% and 0.013831% are the highest number of
cohesion-improved and MQ-improved modularisations found
by the kRNS approach, respectively. Indeed, at the 0.01 α
level, we would still reject the (strengthened) Null Hypothesis
that “Developers simply pick an arbitrary re-allocation of
classes to packages within the neighbourhood of the current
solution, when producing a new version of the system”.

However, it can also be observed that, for every system,
there does exist a member of the k–neighbourhood that enjoys
a higher cohesion and/or higher MQ than that pertaining to the
modularisation implemented by the system’s developers. These
results for RQ1.2 therefore provide a deeper insight than was
possible from the purely random search used to answer RQ1.1.
They show that, while modular structure tends to respect
structural cohesion and coupling, developers, nevertheless, do
not produce an optimal solution; a random search within the
wider neighbourhood of the developers’ solutions can improve
the modularity in each and all the releases. Furthermore, one
can observe that in the k–neighbourhood of all systems under
study, the number of cohesion-improved solutions is different
from the number of MQ-improved solutions. We will return
to a deeper investigation of these observed differences later.

We now turn to a more systematic investigation of the
neighbourhood. Clearly, for a systematic investigation of all
k–neighbours, the computational cost rises exponentially (in
k), and, in the limit, as k tends to the number of classes in
the system, the systematic investigation tends to an exhaustive
enumeration of all possible modularisations of the systems
under investigation. This is clearly infeasible [47]. Indeed,
avoiding such an exponential explosion was our motivation
for sampling from the overall k–neighbourhood for RQ1.2.
However, it is computationally feasible to consider the nearest
of all neighbourhoods; the k–neighbourhood for k = 1, and
this allows us to answer an interesting research question:
RQ1.3: What portion of modularisation allocations within

the nearest possible neighbourhood (k = 1) would yield an
improvement in modularity? The systematic enumeration of
the 1–neighbourhood is interesting because this is the set of
neighbouring modularisations that can be achieved by moving
only a single class to another package in the system. As
such, it is the single simplest (and least disruptive) possible
modification to the modularisation structure chosen by the
developers. In order to answer this research question, we took
each class and moved it to each of the other packages which
the class was not originally assigned by the developers. This
yields (M−1)×N 1–neighbours (or ‘nearest neighbours’), for
a system consisting of M packages and N classes, thereby sys-
tematically covering the entire 1-neighbourhood. The results
of this analysis are presented in the final columns of Table III.

As can be seen, for each system investigated, there are
a nontrivial number of such single moves that can improve
both the cohesion and the MQ score. Nevertheless, the so-
lutions chosen by the developers are better than at least
96.7% and 91.7% of the whole 1–neighbourhood, for cohesion
and MQ, respectively. This provides evidence for a strong
developer preference for structures that respect modularity
metrics. Moreover, as observed in RQ1.2, the number of
cohesion-improved solutions is different from the number of
MQ-improved solutions. In fact, all systems presented more
MQ-improved solutions than cohesion-improved solutions in
the 1–neighbourhood.

Overall, as an answer to RQ1, we conclude that there is
strong evidence to suggest that the developers’ allocation of
classes to packages does respect structural cohesion/coupling,
as assessed by the metrics of raw cohesion and MQ. Further-
more, there is equally strong evidence that the developers’ al-
location of classes could be improved, possibly with relatively
little disruption to the system’s modular structure, since there
do always exist nearest neighbour modularisations that enjoy
better modular structure. This is interesting and important
for work on automated software modularisation, since these
metrics (MQ in particular) are widely used fitness functions
to guide such work on automated modularisation.

As observed in RQ1.2 and RQ1.3, when searching both
the k–neighbourhood and the 1–neighbourhood of the systems
under study, raw cohesion and MQ sometimes do not agree
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in assessing the modular structure of different solutions. We
define “agreeing solutions” to be those modularisations that
improve on the developers implementation according to both
cohesion and MQ, while “disagreeing solutions” are those that
have either higher cohesion or higher MQ, but not both.

Interestingly, and importantly for search based modular-
isation research, we observe that, on average, 83.04% of
the neighbourhood solutions that present an improvement on
the original implementation in either cohesion or MQ are
“disagreeing” and only 16.96% are “agreeing”. Moreover, for
the disagreeing solutions, 67.61% present higher MQ than
the original implementation but lower cohesion, and 32.39%
present higher cohesion than the original implementation but
lower MQ. These fidings replicate previous results [48]. In
addition, we have presented evidence that developers’ solu-
tions more closely respect raw cohesion than MQ. Since MQ
is a popular metric for search based re-modularisation, it is
interesting and important for the community to understand
how this metric is related to raw cohesion, which is a more
basic and intuitive assessment of modular structure. This
observation motivates our next research question.

B. RQ2: What is the relationship between raw cohesion and
the MQ metric?

We performed three different analyses to investigate the
relationship between MQ and raw cohesion. Each of these
analyses employ a different technique to search for better
modularisations.
RQ2.1: What is the relationship between raw cohesion
and MQ for the solutions identified in RQ1? RQ1 per-
formed neighbourhood search in the developers’ implemented
solutions to find better allocations of classes to packages. For
RQ2.1, all neighbour solutions that improved on the original
developers’ implementation in at least one of the metrics (raw
cohesion/coupling and/or MQ) were considered for analysis,
which, on average, represents 0.35% of the solutions found by
the kRNS and SNS in RQ1.

The first three columns of Table IV present the average dif-
ferences and standard deviation in cohesion, coupling and MQ
for the neighbourhood search solutions, respectively. Consider
the Gson system, for example. The neighbourhood solutions
offer an average difference in cohesion, coupling and MQ
of -5.269%, 5.269% and 2.934%, respectively. These values
indicate that within the set of Gson neighbourhood solutions
that improve on the original implementation in at least one of
the metrics, the average differences in cohesion, coupling and
MQ are -5.269%, 5.269% and 2.934%, respectively.

One should notice that, as mentioned before, cohesion and
coupling differences are the obverse of each other. Since we
are considering cohesion to be the number of dependencies
within packages and coupling to be the number of dependen-
cies between packages, in the case of a certain dependency
being moved from between packages to inside a package,
cohesion will increase and coupling will decrease. Similarly,
a dependency that is moved from inside a package to between
packages is going to decrease cohesion and increase coupling.
Therefore, for brevity purposes, only cohesion values will be
reported and discussed in the rest of the paper.

We use correlation analysis to investigate more precisely
the relationship between cohesion and MQ. For each release of
each system, the non-parametric Kendall-τ correlation test was
applied for the cohesion and MQ values of the neighbourhood
solutions. The fourth column of Table IV presents the corre-
lation coefficient of each system, which is computed as the
median coefficient of all releases of each system. An asterisk
(*) decorates the coefficient entry when not all releases exhibit
a significant coefficient at the 0.01 α level. Most coefficients
range from -0.2 to 0.2, which suggests little or no correlation
between cohesion and MQ for the neighbourhood solutions.

However, we must be careful to not over generalize this
observation, because only simple local search procedures were
employed to find the solutions that were considered in the
analysis, and the search space covered by the neighbourhood
solutions is small. This motivated our next research question,
in which we apply more sophisticated search based approaches
for software re-modularisation.
RQ2.2: What is the relationship between raw cohesion
and MQ for solutions found by widely used search based
cohesion/coupling optimisation approaches? For this analy-
sis, we use the Bunch tool [9]. Bunch is a tool for search
based modularisation that implements a simple hill climb-
ing approach. There are other more sophisticated techniques
for search based modularisation, that may produce superior
results [12] in terms of cohesion, coupling, and the MQ
metric, but at far greater computational cost. We wish to
investigate whether developers can use simple and fast search-
based modularisation techniques to quickly produce alternative
solutions that significantly improve on the developers’ given
modularisations, according to MQ.

