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ABSTRACT 
Immunotherapy with allodepleted donor T-cells improves immune reconstitution after 

haploidentical SCT, but infection and leukaemic relapse remain problematic. To develop a 

rational approach to refining allodepletion, we characterized the expression of surface markers 

and cytokines on proliferating alloreactive T-cells flow cytometrically. CD25 was expressed 

on 83 % of CFSE-dim alloreactive T-cells, confirming this as an excellent target for 

allodepletion. 70 % of the alloreactive CD25-ve population expressed CD71, identifying this as 

a novel marker to target alloreactive T-cells that persist after CD25 depletion. We compared 

residual alloreactivity to host or 3rd party after CD25 vs combined CD25/71 immunomagnetic 

depletion in 8 HLA-mismatched donor-recipient pairs. In 1o MLRs, residual responses to host 

were undetectable after CD25/71 depletion. In 2o MLRs, CD25/71 depletion resulted in 

significantly lower residual proliferative response to host than CD25 depletion (median 4.8% 

of the response of unmanipulated PBMC vs 9.9%, p < 0.01). Likewise, the median residual 

reactivity to host in IFN-γ ELISPOT assays was significantly lower after combined CD25/71 

than CD25 allodepletion (14.1 % vs 54.6%, p < 0.05). Third party responses after CD25/71 

allodepletion were equivalent to unmanipulated PBMCs in both assays. In pentamer and IFN-γ 

ELISPOT assays, anti-viral responses to CMV, EBV and adenovirus were preserved after 

combined CD25/71 allodepletion. Finally, we showed that CD25/71 allodepleted T-cells can 

be redirected to recognize and secrete IFN-γ and granzyme B in response to CD19 cell lines 

and primary ALL blasts through lentiviral transfer of a chimeric αCD19ζ TCR. This strategy 

may facilitate immunotherapy with larger doses of allodepleted T-cells after haplo-SCT, 

enhancing graft versus leukaemia and anti-viral effects. 
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INTRODUCTION 
Haematopoietic stem cell transplantation (HSCT) involves the intravenous infusion of 

autologous or allogeneic stem cells collected from bone marrow, peripheral blood, or umbilical 

cord blood to re-establish haematopoietic function in patients with damaged or defective bone 

marrow or immune systems. HSCT is a potential curative therapy for haematological 

malignancies by enabling both dose escalation in chemoradiotherapy and through an 

immunologically graft versus leukaemia (GVL) effect, mediated by donor T-cells. However, 

alloreactive donor T-cells can also cause a graft versus host disease (GVHD), which is a major 

complication post allogeneic transplantation.  

 

Haploidentical Transplantation 
 
The lack of fully HLA- matched donors is a major limitation to the applicability of HSCT. The 

ideal donor, a HLA-matched sibling donor is only available for 30 % of patients. For patients 

lacking a matched sibling donor, HSCT can be performed from an unrelated adult donor or 

cord blood. In contrast, the probability of finding a matched unrelated donor ranges from 10 % 

in poorly represented ethnic groups to 60 % in Caucasians.1 However, almost all patients have 

a HLA-mismatched family haploidentical donor, generally a parent or sibling. Haploidentical 

donors are matched with the recipient for 1 HLA haplotype and mismatched for the other. One 

potential advantage of using haploidentical donors 2 is that the donor could be chosen 

depending upon HLA type, CMV status, or other features such as NK cell alloreactivity. 

Another advantage is equal availability of donors for all ethnic and racial groups in contrast to 

matched unrelated donors. Haploidentical transplantation is now performed for patients with a 

variety of haematological malignancies, non haematological malignancies, 

immunodeficiencies and inborn errors of metabolism. 

 

Although encouraging data have been obtained, this approach is only being explored at centres 

with expertise in this area. Due to the high precursor frequency of alloreactive T cells in the 

haploidentical setting, rigorous T cell depletion is needed to prevent GVHD. The Perugia 

group pioneered progress in this field by developing the strategy of infusing  mega dose, 
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CD34- selected stem cells ( >10 x 106/kg) which were T cell depleted by  virtue of positive 

CD34 immunomagnetic selection using a Clinimacs device (Miltenyi Biotec).3 This approach 

resulted in over 4 log T cell depletion. Typically a dose of 104/kg residual T cells is infused 

with the graft. While this vigorous T-cell depletion is necessary to avoid GVHD, this leads to 

delayed immune reconstitution, predisposing to a high risk of viral infections and leukaemic 

relapse. 

 

One of the largest series of haploidentical transplants in the paediatric area has been done at 

The University of Tuebingen.4 Using CD34 positively selected grafts, they demonstrated in 63 

patients, engraftment in 98 % and grade 2 GVHD in 7 %. Overall survival after 4 years was 40 

%, with the major causes of death being relapse (30 %) and viral infections (14 %). 

Haploidentical transplantation has now become a well-established method and should be 

considered in all patients who need stem cell transplantation but lack a matched or single 

allelic mismatched donor. This method makes motivated donors available for almost all 

paediatric patients, since parents can donate stem cells for their children. Stable survival rates 

have been obtained and the problems of engraftment and GVHD have largely been resolved. 

However, the profound delay in T-cell reconstitution predisposes to high morbidity/mortality 

from relapse and viral infections. 

 

Poor immune reconstitution post haploidentical transplantation is the key factor contributing to 

the high transplant-related mortality associated with this form of HSCT and preventing broader 

use of this approach. In one series of 20 children who were prospectively followed up after 

receiving CD34 + selected haploidentical transplants,  NK cells were the first lymphoid cells 

to emerge during the first 4 weeks post transplantation.5  Reconstitution of the T- and B-cell 

occurred much later. For the first 6 months after haploidentical transplantation, patients are 

profoundly T-lymphopoenic, with a few circulating memory T-cells with a limited diversity, 

derived from graft-contaminating T-cells that have expanded in the antigenic milieu of the 

host. T-cell counts reached > 100/µl after a median of 72 days, with CD8 cells recovering 

faster than CD4 cells. A second wave of T-cell regeneration derived from donor stem cells, 

was found to start after 6 months resulting in T-cells that expressed a naive phenotype 

(CD45RA+). This increase in the number of naive T cells encompassed both CD8+ and CD4+ 

fractions and had a more diverse TCR repertoire. The mean time to normal T-cell numbers was 

450 days. Immune reconstitution in adult recipients of haploidentical grafts is even slower 
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where CD4+ counts remained below 100 and 200/µl for 10 and 16 months respectively, 

reflecting reduced thymic function compared to children.6  

 

This profound delay in T-cell reconstitution predisposes to an increased risk of morbidity and 

mortality from viral infections. An updated analysis of viral morbidity and mortality in 

paediatric haploidentical recipients showed that until day 180 post stem cell transplant (SCT) 

the cumulative incidence of all lethal viral infections (adenovirus n = 5, cytomegalovirus n = 

3, herpes simplex virus n = 1) was 16 % for the whole cohort of patients.7 Adenovirus is a 

particularly important pathogen with a cumulative incidence of adenovirus-associated 

mortality was 8.5 %. Similarly, an update from the Perugia group showed that the transplant 

related mortality (TRM) for haploidentical transplants was 47 % in a 100 high risk leukaemic 

patients who were in complete remission, and 63 % in those who were transplanted in relapse.8  

70 % of deaths were due to infection. The probability of relapse depended on the status of 

remission at the time of transplant, with most relapses occurring in patients not in remission at 

the time of transplant. The probability of relapse for AML patients in complete remission 

(CR1) was 18 % and for ALL it was 22 %. For patients not in remission, the figures for AML 

were 34 %, and ALL 90 %. Thus, improving immune reconstitution in haploidentical 

transplantation is vitally important to resolve the issue of virus and relapse associated 

mortality. 

 

In order to overcome the slow immune reconstitution after haplo-SCT, and transfer NK and 

other accessory cells with the graft, a number of groups have investigated negatively selecting 

haploidentical grafts with CD3 immunomagnetic beads (typically in combination with a B cell 

depletion), rather than positively selecting for CD34, using a reduced intensity conditioning 

(RIC) regime. The resulting grafts typically contain rather more T-cells than a CD34 selected 

graft (median 14 x 104/kg) and several logs more NK cells (35 x 106/kg after CD3/19 depletion 

compared to 0.003 x 106/kg after CD34 selected grafts) .9,10 Engraftment occurred in 91 % of 

patients, with more rapid T-cell reconstitution (median CD3 count 350/µl at 3 months) 

compared to previously reported with CD34 selected grafts. However, 36 % of patients 

developed significant acute GVHD (grade 2 or greater), thus suggesting that the enhanced T- 

cell reconstitution was in fact due to the higher T-cell dose that was infused with the graft. 

Furthermore, it was not clear if the improved T-cell reconstitution is simply due to expansion 

of alloreactive T-cells in patients who have developed GVHD. In an adult cohort using this 

regime, T-cell reconstitution remained slow (median CD3 count was 227 cells/µl on day 
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+100), there was a high incidence of severe acute GVHD ( 48 %), with relapse and infection 

accounting for a majority of deaths (overall survival 31 % after 241 days ).9 An update of this 

group’s experience with CD3/19 depleted RICs in 29 children/adolescents demonstrated that 

significant acute GVHD remained problematic (17 %) as did relapse (34 %), and deaths from 

adenoviraemia (7 %).11  There has been no formal assessment of anti-viral immune responses 

and T-cell repertoire using this approach. Thus immune reconstitution after CD3/19 depleted 

haploidentical HSCTs needs further study.  

 

In summary, strategies using mega doses of CD34-selected stem cells have shown that haplo-

SCT is feasible, but is compromised but the profound delay in T-cell reconstitution. Newer 

regimes using RIC, with combined CD3/19 depletion have emerged, leading to somewhat 

quicker T-cell reconstitution, but they have been complicated with significant rates of GVHD. 

What is needed is a means of selectively enhancing desirable anti-viral and anti-leukaemic T-

cell responses after haploidentical-SCT without causing GVHD. In order to do this, we need to 

understand the pathogenesis of GVHD. 

 

Immunobiology of GVHD 
 
Acute and chronic GVHD are a major cause of non relapse morbidity and mortality after stem 

cell transplantation. Acute GVHD often presents initially with a skin rash. Anorexia, nausea, 

and watery/or bloody diarrhoea are typical manifestations of gastrointestinal GVHD. Liver 

GVHD may present with jaundice and derangement of liver function tests. Chronic GVHD has 

more diverse manifestations and can resemble autoimmune syndromes, such as scleroderma, 

with salivary and lachrymal gland involvement, and pulmonary involvement. For the purposes 

of epidemiological studies, acute GVHD occurs within 100 days after transplantation and 

chronic GVHD after this. 

 

 GVHD is primarily a T cell mediated disease. The principal task of the immune system is to 

distinguish self from non-self. Major Histocompatibility Complex (MHC) molecules provide 

the crucial surface upon which the antigen receptors on T lymphocytes (T cell receptors or 

TCR) recognize foreign (non-self) antigens The MHC is highly polymorphic from individual 

to individual, and segregates in families in a Mendelian co dominant fashion. The genes of the 

HLA locus encode two distinct classes of cell surface molecules, classes I and II. Class I 
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molecules are expressed on the surfaces of virtually all nucleated cells at varying densities, 

while class II molecules are more restricted to cells of the immune system, primarily B 

lymphocytes, dendritic cells  and monocytes. There are three different class I (HLA-A, -B, -C) 

and class II (HLA-DQ, -DR, -DP) antigens. HLA-A, -B and -DR antigens appear to be the 

most important loci determining whether transplanted cells initiate a graft versus host reaction. 

The normal function of these molecules on antigen presenting cells is to  present antigenic 

fragments (in the form of linear peptides) to the CD4 positive helper T-cells (class II), or CD8 

positive cytotoxic effector T-cells (class I). This process of antigen presentation consists of the 

binding of a single T-cell receptor to a complex on the surface of an antigen- presenting cell, 

consisting of the MHC molecule and a peptide fragment derived from the foreign antigen. 

Intracellular-derived antigens are predominantly presented via MHC-class I, whereas 

exogenous antigens are mainly presented via class II. 

 

The major prerequisites for GVHD to occur are that the transplanted graft must contain 

immunologically competent cells and the recipient expresses tissue antigens that are 

recognized as foreign by the donor.12 The first prerequisite is fulfilled by mature T 

lymphocytes. After allogeneic transplant, the severity of GVHD corresponds with the number 

of donor T cells infused13  and T cell depletion reduces the incidence and severity of acute 

GVHD. Differences between host and donor MHC and minor histocompatibility antigens are 

the most important risk factor for initiation of GVHD. There are two forms of T-cell 

allorecognition, which are summarised in Fig. 1. 

 

a) Direct presentation of alloantigen- The response to intact allogeneic major 

histocompatibility (MHC) molecules plus foreign peptide is known as direct recognition. i.e. 

the host antigen presenting cell (APC) presents foreign MHC/ peptide to the donor T cells. 

This pathway is thought to be the dominant pathway involved in the early alloimmune 

response as the relative number of T cells that proliferate on contact with allogeneic or donor 

cells is extraordinarily high compared with the number of clones that target antigen presented 

by self-APC 

 

b) Indirect presentation of alloantigen- The indirect alloresponse is recognition of peptides 

from allogeneic MHC proteins presented by self MHC molecules. This occurs when donor 

APC process and present recipient alloantigens (e.g. from apoptotic cells) to donor T-cells a 

phenomenon called cross-presentation. 
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Minor histocompatibility antigens are polymorphisms of peptides that are presented in the 

context of the MHC 14  

 

Figure 1 Pathway of T cell Recognition. Reproduced from 14 There are 2 forms of allorecognition. Host 

APCs presenting foreign MHC to donor T cells (a) is called direct allorecognition. Indirect allorecognition occurs 

when donor APCs present host MHC molecules to donor T cells (b). Minor histocompatibility antigens are 

polymorphisms of peptides presented in the context of MHC and explain how GVHD occurs in the matched 

sibling setting. 

 

 As seen in Fig 2 the pathophysiology of GVHD can be thought of as a three step process 12,15  

(1)- tissue damage to the recipient by the chemo radiotherapy conditioning regimen (2) donor 

T-cell activation and clonal expansion (3) Effector phase with further damage to recipient 

tissues caused by donor T-cells. 
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Figure 2: Three phases of GVHD. In the first phase, chemoradiotherapy damages host tissues, leading to 

release of proinflammatory cytokines and absorption of lipopolysaccharide across bowel mucosa. This leads to 

upregulation of MHC molecules and in phase 2 host APCs interact with donor T cells. The latter secrete cytokines 

leading to the generation of the effector phase (phase 3). In phase 3 effector CTLs damage host tissue by the 

FAS/FAS ligand pathway and release of granzyme B. There is further release of proinflammatory cytokies 

leading to a vicious cycle (' the cytokine storm') 

 

Phase 1- Damage to host by Chemo radiotherapy 
 
High dose chemo radiotherapy regimens damage host tissue, particularly the gut, and allows 

lipopolysaccharide (LPS) from bacteria in the bowel to leak into adjacent tissues and the 
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bloodstream. Distinct classes of conserved microbial molecules and necrotic cell elements 

activate Toll like receptors on various cells such as dendritic cells, NK cells, macrophages, and 

eosinophils,  leading to the release of inflammatory cytokines such as tumour necrosis factor α 

﴾TNFα﴿, IL-1, IL-6, IL-1216 and interferon gamma (IFNγ), the latter promoting up regulation 

of  MHC antigens on antigen presenting cells (APCs) and maturation of dendritic cells (DCs)  

As part of the innate response, neutrophils, macrophages and eosinophils migrate to damaged 

tissue and cause further injury. Damaged host tissues responds with further secretion of 

proinflammatory cytokines, such as TNF-α and IL-1, resulting in the so called “cytokine 

storm’.  

Phase 2- Donor T cell activation 
(a) Target Antigens  
 
The precursor frequency of T cells that can recognize a mismatched MHC is very high (up to 

5-10 % of the T cell repertoire)17,18.  Mismatched MHC molecules on recipient APC are 

foreign to the donor T cells. In contrast, on self APCs, most of the self MHC molecules are 

displaying self peptides, and any foreign peptide probably occupies 1 % or less of the total 

MHC molecules expressed. As a result, the density of allogeneic determinants on allogeneic 

APCs, is much higher than the density of foreign peptide-self MHC complexes on self APCs, 

highlighting the importance of direct allorecognition. The abundance of recognizable 

allogeneic MHC molecules may allow activation of T-cells with low affinities for the foreign 

MHC, thereby increasing the number of T cells that can respond.  

 

The highly polymorphic nature of the MHC implies that an allogeneic MHC molecule will 

differ from self MHC molecules at multiple amino acid sites. One theory of promiscuous 

recognition, entails that the peptide is ignored by the T cell receptor (TCR), allowing the TCR 

to recognize the MHC molecules themselves. Thus, each allogeneic MHC molecule can be 

recognized by a multiple T cell clones. However, there is evidence that TCRs recognize 

primarily intact peptides on MHC molecules, interacting with high specificity with each 

peptide MHC complex.17 Thus, any cell may express multiple distinct peptide MHC 

complexes composed of different peptides bound to one or a few alleles of the foreign MHC 

molecules. As only a few hundred peptide MHC complexes are needed to activate a particular 

T cell clone, many different clones may be activated by the same allogeneic cell. This may 

explain the high precursor frequency of alloreactive donor T cells.     
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In haematopoietic cell transplantation, the principal antigenic targets of the T- cells of the 

graft, are the host MHC molecules if the patient and donor MHC molecules differ. However, 

for grafts matched at the MHC, mismatching of minor histocompatibility antigens (MHags) 

appears to underlie the development of GVHD. Because the manner in which a particular 

protein is processed is dependent upon genes outside of the MHC, two siblings, despite having 

identical MHC molecules, will have many different peptides in the MHC groove.19 The 

identification of the particular peptides responsible for GVHD has been an area of intense 

research. It remains unclear how many such peptides behave as MHags antigens. Although up 

to 50 such antigens are estimated to exist in mice, the precise number in humans is unclear. 

Many potential MHags antigens exist in humans, but the actual number that may cause GVHD 

is probably limited. One such example is HA-1.Mismatching of HA-1 between donor/recipient 

pairs has been significantly associated with GVHD.20, 21 

(b) Role of APCs 

In the first stage of GVHD, the host conditioning leads to a loss of epithelial integrity, 

systemic exposure to microbial products and activation of the innate immune system. Toll like 

receptors on APCs, are sensitive to these microbial products, leading to a cascade of events 

that promotes maturation of dendritic cells (DCs). Very small numbers of host DCs and other 

APCs, surviving for the first few days after conditioning are able to prime donor T-cell 

activation and differentiation.22 Naïve donor T-cells interact with host APCs, and are initially 

trapped within secondary lymphoid organs. There, they undergo rapid proliferation, and 

subsequently enter the circulation and travel to tissues such as gut and skin where they mediate 

GVHD.  

Recipient APCs are essential for direct allorecognition, as seen when alloreactive donor NK 

cells kill recipient MHC class I mismatched DCs, protecting mice from GVHD.15  The vital 

role of MHC Class I and II have been highlighted by a series of elegant knockout experiments. 

When donor CD8 T-cells were infused into a MHC mismatched mouse model lacking the β2 

microglobulin (which is required for antigen presentation to occur through MHC class I), there 

was no GVHD. To highlight the role of donor APCs, the converse experiment was done, with 

β2 microglobulin deficient bone marrow infused in a mismatched setting. GVHD occurred but 

was less severe. This indicated that recipient APCs are required for GVHD to occur, but this 

may be enhanced by cross priming through engrafted donor DCs. 15 MHC class II deficient 

APCs were unable to elicit GVHD, in a CD4 dependent GVHD model, but GVHD occurred 
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when wild type APCs were infused. Thus recipient APCs are essential in the early stages post 

BMT to initiate GVHD, but then donor APCs participate later on to maximize the severity of 

GVHD. 

(c) T cell Subsets in GVHD 
 
T-cells are the main inducers of GVHD in humans, as their depletion prevents GVHD, as 

exemplified in haploidentical SCT.15,23 CD4 and CD8 proteins are co-receptors for MHC class 

II and class I molecules, respectively. CD4+ cells appear critically involved in GVHD 

pathogenesis.18,24 Following cognate interaction with activated APC, CD4+ T-cells are driven 

towards T-helper cell type 1 (Th1)-biased cytokine production, promoting T-cell proliferation 

(IL-2) and further differentiation, so that very large amounts of pro-inflammatory cytokines 

are generated [particularly interferon γ (IFN-γ), TNFα], which induce tissue damage in a 

MHC-independent fashion. In contrast, donor CD8+ T-cells differentiate into efficient 

cytotoxic T lymphocytes (CTL), capable of causing host tissue damage in an MHC-I 

dependent fashion via their perforin/granzyme and FasL cytotoxic pathways.23 Grafting of TH2 

polarized T-cells reduces GVHD severity and mortality.25 However, both TH1 and TH2 

pathways can contribute to GVHD pathogenesis, with TH2 being particularly important in 

chronic GVHD. T-cells from mice deficient in signal transducer and activator of transcription 

4 (STAT 4, a Th1 associated molecule) and from mice deficient in STAT-6 ( a Th2 associated 

molecule) each induced distinct syndromes that were less severe, than those resulting from 

GVHD induced by wild type donor T-cells.15 

 

(d) Role of Memory/Naïve T cells in GVHD 
 
Peripheral T-cells can be divided broadly into 2 groups: T-cells that have never been activated 

by antigen (naïve T-cells), and antigen experienced T-cells (memory T-cells). Naive T-cells 

preferentially recirculate between blood and secondary lymphoid tissues, entering lymph 

nodes from the blood by crossing high endothelial venules. Naïve T-cells are characterized by 

the expression of CD45RA, CCR7, and CD62L+. These molecules allow naïve cells to home 

to lymphoid organs. 26 Upon antigen exposure naïve T-cells proliferate extensively, but lack 

immediate effector functions. 
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In contrast, memory and effector T-cells, unlike naive T-cells, can migrate efficiently into non 

lymphoid tissues and into sites of inflammation/ infection, subsequently entering afferent 

lymphatic vessels and travelling to local lymph nodes in the afferent lymph.26 Central memory 

(CM) T-cells have lost the expression of CD45RA but retain CCR7 expression. They retain 

homing ability to lymphoid organs and display intermediate proliferative and effector 

capacities. Effector memory (EM) T-cells ( CD45 RA-CCR7-) travel to inflamed tissues, 

where they proliferate poorly but have potent effector functions.27 

 

Initially, naïve T-cells interact with APCs, and then proliferate and differentiate into effector 

T- cells, including memory T-cells. Several independent groups have intriguingly found that 

the naïve (CD62L+) T-cells, but not memory T-cells (CD62L-) caused acute GVHD across 

different donor/recipient strain combinations in mouse models. 28 This may partly be explained 

by the ability of T-cells which are CD62 L+ to home to peripheral tissue.  In HLA-matched 

donor pairs, only naïve CD45 RA + CD8 cells, and not memory CD45 RO+ cells 

demonstrated cytotoxicity to the allogeneic stimulators.Thus, the authors concluded that the 

minor histocompatibility alloreactive CD8 cells are found predominantly in the naïve 

compartment. 29 However, cytotoxicity is only one aspect of an alloresponse and other 

measures of alloreactivity were not tested.  CCR7 deficient lymphocytes show impaired 

homing to lymphoid tissue and CCR7 antagonists have been shown to reduce murine chronic 

GVHD,30 and in human BMT recipients, those who have received a high percentage of donor 

derived CD4+CCR7+ T cells (>73.5 % of CD4+ cells) in their grafts, showed earlier onset and 

more severe acute GVHD.31  Thus, there is considerable evidence, particularly in mouse 

models that the majority of alloreactive T-cells reside in the naïve compartment.  

 

The majority of the above data has been generated using mouse T-cells. The situation in 

humans may be more complex. Human memory T-cells (CD45RA-) cells proliferate and 

secrete IL-2 in response to alloantigen as well as naïve CD45RA+ cells, 31,32  though they had 

reduced cytotoxicity to alloantigen.33 Additionally, transfer of memory T-cells and memory 

stem cells has been shown to promote GVHD30,34,27 and GVHD is also more severe in male 

recipients of multiparous female donors, suggesting the transfer of donor memory cells.35 

Thus, in humans, the relative role of naïve and memory T-cells in the pathogenesis of GVHD 

is yet to be determined.  
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(e) T cell Cytokines 
 
The presentation of alloantigen induces a response involving proliferation of donor T-cells and 

secretion of interleukin-2 (IL-2) and interferon γ (IFNγ) leading to the generation of T 

cytotoxic clones, as seen in Fig 2 .  

 

IL-2 is a critical cytokine for T-cell survival, differentiation and proliferation and plays a 

major role in generation of T-regulatory responses. It is mainly produced by CD4+ T-cells and 

acts as a growth factor in an autocrine or paracrine manner promoting T-cell clonal expansion, 

differentiation into memory and effector T-cells, NK cell proliferation, and increased cytotoxic 

activity. Serum IL-2 receptor levels are elevated in acute GVHD.36  The central importance of 

IL-2 signalling in GVHD is illustrated by the drugs that are used to combat it. Ciclosporin and 

FK506, the drugs most commonly used for GVHD prophylaxis, inhibit IL-2 production by 

inhibiting signalling through the T-cell receptor. Likewise, rapamycin and dacluzimab both of 

which inhibit signalling through the IL-2 receptor, show some efficacy in treating steroid 

refactory GVHD.37 

 

Interferon gamma (IFNγ) activates macrophages to kill phagocytosed microbes, promotes the 

differentiation of naïve CD4+ T-cells to the Th1 subset and inhibits the differentiation of Th2 

cells. IFNγ enhances the expression of MHC class I and II molecules and up regulates co- 

stimulators on APCs. Grafting of IFNγ deficient donor cells has been shown to lead to both 

accelerated and diminished GVHD depending on the conditioning regimen.38 Thus, IFNγ 

appears to have both protective and pathogenic effects in GVHD. 39 One possible explanation 

could be due to differential effects of IFNγ on different organ systems. In a mouse GVHD 

model, donor derived IFNγ promoted acute GVHD by accelerating Th1 differentiation and by 

augmenting inflammatory cytokine generation in the gut. However, donor derived IFNγ 

inhibited the development of idiopathic pulmonary syndrome by inhibiting donor cell 

migration and expansion within the lung and inhibited cutaneous GVHD.  

 

One cytokine frequently implicated in the evolution of GVHD is TNF-alpha (TNFα). The 

secretion of TNFα in GVHD is related to endotoxin release from gut flora. Endotoxin is a 

well-known stimulus for TNFα production and release. Gnotobiotic mice, defined as animals 

free of pathogens, are protected from GVHD following BMT. Recolonization by gram-

negative bacteria subsequently led to GVHD in these animals. It appears that damage to the 
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gastrointestinal tract from radiation and/or chemotherapy allows flora and endotoxins to enter 

the circulation leading to TNFα secretion from monocytes. Variations in donor or recipient 

genes that encode the pattern recognition receptor (NOD2/CARD15) affect the response of 

macrophages to bacterial toxins and can affect the incidence of gut GVHD.40 The major 

cellular source of TNFα is activated mononuclear phagocytes, although antigen stimulated T-

cell and NK cells can also produce it. TNF-α can (1) cause cachexia, which is a characteristic 

feature of GVHD; (2) induce maturation of DCs, thus enhancing alloantigen presentation; (3) 

recruit effector T-cells, neutrophils, and monocytes into target organs through the induction of 

inflammatory chemokines; and (4) cause direct tissue damage by inducing apoptosis and 

necrosis.34 Donor T-cell derived TNFα has been shown to promote GVHD18, especially in the 

liver and gut and is also required for GVL activity. 41 The presumed contribution of tumor 

necrosis factor-alpha (TNFα) to acute GVHD and the association of higher serum levels with 

severe GVHD42 provide the rationale for the use of anti-TNFα antibodies (e.g. infiximab) in 

the treatment of GVHD43. 

 

IL-15 is produced predominantly by cells of the monocyte/macrophage, dendritic and stromal 

cell lineages and is critical for the survival of CD8 memory T-cells that are involved in 

GVHD. Administration of exogenous IL-15 worsens the severity of GVHD in mouse models 

and was associated with a dramatic expansion and activation of effector-memory CD8+ T-

cells.44 Recently a new subset of CD4+ T-cells, which produce IL-17 (Th17 cells) has been 

characterised. These cells have been implicated in autoimmune diseases such as multiple 

sclerosis, and rheumatoid arthritis. Preliminary data suggests that they may have a role in acute 

and chronic GVHD (CD4+ T-cells from IL-17 knockout mice caused less GVHD than wild 

type) though further work is required to confirm this data.45,46  

 

Genetic variants in cytokine secretion can also affect GVHD severity. IL-10 promotes 

tolerance by suppressing the release of inflammatory cytokines and inhibiting the activation of 

donor T-cells. Homozygosity for a common polymorphism of the IL-10 promoter increases 

IL-10 production and reduces the incidence of GVHD. 16  

(f) Leukocyte Migration 
 
Donor T-cells migrate to lymphoid tissues, recognize alloantigens on either host or donor 

APCs, and become activated. They then exit the lymphoid tissues and traffic to the target 
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organs and cause tissue damage. The molecular interactions necessary for T-cell migration and 

the role of lymphoid organs during acute GVHD have recently become the focus of a growing 

body of research. However, interfering with T-cell trafficking may hinder T-cell immunity to 

leukaemia and viral antigens. Thus the challenge for developing leukocyte migration 

antagonists to prevent GVHD is selectivity.  

 

Phase 3- Effector Phase 

Effector mechanisms of acute GVHD can be grouped into cellular effectors [e.g. cytotoxic T 

cells (CTLs)] and inflammatory effectors such as cytokines. Perforin-dependent cytolysis and 

Fas-mediated apoptosis are the two important mechanisms for T-cell mediated cytotoxicity in 

GVHD. The principal mechanism of CD8+ CTL- mediated target cell killing is the delivery of 

cytotoxic proteins stored within cytoplasmic granules to the target cell, thereby triggering 

apoptosis of the target cells. These granules contain granzymes A, B, and C, perforin, and 

serglycin. The latter assembles complexes of perforin and granzyme. Perforin’s main function 

is to deliver the granzymes into the target cell. Once inside the cell, the granzymes cleave 

substrates and trigger apoptosis. Mice which received perforin deficient T-cells develop all the 

signs of GVHD, but only after a significant delay in onset,47 suggesting  that perforin plays a 

role in the pathogenesis of GVHD. CTLs also kill targets by expressing FAS ligand (FasL) that 

binds to the death receptor Fas. This interaction activates caspases and leads to apoptosis of 

targets.   Mice which received FasL defective T-cells develop severe cachexia, but only 

minimal GVHD-associated changes in liver or skin, suggesting that, FasL plays a particular 

role in GVHD affecting these target tissues. In a MHC class I-mismatched lethally irradiated 

murine model, wild type and either perforin deficient or FasL deficient CD8+ T-cells 

expanded early after transplantation, followed by a contraction phase in which the majority of 

expanded CD8+ T-cells were eliminated. In contrast, doubly deficient CD8+ T cells exhibited 

prolonged expansion, causing lethal GVHD.48 Results in the doubly deficient animals suggest 

that both perforin and FasL play an important role in the regulation (i.e., contraction) of 

expanded alloreactive CD8+ T cells. Thus these molecules appear to have a dual role in 

GVHD. 
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Co stimulatory Interactions 
(a) Co stimulatory Receptors 

T-cells require two separate signals to enter the cell cycle: 

• Signal 1 is antigen-specific and is provided by the engagement of the T-cell receptor 

with peptide complexed with MHC on the antigen presenting cell  

• Signal 2 is provided by the interaction of one or more T-cell surface receptors with 

their specific ligands on the APC cell surface (co-stimulatory pathways).  

Inadequate stimulation of these co-stimulatory molecules can lead to T-cell anergy and 

apoptosis.  There are two major groups of co stimulatory receptors: the immunoglobulin super 

family including CD28 and inducible T-cell co-stimulator (ICOS) and the tumour necrosis 

factor super family including OX40, CD27, 4-1BB, CD30 and HVEM (herpes virus entry 

mediator). 25 

 

CD28 is constitutively expressed on 90 % of human CD4 cells and 50% of human CD8 cells. 

CD28 binds to CD80 and CD86 which are expressed on dendritic cells (see Fig 3 and Table 1). 

This interaction strongly amplifies weak T-cell receptor (TCR) signals, activates transcription 

factors, and accelerates intracellular vesicular trafficking. CD28 signalling stabilizes IL-2 

mRNA and activates transcription factors NF-κβ and AP-1. These two effects increase IL-2 

production by 100 fold. CD28 can promote enhanced activation and survival both of antigen 

presenting cells and T-cells.  

 

In addition to these ligands that transduce a co-stimulatory or activating signal, cytotoxic T 

lymphocyte-associated antigen 4, or CTLA4, which also binds B7-1 and B7-2, provides an 

inhibitory signal. Although CD28 is expressed on resting T-cells, CTLA4 is expressed on the 

cell surface only after initial T-cell activation. CTLA-4 acts as a negative regulator of the 

CD28- CD80/86 signalling. It has a higher affinity for CD80/86 than CD28. CD28 signalling 

leads to increased expression of CTLA-4, which in turn negatively feeds back to inhibit the T- 

cell responses. The importance of CTLA4 is illustrated by the following observations: 

• CTLA4 knockout mice develop massive lymphoproliferative disease, culminating in early 

death 49 
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• The administration of blocking anti-CTLA4 monoclonal antibodies exacerbates autoimmune 

disease and prevents induction of T-cell anergy 50  

• Blockade of the CD28/CD80:86 interaction by administration of CTLA4-Ig greatly reduced 

lethal GVHD after haploidentical SCT in humans, and did not inhibit donor T cell 

engraftment.30 However, CD28 is constitutively expressed on T-cells, so that targeting CD28 

would be predicted to lead to extensive loss of desirable T-cells responses as well as 

alloreactive T-cells. 

 

ICOS is present on resting T-cells but is up regulated on both CD4 and CD8 cells following T- 

cell activation and interacts with ICOS ligand which is present on dendritic cells, B cells and 

macrophages. 51 In mouse GVHD models, administration of ICOS deficient CD4 cells led to 

reduced GVHD morbidity and delayed mortality. These CD4 cells showed impaired effector 

functions, as characterized by reduced CD95 ligand expression, and lower levels of IFNγ and 

TNFα . However, the administration of allogeneic ICOS deficient CD8 cells led to increased 

expansion of these cells and increased cytokine release, due to impaired apoptosis of these T-

cells.52 Thus ICOS has paradoxical effects on the regulation of CD4 and CD8 alloreactive T- 

cells in GVHD. 

 

OX40 (CD134) is a member of the TNF receptor super family, and interacts with OX40 

Ligand, which is present on activated dendritic cells. OX40 ligation results in expression of 

CXC chemokine receptor 5 by activated T-cells, directing CD4+ T-cells to B cell follicles. In 

concert with that of 4-1BB and possibly CD30, OX40 ligation results in an increase in anti-

apoptotic proteins, regulating effector persistence.51 In mixed lymphocyte reactions OX40 has 

been shown to be strongly up regulated on human CD4+ lymphocytes.53 Transfer of OX40 

deficient T-cells into a lethal mouse GVHD model ameliorated GVHD compared to infusion 

of wild type T-cells.54  However, in patients with acute GVHD, there was no increase in OX40 

expression on T lymphocytes but there was increased OX40 expression during chronic GVHD, 

which declined with successful treatment.55  More recently, OX40 has been shown to act as an 

inhibitory receptor on T-regulatory cells.56  Co-transfer of T-regulatory cells to mice prevented 

lethal GVHD but pre-treatment of these T-regulatory cells with an agonistic OX40 antibody, 

worsened GVHD. However, in view of OX40 and ICOS both being unregulated on activated 

T-cells, both would be reasonable targets to explore for allodepletion. 
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 Figure 3: T cell/APC Co stimulatory Interactions. CD40 and CD28 amplify a cascade of 

secondary co-stimulatory pathways. Following initial TCR stimulation and CD28 ligation the expression of 

multiple other co-stimulatory receptors belonging to the immunoglobulin and TNF superfamilies is rapidly 

induced. In this way, CD28 can promote enhanced activation and survival both of antigen presenting cells and T 

cells, as well as B cell-mediated humoral responses. CD40 ligation results in increased ligand density of both 

CD80/86 and OX40L. OX40 ligation results in expression of CXC chemokine receptor 5 by activated T cells, 

directing CD4 T cells to B cell follicles, where the upregulation of ICOS by CD28 enables interactions favouring 

germinal centre development and antibody class-switching. OX40 ligation, in concert with that of 4·1BB and 

possibly CD30, results in an increase in anti-apoptotic proteins, regulating effector persistence. Expression of 

CTLA-4 is also enhanced by CD28 signalling, and favours downregulation of T cell responses and Th1 

polarisation. Interactions of T cells with antigen presenting cells (APC) at sites of peripheral tissue inflammation 

via the PD-1:PD-L1/L2 system results in inhibitory signalling with reduced cytokine secretion and cell cycle 

arrest. The existence of a further co-stimulatory receptor exerting positive signalling in this system remains 

possible Reproduced from51 
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CD40 Ligand (CD154) is expressed primarily on activated T-cells and interacts with CD40 on 

antigen presenting cells. This interaction is important for antibody class switching and up 

regulation of CD80 and CD86 on APCs. Administration of anti-CD154 led to reduced acute 

and chronic GVHD in murine models, but significantly reduced GVL30,57   Anti CD40 Ligand 

antibody has been shown in vitro to potently inhibit primary and secondary MLRs, by causing 

anergy.58   

 

4-1BB (CD137) is up regulated on activated T-cells and NK cells and interacts with 4-1BB 

ligand which is expressed on APCs. CD137 is important in co-stimulation of CD8+ effector 

memory cells, and anti CD137 antibodies, inhibit CD4 and CD8 T-cell mediated GVHD.30.  

Hartwig et al demonstrated that CD8 CTL cultures, stimulated weekly with HLA-mismatched 

AML blasts 59 showed maximal expression of CD137 on day 1 after stimulation, with 

subsequent rapid downregulation. However, our method of identifying alloreactive T-cells 

(carboxyfluorescein succimidyl ester dye (CFSE) dilution), only detects these cells at later 

points in co-culture. Thus, we would be unable to characterize CD137 expression in the 

proliferating alloreactive T-cell population, and we therefore decided not to examine this 

marker. 

 
Co-stimulatory 
pathway 

Methods used to evaluate the role of the pathway Results 

CD28 CD28-deficient T cells, CTLA4–immunoglobulin fusion proteins, 
CD80- and CD86-specific antibodies, and CD80- and CD86-
deficient mice 

Model-dependent reduction in 
GVHD (more apparent for CD4+ 
T cells) 

HVEM Soluble receptors and HVEM-specific antibody Diminishes GVHD in Parent F1 
model with sub lethal irradiation 

ICOS ICOS blockade and ICOS-deficient T cells Promotes GVHD, effector 
maturation and TH1-cell 
polarization 

OX40 OX40L blockade and OX40-deficient T cells OX40 promotes GVHD; CD4+ T 
cell more than CD8+ T cell 

CD30 CD30 blockade, CD30-deficient T cells and CD30L-deficient 
recipients 

Promotes CD4+ T-cell-mediated 
but not CD8+ T-cell-mediated 
GVHD 

CD153 (CD30L) Agonist antibody Promotes CD4+ T-cell-mediated 
and CD8+ T-cell-mediated 
GVHD 

PD1 PD1 blockade, PD1-deficient T cells Inhibits GVHD 
CD30L, CD30 ligand; CTLA4, cytotoxic T-lymphocyte antigen 4; GVHD, graft-versus-host disease; HVEM, herpes-virus-
entry mediator; ICOS, inducible T-cell co-stimulator; OX40L, OX40 ligand; PD1, programmed cell death 1; TH, T helper. 