We applied the Bunch optimisation tool to all releases.
Since Bunch’s hill climbing algorithm is a randomized search
algorithm, we performed 30 executions of Bunch for each
release. The 30 resulting cohesion, coupling and MQ values
found by Bunch for each release were compared with the
developer’s implementation, and the results are presented in
the fifth, sixth and seventh columns of Table IV, alongside
the respective standard deviation.

As one can see, the Bunch tool is able to find modularisa-
tions with remarkable MQ improvement (of more than 500%
for some systems). However, all these MQ-optimised solutions
have lower cohesion values than the developer’s original im-
plementation. Such a surprising result can be explained by the
design of the MQ metric. As one can see in the MQ definition
in Section II-B, the MQ score is composed of the sum of the
scores of each package in the modularisation; so, solutions
with more packages tend to have higher MQ values. In fact,
the solutions found by Bunch have, on average, 493.11% more
packages than the developers’ implementation. As a result,
fewer classes are allocated to each package, thereby creating
several dependencies that cut across package boundaries. We
will refer to this phenomena as the MQ’s ‘inflation effect’.

The Kendall-τ correlation test was also applied to measure
the correlation between raw cohesion and MQ of the Bunch
solutions. Apart from JUnit, all systems have a moderate
positive correlation between cohesion and MQ, which is a
surprising result given that all Bunch solutions had worse
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TABLE IV: Cohesion, Coupling and MQ results with standard deviation for Neighbourhood, Bunch and Package-
constrained searches for improved modularisations. Cohesion, Coupling and MQ entries denote the average difference
between the optimised modularisation in comparison to the original developers’ implementation. In addition, we report
the Kendall-τ correlation coefficients between Cohesion and MQ results for each system.

Systems Neighbourhood Search Bunch Package-constrained HC
Cohesion Coupling MQ K-τ Cohesion Coupling MQ K-τ Cohesion Coupling MQ K-τ

Ant 0.423% -0.423% -1.907% -0.18* -45.919% 45.919% 376.611% 0.56* 30.063% -30.063% 40.598% 0.44*± 1.116% ± 1.116% ± 3.644% ± 2.279% ± 2.279% ± 0.378% ± 5.348% ± 5.348% ± 1.078%

AssertJ -0.174% 0.174% 0.102% -0.27 -62.888% 62.888% 522.197% 0.41* 0.714% -0.714% 61.167% 0.46*± 1.066% ± 1.066% ± 1.130% ± 1.772% ± 1.772% ± 0.293% ± 4.217% ± 4.217% ± 1.816%

Flume -1.092% 1.092% 0.857% -0.22 -35.977% 35.977% 336.829 0.57* 19.379% -19.379% 51.026% 0.55± 2.273% ± 2.273% ± 0.594% ± 2.100% ± 2.100% ± 0.594% ± 4.030% ± 4.030% ± 1.232%

Gson -5.269% 5.269% 2.934% 0.08* -55.559% 55.559% 584.924% 0.45* 19.832% -19.832% 97.978% 0.64± 7.090% ± 7.090% ± 0.569% ± 3.133% ± 3.133% ± 0.940% ± 5.988% ± 5.988% ± 4.089%

JUnit -0.449% 0.449% 0.292% -0.14* -28.240% 28.240% 226.341% -0.37* 30.157% -30.157% 66.530% 0.48*± 1.797% ± 1.797% ± 1.446% ± 2.900% ± 2.900% ± 0.998% ± 4.850% ± 4.850% ± 1.608%

Nutch -1.252% 1.252% 1.018% -0.27 -42.993% 42.993% 321.843% 0.50* 17.564% -17.564% 56.962% 0.44*± 1.977% ± 1.977% ± 0.414% ± 2.015% ± 2.015% ± 0.420% ± 5.603% ± 5.603% ± 0.746%

PDFBox -0.377% 0.377% 0.119% -0.18 -33.100% 33.100% 180.531% 0.43* 31.387% -31.387% 79.773% 0.43*± 1.398% ± 1.398% ± 1.537% ± 3.595% ± 3.595% ± 0.350% ± 5.532% ± 5.532% ± 0.979%

Pivot -1.258% 1.258% 0.519% -0.20 -43.776% 43.776% 266.257% 0.63 3.927% -3.927% 44.875% 0.51*± 2.273% ± 2.273% ± 0.549% ± 1.680% ± 1.680% ± 0.508% ± 4.102% ± 4.102% ± 1.155%

Procyon -0.064% 0.064% 0.102% -0.20 -71.726% 71.726% 408.408% 0.57 -4.799% 4.799% 56.538% 0.44*± 0.289% ± 0.289% ± 0.054% ± 1.194% ± 1.194% ± 0.145% ± 4.312% ± 4.312% ± 0.634%

Proguard 1.035% -1.035% -2.494% -0.10* -42.355% 42.355% 295.561% 0.48* 102.282% -102.282% 86.169% 0.46*± 1.435% ± 1.435% ± 3.805% ± 5.383% ± 5.383% ± 0.357% ± 10.911% ± 10.911% ± 2.606%

All 0.750% 0.750% 0.154% -0.19* -46.253% 46.253% 351.950% 0.49* 25.050% -25.050% 64.161% 0.46*± 2.071% ± 2.071% ± 1.374% ± 2.625 ± 2.625 ± 0.498% ± 5.489% ± 5.489% ± 1.594%

cohesion than the original implementation. First of all, one
needs to keep in mind that this correlation was computed
using the 30 Bunch solutions of each release of each system.
A positive correlation, in this case, indicates that in spite of
the fact that all cohesion values of Bunch solutions are worse
than the developers’ implementation, the solutions with higher
MQ tend to have a higher cohesion too.

As an example, the scatter plot in Figure 2 presents the
cohesion and MQ differences of the 30 solutions found by
Bunch for Pivot 2.0.2 in comparison to the original
implementation. As one can see, all the 30 solutions have
higher MQ than the developers’ implementation, yet lower
cohesion; however, the solutions with higher MQ tend to
have a higher cohesion too, which elucidates the positive
correlations between cohesion and MQ reported in Table IV.

After an analysis of the 30 Bunch solutions, we noticed
that these solutions have similar number of packages, where
16 (out of 30) solutions have 58 packages, 10 solutions
have 57 packages and 4 solutions have 59 packages. This
suggests that for modularisations with similar numbers of
packages, higher MQ values usually denote higher cohesion.
These observations motivate our next research question, where
we introduce and evaluate a package-constrained approach
for search based software re-modularisation as an attempt to
improve the modular structure of software systems as assessed
by both cohesion and MQ.
RQ2.3: What is the relationship between raw cohesion and
MQ for solutions found by a package-constrained search
for improved cohesion/coupling? The MQ metric was orig-
inally designed to optimise the cohesion/coupling of software
systems from scratch, without any previous information on
the modular structure other than the dependencies between
elements. However, when Bunch is applied to large-scale real
world software systems, the ‘inflation effect’ induced by MQ
may be undesirable. Because of this effect, new packages are
created and existing classes are moved to these new packages,
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Fig. 2: Cohesion and MQ differences for 30 modularisa-
tions found by Bunch for Pivot 2.0.2 when compared
to the original developers’ implementation

causing a (large) decrease in the system’s cohesion.
We performed a longitudinal analysis of the allocation

of classes to packages throughout releases as implemented
by the developers themselves. We found no release (out of
233) where a new package was created and only existing
classes were moved to the new package. Therefore, apart
from decreasing the cohesion of the system, a Bunch re-
modularisation might also be unrealistic because developers
rarely create new packages to accommodate existing classes.
This observation adds evidence to recent claims [6][7] against
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“Big Banlowere-modularisation approaches (i.e., a complete
re-allocation of the system’s classes in packages), where recent
studies have used the original modular structure implemented
by developers as a guide to find more suitable packages for
certain classes [30][55].

Thus, in this research question, we introduce a package-
constrained version of search based re-modularisation that
maximises MQ and constrains the search algorithm to search
only for modularisations with the same number of packages
of the original developers’ implementation. This way we
avoid the creation of new packages, so that classes are only
moved to packages that developers are already familiar with.
Moreover, as suggested in RQ2.2, higher MQ values may lead
to higher cohesion values for the same number of packages.
Therefore, by maintaining the same number of packages as the
original implementation, we might be able to optimise MQ and
improve the overall cohesion of the system.

Hence, we re-implemented the hill climbing search ap-
proach of the Bunch tool including the number of packages
as a constraint to the search. We executed the approach
30 times for each release of each system, and the average
cohesion, coupling, MQ and standard deviations achieved by
the package-constrained search are reported in the ninth, tenth
and eleventh columns of Table IV, respectively.

Apart from the Procyon system, all package-constrained
solutions yield improvements in both cohesion and MQ. On
average, the cohesion of the systems under study was improved
by 25.05%, and the biggest cohesion improvement was in
Proguard with 102.28%. However, similar results were not
achieved in some of the systems, such as AssertJ and
Pivot that had small cohesion improvements, and Procyon
that had an worse average cohesion than the original imple-
mentation. The results for these three systems indicate that
in some cases, even in a package-constrained setting, MQ
optimisation do not lead to better modularity, as assessed by
raw cohesion. It might be possible that these systems already
have a good cohesion, and cannot be further optimised. Nev-
ertheless, the modularity of these systems need to be further
investigated, so that accurate conclusions can be drawed.

The Kendall-τ correlation coefficients between cohesion
and MQ for the package-constrained search are reported in
the last column of Table IV. The moderate positive coefficients
that can be seen for the package-constrained search resemble
the coefficients computed for the Bunch solutions. These
results reinforce the observation that MQ can indeed guide
the search towards solutions with better cohesion when the
search is package-constrained. This is an important finding
for the search based re-modularisation community.

As an answer to RQ2, we showed that raw cohesion and MQ
do not commonly agree in assessing the modularity of software
systems. We noticed that this is mainly due to the ‘inflation
effect’ of MQ, where Bunch creates an average of 493.11%
new packages in the system, which decreases the cohesion
when compared to the original developers’ implementation.
However, we observed that in solutions with similar number
of packages, MQ and cohesion have a moderate positive
correlation, which mainly led us to introduce a new package-
constrained search as an attempt to mitigate MQ’s ‘inflation

effect’. In general, package-constrained automated modulari-
sation was able to improve the cohesion of the systems under
study by 25.05% without creating new packages.

Considering the results presented in RQ1 and RQ2, we
showed that developers have some degree of respect for
structural measurements of cohesion and coupling as the
original solutions are better than the ones found by random and
neighbourhood search; however, optimal values of cohesion
and coupling might not be pursued since developers’ solutions
are worse than the ones found by the hill climbing search.
This observation endorses a recent study [7] that compared
developers’ modularisations of open source systems with alter-
natives found by multiobjective search for cohesion/coupling
improvement. Even though the empirical studies presented in
this and in the related paper [7] use different quality metrics,
different search procedures and different software systems,
they complement each other by presenting evidence that
developers do respect structural measurements of cohesion and
coupling, but optimisation of these properties is not sought.

C. RQ3: What is the disruption caused by search based
approaches for optimising software modularisation?

The previous section showed that search-based algorithms
can be used to optimise the trade-off between cohesion and
coupling in open source software systems. In fact, candidate
solutions in the package-constrained search usually present
improved modular structure, as measured by both cohesion
and MQ metrics. This raises the obvious question: if systems
can be optimised for modularity, and there is evidence that sys-
tems respect structural measurements, then why do developers
implement solutions with a sub-optimal modular structure?

One answer to this question lies in the potential size and
complexity of the search space; humans have been shown,
repeatedly, to be sub optimal, in their ability to find solutions
to SBSE problems such as this [56][57]. However, it is also
important to explore another possibility: perhaps the improve-
ment in modular structure achieved using SBSE comes with
a price of significant disruption to the existing modularity.
There is evidence in the literature [4] that developers are
reluctant to change the structure of systems, choosing instead,
to retain the familiar structure rather than move to an improved
version. Therefore, we turn our attention to assessing the
degree of disruption that would result from an improvement
performed by the SBSE approaches to automated software re-
modularisation presented in RQ2. For this analysis, we use the
DisMoJo metric, which is formally defined in Section II-C.
RQ3.1: What is the disruption caused by widely used
search based tools for automated software modularisa-
tion? In this research question we want to assess how much
disruption developers would have to endure when using a
widely used tool for modularity optimisation. For this analysis,
the solutions found by the Bunch tool in RQ2.2 will be
considered. Each of the 30 solutions found by Bunch for each
release of each system are compared to the original developers’
implementation. The average disruption caused by Bunch, as
assessed by DisMoJo, for each system under study is presented
in the first column of Table V.
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TABLE V: Disruption to the modular structure caused by Bunch and Package-constrained search based approaches
for modularisation improvement. We report the mean disruption caused by the 30 executions of each search approach.
In addition, we report the disruption caused by the best solutions (out of the 30), as assessed by Cohesion and MQ.
Each entry in the table is an average over all releases of the system.

Systems Bunch Package-constrained
Mean Best - Cohesion Best - MQ Mean Best - Cohesion Best - MQ

Ant 82.70% 80.63% 81.70% 57.86% 53.50% 55.73%
AssertJ 90.11% 89.66% 90.11% 59.02% 55.51% 56.54%
Flume 79.90% 79.09% 79.19% 62.20% 57.57% 58.16%
Gson 88.49% 85.22% 87.78% 56.04% 48.72% 51.16%
JUnit 69.87% 68.24% 69.23% 52.11% 49.53% 50.12%
Nutch 77.22% 75.92% 76.45% 61.91% 60.30% 60.15%

PDFBox 66.78% 64.18% 65.96% 53.12% 51.49% 51.74%
Pivot 79.26% 78.39% 78.32% 60.47% 56.36% 56.36%

Procyon 85.98% 84.39% 85.23% 56.94% 53.94% 54.88%
Proguard 83.66% 82.02% 82.74% 58.59% 56.44% 58.24%

All 80.39% 78.77% 79.67% 57.82% 54.33% 55.30%

Considering all systems, the average disruption that devel-
opers would need to endure in order to optimise the modular
structure using Bunch is 80.39%. This observation provides
evidence that even though existing SBSE techiniques can
improve modular structure, the high disruption caused to the
original system might inhibit wider industrial uptake of search
based re-modularisation.