Table 1:Co stimulatory Antigens and their actions Reproduced from15 

(b) Activation Markers 
Characterizing the phenotype of alloreactive T-cells is critical to enable rational approaches to 

allodepletion. Activated T-cells characteristically up regulate markers such as CD25, CD69, 

CD95, and HLA-DR. 
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CD25 is strongly expressed on proliferating alloreactive T-cells.24,60 CD25 (IL-2 receptor) has 

three chains:α,β, and γ. Resting cells express CD25 composed of β and γ chains which bind to 

IL-2 with moderate affinity, allowing resting T-cells to respond to very high concentrations of 

IL-2.  Upon activation of the T-cell, the α chain is also synthesized and this creates a receptor 

with a much higher affinity for IL-2. CD25 shows higher expression on T-regulatory cells than 

activated cells. Thus, any CD25 based allodepletion strategy will delete target T-regulatory 

cells. Binding of IL-2 by CD25 triggers cell proliferation and differentiation into effector cells. 

 
CD69 is a type II integral membrane protein belonging to the family of C- type lectin 

receptors. It has been shown to form a complex and negatively regulates with sphingosine 1 

phosphate recpetor-1 (S1P1). It acts downstream of IFNα/β to inhibit the egress of 

lymphocytes from lymphoid organs.61 It is one of the earliest detectable cell surface markers 

detectable when resting lymphocytes are stimulated by mitogen. In  MLRs, it has been 

detected at 24 hours, rising to a peak at 96 hours and then plateauing.62 

 

CD95 (Fas antigen) is a 45 kDa cell surface type 1 membrane protein member of the tumour 

necrosis factor (TNF)/nerve growth factor receptor family. Once triggered by its cognate 

antigen, Fas ligand, Fas initiates a series of events that lead to apoptosis of the cell. This 

process involves the formation of the death inducing signalling complex, consisting mainly of 

Fas –associated death domain and caspases 8 and 10 proteins. Mutations in the Fas gene have 

been shown to be responsible for autoimmune lymphoproliferative syndrome (ALPS), a 

disorder characterized by autoimmunity, and lymphoproliferation.63  Fas has been shown to be 

up regulated in mouse models of GVHD64, and on CD8+ cells in patients with acute GVHD.65 

In MLRs Fas expression is  low on Days 1-3 but then is up regulated rapidly peaking on day 

5.66 Susceptibility of lymphocytes to apoptosis in MLR cultures using anti Fas antibodies 

increases above baseline on Day 5 and peaks on day7.66 Transfection of antigen presenting 

cells using Fas ligand has been shown in a mouse model to induce clonal deletion of antigen 

specific T-cells.67 

 

CD71 is a type II transmembrane glycoprotein largely expressed on proliferating cells 

including proliferating T-cells where it is involved in iron homeostasis.68 Iron is involved in 

essential cellular functions such as energy transport and DNA synthesis. Transferrin is the 
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main protein involved in serum iron transport and iron uptake is essentially dependent on 

receptor-mediated endocytosis, involving the transferrin receptor. CD71 is homodimeric 

receptor (180 kDa) which allows internalization of iron-bound transferrin in clathrin-coated 

pits. In endosomal vesicles, iron is then released by compartment acidification (pH 5–5.5), 

while apo-transferrin and CD71 are recycled into the blood or to the cell surface, respectively. 

CD71 expression is strictly regulated by intracellular iron level: CD71 mRNA is stabilized and 

abundant in iron-deficient cells to increase extracellular iron uptake. This post-transcriptional 

regulation is allowed by the presence of iron responsive elements (IRE) in the 3'-untranslated 

region of the CD71 transcript that are recognized by two iron regulatory proteins.  

CD71 has been shown to be important in the pathogenesis of GVHD. Nguyen et al. 

demonstrated in a MLR69 that there was strong up regulation of CD71 on alloreactive T-cells, 

peaking on days 7-9 with CD71 showing best correlation with T-cell proliferation. Transferrin 

is a critical growth factor for lymphocytes in vitro. 70 Proliferating thymocytes and 

lymphocytes express high levels of the transferrin receptor, and anti CD71 antibodies inhibit 

thymocyte and lymphocyte proliferation and differentiation in vitro. Administration of anti- 

CD71 antibodies have been shown in mismatched mouse model to significantly prolong 

pancreatic islet graft survival71. This was associated with a reduction in IL-2, IFNγ levels and a 

rise in IL-10. Drobyski et al demonstrated that administration of gallium (a metal that binds to 

transferrin, depriving proliferating cells of iron) potently inhibited MLRs and prolonged 

survival in a mouse model of GVHD.72 The low level of CD71 expression on resting 

lymphocytes and its significant up regulation in a MLR make it an important marker to 

examine in allodepletion. 

 

HLA-DR is a class II molecule and is up regulated on activated T lymphocytes in mixed 

lymphocyte cultures peaking between days 7-9.69   

(c) Signal Transduction by the TCR Complex 

Following T-cell activation, four major biochemical events occur within the cytoplasm. These 

include the following: 

• Hydrolysis of membrane bound inositol phospholipid  

• Increases in cytoplasmic calcium  

• Tyrosine phosphorylation of a variety of proteins  
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• Increases in protein kinase C activity.  

T-cell signalling pathways co-ordinately activate the transcription of genes that are silent in 

naïve T-cells. When T-cell activation occurs, lck, a src tyrosine kinase phosphorylates ITAM 

(immunoreceptor tyrosine based activation motifs) residues found on the CD3ζ  and CD3 

complex. This in turn leads to activation of another tyrosine kinase called Zap 70. This leads to 

activation of important downstream pathways such as Ras-Map kinase pathway, the protein 

kinase C pathway and the calcium-calcineurin pathway. These in turn lead to up regulation of 

transcription factors such NFAT (nuclear factor of activated T-cells), NF-κβ, and AP-1. These 

stimulate the expression of various genes involved in T-cell responses such- as IL-2. 

Calcineurin dephosphorylates cytoplasmic NFAT, permitting its translocation to the nucleus 

where it binds to the IL-2 promoter sequence and then stimulates transcription of IL-2 mRNA. 

NF-κβ is another important nuclear transcription factor that is activated by several different 

signals that include TNF, IL-1, and LPS. In the resting cell, this molecule is found in a 

heterodimeric form in the cytoplasm bound to inhibitors of κβ (Iκβs). Signal induced 

degradation of the Iκβs frees the NFκβ, permitting it to enter the nucleus where it binds to its 

specific binding site. Transcription of a number of different genes including MHC class I, and 

IL-2 then ensues.  
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Phenotypic Characterization of Proliferating Alloreactive T cells 
 
As outlined above alloreactive T-cells have been identified by a variety of phenotypic 

endpoints, including expression of activation markers/co-stimulatory molecules, cytokine 

secretion in response to alloantigen and proliferation. While alloreactive T-cells have multiple 

phenotypes, proliferation in response to alloantigens is their most basic hallmark. To monitor 

T-cell proliferation, T-cells can be labelled with carboxyfluorescein succimidyl ester (CFSE) 

dye. CFSE is a membrane permeable dye that binds to intracellular proteins, and upon cell 

division, the cell fluorescence decreases by half. Therefore by following the CFSE dim cells, 

one can analyse the dividing cells Using this technique, Godfrey et al24 identified alloreactive 

T-cells flow cytometrically by co-culturing CFSE stained CD4+ cells with alloreactive 

PBMCs or dendritic cells. Two distinct populations, the CFSE Dim or dividing alloreactive T- 

cells, and the CFSE bright or non-dividing, non alloreactive T-cells were discernible. Dendritic 

cells were superior stimulators of alloreactive T cell proliferation than PBMCs as they were 

able to recruit a larger frequency of T-cells to divide in response to alloantigen. (Fig 4a, b)  
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Figure 4: Clear separation of CFSE Dim and CFSE Bright in allogeneic MLRs. CFSE labelled 

CD4+ cells were co cultured with HLA mismatched PBMCs or dendritic cells. The no of CFSE Dim cells after 7 

days in the DC co cultures was almost double that of the PBMCs co cultures. Thus, dendritic cells are superior in 

stimulating alloreactive T cell proliferation compared to PBMCs. The majority of CFSE Dim cells are CD25 + 

(C,D) There remain CD25- CFSE dim cells (Figure C). There are also CFSE Bright CD25+ cells. The nature of 

the latter are unknown. Reproduced from24 

 

Thus, by labelling T-cells with CFSE, it is possible to identify alloreactive T-cells in a MLR, 

allowing us to investigate their phenotype. Furthermore, flow cytometric depletion of CFSE-

dim T-cells almost completely abrogated in vitro alloreactivity in secondary MLRs and 

markedly reduced GVHD in an MHC Class II disparate murine model. FACS analysis of the 

CFSE dim population showed that this strongly expressed CD25 whilst the CFSE bright 

population had weak staining of CD25 (5 % of cells) (Fig 4c,d). It was unclear whether this 

latter population were anergic T-cells, regulatory T-cells or T-cells which were about to 

    CFSE Bright CD25 +     CFSE Bright CD25- 

CFSE Intensity 

No 
of 
Cells 

CD25 
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divide. CFSE-based precursor frequency analysis indicates that approximately 5% (range, 

3.1%-6.5%) of the CD4+ T-cells are recruited into cell division by the mature DCs which is 

significantly higher than that obtained by limiting dilutional assays.18  

 

Infusion of CFSE bright T-cells into an animal model of GVHD led to prolonged survival 

compared to infusing CFSE dim or unmanipulated PBMCs24. However infusing CFSE Bright 

(non alloreactive T cells), into a mouse leukaemia model, did not support donor engraftment or 

enhance tumour control compared to a bone marrow, though it did reduce GVHD. 73 This 

suggests that depletion of alloreactive T-cells may compromise GVL responses, and that novel 

methods of preserving this are required. 

 

Graft versus Leukaemia 

The rationale for using immunotherapy to prevent and/or treat the re-emergence of malignancy 

is based in part upon the following observations 

1. There is an increased relapse rate after syngeneic transplants (where there is no 

alloreactivity) or after T-cell depleted BMT 74 

2. Association between GVHD and a lower risk of relapse. Relapse is related to the HLA 

disparity between donor and host and the number of T-cells infused.75 

3. The infusion of donor leukocytes into patients who have relapsed following an 

allogeneic HCT has directly resulted in a GVL effect, especially in chronic myeloid 

leukaemia (CML)  

 

Donor lymphocyte infusions (DLI) can restore durable remissions in patients with 

haematological malignancies (particularly myeloid) who have relapsed post BMT. This effect 

is most impressive in chronic phase CML (cytogenetic response of between 70-80 % in 

chronic phase), EBV lymphoproliferative disease (LPD) and paediatric juvenile 

myelomonocytic leukaemia. DLI shows lesser degrees of activity in acute myeloid leukaemia 

(AML), myelodysplasia, myeloma, Hodgkin’s lymphoma, chronic lymphocytic leukaemia, 

and Philadelphia positive acute lymphoblastic leukaemia.76 The efficacy of DLI also reflects a 

complex equation between the nature of the leukaemia, the tumour burden, the kinetics of 

leukaemic cell growth, the potential for alloreactivity and the T-cell dose. Up to 50 % of 

patients experience significant GVHD with DLI, but a proportion do experience GVL without 
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GVHD, suggesting that GVL can be separable from GVHD, particularly when DLI are 

administered in a dose escalating fashion.77-79 

 

The cell populations capable of recognizing and lysing malignant targets can be divided into 

two broad categories based upon the mechanism of cellular recognition: cytotoxic T-cells 

(CTLs) and natural killer (NK).  T-cells do so in a HLA-restricted manner, and NK cells kill 

via the presence or absence of receptors such as KIRs. It is thought that T-cells mediate their 

GVL effect in three ways;80  

 

A) Direct killing of leukaemia cells by perforin and granzyme attack from cytotoxic 

lymphocytes (CD4+, CD8+ and NK cells); 

B) Apoptotic death through the Fas/Fas ligand pathway (CD4+ and CD8+ T cells),  

C) Cytokine-mediated leukaemia cell death (e.g. IFNγ , TNFα) or control of proliferation 

(mainly CD4+ cells) 

It now appears that as well as initiating the alloresponse, CD4+ T-cells are also critical in the 

effector phase of GVL. CD4+ cells produce cytokines with a wide spectrum of biological 

activities: production of IL-2 and IL-12 recruits NK cells and CD8+ T cells into the immune 

responses and augments their antitumor cytotoxicity. IFNγ and TNFα inhibit leukaemia cells 

directly and both cytokines up regulate MHC and Fas antigen expression rendering targets 

susceptible to cytotoxicity by T-cells. CD4+ cells therefore have a role both as effectors and as 

orchestrators of the GVL response.  

Targets for the GVL Effect 

Cytotoxic T-cells (CTLs), recognize malignant cells as foreign when unique antigens are 

expressed by the tumor. CTL responses in GVL are directed against 3 broad classes of antigen: 

• Minor histocompatibility antigens  

• Tumour associated antigens 

• Viral Antigens 

(a) Minor Histocompatibility Antigens  
 
One of the most important T-cell targets in GVL reactions are minor histocompatibility 

antigens. Minor histocompatibility antigens (mHAgs) are highly immunogenic peptides which 
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are presented in a HLA restricted manner. Polymorphisms in these mHAgs between donor and 

host can result in GVHD and GVL. GVHD can be seen in male recipients of HLA identical 

grafts from female donors, due to recognition of minor antigen (HY) encoded by the Y 

chromosome. Conversely, these mHAgs are responsible for graft rejection in female recipients 

of HLA identical grafts from male donors. Some mHAgs are present ubiquitously (e.g. HY), 

and thus CTLs directed against these antigens will result in GVL and GVHD. Others, such as 

HA-1 and HA-2 are only present on haematopoietic tissues, and thus should only elicit GVL 

responses, though in fact HA-1 mismatching has been shown to be associated with GVHD.20  

 

HA-1 and HA-2 are both encoded by biallelic gene systems with one being immunogenic, and 

the other nonimmunogenic.81 The immunogenic peptides encoded by HA-1H and HA-2V are 

presented on HLA-A2 molecules and then recognized by HLA-A2 restricted CTLs, whilst the 

non immunogenic peptides, are functionally silent due to poor presentation. Thus, while HA-1 

and HA-2 are potential targets of immunotherapy, the applicability of this approach would be 

limited to patients who are HLA-A2 positive and who carry at least one immunogenic variant 

that have a donor who is homozygous for the nonimmunogenic allele. It is estimated that only 

10-15 % of sibling transplants expose a GVL effect of HA-1 mismatching.75  In one study 

where there was a HA-1/HA-2 mismatch between donor and recipient, 33 % of CTL clones 

generated after DLI were specific for HA-1 and HA-2. The other 67 % of leukaemia reactive 

CTLs were of unknown specificity.75 This shows that the immune system reacts against a 

variety of antigens to eradicate leukaemic clones. A clinical vaccine trial with HA- 1 or HA-2 

peptides after HSCT in HLA-A2+ve patients is currently in progress. 

(b) Tumour Associated Antigens 
 
Tumour associated antigens are those antigens that are expressed in cancer cells, but at low 

levels or not at all, in normal tissue. Whilst considerable effort has been made to identify 

tumour specific neoepitopes e.g. created by leukaemic fusion genes such as BCR-ABL, there 

is little evidence that such epitopes are processed and presented in vivo or that they are 

significant targets for a GVL response. However, an increasing body of evidence suggests that 

over expressed tumour associated antigens may be used as targets to augment GVL responses. 

Proteinase 3 is a tumour associated antigen and is over expressed in CML and AML. PR1 is a 

HLA-A2 restricted peptide derived from proteinase 3. PR1-specific CTLs have been shown to 

kill myeloid leukaemic colonies that over express proteinase 3, but not normal marrow cells. 82 
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Increased numbers of high avidity PR1 CTLs have been seen in CML patients who develop 

cytogeneic remission in response to IFNα.75  Low frequencies of PR1 CTLs are also found in 

healthy donors.83  

 

Other tumour associated antigens include Wilm’s Tumour Protein (WT1), which is over 

expressed in myeloid malignancies. WT1, a zinc-finger transcription factor, was initially 

described as a tumor-suppressor gene in childhood Wilms' tumor. WT1 is abundantly over 

expressed in most human leukaemia cells, including AML, CML and acute lymphocytic 

leukaemia, with higher levels associated with a worse prognosis. Leukaemia stem cells express 

between 10- to >100-fold more WT1 protein than normal CD34+ cells. T-cells can distinguish 

this difference in protein expression, as CD8+ CTLs generated against WT1 lyse leukaemic 

CD34+ but not normal CD34+ cells, and inhibit growth of leukaemic but not normal myeloid 

colonies.84 Thus, like PR3, WT1 might serve as a useful target for adoptive T-cell therapy.  

Phase 1/II clinical trials using peptide vaccines with PR1 and WT1 in HLA-A2  patients with 

AML and CML are currently underway.85 Of note, allodepletion strategies using LCLs, (which 

do not express myeloid antigens) as APCs, have been shown to preserve potential anti-myeloid 

tumor T-cell responses.86 

(c) Viral Antigens 
 
Latent EBV infection is associated with non-Hodgkin’s lymphoma, Burkitt’s lymphoma, NK 

cell lymphoma, lymphoproliferative disease, Hodgkin’s lymphoma, and nasopharyngeal 

carcinoma, making adoptive T cell strategies targeting EBV a potential option. DLI and 

adoptive transfer of EBV-specific CTLs have led to remissions in post transplant 

lymphoproliferative disease and Hodgkin’s disease.76,87,88 

 

Improving Anti-leukaemic and Anti-viral Responses post 
Haploidentical BMT 
As highlighted above, the requirement for rigorous T-cell depletion in haplo-SCT to avoid 

GVHD leads to a delay in immune reconstitution leading to a high mortality from viral 

infections/relapse. There have been numerous approaches to improving immune reconstitution 

after haplo-SCT.  As the frequency of allo-reactive T-cells is logs higher than anti-viral/anti-

leukemic T-cells, unmanipulated DLI cannot be used, without the risk of severe GVHD.89 
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Thus, there is a need to addback T-cells responsible for the GVL and anti-viral responses, but 

without allo-reactive T-cells that cause GVHD.  There are several approaches to this problem: 

(a) Adoptive Transfer of T cell precursors 

(b) Alloanergisation  

(c) Antigen Specific CTLs 

(d) DLI transduced with suicide gene  

(e) Allodepletion 

 

(a) Adoptive Transfer of T cell Precursors 
 
One way to minimize GVHD after adoptive immunotherapy is to transfer T-cell precursors 

rather than mature T-cells. These T-cell precursors will progress through the thymus, and the 

alloreactive T-cells will be deleted, allowing T-cell reconstitution but without GVHD. 90 Using 

this approach, mouse T-cell precursors generated in vitro from stem cells ( isolated on the 

basis of culturing mouse stem cells on mouse stroma expressing Notch-1 ligand), were 

transferred to HLA mismatched mice after lethal irradiation and T-cell reconstitution was 

assessesed.90  Compared to mice receiving stem cells alone, mice receiving T-cell precursors, 

showed enhanced thymic reconstitution and a rapid recovery of host-tolerant CD4 and CD8 

populations with normal T-cell repertoires, cytokine secretion and proliferative responses to 3rd 

party antigen. These mice did not develop GVHD, reflecting depletion of alloreactive T-cells 

in the thymus, leading to tolerance. Significant GVL effects were seen in mouse lymphoma 

models that received these precursors and such mice had superior survival compared to control 

mice.  This approach is attractive as it uses the host’s thymic system to deplete alloreactive T- 

cells, but thymic activity in adults is limited and further studies on whether it is similarly 

possible to isolate and transfer human T-lymphoid progenitors under GMP conditions are 

required. 
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(b) Alloanergisation 
 
Interest in the manipulation of the CD28:B7 pathway in transplantation has focused on the 

administration of CTLA4-Ig, which is a recombinant fusion protein that contains the 

extracellular domain of soluble CTLA4 combined with an IgG1 heavy chain. CTLA4-Ig has a 

higher affinity for the B7 molecules than CD28, resulting in blockade of the CD28-B7 

interaction and hence T-cell anergy in vitro. Guinan et al. used this approach by co-culturing 

T-replete donor marrow cells with recipient mononuclear cells ex vivo in the presence of  

CTLA4-Ig.91. 12 patients with predominantly high risk malignancies underwent haploidentical 

transplants using alloanergised grafts. All patients received at least 107 CD3+ cells/kg with the 

bone marrow i.e. 3 logs more than routinely transferred with a haploidentical graft. The 

precursor helper T-cell frequency against recipient stimulators was reduced by between 1-3 

logs, but third party responses were not significantly reduced. All patients engrafted. The 

incidence of GVHD was impressively low given the number of T-cells infused, as only three 

of the eleven evaluable patients developed acute GVHD (≥ grade 2), and only one went onto 

develop chronic GVHD. There were four deaths due to infection (2 from aspergillus, 1 

bacterial, 1 from toxoplasmosis). 5 of the 12 were alive at the time of analysis. The low 

survival rate was partly due to the high risk cohort, many of whom had been heavily pre-

treated. However, effect of alloanergisation on desirable anti-viral/ anti-leukaemic responses 

was not formally assessed and it is possible that the high rate of infectious deaths reflects a 

negative effect of CTLA-4 Ig on bystander T-cells responsible for such responses. Further, 

anergy can be reversed e.g. by addition of exogenous IL-2 so that it is possible in the 

appropriate cytokine milieu, anergised alloreactive T-cells could cause GVHD.  Unfortunately, 

further clinical studies were not possible since a GMP CTLA4-Ig is not available. However, 

clinical studies using newly developed similar agents are shortly to begin in The US. 

(c) Antigen Specific CTLs 
The feasibility of adoptive immunotherapy to improve immunity post –HSCT has been 

demonstrated by studies where ex vivo generated CTL, directed against viral antigens have 

been infused post HLA- matched SCT.   
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1. Adoptive Immunotherapy for EBV 
 
By repetitively stimulating PBMCs with lethally γ-irradiated EBV-transformed autologous B 

lymphoblastoid cell line (LCL), EBV-specific CTL lines can be generated in vitro which 

recognize the immunogenic type 3 antigens, chiefly EBNA-3. Using such an approach, 

Rooney et al infused retrovirally marked donor-derived EBV CTLs. After infusion of these 

CTLs, there was a 4 log rise in the precursor frequency of EBV CTLS in the patients' blood, 

and the EBV viral load decreased by 2-4 logs. None of these patients developed EBV post 

transplant lymphoproliferative disease (PTLD), compared to 11 % in historical control group. 

No GVHD occurred following the infusion of these CTLs, and the neomycin gene could be 

detected up to 7 years after the infusion, indicating long term persistence of these CTLs.92 A 

number of other groups have replicated this data and over 100 patients have been treated with 

EBV CTLs post HSCT to date. The results show clearly that prophylactic infusion of donor-

derived EBV CTLs is safe and effectively prevents PTLD in HSCT patients at high risk of this 

complication. Smaller numbers of patients with established PTLD have also been treated and 

this too appears effective, although sometimes associated with significant local inflammatory 

reactions at the site of disease. The major limitation of this approach is the time taken to 

generate CTLs (10 weeks) and the resources needed to do this under GMP conditions. 

Together with the apparent efficacy and simplicity of pre-emptive therapy with rituximab to 

prevent PTLD, this has limited the broader use of this approach. 

 

2. Adoptive Immunotherapy for CMV 
 
A number of studies have investigated whether adoptive immunotherapy with CMV CTLs 93 

can be used to prevent opportunistic CMV infection after allogeneic HSCT. 94 95,96 Initial 

studies with CD8+ CTL clones,93 demonstrated that this approach could be used to safely 

augment CMV-specific immunity post-SCT but this approach was extremely laborious and 

responses were poorly maintained in the absence of CD4 T-helper cells. Subsequently, shorter 

culture protocols utilizing CMV-lysate pulsed dendritic cells or monocytes as stimulators have 

been used to generate polyclonal CTL lines, comprising both CD4 and CD8 populations.  

 

Infusion of  CMV CTLs into 16 patients  (matched related/unrelated BMTs who were CMV 

PCR positive), 94 after the first detection of CMV viraemia, led to a massive in vivo expansion 

of CMV CTLs, (3-5 logs), within days of adoptive transfer with low rates of GVHD and 
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secondary reactivation. Similar results were obtained by Einsele et al 95. These studies 

demonstrate adoptive immunotherapy with CMV-specific CTLs to be feasible, safe and 

provide evidence that this approach augments in vivo cell-mediated immunity to this virus. 

However, demonstration of clinical efficacy in preventing CMV associated complications or 

secondary reactivations will require much larger randomised studies. 

 

Whilst the 4 week period of co-culture required for the generation of CMV-specific CTLs by 

in vitro repetitive stimulation, enables CTLs to be generated pre-emptively in response to viral 

reactivation, the existing culture protocols are too complex and laborious for use outside 

highly specialised centres. For adoptive immunotherapy to be more broadly applicable, 

simpler, robust and more rapid protocols for isolation of viral-specific T-cells are needed. One 

novel approach to isolating CMV-specific T-cells exploits the secretion of IFNγ by both CD4+ 

and CD8+ T-cells following stimulation with purified pp65, the immunodominant antigen of 

CMV. Virus-specific T-cells can then be selected using the immunomagnetic beads (the so 

called ‘γ-capture system’). Preclinical studies have demonstrated that it is possible to select 

CMV-specific T-cells with reduced alloreactivity using this system97 and clinical studies 

utilising this approach are now underway. 

 

In an alternative approach to simplify the generation of CMV-specific CTLs, Moss et al 

developed a technique of selecting CMV CTLs by staining with HLA- peptide tetramers, 

followed by magnetic bead selection. 98 CMV-specific CD8+ cells were infused directly into 

nine patients within 4 h of selection. CMV-specific CD8+ T cells became detectable in all 

patients within 10 days of infusion, and were persistent in the patients studied. CMV viremia 

was reduced in every case and eight patients cleared the infection, including one patient who 

had a prolonged history of CMV infection that was refractory to anti-viral therapy. Though this 

approach significantly shortened the time to infusing CMV CTLs, it is limited to donors who 

have the appropriate HLA type, and the durability of such responses in the absence of CD4 + 

helper T-cells remains to be determined. 

 

3. Adoptive Immunotherapy for Adenovirus 
 
Adenoviral infections are significant causes of morbidity and mortality after HSCT,     

especially after T-depleted haploidentical transplants. Though adenovirus specific-CTLs have 
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been generated by repetitive stimulation of donor-T cells with APC transduced with an 

adenoviral vectors89, there has only been one clinical trial of adenovirus specific-CTLs infused 

post HSCT, which used the IFNγ capture system to isolate adenovirus (ADV)-specific T-cells. 

Though highly specific antigen responses were demonstrated in vitro when the expanded 

adenovirus- specific T-cells underwent restimulation with ADV-pulsed target cells there was 

still significant anti host reactivity.99  Using this approach in mismatched unrelated donor 

HSCTs, Feutchinger et al, infused adeno-specific T-cells (doses 103/kg) into 9 paediatric 

patients who were adenovirus PCR positive100. In 5 patients, clearance of the virus was 

associated with adenovirus T-cell expansion but one patient developed GVHD. Concurrent use 

of anti-viral agents in this study, and any possible recovery of donor derived adenovirus-

specific CTLs, independent of infused CTLs, makes it hard to determine the efficacy of this 

approach. Further studies are needed to demonstrate the safety and efficacy of this approach, 

particularly in the context of haploidentical HSCT. 

 

4. Adoptive Immunotherapy for Aspergillus 
 
By repetitively stimulating donor APC pulsed with CMV/aspergillus antigens, T-cell clones to 

aspergillus and CMV have been generated.101 T-cell clones which reacted to host antigens 

were discarded but non reactive clones were pooled and infused post haploidentical BMT. In 

46 control transplant recipients who did not receive adoptive therapy, pathogen-specific T-cells 

occurred in a low frequency and displayed a low interferonγ /high interleukin-10 production 

phenotype. In the 35 recipients who received a single infusion of CMV/aspergillus T-cells 

(dose range of 105 to 106 cells/kg) there was a high-frequency of T-cell responses to pathogens, 

which exhibited a protective high interferon-γ/low interleukin-10 production phenotype within 

3 weeks of infusion. Frequencies of pathogen-specific T-cells remained stable over time, and 

were associated with control of Aspergillus and cytomegalovirus antigenemia and infectious 

mortality.101 However, one patient who received 3 x 106 /kg T cells developed GvHD, and 

generation of antigen specific clones is highly labour intensive and required prolonged culture 

thus limiting this approach to prophylactic infusions in high risk patients. 
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5. Trispecific CTLs 
 
Leen et al infused trispecific CTLs (recognising CMV, EBV, adenovirus), to adult and 

paediatric patients undergoing matched unrelated or related donor transplants without any 

significant toxicities or GVHD.102 These CTLs were generated by repeatedly stimulating donor 

PBMCs with EBV LCLs transduced with a chimeric adenovirus CMVpp65 vector. The CMV 

and EBV CTLs expanded post infusion, but the adenovirus CTLs only expanded in those 

patients who had adenoviral infection. Infusion of these CTLs led to a reduction in viral DNA 

to all three viruses in patients with infection, resolution of adenoviral pneumonia in one case, 

and was associated with enhanced viral immunity in IFNγ ELISPOT assays. However, in vitro 

IFNγ release and cytotoxicity responses were far higher for CMV responses that adenovirus. 

This may reflect competition among the various immunogenic components leading to a single 

viral antigen dominating the immune response. This study demonstrated that it is possible to 

generate effector T-cells against multiple pathogens in a single co-culture However, as with 

the above approaches, the generation of trispecific CTLs involves prolonged cell culture (10 

weeks) and it is too labour intensive to enable this approach to be routinely used in large 

numbers of patients. In contrast, allodepletion has been shown to provide anti-viral responses 

to all three viruses and is simpler, and more robust than such approaches. 

 (d) Donor Lymphocyte Infusion and Suicide Gene therapy 
 
A suicide gene codes for a protein able to convert a non toxic prodrug into a toxic product. 

Thus, the transfer of a suicide gene into donor lymphocytes can allow the selective elimination 

of transduced lymphocytes should GVHD occur. The most effective current suicide gene is the 

Herpes simplex thymidine kinase (HSV-TK). The HSV-TK protein converts ganciclovir to a 

phosphorylated compound which is toxic to cells, by inhibiting DNA chain elongation. A 

phase 1/2 clinical study of adoptive transfer of HSV-TK transduced donor T lymphocytes at 

doses of 105/kg-108/kg to patients affected by disease relapse after matched related or 

mismatched related HSCT demonstrated 103,104 that  35 % or patients achieved a complete 

remission, and 29 % a partial response. The anti-tumour effect was strongly correlated with the 

in vivo expansion of TK+ cells. Administration of ganciclovir led to complete elimination of 

the TK+ cells and successfully treated GVHD.  

 

Although these preliminary studies suggest that this approach can safely be used improve 

immune reconstitution after SCT, genetic modification of T lymphocytes with retroviral 
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vectors requires polyclonal activation which may compromise affect third party and antiviral 

responses, particularly to EBV.27,76 Treatment of CMV infection with ganciclovir also led to 

the elimination of HSV-TK T-cells. 3 of 17 patients died of viral infections after day 100, 

suggesting that this approach may affect the anti-viral immunity of the transduced 

lymphocytes.105 Furthermore, this approach was limited by host immune responses to the 

HSV-TK, which occurred in a number of cases, 104,106 resulting in elimination of the 

transduced T-cells.  

 

The above trials have used a retroviral vector system which relies on preactivation of T-cells 

with CD3/28 stimulation to allow efficient entry of the viral vector into the T-cells. However 

this preactivation impairs anti-viral and third party activity of the transduced T-cells. 107,108 

Lentiviral vectors may serve as an alternative because they can transduce non cycling cells. T- 

cells can be induced in G1 phase by stimulation with IL-7, and transduced within 48 hours. A 

shorter culture time with less expansion, preservation of the naïve phenotype and unskewed 

TCR repertoire would favour maintenance of T-cell function. Lentiviral vectors may also 

reduce the risk of insertional mutagenesis because of an alternative insertion profile.109 Qasim 

et al developed a lentiviral HSV-TK construct for transduction of T-cells in a cytokine culture 

without preactivation of the T-cell receptor. In contrast to polyclonally activated T-cells, 

efficient transduction was obtained with preservation of anti-viral 107, and third party responses 

and there was minimal up regulation of T-regulatory numbers.  

 

In view of the immunogenicity of the HSV-TK, alternate suicide genes have been investigated. 

The most promising of these utilises a chimeric protein consisting of caspase 9 fused to human 

FK506 binding protein (FKBP) which appears not to be immunogeneic. Adding the drug 

AP1903, dimerizes the chimeric protein and leads to cell death. 110  Brenner et al transduced 

CD25 immunotoxin allodepleted donor T-cells with a retroviral construct consisting of an 

inducible caspase 9 (iCasp9) suicide gene, and a selectable marker (truncated CD19). The 

residual donor T-cells were efficiently transduced, expanded, and subsequently enriched by 

CD19 immunomagnetic selection to >90% purity. These engineered T-cells retained anti-viral 

specificity and functionality, and contained a subset with regulatory phenotype and function. 

Activating iCasp9 with a small-molecule dimerizer rapidly produced >90% apoptosis. 

However, concerns remain about the basal toxicity of iCasp9 to T-cells in the absence of 

dimerizer and this approach has not yet been tested clinically.  
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An alternative approach to safely administering DLI in the haploidentical setting involves 

infusing regulatory T-cells (Tregs). T-regs are functionally defined as T-cells that inhibit 

immune responses by influencing the activity of other cell types. High CD4 (+) FOXP3 (+) T-

cell counts in the donor graft have been associated with a reduced risk of GVHD. 111 In a 

mouse leukaemia model, transfer of donor Tregs suppressed the proliferation of alloreactive 

donor T-cells, without affecting GVL effects. 112 This was associated with a reduction in the 

expression of CD25 on alloreactive T-cells, reduced proliferation of donor T cells, and reduced 

serum levels of IFNγ and TNFα. Transfer of Tregs in established GVHD was less effective, 

suggesting that early transfer is required for an optimum effect. This data suggested that 

GVHD is a cytokine dependent process highly sensitive to T regs activity, whilst the anti-

leukaemic activity mediated by the perforin lysis pathway was relatively insensitive to the 

effect of T regs.  

 

However, whilst this data looked very promising it is unlikely that such a clear delineation in 

humans is possible. The major risk of the therapeutic use of T regs is generalised 

immunosuppression compromising desirable anti-viral and anti-leukaemic responses. Whilst 

the induction of T regs occurs after specific activation, they then appear to suppress 

proliferation of all T-cells regardless of their antigenic specificity.113 The high ratio of T regs: 

effector T cells used in mouse BMT studies (1:1) above, would not be feasible clinically for 

adoptive transfer without ex vivo expansion. This is compounded by the fact that the best 

marker of human T regs is an intracellular marker FoxP3, making cell sorting to obtain a pure 

Treg population difficult. The long term survival of in vitro selected and expanded Tregs in 

vivo is not known.113 Nevertheless, the Stanford group under Robert Negrin are planning a 

clinical study looking at adoptive transfer of Tregs + DLI post SCT. 

 

(e) Selective Allodepletion 
 
 Allodepletion strategies aim to selectively deplete alloreactive T-cells after stimulation in an 

ex vivo mixed lymphocyte reaction (MLR) and then infuse the residual donor T-cells with the 

aim of improving anti-viral and anti-leukaemic responses post-SCT. The advantages of this 

approach are that alloreactive T-cells are permanently removed, and that it has the potential to 

improve immunity to multiple pathogens simultaneously. Strategies to deplete alloreactive T- 

cells include negative selection of donor T-cells expressing activation markers (e.g. CD25, 
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CD69, HLA-DR)114-118, killing activated T-cells by photodynamic purging52, inducing Fas 

mediated apoptosis119, or chemotherapy agents.120,121 

 

 

 

1. Allodepletion Targeting Activation Markers 

(a) CD25 Based Allodepletion 
 
CD25 is highly expressed on alloreactive T-cells and there have been a variety of methods 

targeting this antigen, including immunotoxins or immunomagnetic depletion. RFT5-SMPT-

dgA is a CD25 immunotoxin consisting of a mouse IgG1 anti CD25 conjugated via a hetero-

bifunctional crosslinker to a chemically deglycosylated ricin A chain (dgA). Depletion of 

CD25+ alloreactive T-cells by the addition of this immunotoxin led to a greater than 98% 

reduction in residual proliferation to host cells in the HLA mismatched setting whilst retaining 

proliferative responses to CMV, and Candida, and cytotoxic T-lymphocyte precursor (CTLp) 

frequencies against CMV/EBV infected targets.122 Furthermore precursor frequencies of anti-

leukaemic T cells against myeloid leukaemias were not reduced with use of this immunotoxin. 
122,123 Differences in the techniques used, such as the type of stimulator cells used and the 

methods used for assaying residual alloreactivity against host (see Discussion) may account for 

the variability observed in residual anti-host responses  after CD25 based allodepletion. 

 

Vitetta et al. compared the effectiveness of 2 CD25 immunotoxins RFT5-SMPT-dgA and 

Ontak, (a fusion protein of IL-2 and diphtheria toxin), and anti CD25 microbeads, in their 

ability to delete CD25+ alloreactive T cells. 124 They showed  that RFT5-SMPT-dgA, CD25 

beads or a combination of RFT5 and CD25 beads were equally effective in depleting 

alloreactive CD4 + CD25 expressing T-cells without affecting third party responses. Ontak 

however, depleted CD4+CD25+ cells poorly. RFT5-SMPT-dgA was more effective than 

CD25 beads or Ontak at depleting CD8+CD25 expressing alloreactive T cells. Ontak again 

was poor at depleting CD8 + CD25 + alloreactive T-cells.  These data suggest that CD25 

depletion with RFT5 immunotoxin or immunomagnetic beads is superior to Ontak, but it 

should be noted that functional analysis of residual alloreactivity after secondary stimulation of 

allodepleted cells was limited in this study. 
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CD25 is expressed on T regulatory cells, and thus one potential concern is that, by depleting 

the T regulatory cells, this would lead to an increase in GVHD and autoimmunity. This has not 

been seen in clinical studies to date (see below), probably because effective allodepletion, 

leads to a low incidence of alloreactive effector cells, and therefore concomitantly depleting T 

regulatory cells in this situation will not lead to GVHD.  