After an inspection of all 30 Bunch solutions of each
release of each system, we collected the solutions with higher
cohesion and MQ, and reported the average disruption caused
by these best solutions over all releases. The disruption caused
by the best cohesion and best MQ solutions found by Bunch
are presented on the second and third columns of Table V,
respectively.

Since the modularity optimisation process consists in mov-
ing classes around packages, one might expect that the most
optimised solutions will also be the most disruptive ones.
However, as can be seen from Table V, the disruption caused
by the best cohesion and MQ solutions are actually smaller
than the average disruption. This counterintuitive observation
suggests that, in the scenario where developers are willing
to endure considerable disruption to optimise their system
modular structure, it is possible to find solutions with less
modifications than expected.
RQ3.2: What is the disruption caused by the package-
constrained search based approach for automated software
modularisation? The package-constrained search approach
for software modularisation was introduced in RQ2.3 as an
alternative to mitigate the ‘inflation effect’ of the Bunch tool.
The average disruption caused by the package-constrained
search is presented in the fourth column of Table V.

As expected, the disruption caused by the package-
constrained search is smaller (57.82%), but it still denotes a
high number of modifications to the original system in order
to optimise the modular structure.

The average disruption caused by the best cohesion and MQ
solutions for the package-constrained search are presented in
the last two columns of Table V, respectively. Similarly to
the Bunch results, the disruption of the solutions with best
modular structure is smaller than the average disruption caused
by the 30 executions for each release.

In general, the disruption caused by the package-constrained

optimisation approach is smaller than the disruption caused
by the Bunch tool. An unexpected observation from these
analyses was that solutions with the best modular structure,
as assessed by both cohesion and MQ, presented smaller
disruption than the average.

As an answer to RQ3, the disruption caused by search based
approaches to automated re-modularisation is high. The results
found in this paper complement a recent disruption analysis
performed by Candela et al. [7], where despite using different
optimisation algorithms, different cohesion/coupling metrics
and different software systems, both studies showed that search
based modularisation is highly disruptive. We conjecture that
such disruption inhibit industrial uptake of these techniques.

D. RQ4: Can multiobjective search find allocations of classes
to packages with a good trade-off between modularity im-
provement and disruption of the original modular structure?

Summarizing the findings of RQ1-3: open source software
systems respect structural measurements of cohesion and
coupling (RQ1), but although search based techniques can
substantially improve the systems’ modular structure (RQ2),
these techniques tend to dramatically disrupt the original
developers’ implementations (RQ3).

Motivated by these findings, we introduce a multiobjective
evolutionary search based approach to find candidate modular-
isations with a good trade-off between modular improvement
and disruption. Our intuition is that since the systems under
study exhibit considerable respect for structural measurements
of cohesion and coupling, developers might be willing to
improve their systems’ modular structure when the changes
required for improvement lie within an acceptable range.

In order to carry out this analysis, we propose two differ-
ent multiobjective experiments, each of which uses different
search strategies; therefore, providing different insights on
how multiobjective search can be used to improve software
modularity, while taking disruption into account.

For all multiobjective experiments we use the Two-Archive
Genetic Algorithm [58], which was demonstrated to perform
well in a previous multiobjective investigation of automated
software modularisation [12]. The Two-Archive GA settings
are mostly based on this earlier work [12], and are the same for
all experiments: The population size is set to N , where N is
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the number of classes in the system. Single point crossover
is employed with a 0.8 probability when N < 100, and
1.0 probability otherwise. Swap mutation is performed with a
probability of 0.004 logN2 . Parents are selected by tournament,
with a tournament size of 2. In addition, the probability of
selecting parents from the convergence archive is 0.5, and the
size of the archives is limited to 100 individuals. Finally, the
number of generations is set to 50N .
RQ4.1: What is the trade-off between modularity improve-
ment and disruption for the package-free search? The first
multiobjective experiment is concerned with the widely used
[9][12] optimisation approach to improve software modularity
where the search algorithm has no constraints on the number of
packages it can create. We call this search strategy “package-
free”. In order to identify the trade-off between modularity
improvement and disruption, the search algorithm attempts
to maximise MQ and minimise DisMoJo. In addition, we
measure the raw cohesion of the solutions found by the
multiobjective search.

In RQ2.2 we used the Bunch tool to find MQ-optimised
solutions for each release of each system under study; there-
fore, the solutions found by Bunch can be used as starting
points (seeds) for the multiobjective algorithm in its search
for solutions with high MQ value. Similarly, the original
developers’ implementation of each release is also used to
seed the Two-Archive GA.

Figure 3 presents some of the pareto fronts found for the
package-free multiobjective execution. We selected one release
as a representative of each system to be discussed in this paper.
However, we make all results available on the paper’s comple-
mentary web page3. As one can see, the results for the different
systems are considerably similar, where all releases present a
clear and almost constant trade-off between MQ improvement
and DisMoJo, which is an expected behavior because MQ
improvement is achieved by adding new packages; therefore,
leading to large scale disruption.

RQ2 showed that an improvement in MQ does not nec-
essarily indicate an improvement in the raw cohesion of
the system; therefore, we also measured the raw cohesion
of all different modularisations found by the multiobjective
search that targets MQ improvement. When considering all
the package-free MQ-optimised modularisations in the pareto
fronts, most of them have a cohesion value that is worse
than the original developers’ implementation. These results
add evidence to the observation in RQ2, that MQ-optimised
solutions may decrease the cohesion of the original system. In
fact, when considering the pareto fronts computed for Nutch,
PDFBox and Proguard, for example, all the modularisations
are worse than the original system in terms of raw cohesion.
RQ4.2: What is the trade-off between modularity improve-
ment and disruption for the package-constrained search?
This second multiobjective experiment is concerned with the
automated software re-modularisation approach proposed in
RQ2.3, where the search algorithm is package-constrained.
Similarly to RQ4.1, the multiobjective search tries to maximise
MQ and minimise DisMoJo; however, the search algorithm is

3https://mhepaixao.github.io/balancing improvement disruption/

constrained to the same number of packages as those in the
original developers’ implementation.

For this research question, the Two-Archive GA is seeded
with the original system (as in RQ4.1) and the MQ-optimised
solutions found by our package-constrained implementation
of the hill climbing algorithm used by the Bunch tool (see
RQ2.3). Figure 4 presents the pareto fronts found by the
package-constrained multiobjective search.

Similarly to RQ4.1, there is a clear trade-off between MQ
and DisMoJo; however, the pareto front structure is different:
we observe a larger number of gaps and ‘knee points’ in
the package-constrained pareto fronts than in the package-free
ones.

The cohesion improvements achieved by all modularisations
in the the package-constrained pareto fronts were also mea-
sured. In most of the systems, the number of MQ-optimised
modularisations with better cohesion than the original imple-
mentation is noticeably bigger than in RQ4.1. Moreover, for al-
most all the systems, it is possible to find modularisations with
a considerable improvement in cohesion and yet a relatively
small disruption. This is a very positive outcome; although
re-modularisation approaches may be too disruptive, multi-
objective search migth be able to find solutions with useful
compromises between modular improvement and disruption.

As one can notice in the package-constrained pareto fronts
in Figure 4, sometimes the modularisation found by the hill
climbing package-constrained search is not part of the pareto
front. Considering Ant, Flume and JUnit, for example, the
hill climbing modularisation has higher disruption and lower
MQ than other solutions in the pareto front. Differently, in the
package-free pareto fronts in Figure 3, the Bunch solution is
always the one with highest MQ in all pareto fronts.