 

One critical issue for all allodepletion strategies targeting activation markers is the choice of 

host antigen-presenting cells: if antigen presentation is ineffective this will result in less 

activation and hence less effective depletion of host-reactive T-cells. Our group has previously 

demonstrated that using HLA mismatched EBV transformed lymphoblastoid cell lines (LCL) 

as antigen presenting cells rather than PBMCs, gave a more consistent depletion of in vitro 

alloreactivity using the CD25 immunotoxin (CD25IT).86  There was an average 15 fold 

decrease in proliferation in primary MLRs using this approach (see Fig 5B) and a residual 

proliferation to host  was significantly lower (mean 0.8 %) after stimulation with LCL than 

PBMCs (mean 8.5 %) in the same donor-recipient pairs (Fig 5C).  
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Figure 5: Depletion of alloreactive T cells by anti-CD25 immunotoxin. (A) FACS analysis 
showing increased expression of CD25 (y axis) on CD3/4/8+ T cells after activation with HLA-mismatched LCLs 
and effective depletion of CD3+/CD25+, CD4+/CD25+, and CD8+/CD25+ cells following treatment with anti-
CD25 immunotoxin. The figure shows a representative FACS analysis from 6 different donor-recipient pairs. The 
percentage of double-positive cells is indicated. (B) Primary mixed lymphocyte reaction showing a mean 15-fold 
decrease in proliferation in response to HLA-mismatched LCL stimulators after treatment with anti-CD25 
immunotoxin (IT). Results are the mean ± SD of 5 haplo-identical donor-patient pairs each assayed in triplicate. 
(C) Residual proliferation in 7 donor-patient pairs after allodepletion with anti-CD25 immunotoxin following 
stimulation of donor PBMCs with PBMCs (R/S 1:1) or LCLs (R/S 40:1) from the same HLA-mismatched 
recipient. Residual proliferation was calculated using the formula in "Results" and was significantly higher after 
stimulation with PBMCs (P < .05).  Reproduced from 86 

 

As relapse and viral reactivation are the major causes of mortality post haploidentical 

transplantation, determining whether T-cell responses to such antigens following allodepletion 

is of paramount importance. Using CD25 immunotoxin based allodepletion, Amrolia et al 

demonstrated that following allodepletion, anti-viral responses to adenovirus and CMV 

following allodepletion  were preserved on HLA tetramer (see Fig 6) and IFNγ ELISPOT 
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assays.86  The use of LCLs as APCs, led to a partial reduction in EBV-specific responses, but 

significant activity was retained through the non shared haplotype.  
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Figure 6 : CMV-specific CD8+ T cells are not deleted by allodepletion. The figure shows FACS 
analysis following staining of either unmanipulated PBMCs (right and centre columns) or allodepleted cells (left 
column) from 4 HLA-A2–positive, CMV-seropositive donors with IgG PE (left column) or an HLA-A2–CMV 
pp65 tetramer (centre and right columns). The percentages of tetramer-positive cells as a proportion of CD8+ cells 
with isotype subtracted are shown. Reproduced from 86 
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As LCLs do not express myeloid or leukaemic antigens, allodepletion using this approach did 

not affect the frequency potential myeloid tumour antigens such as the PR1 epitope of 

proteinase 3. (See Fig 7) Thus, CD25IT based allodepletion preserved anti-viral responses in 

vitro to CMV, adenoviral antigens and potential myeloid tumour antigens. 
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Figure 7: CD8+ T cells specific for the myeloid tumor epitope PR1 are retained after 
allodepletion after stimulation with mismatched LCLs but not CML PBMCs. (A) FACS 
analysis following staining with HLA-A2–PR1 tetramer of unmanipulated PBMCs (top row) or allodepleted 
PBMCs (bottom row) from a patient with CML. In each case isotype controls are shown on the left and tetramer-
stained cells on the right. Allodepletion was performed after stimulation with allogeneic HLA-A2–positive 
PBMCs from a mismatched donor with CML. (B) FACS analysis following staining with HLA-A2–PR1 tetramer 
of unmanipulated PBMCs or allodepleted T cells from 2 HLA-A2–positive patients with CML. Allodepletion was 
performed after stimulation with either HLA-A2–positive or –negative LCLs. The percentages of tetramer-
positive cells as a proportion of CD8+ cells (isotype subtracted) are shown. Reproduced from 86 
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Despite almost complete depletion of CD25+ve T-cells with CD25IT based allodepletion, 

residual alloreactivity against host stimulators was often detectable in the allodepleted T-cells. 

Rested CD25IT generated allodepleted T-cells demonstrated a median 17-fold reduction in 

IFNγ release in an ELISPOT assay, when stimulated with host antigen-presenting cells 

compared to unmanipulated PMBCs,125 but there were still significant residual responses to 

host in 7/12 donor recipient pairs (see Fig 8).  This suggests, that combining CD25-based with 

alternative methods of allodepletion may be necessary to enhance allodepletion and hence 

enable higher T-cell doses to be infused in order to improve anti-viral and anti-leukaemic 

responses.  
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Figure 8: Significant Residual IFNγ Responses to Original Stimulator remain in many 

donor recipient Combinations despite CD25IT Allodepletion. Normal donor PBMCs  were co-

cultured with HLA mismatched LCLs and a day 3 CD25 IT allodepletion. In 12 donor recipient pairs, on day 5 

thawed unmanipulated PBMCs or rested CD25IT allodepleted PBMCs were stimulated with host LCLs in an 

IFNγ ELISPOT assay.  Results are expressed as Spot forming cells SFC/105 PBMCs. Reproduced from 125 
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(b) Non CD25 based Allodepletion 
 
CD69 is one of the earliest markers to be up regulated in a MLR (within 24 hours). A number 

of groups have targeted CD69 to deplete alloreactive T-cells and  have demonstrated  a mean 

residual alloreactivity of between 1.5 % to 25 % with maintenance of third party responses 

after CD69 allodepletion.116,117 Anti CMV and EBV activity and responses against potential 

tumour antigens (e.g. WT-1) were maintained in the allodepleted fractions. Furthermore, 

unlike CD25 based allodepletion, CD69 allodepletion does not affect T regulatory cells.126. 

Koh et al demonstrated that infusion of CD69 allodepleted donor T-cells led to significantly 

enhanced survival compared to unmanipulated donor T-cells in a MHC mismatched mouse 

model.127 

 

This has encouraged investigators to examine combined anti CD25/69 depletion, with the aim 

of enhancing existing CD25 based allodepletion strategies. Depletion of CD25 or CD69 alone 

led to a 60 % reduction in HTLp frequency against host stimulators but targeting CD25 and 

CD69 using immunomagnetic allodepletion, led to a 80 % reduction in residual alloreactivity  

in secondary MLRs, and a 80 % reduction in HTLp frequencies, compared to unmanipulated 

controls, with preservation of anti-3rd party responses.115 Van Dijk et al depleted alloreactive 

T-cells expressing CD25, CD69, CD71 and HLA-DR using an immunomagnetic allodepletion 

and this resulted in a 1 log reduction in alloantigen specific helper T lymphocyte precursor 

(HTLp) frequency without affecting third party responses. 118 

 

Numerous other activation antigens have also been targeted for allodepletion strategies. 4-1BB 

(CD137) is upregulated on activated T-cells early in a MLR and CD137 is important in co- 

stimulation of CD8 effector memory cells. Anti CD137 antibodies, inhibit CD4 and CD8 T- 

cell mediated GVHD. Hartwig et al generated CTL cultures by stimulating CD8+ lymphocytes 

with single HLA mismatched AML blasts or renal carcinoma cells. 59 On Day 21 of the 

culture, the lymphocytes were stimulated with HLA-negative K562 cells transfected with the 

disparate HLA-Class 1 cDNAs. After 24 hours, the CD137 positive alloreactive T-cells were 

depleted using MACS technology. CD137 negative cells and unmanipulated CTL cells were 

then stimulated with the original AML blast/renal carcinoma cells or the K562 cells expressing 

the disparate HLA antigen in a 2º IFNγ ELISPOT. In 15 donor-recipient pairs, the allodepleted 

fraction showed a median residual activity of 9.5 % to the transfected K562 cells, and 58% 
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residual activity to the leukaemic/ carcinoma cell line compared to sensitized non depleted 

PBMCs from the same donor. Chromium release cytotoxicity assays showed that the 

allodepleted fraction lost reactivity to the single HLA mismatched K562 lines but maintained 

cytotoxicity against the leukaemia/carcinoma cell lines. Anti-EBV and CMV activity was 

maintained despite allodepletion as assessed by tetramer and IFNγ ELISPOTS. However, 

unlike CD25 or CD69 a clinical grade CD137 antibody does not exist limiting this approach. 

Furthermore, a significant residual alloreactivity was still evident to the single class MHC 

mismatched K562 cells after CD137 allodepletion. The effectiveness of CD137 allodepletion 

in haploidentical mismatched donors is not known. These studies demonstrate that there are a 

host of different approaches to targeting alloreactive T-cells based on their expression of 

activation markers, but these have not been compared with each other and the optimal method 

and marker is yet to be determined. 

 

2. Activation Induced Cell Death 
 
Activation induced cell death is an important physiological pathway to control the expansion 

of activated T-cells. CTLs kill targets by expressing FAS ligand (FasL) that binds to the death 

receptor Fas. This interaction activates caspases and leads to apoptosis of targets. Alloreactive 

T-cells up regulate the Fas antigen, and upon addition of a Fas Ligand agonistic antibody in an 

ex vivo MLR, there was a  80 % reduction in proliferation in a 2º MLR, compared to 

controls.119,128  This approach maintained third party activity, and in mouse model of GVHD, 

transfer of CD95 allodepleted T-cells prevented lethal GVHD, compared to untreated T-cells. 

Another approach has been to transfect APCs, with a Fas Ligand vector, to therefore lead to 

clonal deletion of alloreactive T-cells expressing the Fas antigen. 67 The transfected APCs, led 

to a large decrease in the T-cell proliferation to the original stimulator in MLR, but responder 

cells were able to maintain third party responses. This decrease was specific to Fas-Fas ligand 

interaction, because when responder T-cells from Fas knockout mice were used, the Fas ligand 

transfected APCs, had no effect on the proliferation. Limitations of this approach include the 

lack of a GMP grade CD95 agonistic antibody, and the possibility of inducing fatal hepatic 

damage with a CD95 antibody,129 due to expression of CD95 expression on hepatocytes. 
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3. Photodynamic Purging 

 
Photodynamic purging (PDP) involves the administration of a photosensitizing agent, followed 

by activation of the agent by light of the appropriate wavelength. One such agent, TH9402 is 

taken up by T-cells and is then actively extruded by the multi drug transporter P-glycoprotein 

170 (P-gp170). However, p-gp170 is inactivated upon T-cell activation, leading to a selective 

retention of the dye in the mitochondria of activated T-cells. Following exposure to visible 

light (512 nm), the dye becomes cytotoxic leading to the generation of free radicals which 

resulting in cell death. The capacity of TH9042 to reduce alloreactivity is primarily due to 

depletion of  CD25 positive alloreactive T cells, but may not affect CD25+FoxP3 + regulatory 

T-cells.130 Some CD25+ve T cells remain after treatment, though whether they are residual 

alloreactive T-cells or regulatory T-cells is not known. PDP treatment also removes B cells, 

and this may also account for account for some of the effect of photodynamic purging. 

 

 Thus this approach could lead to the selective deletion of alloreactive T-cells, which become 

activated in a MLR, leaving resting T-cells intact. 52 Allodepleted donor T-cells generated 

using PDP demonstrated a significant reduction in IFNγ release in ELISPOT assays when 

compared to sensitized non PDP treated PBMCs but had a residual response to host of over 6 

times higher than that of unmanipulated PBMCs.33 Though the IFNγ ELISPOT showed that 

PDP treated donor cells still had significant alloreactivity, when these cells were infused into a 

mouse model, there was no clinical GVHD. Moreover, adoptive immunotherapy with PDP 

treated donor T-cells in a mouse tumour model, demonstrated improved survival, prevented 

relapse, and promoted immune reconstitution.33  More recently, Mielke et al demonstrated a 4 

log reduction in residual alloreactivity to host following PDP purging of allodepleted donor T- 

cells in a clinically applicable system.131 Third party responses were maintained but anti-viral 

responses in the aforementioned studies were not systematically examined. In this regard, 

Perruccio et al observed  large decreases in T-cell responses to viral/fungal antigens, using a 

similar PDP approach.132 

 

Preliminary results of a phase 1 clinical study of adoptive transfer of PDP treated donor T-cells 

after haplo-SCTs in 13 high risk adult patients with haematology malignancies, have been 

reported by Roy et al 133. Patients received escalating DLI with donor PDP treated T-cells at 

doses of 104/kg to 105/kg. Anti host cytotoxic T lymphocyte precursors (CTLp) were reduced 
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by 1.5 log after PDP treatment, whilst activated CD25 + T cells were depleted by over 90 %. 

Of 11 evaluable patients, none developed acute GVHD, whilst 3 developed chronic GVHD. 5 

patients died (4 due to infections including 1 EBV LPD), and the other of relapse.133  Immune 

reconstitution was disappointingly poor, with a relatively high mortality from infectious 

deaths, suggests that PDP may affect the anti-viral function of the residual allodepleted T-

cells. Other clinical studies of photodynamic purging with higher doses of allodepleted T-cells 

are currently ongoing. 

 

4. Chemotherapy Based Methods of Allodepletion 

 
Alloreactive cells are characterized by their ability to proliferate in response to alloantigen. 

With this in mind several groups have looked at adding chemotherapeutic agents to ex vivo 

MLRs, to preferentially kill proliferating cells. Fludarabine, is an adenine nucleoside analogue 

that inhibits DNA synthesis when incorporated into the replicating chain. It also has potent 

immunosuppressive effects including profound depletion of CD4+ cells. In a MHC-

mismatched murine SCT model Waller et al treated mismatched donor lymphocyte infusions 

(DLI) with fludarabine ex vivo for 24 hours, prior to infusion.120  Recipients of fludarabine 

treated DLI did not develop GVHD and had superior engraftment and chimerism analysis 

compared to T-cell depleted bone marrow. In contrast, mice receiving unmanipulated DLI with 

bone marrow showed high rates of GVHD. The mechanism of fludarabine’s actions appeared 

to be a selective depletion of naïve T-cells, whilst preferentially preserving memory T-cells.  
134 While such an approach is conceptually attractive, fludarabine is very potently 

immunosuppressive, and such a strategy would require careful dose titration experiments to 

minimize effects on desirable anti-viral and anti-leukaemic T-cell responses. 

 

Other groups have targeted proliferating T-cells directly in an ex vivo MLR. Addition of 

trimetrexate, an anti folate drug,135 inhibited proliferation in a MLR due to apoptosis in the 

proliferating cells. Combining trimetrexate mediated allodepletion with a CD25 immunotoxin 

(Ontak) was superior to either alone in inhibiting proliferation to host stimulators in a primary 

MLR. This combination did not affect proliferative responses to third party or Candidal 

antigens. This approach is potentially clinically applicable, but again would require careful 

titration to avoid toxicity to desirable T-cell responses. However, the CD25 immunotoxin used 

was Ontak, which has been shown to be inferior to ricin based CD25 immunotoxin.124 
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Bortezomib is a reversible proteosome inhibitor.136 By inhibiting proteosome activity and thus 

preserving Ikβ activity, it inhibits the translocation of NF- kβ into the nucleus. Bortezomib 

inhibits proliferation in vitro MLRs, 55,121 due to selective apoptosis of the proliferating 

alloreactive T-cells. 55,136 Blanco et al used this approach to selectively delete alloreactive T- 

cells.55 This study however, was limited by the assays used to assess residual alloreactivity. 

The percentage of viable CD25+ T-cells in the bortezomib treated MLR was lower than in the 

CD25-ve fraction but 55 % of CD25+ve alloreactive cells still remained viable. CD69 

expression after secondary stimulations was used to assess residual alloreactivity but CD69 is 

only expressed on a minority of alloreactive T-cells. The effect of bortezomib on reducing 

CD69 expression in the 2º MLR was modest (7.1 % in unmanipulated T-cells vs 2.9 % in the 

bortezomib MLR). There was no comment in the paper about the effect on desirable anti-

leukaemic or anti-viral responses, though 3rd party responses were decreased suggesting that 

this approach may target bystander cells. 

 

In mouse GVHD models, administration of bortezomib on days 0-3 post BMT along with 

allogeneic T-cells, led to improved survival due to decreased GVHD compared to addback of 

unmanipulated T-cells.121 However, delayed administration of bortezomib (days 5-7 post 

BMT), led to enhanced gut GVHD, and increased mortality.137  Histopathological examination 

of the mice that received delayed administration of bortezomib, showed significant increases 

in TNFα receptor transcription in gut cells and increased serum TNFα, IL-1, and IL-6. Thus, 

the effects of bortezomib on GVHD, are critically dependent on its timing. PS-1145 is a 

selective inhibitor of NF- kβ, and delayed administration of this agent protected mice from 

lethal GVHD and did not cause gut toxicity.136 This suggests that toxicity of delayed 

administration of bortezomib is due effects from proteosome inhibition other than NF-kβ 

inhibition.  
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Clinical Trials of Allodepleted Donor T cells Generated with 
CD25 Immunotoxin (RFT5) 

 
Andre-Schmutz el al performed a clinical study of add back CD25 immunotoxin (RFT5-

SMPT-dgA) allodepleted donor T-cells after HLA mismatched BMT.138 They treated 15 

paediatric patients in this study, 13 of whom had haploidentical transplants, and 2 received 

matched unrelated donors. Five patients had high risk haematological malignancies, the rest 

were transplanted for metabolic/immunodeficiency disorders.  Donor PBMCs were co-cultured 

with irradiated host PBMCs for 3 days in vitro.  Harvested cells were then treated with an 

overnight incubation with the CD25 immunotoxin. The efficacy of depletion was assessed by 

flow cytometric analysis of CD3+CD25+ expression and by residual proliferation to host in a 

primary MLR.  Allodepleted T-cells were only infused after engraftment, if there was no 

GVHD, and no residual anti thymocyte globulin detected.  Doses infused ranged between 1 -8 

x 105 T cell/kg. GVHD occurred in 4 patients (two patients developed had grade 1 GVHD of 

the skin, two others developed grade 2 of gut and skin). One of the latter went onto develop 

chronic GVHD of the skin. Onset of GVHD did not correlate with the number of T-cells 

infused but rather with residual proliferation to host in 1º MLRs. The 4 patients who developed 

GVHD all had a residual proliferation of greater than 1%, thus suggesting that targeting CD25-

ve alloreactive T-cells may reduce the incidence of this complication.  

 

Preliminary studies on immune reconstitution suggested that this was enhanced following 

transfer of allodepleted donor T-cells compared to historical controls. Infusion of allodepleted 

T-cells led to enhanced CD3, CD4 and CD8 recovery, particularly in those patients who had 

viral reactivations. Responses to PHA were also enhanced. These T-cells had a memory 

phenotype and a diverse T-cell receptor repertoire. Two patients who had active CMV 

infection, showed strong cytolytic activity against CMV infected targets, 4 weeks after 

infusion of allodepleted T-cells, suggesting that T-cells encountering their cognate antigen 

show considerable expansion. Although viral specific immunity was not systematically 

assessed, one case of adenoviraemia, and another of EBV lymphoproliferative disease, who 

were both resistant to conventional treatment, responded following infusion of allodepleted T-

cells.  
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Three of the five leukaemic patients died of relapse. Eight patients were alive and well with a 

median follow up of 24 months.  This study showed that administering allodepleted T-cells 

generated using CD25 immunotoxin was safe and that deleting T regulatory cells did not lead 

to enhanced GVHD. However, in view of the high mortality from relapse enhanced 

allodepletion is needed, thus allowing higher doses of T-cells to be infused to augment anti- 

leukaemic responses. 

 

Solomon et al. used CD25 immunotoxin (RFT5-SMPT-dgA) based allodepletion in an adult 

trial in the HLA-matched setting. Sixteen patients with a median age of 65 and advanced 

haematological malignancies underwent reduced intensity transplants using HLA-identical 

sibling donors. G-CSF mobilised peripheral blood stem cells were T-cell depleted by CD34 

selection. Donor T-cells from the negative fraction were then incubated with irradiated host T- 

cells (OKT3 immunomagnetically selected) in a 1:1 ratio. 139 The immunotoxin was added 

after 24 and 48 hours of co-culture, and cells were harvested at 72 hours. The stem cells and 

the allodepleted product were co-infused on day 0 of the procedure. The median T-cell dose 

infused was 1.0 x 108/kg (range 0.2-1.5 x 108/kg). Successful depletion of alloreactivity was 

observed in 9 out of 11 patients as tested in helper T lymphocyte precursor (HTLp) assays. 

There was a ½ log mean reduction in the HTLp frequency against host stimulators after 

allodepletion, though with a large range (range 2-11 fold). The rates of acute grade II-IV 

GVHD observed were relatively high (46 % ± 13 %) but grades III-IV GVHD was uncommon 

(12 ± 8 %). Seven out of 14 patients developed chronic GVHD. The likelihood of GVHD was 

inversely correlated to the post depletion HTLp frequency. i.e. patients who had retained high 

HTLp precursor frequencies after CD25 allodepletion developed GVHD. There was no 

relationship to the starting HTLp frequency. There were 5 relapse deaths, with a 2 year 

probability of relapse of 56 %. The major flaw in this study was that the host antigen 

presenting cells used (expanded T-cells) may induce suboptimal activation of CD25 

expression in alloreactive T-cells, particularly in the absence of HLA-mismatch, and hence 

inadequate depletion of alloreactivity. Nonetheless, these data suggests that targeting 

alternative CD25-ve markers may be valuable in enhancing existing CD25 based allodepletion. 

Further analysis of this cohort showed effective T regulatory cell reconstitution at 1 month 

post BMT.140 Thus acute GVHD occurring in this cohort was unlikely to be due to removal of 

CD25 positive T-regulatory cells, but rather due either to inadequate up regulation of CD25, or 



 64

the presence of CD25 negative alloreactive T-cells.140  This emphasizes the need to 

characterize the phenotype of alloreactive T-cells that do not express CD25.  

Follow up on immune reconstitution in these studies was limited and there was no formal 

assessment of anti-viral immunity. Equally it was unclear how many allodepleted cells were 

needed to improve immune reconstitution without causing GVHD in the haploidentical setting. 

To address this, Amrolia et al performed a trial in 16 paediatric haploidentical transplants 

recipients, comparing immune reconstitution after addback of 2 dose levels of allodepleted T-

cells. 8 patients were treated at dose level 1 (104/kg/dose), comparable to the number of 

unmanipulated T-cells given in a standard haploidentical graft, whilst the other half received a 

higher dose of  105/kg/dose.141 Each arm received 3 doses of allodepleted T-cells. 12 of the 

patients had high risk haematological malignancies, and 6 of these were not in remission. Host 

LCL were co cultured with donor PBMCs for 72 hours prior to the addition of CD25 

immunotoxin (RFT5-SMPT-dgA).  Each patient was scheduled to receive 3 doses of 

allodepleted T-cells at either dose level on days +30, +60, and +90 post transplant, providing 

their was no evidence of grade II or greater GVHD, or until total circulating T-cell numbers 

were greater than 1000/µl. The primary aims were to compare toxicity (i.e. GVHD), and 

immune reconstitution between the two dose levels. Secondary outcomes were 

frequency/outcome or viral infections, and day 100 and 1 year overall/disease free survival. 

The efficacy of allodepletion was assessed by FACS (residual % of CD3+CD25) and residual 

proliferation in 1º MLR. The residual percentage of CD3+/CD25+ cells in the infused 

allodepleted cells ranged from 0.01% to 0.27% (median 0.08%), and the residual proliferation 

against host cells in the primary MLR ranged from 0% to 3.1% (median, 0.02%). 

Error! Bookmark not defined. 

Most (13 of 16) patients completed their scheduled infusions: the remainder did not because of 

GVHD (n = 2) or autologous reconstitution (n = 1). Immunosuppression was withdrawn prior 

to infusion of the allodepleted products. Two patients developed GVHD, one at dose level 1 

(after 1 infusion Grade IV skin GVHD), and at dose level 2 (Grade II skin GVHD after 2 

infusions). Both patients went onto develop chronic GVHD, affecting the liver in one, and skin 

and mouth in the other. This incidence of GVHD is equivalent to what one would see in 

standard T-cell depleted haploidentical transplants without T-cell addback. There was no 

relationship between the occurrence of GVHD and residual proliferation to host in this study. 
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Figure 9: Enhanced CD3 Recovery in dose level 2 patients between 3-5 months post SCT. Donor PBMCs 

were cocultured with host LCLs and on day 3 a CD25 allodepletion was done using CD25IT. These allodepleted 

donor T cells were infused at specific time points at either 104/kg in one cohort or 105/kg in the other cohort. 

Those who received dose level 2 ( 105/kg) had superior T-cell recovery compared to dose levels 1 (104/kg) 

Reproduced from 141 

With regards to immune reconstitution, CD3 numbers were significantly higher in dose levels 

2 (105/kg) patients between 3-5 months post BMT, compared to dose level 1(104/kg). (See Fig 

9). This was true in both the CD4 and CD8 compartments. Area under the curve analysis also 

showed that CD3, CD4, and CD8 recovery at 4 and 6 months was significantly improved.  

 

There was no difference in B and NK-cell recovery between the 2 groups. The majority of 

recovering T-cells in the dose levels 1 group were of a naïve phenotype (CD45RA+, CCR7+), 

whilst in dose level 2 the majority of T-cells had an effector memory phenotype ( CD45RA-, 

CCR7-). Effector memory T-cells were significantly higher in dose level 2 between 3-5 

months post BMT. This is important, as effector memory cells responses are likely to be long 

lived.  

 

To determine whether the improved immune reconstitution was due to infusion of the 

allodepleted T cells, or due to naïve precursors passing through the thymus, T-cell receptor 

signal joint excision circles (TRECs) were analyzed by real time polymerase chain reaction 

(PCR). TRECs were detected at low levels in 3 of the 5 patients assessed on dose level 1 at 4 

and 6 months. TRECs were undetectable in 4 out of 4 dose level 2 patients who were analyzed 

at these time points. This suggests that the improved T-cell reconstitution observed in patients 

treated at dose level 2 was due to the infusion of allodepleted T-cells.  
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Tetramer and IFNγ ELISPOT assays were used to analyze viral-specific immunity. At dose 

level 1, none of the 6 evaluated patients had a significant CD8+tetramer population 

recognising EBV epitopes up to 12 months post BMT, despite the fact 2 had viral 

reactivations. In contrast, at dose level 2, tetramers were detected in 3 of the 4 evaluated 

patients, shortly after viral reactivation. Similarly for CMV, none of the 6 evaluable patients at 

dose level 1 had tetramer positive populations before 9 months post BMT, despite 5 of them 

having viral reactivations. At dose level 2, 2 of the 4 patients had tetramer positive populations 

detected as early as 2 months post BMT, again in one of these in response to viral reactivation. 

These data suggests that at doses of 105/kg there is considerable peripheral T-cell expansion in 

response to the T-cells seeing their cognate antigen. Likewise, using IFNγ ELISPOTs to assess 

the function of these viral-specific T-cells, EBV immunity in dose level 2 was of a greater 

magnitude and occurred earlier than in dose level 1. Only 2 of 7 evaluable dose level 1 patients 

had a significant response (defined as >200 spot forming cells/106 PBMCs) to EBV LCL, 

compared to 4 out of 6 treated at dose level 2. Once again, in general these responses were 

correlated with viral reactivation.  Similar data was obtained for CMV.  

 

Nine patients (of the 16 at risk) had CMV reactivation. They were treated with ganciclovir ± 

foscarnet though none developed CMV related disease. Six patients had EBV reactivations, 

but none needed treatment with rituximab, or developed lymphoproliferative disease. There 

were three probable fungal infections which resolved with antifungal therapy. There were 2 

cases of adenoviraemia. In one patient, this led to fatal disease of the liver. The other patient 

did not clear the virus despite anti-viral treatment with cidofovir and ribavarin and 3 doses of 

allodepleted T-cells at dose level 2, and he was subsequently given a single dose of 

allodepleted T-cells at 2.5 x 106/kg on a compassionate basis, with rapid clearance of the virus. 

This suggests that infusing higher doses of allodepleted donor T-cells is required to combat 

pathogens which have a low precursor frequency (e.g. adenovirus). Another patient had 

progressive multifocal leucoencephaolpathy due to JC virus, which showed a significant 

clinical and radiological improvement following infusion of allodepleted T-cells at dose level 

2. This patient showed marked improvements in cognitive function, and motor skills, 

associated with improvement in their T-cell numbers.  
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At a median follow up of 33 months, 7 patients in this study have relapsed and 5 are alive and 

disease free. Thus this study showed that infusions of allodepleted T-cells at dose level 2 post 

haplo-SCT led to; 

• Low incidence of GVHD  

• More rapid recovery of T-cells with memory phenotype 

• Absence of TRECs + diverse TCR repertoire 

• Accelerated recovery of viral-specific immunity and a low incidence of infection 

related deaths 

• Clinical responses 

 

 

However, clearly relapse remains a major problem. Selective allodepletion will deplete T-cell 

responses against the mismatched HLA alleles and ubiquitous minor histocompatibility 

antigens presented by the shared HLA alleles. Nonetheless, anti-leukaemic activity may be 

retained after allodepletion 86,122,142 In particular, T-cell responses to potential myeloid tumour 

antigens are preserved by virtue of their lack of expression on the LCL used as stimulators. 
86Likewise, allorestricted responses against tumour, haematopoietic-specific and minor 

histocompatibility antigens presented through the non-shared haplotype143-146 should also be 

retained. It is unclear how many allodepleted donor T-cells would be required to confer 

clinically relevant anti-leukaemic responses in the haploidentical setting: because of the 

possibility of allorestricted responses, this may in fact be considerably lower than the numbers 

of DLI required to induce GVL after HLA-matched SCT. Because of the limitations of 

experimental models, it may be that this question can only be answered in clinical studies.  

 

Likewise, the fact that the patient who cleared adenovirus only did so after receiving 2.5 x 106 

T cells/kg suggests that the protective response against pathogens with a low T cell precursor 

frequency may require larger doses of allodepleted T-cells to be infused. Our in vitro data 

suggests that a median 17 fold reduction in alloreactivity (as assessed by ELISPOT) after 

CD25 immunotoxin based allodepletion, together with the fact that 2/16 patients did develop 

GVHD, suggests that it may not be safe to give larger doses of allodepleted T-cells using this 

strategy alone. Thus, in subsequent studies we need to enhance depletion of allo-reactive cells 

so that can add back sufficient T-cells for protective anti-leukemic responses without causing 

GVHD.  
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Adoptive Immunotherapy with Genetically Modified Donor T 
cells 
 
As noted above, the major cause of mortality following adoptive transfer of CD25 allodepleted 

donor T-cells after haploidentical transplantation was relapse.141 Potentially, the anti-

leukaemic activity of allodepleted T-cells could be augmented by redirecting the specificity of 

T-cells. One approach to do this is by transducing allodepleted donor T-cells using chimeric T-

cell receptors.  The advantage of redirecting the specificity of allodepleted T-cells using 

chimeric TCRs is that the latter are not MHC restricted. 

Chimeric T cell Receptors 
 
Tumour cells evade recognition and elimination by immune effectors by a variety of ways: 

1) low or absent expression of tumour antigens 

2) expression of antigens that are shared with normal cells, so that the immune system has 

become tolerant 

3) down regulation of MHC molecules 

4) defective pathways of antigen presentation  

5) absence of co-stimulation 

6) secretion of inhibitory molecules e.g. IL-10, transforming growth factor-β 

7) expansion of T regulatory cells 

 

Chimeric T cell receptors (ChTCR) can potentially overcome some of the above difficulties. 

ChTCR are artificial T-cell receptors constituted by an antigen recognizing antibody molecule 

linked to a T-cell triggering domain. The most common form of these molecules are fusions of 

single-chain Variable fragments (scFv) derived from monoclonal antibodies, fused to CD3-

zeta endodomain (see Fig 10). Such molecules result in the transmission of a zeta signal in 

response to recognition by the scFv of its target. An example of such a construct is 14g2a-Zeta, 

which is a fusion of a scFv derived from hybridoma 14g2a (which recognizes 

disialoganglioside GD2). When T-cells express this molecule (usually achieved by 

oncoretroviral vector transduction), they recognize and kill target cells that express GD2 (e.g. 

neuroblastoma cells). To target malignant B cells, investigators have redirected the specificity 

of T-cells using a chimeric immunoreceptor specific for the B-lineage molecule, CD19. The 

main advantages of this approach are: 
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1. It overcomes the lack of immunogeneic tumour antigens on leukaemic blasts by 

redirecting T-cells to surface molecules they express. 

2. It enables targeting of tumour cells in a HLA-independent fashion, so that a 

single vector can be used to treat all patients expressing the surface molecule       

(in contrast to transfer of exogenous TCR) 

3. It overcomes tumour evasion by down regulation of HLA molecules or defects 

in antigen processing 

 

T cell mediated function should be more effective that that of infused monoclonal antibody as 

cytokine release at the site of a tumour can lead to amplification of the anti-tumour response. 

Redirected T-cells can also home to tumour sites, proliferate locally, and penetrate solid 

tumours. Critically, eradication of tumours, by adoptive immunotherapy will depend on the 

transformation of tumour CTLs into memory long lasting CTLs.  

 

Figure 10:  Structure of Chimeric TCR. A chimeric TCR consists of a monoclonal antobody binding domain 
complexed to the signalling regions of the TCR. This enables the recptor to bind independent of the HLA. Upon 
binidng to it cognate antigen, signalling through the TCR leads to T-cell proliferation and differentiation. 

Signal

VH VL

Linker [(gly4)ser]n

Spacer- Hinge-CH2-CH3 of IgG1

CD28 Transmembrane

CD3 ζ Endodomain

Ectodomain

 
The extracellular domain consists of 147 (see Fig 10) 

• Ectodomain (Signal sequence) - to allow entry into the endoplasmic reticulum and 

transport to the cell membrane. This is essential if the receptor is to be glycosylated and 

anchored in the cell membrane. Generally, the signal peptide natively attached to the 
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amino-terminal is the component most commonly used (e.g. in a scFv with orientation 

light-chain - linker - heavy chain, the native signal of the light-chain is used) 

 

• Ectodomain - antigen recognition region 
 

The antigen recognition domain is usually a scFv. This consists of variable domains of 

a monoclonal antibody, linked together as a single chain Fv (scFv). Most scFvs are 

generated from mouse hybridomas. Connecting the VH  and VL is a linker [(gly4)ser]n, 

which is at least 12 amino acids in length, which allows the correct stereotactic 

orientation of the scFv.148 

 

There are however many alternatives. An antigen recognition domain from native TCR 

alpha and beta single chains have been described, as have simple ectodomains (e.g. 

CD4 ectodomain to recognize HIV infected cells) and more exotic recognition 

components such as a linked cytokine (which leads to recognition of cells bearing the 

cytokine receptor). In fact almost anything that binds a given target with high affinity 

can be used as an antigen recognition region.148 Importantly, if the antigen recognition 

domain is derived from a monoclonal antibody, this may potentially be immunogeneic, 

as may junctional regions within the ChTCR. 

 

• Ectodomain (The Spacer region) - A spacer region links the antigen binding domain 

to the transmembrane domain. It should be flexible enough to allow the antigen binding 

domain to orient in different directions to facilitate antigen recognition. A spacer 

region separating the antigen binding region and the signalling domain seems to be 

necessary to enable optimal function of constructs The simplest form is the hinge 

region from IgG1 though alternatives include the CH2CH3 region of immunoglobulin , 

portions of CD3 or from the hinge –CH2- CH3 of the human IgG 1 molecule. 

 

• Transmembrane Domain- This is a hydrophobic alpha helix that spans the 

membrane. Generally, the transmembrane domain from the most membrane proximal 

component of the endodomain is used. Different transmembrane domains result in 

different receptor stability. The CD28 transmembrane domain results in a highly 

expressed, stable receptor. 148 
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• Endodomain- consists of the signalling component of region of the TCR (usually 

CD3ζ). CD3-zeta contains 3 immunoreceptor tyrosine-based activation motifs 

(ITAMs). This transmits an activation signal to the T cell after antigen is bound. CD3-

zeta may not provide a fully-competent activation signal and additional co-stimulatory 

signalling is needed. For example, chimeric CD28 and OX40 can be used with CD3-

Zeta to transmit a proliferative / survival signal, or all three can be used together149 

 

A variety of haematological malignancies could be targeted using an approach involving a 

ChTCR e.g. CD19 and CD20 have been targeted for B cell lymphoid tumours, and CD30 for 

lymphomas.  

 

Targeting CD19 on Malignant B cells 
 
The CD19 molecule is a 95 kDa membrane glycoprotein, found on human B lymphocytes at 

all stages of maturation, but usually disappears upon differentiation to terminally differentiated 

plasma cells.150 It is expressed on most ALL, CLL and B cell lymphomas. CD19 is rarely lost 

during the neoplastic transformation and is not expressed on haematopoietic stem cells, or 

normal tissues outside the B lineage. CD19 is also not shed into the circulation and therefore 

there is no soluble CD19 to compete with binding to a CD19 ChTCR. 

 

Human peripheral blood T-cells transduced with a retroviral vector carrying a CD19-TCRζ 

have been shown to potently kill and to secrete Th1 cytokines in response to CD19+ve 

leukaemic cell lines and B-ALL blasts in vitro. 151 CD19chTCR redirected T-cells, traffic to 

the bone marrow and have led to the eradication of established Burkitts lymphoma and 

prolonged survival in a SCID-beige mouse tumour model.152 Incorporation of a suicide gene 

(HSV-1 TK) construct resulted in their elimination following ganciclovir. 147  

 

Limitations of Chimeric TCRs 
 
Targeting endogenous antigens such as CD19 would lead to a loss of B cells and a reduction in 

humoral immunity necessitating immunoglobulin infusions, thus limiting this approach to high 

risk ALL patients. There also remain concerns over the persistence of these genetically 

modified T-cells in vivo. Adoptive transfer of ex vivo expanded CD4 ζ modified syngeneic 
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CD8+ T cells in HIV infected twin pairs, showed in vitro cytotoxicity, but failed to induce 

objective clinical responses. The observed lack of antiretroviral activity was associated with a 

rapid decline in gene marked cells following transfusion. Although 1st generation chTCRs 

were able to kill in vitro and produce IFNγ, they showed diminished IL-2 production and thus 

poor proliferation and survival. 153  Many tumours lack co-stimulatory molecules so that when 

the chTCR interacts with its receptor, it will get 1 signal, but no co-stimulatory signal 2. This 

will lead to poor proliferation and anergy or cell death. As noted above, the incorporation of a 

co-stimulatory domain in cis may improve the expansion and survival of T-cells transduced 

with chimeric chTCRs. 

 

 

The short life span of chTCRs in vivo may be due to a host immune response to the foreign 

proteins on the receptor. The immunogenicity of recombinant receptors can be reduced by 

using human antibody fragments as recognition domains.153 Transfer of antigen specific CD4+ 

helper cells has been shown to be vitally important in CTL function. Co-administration of 

CD4+ and CD8+ chTCRs in HIV patients showed persistence for at least 1 year, but no 

significant therapeutic effects were seen. Thus transfer of CD4 + antigen specific T-cells may 

help with persistence, but effective anti-tumour activity will require T- cell proliferation, and 

establishment of memory T-cells.  

 

So far transduction of T-cells with chTCRs has been with retroviral transduction. The ability 

of retroviruses to integrate into the host cell chromosome raises the possibility of insertional 

mutagenesis and oncogene activation. Acute leukaemia has developed in 4 of 9 children 

treated with gene therapy for X-linked SCID in France154 and 1 out of 10 in the UK. This 

adverse event was attributed to the integration of the retrovirus into the LMO2 locus, a key 

transcription factor in T-lymphoid progenitors, resulting in aberrant expression of this gene 

and uncontrolled proliferation of T-lymphoid blasts in 2 patients. However, in these studies 

CD34 selected haematopoietic progenitors were transduced. There have been no reported cases 

of insertional mutagenesis in patients followed up over an extended period following treatment 

with retrovirally transduced mature lymphocytes. Likewise, there have also been no reported 

cases of insertional mutagenesis, in patients treated with T cells retrovirally transduced with a 

chimeric TCR to treat HIV or neuroblastoma. 
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Oncoretroviral transduction uses high doses of IL-2, OKT3 and/or CD28 stimulation to 

maximize T-cell proliferation. This however converts naïve T-cells into an effector phenotype, 

and has been associated with a reduction in anti-viral and third party immunity.107 Thus, any 

transduction of allodepleted T-cells with a chTCR may need a gentler stimulation in order to 

preserve the phenotype of the T-cells, and thus not compromise on anti-viral immunity. 

Furthermore, an inverse relationship between the acquisition of effector functions and the 

capacity to mediate tumour reduction in vivo (in mouse models) has been demostrated155. Fully 

differentiated tumour CTLs showed potent in vitro cytotoxicity, but naïve T-cells showed poor 

in vitro cyotoxicity. In vivo, however, tumour shrinkage was greatest when naïve T-cells were 

infused and poorest when fully differentiated T-cells were administered. Possible reasons for 

this discrepancy could lie in the ability to naïve T-cells to home to tumour sites, due to 

expression of CD62L, proliferate and secrete IL-2, express co-stimulatory molecules, and 

express less proapoptotic molecules than fully differentiated CTLs155. Thus, to maximize 

tumour activity as well as maintaining third party activity and minimize insertional 

mutagenesis, we have investigated a lentiviral gene transfer of a chimeric TCR into 

allodepleted T-cells. It has been shown that it is possible to efficiently transduce T-cells with a 

lentiviral vector using less intensive pre-stimulation with low dose IL-2 or IL-7  with 

preservation of the phenotype and anti-viral immunity of transduced T-cells.107 Additionally, 

using SIN (self inactivating) lentiviral vectors, will minimize the risks of insertional 

mutagenesis .147  

 

Enhancing Chimeric TCR Signalling  
 
The CD3ζ signalling domain appears insufficient to fully activate of manipulated T-cells to 

proliferate. Integration of the signal transduction domain of the co-stimulatory molecules (2nd 

generation ChTCR) e.g. CD28, ICOS, CD134, or CD137 enhances the proliferative properties 

of gene modified cells, leading to greater secretion of IL-2, and prolonged survival.149,153 The 

signalling characteristics of ChTCR can be further improved by linking in cis more than one 

co-stimulatory domain or a combination of co-stimulatory and co-receptor domains to the 

TCRζ chain (3rd generation ChTCR) e.g. linking the CD28 with the OX40 domain markedly 

increased proliferation, cytokine release and effector function. Moreover, the combination of 

ζ-chain together with the co-receptor (lck) and co-stimulatory (CD28) signals in a single 

receptor has been demonstrated to enhance ChTCR sensitivity and potency.147 
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An alternative approach is to use dual specific T-cells. Dual specific EBV T-cells recognize 

EBV antigens through their native TCR, and the ChTCR target (e.g. CD19) through the 

ChTCR. Using this approach, the engagement of the native TCR in vivo by recurrent EBV 

infections is capable of constantly, stimulating the ChTCR redirected T cells. EBV CTLs 

transduced with a retrovirus carrying the CD19ζ transgene specifically lysed and secreted 

IFNγ in response to CD19+ cell lines and primary ALL blasts in a MHC unrestricted 

fashion.151 Similarly, bispecific CD19 redirected influenza specific CTLs have been shown to 

safely mediate regression of Daudi lymphoma tumors in NOD/SCID mice and this was 

enhanced by vaccination with T antigens presenting cells modified to present influenza 

antigens.156  

 

Lentiviral Vectors 
 
The lentivirus, when compared to gammaretroviruses has a more complex genome and 

consequently a more complex replication cycle. In addition to gag, pol and env genes, they 

encode two regulatory gene, tat and rev, essential for efficient viral gene expression and four 

accessory proteins termed vpr, vpu, nef, and vif. Lentiviral vectors (LVs) which are based on 

lentiviruses, such as HIV-1, can integrate a copy of their genome into the DNA of host non- 

dividing cells. This ability is particularly advantageous in T-cell gene therapy since cells may 

be transduced without extensive prestimulation, thus avoiding prolonged ex vivo culture that 

may result in loss of proliferative and homing ability, and reduction in anti-viral responses. 

Initial packaging constructs for these vectors maintained the accessory genes; however these 

proteins were shown to be dispensable for efficient transduction and integration of lentiviral 

vectors and were therefore deleted in second generation packaging constructs 157. The deletion 

of accessory genes also increased the safety of these vectors, since any replication competent 

virus generated during vector production would lack the essential factors for HIV-1 virulence 

in vivo. A further safety measure was achieved by the production of third generation packaging 

constructs in which the rev gene was placed on a separate plasmid to that of the gag-pol genes 

and the tat gene was removed altogether 158. (see Fig 11)  
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Figure 11: Lentiviral vector genomes and packaging constructs. (A) Genome of a wild-type HIV-
1. (B) Wild-type LTR lentiviral vector genome in which the cDNA of a therapeutic gene is regulated by an 
internal promoter (e.g. EF1α). (C) Genome of a self-inactivating (SIN) lentiviral vector containing a modified 
5’LTR in which the U3 region has been replaced by the constitutive RSV promoter. The vector contains a cPPT 
and WPRE to enhance vector potency and transgene expression. (D, E and F) First-, second- and third generation 
packaging constructs containing sequences from HIV-1 and the VSV-G envelope, used in conjunction with A, B 
or C. (ψ - packaging signal)  Adapted from 159 
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The viral tat protein acts as a potent transcriptional transactivator of the HIV-1 LTR and is  

therefore required for high titre virus production 160. High vector titre in the absence of tat was 

found to be possible however by replacement of the U3 region in the 5’LTR with a 

constitutively active heterologous promoter such as that from the Rous sarcoma virus  

(RSV)158. The viral rev gene product functions as a nuclear export factor; the protein binds to  

a RNA motif, the Rev-response element (RRE), and promotes cytoplasmic export of  

unspliced and spliced transcripts and hence must be provided during vector production160. To 

optimize LVs, the incorporation of central polypurine tract sequences (cPPT) and post 

transcriptional regulatory elements, such as woodchuck post transcriptional regulatory element 

(WPRE) have been shown to increase the infectivity of replication incompetent viral particles 

and augment gene expression 

 

One major limitation of lentiviral vectors is the lack of effective packaging cell lines, so that in 

general transient lentiviral supernatants are generated. The risk of insertional mutagenesis with 

lentiviral vectors may be lower than that of oncoretroviral vectors. Cattoglio and colleagues 

examined retroviral integration site (RIS) preferences in CD34+ cells and concluded that 

gamma-retroviruses carry a higher risk for insertional mutation than lentiviruses.161 

Retroviruses have integration-site preferences. Studies in HeLa and CD34 cells have shown a 

gamma-retroviral bias for transcriptional start sites (29% of total) and for actively transcribed 

genes. Lentiviral integrations were also biased toward actively transcribed genes, but for 

intragenic rather than transcriptional start sites.  Additionally, it was found that many of the 

recurrent gamma-retroviral integrations were cancer associated (i.e. proto-oncogenes). In 

contrast, recurrent lentiviral integrations did not involve a statistically significant number of 

cancer-associated genes. To improve the safety of LVs, more recent constructs have been 

developed called self inactivating vectors (SIN). These are characterised by a large deletion in 

the U3 region of 3′ long terminal repeat (LTR) of the DNA used to produce the vector RNA 

which is ultimately transferred to the 5′ LTR of the proviral DNA during reverse transcription, 

and leads to the inability of producing full length vector RNA. Thus, the risk of triggering 

cellular oncogenes by the enhancer activity of the LTR is diminished. Another advantage of 

SIN vectors is that the expression of the transgene can be restricted to specific cell targets 

depending on the internal promoter.162 A recent pilot study with lentiviral engineered T-cells 
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that expressed an anti-sense HIV vector in HIV infected patients showed no evidence for 

insertional mutagenesis after 21–36 months of observation.163 

 

Pseudo typing Lentiviral Vectors 
 
The glycoprotein of the Vesicular stomatitis virus (VSV-G) is most commonly used to pseudo 

type lentiviral vectors and expands vector tropism since the receptor for VSV-G, although still 

undetermined, appears to be ubiquitous in all cell types. Furthermore, VSV-G pseudo typed 

vectors can be efficiently concentrated by ultracentrifugation, enabling the production of 

serum-free, high-titre vector particles. However, VSV-G is associated with cytotoxicity 

limiting the concentrations of vector which can be used without reducing target cell viability.  

VSV-G pseudo typed late generation LVs can transduce T lymphocytes that have progressed 

from G0 into the G1 phase of the cell cycle without  becoming committed to proliferation.162 

The efficient transduction of human T lymphocytes by these vectors does not require cycling 

cells but a certain degree of activation. Stimulation with IL-2, -7 and -15 drives the 

progression to the G1 phase of the cell cycle without inducing further progression or 

proliferation. Gene transfer without TCR triggering reduces or eliminates the risk of selection 

or phenotypic alteration of cells in culture; 

 

 

Transduction of Human PBMCs with Lentiviral Vectors 
 
Qasim et al demonstrated that lentiviral vectors readily transduced peripheral blood 

lymphocytes (PBLs) cultured in IL-2 (100 IU/ml) or IL-7 (5 ng/ml) for 96 h at an efficiency of 

approximately 20–25% using a multiplicity of infection (MOI) of 20.107 There was no 

advantage combining cytokines or using higher MOI, but full activation using anti-CD3/CD28 

microbeads plus IL-2 (100 IU/ml) led to more efficient gene transfer (consistently above 50%). 

Cells cultured in IL-2 or IL-7 maintained their cell surface phenotypes, with preservation of 

the CD4 and CD8 subset proportions and naïve (CD27+CD45RO-) phenotype, whereas 

CD3/CD28-stimulated cells were highly activated (CD25+), with a memory phenotype 

(CD27+CD45RO+). 



 78

One concern arising from previous clinical trials of adoptive immunotherapy with suicide gene 

transduced T-cells, was the relatively high rates of viral infections following transplantation. In 

addition, the incidence of GVHD was lower than might have been expected, and questions 

have been raised about the functional potential of T-cells after full activation and extensive ex 

vivo expansion. Using the lentiviral vector system, Qasim et al found that cytokine-stimulated 

cells (in particular IL-7) showed preservation of responses against CMV-pulsed dendritic cells 

(DCs) at levels comparable to fresh PBMCs, whereas these responses were diminished in 

CD3/CD28-stimulated cells.107 Recent studies that have indicated that expansion of 

CD4+CD25+ regulatory T cells (Tregs) following activation with anti-CD3/CD28 may be 

partly responsible for suppression of effector function of transduced T-cells.107. Assessment of 

FoxP3 levels following transduction showed substantially increased levels in fully activated 

cells, with minimal alteration in IL-2- or IL-7-cultured cells. The increased numbers of 

FOXP3+ Tregs in CD3/CD28-activated cell cultures is consistent with the reduced 

proliferation detected in response to CMV or allo-stimulation.107 Thus, T-cells cultured in 

cytokines IL-2 or IL-7 are amenable to lentiviral-mediated gene transfer, and although the cells 

undergo division, they retain their phenotype, anti-viral responses, alloreactive potential and 

regulatory numbers.   

Haploidentical SCTs are compromised by a high rate of infectious death and malignant 

relapse. Allodepletion using CD25 based strategies has been shown to enhance immune 

reconstitution. However, the problems of leukaemic relapse and morbidity and mortality from 

adenoviraemia remain a problem. Our data has shown that increasing doses above 106/kg of 

allodepleted donor T-cells is effective against adenovirus. Furthermore, despite CD25 

allodepletion, there remains significant residual alloreactivity against host. Thus, by enhancing 

existing CD25 based allodepletion, this may enable us to give higher doses of allodepleted 

donor T-cells, and thus get better anti-viral and anti-leukaemic responses but without GVHD. 
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Statement of Aims 
 
The aims of this study are; 
 

1. To characterize the activation marker and cytokine profile of alloreactive T-cells 

identified using CFSE dye dilution. In particular we have focused on determining the 

phenotype of the CD25 negative, proliferating alloreactive cells to provide a rational 

basis for enhancing allodepletion with CD25-based strategies.  

 

2. Based on these studies, we have compared residual alloreactivity after depletion of 

alloreactive cells expressing these markers to determine if this leads to enhanced 

allodepletion compared to CD25-based strategies. We have also determined if anti-

viral T-cell responses are preserved following our refined allodepletion method.  

 

 

3. Using lentiviral transfer of chTCR CD19-CD3ζ transgene we have redirected the 

specificity of allodepleted T-cells generated using the optimal strategy identified from 

the above studies, to determine if this approach can augment anti-leukaemic activity of 

allodepleted T-cells. 
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MATERIALS AND METHODS 
 

Reagent Suppliers 
 
Chemicals were obtained from Sigma, Mo, USA, and media purchased from Invitrogen, unless 

otherwise stated. Restriction endonucleases and their appropriate buffers were purchased from 

Promega. Cytokines were purchased from R&D systems (Minneapolis, MN). 

 

Buffers and Solutions 
 
All buffers were prepared in double distilled water (ddH2o). Sterile solutions used ddH2o 
autoclaved at 121ºC for 15 min and filtered through a 0.22µm syringe tip filter (Millipore). 

Compositions of buffers and solutions are listed below.  

 

Buffer Ingredients 

Acetate Buffer 4.6 mls 0.1 M acetic acid, 11.0mls 0.1M sodium 

acetate, 46.9 mls Milli-Q water 

Cell Dissociation Buffer 

Invitrogen (13151-014) 

 

Orange G loading buffer  

 

 10Mm Tris Ph 7.5, 50Mm EDTA, 10% Ficol 

400, 0.4 % Orange G (Sigma (861286)) 

Flow Cytometry staining buffer (FACS 

buffer) 

PBS, 0.5 % (w/v) BSA (Sigma A9418) 

Flow cytometry fixing buffer (FACS fixing 

buffer)  

FACS buffer + 1 % Paraformaldehyde (Sigma 

441244) 

PBS 

Invitrogen (14190-094) 

 

Luira-Bertani Broth (LB) 1% (w/v) tryptone peptone, 0.5 %(w/v) yeast 

extract (Becton Dickinson), 170mM NaCL, pH 

7.0. Ampicillin  (Sigma A9393) was added at 10 

mg/ml where indicated (LB-Amp) 
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MACS Buffer PBS, 2mM EDTA, 0.5 % BSA 

TAE (X 50) 0.2M Tris, 1 M glacial acetic acid (BDH) 50mM 

EDTA, pH8.0 

PBS 0.05 % Tween 50 ul of Tween 20 (Sigma) per 100 mls of PBS 

APC Complex solution PBS/ 0.1 % Tween 20 

ELISPOT Coating buffer 1.59 g Na2CO3, 2.93g NaHCO3, 200mg NaN3, 

Up to 1 L with sterile water 9.6 pH, Sterile filter 

0.22µm 

 

Media and Solutions used for Tissue Culture  
 
Media and their supplementary ingredients used in tissue culture are presented. 

Medium Supplements 

AIM V 

Invitrogen (12055-091) 

 

Cell Genix DC media 

TCS Cellworks (2005) 

1% L-glutamine 

Complete DMEM 

Invitrogen (61965-026) 

10%(v/v) FCS (Sigma F7524) and 10µg/ml 

penicillin/streptomycin (Invitrogen 15140-

122) 

Complete RPMI with glutamax (RF10) 

Invitrogen (61870-010) 

10%(v/v) FCS and 10µg/ml 

penicillin/streptomycin 

Optimem  

Invitrogen (31985-047) 

 

CTL media 45 % RPMI hyclone (Hyclone SH30096.02), 

45 %clicks media (Irvine Scientific 9195), 1 

% L-glutamine, 10 % fetal calf serum hyclone 

(Hyclone SH30070.03) and 10µg/ml 

penicillin/streptomycin 

Trypsin 

Invitrogen 25300-062 
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Cell Lines used in Study 
 
Cell Line Origin Supplier Medium 
EBV- lymphoblastoid 
(LCLs) 

Normal donor B cells ICH, London RF10 

293Ts Human Embryonic 
kidney 

ICH, London Complete DMEM 

Ramos Human Burkitt’s 
lymphoma 

Baylor College of 
Medicine 

RF10 

K562 cells Human 
erythroleukaemia 

Baylor College of 
Medicine 

RF10 

K562 GFP+CD19+ K562 stably 
transduced with 
CD19 GFP vector 

Dr. Martin Pule RF10 

K562 GFP+ CD19- K562 stably 
transduced with a 
GFP vector 

Dr. Martin Pule RF10 

Cytokines used in Study 
 

Cytokine Source Catalogue Number 

Recombinant Human GM-CSF R&D 215-GM-010 

Recombinant Human IL-2 R&D 212-IL-010 

Recombinant Human IL-4 R&D 214-IL-010 

Recombinant Human interferon 

gamma (IFNγ) 

R&D 285-IF-100 

Recombinant Human Tumour 

necrosis alpha (TNFα) 

R&D 210-TA-010 

Recombinant Human IL-7 R&D 207-IL-005 

Prostaglandin E2 Sigma P5640 
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Antibodies Used in this study 
 
All antibodies were purchased from Becton and Dickinson unless otherwise stated. A list of 
the antibodies utilised in this study is listed below 
 

Antibody Use Clone 

Mouse Anti Human CD3 Fitc Functional Characterisation of 
alloreactive T-cells, assessing 
allodepletion efficacy and 
assessing lentiviral transduction 

SK7 

Mouse Anti human CD3 Pe Functional Characterisation of 
alloreactive T-cells, assessing 
allodepletion efficacy and 
assessing lentiviral transduction 

SK7 

Mouse Anti Human CD3 APC Functional Characterisation of 
alloreactive T-cells, assessing 
allodepletion efficacy and anti-
viral studies 

UCHT1 

CFSE (Invitrogen) Functional Characterisation of 
alloreactive T-cells 

Catal No. C34554 

Mouse Anti Human CD69 Pe Functional Characterisation of 
alloreactive T-cells 

FN50 

Mouse Anti Human CD71 Pe Functional Characterisation of 
alloreactive T-cells and 
assessment of allodepletion 

M-A712 

Mouse Anti Human CD71 
Biotinylated 

Performing CD71 allodepletion M-A712 

Mouse Anti Human HLA-DR 
PeCY5 

Functional Characterisation of 
alloreactive T cells 

TU36 

Mouse Anti Human OX40 
PeCY5 

Functional Characterisation of 
alloreactive T-cells 

ACT35 

Mouse Anti Human ICOS Pe Functional Characterisation of 
alloreactive T-cells 

DX29 

Mouse Anti Human CD95 
PeCY5 

Functional Characterisation of 
alloreactive T-cells 

DX2 

Anti Human CCR7 APC R&D 
systems 

Functional Characterisation of 
alloreactive T cells 

150503 

Anti Human CD45RA PeCY5 
R&D systems 

Functional Characterisation of 
alloreactive T-cells 

5H9 

Mouse Anti Human TNFα Pe Functional Characterisation of 
alloreactive T-cells 

MAb11 

Mouse Anti Human IFNγ APC Functional Characterisation of 
alloreactive T-cells 

B27 

Mouse Anti Human IL-2 APC Functional Characterisation of 
alloreactive T-cells 

5344.111 
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Mouse Anti Human CD25 Pe Functional Characterisation of 
alloreactive T-cells 

2A3 

 Mouse Anti Human CD25 
PeCy5 

Functional Characterisation of 
alloreactive T-cells and 
assessment of allodepletion 

M-A251 

Goat Anti Human IgG Fcγ Cy 
tm5 Jackson Laboratories 

Assessment of Lentiviral 
Transduction 

Catal No 109-176-008 

 Mouse Anti Human CD8 Fitc Anti-viral Studies SK1 
Anti Human CMV pp65 HLA2 
A2-NLV PE pentamer  
Proimmune 

Anti-viral Studies Catal No HCMVpp65 
495-504 

Anti Human CMV pp65 HLA2 
B7-TPR PE pentamer 
Proimmune 

Anti-viral Studies Catal No HCMV pp65 
417-426 

Anti Human EBV LMP-2 A2-
CLG PE pentamer Proimmune 

Anti-viral Studies EBV-LMP-2 426-434 

Mouse Anti Human CD14 Pe Assessment of Dendritic cell 
maturity 

M5E2 

Mouse Anti Human CD83 Pe Assessment of Dendritic cell 
maturity 

HB15e 

Mouse Anti Human CD86 Pe Assessment of Dendritic cell 
maturity 

IT2.2 

APC isotype IgG1 κ  MOPC-21 
Pe isotype IgG1 κ  MOPC-21 
Fitc isotype IgG1 κ  MOPC-21 
PeCY5 isotype IgG1 κ  MOPC-21 
Mouse Anti Human CD19 Pe Assessment of CD19 positivity 

on cell lines 
4G7 
 

7-AAD Assessment of viability of CD19 
positive targets 

 

Kits 
 
Plasmid Megaprep/Maxiprep Kit    Invitrogen (K2100-07) 
QIAquick gel extraction kit     Qiagen (287706) 
QIAquickPCR purification kit    Qiagen (28106) 
DNA Quick Ligase Kit     New England Biolabs (M2200S) 
 

PCR 
 
Primers       Invitrogen 
Taq DNA polymerase, dNTPs, buffer               Promega (M7660) 
Restriction enzymes      New England Biolabs(NEB) 
BamHI        NEB R0136L 
EcoR1        NEB R0101L 
Bgl II        NEB R0144S 
NotI        NEB R0189S 
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Buffer 1       NEB B7001S 
Buffer 2       NEB B7002S 
Buffer 3       NEB B7003S 
Buffer 4       NEB B7004S 
BSA        NEB B9001S 
 

Bacteria 
 
Escherichia coli strains used: 
DH5α Competent cells     NEB C2987H 
 

Centrifuges 
 
Microcentrifuge      Heraeus Biofuge Fresco 
Tabletop centrifuge      Sorvall Legend RT 
Superspeed centrifuge      Sorvall Evolution RC 
Ultracentrifuge      Sorvall Discovery SE 
 
 

Isolation of Responder and Stimulator Cells for MLR cultures and 
Generation of Epstein-Barr virus (EBV)–transformed lymphoblastoid cell 
lines (LCLs) 

 
Ethical approval for the study was obtained through the non-clinical institutional review board 

at University College London. T-cells and dendritic cells (DC) were isolated from peripheral 

blood or single donor buffy coat preparations from healthy donors with informed consent 

CD3+ T-cells were isolated by positive selection of peripheral blood mononuclear cells 

(PBMC) with CD3 microbeads (Miltenyi Biotec, Bergisch Gladbach, DE) according to 

manufacturer’s instructions. PBMCs were incubated with CD3 microbeads for 15 minutes at   

4° C (20 µl of beads/107 PBMCs), and washed in MACS buffer (PBS containing 2 mM EDTA 

and 0.5 % bovine serum albumin). Labelled cells were then passed over immunomagnetic LS 

columns, washed twice with MAC buffer and the positive fraction eluted after removal of LS 

columns from the MIDI MACS device. FACS analysis showed the cells to be 99 % routinely 

pure. 

 

Dendritic cells were generated from CD14+ PBMC isolated by immunomagnetic selection 

(Miltenyi Biotec). PBMCs were incubated with CD14 microbeads for 15 minutes at   4° C (20 

µl of beads/107 PBMCs), and washed in MACS buffer (PBS containing 2 mM EDTA and 0.5 
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% bovine serum albumin). Labelled cells were then passed over immunomagnetic LS columns, 

washed twice with MAC buffer and the positive fraction eluted after removal of LS columns 

from the MIDI MACS device. These were cultured at a concentration of 106 cells/ml in 

CellGenix DC Media  (CellGenix Technologies, Illinois) in 6 well plates supplemented with 

granulocyte-macrophage colony-stimulating factor (GM-CSF) (R & D systems, GM 215-010), 

(800U/ml final) and IL4 (1000 U/ml final) cytokines (R&D Systems, Minneapolis, MN 

systems, 214-IL-010). Cells were cultured for 1 week and matured with tumour necrosis factor 

(TNFα; 10 ng/mL final) (R&D Systems 210-TA-010) and prostaglandin E2 (1µg/mL final) 

(Sigma P5640) for 2 days. The phenotype and purity of the dendritic cells was verified by 

FACS staining using phycoerythrin (PE) conjugated monoclonal antibodies specific to human 

CD14, CD83 and CD86  (BD Biosciences CA, USA). Dendritic cells were irradiated at 30 Gy 

prior to being used as stimulators for MLRs. 

  

For LCL generation, 100µl (5 x 106 PBMCs) were infected with concentrated supernatant from 

the B95-8 EBV-producer cell line (100µl), in the presence of ciclosporin 1µg/ml (Sigma 

C3662) to inhibit EBV specific CTLs that would prevent LCL outgrowth. LCLs were cultured 

in RF10 medium consisting of RPMI 1640 (Biowhittaker, Walkersville, MD) supplemented 

with 10% fetal bovine serum (Hyclone, Logan, UT). The cells were plated on a 96 well plate at 

a density of 5 x 105/well. Cultures were fed with half volume medium exchange weekly. When 

clumps were seen, they were progressively transferred to a 24 well plate, and then a T25 flask. 

LCL were irradiated (70 Gy) prior to being used as stimulators for MLRs 

 

CFSE Staining and MLRs 
 
Purified CD3+ T-cells were labelled with 2.5 µM CFSE (Invitrogen, Carlsbad, CA C34554) for 

15 minutes at 37° C. The reaction was stopped by quenching with AB serum (Sigma Aldrich, 

Dorset, UK) and then the cells were washed twice in RPMI 1640 containing 10 % AB serum. 

CFSE-labelled T-cells were co-cultured with HLA-mismatched allogeneic irradiated DC at a 

responder: stimulator ratio of 5:1. A negative control consisting of CD3+ CFSE stained T-cells 

alone was used. Cells were cultured at a concentration of 2x106/ml in AIM V serum free media 

(Invitrogen, Carlsbad, CA).  
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Flow cytometric Staining and Analysis 
 
FACS were performed using PE/PerCP/APC- conjugated monoclonal antibodies specific for 

human CD3, CD25, CD69, CD71, HLA-DR, OX40, ICOS, CD95, CD45RA, CCR7, 

interferon-γ (IFN-γ), tumour necrosis factor alpha (TNFα), and interleukin-2 (IL-2). All 

antibodies were purchased from BD Biosciences (San Jose,CA, USA) except for CCR7 (R & 

D systems, Minneapolis, MN). Brefeldin (1 µg/ml) (BD Biosciences) was added for a period 

of 8 hours. All tubes were stained with CD3 and CD25, allowing gating on the CFSE-dim, 

CD3+, CD25-ve population. Staining was performed on samples taken from MLR cultures at 

days 0, 1, 3, 5, and 7. Voltages were determined by acquiring events on unstained co-cultures. 

Corresponding isotypic monoclonal antibodies were used to determine cut off points for 

positive populations. Co-cultures were stained with positive controls (either CD3 FITC, CD3 

PE, CD3 PeCy5, CD3 PERCP or CD3 APC) and isotypic monoclonal antibodies to determine 

appropriate compensation controls. All tubes contained CFSE, CD3 and CD25 except cells 

which were stained with CD45 RA and CCR7 PerCP, which were co stained with CD3 and 

CFSE. This allowed gating on the CFSE Dim CD25 negative population. 2x105 cells were 

incubated with human AB serum for 20 minutes at 4°C and then were stained with antibody 

for 30 minutes at 4 ° C and then washed twice in FACS buffer (PBS and 1 % calf serum) and 

were then resuspended in 1 % paraformaldehyde for 20 minutes. 

 

 To simultaneously analyse surface molecules and intracellular cytokines, samples were first 

stained for surface antigens, then fixed with 2% paraformaldehyde (incubated PBMCs for 20 

minutes in paraformaldehyde) to stabilize the cell membrane. They were then washed twice in 

FACS buffer and permeabilized with 0.5 % saponin to allow anti-cytokine antibodies to stain 

intracellularly (incubate PBMCs with saponin at room temperature for 10 minutes). PBMCs 

were then washed in saponin and were incubated with anti cytokine antibodies resuspended in 

a total of 50 µl of saponin. They were then incubated at 4ºC for 30 minutes and washed twice 

in saponin and resuspended in FACS buffer. Samples were acquired using 4-colour flow 

cytometry on a FACS LSR (BD biosciences). Analysis was done using WinList software 

(Verity Software House). The proliferative index and precursor frequencies were derived using 

ModFit LT software (Verity software House). For FACS analysis in allodepletion 

experiments, a CyAn flow cytometer (Dako, Fort Collins, CO) was used to acquire data and 

Summit v4.1 software (Dako) to analyze data.  
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Generation of Allodepleted Donor T cells and Comparison of 
Allodepletion Methods 
 
Normal donor peripheral PBMCs and HLA-mismatched irradiated (70Gy) recipient LCLs 

were resuspended at 2 x106/ml in AIM V media. PBMCs were co-cultured with or without 

LCLs at a responder: stimulator ratio of 40:1 in T-175 flasks for 3 days. For comparison of 

CD25 immunomagnetic bead and CD25 IT depletion, on day 3 of the MLR, co-cultures were 

split into 2 arms. Anti-CD25 microbeads (20 µl microbeads/107 PBMCs, Miltenyi Biotec, 

Bergisch Gladbach, Germany 130-092-983) were added to half the co-culture and 4 µg/ml 

CD25 IT (RFT5-SMPT-dgA) was added to the other half. CD25 immunomagnetic negative 

selection was performed according to manufacturer’s instructions using LD columns and 

depletion using CD25 IT was performed overnight as follow; co cultures were harvested and 

resuspended at 107/mL in immunodepletion medium consisting of AIM V supplemented with 

20 mM ammonium chloride (Sigma, St Louis, MO) to improve the bioactivity of the 

immunotoxin with pH adjusted to 7.75 using Na HEPES (N-2-hydroxyethylpiperazine-N'-2-

ethanesulfonic acid) (Sigma). 0.22 µm filtered RFT5-SMPT-dgA anti-CD25 immunotoxin was 

then added and the next morning co-cultures were washed twice and then resuspended at 2 x 

106/mL in AIM V. The CD25-ve fractions were resuspended at 2 x 106/ml in AIM V. 

Unmanipulated donor PBMC:LCL co-cultures and donor PBMCs alone were used as controls. 

2x105 cells from unmanipulated and allodepleted day 3 co-cultures were sampled in triplicate 

for FACS analysis and primary proliferation assays. The remaining cells were rested in AIM V 

medium in 24 well plates at 2 x 106 per well for 2 days prior to secondary stimulation in 

secondary MLRs and enzyme-linked immunospot (ELISPOT) assays.  

 

For combined CD25/71 allodepletion, day 3 PBMC:LCLs co-cultures were washed and 

resuspended in 60 µl of FACS buffer (PBS with 1 % calf serum)  per 107 PBMCs. Biotinylated 

anti-CD71 antibody (BD Biosciences 555535) was added (20 µl of antibody/107 PBMCs) for 

15 minutes at 4ºC. Cells were then washed and labelled with anti-CD25 beads and anti-biotin 

beads (Miltenyi Biotec 130-090-485) using 20 µl of antibody/107 PBMCs for 15 minutes at 

4ºC. Immunomagnetic depletion of CD25/71 labelled cells was then performed on LD 

columns according to manufacturer’s instructions. For combined CD25/45RA depletions, 

PBMCs were labelled with CD25 and CD45RA beads (Miltenyi Biotec 130-091-092), and 

depletions were done according to manufacturer’s instructions. Aliquots from the allodepleted 

negative fractions were analysed flow cytometrically.  The remainder of the negative fraction 
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was resuspended in AIM V media at 2 x 106/ml and rested for 2 days and were then analysed 

for residual alloreactivity in secondary MLRs or IFN-γ ELISPOT assays. 

Scale Up studies 
 
In order to optimize our scale up studies of CD25/71 allodepletion we first compared 

allodepletion between clinical grade CD25 immunomagnetic beads (Miltenyi 274-01) with a 

biotinylated CD25 and clinical grade anti biotin beads (Miltenyi 173-01). Day 3 PBMC: LCLs 

co-cultures were split into 2 arms: CD25/71 allodepletion was performed as above for one half 

of the co-culture. The remaining half was washed and resuspended in PBS (60µL/ 107 

PBMCs). Biotinylated anti-CD25 (gift of Dr. Marina Cavazzana-Calvo, 2 µg/108 PBMCs) and 

biotinylated anti-CD71 (BD biosciences) were added to the remainder for 15 minutes at 4ºC. 

The co-culture was washed and antibiotin beads were added and the depletion was performed 

using LD columns as described above. 

 

In order to determine if our data using CD25/71 allodepletion could be replicated using 

CliniMACs device (Miltenyi 151-01), we performed scale up studies in the cell therapy 

laboratories at Great Ormond Street Hospital. Donor PBMCs were co cultured with irradiated 

host DCs (R:S 10.1) in cell culture bags (Miltenyi Biotec 200-074-301) and a combined 

CD25/71 allodepletion (using biotinylated CD25+71) was done on day 4 using a CliniIMACs 

device using depletion programme 1.2. Two sets of CliniMACs tubing were used to perform 

the depletion; CLINIMACS depletion tubing set (Miltenyi 266-01) and TS tubing (Miltenyi 

Biotec 161-01). Samples were taken after depletion for FACS to determine the efficacy of 

depletion, and for sterility testing. The allodepleted cells were rested for 2 days and 

restimulated to host/3rd party in a 2º MLR. 

 

 

Proliferation assays  
 
Primary proliferation assays were performed by pulsing unmanipulated or allodepleted co-

cultures on day 5 with 1 µCi 3H-thymidine (Amersham Pharmacia Biotech, Little Chalfont, 

UK) per well for 16 h. 3H-thymidine incorporation was measured with a MicroBeta TriLux 

(Perkin-Elmer Weiterstadt, Germany). Data are presented with the mean cpm of triplicate 

responder alone and stimulator alone subtracted from mean cpm of test cultures.  
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To assess residual alloreactivity in secondary MLRs, 5 days after the initial co-culture 2 x 105 

allodepleted T-cells were restimulated with 5000 irradiated LCLs from either the original 

stimulator or HLA mismatched 3rd party. Controls consisted of unmanipulated PBMC which 

were frozen on day 0 and thawed on the day of plating, allodepleted T-cells alone or LCLs 

alone. After 5 days, cells were pulsed with 3H-thymidine and uptake assayed the next day 

 

IFN-γ ELISPOT assay 
 
To further assess residual alloreactivity, on day 5 after primary stimulation, 2 x 105 

allodepleted donor T-cells or thawed, unmanipulated donor PBMCs were plated per well in the 

presence of 2 x 105 irradiated (30 Gy) host or 3rd party LCL stimulators in triplicate for 18 - 24 

hours at 37°C. Controls consisting of 2 x 105 responders or stimulators alone were also plated. 

MAHAS4510 plates (Millipore, Billerica, MA) were coated with anti–IFNγ capture antibody 

MAB91 DIK (Mabtech, Cincinnati, OH) overnight and blocked with RF10 medium for 1 hour 

at 37°C. 2 x 105 allodepleted donor T cells or thawed donor PBMCs per well were plated in the 

presence of 2 x105 irradiated stimulators in triplicate wells for 18 to 24 hours at 37°C. Controls 

consisting of 2 x 105 responder alone, and 2 x 105 stimulators alone were also plated. Plates 

were cultured for 18-24 hours and then washed and incubated for 2 hours at 37°C with 

biotinylated–anti-IFNγ detection antibody 7-B6-1 (Mabtech). Avidin-peroxidase complex 

(Vector Laboratories, Burlingame, CA) was added for 1 hour at room temperature and spots 

developed with 3-amino-9-ethylcarbazole (AEC, Sigma) substrate mix. The numbers of spots 

were counted using a plate reader (Bioreader 3000, Bio-Sys GmbH, Karben, Germany), the 

means of triplicate wells calculated and expressed spot-forming cells per 105 cells. The mean 

number of specific spot-forming cells was calculated by subtracting the mean number of spots 

produced by responder alone and stimulator-alone wells from the mean number of spots in test 

wells for each dilution. 

 

Assessment of Antiviral Immunity 
 
For pentamer analysis, 106 PBMC or allodepleted T-cells were co-stained with CD8 FITC, 

CD3 PerCP and either isotype PE control antibody or PE-conjugated pentamer appropriate to 

the donors’ HLA restriction. The following pentamers were used to detect virus-specific CD8+ 

T cells (ProImmune, Oxford, United Kingdom): CMV pp65- HLA-A*0201-NLVPMVATV 
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(A2-NLV), and HLA-B*0702-TPRYTGGGAM (B7-TPR); EBV- LMP-2- HLA-A*0201-

CLGGLLTMV (A2-CLG). The PBMCs were stained with 5 µl PE-labelled pentamer for 15 

min at room temperature, washed and co-stained for surface expression of CD8-APC and 

CD3-PerCP. PBMCs from donors with known positive populations served as positive controls 

and PBMCs from normal donors negative for the restricting HLA-type were used as additional 

negative controls. A total of 200 000 events in the lymphocyte gate were analyzed where 

possible and the percentage of tetramer-positive cells in the CD3+/CD8+ lymphocyte gate was 

expressed as a proportion of the CD8+ cells with the isotype control subtracted. For a 

population to be labelled as positive, at least 50 CD3+CD8+ tetramer-positive cells with the 

staining characteristics of the positive control population had to be acquired. The percentage of 

tetramer-positive cells in the CD3+/CD8+ lymphocyte gate was expressed as a proportion of 

the CD8+ ve cells.  

 

Functional responses to CMV, EBV and adenovirus were analyzed in IFN-γ ELISPOT assay. 

The following stimulators were used to monitor antiviral responses of the allodepleted 

PBMCs: To assess EBV responses, unmanipulated PBMCs or allodepleted PBMCs were co- 

cultured with irradiated (70Gy) autologous LCLs. To assess CMV responses, unmanipulated 

PBMCs or allodepleted PBMCs were co-cultured with irradiated autologous PBMCs pulsed 

with pp65 pepmix (1 µg/ml).The pp65 pepmix was purchased from JPT Peptide Technologies 

GmbH (Berlin, Germany) and consists of 138 different pp65 peptides. Autologous PBMCs 

were co incubated with pp65 pepmix for 1 hour at 37ºC, washed twice, then resuspended at 2 

x106/ml in AIM V and then irradiated to 30Gy.  We examined the response to adenovirus by 

stimulating unmanipulated PBMCs or allodepleted PBMCs with autologous PBMC transduced 

with Ad5f35-GFP; The Ad5f35-GFP vectors were purchased from Baylor College of Medicine 

(Houston, TX). Autologous PBMCs were transduced with the Ad5f35GFP (Multiplicity of 

infection MOI 20) for 2 hours at 37ºC washed twice, resuspended at 2 x106/ml in AIM V and 

then irradiated at 30Gy. The titre of the AD5f35GFP was 1 x 1010 plaque forming units/ml. To 

control for GFP responses, autologous PBMCs were pulsed with Vaccinia-GFP (MOI 3) 

PCR amplification of CD19 chTCR Sequences 
 

The ScFv CD19ζ plasmid was supplied by Dr. Martin Pule. The CD19 chimeric TCR 

(CD19R) transgene consists of the variable domains of the CD19 specific murine monoclonal 

antibody FMC-63 assembled as a single chain variable fragment (ScFv), in frame with a 
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sequence encoding the human IgG1 hinge CH2-CH3, the human CD28 transmembrane 

domain, and the cytoplasmic signalling domain of the human CD3ζ. The CD19R transgene 

was subcloned into the Not 1 and Bam H1 sites of the pHR –SIN-SE lentiviral vector164 to 

create the construct CD19R/ pHR –SIN-SE (Fig 39).  

 

The 1946 base pair fragment of the CD19 chTCR was amplified by PCR.  Not 1 restriction 

restriction sites were added to the 5′ end of the reverse primer, and a Bgl II restriction site was 

added to the 5′ of the forward primer so that the fragment could be subcloned into the Not 1 

and Bam H1 sites of the pHR –SIN-SE lentiviral vector (gift of Dr. Martin Pule).  

Forward 5′GATTCGGCACTGAGATCTGCCACCATGGAGACCGACACCCTGCTGC 3′ 
Reverse 5′AGCCTGGACACTGCGGCCGCACGCGTCATCTGGGTGGCAGGGCCTG 3′ 
 

PCR 
 
PCR reactions were performed in a total volume of 25µl containing 100ng template DNA, 

forward and reverse primers at 0.5µm, dNTPs, each dNTP at 200µM and 2.5U of Taq DNA 

polymerase in the appropriate buffer (Promega). The PCR was performed using an Eppendorf 

AG 22331 Themocycler utilising the following programme set at 35 cycles: 98ºC for 2 

minutes, 98ºC for 30 seconds, 67ºC for 2 minutes, and 72ºC for 3 minutes, and then hold at 

4ºC. PCR products to be used for cloning procedures were purified using a QIAquick PCR 

purification kit (Qiagen) as per the manufacturer’s instructions. 