This might be possible because even though we followed
what was described in the PhD thesis [47] of one of Bunch’s
creators, the Bunch tool has continued to be improved over the
years [9][29], so that our implementation might only be able to
find local optima modularisations. According to Table IV, the
standard deviation of our implementation of the hill climbing
search is higher than Bunch’s, which may be an indicator of
the conjecture above. However, it might also be the case that
the MQ search space of the package-constrained envinronment
is different than the package-free one, where solutions with
bigger MQ improvement can be found on the neighbourhood
of solutions with small disruption. Nevertheless, this is an
interesting finding that needs further investigation.

The main goal of RQ4 (and Figures 3 and 4) is to illustrate
the trade-off between improvement in modular structure and
disruption to the original implementation that can be achieved
with multiobjective search. The state of the art techniques
for automated software modularisation, both single [9] and
multi [12] objective, are mostly concerned with modularity
improvement, which we know usually causes a large disruption
to the original implementation (see RQ3). Previously, devel-
opers who would like to optimise the modular structure of
their systems using search based approaches would have two
choices: improve the system as much as possible and thereby
considerably change the original structure, or keep the original
implementation and do not perform any improvement. With
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Fig. 3: Pareto fronts reporting the trade-off between MQ and DisMoJo for the package-free multiobjective search
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Fig. 4: Pareto fronts reporting the trade-off between MQ and DisMoJo for the package-constrained multiobjective
search
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the multiobjective approach proposed to answer RQ4.1 and
RQ4.2, developers would have a wider range of options.

The analyses performed in RQ4 took into consideration
all solutions in the computed pareto fronts, providing general
insights on the shape of the fronts and on the quality of the
solutions within the fronts. In RQ5 we show how developers
can pick a particular modularisation from the pareto fronts
according to their needs and constraints.

E. RQ5: What is the modularity improvement provided by the
multiobjective search for acceptable disruption levels?

In RQ4 we showed that the proposed multiobjective search
can find solutions that improve the modularity of the original
developers’ implementation, as assessed by MQ and cohesion,
especially for package-constrained search. However, we did
not discuss how developers can use the proposed multiobjec-
tive approach. We believe that the multiobjective optimisation
of modularity and disruption can be used by developers at
different moments during the software lifecycle, depending on
how much disruption they are willing to endure in order to
achieve modularity improvement.

As an example, consider the scenario where developers are
planning amajor release of the software system. Since it is a
major release, the system will possibly undergo large changes
to accommodate the new features. In this case, developers can
take advantage of the fact the system is going to undergo sub-
stantial change, and perform large refactorings to improve the
modular structure. On the other hand, in minor or bug-fixing
releases, developers may be less willing to change modular
structure, therefore, favouring smaller changes. However, this
‘acceptable disruption’ level is not obvious.

Therefore, in this research question we introduce three dif-
ferent methods to estimate the ‘acceptable’ level of modularity
disruption that can be sustained by developers in order to
obtain modularity improvement. All methods are based on a
longitudinal analysis of the developers’ implementations of
each release of each system under study. Later, we show
how these different ‘acceptable’ levels of disruption can be
used to select solutions from the pareto fronts found by the
multiobjective search approach.
RQ5.1: What is the longitudinal modular disruption in-
troduced by developers? As a software system evolves, new
features are added, changed or removed; as such, the modular
structure of the system needs to change in order to cope with
the new requirements and demands. Therefore, the modular
structure of a software system is constantly disrupted by its
developers during the system’s lifetime, in which we call the
‘natural disruption’ of the system. Although the ‘acceptable
disruption’ level that developers are willing to endure to
improve the modularity is difficult to measure, we argue that
the ‘natural disruption’ level that developers introduced during
the system evolution is a good proxy. Thus, we introduce
three different methods to assess the ‘natural disruption’ of the
systems under study, each of which are used as an estimation
of the ‘acceptable’ level of disruption.

The first two methods use the DisMoJo metric in a different
way than used in RQ3 and RQ4. DisMoJo(A,B), as defined

in Section II-C, is used to measure the disrution between
A and B when both modularisations are composed by the
same set of classes. Therefore, since classes can be added or
removed between two different releases of the same system,
DisMoJo cannot be used to measure the disruption between
releases of the same system. In order to provide a lower and an
upper bound of the disruption between releases, we introduce
Intersection DisMoJo and Union DisMoJo, respectively.

Consider two subsequent releases A and B of the same
system. Intersection DisMoJo is computed by considering only
the subset of classes that belongs to both A and B. We say
this is a lower bound disruption between releases because it
considers the minimum number of classes that can be moved
between releases. Accordingly, Union DisMoJo is computed
by aggregating all classes that belong to both A and B, where
classes that belong to A but do not belong to B, and vice-versa,
are allocated to a separate package. This is an upper bound
of disruption because all possible classes that can be moved,
added or deleted between A and B are taken into account.

Finally, our third method to assess the ‘natural disruption’ of
a software system is based on the analysis of the proportional
increase in the number of classes over releases. As the system
evolves, the number of classes added in each release is a
simple and straightforward way to asses how much of the
modular structure changes during the system evolution.

Each of the three methods to assess the ‘natural disruption’
described above was computed for each pair of subsequent
releases of the systems under study, and the results are pre-
sented in Table VI. For each system we report the minimum,
maximum, median and mean values for each method. This
way we can assess what is the biggest and smallest disruption
levels each system has undergone during its lifecycle, and also
what is the average disruption developers are used to introduce
during systems’ evolution.

As one can see, the minimum ‘natural disruption’ for all
systems, according to all three estimation methods, is 0.00%.
This means that for all systems, there is at least one pair of
subsequent releases that has the same modular structure. The
Itersection DisMoJo values are the smallest for all systems
(as expected), and for Flume and Procyon, Intersection
DisMoJo is always 0.00%. These results add evidence to the
observation in RQ2.3 that existing classes rarely move between
packages. Furthermore, all disruption values reported by both
Intersection and Union DisMoJo lie within the range of the
proportional addition of classes, which is a straightforward
way for developers to understand the ‘natural disruption’.
RQ5.2: How much modularity improvement can be
achieved within lower and upper bounds of ‘acceptable’
disruption? In this analysis, the ‘natural disruption’ levels
computed in RQ5.1 are used as proxies for the ‘acceptable’
level of disruption that developers would be willing to endure
in order improve the modular structure of their systems. As
previously mentioned, developers have different ‘acceptance’
levels at different moments of the software lifetime; therefore,
we report the modularity improvement that can be achieved at
lower and upper bounds of the ‘acceptable disruption’.

The lower bound denotes the smallest greater than zero
disruption level we could ascribe from the average disruption
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TABLE VI: ‘Natural disruption’ levels caused by developers during system’s evolution, as assessed by three differement
methods. Intersection DisMoJo computes the DisMoJo metric considering the intersection of classes between two
subsequent releases, while Union DisMoJo computes the DisMoJo metric considering all classes of two subsequent
releases. The proportional addition of classes accounts for the proportional increase in the number of classes between
two subsequent releases of the same system. Each method was used to compute the ‘natural disruption’ of each release
of each system, and we report the minimum, maximum, median and mean results for each system.