 

Enzyme digestion of Plasmid DNA 

Plasmid DNA (typically 0.5-5µg) was digested in a final volume of 25-50 µl of 10 x buffer 

(supplied by manufacturer and diluted x1 with distilled water) and bovine serum albumin (0.1 

mg/ml). The amount of enzyme used contained an excess of 5-10 units/µg DNA according to 

manufacturer’s instructions (Promega). The digest was incubated at 37ºC for 3 hours. The pHR 

–SIN-CSGW lentiviral vector was digested with BamH1 and Not1 excising the GFP sequence 

and creating overlapping ends for the CD19 chTCR. The amplified CD19 chTCR fragment 

was digested with Not 1 and Bgl II. The DNA digestion was verified by agarose gel 

electrophoresis. 
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Agarose Gel Electrophoresis and Gel Purification of Fragments 

DNA fragments were resolved by electrophoresis thorough 1 % agarose gels in 1 x TAE buffer 

(40 mM Tris-acetate, 5mM EDTA). To prepare the gels, agarose was dissolved in 1x TAE 

buffer by boiling in a microwave, and after cooling, ethidium bromide was added at 0.5µg/ml 

for visualisation of DNA. DNA samples were mixed with Orange G loading buffer (10Mm 

Tris Ph 7.5, 50Mm EDTA, 10% Ficol 400, 0.4 % Orange G) before loading onto agarose gels. 

A 1kb plus ladder DNA ladder (bioline) was loaded onto each gel to enable size determination 

of DNA fragments. Gels were electrophoresed using a voltage of 50-100 V (up to 150 mA) 

and the separated DNA fragments subsequently visualised by exposure to ultra-violet light 

using the UVIdoc gel documentation system. Following electrophoresis DNA fragments were 

excised from agarose gels using a clean scalpel blade under ultra-violet light. The DNA was 

extracted from agarose using a QIAquick gel extraction kit (Qiagen) as per manufacturer’s 

instructions. 

 

Ligations 
 

Ligations were performed using a vector to insert ratio of ratios of 1:3 or 1:6 (100 ng vector 

DNA) in a final volume of 20 ul with 1.5 ul of quick ligase (NEB). The reaction was incubated 

for 5 minutes at room temperature. A vector only control sample was also included to provide 

an estimate of the re ligated plasmid. The ligation reaction was immediately transformed into 

competent E.Coli DH5 alpha cells (NEB) 

 

Bacterial Transformation 
 
Competent DH5α E.Coli were transformed by heat shock. 25 µl of competent cells were 

slowly thawed on ice and mixed with 1-10ng of DNA from the ligation mix. The cells/DNA 

were incubated on ice for 30 minutes and then heat shocked by placing the mixture for 35 

seconds at 42ºC and then transferred back onto ice. 250 µl of LB media was then added to the 

cells, and the mixture was transferred to a 5ml tube. The cells were shaken at 250 rpm at 37ºC 

for 1 hour, after which they were diluted in LB media and spread on LB ampicillin agar plates. 

The plates were incubated overnight at 37ºC, after which colonies were picked using sterile 20 

µl pipette tips and grown overnight in 5 ml liquid cultures. 
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Small Scale Plasmid DNA Preparation 
 
Plasmid DNA was prepared using Qiagen Mini-Prep kits as per manufacturer’s instructions 

from overnight single colony inoculums. Test cuts with EcoR1/Not1 (predicted size 2.5 kb and 

8.5 kb), EcoR1/BamH1 (predicted size 1.3 kb and 9.7 kb) and Not1/BamH1 (predicted size 

1.15 kb and 9.86 kb) were done to determine clones with the correctly inserted CD19R 

fragment.  

 

Large Scale Plasmid DNA Preparation 
 
For large scale plasmid DNA preparation 500 ml LB media containing ampicillin (50µg/ml- 

Sigma) was inoculated with 500 ul of a fresh 5 ml culture and incubated overnight at 37ºCwith 

agitation (250 rpm). Plasmid DNA was subsequently prepared using Qiagen Mega-Prep kits as 

per manufacturer’s instructions. After overnight culture at 37ºC with shaking, bacteria were 

pelleted, by centrifugation at 4000xg for 10 minutes and resuspended in the presence of 

100µg/ml RNAase. Plasmid was purified by alkaline lysis of bacteria, followed by binding of 

plasmid DNA to anion exchange resin columns under appropriate low salt and pH 

conditions (Qiagen Maxi/Mega Prep Kits). The columns were washed to remove non-DNA 

fractions and the plasmid DNA was eluted using a high salt solution and then desalted by 

precipitation with isopropanol. The plasmid DNA pellets were washed in 70 % ethanol and 

then resuspended in pyrogeneic-free water. Correct assembly of the CD19 chTCR was verified 

by DNA sequencing. Plasmid DNA concentration was calculated by measuring the absorbance 

of light at a wavelength of 260nm (A260) using a nano dropND-1000 spectrophotometer with a 

0.2 mm path length. At this wavelength 50µg/ml of double stranded DNA has an absorbance 

of 1. 

 

Lentivirus Preparation and Transductions 
 

Lentivirus Production 
 
1.2 x 107 293 T cells grown in complete DMEM were seeded in 175 cm2 tissue culture flasks 

the day before transfection. Lentiviral vector DNA (40µg) and packaging plasmids pMDG.2 
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carrying the envelope transgene (VSV-G) (10µg) and pCMV∆8.74, carrying the lentiviral 

transgene (gag-pol)(30µg) were added to 5 mls OPTI-MEM, filtered through a 0.22µm filter, 

and combined with 5 ml filtered OPTI-MEM supplemented with 1 ul 10mM polyethylenimine 

(PEI) transfection reagent. The transfection reaction was incubated at room temperature for 20 

minutes during which time the 293T cells were washed once with OPTI-MEM media. The 10 

mls DNA/PEI complexes were subsequently added to the cells and they were then incubated at 

37ºC/5%CO2 for 4 hours, after which the media was replaced with 14 mls of complete DMEM. 

Viral supernatant was harvested at 48 and 72 hours post transfection, filtered through a 

0.22µm filter and concentrated by ultracentrifugation at 23,000 rpm for 2 hours. Lentiviral 

pellets were resuspended in 100µlm serum free media (OPTI-MEM), stored on ice for 20 

minutes and then snap frozen in aliquots at -80ºC.  

 

Titration of Lentiviral Supernatants 
 
Virus transduction was determined by transduction of 293 T cells. 1 x 105 cells were seeded in 

complete DMEM in 24 well plates and left to adhere overnight. The media was subsequently 

aspirated and serial dilutions of lentiviral supernatant in a total volume of 100µl of optimem 

were added. 72 hours post transduction cell dissociation media was added to the 293 T cells 

and the infectious viral titre was determined by analysis of transgene positive cells by flow 

cytometry. The titre of the virus was determined as below: 

 

No of virus agents/ml= % of transduced cells x no of cells in the well 
     
    Vol of virus used to infect cells 
 
 Wells giving 5-15 % transduction was used to determine titre. 
 
 
 

Transduction of PBMCs and Allodepleted T cells 
 
PBMCs were resuspended at a concentration of 1 x 106 /ml in CTL media (45% Click’s 

medium, Irvine Scientific, Santa Ana, CA, 45% RPMI 1640, Hyclone, Logan, UT and 10% 

FCS, Hyclone) in 24 well plates. IL-2 (R&D Systems 212-IL-010) was added on day 0 only at 

100 u/ml and incubated at 37ºC/5 % CO2 for 4 days. At 96 hours concentrated lentiviral 

supernatant (MOI 150, volume 7.5 µl- from soups which have given titre of >1010 viral 
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agents/ml) was added directly to 1ml of cell culture and the cells were subsequently analysed 

for transgene expression 96 hours later. 

 

For positive controls, PBMCs were transduced after polyclonal stimulation with agonistic anti 

CD3 (1µg/ml) (eBiosciences 16-0037) and agonistic anti CD28 monoclonal antibodies 

(1µg/ml) (caltag laboratories CD2800). They were resuspended in CTL media at a 

concentration of 1 x 106/ml in 24 well plates. On day 1, IL-2 was added at 50u/ml, and then on 

day 2 further IL-2 was added at 100u/ml and concentrated lentiviral supernatant was added at a 

multiplicity of infection (MOI) of 20. 

 

To transduce allodepleted PBMCs, Day 3 CD25/71 allodepleted donor T cells were 

resuspended in CTL media165 at a concentration of 106/ml supplemented with IL-2 100 u/ml (R 

&D systems) in 24 well plates. On day 7, the PBMCs were transduced using a multiplicity of 

infection (MOI) of 150 and were harvested on day 11. Expression of the CD19R transgene was 

determined flow cytometrically as described below. Mock transduced allodepleted cells were 

treated in the same way except no lentiviral soup was added on day 7. 

 

 
 
 

Flow cytometric Analysis of Transgene Expression 

  
A goat anti-human IgG Fc  Cytm5 antibody (Jackson ImmunoResearch, West Grove, PA) was 

used to detect cell surface expression of CD19chTCR. This antibody binds to the human IgG1 

CH2-CH3 hinge of the CD19R. 1.5 µg of antibody was added to 2 x 105 PBMCs for 30 

minutes at 4ºC followed by two washes before acquisition. For positive controls PBMCs 

polyclonally stimulated with agonistic anti CD3/28 antibodies were used, whilst allodepleted 

PBMCs which were mock transduced were used as negative controls. For FACS analysis, a 

CyAn flow cytometer (Dako, Fort Collins, CO) was used to acquire data and Summit v4.1 

software (Dako) to analyze data.  
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Functional Assays of Anti-Leukemic Responses 

Measurement of Granzyme B and IFNγ production 
 
MAHAS4510 plates (Millipore, Billerica, MA) were coated with anti–granzyme B capture 

antibody GB10 (Mabtech, Cincinnati, OH) or IFNγ capture antibody overnight (described 

above). They were then washed and blocked with RF10 medium for 2 hour at 37°C. Triplicate 

samples of αCD19ζ TCR transduced or mock transduced allodepleted donor T cells were co 

cultured with CD19+/- tumor cell lines (K562, K562 stably transduced with GFP or a CD19-

GFP transgene, Ramos), autologous/allogeneic LCLs or 1o ALL blasts at a responder: 

stimulator ratio of 1:1. After 18 hours granzyme B production or IFNγ was assessed in a 

granzyme B ELISPOT/IFNγ ELISPOT assay. Controls consisting of 1 x 105 responders or 

stimulators alone were also plated. Plates were cultured for 18-24 hours and then washed and 

incubated for 2 hours at room temperature with biotinylated–anti-granzyme B detection 

antibody GB11 (Mabtech) or IFNγ detection antibody. Avidin-peroxidase complex (Vector 

Laboratories, Burlingame, CA) was added for 1 hour at room temperature and spots developed 

with 3-amino-9-ethylcarbazole (AEC, Sigma) substrate mix. The plates were read and the 

number of specific spot forming cells was determined. 

 

Cytotoxicity assays 

Cytotoxic specificity was determined in a standard 51Cr release assay. 3 x 106 target cells were 

labelled with 100 µCi 51Cr (Amersham Pharmacia Biotech, Piscataway, NJ) for 2 h at 37°C. 
51Cr-labelled K562 cells (CD19 positive, negative and non transduced) and LCLs were plated 

at 5 × 103 cells per well, respectively, and cultured with transduced and non transduced 

PBMCs at different concentrations (effector to target ratios: 30:1, 5:1 and 1:1) in 96-well U-

bottom plates. One percent Triton X-100 (Sigma-Aldrich) was added to measure maximum 

release and target cells were incubated alone to assess spontaneous release. After 4 h of 

incubation at 37°C, plates were spun and 25 µl supernatant were harvested and transferred to 

96-well Wallac isoplates (Perkin-Elmer, Weiterstadt, Germany) and mixed with 150 µl 

OptiPhase Supermix Cocktail (Perkin-Elmer). Counts were measured on a MicroBeta TriLux 

(Perkin-Elmer) and the percent specific lysis was calculated as ([experimental release - 

spontaneous release] / [maximum release - spontaneous release]) × 100. 
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Flow Based Cytotoxicity assay 
 
An alternative cytotoxicity assay was based on assessment of cell viability using FACS. 

Normal donor PBMCs were transduced/mock transduced in media supplemented with OKT3 

(1µg/ml) anti CD28 (1µg/ml) and IL-2 (100U/ml) to serve as a positive control, or IL-2 

100u/ml only as described. Transduced/mock transduced PBMCs were co-cultured with an 

equal number of K562 GFP+CD19+ or K562GFP+CD19- cells. After a week, the number of 

viable GFP+ cells was determined by staining with 7AA-D. A fixed number of trucount beads 

(BD biosciences) was acquired to ensure that comparison could be made between the different 

co-cultures. The number of GFP+ viable (7AA-D negative) cells was then determined in each 

co-culture and the percentage cytotoxicity was determined by dividing the number of viable 

targets cells in the presence of transduced PBMCs by the number in the mock transduced 

control co-culture. 

 

Statistical Analysis 

A Wilcoxon matched pairs test was used to determine statistical differences between samples 

(GraphPad Software Version 5.0, San Diego, CA). Data pertaining to flow cytometry is 

expressed as mean ± SD, whilst ELISPOT and MLR data is expressed as median and range.  
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Chapter 3 
 
 

Functional Characterisation of Alloreactive T cells 
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Aims 

1. To characterize the activation marker and cytokine profile of proliferating alloreactive 
T-cells identified using CFSE dye dilution.  

 
2. To determine the phenotype of the CD25 negative proliferating alloreactive cells to 

provide a rational basis for enhancing allodepletion with CD25 based strategies  
 

Introduction 
 
Adoptive immunotherapy with allodepleted donor T-cells generated using CD25 IT 141 at a 

dose of 3 x 105/kg accelerated T-cell reconstitution and recovery of CMV and EBV-specific 

immunity after haplo-SCT. However, the rate of leukaemic relapse rate was high, resulting in 

an overall survival of only 5/16 patients. This may be explained by the high-risk nature of this 

patient group and the low precursor frequency of leukaemia-reactive T-cells within the infused 

allodepleted T-cells. Additionally, 2 patients died of adenovirus associated complications, 

including 1 who had persistent adenoviraemia despite 3 infusions of allodepleted donor T-cells 

at 105/kg, which cleared after a single infusion at 2.5 x 106/kg. Importantly, no patient had 

detectable T-cell responses to this virus before 9 months post-SCT. These data suggest that 

larger doses of allodepleted T-cells may be necessary to confer protective responses to 

pathogens which evoke low frequency T-cell responses in the donor and for a graft-versus-

leukaemia (GVL) effect. Our in vitro data indicates that significant residual alloreactivity 

persists after CD25 IT mediated allodepletion125. While the incidence of significant acute and 

chronic GVHD was low in the clinical study, this was nonetheless observed in 2 cases, raising 

concerns about the safety of administering larger doses of allodepleted donor T-cells in the 

haploidentical setting. Thus in order to develop this approach further, there is a pressing need 

to enhance the degree of depletion of alloreactive cells, to enable add back of sufficient T-cells 

for protective anti-leukemic and anti-infective responses without causing GVHD.  

 

Activated T-cells express a variety of surface markers, including CD25, CD69, CD71, CD95, 

CD137, CD147, OX40, ICOS, HLA-DR, and secrete Th1 cytokines IL-2 and IFN-γ. As such, a 

plethora of potential targets and methods now exist for allodepletion strategies59,114-118 but 

there is no data on the relative expression of these targets on alloreactive T-cells to enable 
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identification of the optimal targets for allodepletion. The data above suggest that a significant 

minority of alloreactive T-cells are retained after CD25-based allodepletion, suggesting that 

CD25 may be expressed only in a subset of alloreactive T-cells and raising the possibility that 

targeting other molecules, perhaps in combination with CD25, could enhance allodepletion. In 

order to rationally design strategies for enhanced allodepletion, we have functionally 

characterized the phenotype of alloreactive T-cells. While alloreactive T-cells have multiple 

phenotypes, proliferation in response to alloantigens is their most basic hallmark. We have 

identified proliferating alloreactive T-cells using CFSE dye dilution. Godfrey et al24 have 

shown that flow cytometric depletion of CFSE-dim T-cells almost completely abrogates in 

vitro alloreactivity in secondary MLRs and markedly reduces GVHD in an MHC Class II 

disparate murine model. While it is not practical to use this approach clinically, we have used 

this method to systematically characterise the expression of cytokines, effector molecules and 

activation markers on proliferating alloreactive T-cells, in particular those that are CD25 

negative.  

 

In this chapter we have characterised the phenotype of proliferating alloreactive T cells against 

a wide range of activation markers and intracellular cytokines. In particular we went onto 

examine the phenotype of proliferating CD25-ve  alloreactive T-cells. 

 

 

Optimisation of Intracellular Cytokine Staining 
 
To simultaneously analyse surface molecules and intracellular cytokines, samples were first 

stained for surface antigens, then fixed with 2% paraformaldehyde to stabilize the cell 

membrane. They were then washed twice in FACS buffer and permeabilized with 0.5 % 

saponin to allow anti-cytokine antibodies to stain intracellularly. PBMCs were then washed in 

saponin and were incubated with anti cytokine antibodies resuspended in a total of 50 µl of 

saponin. They were then incubated at 4ºC for 30 minutes and washed twice in saponin and 

resuspended in FACS buffer before acquisition. Optimisation of intracellular staining required 

careful dose titration of anti human IFNγ, TNFα and IL-2 antibodies. To determine this, 

human PBMCs were stimulated for 6 hours with PMA 0.1µg/ml (Sigma Aldrich), and 1µg/ml 

of ionomycin (Sigma Aldrich). Brefeldin (a golgi inhibitor which leads to an accumulation of 

intracellular cytokines, preventing their secretion) at 1µg/ml (BD biosciences) was also added 
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to culture. Optimal staining was achieved at the following concentrations of antibodies: IFNγ 

(B27 clone) at 0.2µg/106 PBMCs, TNFα (MAB11 clone) at 0.5 µg/106 PBMCs, and IL-2 

(5344.111 clone) at 0.02 µg/106 PBMCs. 

 

After optimizing the intracellular cytokine antibody dose titration, we then went onto compare 

golgi inhibitors, brefeldin and monensin to determine which one was superior for detecting 

intracellular TNFα, IL-2 and IFNγ. PBMCs were incubated with PMA/ionomycin for 6 hours, 

with brefeldin or monensin added at the beginning of culture. The percentage of CD3 positive 

cells staining for each cytokine was then determined. (See Table 2) 

 Brefeldin 1µg/ml Monensin 2µM 

CD3 IL-2 13.3 16.8 

CD3 TNFα 31.5 22.6 

CD3 IFNγ 15.6 14.7 

Table 2: Golgi inhibitor Brefeldin is superior to monensin in detecting intracellular TNFα 
in activated PBMCs. % of T cells expressing each cytokine is shown. n=3 (mean of the three values shown) 

 
As can be seen from table 2, brefeldin led to far more TNFα significantly improved detection 

of TNFα with little difference between IL-2 and IFNγ accumulation between the different 

golgi inhibitors.  Therefore for future experiments, brefeldin was used. 

 

Subsequently, the optimal duration of incubation of brefeldin was determined. PBMCs were 

stimulated with PMA/ionomycin and co-cultured with brefeldin for 4, 6, or 8 hours and the 

percentage of CD3+ T-cells staining for each cytokine and cell viability (by trypan staining) 

was determined. (See Table 3). 

 

 4 hours 6 hours 8 hours 

CD3 IL-2 4.3 12.5 20.5 

CD3 TNFα 10.2 30.8 38.9 

CD3 IFNγ 12.3 14.8 23.8 

Viability 96 % 94 % 91 % 

Table 3: 8 hour incubation with brefeldin maximized intracellular cytokine detection 
without compromising cell viability % of T cells expressing each cytokine is shown n=3 (values shown 
are mean) 
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As can be seen from Table 3, incubation for 8 hours leads to far more intracellular cytokine 

being detected, without the viability being affected. Increasing the time of incubation with 

brefeldin beyond 12 hours significantly affected the viability as did increasing the 

concentration above 1µg/ml. Thus, for future experiments an incubation time of 8 hours with 

brefeldin was chosen. 

 

 

Finally a comparison was made between the efficacy of different cell permeabilization agents, 

the commercial PD wash (BD biosciences, CA, USA) and saponin 0.5 % (PBS and 1 % calf 

serum and 0.5 % saponin, filtered through 0.22 µm filter). 

  

 

 
 

 

Figure 13: 0.5 % saponin led to superior detection of intracellular TNFα than with PD 
wash n=2 

 
PBMCs were stimulated with PMA/ionomycin for 8 hours with brefeldin, fixed with 2 % 

paraformaldehyde and then permeabilized with either PD wash or 0.5 % saponin and the 
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percentage of lymphocytes expressing TNFα, IL-2 and IFNγ was determined. As can be seen 

from Figure 12, 0.5 % saponin was superior to PD wash in detecting intracellular TNFα. 

Similar results were obtained for IL-2 and IFNγ. 

 

Thus in summary, in order to optimize our intracellular cytokine staining in alloreactive T- 

cells, we co-cultured PBMC with brefeldin 1µg/ml, for an incubation period of 8 hours and 

then after fixing, permeabilized the cells with 0.5 % saponin. 

 
 

Kinetics of expression of Activation Markers and Cytokines during Allo-
MLR 

We initially determined expression of surface and cytokine markers in immunomagnetically 

selected CD3+ lymphocytes cultured with HLA-mismatched mature DC over the course of a 7 

day allogeneic MLR flow cytometrically. As controls, unmanipulated PBMCs from the same 

donors were cultured under identical conditions. The mean purity of CD3+ selected cells was 

99.15 %. DCs showed the characteristic morphology and marker profile (mean % CD83- 97.35 

%). Co-cultures were sampled for flow cytometric analysis of the CD3+ T cells in the 

lymphocytes gate on days 0, 1, 3, 5,and 7 of co-culture. Figure 13 summarizes the cumulative 

data from 5 donor-recipient pairs on up regulation of these markers on donor T-cells with 

unstimulated controls subtracted. CD25 was up regulated within 24 hours of an allogeneic 

MLR, peaking on days 3 (mean 47 % of total T-cells) and then plateaued. CD71 showed 

similar kinetics, peaking on day 3 (mean 39.3 % of total T-cells). This high level of expression 

was consistent cross all 5 donor-recipient pairs. There was little expression of CD25 or CD71 

in the unstimulated T-cells (mean 1.4% and 2.6 % respectively on day 3). CD69 showed rapid 

up regulation on day 1 (mean 19 % of T-cells) but expression subsequently declined. HLA-

DR, ICOS, and CD95 all showed similar patterns of expression, progressively increasing their 

expression with time during culture and peaking on day 7, but were all expressed on lower 

proportions of total T-cells. There was a strong up regulation of the Th1 cytokines IL-2 and 

IFN-γ, with over 20 % of total T-cells secreting these cytokines by day 3-5 of co-culture. In 

contrast, TNFα secretion was only weakly up regulated throughout the period of co-culture. 
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Figure 14: Kinetics of Surface Markers and Cytokine Expression in alloreactive T- cells. 
(n=5) FACS analysis of expression of surface markers and intracellular cytokines in CFSE labelled T cells co-
cultured with HLA- mismatched DCs. Results are mean + SD. Unstimulated control data has been subtracted 
from the stimulated data. As CCR7 and CD45RA showed high expression in unstimulated PBMCs they are not 
shown  

 

As outlined above a key hallmark of an alloreactive T-cell is its ability to proliferate in 

response to alloantigen. In order to identify these alloreactive T-cells we labelled donor T-cells 

with CFSE and then co-cultured them with or without HLA mismatched dendritic cells. We 

then quantified the CFSE Dim (the alloreactive proliferating T-cell) population on days 0,1,3,5 

and 7 allowing us to determine the precursor frequency and the kinetics of alloreactive T-cell 

proliferation in a MLR.  
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Figure 15: Kinetics of CFSE Florescence in Allogeneic MLR and Unmanipulated T-
cells.(n=5)  FACS analysis of a representative example of the kinetics of CFSE fluorescence in the allogeneic 
MLR after CFSE labelled T-cells were cultured with/without HLA-mismatched DCs. Proliferation of alloreactive 
T-cells results in reduction in CFSE fluorescence intensity. Gating on the CFSE dim region, which selectively 
identifies the proliferating T cell population is shown on the day 7 FACS plots.  

 

Identification of Proliferating Alloreactive T-cells using CFSE Dye Dilution 
 
In order to characterize the phenotype of proliferating alloreactive T cells population we 

labelled donor T-cells with CFSE and then co-cultured them with or without HLA-mismatched 

DC. Gating on the CFSE-dim population enabled us to track the proliferating alloreactive T-

cell population. We initially quantified the CFSE-dim population on days 0,1,3,5 and 7. Figure 

14 shows the progressive dilution of CFSE fluorescence with time in an allogeneic MLR. By 

day 7 of the MLR culture, 70 % of the T-cells in the culture were CFSE-dim. The mean 

alloreactive precursor frequency (calculated using ModFit LT software (Verity software 

House) was 4.2 % ± 1.5 % and there was a mean of 8 cell divisions. In contrast, there was very 

little shift in fluorescence in the unmanipulated PBMCs. Figure 14 shows our gating strategy 

for identifying CFSE-dim cells, taking into account the shift in CFSE fluorescence of 

unmanipulated PBMC with time. To validate this gating strategy, we compared CFSE dye 
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dilution in CFSE-labelled unstimulated PBMCs and PBMCs co-cultured with autologous DC 

in 5 normal donors. (See Fig 15)  As previously reported166,167, T-cells cultured with 

autologous DC showed minimal proliferation (mean 1.3 % ±  1.19 % of CFSE-dim T-cells, at 

day 7 of co-culture) and little up regulation of CD25 or CD71. We are thus confident that the 

CFSE-dim population truly represents proliferating alloreactive T-cells.  
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Figure 16: T-cells cultured with autologous DC showed minimal proliferation and little up 
regulation of CD25 or CD71. Activation marker Expression and Kinetics of CFSE Fluorescence in T cells 
co cultured with Autologous Dendritic Cells.(a) CFSE Fluorescence (b) CD25 expression (c) CD71 expression. 
Data is the mean ± SD of cultures from 4 donors 
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As shown in Fig 16, which illustrates the % of CFSE-dim T-cells in the MLR, proliferation 

was greatest between Days1-3 of culture, and then plateaued between days 5-7.  

This suggests that strategies targeting proliferating alloreactive T cells e.g. chemotherapy 

agents would be most successful between days 1-3 of the MLR. 
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Figure 17: Time course of Proliferation in Allogeneic MLR. (n=5) FACS analysis demonstrating 
the percentage of T cells which are CFSE dim proliferating alloreactive T cells in the MLR, serially assessed over 
a week. Results are the mean + SD .The percentage of CFSE dim populations in the unstimulated control has 
been subtracted from the results obtained in the MLR. 

 

Phenotypic Characterization of Proliferating Alloreactive T-cells 
 
To determine the phenotype of alloreactive T-cells, we then analyzed surface marker and 

cytokine expression in the proliferating alloreactive T cell population by gating on the CFSE-

dim population on days 3, 5, and 7 of the MLR. The cumulative data for 5 HLA- mismatched 

pairs is shown in Fig 17. 
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Figure 18: Kinetics of Surface Marker and Cytokine Expression in Proliferating 
Alloreactive T cells. (n=5) Normal donor PBMCs were co-cultured with HLA-mismatched DCs and the 
expression of surface markers and intracellular cytokines in the proliferating alloreactive T-cell population was 
determined by gating on the CFSE dim population using FACS analysis. Data shown is mean + SD. 
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CD25  

 
 

  

Figure 19: Up regulation of CD25 is seen in the CFSE-dim T cells but a Significant CFSE 
Dim CD25 negative population is discernible.   Data is representative of CD25 expression in all 5 
experiments 
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Figure 20: Mean Fluorescence Intensity of CD25 Expression on the Proliferating 
Alloreactive T cells peaks on day 3. Data is mean ± SD of 5 donor recipient pairs.  

 
As seen in Fig 18, CD25 (IL-2 receptor α) shows little expression in resting PBMCs. However, 

in PBMCs co cultured with HLA mismatched DCs, it is up regulated within 24 hours, peaks on 

days 3 and then plateaus. Thus CD25 is strongly and consistently expressed on the 

proliferating alloreactive T-cells. In 5 donor recipient pairs a mean of 83 % ± 8 % of the 

proliferating T-cells express CD25 on day 3 (Fig 17). The mean fluorescence intensity of 

CD25 peaks on day 3 (see Fig 19) thus confirming that the optimal time for CD25 

allodepletion is on days 3 of a MLR. This data validates the strategy of using a day 3 CD25 

allodepletion. However, as can be seen in the representative donor shown in Figure 18, a 

significant population of CFSE dim T-cells do not express CD25 .Therefore CD25 based 

negative selection strategies alone will not deplete a significant proportion (mean 17 % on day 

3 see Fig 17) of proliferating alloreactive cells.  

 

 

 

 

 

 

Time of MLR 
←Coculture 
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CD71  
 

CD71 (transferrin receptor) expression had similar kinetics to CD25, being unregulated on the 

majority of proliferating T-cells by day 3 of MLR (mean 65 ± 23 % of the CFSE-dim T-cells), 

with some subsequent down regulation at later time points and somewhat more variability than 

CD25 (see Fig 17). 

 

 
Figure 21: CD71 is strongly up regulated on proliferating alloreactive T cells but shows 
little expression on resting T cells. CD71 is up regulated on day1 and peaks on day 3 of the MLR. Data is 
representative of CD71 expression in all 5 experiments 

 

There is very little expression of CD71 in the unstimulated T-cells, and thus allodepletion 

strategies targeting CD71 should preserve desirable antiviral and anti-leukaemic responses. 

(See Fig 20). Analysis of the mean fluorescence intensity of CD71 expression demonstrated 

this to be highest on day 3 of co-culture (Figure 21) 
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Figure 22: Mean Fluorescence Intensity of CD71 Expression on Proliferating Alloreactive 
T cells is highest on day 3. Data is mean ± SD for 5 donor recipient pairs 

 

These data identify CD71 as a promising novel target antigen for depleting alloreactive T-cells 

and demonstrate that the optimal time point for CD71 allodepletion is on day 3 of a MLR. (See 

Figs 17 & 21) 
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CD69  

 
                         
Figure 23: CD69 is the strongly up regulated on day 1 in the allogeneic MLR, but then 
rapidly declines. Data is one of a representative sample 

 

As shown in Figure 17, the other activation markers analyzed were only expressed on a 

minority of proliferating CFSE-dim T-cells.  CD69 was expressed on only 4 ± 5 % of CFSE-

dim cells at day 3 of MLR. As a CFSE-dim population was only discernible from day 3 

onwards (Fig 16), it was not possible to determine if the higher expression of CD69 on total T-

cells at day 1 of the MLR (Fig 13) represents a truly alloreactive population.  

 

As shown in the representative FACS plot in Fig 22, CD69 is the earliest marker to be up 

regulated, in an allogeneic MLR demonstrating significant up regulation by day 1. Up to 20 % 

of CD3+ve lymphocytes express this marker in the alloreactive MLR, with little or no 

expression in unstimulated control co-cultures.  However, expression of CD69 decreases 

progressively with time of co-culture. In this regard, it is of note that groups who have used 

CD69 based strategies to deplete alloreactive T-cell on day 3 which may not be the optimal 

time point. As illustrated in Fig 17, the majority of the CFSE dim population do not express 
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CD69. This is likely to reflect down regulation of CD69 by the time appreciable CFSE dye 

dilution occurs, so that it is difficult to use the latter to identify alloreactive cells expressing 

CD69. Furthermore, compared to molecules such as CD25 and CD71, CD69 expression during 

allo MLR showed significantly more variability (Fig 17) limiting the usefulness of this marker 

as a target for allodepletion strategies. In this regard, it is of note that  groups who have used 

CD69 to deplete alloreactive T cells have done so on day 3.126 

 

Activation Markers 
 
Inducible co stimulator (ICOS) was not expressed on unstimulated T-cells and was 

progressively up regulated over time in the allo-MLR, but only on a minority of proliferating 

alloreactive T cells (mean 15 ± 12 % at day 7) (see Figs 17) at day 7 with significant 

variability. Fas (CD95) was expressed on a higher proportion of unstimulated T cells. Like 

ICOS, CD95 showed a progressive but more variable increase over time in the allo-MLR with  

expression on proliferating alloreactive T cells peaking on day 7 (a mean of 27 ± 24 % at day 7 

Fig 17). This is consistent with groups targeting Fas +ve alloreactive T-cells, who have shown 

that optimal timing for Fas mediated allodepletion is between days 5-7 of an allo- MLR. 66 

However, the significant variability between donor recipient pairs, limits the usefulness of 

targeting this marker. 

 

CD134 (OX40) was not expressed on unstimulated control, but showed little up regulation on 

the alloreactive T-cells, with maximal expression on day 7 of the allo-MLR (1.64±1.42 % Fig 

17). Our data indicates that targeting OX40 would not be a successful allodepletion strategy. 

HLA-DR showed low levels of baseline expression in the unstimulated control but was only 

expressed in small subpopulations of proliferating alloreactive T-cells (mean 8% ±5.87of 

CFSE-dim T-cells at day 7, Fig 17). Unlike ICOS and CD95, HLA-DR expression did not 

show any significant increase in expression with time during the MLR. 
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Memory Markers (CD45RA and CCR7) 
 
In light of the recent murine data suggesting that alloreactive T-cells recognising minor 

histocompatibility antigens28,29 in murine models, reside predominantly in the naïve T cell 

compartment, we next examined expression of the CD45RA isoform and the chemokine 

receptor (CCR7) on proliferating alloreactive T-cells. We observed strong expression of CCR7 

(mean 54 ± 20 % on day 3) and CD45RA (mean 25.9 % on day 3) in the CFSE-dim population 

(Fig 17), but there was also high expression on the unstimulated PBMCs at the same time-

points (CCR7 mean of 52.7 % and CD45RA 12.3% of total T-cells on day 3) (see Fig 23 for 

representative example). The intensity of expression of CD45RA was greatest on day 3 (Fig 

24) suggesting this would be the optimal time point for allodepletion. As time progressed, the 

percentage of CFSE-dim T-cells expressing CCR7 and CD45RA declined, consistent with a 

progressive increase in T-cells of effector memory phenotype (mean 62 ± 8% by day 7 of co-

culture).   

(a) CD45 RA  
 

 
. 
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(b) CCR7 
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Figure 24: (a) CD45 RA Expression shows significant expression on resting lymphocytes 
and progressively decreases during the time course of the MLR co culture. (b) Significant 
Expression of CCR7 on resting lymphocytes limits its usefulness as an Allodepletion 
Target. Data is from a representative sample 

 

While CCR-7 is expressed on approximately half of proliferating, alloreactive T-cells, 

CD45RA is only expressed on a minority of such cells, limiting its usefulness as a target of 

allodepletion. Further, as shown in Fig 23, these markers are expressed in a significant 

proportion of unstimulated PBMCs, and thus allodepletion approaches targeting CD45RA or 

CCR7 would lead to a large cell loss and could adversely affect desirable third party responses, 

anti-viral and anti leukaemic responses. 
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Figure 25: Mean Fluorescence Intensity of CD45RA Expression on Proliferating 
Alloreactive T cells peaks on day 3 Data is mean ± SD in 5 donor recipient pairs. 

 
The intensity of expression in proliferating alloreactive T cells of CD45RA is greatest on day 

3, (Fig 24) suggesting that this would be the optimal time point for an allodepletion.  

Intracellular Cytokines 
 
The presentation of alloantigen induces a response involving proliferation of donor T cells and 

secretion of interleukin-2 (IL-2) and interferon γ (IFNγ) leading to the generation of T 

cytotoxic clones. The central importance of IL-2 signalling in GVHD is illustrated by the use 

of ciclosporin and FK506, in GVHD prophylaxis, which inhibit IL-2 production. The 

presumed contribution of tumor necrosis factor-alpha (TNFalpha) to acute GVHD provides  

the rationale for the use of anti-TNFalpha antibodies (e.g. infliximab) in the treatment of 

GVHD43. We therefore next determined Th1 cytokine expression on proliferating CFSE-dim T-

cells using intracellular cytokine staining. As shown in Figure 17 & 25, there was little 

baseline expression of IL-2 in the unstimulated control T-cells, whereas IL-2 was up regulated 

in the alloreactive T cells in the allo- MLR.  IL-2 expression peaked on day 3 of co-culture 

(mean 34 ± 6% of CFSE-dim T-cells), and progressively decreased thereafter.  

 

Time of MLR 
←Coculture 
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IL-2 
 

 

Figure 26: IL-2 is expressed in a minority of proliferating alloreactive T-cells Data is from a 
representative sample 
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IFNγ 
 

 

 
 

Figure 27: IFNγ is expressed on a minority of proliferating alloreactive T-cells. Data is from a 
representative sample. 

 
IFN-γ was expressed in a similar proportion of the CFSE-dim population as IL-2. Expression 

of IFN-γ peaked on day 5 (mean 33 ± 13 %) and then decreased slightly by day 7 (Fig 17 & 

26). Thus around a third of proliferating alloreactive T-cells express the Th1 cytokines.  

TNFα 
 
In contrast to IL-2 and IFNγ, we observed little up regulation of TNFα in alloreactive T-cells 

at any time point during co-culture (mean 1 % on day 7 Fig 17). Thus any strategy targeting 

TNFα producing T-cells as a single step allodepletion procedure would be unlikely to be 

successful. 
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Overall, the majority of phenotypic markers analysed appear to be expressed only in small 

subpopulations of alloreactive T-cells, limiting their usefulness as potential targets for 

allodepletion strategies. Only CD25 and CD71 were expressed in the majority of T-cells 

proliferating in response to alloantigens. These data provides strong support for targeting 

CD25 in allodepletion strategies, and identify CD71 as a promising novel target for similar 

approaches. 

 

 

Characterization of CD25-negative alloreactive T-cells 
 

While the majority of proliferating alloreactive T-cells express CD25, a significant population 

(17 ± 8 % at day 3 of co-culture, Figure 17) does not and would be retained by strategies 

targeting this molecule alone. We therefore gated on the CFSE- dim, CD25-ve T-cell 

population in order to determine phenotypic markers that could be used to target this CD25- 

population. Data on the expression of surface markers and cytokines by this population are 

shown in Figure 27. Our studies identified CD71 and CD45RA as the markers expressed on 

the majority of CD25-ve proliferating alloreactive T- cells (mean 69 ± 21 % and 62 ± 12 % 

respectively at day 3 of MLR). In 5 donor-recipient pairs, a mean of 94%/93% of proliferating 

alloreactive T-cells could potentially be deleted by effective depletion of cells expressing 

either CD71/CD25 or CD45RA/CD25 (Table 4). Other surface markers including CD69, 

ICOS, OX40, CD95, HLA-DR, CCR7, and the cytokines IL-2, IFN-γ, and TNFα were only 

expressed on a minority of cells in this population and thus would be of limited value in 

enhancing the depletion of alloreactive T-cells achieved with CD25-based approaches. 
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Figure 28: CD71 and CD45RA are highly Expressed in Proliferating CD25 negative 
Alloreactive T-cells. (n=5) CFSE labelled T-cells were co-cultured with HLA mismatched DCs and the 
kinetics of expression of surface markers and intracellular cytokines in the proliferating alloreactive CD25- 
population determined flow cytometrically by gating on the CFSE dim CD25- cells. Results are mean+ SD. 

 
Table 4: Percentage of proliferating alloreactive T-cells expressing markers 

 % of Proliferating Alloreactive T Cells 
Expressing Marker 

CD25 83 % 
CD25+ CD71 94 % 
CD25+ CD45RA 93 % 
 
Percentage of proliferating  alloreactive T expressing CD25 alone, CD25 and CD71, and 
CD25 and CD45RA on day 3 of the MLR was determined by FACS analysis of CFSE Dim 
CD3 positive cells. N=5 
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Conclusions 
 
We systematically characterized the activation and cytokine marker profile in proliferating 

alloreactive T-cells. While alloreactive T-cells can be identified by a number of phenotypes, 

we focused on proliferation in response to alloantigen as the most fundamental. Further, given 

the numbers of allodepleted T-cells infused in the clinical setting, alloreactive T-cells would 

need to proliferate in order to cause clinical sequelae. We co-cultured CFSE labelled T-cells 

with HLA- mismatched DCs, and tracked proliferating alloreactive T-cells by gating on the 

CFSE dim T-cell population. In our model, there was a mean of 8 cell divisions with up to 70 

% of day 7 PBMCs becoming CFSE dim, with a precursor frequency to alloantigen of 4 %. 

Our data showed that CD25 was expressed in over 80 % and CD71 in 65 % of proliferating 

alloreactive T-cells on day 3 of MLR. In contrast, CD69, CD45RA, ICOS, OX40, CD95, 

HLA-DR, IL-2, IFN-γ, and TNF α were all expressed only in a minority of proliferating 

alloreactive T-cells, indicating that these are poor targets for allodepletion. CD69 is a well-

established T-cell activation marker but was poorly expressed in the CFSE-dim population. 

This may in part reflect down regulation of CD69 by the time appreciable CFSE dye dilution 

has occurred (day 3 of MLR). Recent studies suggest that alloreactivity may reside 

predominantly in the CD45RA+ naïve T-cell compartment.29,33 However, the expression of this 

marker only on a minority of alloreactive T-cells and on bystander T-cells as well as the 

progressive maturation of alloreactive T-cells to a memory phenotype during MLR suggest 

that targeting this molecule as a sole strategy for allodepletion is unlikely to be successful. 

 

In contrast, our data provide strong support for targeting CD25 in allodepletion strategies and 

identify CD71 as a novel target that is highly expressed on proliferating alloreactive T-cells. 

While our data confirm CD25 as an excellent target for allodepletion strategies, a mean of 17 

% of proliferating alloreactive T-cells do not express CD25.  Therefore, we studied the 

phenotype of proliferating CFSE-dim T-cells not expressing CD25. We have identified CD71 

and CD45RA as the markers most highly expressed on proliferating alloreactive T-cells that 

do not express CD25. CD71 (transferrin receptor) is essential for iron transport into 

proliferating T-cells but is not expressed on resting lymphocytes, whereas CD45RA was 

expressed on a higher percentage of unstimulated T cells, and hence has a lower specificity for 

the alloreactive T-cell population. We found that 70 % of the CFSE-dim CD25-ve population 

express CD71 and 62 % expressed CD45 RA. Potentially, this enables us to target 2 
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independent phenotypes of alloreactive T-cells at the same time-point within a single co-

culture. We showed that the combination of CD25/CD71 and CD25/45RA is expressed in 94 

% and 93 % respectively on proliferating alloreactive T-cells. Based on these data we then 

went on to compare CD25 based allodepletion strategies with CD25/71 allodepletion, to 

determine if depletion of CD71+ve T-cells would enhance the reduction of alloreactivity seen 

with CD25 based allodepletion. 
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Chapter 4 
 
 

Enhancing CD25 based allodepletion strategies 
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Aims 
1. To compare residual alloreactivity to host and 3rd party after CD25 based allodepletion 

with CD25/71 combined allodepletion 
 

2. To compare residual alloreactivity to host and 3rd party after CD25/45RA  based 
allodepletion with CD25/71 combined allodepletion  

 
3. To develop a clinically applicable system for CD25/71 allodepletion under GMP 

conditions 
 

Introduction 
 
Adoptive immunotherapy with allodepleted donor T-cells generated using CD25 IT has been 

shown to enhance T-cell and anti-viral immune reconstitution in the haploidentical setting. 
138,141 However, this and other studies have demonstrated the need to enhance allodepletion 

beyond CD25 based existing strategies as leukaemic relapse and infections with pathogens 

evoking low frequency T-cell responses, such as adenovirus remain problematic. 141 Higher 

doses of allodepleted donor T-cells need to be infused to enhance anti-viral and anti-leukaemic 

effects but this would require enhancement of CD25-based allodepletion if GVHD is to be 

avoided. Our data from Chapter 3 validate the use of CD25 as an excellent target for 

allodepletion and identified CD71 and CD45RA as the optimal markers to target CD25 

negative proliferative alloreactive T-cells. These data suggest that a combined CD25/71 

allodepletion might enhance allodepletion compared to existing CD25-based strategies. In this 

chapter we examined residual alloreactivity between combined CD25/71 immunomagnetic 

allodepletion against CD25 allodepletion. 

 

 

Optimization of allodepletion 
 
Prior to comparison of CD25 vs. combined CD25/71 allodepletion we initially optimised 

conditions for CD25-based depletion and measurement of residual alloreactivity.  

Comparison of Dendritic cells, LCLs and PBMCs as APCs 
 
In order to determine the optimum APC, in 4 donor recipient pairs, PBMCs were co-cultured 

with either HLA mismatched mature DCs, LCLs or cytokine pre-treated PBMCs The APCs 

were from the same donor for each experiment. The PBMCs were pre-treated with 
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recombinant human TNFα and IFNγ at 1000 iu/106 PBMCs in order to up regulate HLA class 

I and II expression and hence optimize presentation of alloantigen. Normal donor PBMCs 

were thus co-cultured with irradiated APCs [DC(R: S 10.1), LCLs(R: S 40.1) or cytokine 

treated PBMCs (R.S 1.1) from the same recipient]. As can be seen in table 5, flow cytometric 

analysis showed stronger up regulation of CD25 and CD71 in T cells co-cultured with 

allogeneic DCs or LCLs compared with cytokine treated PBMCs from the same donor. Similar 

results were obtained for the MFI of CD25 and CD71 (Table 6). In view of these results and 

our previous data showing that using LCLs rather than PBMCs as stimulators resulted in more 

consistent depletion of alloreactivity, LCLs were used as stimulators in subsequent 

experiments. 

 

 CD3 CD25 CD3 CD71 
Unmanipulated  2.44 ± 0.01 1.47 ± 0.24 
BC +PBMCs 7.13± 2.32 1.91±1.22 
BC + DCs 9.26± 4.72 5.71±4.37 
BC + LCLs 10.9± 5.54 4.24±3.43 
 
Table 5: Increased up regulation of CD25 and CD71 in co cultures with allogeneic DCs 
and LCLs compared with PBMCs. Normal Donor PBMCs were co cultured with irradiated 
HLA mismatched PBMCs or LCLs or Dendritic cells. FACS for % CD3+ CD25+ and CD3+ 
CD71+ population was performed on day 3 co cultures and unmanipulated control (N=4) 
Mean % ± 1SD 
 
 
 
 CD3 CD25 CD3 CD71 
Unmanipulated  39.23±0.99 65.30±5.9 
BC +PBMCs 104.12±8.97 139.04±40.5 
BC + DCs 216.64±99.53 175.87±36.29 
BC + LCLs 143.70±28.79 148.2±54.48 
Table 6: Increased MFI of CD25 and CD71 in co cultures with allogeneic DCs and LCLs 
Compared with PBMCs Normal Donor PBMCs were co cultured with irradiated HLA 
mismatched PBMCs or LCLs or Dendritic cells. FACS for MFI in the CD3+ CD25+  and 
CD3+ CD71+ populations was performed on day3 co cultures and unmanipulated control 
(N=4) Mean MFI± SD 
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Optimization of CD25 immunotoxin dose 
 
To determine the optimum dose of our existing CD25 immunotoxin (RFT5-SMFT-dgA) for 

depletion of CD25+ alloreactive T-cells, donor PBMCs were co cultured with HLA- 

mismatched LCLs and then on day 3 the co cultures were exposed to varying concentration of 

CD25 immunotoxin (0 µg/ml, 3µg/ml, 3.5µg/ml, 4µg/ml, 4.5µg/ml, and 5 µg/ml). Co-cultures 

in the presence and absence of immunotoxin were incubated overnight at 37°C. The next 

morning co-cultures were washed twice and then resuspended at 2 x 106/mL in AIM V. 

Aliquots from the different co cultures were then analysed by Trypan blue staining for viability 

and FACS for the residual CD3+CD25+ (see Table 7) .  

 

 

 CD3+ CD25 + Viability 

0 µg/ml 10.25 83.25  

3 µg/ml 1.34 81.25 

3.5 µg/ml 1.1  80.27 

4 µg/ml 0.63  77.32 

4.5 µg/ml 0.59 61.2 

5.0 µg/ml 0.54  52.3 

Table 7: Progressive increase in CD25 depletion with increasing concentrations of CD25 
IT, but at cost of decreased viability. (n=1) Normal donor PBMCs were co cultured with HLA 
mismatched LCLs and a day 3 CD25 depletion was done with varying concentrations of CD25 immunotoxin. The 
residual CD3+CD25 + T cells were assessed by flow cytometry on day 4 and viability by trypan staining. 

 
As can be seen in Table 7, progressive increases in CD25IT dose led to an increased depletion 

of CD3+ CD25 + T cells, but at a cost of decreasing cell viability. A dose of 4 µg/ml was 

chosen, as this led to an acceptable level of CD25+ depletion with reasonable preservation of 

cell viability. 
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Conditions for Resting Allodepleted cells prior to restimulation 
 
Our group has previously shown that proliferative and cytokine responses to cytokine 

stimulation with host APCs are highly dependent on the timing of 2º stimulation in relation to 

allodepletion with negligible responses if restimulation was done immediately after 

depletion.125 In order to skew our assays to optimize our assays detection of residual anti host 

responses, we rested cell for 2 days prior to restimulation. We next went on to compare the 

media in which allodepleted donors T cells should be rested in. Donor PBMCs were co- 

cultured with HLA mismatched LCLs and a day 3 CD25 immunomagnetic allodepletion was 

done. The allodepleted T-cells were then rested in AIM V (serum free) medium with or 

without IL-2 (100 U/ml). On day 5 the allodepleted T cells were then harvested and then 

restimulated with host or 3rd party LCLs in a 2º IFNγ ELISPOT assay. 

 

 Host LCLs 3rd Party LCLs 

AIM V 21.1 61.3 

AIMV +IL-2 108.4 162.3 

Table 8: Residual alloreactivity to host is enhanced when allodepleted donor T cells are 
rested in media supplemented with IL-2. Donor PBMCs were co cultured with HLA mismatched 
LCLs and a day 3 CD25 immunomagnetic allodepletion was done. The allodepleted T cells were then rested in 
AIMV with or without IL-2. Day 5 allodepleted donor T cells were then co cultured with host/3rd party LCLs in 
2º IFNγ ELISPOT assay. Results show the percentage of spot forming cells compared to the response to 
unmanipulated PBMCs from the same donor. n=1 

 
The residual IFNγ response to host was over 5 xs higher when the cells were rested in media 

supplemented with IL-2. (Table 8) This would imply that the IL-2 promotes the proliferation 

of alloreactive donor T cells that were not deleted by the allodepletion, and therefore lead to a 

higher residual alloreactivity. Therefore, for future experiments, the allodepleted donor T-cells 

were rested in AIM V media without IL-2. 

Assaying Residual Alloreactivity 
 
We next compared LCLs vs. PBMCs as secondary stimulators in MLRs and IFNγ ELISPOTS. 

Donor PBMCs were co-cultured with HLA- mismatched LCLs and a CD25 or CD25/71 

immunomagnetic allodepletion was done on day 3. The allodepleted donor T-cells were rested 

for 2 days in AIM V media and then co cultured with host LCLs/PBMCs or 3rd party 
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LCLs/PBMCs in a 2º MLR. Results from allodepleted T-cells were compared with thawed 

unmanipulated PBMC from the same donor after stimulation with LCLs from the original 

stimulator or a 3rd party. To compensate for the variability in absolute counts, due to the degree 

of mismatch, results were standardized by calculating the residual proliferation as below:  

 

cpm (donor PBMC+ Host LCL + Allodepletion)- cpm (donor PBMC + Allodepletion) 
cpm(donor PBMC alone +LCL; no allodepletion) – cpm (donor PBMCs alone; no 

allodepletion) 

 

 Host LCLs 3rd Party LCLs Host PBMCs 3rd party LCLs 

CD25 0 71.1 0 68.5 

CD25/71 0 78 1.25 84.6 

Table 9: Mean residual alloreactivity to host and third party is not significantly affected by 
using LCLs or PBMCs as 2 º stimulators. Donor PBMCs were co-cultured with HLA mismatched 
LCLs and a CD25 or CD25/71 immunomagnetic allodepletion was preformed. The rested cells were then 
restimulated to host or Third party LCLs/PBMCs in a 2º MLR. n=2 

 
There was no significant difference in residual alloreactivity to host or 3rd party when either 

LCLs or PBMCs were used as stimulators in 2º MLRs (see Table 9). In IFNγ ELISPOT 

assays, the response of unmanipulated PBMCs to primary stimulation with allo LCLs was 

much greater than with allo PBMCs, so again LCLs were used as secondary stimulators in 

order to facilitate comparison between allodepleted and unmanipulated PBMCs (data not 

shown). 

 

 

Comparison of CD25 Immunomagnetic Beads and CD25 
Immunotoxin 
 
To determine an optimum baseline allodepletion method, we first compared residual 

alloreactivity following allodepletion using CD25 immunomagnetic beads or IT in 6 donor-

recipient pairs. In these and subsequent experiments, LCL were used as stimulators. Normal 

donor PBMCs were co-cultured with HLA-mismatched LCLs and at day 3 of MLR, cultures 

were split into 2 arms and allodepletion performed using anti-CD25 beads or IT as described 

in Methods. FACS analysis confirmed very effective depletion of CD25+ cells with both 

methods (mean CD3+CD25+ 0.19 ± 0.17% after bead depletion, 0.97 ± 0.38% after IT p=NS). 
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Aliquots were sampled for the primary MLR to determine the median residual response to host 

calculated using the formula below. 

  

Aliquots of the 1o MLR co-cultures were sampled to determine residual proliferative 

responses. To compensate for the variability in absolute counts due to the degree of mismatch, 

results were standardized by calculating the residual proliferation as below:  

cpm (donor PBMC+ Host LCL + Allodepletion)- cpm (donor PBMC + Allodepletion) 
cpm(donor PBMC alone +LCL; no allodepletion) – cpm (donor PBMCs alone; no 

allodepletion) 

 

As shown in Figure 28a, in primary MLR residual proliferative responses to host were 

undetectable using either anti-CD25 bead or IT (median residual proliferation 0 ± 0 % for 

both). This reduction in proliferation compared to unmanipulated PBMCs was significant for 

both methods (p<0.05). However, our previous data125 indicated that this assay may 

significantly underestimate residual alloreactivity. To skew our experimental system to detect 

such responses, allodepleted cell fractions were rested for 2 days and restimulated with LCLs 

from either the original stimulator or a 3rd party and residual responses assessed using IFNγ 

ELISPOT or 2° proliferation assays. To compensate for variability in responses between 

donor-recipient pairs, results from allodepleted T-cells were compared with thawed 

unmanipulated PBMC from the same donor after stimulation with LCLs from the original 

stimulator or a 3rd party. 

 

In IFN-γ ELISPOT assays (Fig 28b), the median residual number of specific spot forming cells 

(SFC) after stimulation with host LCL was 38.3 % (range 17.6 – 110.7%) of the response of 

unmanipulated PBMC after anti-CD25 bead and 54.5 % (range 11.7 – 159.3%) after CD25 IT 

allodepletion ( comparison between beads and IT p=NS). Third party responses were 

equivalent to unmanipulated PBMCs for both forms of allodepletion. There was no significant 

difference in the residual response to host following CD25 bead and IT allodepletion in these 

assays. In the 2º MLR (Fig 28c), the median proliferation to host stimulators was 27.8 % 

(range 0.05 – 91.5%) of the response of unmanipulated PBMC from the same donor after 

CD25 bead allodepletion, whilst for CD25 IT it was 16.5 % (range 0.03% - 62.2%) 

(comparison between beads and IT p=NS). Both depletion methods significantly reduced 

proliferation to host compared to unmanipulated PBMC s (p<0.05) but again there was no 
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significant difference in residual proliferative responses to host between CD25 beads and 

CD25 immunotoxin. Third party responses were equivalent to unmanipulated PBMC for both 

forms of depletion.  

 

Since there was no significant difference in residual alloreactivity to the original host between 

the CD25-based methods, we used anti-CD25 immunomagnetic bead depletion in further 

experiments to minimise cell manipulation in combined depletion methods. 
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Figure 29:( a) Comparison of Residual Alloreactivity after CD25 Beads vs. CD25 
Immunotoxin allodepletion in Primary MLR. Residual proliferation to host stimulators in 6 donor-
recipient pairs after allodepletion with anti-CD25 beads or immunotoxin following stimulation of donor PBMCs 
with LCLs (R/S 40:1) Residual proliferation was calculated using the formula on page 142 and was significantly 
reduced for both forms of CD25 allodepletion compared to unmanipulated PBMCs (p<0.05) Line = median, box 
=25th-75th centile, error bars = min, max values.  

 (b) Comparison of Residual Alloreactivity after CD25 bead vs. CD25 Immunotoxin 
Allodepletion in IFNγ ELISPOT n=6 This figure shows the frequency of cells secreting IFN-  in 
response to stimulation with original/3rd party LCL in ELISPOT assays. The responses of allodepleted PBMCs 
generated using CD25 beads or immunotoxin were compared. There was no significant difference in residual 
response to host between both forms of CD25 allodepletion. 

 (c) Comparison of Residual Alloreactivity between CD25 beads and CD25 immunotoxin 
in 2º MLR  n=6 Allodepleted PBMCs generated using CD25 beads or immunotoxin were rested and then 
stimulated with either original host LCLs or 3rd party in a 2º MLR. Residual proliferation to host was significantly 
reduced after allodepletion with CD25 beads and CD25 immunotoxin (marked with asterisk) compared to 
unmanipulated PBMCs but there was no significant difference in residual responses to host between these 2 
methods.  
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Comparison of CD25 vs. CD25/71 Immunomagnetic Depletion 
 
Based on our phenotypic characterisation of CD25 proliferating alloreactive T-cells, we then 

compared residual alloreactivity and 3rd party responses after CD25 and combined CD25/71 

immunomagnetic depletion, to determine if the latter combination enhanced the degree of 

selective allodepletion achieved with CD25-based methods. Normal donor PBMCs were co-

cultured with HLA-mismatched allogeneic LCLs in 8 donor-recipient pairs and at day 3 of the 

MLR, co-cultures were split into 2 arms and negative selection for CD25+ or CD25+ and 

CD71+ cells performed (using anti CD71 biotin and anti biotin/antiCD25 beads). Figure 29 

shows a representative FACS plot of CD3/CD25 and CD3/CD71 expression in unmanipulated 

PBMCs, in undepleted co cultures and post CD25 and CD25/71 depletion.  Table 10 shows 

flow cytometric data on the expression of CD25 and CD71 on T-cells before and after CD25 

and CD25/71 immunomagnetic depletions. Both CD25 and CD25/71 immunomagnetic 

depletions effectively deplete CD3+ CD25+ T-cells with no significant difference between the 

methods (mean < 0.2% after both methods p=NS). However, there was a small CD3+ CD71+ 

population remaining after CD25 allodepletion (mean 0.62 %), which was effectively removed 

with combined CD25/CD71 immunomagnetic depletion.  

Table 10: Effective depletion of alloreactive T-cells by CD25 and CD25/71 beads 

 Unmanipulated 
PBMCs 

Day 3 
PBMCs 

+Allo LCL 

Day 3 PBMCs 
+Allo LCL+25 

Beads 

Day 3 PBMCs +Allo 
LCL+25/71 Beads 

CD3 CD25 1.51 ± 0.7 10.78 ± 4.11 0.15 ± 0.08 0.06 ± 0.01 

CD3 CD71 0.84 ± 0.71 7.43 ± 3.43 0.62 ± 0.31 0.05 ± 0.05 
 
The percentage of T-cells expressing CD25 and CD71 by FACS analysis in the non-depleted 
and allodepleted co-cultures is shown. Data represent mean ±SD. N=8 
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Figure 30: CD25/71 immunomagnetic allodepletion effectively removes CD71+ and C25 + alloreactive T 
cells.  Normal donor PBMCs were co cultured alone or with allo-LCLs. On day 3, aliquots from each sample 
were stained for CD3 CD25 and CD3 CD71. A  CD25 or CD25/71 allodepletion was then done and FACS 
analysis was then performed. Data shown is of a representative example 

In the primary MLR, no residual proliferation to host was detectable after CD25/71 depletion 

in any donor-recipient pair tested (Figure 32a). To detect residual alloreactivity, allodepleted 

cells were rested for 2 days and then restimulated with original host/3rd party LCLs in IFN-γ 

ELISPOT and 2º MLR assays. Results are again expressed as a percentage of the response 

observed with thawed unmanipulated PBMC from the same donor. In secondary MLRs (Figs 

30 & 32b), the median residual proliferation in response to host LCL after combined CD25/71 

depletion was significantly lower (4.8% of response of unmanipulated PBMC from the same 

donor; range 0.98 – 61.3%) than with anti-CD25 beads alone (9.9%; range 5.5 – 76.5%). This 

difference was highly significant (p < 0.01). Responses to 3rd party LCL were equivalent to 

unmanipulated PBMC with both methods (median 92.8% response of unmanipulated PBMC 

for CD25/71 vs. 95.01 % for CD25 beads alone). Likewise, in the IFN-γ ELISPOT assay (Figs 

31 & Fig 32c), the median response of allodepleted cells to host LCL was over 3 x lower with 



 138

combined CD25/71 allodepletion (14.1% of response of unmanipulated PBMC; range 0 – 

51.1%) than with anti-CD25 beads alone (54.6 %; range 0.04 – 111.3%), (p < 0.05). Again, 

3rd party responses were maintained compared to unmanipulated PBMCs for both methods 

(median 3rd party response for CD25 beads 69%, CD25/71 beads 76% of response of 

unmanipulated PBMC). Thus in 2 assays measuring distinct phenotypes, combined CD25/71 

depletion led to significantly enhanced and more consistent allodepletion than CD25 alone 
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Figure 31: This Figure show the Primary data in the 2º MLR assay for the unmanipulated 
PBMCs, CD25 depleted and CD25/71 depleted cocultures to host and 3rd party LCLs for 
the 8 donor recipient pairs. Rested CD25 or CD25/71 allodepleted or unmanipulated PBMCs were 
restimulated with either host (above)  or 3rd party LCLs (below)  in a 2º MLR assay. Values are expressed as a % 
of the response of the unmanipulated PBMCs. i.e. unmanipulated response =100 %  
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Figure 32: This figure show the Primary data in the IFNγ ELISPOT assay for both the 
unmanipulated PBMCs, CD25 depleted, CD25/71 depleted to host and 3rd party LCLs 
for the 8 donor recipient pairs. Rested CD25 or CD25/71 allodepleted or unmanipulated PBMCs were 
restimulated with either host (above) or 3rd party (below) LCLs in a 2º IFNγ ELIPSOT assay.  Values are 
expressed as a % of the response of the unmanipulated PBMCs i.e. unmanipulated response =100 % 



 141

Figure 33 (a). Proliferative responses to host in Primary MLR are undetectable after both 
CD25 Beads and CD25/71 Immunomagnetic allodepletion. (n=5) Residual proliferation after 
allodepletion with anti-CD25 beads or CD25/71 beads following stimulation of donor PBMCs with LCLs (R/S 
40:1) Residual proliferation was calculated using the formula as described on page 142. The median residual 
proliferation for both CD25 beads and CD25/71 beads was 0 %.Line = median, box =25th-75th centile, error bars 
= min, max values 

 (b) Enhanced Depletion of Secondary Proliferative responses to host after CD25/71 
Allodepletion compared to CD25 depletion.  n=8. Rested allodepleted CD25 or CD25/71 PBMCs 
were restimulated with host or third party LCLs in a 2º proliferation assay. CD25/71 allodepletion led to 
significantly reduced residual proliferation to host compared to CD25 alone (p <0.01) without affecting third 
party responses  
(c) Residual Alloreactivity to host is lower after CD25/71 allodepletion than CD25 in 
IFN-Y  ELISPOT n=8 This figure shows the frequency of cells secreting IFN-  as determined by ELISPOT 
assays. Rested allodepleted CD25 or CD25/71 PBMCs were restimulated with host or third party LCLs in a 2º 
IFNγ ELISPOT assay. CD25/71 allodepletion led to significantly reduced residual response to host compared to 
CD25 beads alone (p<0.05) without affecting third party responses 
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Comparison of CD25/71 vs. CD25/45RA allodepletion 
 
Our data above identified CD71 and CD45RA as the optimal markers to target proliferating 

alloreactive T-cells that would be retained after CD25-based allodepletion. To determine if 

combined CD25/71 allodepletion was superior to the combination of CD25/45RA, we co-

cultured PBMC with HLA-mismatched LCL for 3 days, split co-cultures into 2 arms and then 

negatively selected either CD25+ and CD71+ cells or CD25+ and CD45RA+ cells using 

immunomagnetic beads. (n=5) Allodepleted fractions were then rested as above and 

restimulated with host or 3rd party LCLs in a secondary 2º MLR or IFNγ ELISPOT assays 

(Table 11). In secondary MLR, the median residual proliferation to host was lower in the 

CD25/71 arm than in the CD25/45RA fraction (0.02 % vs. 9.29 % p=0.08). Similarly, in the 

IFN-γ ELISPOT assay, the median response to host in the CD25/71 arm was also slightly 

lower than the CD25/45RA arm (17.5% of response of unmanipulated PBMC vs. 23.7% 

respectively p=NS). Thus combined CD25/71 allodepletion appears non-significantly superior 

to CD25/45RA allodepletion. Given that CD45RA is also expressed in a higher proportion of 

unstimulated T-cells than CD71 (so that CD45RA depletion would result in a greater loss of 

bystander T-cells than CD71), the CD25/71 combination was selected for further studies. 

  

Median Residual 
Response to Host 

2º MLR 2º IFNγ ELISPOT 

CD25/71 0.02 % (0-15.9 %) 17.5 % (0-56.1 %) 
CD25/45RA 9.29 % (0-30.6 %) 23.7 % (3.3 -63.9 %) 
 

Table 11: Enhanced Allodepletion with CD25/71 immunomagnetic Depletion compared to 
CD25/45RA. Normal donor PBMCs were co-cultured with HLA mismatched LCLs and on day 3 a combined 
CD25/71 or CD25/45RA immunomagnetic allodepletion was performed. Aliquots from rested fractions were then 
restimulated to the original host in a 2º MLR or IFNγ ELISPOT assay. Results are expressed as a percentage of 
the response observed with thawed unmanipulated PBMC from the same donor. (n=5)(Median and range) 
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Scale Up Studies 

Prior to scale up runs in the GMP facilities, we initially optimised conditions for a combined 

CD25/71-based allodepletion. 

Determining the Optimal APC 
 
In order to determine the optimum APC for enhancing allodepletion, in 4 donor recipient pairs, 

PBMCs were co-cultured with either HLA mismatched mature DCs, LCLs or cytokine pre-

treated PBMCs .The APCs were from the same donor for each experiment. The PBMCs were 

pre-treated with recombinant human TNFα and IFNγ at 1000 iu/106 PBMCs in order to up 

regulate HLA class I and II expression and hence optimize presentation of alloantigen. Normal 

donor PBMCs were thus co cultured with irradiated APCs [DC(R:S 10.1), LCLs(R:S 40.1) or 

cytokine treated PBMCs(R.S 1.1)  from the same recipient] .A combined immunomagnetic 

CD25/71 allodepletion was then performed on day 3. Due to a shortage of cell numbers, 

allodepleted donor T cells were rested in CTL media supplemented with IL-2 20u/ml, which 

would lead to an increase in residual alloreactivity. On day 5 rested allodepleted T cells were 

co cultured with either host or 3rd party LCLs in a 2º MLR. As can be seen in Fig 33 median 

residual reactivity to host was 44.5 % for PBMCs, 15.5 % for DCs, and 10.25 % for LCLs. 3rd 

party responses were maintained with the PBMC and LCL arms (73.3 % and 133.7 % 

respectively), but were reduced for the DC arm (39.87 %). Though the number of donor 

recipient pairs was small, this preliminary experiment would suggest that LCL or DCs, are the 

optimal APC for allodepletion. Given the possibility that allodepletion after PBMC/DC APCs 

might lead to spuriously higher residual alloreactivity compared to LCLs, due to preserved 

EBV specific responses restricted by shared HLA antigens, we plan to repeat this experiment 

using host/3rd party PBMCs as 2º stimulators in the MLR. 
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Figure 34: LCLs are the Optimum APC. Donor PBMCs were co cultured with 3 different APCs from the 
same individual (DC, LCLs, and cytokine stimulated PBMCs). On day 3 a combined CD25/71 immunomagnetic 
depletion was performed. Rested allodepleted PBMCs were then co cultured with either host LCLs or 3rd party 
LCLs in a 2º MLR. (n=4). Using LCLs as APC led to the lowest median reactivity to host and the best 3rd party 
activity. 

 

Evaluating the Potential for Transmitting infectious EBV with Irradiated 
LCLs 
 
Infusion of residual LCLs with the allodepleted PBMCs could potentially result in post 

transplant lymphoproliferative disease. This is unlikely because (a) LCLs are lethally 

irradiated (70Gy), and are pre-treated with acyclovir for 2 weeks prior to use and (b) we have 

previously shown that allodepleted T cells confer EBV specific immunity through T cells 

restricted by the non- shared haplotype86. However, in order to determine the transforming 

potential of LCLs, 4 LCLs lines were grown in RF10 containing 100µM acyclovir for 2 weeks. 

After this period the LCLs were spun down and the supernatant was sent for EBV PCR. This 

showed that all 4 LCL lines were strongly positive for EBV DNA. 

 

The 4 LCLs lines were then irradiated (70 Gy) and co-cultured with PBMCs (R.S 1.1) from 3 

donors in RF10 supplemented with 1µg/ml of ciclosporin. After 6 weeks, the number of viable 
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B cells was determined using FACS (7AA-D and CD19 staining). In none of the 12 donor 

recipient pairs were any viable B cells elicited. This demonstrates that while EBV DNA is 

detectable in LCLs supernatants, the risk of transmitting infectious EBV with irradiated 

acyclovir treated LCLs is very low. 

 

Comparison of co culture in Bags vs. Flasks 
 
We then wanted to determine the optimal conditions for co culturing our cultures (i.e. bags or 

T75 flasks). In 4 donor recipient pairs, PBMCs were co-cultured with HLA mismatched DCs 

(R: S 10.1). Co cultures were split from each donor recipient pair into either T75 flasks or cell 

expansion bags (Miteny Biotec 200-074-301). On day 4, aliquots from each were assessed for 

CD3+ CD25+ and CD3+ CD71+ by FACS expression. CD3+CD25 +expression was 1.4 xs 

higher in the co-cultures in the flasks, whilst CD3+CD71+ expression was 3.5 x times higher. 

(Fig 34)  The viability (assessed by trypan staining) was 63.8 % in the flasks, whilst 56.9 % in 

the bags after 4 days of co culture. This work was done by a post doctoral student Dr. 

Christoph Mancao.  A representative FACS plot in shown in Figure 35. 
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Figure 35: Co cultures in T75 flasks led to superior up regulation of CD25 and CD71 
expression and MFI compared to bags. n=4. Donor PBMCs were co cultured with HLA mismatched 
DCs and were then cultured in bags or flasks. On day 4, aliquots were then taken for FACS to determine 
CD3+CD25+ and CD3+CD71+ expression (shown below) and MFI (shown above).  
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Figure 36: Superior Upregulation of CD3CD25 and CD3CD71 in allogeneic MLRs in 
flasks compared to bags. Normal donor PBMCs were co-cultured with HLA-mismatched DCs either in cell 
culture bags or flasks and on day 4 aliquots were taken for FACS to determine expression of CD3+CD71+ and 
CD3+CD25+. A representative example is shown above. 

Comparison of anti CD25 Bead/Anti CD71 Biotin+ anti Biotin Beads vs. 
Anti CD25 Biotin/ Anti CD71 Biotin+ anti Biotin Bead Immunomagnetic 
Allodepletion 
 
In order to optimize our scale up studies, we first compared CD25 immunomagnetic beads as 

part of our CD25/71 immunomagnetic depletion with a biotinylated anti CD25. Data from 

Necker Hospital in Paris had suggested that the biotinylated CD25 may result in more effective 

depletion of alloreactivity than the CD25 immunomagnetic beads. Potentially, this could 

simplify combined CD25/71 allodepletion as both primary antibodies could be added in a 

single step. To confirm this, in our combined CD25/71 allodepletion, we obtained biotinylated 

anti CD25 from Dr. Marina Cavazzana-Calvo. Normal donor PBMCs were co-cultured with 

irradiated HLA mismatched LCLs. On day 3, we split the co-cultures and did a day 3 CD25/71 

immunomagnetic depletion using anti CD25 beads +biotinylated CD71 + anti biotin beads as 

we had previously done vs. biotinylated CD25 (biotinylated CD25+Biotinylated CD71+ 

antibiotin beads). The percentage of residual CD3+CD25+ and CD3+ CD71+ T cells was 

determined flow cytometrically. (See Table 12) 
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 Unmanipulated Co culture pre 

depletion 

CD25 Bead + 

Biotin CD71 

Biotin CD71+ 

Biotin CD25 

CD3 CD25 2.34 % 10.41 % 0.39 % 0.31 % 

CD3 CD71 1.23 % 5.67 % 0.1 % 0.09 % 

 

Table 12: Comparison of anti CD25 Bead + anti CD71 biotin/anti Biotin vs. anti CD25+ 
anti CD71 biotin/biotin bead immunomagnetic depletion.  Normal donor PBMCs were co cultured 
with HLA mismatched LCLs and on day 3 a CD25/71 immunomagnetic depletion was done using either CD25 
beads or a biotinylated anti CD25. The % of T cells expressing CD25 and CD71 was determined by flow 
cytometry (N=1) 

 
As shown in Table 12, in a single experiment, both methods of depletion gave effective 

depletion of CD25 and CD71. The allodepleted PBMCs were rested for 2 days and then 

restimulated with host/3rd party LCLs in a 2º IFNγ ELISPOT (Fig 36). We chose the 2º IFNγ 

ELISPOT assay rather than a 2º MLR, because our previous data had suggested that the former 

assay had higher levels of residual alloreactivity and thus might enhance differences between 

the forms of allodepletion. 
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Figure 37: Effective reduction of Residual Alloreactivity with both biotinylated anti CD25 and CD25 
microbeads. Normal Donor PBMCs were co cultured with HLA mismatched LCLs. A day 3 CD25/71 depletion 
was done using an anti biotinylated CD25 or CD25 microbeads. Rested allodepleted PBMCs were then co 
cultured to host/3rd party LCLs in a 2º IFN gamma ELISPOT (n=1). 
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As can be seen from our preliminary data, both anti CD25 beads and the biotinylated anti 

CD25/anti biotin beads gave undetectable residual responses to host, with preservation of 3rd 

party responses. However, further comparisons between the anti biotinylated anti CD25 and 

CD25 microbeads will need to be done. 

Yield 
 
For the 8 donor recipient pairs, yield following a day 3 CD25/71 allodepletion is shown below. 

(Table 13) 

Donor  Day 0 
Count 
(x106 
PBMCs) 

 % Day 0 
Viability 

Day 3 Pre 
depletion 
Count (x106 
PBMCs) 

% Day 3 Pre 
depletion 
Viability  

Day 3 
Post 
depletion 
Count 
(x106 
PBMCs) 

% Day 3 
Post 
depletion 
Viability  

 % of 
the 
Starting 
Count 

1 91.5 100 42 99 13.6 99 14.86
2 101 99 51.5 95 16.6 95 16.4
3 135 99 58 90.6 22.35 77 16.56
4 165 99 62 74 42 93 25.47
5 193.1 100 94 75 28 85 14.51
6 178 99 88 79 31.02 95 17.4
7 67 100 62 79 12.2 95 18.2
8 113 99 71 83 16.49 92 14.59

Mean 138.125 99.375 66.0625 84.325 29.8 91.375 17.2 
 
Table 13: Yield and Viability after a Day 3 CD25/71 allodepletion. Data demonstrating the total number of 
PBMCs (x 106 PBMCs) at start of co culture, pre CD25/71 depletion  on day 3 and after CD25/71 depletion on 
day 3. % Viability was assessed by trypan blue staining. (n=8) 

 
The mean % yield ± 1 SD from 8 donor recipient pairs is 17.2 % ± 3.58. We are routinely able 

to generate 8 x 107 allodepleted donor T-cells (ADTs) from a 450 ml blood donation, so that 

add back of 106/kg CD25/71 ADTs is straightforward. The mean viability post a day 3 

CD25/71 allodepletion was over 90 %.  

CD25/71 Allodepletion using The CliniMACS under GMP 
conditions 
 
To determine if we could reproduce our in vitro data on a larger scale, we performed scale up 

studies in our GMP facility, the Cell Therapy laboratories at Great Ormond Street Hospital 

using the CliniMACS system for depletions. Since we have not as yet obtained regulatory 

approval from The Medicine and Healthcare Regulatory Agency (MHRA) for use of EBV 
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transformed LCLs within this facility, DCs were used as stimulators in these experiments. 

Normal donor PBMCs from buffy coats were co-cultured with HLA mismatched irradiated 

dendritic cells (R.S.10.1) for 4 days (n=2). These experiments were performed before our 

comparison of bags vs. flasks and co-cultures were performed in cell culture bags, in order to 

maintain a closed system throughout the experiment. On day 4, co-cultures were harvested and 

a CD25/71 immunomagnetic labelling was done using biotinylated anti CD25/CD71 and anti 

biotin beads. 

 

For one of the donor recipient pairs, the depletion on the CLINIMACS was done using a TS 

tubing set (recommended by Miltenyi Biotec to perform our depletions). For the other donor 

recipient pair, the depletion was done using a CLINIMACS depletion tubing set. The TS 

tubing set is used for depletions for  up to 60x 109 total PBMCs and the CLINIMACS 

depletion tubing set for up to a total of 120x109 PBMCs. Samples were taken to determine the 

efficacy of depletion and for sterility. 

 

  

 TS Tubing CLINIMACS depletion 

Tubing set 

CD3 CD25 3.84 % 0.09 % 

CD3 CD71 2.14 % 0.04 % 

Table 14: CD25/71 depletions using TS Clinimacs set does not give adequate depletions. 
Normal donor PBMCs were co cultured with HLA mismatched DCs. (n=1). On day 4 a CD25/71 allodepletion 
was performed using a TS CLINIMACS set in 1 donor recipient pair, and a CLINIMACS depletion tubing set in 
the other pair. The allodepleted samples were then stained for residual CD3+ CD25+ and CD3+ CD71+ using 
flow cytometry. 