Systems Intersection DisMoJo Union DisMoJo Proportional Addition of Classes
Min Max Median Mean Min Max Median Mean Min Max Median Mean

Ant 0.00% 2.12 % 0.00% 0.07% 0.00% 36.92% 0.59% 6.48% 0.00% 72.54% 0.05% 11.05%
AssertJ 0.00% 0.79 % 0.00% 0.12% 0.00% 19.34% 3.53% 4.68% 0.00% 47.89% 3.78% 8.50%
Flume 0.00% 0.00 % 0.00% 0.00% 0.00% 36.55% 1.98% 8.60% 0.00% 59.59% 2.37% 14.52%
Gson 0.00% 16.45% 0.00% 1.23% 0.00% 38.71% 6.76% 10.60% 0.00% 64.70% 8.31% 14.09%
JUnit 0.00% 9.09 % 0.00% 0.79% 0.00% 41.89% 2.92% 9.34% 0.00% 196.93% 4.34% 23.30%
Nutch 0.00% 0.43 % 0.00% 0.03% 0.00% 35.15% 1.82% 5.67% 0.00% 51.77% 2.41% 7.09%

PDFBox 0.00% 2.06 % 0.00% 0.10% 0.00% 26.72% 1.57% 5.41% 0.00% 35.00% 2.54% 8.24%
Pivot 0.00% 0.79 % 0.00% 0.07% 0.00% 14.53% 1.14% 5.77% 0.00% 32.03% 1.08% 9.47%

Procyon 0.00% 0.00 % 0.00% 0.00% 0.00% 3.78 % 0.02% 0.54% 0.00% 3.03% 0.38% 0.63%
Proguard 0.00% 11.48% 0.00% 0.58% 0.00% 56.36% 1.28% 5.32% 0.00% 75.37% 1.55% 6.56%

TABLE VII: Modularity improvement, as assessed by
cohesion and MQ, that can be achieved within the lower
and upper bounds of the ‘acceptable disruption’ level.

Systems
Package-Free Package-Constrained

Lower Bound Upper Bound Lower Bound Upper Bound
Coh MQ Coh MQ Coh MQ Coh MQ

Ant 0.00% 0.00% 1.24% 148.00% 0.00% 0.00% 7.66% 35.21%
AssertJ 0.00% 0.00% 0.52% 157.01% 0.00% 0.00% 4.73% 41.02%
Flume 0.00% 7.82% 0.54% 168.65% 1.25% 15.21% 21.35% 59.73%
Gson 1.28% 8.57% 8.97% 365.62% 4.70% 17.09% 40.98% 121.53%
JUnit 0.10% 0.00% 3.16% 148.37% 0.76% 2.22% 22.21% 49.09%
Nutch 0.00% 0.00% 0.00% 159.76% 0.00% 0.00% 1.89% 70.03%

PDFBox 0.00% 0.00% 2.73% 66.65% 0.00% 0.00% 6.61% 45.47%
Pivot 0.00% 0.00% 0.46% 83.23% 0.00% 0.00% 9.80% 45.44%

Procyon 0.00% 0.00% 0.00% 8.32% 0.00% 0.00% 0.00% 0.00%
Proguard 0.00% 0.00% 6.19% 200.29% 0.21% 0.00% 110.00% 94.05%

All 0.13% 1.63% 2.38% 150.28% 0.69% 3.45% 22.52% 55.75%

caused by developers over the period of evolution of the
systems studied. This is a reasonable lower bound because
it is chosen to be the lowest possible value (median or mean,
using either intersected or unioned DisMoJo) over all releases,
for each system. If the developers are prepared to tolerate
this amount of disruption during the system’s development,
on average, then it is not unreasonable that they might allow
this amount of disruption when it can occasionally improve
the modular structure.

The upper bound denotes the largest possible disruption
value we can ascribe from the disruption caused by developers
in any release of the system studied (using either intersected or
unioned DisMoJo). This is a reasonable upper bound because
we know that there does exist a release of the software that
causes this level of disruption, and therefore we know that it
was, at least on one occasion, tolerated by the developers.

Therefore, for each system, we identified the lower and up-
per bounds of ‘acceptable disruption’ as described above; then,
we selected modularisations from the pareto fronts computed
in RQ4 according to these lower and upper bounds. Consider
the Ant system, for example. The lower and upper bounds for
‘acceptable disruption’ were identified as 0.07% and 36.92%,
respectively. For each release of Ant we selected the solutions
with best cohesion and MQ improvements found by both
package-free and package-constrained search approaches that
have a DisMoJo value equal or smaller the lower and upper
bounds of ‘acceptable disruption’. Results for all systems
under study are reported in Table VII.

As can be seen from the table, the modularity improvements

achieved within the lower bound disruption, for both package-
free and package-constrained are small. In fact, for most of
the systems, neither package-free nor package-constrained has
found any improvement in neither cohesion nor MQ within the
lower bound disruption. However, for some software systems it
is possible to have modularity improvements even considering
a lower bound disruption, such as Gson, where package-
constrained search found a 4.70% cohesion improvement
within the minimum ‘acceptable disruption’ level.

The small modularity improvement achieved within the
lower bound disruption is due to the fact that the changes
performed to the classes that remain between releases (In-
tersection DisMoJo) is usually small, as presented in Table
VI. Nevertheless, small modularity improvements can still be
relevant. Cohesion improvements that are focused on a core
package or sub-module of the system might be small, but still
represent a great impact on the overall maintainability and un-
derstandability, for example. Correspondingly, the qualitative
analysis in Section V reports relevant refactorings suggested
within the lower bound disruption for one of the system under
study.

As expected, modular improvements within the upper bound
disruption levels are the biggest for all systems. When con-
sidering the biggest disruption level the systems have already
undergone, package-constrained search was able to find mod-
ularisations with considerable cohesion improvements, such as
40.98% and 110.00% for Gson and Proguard, respectively.

As an answer to RQ5, multiobjective search can find mod-
ularisations with improved modular structure, as assessed by
both cohesion and MQ, even within lower and upper bounds
of disruption introduced by developers between releases.

V. QUALITATIVE ANALYSIS

In this section we select one of the systems we studied
in our empirical study and describe with more details some
of the results we achieved throughout our research questions.
Table VIII reports detailed results for each release of JUnit,
including the cohesion and MQ values of the original devel-
opers’ implementations and the results achieved by Bunch,
package-constrained and multiobjective search. Finally, we
also report the natural disruption between all releases of the
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TABLE VIII: Detailed results for all releases of JUnit. For each release, we report the raw cohesion and MQ values for
the original developers’ implementation and the results achieved by both Bunch and Package-constrained search. In
addition, we report the lower and upper bounds of the natural disruption between releases, computed by Intersection
and Union DismoJo, respectively. Finally we report the cohesion and MQ results achieved by the proposed multiobjective
approach to maximise modularity improvement and minimise disruption, where we use the natural disruption of each
release to pick a solution from the pareto front.