 
Following allodepletion the samples from the 2 different tubing sets were co stained for CD3 

CD25 and CD3 CD71 flow cytometrically. As can be seen in Table 14, depletions using the 

TS tubing did not lead to acceptable levels of allodepletion. In contrast, depletions performed 

with the CLINIMACS tubing set, did lead to comparable levels of depletion to that what we 

achieved using the MIDI MACS. Viability as assessed by 7AA-D staining was greater than 95 

% in both arms. The % cell yield as percentage of the starting PBMC count was 8.8% for the 

CLINIMACS depletion tubing set, and 10.4 % for the TS tubing set. These values are less than 

the 17 % we achieved using the MIDI MACS, and this may reflect increased cell loss in the 

bag system. Further comparison between the TS tubing set and the depletion tubing set using 
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the same donor recipient pairs are needed.   The CD25/71 allodepleted PBMCs from the 

depletion tubing set fraction were rested for 2 days and then restimulated to host/3rd party in a 

2ºIFNγ ELISPOT ( see Table 15a ) or 2ºMLR (Table 15b). Anti CMV responses were assessed 

by co-culturing unmanipulated PBMC or CD25/71 allodepleted PBMCs from the same donor 

with irradiated autologous PBMC pulsed with a CMV pp65 peptide mix in an IFN γ ELISPOT 

(n=1). (Table 15a) 

 

(a) 

 Host  3rd Party CMV pp65 

Unmanipulated 

PBMCs 

407 302 885 

CD25/71 allodepleted 0 20 395 

(b) 

 Host  3rd Party 

Unmanipulated 

PBMCs 

30553 21850 

CD25/71 allodepleted 0 13023 

 

Table 15: Loss of 3rd party responses after CD25/71 allodepletion using the CLINIMACS. 
(n=1) PBMCs were co cultured with HLA mismatched DCs and then on day 4 a CD25/71 allodepletion was 
performed using the CliniMACS system.  Rested allodepleted PBMCs were then restimulated to host/3rd party 
LCLs in a 2ºIFNγ ELISPOT (a) (No of spots/2x105 PBMCs) or 2ºMLR (CPM/2x105PBMCs) (b)                    
CMV responses were assessesed in an IFNγ ELISPOT by stimulating unmanipulated PBMC or allodepleted 
PBMCs with autologous PBMCs pulsed with CMV pp65 pepmix 

 
Our data show that while CD25/71 depletion completely abrogated IFN-γ responses to host, 

there was extensive loss of 3rd party responses in both assays (6.6 % on the IFNγ ELISPOT), 

(59.6 % on the 2º MLR). Responses to CMV in the IFNγ ELISPOT assay, showed relative 

preservation, though somewhat diminished compared to unmanipulated PBMCs were also 

decreased compared to unmanipulated PBMCs (44.6 %) (Table 15). These results are very 

preliminary, and the loss of 3rd party responses, may reflect the time taken to perform the 

depletion using the CLINIMACS due to the lack of familiarity with this system. Our Current 

Standard Operating Procedure (SOP) for generation of CD25/71 allodepleted donor T cells in 

shown in the Appendix . We plan to repeat the comparison between the tubing sets and 

subsequently to perform clinical scale CD25/71 depletions using this system to determine 
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yield, residual alloreactivity and preservation of antiviral responses in a further 5 donor-

recipient pairs.  

 

 

Conclusions 
 
To optimize our allodepletion strategy, we initially compared the effectiveness of CD25 

immunomagnetic depletion to that of CD25 IT. In 2 different assays we found no significant 

difference in residual alloreactivity to host between these methods. Clinical grade anti-CD25 

immunomagnetic beads (Miltenyi Biotec) are now available, overcoming the limited 

availability of IT. Whilst both methods gave extremely effective depletion of CD25+ T-cells 

(<1%) and residual proliferation to host in primary MLRs (undetectable with both methods), 

significant residual alloreactivity to host was observed in secondary MLRs and ELISPOT 

assays, when CD25 alone was targeted.  

 

We found that 70 % of the CFSE-dim CD25-ve population express CD71. Potentially, this 

enables us to target 2 independent phenotypes of alloreactive T-cells at the same time-point 

within a single co-culture. Flow cytometric analysis showed that immunomagnetic depletion 

deletes CD25+ and CD71+ cells to below background levels. In primary MLRs, residual 

responses to the stimulator were undetectable after CD25/71 depletion. In 2 separate functional 

secondary stimulation assays measuring distinct phenotypes, the combination of CD25/71 

allodepletion led to significantly enhanced and more consistent allodepletion compared to 

CD25 alone without compromising third party responses. Furthermore the combination of 

CD25/71 was superior to the CD25/45RA combination.  Our studies indicate that combined 

CD25/71 depletion results in a 20-fold reduction of proliferating alloreactive T-cells flow 

cytometrically and in secondary MLRs, with a 1-log depletion of response to host in IFN-γ 

ELISPOT assays. Hence, combined CD25/71 depletion may enable safe transfer of larger 

doses of allodepleted donor T-cells than hitherto possible.  

 

Additionally, we showed that LCLs are an excellent APC, for allodepletion strategies, eliciting 

allodepletion that is equal to mature DCs, and superior to that of cytokine treated PBMCs, with 

excellent preservation of 3rd party responses. We further showed that in 12 donor recipient 
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pairs, irradiated LCLs lines were unable to transform co-cultured donor PBMCs. This would 

suggest that the risk of transmitting infectious EBV by using acyclovir treated irradiated LCLs 

is extremely low. Finally, we have demonstrated that immunomagnetic CD25/71 allodepletion 

using The CLINIMACS system is feasible under GMP conditions. Though our results are very 

provisional, we showed acceptable levels of depletion of CD25+ and CD71+ T cells, 

undetectable anti host responses and relative preservation of anti CMV responses, using 

CliniMACS depletion tubing set. Further scale up experiments are planned. 
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CHAPTER 5 
 
 

Assessment of Antiviral Immunity after Combined 
CD25/71 Allodepletion 
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Aims 
1. To determine if T cell responses to CMV, EBV and adenoviral antigens are preserved 

after combined CD25/71 allodepletion compared to unmanipulated PBMCs 

 

Introduction 
 
 The rigorous T- cell depletion required to avoid graft versus host disease (GVHD) after haplo-

SCT results in delayed immune reconstitution, resulting in a high mortality/morbidity from 

viral (chiefly CMV, EBV and adenovirus) and fungal infections7. In particular, adenovirus 

appears to be the single most important cause of infectious death after haplo-SCT.7,168,169 

CD25 based allodepletion strategies preserve in vitro CMV and adenoviral immunity, 86 and 

when LCLs were used as APCs, partial immunity to EBV was preserved through the non 

shared haplotype. Clinically, patients who received adoptive immunotherapy with doses of 3 x 

106/kg of allodepleted donor T-cells generated using CD25 IT after haplo-SCT141 showed 

accelerated T-cell reconstitution and recovery of CMV and EBV-specific immunity. However, 

2 patients in this study died of adenovirus associated complications, and importantly, no 

patient had detectable T-cell responses to this virus before 9 months post-SCT. These data 

suggest that larger doses of allodepleted T-cells may be necessary to confer protective 

responses to pathogens which evoke low frequency T-cell responses in the donor.  

 

In the previous chapter we demonstrated that a combined immunomagnetic CD25/71 

allodepletion resulted in significantly lower residual alloreactivity to host compared to CD25 

based allodepletion. We next studied whether anti-viral responses are preserved following 

CD25/71 allodepletion. 

Antiviral Responses are Preserved after CD25/71 Allodepletion 
 
To determine the specificity of allodepletion with CD25/71 immunomagnetic negative 

selection, we studied whether anti-viral T-cell responses were retained following allodepletion. 

PBMCs from CMV or EBV–positive donors known to have significant populations of virus-

specific CD8+ cells detectable by MHC- peptide pentamers were co-cultured with HLA-

mismatched LCLs for 3 days and then negatively selected for CD25/71 using immunomagnetic 

beads as described in Chapter 4. As shown in Table 16 and the representative FACS plot in Fig 

37a, in 4 donors there was no significant difference in the frequency of CMV-pp65–specific 
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CD8+ T cells in allodepleted donor T-cell cultures compared to unmanipulated PBMCs from 

the same donors (median 2.5 % vs. 3.3 % respectively p=NS). Similarly (Table 17 and 

representative FACs plot in Figure 37b), the frequency of EBV-specific pentamer+ T-cells in 

CD25/71 allodepleted donor T-cells was equivalent to unmanipulated PBMCs (median of 0.34 

% vs. 0.37 % respectively p=NS). These results suggest that virus-specific CD8+T-cells are 

retained following allodepletion. 

Table 16: CD8+ T-cells response to CMV are preserved after CD25/71 allodepletion  
 
 Donor 1 B7 

TPR 
Donor 2 B7 TPR Donor 3 B7 TPR Donor 4 A2 

NLV 
Unmanipulated 3.01 % 14.23 % 2.05 % 0.46 % 
CD25/71 2.52 % 8.45 % 3.98 % 0.29 % 
 
FACS analysis of 4 CMV seropositive donors in unmanipulated PBMCs (top row) or after 
CD25/71 allodepletion (bottom row) following staining with HLA-A2 CMV pentamer. The 
percentage of pentamer positive cells in the CD3+/CD8+ lymphocyte gate was expressed as a 
proportion of the CD8+ cells. CMV- pp65-specific HLA-A*0201-NLVPMVATV (A2-NLV), 
and HLA-B*0702-TPRYTGGGAM (B7-TPR)  
 

 
 

Table 17: CD8+ T-cell responses to EBV are preserved after CD25/71 allodepletion  

 Donor 1 A2-
CLG 

Donor 2 A2-
CLG 

Donor 3 A2-CLG Donor 4 A2 
CLG 

Unmanipulated 0.19 % 0.11 % 0.49 % 0.55 % 
CD25/71 0.09 % 0.12 % 0.62 % 0.72 % 
 
FACS analysis of 4 EBV seropositive donors in unmanipulated PBMCs (top row) or after 
CD25/71 allodepletion (bottom row) following staining with HLA-A2 EBV pentamer. The 
percentage of pentamer positive cells in the CD3+/CD8+ lymphocyte gate was expressed as a 
proportion of the CD8+ cells. EBV- LMP-2 specific HLA-A*0201-CLGGLLTMV (A2-CLG).  
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Figure 39: (a) CMV-specific CD8+ T-cells are preserved after CD25/71 allodepletion The 
figure shows a representative FACS analysis from one of 4 donor-recipient pairs demonstrating staining of either 
unmanipulated PBMCs (left column) or CD25/71 allodepleted cells (right column) in a HLA-A2–positive, CMV-
seropositive donor with a HLA-A2–CMV pp65 pentamer (top right quadrants). The percentages of pentamer-
positive cells as a proportion of CD8+ cells with isotype subtracted are shown. 

(b) EBV-specific CD8+ T-cells are retained after CD25/71 allodepletion. The figure shows a 
representative FACS analysis from one of 4 donor-recipient pairs demonstrating staining of either unmanipulated 
PBMCs (left column) or CD25/71 allodepleted cells (right column) in a HLA-A2–positive, EBV-seropositive 
donor with a HLA-A2–CLG pentamer (top right quadrants). The percentages of pentamer-positive cells as a 
proportion of CD8+ cells with isotype subtracted are shown 
 

 

To study the functionality of anti-viral T-cells, we then performed IFN-γ ELISPOT analyses to 

determine the frequency of CMV, adenoviral and EBV-specific T-cells before and after 

allodepletion.  Donors were co-cultured with completely HLA antigen mismatched LCLs and 

CD25/71 allodepletion was performed at day 3 of co-culture. Unmanipulated PBMC or rested 
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CD25/71 allodepleted T-cells from the same seropositive donors were then restimulated with 

irradiated autologous PBMC pulsed with a peptide mix from the immunodominant CMV 

antigen pp65 or transduced with an adenoviral vector (AD5f35-GFP) or with autologous 

LCLs. As shown in Table 18 (showing the primary data for each donor recipient pair in the 

IFNγ ELISOT assay for CMV, EBV  and adenovirus in unmanipulated and CD25/71 

allodepleted co cultures) and  Figure 38a and 38b (showing the median and range for SFC to 

CMV, EBV and adenovirus in unmanipulated and CD25/71 allodepleted co cultures), there 

was no statistically significant difference (p=NS) in the frequency of cells secreting IFN-γ in 

response to CMV, EBV or adenoviral antigens in allo-depleted T-cell co-cultures and 

unmanipulated PBMC, implying that allo-depletion with combined CD25/71 immunomagnetic 

selection does not affect the function of virus-specific T-cells 
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 (a) Primary Data for Each donor Recipient Pair for CMV Responses in the IFNγ ELISPOT 

assay 

 
 Unmanipulated CD25/71  

Donor 1 55 109
Donor 2 100 93
Donor 3 332 257
Donor 4 206 92
Donor 5 63 64
Mean ± 

SD 
151.2±117.62 123±76.63876

 
(b) Primary Data for Each donor Recipient Pair for EBV Responses in the IFNγ ELISPOT 

assay 

 
 Unmanipulated CD25/71 
Donor 1 100 155
Donor 2 120 165
Donor 3 80 110
Donor 4 90 185
Donor 5 110 95
Mean ± SD 100±15.81 142±38.01316
 
 

(c) Primary Data for Each donor Recipient Pair for Adenovirus Responses in the IFNγ 

ELISPOT assay 

 
 Unmanipulated CD25/71  
Donor 1 135 205
Donor 2 155 150
Donor 3 425 615
Donor 4 115 145
Mean ± SD 207.5±145.91 278.75±225.80
 

Table 18: Primary data for each virus for every donor recipient pair in the IFNγ ELISPOT 
assay.  The frequency of cells secreting IFNγ  (SFC/105 PBMCs) in response to stimulation with irradiated 
autologous PBMC pulsed with a peptide mix from CMV pp65 (a) or autologous EBV LCL (b) was determined by 
ELISPOT assays. Unmanipulated PBMC or CD25/71 allodepleted T-cells from the same seropositive donors 
were compared (n=5) (c) The frequency of cells secreting IFN-  in response to stimulation with irradiated 
autologous PBMC transduced with an adenoviral vector (Ad5f35-GFP) was determined by ELISPOT assay 
(SFC/106 PBMCs). Unmanipulated or CD25/71 allodepleted T cells from the same seropositive donors were 
compared. (n=4) 
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Figure 41 (a) Functional T-cell responses to CMV and EBV are preserved after CD25/71 
allodepletion. (n=5) The frequency of cells secreting IFNγ in response to stimulation with irradiated 
autologous PBMC pulsed with a peptide mix from CMV pp65 or autologous EBV LCL was determined by 
ELISPOT assays. Unmanipulated PBMC or CD25/71 allodepleted T-cells from the same seropositive donors 
were compared. Line = median, box =25th-75th centile, error bars = min, max. 

(b) T cells responses to Adenovirus are preserved after CD25/71 allodepletion N=4 The 
frequency of cells secreting IFNγ in response to stimulation with irradiated autologous PBMC transduced with an 
adenoviral vector (Ad5f35-GFP) was determined by ELISPOT assay. Unmanipulated or CD25/71 allodepleted T 
cells from the same seropositive donors were compared. 
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Conclusion 
 
Infections remain a significant cause of morbidity and mortality after CD34 selected haplo-

SCT. Adoptive immunotherapy with EBV CTLs ,92and CMV-specific CTLs 94,  98 has been 

demonstrated to enhance anti-viral immunity after HLA-matched transplant but these 

approaches are untested in the haploidentical setting . Further, these approaches are limited to 

individual pathogens, and frequently require either prolonged periods of cell culture, thus 

limiting broader clinical applicability. In contrast, allodepleted T-cells confer immunity to a 

wide array of pathogens including all 3 viruses tested, and since the majority of alloreactive T-

cells have been deleted, the risk of GVHD is lower in the haploidentical setting. Moreover, the 

generation of allodepleted T-cells is substantially simpler than many existing protocols for 

CTL generation. 

 

We have demonstrated in 2 distinct assays that anti-CMV and EBV responses are maintained 

following combined CD25/71 allodepletion. Furthermore, IFNγ responses to adenoviral 

antigens are also preserved following CD25/71 allodepletion. We have not assessed whether 

protective responses to fungal pathogens such as Aspergillus are preserved in allodepleted T-

cells because the immunogenic antigens of these organisms are as yet poorly defined. While 

we would predict such responses would be preserved, as T-cells responding to them should not 

be activated, and therefore not depleted, this will need to be confirmed in future studies. Given 

that combined CD25/71 allodepletion is enhanced compared with CD25 depletion suggests 

that it may be possible to safely transfer larger doses of allodepleted donor T-cells than 

hitherto possible and our data suggest that, this may confer protective immunity not only to 

CMV and EBV but also to pathogens which evoke low frequency T-cell responses in the 

donor, such as adenovirus.  
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Chapter 6 
 
 

Enhancement of Anti leukaemic Activity of CD25/71 
Allodepleted Donor T cells 
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Aims 
1. To redirect the specificity of CD25/71 allodepleted donor T-cells with a single chain 

ScFv CD19 chimeric T cells receptor and demonstrate cytotoxicity and cytokine 
release to CD19+ targets 

 

Introduction 
 

Leukaemic relapse remains a major cause of mortality post T-cell deplete haploidentical 

transplantation.8 In clinical studies of adoptive immunotherapy with allodepleted donor T-cells 

generated using CD25 IT, the major cause of treatment failure was relapse.139,141 The 

persistence of anti-leukaemic responses after selective allodepletion is critical if the benefits of 

adoptive transfer are not to be offset by leukaemic relapse, as in our previous study 141. Our 

approach will deplete T-cell responses against the mismatched HLA alleles and ubiquitous 

minor histocompatibility antigens presented by the shared HLA alleles. Nonetheless, we and 

others 86,122,142have shown that anti-leukaemic activity may be retained after allodepletion. In 

particular, we have demonstrated that T-cell responses to potential myeloid tumour antigens 

are preserved by virtue of their lack of expression on the LCL used as stimulators. Such T-cell 

responses could be restricted either through HLA molecules shared by the recipient and donor 

or allorestricted. However, it is known that the precursor frequency of anti-leukaemic T cells is 

much lower than against viral antigens. Analogous to the situation with donor lymphocyte 

infusion, it is possible that infusing higher doses of allodepleted T-cells may confer anti-

leukaemic responses in myeloid malignancies. In order to augment the anti-leukaemic activity 

of allodepleted T-cells in lymphoid malignancies, we have investigated redirecting their 

specificity to target tumour specific antigens using chimeric T-cell receptors. (ChTCR). We 

have focused particularly on B lineage acute lymphoblastic leukaemias this is the commonest 

transplanted malignancy in childhood and relapse is the major cause of treatment failure after 

SCT in both children and adults. 

 

Existing approaches to enhancing graft versus leukaemia, are limited by the technically 

difficult nature of the process, the lack of expression of tumour specific antigens or down 

regulation of the MHC complex. One approach to target B cell malignancies, is based on the 

combining the effector functions of T-cells with the ability of monoclonal antibodies to 



 165

recognize cell surface molecules such as CD19. These chimeric T-cell receptors consist of an 

extracellular singe chain Fv consisting of the heavy and light chain variable regions of a 

monoclonal antibody which is attached to the cytoplasmic domain consisting of the CD3ζ 

chain. As outlined in the introduction, this approach overcomes the lack of immunogenic 

tumour antigens on ALL blasts, enable us to target tumour cells in a HLA independent fashion, 

bypasses tumour evasion strategies and should not cause GVHD as we will target CD19 which 

is highly expressed on B- lineage acute lymphoblastic leukaemias (ALLs), B cell lymphomas, 

and chronic lymphocytic leukaemias but is not expressed on non hematopoietic cells. The 

CD19 specific ScFv is derived from a murine IgG2a monoclonal antibody (clone FMC63) 

fused in frame to an IgG hinge a transmembrane domain and an intracellular CD3ζ. 

Transduction of PBMCs with retroviral vectors coding for CD19 ChTCRs have shown specific 

killing of CD19 targets in vitro and in mouse studies.150,153 

 

 However, the polyclonal  stimulation ( generally with OKT3/ anti CD28 and IL-2) required to 

promote T cells for retroviral transduction to occur, significantly alters the phenotype of the 

transduced cells, promoting differentiation of the transduced T-cells, leading to a reduction in 

anti-viral immunity.107,108 Gattinoni et al demonstrated that highly differentiated T-cells have 

potent in vitro cytotoxicity but weak in vivo activity whilst the converse is true for naïve T- 

cells. 155 In vivo studies with ChTCRs have shown poor efficacy despite strong in vitro 

activity. Potentially, this could be due to neoepitopes in the ChTCRs leading to immune 

clearance of the receptors, or to poor T-cell proliferation due to a lack of co-stimulatory 

domains in the TCR or the highly differentiated state of the transduced T-cells.153,155  

Therefore, a transduction regime of allodepleted T-cells which preserves their phenotype, as 

well as their anti-viral immunity is desirable. Lentiviral vectors have the advantage that they 

are less dependent than oncoretroiral vectors on cell division for stable transduction to occur so 

that less intensive stimulation can be used during transduction. Transduction of T-cells with 

lentiviral constructs stimulated using modest doses of  IL-2 or IL-7 only, has been shown to 

preserve the phenotype of transduced T-cells and preserve anti-viral immunity.107,170 

Moreover, lentiviral transduction is associated with a lower risk of insertional mutagenesis.161 

Thus we investigated if transduction of allodepleted donor T-cells with a lentiviral construct 

encoding for a CD19 chTCR with minimal stimulation was sufficient to redirect their 

specificity towards CD19+ leukaemic targets. 
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Construction of Chimeric TCR and Production of Lentiviral 
Supernatant 
 
The ScFv CD19ζ plasmid was supplied by Dr. Martin Pule. This consisted of the variable 

domains derived from the CD19 specific murine monoclonal antibody FMC-63 assembled as a 

single chain variable fragment (ScFv) molecule, in frame with a sequence encoding the human 

immunoglobulin IgG G1 hinge CH2-CH3, the CD28 transmembrane domain, and the 

cytoplasmic signalling domain of the human CD3ζ. The 1946 base pair fragment of the CD19 

chTCR was amplified by PCR.  Not 1 restriction restriction sites were added to the 5′ end of 

the reverse primer, and a Bgl II restriction site was added to the 5′ of the forward primer so 

that the fragment could be sub cloned into the Not 1 and Bam H1 sites of the pHR –SIN-SE 

lentiviral vector (gift of Dr. Martin Pule).  A schematic CD19R/ pHR –SIN-SE is shown in Fig 

39. This 2nd generation lentiviral vector has no HIV viral protein expression, but has essential 

viral cis elements for vector infection i.e. LTRs, RRE (rev response element which is required 

for viral mRNA export from the nucleus to the cytoplasm), and ψ-packaging signal. It is a SIN 

(self inactivated vector), which is believed to be safer, because of the deletion in the U3 region 

of the 3′LTR, which results in no viral enhancer and promoter transfer into target cells. There 

is a cPPT (central polypurine tract) which increases vector titre up to 10 fold, and a WPRE 

(woodchuck hepatitis post transcriptional element), which increases the stability of the mRNA. 

The CD19 chTCR is under the control of the SFFV promoter. The SFFV promoter (spleen 

focus forming virus LTR) has strong promoter activity in most human or mouse cells including 

primary macrophages, DCs, and lymphocytes. 

 
 
 
 
 

 

 

Figure 43: Schematic of the CD19R/ pHR –SIN-SE.  This consists of a self inactivated (SIN) lentiviral 
construct, with a HIV central polypurine tract (cPPT), Woodchuck hepatitis virus post transcriptional regulatory 
element (WPRE), and a spleen focus forming virus (SFFV) promoter. The CD19R transgene consists a human 
immunoglobulin leader sequence (S), the variable domains of the CD19 specific murine monoclonal antibody 
FMC-63 assembled as a single chain variable fragment (ScFv) (VL and VH), connected by a linker (L), in frame 
with a sequence encoding the human IgG1 hinge and CH2-CH3 domain (Spacer), the human CD28 
transmembrane domain (TM), and the cytoplasmic signalling domain of the human CD3ζ.  

 

5′LTR    cPPT      SFFV       S    VL    L   VH     Spacer    TM     CD3 Zeta   3′LTR∆U3 
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A vector map of CD19R/ pHR –SIN-SE is demonstrated in Fig 40a. To confirm that the 

modified lentiviral vector CD19R/ pHR –SIN-SE contained the CD19 chTCR transgene, the 

following restriction enzyme digests were performed: EcoR1/Not1, EcoR1/BamH1, and 

Not1/BamH1. Restriction enzyme digests with EcoR1/Not1, EcoR1/BamH1, Not1/BamH1 

produced the predicted size fragments (8.5/2.5 kbp; 9.7/1.3 kbp; 9.86/1.15kbp) respectively 

indicative of successful sub cloning of the CD19 chTCR transgene into the lentiviral construct. 

(Fig 40b) 
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Figure 45: CD19R/ pHR –SIN-SE  vector map (b) Agarose gel demonstrating restriction 

enzyme digestion of CD19R/ pHR –SIN-SE with EcoR1/Not1, EcoR1/BamH1, and 

Not1/BamH1.  
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Production and Titration of Lentiviral Construct 

The modified lentiviral vector incorporating the CD19 chTCR transgene was prepared by 

transient co-transfection of three plasmids into 293 T cells: Lentiviral vector DNA (40µg) and 

packaging plasmids pMDG.2 (VSV-G) (10µg) and pCMV∆8.74(gag-pol) (30µg) as described 

in methods. Viral supernatant was harvested at 48 and 72 hours post transfection and 

concentrated by ultracentrifugation. In order to determine the number of transducing particles, 

the virus was titred on 293 T cells using serial dilutions of 1:5 and the cells were analysed for 

anti Fc expression 72 hours later.(Fig 41)  

0.24 % 87.4 % 63.11 %

20.54% 4.73 %

Untransduced 10 ul 2ul

0.4 ul 0.08 ul

Counts

Anti Fc Cy5  

Figure 47: Lentiviral construct (CD19R/ pHR –SIN-SE) was titrated on 293 T cells using 
serial dilution of viral supernatant. The equivalent volume of concentrated supernatant used per well of 
293 T cells is shown. Cells were analysed by flow cytometry 72 hours later for anti Fc expression and the number 
of transducing particles per ml was determined. Representative flow cytometry plots of anti Fc expression in 293 
T cells following exposure to CD19R/ pHR –SIN-SE  

 
The number of transducing particles per ml was determined as described in Chapter 2. Two 

batches were used for subsequent transductions, one of which gave the number of transducing 

particles as 2.04 x1010/ml and the other gave 1.7 x 1010/ml 
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Optimization of lentiviral transduction 

Transduction of T cells with lentiviral constructs using IL-2 or IL-7 only, has been shown to 

preserve the phenotype of transduced T cells and preserve anti-viral immunity.107,170 In order 

to determine the optimal cytokine conditions for transduction with our lentiviral vector, normal 

donor PBMCs were stimulated with IL-2 100 u/ml or IL-7 (5 or 10 ng/ml) for 96 hours and 

then transduced with concentrated lentiviral supernatant at a MOI of 20.  On day 8, the cells 

were harvested and the percentage of transduced T cells was determined by flow cytometry. 

(Fig 42).  As shown in Fig 42, the transduction efficiency with IL-2 prestimulation was more 

than double that achieved with IL-7 (40.8 % vs. 21.49 %). Thus, for future experiments, 

prestimulation with IL-2 100U/ml was used. 

Non Transduced IL-2  100 U/ml

Il-7 5ng/ml IL-7 10 ng/ml

1.85 %

97.24 %

40.86 %

58.08 %

15.6 %

83.46 %

21.49 %

77.45 %

Anti 
Fc

CD3   
 

Figure 49: IL-2 promotes superior transduction of T cells than IL-7. Normal donor PBMCs were 
co cultured in media supplemented with IL-2 (100u/ml) or IL-7 (5 or 10 ng/ml) for 96 hours. CD19R/ pHR –
SIN-SE Lentiviral supernatant was then added at a MOI of 20. On day 8 the expression of anti Fc in T cells was 
determined by flow cytometry. (n=1) The percentage of transduced T cells is shown in the top right hand 
quadrant. Data displayed is gated on the CD3 positive population. 
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Optimization of Multiplicity of Infection 
 
 

30.78 %

T 1 ml MOI 100

MOI 20

14.19%

CD3 Pe

Anti 
Fc 35.5%45.6 %

Untransduced MOI 100

MOI 150 MOI 150+ Polybrene

Viability 97.76 % Viability 92.16 % Viability 96.79 %

Viability 93.78 % Viability 72.17 %

 
 
 
 

Figure 51: MOI of 150 provides Optimum Transduction. Donor PBMCs were cultured in 1 ml 
media supplemented with IL-2 100 U/ml. On day 4 concentrated lentiviral supernatant (CD19R/ pHR –SIN-SE) 
was added at various MOIs. On day 8 the cells were stained for CD3 and anti Fc. Data displayed is gated on the 
CD3 positive population. The percentage of T cells staining for anti Fc is shown in the top right hand quadrant. 
NT- non transduced (n=1) 

 
 
A transduction regime using a MOI of 20 with IL-2 of 100 u/ml only has been shown to lead 

to transduction efficiencies of typically 20-25 %. Higher MOIs have not been reported to 

increase transduction efficiencies.107 In order to verify this and determine the optimum MOI to 

transduce allodepleted T cells, PBMCs were co-cultured in media supplemented with IL-2  

100 u/ml. On day 4 concentrated lentiviral supernatant was added at varying MOIs 

(20,100,150) and with /without polybrene (5µg/ml), a cationic polymer that increases 

transduction efficiency with retroviral vectors by enhancing receptor independent virus 

adsorption on target cells. Cells were harvested 4 days later and the percentage of transduced T 

cells was determined by flow cytometry and the viability was determined by trypan staining. 

As shown in Fig 43, the transduction efficiency of T-cells increased with increasing MOI and a 

MOI of 150 provided the best transduction (45.6 %), over 3 x times than that achieved with a 
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MOI of 20. Adding polybrene to the co-cultures did not increase transduction efficiencies, but 

decreased viability. Co-cultures to which lentiviral supernatant was added at a MOI of 150 had 

a viability of 94 % after 8 days. Thus, for future experiments a transduction without polybrene 

at a MOI of 150 was used. 

 

Detecting Cytotoxicity of CD19+ Targets by Transduced T cells 
 
We then studied whether transduction of PBMCs with our lentiviral CD19chTCR vector 

redirected their specificity so that they recognized and lysed CD19+ target cells. Normal donor 

PBMCs were resuspended in CTL media, and prestimulated with IL-2 100 u/ml. On day 4 

lentiviral supernatant at a MOI of 150 was added, and on day 8 the cells the cells were used as 

effectors in a 51Cr assay. A transduction efficiency of 31.2 % of T cells was achieved. Targets 

included K562 cells, K562 cells stably transduced with a CD19+GFP+ transgene, K562 cells 

transduced with GFP alone, autologous LCLs and HLA mismatched allogeneic LCLs. 

Effector: target ratios of 1:1, 5:1, and 30:1 were plated. In this assay, no specific lysis was 

detected to any of the CD19+ targets in the 51Cr assay (n=1). This may represent the 

predominantly naïve phenotype of the transduced population, 107 (though the CCR7/CD45RA 

expression of transduced cells was not determined) with the percentage of transduced CD8+ 

CTL being too small to elicit any detectable cytotoxicity.  
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Figure 53: OKT3 transduced ζCD19 PBMCs show significant cytotoxicity against CD19+ 
Targets. Normal donor PBMCs were stimulated with OKT3, CD28, IL-2 or IL-2 100u/ml only. (n=1) Mock 
transduced or PBMCs transduced with CD19R/PHR-SIN-SE were co cultured with K562 GPP+ CD19+/- cells. 
After a week, cells were stained with 7AA-D, and trucount beads. A fixed number of counting beads was 
acquired and the number of 7AA-D negative, GFP+ cells was determined. NT-non transduced  T-transduced 

 
To investigate this further, in our next experiments we included a positive control consisting of 

PBMCs transduced after polyclonal stimulation with OKT3/αCD28 and IL-2 which promotes 

with high efficiency transduction and differentiation of naïve T cells into effector CTLs. 

Additionally, we developed a more sensitive flow cytometric cytotoxicity assay based on 

assessment of cell viability. As we assessed cytotoxicity after a week of co-culture between 

effectors and targets, it enabled an assessment of cytotoxicity over a longer period, and thus 

was felt to be more sensitive than the 51Cr based cytotoxicity assay.  

 

Normal donor PBMCs were transduced/mock transduced in media supplemented with OKT3 

(1µg/ml) anti CD28 (1µg/ml) and IL-2 (100U/ml) to serve as s positive control, or IL-2  

100 u/ml only as described. Transduced/mock transduced PBMCs were co-cultured with an 

equal number of K562 GFP+CD19+ or K562GFP+CD19- cells. (Fig 44) After a week, the 

number of viable GFP+ cells was determined by staining with 7-AAD. A fixed number of 

trucount beads was acquired to ensure that comparison could be made between the different 

co- cultures. As shown in Fig 45,  PBMCs stimulated with OKT3/αCD28 demonstrated 82 % 
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cytotoxicity against K562-CD19+GFP+ cells but there was no significant cytotoxicity against 

CD19 negative K562-GFP+ targets. (cytotoxicity = 1-number of viable K562+CD19+/number 

of viable K562+CD19- x 100). PBMCs stimulated with IL-2 100 u/ml only demonstrated a 48 

% cytotoxicity at an E:T ratio of 1:1 against K562-CD19+GFP+ targets again with minimal 

cytolysis of CD19-ve K562+GFP+ cells.  Though this assay, demonstrated that our 

transduction regime can lead to detectable cytotoxicity of CD19+ targets, the level of 

cytotoxicity was disappointing. In order to maximize cytotoxicity in the transduced fractions, 

in future experiments we plan to flow cytometrically sort the CD3+/antiFc+ cells to enrich for 

transduced PBMCs and repeat the assay. 

 

An alternative assay to detect cytotoxicity is the granzyme B ELISPOT, which has been 

reported to be more sensitive than the 51Cr assay.171 Thus, CD19/pHR-SIN-SE transduced and 

mock transduced PBMCs were co cultured with CD19+/- targets and cytotoxicity was detected 

using the ELISPOT assay, as described in Methods. The transduction efficiency was 34.3 % 
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Figure 55: CD19ζ Transduced PBMCs secrete Granzyme B in Response to CD19+ Targets. 
Normal donor PBMCs were cultured in media supplemented with IL-2 100 u/ml and on day 4 concentrated 
CD19/pHR-SIN-SE lentiviral supernatant was added. On day 8, the transduced and mock transduced PBMCs 
were cultured with CD19+/- targets in a granzyme B ELISPOT. (n=1) 

 

As shown in Fig  45, transduced PBMCs demonstrated granzyme B release in response to 

K562 CD19+ (68 SFC/2 x 105 PBMCs) but only background levels in response to K562 

CD19- ve targets (3 SFC/2 x 105 PBMCs). Similarly, tranduced PBMCs showed enhanced 

granzyme B responses compared with mock transduced PBMCs to autologous LCL (130 vs. 4 

SFC respectively for transduced and mock transduced) and HLA mismatched allogeneic LCLs 
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(138 vs. 51 SFC for transduced and mock transduced respectively). The response of mock 

transduced PBMCs to HLA mismatched LCLs is likely to reflect an alloreactive T cell 

responses, which is augmented in transduced PBMCs through recognition of CD19. 

Transduced PBMCs also demonstrated enhanced granzyme B response to Ramos cells, an 

EBV- CD19+ Burkitt’s lymphoma cell line (138 vs. 8 SFC for transduced and mock 

transduced respectively). Thus, as the granzyme B ELISPOT was able to specifically and 

sensitively detect cytotoxicity elicited by transduced T cells, we then used this assay and the 

IFNγ ELISPOT assay to detect anti tumour responses elicited by transduced allodepleted 

PBMCs. 

 

Enhancement of Anti-leukaemic Activity of Allodepleted PBMCs 
 
In order to enhance the anti leukemic activity of allodepleted PBMCs against B-cell 

malignancies, CD25/71 allodepleted donor T cells from 6 HLA- mismatched normal donor-

recipient pairs were transduced with the CD19R/ pHR –SIN-SE lentivirus (MOI 150) using a 

method  (prestimulation with IL-2 100 u/ml ) which has been shown to preserve the phenotype 

and anti-viral immunity of transduced T-cells.107,170 The mean transduction efficiency was 19.6 

%± 6.4. A representative FACS plot of transduced and mock transduced allodepleted T-cells is 

shown in Fig 46. Unselected transduced CD25/71 allodepleted donor T-cells were then used as 

effectors in IFNγ and granzyme B ELISPOT assays. We observed that CD19/pHR-SIN-SE 

transduced allodepleted T-cells compared to mock transduced cells, secreted significantly 

more IFN-γ (Figure 47a) and granzyme B (Figure 47b) following stimulation with CD19+ 

tumor cell lines (K562-CD19 and Ramos, both p <0.05), autologous and allogeneic LCL (p 

<0.05) and 1o blasts from 4 patients with ALL (p<0.05). Transduced CD25/71 allodepleted 

donor T-cells showed no significant IFN-γ and granzyme B secretion to CD19-ve targets (K562 

or K562-GFP). These results indicate that allodepleted T cells can be redirected to recognise 

leukaemic targets through lentiviral chimeric TCR transfer. 
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Figure 57: Representative FACS plot demonstrating transduction of allodepleted T-cells 
with CD19R/ pHR –SIN-SE lentiviral construct 
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Figure 59 : Transduced Allodepleted PBMCs demonstrate CD19 specific cytotoxicity and 
cytokine release.(a) CD19R/ pHR –SIN-SE Transduced CD25/71 allodepleted PBMCs demonstrate 
significantly enhanced Granzyme B secretion to CD19+ targets(n=6)  CD19R transduced or mock transduced 
CD25/71 allodepleted PBMCs were cultured with CD19+/- targets in a granzyme B ELISPOT assay. Transduced 
allodepleted PBMCs showed significantly enhanced granzyme B secretion to autologous and allogeneic LCLs, 
K562 cells stably transduced with a GFP-CD19+ transgene, Ramos, and 1º ALL blasts (* p<0.05) compared to 
mock transduced (Mean ± SEM) (b) CD19R/ pHR –SIN-SE transduced CD25/71 allodepleted PBMCs 
demonstrate significantly enhanced IFNγ secretion to CD19+ targets. (n=6)  CD19R transduced or mock 
transduced CD25/71 allodepleted PBMCs were cultured with CD19+/- targets in an IFNγ ELISPOT assay. 
Transduced allodepleted PBMCs showed significantly enhanced IFNγ secretion to autologous and allogeneic 
LCLs, K562 cells stably transduced with a GFP-CD19+ transgene, Ramos, and 1º ALL blasts (* p<0.05) 
compared to mock transduced (Mean ± SEM) 
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Conclusion 
 

Leukaemic relapse is a major cause of mortality post haploidentical transplantation.8,141 While 

unmanipulated donor lymphocyte infusion (DLI), may have some role in preventing relapse in 

patients who become mixed chimeras post-SCT,172  this approach is ineffective in frank 

relapse.173 To enhance anti-leukaemic responses of DLI, some investigators have repeatedly 

stimulated donor PBMCs with host ALL blasts to generate tumour CTLs which have been 

infused post haploidentical transplantation. These CTLs however, still show significant host 

reactivity. 174 

 

The advantages of our approach are that over 90 % of alloreactive T-cells have been deleted, 

thus minimizing the risk of GVHD, and that a much higher proportion of transferred T-cells 

will recognize leukaemic targets following chimeric TCR transfer. We have demonstrated 

efficient transduction of allodepleted T-cells with a lentiviral CD19 chTCR construct using a 

regime incorporating IL-2 100 u/ml only. Furthermore, we then demonstrated that these 

transduced allodepleted T-cells have significantly enhanced granzyme B release and IFNγ 

release to CD19+ targets compared to mock transduced allodepleted donor T-cells. The degree 

of cytokine secretion to LCLs was considerably higher than to primary ALL blasts and Ramos 

cells. This may reflect the high expression of CD80 and CD86 on the LCLs, and the 

corresponding lack of co-stimulatory ligands on Ramos and primary ALL blasts. 175,176 The 

levels of cytotoxicity we observed after transduction of the CD25/71 allodepleted donor T- 

cells, is somewhat lower than that reported after retroviral transduction of normal donor T-

cells with CD19ζ constructs using OT3/CD28 stimulation.150,153 This may reflect that our 

transduction regime resulted in predominantly naïve T-cells being transduced, which lack 

cytolytic activity. However, lentiviral transduction may be associated with a lower risk of 

insertional mutagenesis,161 and  our transduction regimen has been shown to maintain the 

phenotype of T-cells, as well as preserve anti-viral immunity and third party activity.107,170 

Clearly, it will be important to confirm this is true of CD19 chTCR transduced allodepleted T- 

cells in future studies. 