Release Original Implementation Bunch Package-constrained HC Multiobjective Package-constrained Natural DisruptionLower Bound Upper Bound
Cohesion MQ Cohesion MQ Cohesion MQ Cohesion MQ Cohesion MQ Lower Bound Upper Bound

3.7 175 2.92 118 ± 3 10.69 ± 0.15 186 ± 9 4.78 ± 0.17 175 2.92 175 2.92 0.00% 0.00%
3.8 175 3.02 116 ± 2 11.00 ± 0.07 198 ± 7 4.28 ± 0.15 175 3.02 183 3.55 0.00% 7.50%

3.8.1 176 3.03 115 ± 2 11.06 ± 0.04 194 ± 7 4.21 ± 0.13 176 3.03 177 3.13 0.00% 1.27%
3.8.2 183 3.10 126 ± 2 11.60 ± 0.06 201 ± 8 4.33 ± 0.17 183 3.10 183 3.24 0.00% 2.50%
4.0 147 3.83 97 ± 6 11.02 ± 0.07 193 ± 9 6.31 ± 0.29 167 5.27 185 6.07 9.09% 39.86%
4.1 164 4.01 105 ± 6 11.72 ± 0.06 215 ± 11 6.62 ± 0.30 164 4.01 174 4.72 0.00% 3.66%
4.2 164 3.98 107 ± 7 11.95 ± 0.06 214 ± 9 7.14 ± 0.31 164 3.98 169 4.34 0.00% 1.20%
4.3 541 3.82 365 ± 15 28.90 ± 0.06 711 ± 23 9.15 ± 0.27 541 3.82 668 5.14 0.00% 2.92%

4.3.1 168 4.03 114 ± 6 12.01 ± 0.06 213 ± 9 6.93 ± 0.33 168 4.03 168 4.03 0.00% 1.10%
4.4 232 6.85 173 ± 5 17.40 ± 0.05 323 ± 13 10.67 ± 0.30 256 7.58 298 9.83 2.60% 41.89%
4.5 265 7.39 220 ± 14 20.89 ± 0.05 373 ± 16 13.20 ± 0.37 282 8.48 345 11.15 2.40% 32.42%
4.6 297 8.53 223 ± 10 22.99 ± 0.06 412 ± 13 14.31 ± 0.35 297 8.53 339 10.54 0.00% 5.43%
4.7 320 9.06 236 ± 8 25.78 ± 0.10 447 ± 17 14.90 ± 0.39 320 9.06 365 11.18 0.00% 5.34%
4.8 327 9.70 243 ± 8 26.62 ± 0.07 452 ± 12 15.48 ± 0.37 327 9.70 327 9.70 0.00% 0.00%

4.8.1 327 9.70 246 ± 16 26.58 ± 0.08 455 ± 17 15.51 ± 0.33 327 9.70 327 9.70 0.00% 0.00%
4.8.2 327 9.70 236 ± 9 26.59 ± 0.09 455 ± 18 15.49 ± 0.37 327 9.70 327 9.70 0.00% 0.00%
4.9 334 9.49 248 ± 9 27.70 ± 0.09 469 ± 12 16.08 ± 0.29 334 9.49 352 10.75 0.00% 2.33%

4.10 336 9.48 278 ± 14 27.72 ± 0.09 469 ± 15 15.99 ± 0.40 336 9.48 340 10.39 0.00% 1.83%
4.11 311 8.71 249 ± 9 27.34 ± 0.06 404 ± 16 15.45 ± 0.49 312 9.34 339 11.80 0.49% 6.19%
4.12 471 11.00 334 ± 11 33.94 ± 0.08 603 ± 14 18.04 ± 0.42 472 11.61 509 14.72 0.50% 22.05%

system. We have chosen JUnit because it presented a wide
range of modularity variation during its releases, enabling us
to illustrate different aspects of the studies we performed.

The second and third columns of Table VIII report the
cohesion and MQ values of the original modularisation im-
plemented by JUnit developers for the 20 subsequent releases
we collected. Both cohesion and MQ metrics are affected by
the size of the system, where a higher number of classes
and dependencies usually leads to a higher cohesion and MQ;
therefore, different releases of JUnit cannot be compared by
neither MQ nor cohesion. However, the techniques described
in this paper aim at optimising the modular structure of each
release in particular, so that comparisons within a certain
release are valid.

The average and standard deviation values of cohesion and
MQ for Bunch search are reported in the fourth and fifth
columns of the table, while the results for package-constrained
search are reported in the sixth and seventh columns. As
discussed in RQ2, the cohesion of the Bunch optimised mod-
ularisations is always lower than their original counterparts,
even though the MQ is considerably higher. Differently, all
package-constrained solutions are able to improve upon the
original implementation in both cohesion and MQ.

In release 4.2, for example, the average Bunch solution has
a cohesion value of 107 while the developers’ implementation
has a cohesion value of 164, which corresponds to a differ-
ence of -34.94%. On the other hand, the average package-
constrained modularisation for release 4.2 has a cohesion value
of 214, which represents an improvement of 30.16% over the
original modularisation. This particular case elucidates the MQ
‘inflation effect’ discussed in RQ2, showing how package-
constrained search can be used to avoid this undesirable
behavior and improve structural cohesion of software systems.

In the last columns of Table VIII we report the natural
disruption caused by each release of JUnit, in comparison to

the previous immediate release. For each release, we computed
lower and upper bound levels of disruption according to
Intersection and Union DisMoJo (described in RQ5), where
the first is a disruption measurement that considers only the
classes that remained between releases and the latter considers
not only classes that remained but also classes that were added
or removed between releases.

As one can see, the most disruptive release of JUnit was
release 4.4 with an upper bound disruption of 41.89%, yet
still smaller than the average disruption caused by Bunch and
package-constrained search (see Table V). This observation
adds evidence to the claim that even though cohesion and cou-
pling optimisation is achievable, complete re-modularisations
are unrealistic in real world software development, so that
approaches that seek for a compromise between modularity
improvement and familiarity to previously stablished structure
are more likely to be adopted by software developers.

Therefore, we report on columns 8-11 of Table VIII the
results achieved by the proposed multiobjective approach for
modularity improvement and disruption minimisation. For
each release of JUnit, we used the lower and upper bounds of
natural disruption to pick solutions from the pareto front. Con-
sider release 4.5, for example. For the lower bound cohesion
value, we picked the modularisation from the pareto front with
highest cohesion and disruption smaller than 2.40%. Similarly,
for the upper bound cohesion improvement, we picked the
solution with highest cohesion and disruption smaller than
32.42%. This way we are able to suggest modularity improve-
ments that are bounded by the same range of disruption that
is already familiar to the system’s developers.

As an example, we report part of the pareto front found
by the proposed multiobjective approach for release 4.0 of
JUnit in Table IX, where duplicate and similar solutions were
omitted. For each solution in the table, we present the cohesion
value, disruption given by DisMoJo and the number of classes
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TABLE IX: Modularisations suggested by the package-
constrained multiobjective search for JUnit 4.0. For each
solution, we report the raw cohesion, the disruption
given by DisMoJo and the number of moved classes in
comparison to the original developers’ implementation. We
also highlight the solutions that best match the lower and
upper bounds disruption levels of release 4.0.

Modularisation Cohesion Disruption Number Of
Moved Classes

(Original) 1 147 0.00% 0
2 150 3.70% 2
3 155 4.94% 3

(Lower Bound) 4 162 6.10% 4
5 167 9.76% 7
6 168 10.98% 8
7 169 14.81% 11
8 172 17.28% 13
9 175 18.52% 14

10 177 22.22% 17
11 183 23.46% 18

(Upper Bound) 12 185 28.40% 22

developers would need to move to a different package in
comparison to the original implementation. As one can see,
the multiobjective approach proposed in this paper is able to
suggest modularisations with different levels of improvement
and disruption, in a way that developers can choose the one
the better suits the project needs in a specific scenario.

Release 4.0 of JUnit has a lower bound disruption of
9.09%; therefore, modularisation number 4 is the one that
presents the most similar level of disruption, as depicted in
Table IX. This solution moves only 4 classes from the original
implementation, affecting only 3 out of the 11 packages
in the system. More specifically, class Description
is moved from package org.junit.runner
to package org.junit.internal.runners,
which is a reasonable refactoring since this class is
used to describe different test runners in package
org.junit.internal.runners. Moreover, class
Request is moved from package org.junit.runner
to package org.junit.internal.requests, which
contains all classes related to requests in the system.

On another hand, developers can select the solution that is
more similar to the upper bound disruption caused by release
4.0, which is modularisation 12 in Table IX. Interestingly,
this solution performs the same modifications discussed above
plus some “follow ups” to improve the cohesion even more,
such as moving other classes related to Request to the
org.junit.internal.requests package. In total, this
solution moved 22 classes and affected 8 out of 11 packages
of the system, achieving a cohesion improvement of 25.85%.

This case study illustrates how multiobjective search can be
used in conjunction with longitudinal analysis of disruption
to propose a set of modularisation solutions that present a
compromise between modularity improvement and familiarity
to existing structure, yet still bounded by the level of disruption
inflicted by the developers of the system.

VI. THREATS TO THE VALIDITY

This section describes the threats that might affect the
validity of the empirical study reported in this paper and
discusses our attempts to mitigate these threats.

Conclusion Threats are related to the analyses we per-
formed and the conclusions we drawed from these analyses.
Random and k-neighbourhood searches were executed one
million times for each release, while the systematic search
covered the whole nearest neighbourhood of the releases un-
der study. Furthermore, both Bunch and Package-constrained
search were executed 30 times for each release. In total, our
analyses of RQ1-3 were based in more than 466 million
different modularisations of the 10 systems and 233 releases
under study, which we believe thoroughly accounts for the
random nature of the algorithms we applied. In RQ4, the
multiobjective approaches were only executed once for each
release due to the large computation effort required to run the
multiobejctive GA for 233 releases of medium to large real
world software systems. However, we applied the Two-Archive
GA, which was demonstrated to be stable and perform well
in previous work [12][40].

Internal Threats consider the design of the experiments
we carried out and the effects our design choices might have
in our analyses. All the algorithms, fitness functions and pa-
rameters were based on previous and widely used literature on
automated software modularisation [8][9][12][17]. Moreover,
our data collection was performed based on a clear selection
criteria and involved manual validation of all systems, releases
and modularity data that were extracted.

External Threats are related to the generalisation of the
findings reported by the empirical study. We performed the
largest empirical study on automated software modularisation
to date, involving subsequent releases of medium to large real
world software systems. Furthermore, we make available in
our supporting web page4all the modularity data we used in
our empirical study to facilitate replications and extensions.

VII. CONCLUSION AND FUTURE WORK

The notions of software modularisation and cohesion/cou-
pling have been proposed as good practices for software
development since the 1970s, and many SBSE techniques have
been proposed and evaluated since late 1990s to automate the
decomposition of softaware systems in highly cohesive and
loosely coupled modules. However, after surveying more than
30 related papers, we could not identify any study that has
investigated the trade-off between the modularity improve-
ment these automated techniques offer and the inherently
disruption they cause to the original modular structure of
software systems. Moreover, most of the surveyed papers only
consider a single version of the systems under study, ignoring
the previous releases. Therefore, we performed the largest
empirical study on search based software re-modularisation
so far, involving 233 subsequent releases of 10 medium to
large real world software systems.

This study revealed that the modular structure of existing
systems respect the raw cohesion and the MQ quality metrics,
where the developers’ implementation have better cohesion
and/or MQ of more than 96% of the alternative modularisa-
tions created by random and neighbourhood search. However,
we noticed that raw cohesion and MQ do not commonly

4https://mhepaixao.github.io/balancing improvement disruption/
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agree when assessing the modularity of software systems due
to the ‘inflation effect’ of the MQ metric that we exposed
by applying the Bunch tool to the systems under study.
Modularisations with more packages favour the MQ metric;
therefore, Bunch creates an average of 493.11% new pack-
ages and decreases the cohesion of the systems in -46.25%,
on average. As an attempt to mitigate the MQ’s ‘inflation
effect’, we introduced the package-constrained approach for
automated re-modularisation, in which the search algorithm
is constrained by the number of packages implemented by
the developers. The package-constrained search was able to
find modularisations with an average cohesion improvement
of 25%.

Even though search based approaches can be used to
improve the modular structure of software systems as assessed
by both cohesion and MQ, we showed that the disruption
caused by these approaches is high. On average, developers
would have to change 80.39% and 57.82% of the structure
to adopt modularisations suggested by Bunch and package-
constrained search, respectively. Surprisingly, the disruption
caused by Bunch and package-constrained solutions with very
best modularity, as assessed by both cohesion and MQ, caused
less disruption than the average. Motivated by this opportunity,
we employed a multiobjective optimisation approach for au-
tomated software re-modularisation that attempts to maximise
the modularity improvement and minimise disruption.

We showed that modularity improvement and disruption
have a clear and constant trade-off over the pareto fronts of
all systems under study. Moreover, based on a longitudinal
analysis of developers implementations over releases, we
estimated lower and upper bounds of ‘acceptable’ levels of
disruption that developers have introduced. We found that our
new multiobjective approach was able to improve, on average,
3.45% and 22.59% of the cohesion of the systems within this
range of ‘acceptable’ disruption.

Finally, we performed a more detailed and qualitative
analysis of some of the results we achieved for the JUnit
system, where we presented in a series of case studies how
the experiments and analyses carried out in this paper can be
used together to provide a full picture of cohesion and coupling
optimisation for a certain system. Among other analyses, we
showed the evolution of cohesion throughout JUnit’s releases,
providing insights on how package-constrained search is able
to avoid MQ’s ‘inflation effect’, and how multiobjective search
can be used in conjunction with longitudinal analysis of
disruption to suggest re-modularisation solutions.

As future work, we discuss a set of extensions to the em-
pirical study presented in this paper alongside further research
that can be done by employing the techniques described in
this work. In RQ1 and RQ2 we performed an incremental
analysis of the respect developers have for measurements
of cohesion and coupling by employing a range of search
procedures. However, due to our experiment design and space
constraints, we restrained this analysis to state of the art
single objective search and did not assess developers’ solutions
regarding multiobjective approaches using the MCA and ECA
suite of metrics. Such extension would benefit the search based
modularisation community by providing insights on the fitness

functions being employed by other approaches.
Our disruption analysis is based on the widely used Mo-

JoFM metric, which in spite of its popularity, only consid-
ers “move class” and “join package” refactoring operations
to measure the distance between two modularisations. The
incorporation of other refactoring operations, such as “split
package”, in the distance metric may lead to a better assess-
ment of the disruptive effect of search based re-modularisation.

We employed the Two-Archive GA as an optimisation
algorithm to find solutions with a trade-off between modularity
improvement and disruption. However, in spite of the good
results achieved in this paper and also in previous research,
a further comparison of the Two-Archive GA with other
multiobjective algorithms and a simple weighted GA is needed
to assess the most suitable optimisation algorithm for the task
of finding software modularisations with high improvement
and low disruption.

Finally, we plan to extend the investigations performed in
this paper to consider not only structural measurements of soft-
ware systems, but also other metrics of cohesion and coupling,
such as semantic, co-changes and information theoretic. We
also plan to use/adapt the techniques and analyses described
in this paper to assess/measure structural and architectural debt
of software systems.
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