 

Furthermore, though highly differentiated tumours CTLs demonstrate potent in vitro 

cytotoxicity, they have considerably less in vivo efficacy. 93,155  It is unclear how many 
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allodepleted donor T-cells would be required to confer clinically relevant anti-leukaemic 

responses in the haploidentical setting: because of the possibility of allorestricted responses, 

this may in fact be considerably lower than the numbers of DLI required to induce GVL after 

HLA-matched SCT. Because of the limitations of experimental models, it may be that this 

question can only be answered in a clinical study. 
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Discussion 
 
 
Interest in BMT from haploidentical donors arises from the immediate availability of a one 

haplotype-mismatched donor for virtually all patients, particularly those who urgently need 

transplantation. In the international registries the probability of finding a matched unrelated 

donor (MUD) ranges from 10% in poorly represented ethnic groups to 60% in Caucasians,1 so 

that the only feasible option in many cases is a haploidentical transplant. However, to avoid 

GVHD, grafts are T-cells depleted leading to a profound delay in T-cell reconstitution. This 

delay in T-cell reconstitution is exacerbated by thymic dysfunction induced by chemo 

radiotherapy and the occurrence of GVHD and its treatment. This predisposes to a high risk of 

mortality from relapse and infection especially from adenovirus. There have been numerous 

approaches to improving immune reconstitution after haplo-SCT such as allodepletion, RIC 

after CD3/19 depletion, transduction of donor T-cells with a suicide gene and ex vivo induction 

of anergy to alloantigens with CTLA-4 Ig. Allodepletion strategies selectively deplete 

alloreactive T-cells after ex vivo stimulation of donor lymphocytes in an allogeneic mixed 

lymphocyte reaction (MLR) and to adoptively transfer the residual allodepleted donor T-cells. 

Strategies for depletion of activated alloreactive donor T cells include negative selection of 

donor T cells expressing activation markers (e.g. CD25, CD69, CD134, CD137, CD147, HLA-

DR) 114-118 59,122,177, using immunotoxins or immunomagnetic selection, fluorescence activated 

cell sorting18,24,killing activated T-cells by photodynamic purging52,140,178chemotherapy agents,  
120 or inducing Fas mediated apoptosis.119  

 

Allodepletion has numerous advantages compared to other techniques used to enhance 

immune reconstitution after haplo-SCT.  Compared to transfer of antigen-specific CTL 
88,94,98,100, it augments cellular immunity to multiple pathogens and reduces the risk of GVHD 

in the HLA-mismatched setting. Adoptive transfer of donor T-cells transduced with a suicide 

gene in the haplo-SCT requires transduction with integrating viral vectors with the attendant 

complex regulatory requirements. Suicide genes may be ‘leaky’ with basal toxicity (e.g. 

icaspase 9110 , and truncated CD20179) and immunogenic (e.g. HSV-TK104,180). Most 

importantly, in vitro studies suggest that the transduction process affects desirable anti-viral 

reponses.27,107,132  
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Ex vivo induction of anergy may have negative regulatory effects on desirable T-cell 

responses; indeed, in the only clinical study of this approach to date91, no data was provided on 

recovery of immune responses to pathogens and a high rate of infection related mortality was 

observed. Further until very recently, clinical grade antibodies to induce co-stimulatory 

blockade were not available. Chen et al 10have observed more rapid immune reconstitution 

after reduced intensity conditioning and CD3/19 negative selection of the graft compared with 

conventional intensity CD34 positively-selected haplo-SCT. In this approach larger doses of 

residual T-cell doses (~105 CD3/kg) are infused with the graft as well as a multitude of 

accessory cells. However, this was associated with a 36% incidence of significant aGVHD. 

Further, while T-cell reconstitution appears improved compared to CD34-selected haplo-SCT, 

it remained slower than that observed with our previous study of adoptive transfer of 

allodepleted T-cells at 3 x 105/kg (median circulating T-cells at 3 months post-SCT 350/µL vs. 

616 /µL) and there was no assessment of anti-viral immunity. The increased T-cell 

reconstitution after RIC CD3/19 haplo-SCT may reflect increased proliferation of alloreactive 

T-cells in the patients who developed GVHD. No assessment of T-cell reconstitution in 

patients without GVHD was done. Thus, allodepletion offers a safer, more effective way of 

improving T-cell immunity after haplo-SCT. 

 

At present clinical trials of immunotherapy with allodepleted donor T-cells have focused on 

CD25-based approaches. We and others86,122 have demonstrated that allodepletion using a 

CD25 immunotoxin RFT5-SMPT-dgA (IT) specifically deletes host-reactive T-cell responses 

with preservation of anti-viral and anti-leukemic responses. Andre-Schmutz et al first showed 

that adoptive transfer of allodepleted donor T-cells generated using this IT after HLA-

mismatched SCT was safe and feasible138. Only 2/15 patients developed significant aGVHD 

and this correlated with the residual proliferative response to host in 1o MLR. Solomon et al. 

have adoptively transferred larger doses of allodepleted donor T-cells generated using a similar 

approach in 16 adults transplanted from HLA-matched sibling donors139. Despite 

allodepletion, grade II-IV GVHD was observed in 46 % of patients and was inversely 

associated with the efficacy of allodepletion. These patients showed good recovery of T-

regulatory cells140, so that GVHD is likely to reflect insufficient removal of alloreactive T 

cells, rather than deletion of T-regs.   
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With our collaborators, our group compared immune reconstitution after adoptive 

immunotherapy with 2 doses of allodepleted donor T-cells generated using CD25 IT in 16 

paediatric patients after haplo-SCT141. We demonstrated that transfer of allodepleted donor T- 

cells at a dose of 3 x 105/kg accelerated T-cell reconstitution and recovery of CMV and EBV-

specific immunity. However, the rate of leukemic relapse rate was high, resulting in an overall 

survival of only 5/16. This may be explained by the high-risk nature of this patient group and 

the low precursor frequency of leukaemia-reactive T-cells within the infused allodepleted 

donor T-cells. Additionally, 2 patients died of adenovirus associated complications, including 

1 who had persistent adenoviraemia despite 3 infusions of allodepleted donor T cells at 105/kg, 

which cleared after a single infusion at 2.5 x 106/kg. Importantly, no patient had detectable T-

cell responses to this virus before 9 months post-SCT. These data suggest that larger doses of 

allodepleted donor T-cells may be necessary to confer protective responses to pathogens such 

as adenovirus which evoke low frequency T-cell responses in the donor 102and for a graft-

versus-leukaemia (GVL) effect. While the incidence of significant acute and chronic GVHD 

was low in our clinical study, this was nonetheless observed in 2 cases, raising concerns about 

the safety of administering larger doses of allodepleted donor T cells in the haploidentical 

setting, particularly as our in vitro data indicates that significant residual alloreactivity persists 

after CD25 IT mediated allodepletion125. There is thus a pressing need to enhance the degree 

of depletion of alloreactive T-cells, to enable add back of sufficient T-cells for protective anti-

leukemic and anti-infective responses without causing GVHD.  

 

Activated T-cells express a variety of surface markers, including CD25, CD69, CD71, CD95, 

CD137, CD147, OX40, ICOS, HLA-DR, and secrete Th1 cytokines IL-2 and IFN-γ. As such, a 

plethora of potential targets and methods now exist for allodepletion strategies59,114-118 but 

there is no data on the relative expression of these targets on alloreactive T-cells to enable 

identification of the optimal targets for allodepletion. The data above imply that a significant 

minority of alloreactive T-cells are retained after CD25-based allodepletion, suggesting that 

CD25 may be expressed only in a subset of alloreactive T-cells and raising the possibility that 

targeting other molecules, perhaps in combination with CD25, could enhance allodepletion. In 

order to rationally design strategies for enhanced allodepletion, we systematically 

characterized the phenotype of alloreactive T-cells. While alloreactive T-cells have multiple 

phenotypes, proliferation in response to alloantigens is their most basic hallmark. We have 

identified proliferating alloreactive T-cells using carboxyfluorescein diacetate succinmidyl 

ester (CFSE) dye dilution. Godfrey et al24 have shown that flow cytometric depletion of 
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CFSE-dim T-cells almost completely abrogates in vitro alloreactivity in secondary MLRs and 

markedly reduces GVHD in an MHC Class II disparate murine model. While it is not practical 

to use this approach clinically, we used this method to systematically characterize the 

expression of cytokines, effector molecules and activation markers on proliferating 

alloreactive T cells. CFSE labelling is easier than alternative measurements of T-cell 

proliferation e.g. Ki67, BrDU which require cell fixation, and enables elucidation of the 

precursor frequency of dividing cells to be determined. 

 

 

Measurement of Alloreactivity 
 
Following depletion of alloreactive T-cells, there are currently a multitude of assays to 

determine residual alloreactivity. The lack of a standardised read out for measuring residual 

alloreactivity in this setting remains a significant problem, hindering comparisons between 

different methods of allodepletion. We have used a number of assays including flow cytometry 

to assess residual percentages of CD3+25/71+cells, primary MLRs, and delayed restimulation 

with host/3rd party antigen presenting cells in  IFNγ ELISPOT and bulk 2º MLR assays. 

 

Each of these assays has its own strengths and weaknesses. If allodepletion involves deleting 

cells expressing given surface markers(s), then while flow cytometry on the allodepleted 

fraction gives information as to the efficacy of depletion, it tells nothing about the persistence 

or otherwise of alloreactive T cells that do not express this marker(s). Thus, as such assays, 

examine only a single targeted phenotypic marker at a single time-point, as a general principle, 

it is preferable to assay an alternative phenotype to the method used for depletion. Further, the 

assay, used to estimate residual alloreactivity should detect as broad an array of alloreactive T-

cells as possible, rather than focussing on phenotypes expressed by only a minority of 

alloreactive-T-cells. Thus, we believe that multiple assays, are necessary and that, for instance, 

given that proliferation in response to alloantigen is almost a universal hallmark of 

alloreactivity, proliferation based assays are preferable to those assaying narrower alloreactive 

T-cells subsets, including LDA- based cytotoxicity114 and granzyme assays135,assays 

measuring the expression of individual markers or release of cytokines e.g. IFNγ59,125  in 

response to alloantigeneic stimuli, which may significantly underestimate residual 

alloreactivity.  
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2º IFNγ ELISPOTS are easy to perform, reproducible, but only examine a subset of the 

alloreactive response (CD4 TH1/ CD8 memory + effector). Our own data also showed that 

only a minority of proliferating alloreactive T-cells secrete IFNγ.  Using this assay, Amrolia et 

al demonstrated that allodepletion using CD25IT led to a median 17 fold reduction in residual 

alloreactivity125, whilst Wehler et al showed a 10 fold reduction after CD137 allodepletion 

compared to unmanipulated PBMCs59. The IFNγ ELISPOT is quantitative, and our data 

suggests that it correlates with the 2º MLR, though the levels of depletion are less. However, 

unmanipulated PBMCs show a poor response to allo PBMCs, thus they require allo LCLs as 

secondary stimulators. Furthermore, if PBMC/DCs are used as 1º stimulators, the allodepleted 

PBMCs will secrete IFNγ in response to the shared haplotype upon secondary restimulation 

leading to a spuriously elevated response. 

 

Proliferation remains the key hallmark of an alloreactive T-cell, and for alloreactive T-cell to 

cause clinical sequelae would probably require them to proliferate. MLRs examine both CD4 

and CD8 proliferative responses to host, but are highly variable. Residual proliferation greater 

than 1 % in the 1º MLR correlated with GVHD in the Paris allodepletion study138, but they are 

insensitive. The 2º MLR is more sensitive, but we have found results to be highly dependent 

on the timing of the 2º stimulation in relation to allodepletion with negligible responses if 

restimulation was done immediately after depletion. We found bulk 2º MLRs are more 

sensitive if the cells are rested after allodepletion and therefore used a delayed 2ºMLR to skew 

our assays in order to detect residual alloreactivity.. There have also been a variety of controls 

used in 2º MLRs: we believe thawed unmanipulated PBMCs to be the most appropriate control 

to compare allodepleted fractions with. In contrast, others have used  sensitized activated 

PBMCs.115,178 Clearly, however, the 2º MLR is not quantitative and there is no data correlating 

this assay following allodepletion with GVHD after transfer of allodepleted T-cells clinically. 

 

An alternative assay of residual alloreactivity is the limiting dilutional assay (LDA). This assay 

determines the frequency at limiting dilution of T-cell progenitors capable of generating an 

interleukin-2 (IL-2)–producing (T-helper) clone (HTLp assays), cytotoxic responses (CTLp) or 

colony formation in response to a given stimulator. LDAs are sensitive, but they are time 

consuming to perform, subjective to analyse, semi quantitative and are complicated by wide 

confidence intervals, which may obscure significant changes. Furthermore, cytotoxic 

responses (CD8 CTL)60 and IL-2 secretion (CD4 Helper)  (as evidenced by our own data Fig 
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17) are expressed only in a minority of alloreactive T cells. Cavazzana-Calvo et al 

demonstrated a 1-1.6 log reduction in CTLp114 frequencies and  Solomon et al139 demonstrated 

a median 5 fold reduction in HTLp frequencies after CD25IT based allodepletion. The HTLp 

assay showed poor correlation with the onset of GVHD in their clinical study in the matched 

sibling setting. Nevertheless, failure of CD25IT allodepletion as indicated by their HTLp assay 

led to severe visceral GVHD.  

 

 

Clearly, then we need standardised methodology to measure residual alloreactivity and hence 

facilitate comparison between allodepletion methods. None of the existing techniques has been 

proven to correlate clinically with GVHD. We chose to use a combination of primary MLRs 

(which whilst insensitive, were associated with GVHD in the study of Andre- Schmutz et al 
138) delayed bulk 2º proliferation assays, which probably capture most residual alloreactive T- 

cells, and IFNγ ELISPOTS assays, to assay a different phenotype of residual alloreactive T- 

cells, acknowledging this is only expressed on a subset of such cells. We accept that such in 

vitro assays have not been shown to correlate clinically with GVHD. However, it could be 

argued that the absolute level of allodepletion may not be important if techniques show 

enhanced level of allodepletion compared to existing strategies (e.g. CD25 based) , which have 

been shown to be safe clinically, is not clear.  

 

Due to the lack of time, we were unable to assess the efficacy of our allodepletion approach in 

an animal model. The relevance of mouse models in assessing the potential for GVHD in 

humans after allodepletion is not clear. Animal models have been used by several groups to 

determine the potential for GVHD after adoptive immunotherapy.52,112 Chen et al 

demonstrated that despite showing significant in vitro alloreactivity after PDP treatment, 

adoptive immunotherapy with T-cell depleted bone marrow and PDP treated T-cells into a 

mismatched mouse model, did not lead to GVHD and prolonged survival compared to bone 

marrow alone.52 Hartwig et al, used a parent P→F1 model to examine CD95 based 

allodepletion (H-2k→H-2kd ) 119.  Using this model, they demonstrated  that adoptive transfer of 

CD95 deleted T-cells did not induce lethal GVHD, in contrast to primed T-cells, whereas 

significant in vitro alloreactivity persisted when this method used in vitro using human 

PBMCs. 128 Furthermore, animal models of allodepletion do have limitations reflecting 

differences between mouse and human T-cells. This is exemplified by the finding in mice that 



 187

alloreactive T-cells causing GVHD predominantly reside in the naïve T-cell compartment.28 

Our data, demonstrating in vitro alloreactivity in both CD45RA+ ve and –ve fractions, 

indicates that such clear delineation in humans does not seem likely. This highlights the need 

to use multiple read outs of residual alloreactivity. We have found that proliferative and 

cytokine responses to 2o  stimulation with host antigen presenting cells were highly dependent 

on the timing of 2o stimulation in relation to immunodepletion, with negligible responses if 

restimulation was done immediately after depletion. 125 We also examined proliferation in a 1º 

MLR and assessed the residual % of CD3+CD25+CD71+ after allodepletion by flow 

cytometry. 

 

In future studies, one potential approach to assess the in vivo efficacy of our CD25/71 

allodepletion approach in an animal model would be to use a parent→F1 T- cell transfer in H2 

mismatched mice: BALB/cJ mice (H-2d) would be bred with another strain C3H/HeJ (H-2k) to 

create  H2 hybrid mice. The F1 recipient mice can thus not evoke a host versus graft effect 

against parental T-cells, whereas parental T-cells will cause lethal GVHD in F1 mice. Donor 

(parent) mouse PBMCs would initially be co-cultured with the hybrid F1 mouse DCs. Clearly, 

we would need to confirm that CD25 and CD71 are up regulated on alloreactive mouse T- 

cells, as what is seen with human T-cells. This being the case, an immunomagnetic CD25/71 

allodepletion could be performed. The hybrid mouse could be lethally irradiated and T-cell 

depleted donor bone marrow with or without residual allodepleted donor mouse PBMCs could 

then be infused into the hybrid recipient. This mouse model would then assess GVHD across a 

MHC haplotype mismatch. Weight and signs of acute GVHD (diarrhoea, fur ruffling, and 

hunchback) in the mice could be assessed in the recipient mice over a 30-100 day period and if 

GVHD occurred, this could be confirmed histologically. Additionally, if donor T-cells were 

generated from transgenic mice constitutively expressing firefly luciferase, this would allow 

tracking of donor T-cells in the recipient mouse. To assess the efficacy of antiviral immunity, 

the recipient mouse could be injected with lymphocytic choriomeningitis virus (LCMV) as a 

surrogate for CMV infection or mouse adenovirus strain 1, to assess adenoviral immunity.181 

This model is limited by the fact that activation marker up regulation in mice may differ to that 

of humans. More importantly, the monoclonal antibody clones used to delete CD25+ and 

CD71+  mouse T-cells will have different avidity to that used against human CD25+/CD71+ 

T-cells, thus making it difficult to extrapolate results from a mouse model to that of humans 

even if transfer of CD25/71 allodepleted T-cells does not cause GVHD in mice. Thus, in 
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summary there are a multitude of assays used to determine residual alloreactivity. We have 

chosen to use several assays so that we can assay the diverse phenotypes of alloreactive T cells 

i.e. 1º +2º MLRs, FACS of activation markers and the 2º IFNγ ELISPOT assays.  

 

 

Phenotypic Characterisation of Proliferating Alloreactive T cells 
 

In order to design rational strategies to refine allodepletion, we systematically characterized 

the activation and cytokine marker profile in proliferating alloreactive T-cells. While 

alloreactive T-cells can be identified by a number of phenotypes, we focused on proliferation 

in response to alloantigen as the most fundamental. Thus, we co-cultured CFSE labelled T- 

cells with HLA mismatched DCs, and then tracked the proliferating CFSE dim T-cells using 

flow cytometry. Our data showed that CD25 was expressed in over 80 % and CD71 in 65 % of 

proliferating alloreactive T-cells on day 3 of MLR. In contrast, CD69, CD45RA, ICOS, OX40, 

CD95, HLA-DR, IL-2, IFN-γ, and TNF α were all expressed only in a minority of 

proliferating alloreactive T-cells, indicating that these are poor targets for allodepletion. Thus 

this validates our previous strategy of using CD25 as an allodepletion targets and identifies 

CD71 as a novel target. 

 

Whilst our data provide strong support for targeting CD25 in allodepletion strategies, in order 

to optimize our allodepletion strategy, we initially compared the effectiveness of CD25 

immunomagnetic depletion to that of CD25 IT. In 2 different assays we found no significant 

difference in residual alloreactivity to host between these methods, confirming similar findings 

found by other investigators.124 Clinical grade anti-CD25 immunomagnetic beads (Miltenyi 

Biotec) are now available, overcoming the limited availability of IT. Whilst our methods gave 

extremely effective depletion of CD25+ (<1%) and residual proliferation to host in primary 

MLRs was undetectable, significant residual alloreactivity to host was observed in secondary 

MLRs and ELISPOT assays. These residual responses are comparable to those seen by some 

investigators 59,115,118,139 but somewhat higher than reported by others using CD25 based 
114,122,177 and other allodepletion strategies178. However, as highlighted above, comparing 

residual alloreactivity between such studies is very difficult because of methodological 

differences.  A number of these studies are complicated by reliance in primary MLR122, the 

wide confidence intervals for CTLp and HTLp assays122,177,178 and by comparison of 



 189

alloreactivity with donor PBMC previously sensitized to the recipient rather than 

unmanipulated donor PBMC18,115,178. As noted previously, we have found that proliferative 

and cytokine responses to secondary stimulation with host antigen presenting cells were highly 

dependent on the timing of secondary stimulation in relation to immunodepletion, with 

negligible responses if restimulation was done immediately after depletion 125. In order to skew 

our assays to optimise detection of residual anti-host responses, in our assays, cells were rested 

for 2 days after allodepletion before restimulation. By resting the allodepleted PBMCs, 

alloreactive PBMCs that were not removed by CD25 allodepletion continue to proliferate over 

the course of the 2 days, so that they constitute a greater percentage at the time of the 

secondary assays.  Nevertheless, down regulation of CD25 before allodepletion, up regulation 

of this marker after day 3, and the presence of CD25-ve alloreactive T cells may also explain 

why there was significant residual alloreactivity. 

 

Our studies identified CD71 as strongly expressed on proliferating alloreactive T cells. CD71 

is homodimeric receptor (180 kDa) which allows internalization of iron-bound transferrin in 

clathrin-coated pits. In endosomal vesicles, iron is then released by compartment acidification 

(pH 5–5.5), while apo-transferrin and CD71 are recycled into the blood or to the cell surface, 

respectively.  CD71 is expressed on marrow stromal cells from bone marrow, on activated T 

and B lymphocytes, macrophages, and all proliferating cells. It is upregulated on lymphocytes 

during proliferative responses to antigens or mitogens but is not expressed on resting 

lymphocytes. CD71 is present on reticulocytes and erythroid progenitors in fetal liver, cord 

blood, and peripheral blood, yet it is lost as these differentiate to mature erythrocytes. CD71 

expression is strictly regulated by intracellular iron level: CD71 mRNA is stabilized and 

abundant in iron-deficient cells to increase extracellular iron uptake. This post-transcriptional 

regulation is allowed by the presence of iron responsive elements (IRE) in the 3'-untranslated 

region of the CD71 transcript that is recognized by two iron regulatory proteins. Our data is 

consistent with that of Nguyen et al. who demonstrated69 that there was strong up regulation of 

CD71 and CD25 on human alloreactive T-cells in an allo MLR, peaking on days 7-9, and that 

CD71 expression correlated with alloreactive T-cell proliferation. 70 The low level of CD71 

expression on resting lymphocytes and its up regulation in a MLR identify CD71 as an 

excellent novel target for allodepletion. Consistent with this, administration of anti CD71 

antibodies have been shown in mismatched mouse model to significantly prolong pancreatic 

islet graft survival71. Administration of gallium (which binds to transferrin, depriving 
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proliferating cells of iron) potently inhibited MLRs and prolonged survival in a mouse model 

of GVHD.72Additionally, stimulation of CD71 also promotes phosphorylation of the TCRζ 

complex and thus may amplify TCR signalling .182  The internal cycling of CD71 may allow 

this receptor to be targeted with a CD71 immuntoxin, like CD25. However, for simplicity in 

our studies, the combination of anti- CD71 biotin and anti-biotin magnetic beads was used to 

delete CD71+T cells. Furthermore, the peak of CD71 expression and the mean fluorescent 

intensity coincided with that of CD25 (Day 3 of allo MLR) enabling us to target both markers 

at the same time. 

CD69 is a well-established T-cell activation marker but was poorly expressed in the CFSE-dim 

population. This may in part reflect down regulation of CD69 by the time appreciable CFSE 

dye dilution has occurred (day 3 of MLR). However, CD69 showed more variable expression 

compared to CD25 and CD71 and has been noted to be upregulated in bystander cells 116,183, 

limiting the usefulness of this marker as a target for allodepletion. Recent studies suggest that 

alloreactivity may reside predominantly in the CD45RA+ naïve T-cell compartment29,33, at 

least in mouse studies. The expression of this marker  in our studies, on a minority of 

alloreactive T-cells and on bystander T-cells, as well as the progressive maturation of 

alloreactive T-cells to a memory phenotype during MLR suggest that targeting this molecule 

as a sole strategy for allodepletion is unlikely to be successful. Our data also showed that a 

minority of alloreactive T-cells (<5 %) express OX40 and TNFα, which is comparable to that 

seen by some investigators135, but lower than others.18,53 However, both the latter groups 

performed their MLRs in media supplemented in serum and/or used thawed cryopreserved 

stimulators, and therefore up regulation of these markers may reflect responses to bovine 

peptides presented in the context of human HLA molecules. Activation induced cell death is 

an important part of controlling T-cells responses, and this pathway has been targeted as a 

means of enhancing allodepletion.128 CD95 expression progressively increased over time, but 

on a minority of proliferating alloreactive T cells (mean of 27 % at day 7), again suggesting 

that simply targeting CD95 is likely to result in ineffective allodepletion, even if performed at 

late time points in the MLR.  

  

Rationally Enhancing CD25 based Allodepletion 
 
While our data confirm CD25 as an excellent target for allodepletion strategies, a mean of 17 

% of proliferating alloreactive T-cells do not express CD25.  Therefore, we studied the 



 191

phenotype of proliferating CFSE-dim T-cells not expressing CD25. We have identified CD71 

as a novel target that is highly expressed on proliferating alloreactive T-cells, including those 

not expressing CD25. We found that 70 % of the CFSE-dim CD25-ve population express 

CD71. Potentially, this enables us to target 2 independent phenotypes of alloreactive T-cells at 

the same time-point within a single co-culture. Flow cytometric analysis showed that 

immunomagnetic depletion deletes CD25+ and CD71+ cells to below background levels. In 

primary MLRs, residual responses to the stimulator were undetectable after CD25/71 

depletion. In 2 separate functional secondary stimulation assays measuring distinct 

phenotypes, the combination of CD25/71 allodepletion led to significantly enhanced and more 

consistent allodepletion compared to CD25 alone without compromising third party or anti-

viral responses. Furthermore, the combination of CD25/71allodepletion was superior to the 

immunomagentic depletion of CD25/45RA+ T cells.  Our studies indicate that combined 

CD25/71 depletion results in a 20-fold reduction of proliferating alloreactive T-cells flow 

cytometrically and in secondary MLRs, with a 1-log depletion of response to host in IFN-γ 

ELISPOT assays. While extrapolation of these results to an in vivo setting requires an animal 

model 127,184, the fact that allodepletion appears enhanced compared with CD25 depletion 

suggests that it may be possible to safely transfer larger doses of allodepleted donor T-cells 

than hitherto possible using combined CD25/71 depletion 

 

Our approach led to a 1-1.5 log reduction in residual alloreactivity in our assays without 

compromising third party responses. Comparison with other clinically applicable allodepletion 

strategies is difficult because of different methods used. To assay residual alloreactivity after 

photodynamic purging, Meilke et al observed a 4 log reduction in residual alloreactivity 

compared to unmanipulated PBMCs, but a 1 log reduction compared to untreated sensitized 

control co cultures in 2º MLRs.131 This appears counterintuitive and contrasts with our own 

experience, where untreated sensitized co-cultures demonstrate considerably enhanced 

responses upon secondary restimulation to the original host. The authors postulate however, 

that prior sensitization to host induces regulatory T-cells, thus diminishing anti host responses. 

Despite this, in their HTLp assays, the reduction in alloreactivity was less impressive with a 

median 20 fold reduction in responses to host. In contrast,  Chen et al using a similar 

photodyamic purging method rested their allodepleted PBMCs, and observed over a  6 fold  

higher IFNγ secretion to host in 2º IFNγ ELISPOT assays compared to unmanipulated 

PBMCs.52 This discrepancy highlights the difficulty of comparing similar methods of 
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allodepletion with different read outs of alloreactivity. Further, the need for specialized 

equipment for photodynamic purging of alloreactive T-cells limits the applicability of this 

technique, and the optimal protocol in terms of concentration of the sensitizing agent and 

timing of light exposure to achieve selective allodepletion are not fully established.  Perhaps, 

most importantly, in vitro data suggests that photodynamic purging significantly reduces anti-

viral/antifungal activity of the allodepleted donor T-cells. 132 This was reflected  in a clinical 

study of adoptive immunotherapy of PDP treated donor T cells in the haplo-SCT setting in 

which 3/11 patients developed chronic GVHD and there was a high incidence of infectious 

related mortality133. The lack of systematic examination of anti-viral immunity after PDP 

treatment highlights a possible flaw in this process. 

 

 There have been numerous other approaches to targeting alloreactive T-cells e.g. CD137, 

CD69, CD95, naïve T-cells, and chemotherapeutic methods. Wehler et al generated CD8+ 

CTLs against leukaemia/tumour antigens in the haplo setting using CD137 mediated 

allodepletion.59
 They generated CTL cultures, by stimulating CD8+lymphocytes with single 

HLA mismatched AML blasts or renal carcinoma cells. 59 On Day 21 of the culture, the 

lymphocytes were stimulated with HLA-negative K562 cells transfected with the disparate 

HLA-Class 1 cDNAs. After 24 hours, the CD137 positive alloreactive T-cells were depleted 

using an immunomagnetic approach.  This study was limited by only showing data on 1 donor 

recipient pair in the haplo-setting and the complexity and time required for cell culture.  

Furthermore, there was still significant anti host reactivity after allodepletion in single antigen 

mismatched donor-recipient pairs allodepletion (1 log reduction in IFNγ ELISPOT compared 

to sensitized non depleted co-cultures), thus suggesting that this could lead to GVHD in the 

haplo-SCT setting. Our data demonstrate that CD69 is expressed only in a minority of 

alloreactive T-cells and that up regulation is much more variable than CD25 or CD71, which 

could potentially lead to inconsistent allodepletion. Moreover, allodepletion targeting CD69-

positive T-cells has been associated with significant reductions in EBV + /WT1+ T cells, 

suggesting that this marker shows significant bystander up regulation and is thus not specific 

to alloreactive T cells. 116 CD95 allodepletion  was associated with 25-45 % residual 

alloreactivity compared to sensitized PBMCs  on 2◦ IFN gamma ELISPOTs thus suggesting 

that this method of allodepletion leads to very high levels of residual alloreactivity,128 

particularly given our data showing that sensitized PBMCs show considerably enhanced 

responses compared to host, compared to thawed unmanipulated PBMCs.  Furthermore, CD95 

agonistic antibodies have led to haemorrhagic hepatitis in animal models and a GMP grade 
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CD95 antibody does not exist 129. There are no published data targeting naïve T-cell markers 

such as CD45RA in human T-cells. However, our data show that CD45RA is expressed on a 

much higher proportion of inactivated T-cells than CD25/71, so that targeting naive T-cells 

may lead to significant depletion of desirable naïve T-cells. Further, CD25/71 allodepletion 

was non significantly superior to CD25/45RA allodepletion,  

 

 

 

A number of groups investigating the use of chemotherapy during ex vivo MLR to selectively 

delete alloreactive T-cells.55,120,121,134-136 However, such an approach requires careful dose 

titration to prevent deleterious effects to bystander T-cells. Indeed, in preliminary dose titration 

experiments we performed (shown in Appendix), with fludarabine and trimetrexate, we found 

that the optimum dose for deleting proliferating T cells whilst preserving non proliferating T 

cells for trimetrexate was, 1µm and for fludarabine was 50ng/ml (Fig 48). At doses above 

these concentrations, there was significant loss of non proliferating T cells. Due to the expense 

of bortezomib, we chose the dose for bortezomib for our co cultures based on previous 

published data.55 We then co-cultured CFSE labelled T-cells with HLA mismatched DCs, and 

added trimetrexate 1µm on day 0, fludarabine at day 2 (50 ng/ml) and bortezomib (500nM) on 

days 1-3 of the co-culture (Fig 49). Our controls included CFSE + T-cells alone and a co- 

culture set up at the same time but without chemotherapy drugs. The cells were harvested on 

day 3 and stained by flow cytometry for CD3 and CD25. The percentage reduction in CFSE 

Dim alloreactive population (including CD25 negative) was then calculated using Trucount 

beads. The addition of Trucount beads enabled comparison between the different co-cultures 

as a fixed number of beads were acquired. Our data showed that at this concentration of 

bortezomib, there was a complete loss of CFSE bright bystander cells as well as the CFSE 

Dim alloreactive T- cells, thus highlighting the non selectivity of this drug at this 

concentration. The fludarabine did not significantly reduce the CFSE Dim alloreactive T-cell 

population compared to control (8.25 % reduction in  the CFSE Dim population), thus 

highlighting the limited efficacy of this drug at this concentration. The trimetrexate produced 

over 84 % reduction in CFSE Dim population, a 61 % reduction in the CFSE Dim CD25 

negative population and a 26 % reduction in the CFSE bright bystander population. Further 

careful timing of administration of chemotherapeutic agents would be necessary as delayed 

administration of bortezmib (5 days after BMT)  has exacerbated GVHD in a murine model137.  

Likewise, bortezomib exposure in an ex vivo MLR, led to major decreases in third party 
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activity, thus suggesting that this reagent may not selectively delete alloreactive T-cells. 55. 

There are no published data on preservation of antiviral-T cell responses following 

allodepletion with chemotherapeutic agents. Our data using chemotherapeutic agents to target 

proliferating alloreactive T-cells is preliminary and will require further work. 

 

Thus, whilst a host of potential methods, for allodepletion now exist, many of these target only 

a minority of alloreactive T-cells are difficult to scale-up for clinical use or have not been 

shown to preserve desirable T-cell responses. In contrast, combined CD25/71 

immunomagnetic depletion fulfils all these criteria. Ideally, however, comparisons between 

different methods of allodepletion require assessment of residual alloreactivity and 

preservation of anti-viral responses in the same donor-recipient pairs. We plan to perform such 

a comparison between CD25/71 allodepletion with photodynamic purging in collaboration 

with The Necker group in future studies. 

Graft versus host disease represents a fine balance between alloreactive effectors and T 

regulatory cells. CD25 based allodepletion strategies target T regulatory cells, but this has not 

led to enhanced rates of GVHD.  This probably reflects concomitant effective depletion of 

alloreactive T-cells. CD69 and CD95 allodepletion do not affect FoxP3 levels, and thus 

targeting these markers may preserve T regulatory T-cells.116,128 CD45RA is expressed on 

human T regulatory cells 185and thus targeting CD45RA is likely to delete T regulatory cells 

and could thus potentially exacerbate GVHD if significant numbers of alloreactive effectors 

persist. Similarly, photodynamic purging also led to a reduction in FoxP3 + T-cells. 131 It is 

currently not known if CD71 is expressed on human T regulatory T-cells, and we will need to 

assess this in future studies.  

 

Antiviral Immunity after Allodepletion 
 
If adoptive immunotherapy with allodepleted donor T-cells is to be useful in restoring anti-

viral and anti-leukemic T-cell responses clinically, it is critical to demonstrate the specificity of 

depletion. A number of in vitro studies on allodepletion have not adequately addressed the 

issue of whether anti-viral responses are preserved following allodepletion. Often such studies 

have relied on demonstration of preserved proliferative or CTLp responses to third party 

stimulators as surrogate markers for anti-viral T-cell responses in allodepleted donor T- 
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cells.117,118 In other studies, where anti-viral responses have been examined, these assays have 

frequently not been systematic, e.g. responses to key pathogens have not been assessed such as 

adenovirus 122, or analyses have been non-quantitative without comparison to unmanipulated 

PBMCs, or limited to a small numbers of donor recipient pairs,131 or using a single 

technique.128.  There remain doubts over whether functionally useful anti-viral immunity is 

preserved after allodepletion using photodynamic purging or after transducing donor T-cells 

with suicide genes. Similarly, anti-viral immune reconstitution has not been assessed after RIC 

haplo-SCT. 27,107,132 The persistence of anti-viral responses after selective allodepletion is vital 

to confer enhanced immune reconstitution to viral pathogens post haplo-SCT. We have used 

IFNγ ELISPOT and pentamer assays to compare the frequency of T-cells recognising all 3 

major viral pathogens post-SCT (CMV,EBV, and adenovirus),  before and after allodepletion. 

These assays have the advantage that they enable direct quantification of the frequency of 

viral-specific T cells. In 2 distinct assays, we showed preservation of T-cell responses to 

CMV/EBV and adenoviral antigens after CD25/71 allodepletion in numerous donor-recipient 

pairs. The persistence of EBV immunity after CD25/71 allodepletion, despite using EBV 

derived  LCLs as APCs, was due to the use of donor-recipient pairs who were completely 

HLA mismatched, so that donor T-cells cannot recognise the preserved EBV epitopes. In the 

haploidentical setting, we have previously shown that T-cell responses to EBV epitopes 

presented through the non shared haplotype are preserved following CD25-based 

allodepletion86 and we anticipate this will also be so with our refined methods. 

 

We did not examine the cytotoxicity of allodepleted T-cells against virally infected cells, as 

this would either require repetitive stimulation to generate CTL lines or limiting dilutional 

CTLp assays which are complicated by wide confidence intervals. In our previous clinical 

study141, we showed that transfer of 3 x 105/kg allodepleted T-cell was sufficient to confer 

detectable T-cell responses to EBV and CMV after haplo-SCT, particularly in the context of 

viral reactivation. This is line with the dose of unmanipulated DLI required to confer cell-

mediated immunity to CMV and EBV after HLA-matched SCT.186,187 Our refined CD25/71 

may now allow us to adoptively transfer sufficient T-cells to confer protective immunity to 

pathogens which evoke low frequency T-cell responses in the donor, such as adenovirus, 

which is the single most important cause of infectious death after haplo-SCT 168,169. Based on 

the precursor frequency of adenovirus-specific CTL in normal donor PBMC 188and limited 

clinical data from DLI141,189, we anticipate that cell doses of between 1- 5 x 106/kg T-cells may 

be sufficient for such immunity. Since CD25/71 allodepleted T-cells show significantly lower 
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residual alloreactivity than after CD25 based allodepletion, it may well now be possible to 

transfer such doses of allodepleted T-cells without causing GVHD. However, because of the 

limitations of in vitro assays and murine models outlines above, this can only be really 

assessed in the context of a further clinical study.  

 

There are numerous other approaches to improving anti-viral reconstitution post haplo-SCT. 

IFNγ capture can be used to generate either CMV or adenovirus specific CTLs in vitro, but 

this approach still leaves significant alloreactivity to host (1/2 log reduction in residual 

alloreactivity following generation of adenovirus specific CTLs).99 Even though the number of 

virus-specific T-cells generated is very low (typically 106 T-cell from 500 mls of blood) the 

occurrence of GVHD in MSD/MUD patients who received CMV and adenovirus specific 

CTLs generated by IFNγ capture at doses of only 103-104/kg, suggests that this technique is 

not completely specific 190, and there remains the possibility of significant GVHD in the 

haploidentical setting. Where MHC Class I restricted immunodominant epitopes have been 

determined (e.g. for CMV), it has been possible to isolate and adoptively transfer CD8+ virus-

specific T-cells using MHC-peptide multimers.98 However, it is unclear how durable such 

responses are in the absence of CD4 help (as would be the case early after haplo-SCT). 

Further, it is only applicable if the donor has one of the common Caucasian HLA Class I 

alleles (e.g. A2 or B7) and is of limited value for pathogens such as EBV which have a broader 

array of immunodominant antigens than CMV. Other approaches e.g. generation of 

virus/Aspergillus-specific CTL lines and clones101 by repetitive antigenic stimulation remain 

too complex and time consuming to broadly applicable, even when multiple viruses are 

targeted 102. By contrast, our allodepletion approach is simple, applicable to all HLA 

backgrounds, preserves CD4 and CD8 T-cell responses and show preserved T cell responses to 

pathogens recognised by the donor.  

 

One limitation of our approach was the lack of assessment to fungal pathogens e.g. 

Aspergillus. The immune response to Aspergillus involves both the innate immune system and 

TH1 responses191  and Aspergillus remains a major pathogen post haplo-SCT.101 The T-cell 

response to Aspergillus and Candidal antigens has so far been poorly defined and the 

immunodominant antigens are unknown, so that existing techniques for assessing cell-

mediated immunity with LDAs 132 ELISAs and proliferation assays.135,191 have utilised poorly 

characterised crude lysates from the conidial/hyphal stages. This limits our ability to test 

quantitatively how completely T-cell responses to fungal pathogens are preserved after 
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CD25/71 allodepletion but nonetheless we plan to assess proliferative responses to fungal and 

control lysates in future experiments.  

Enhancing Anti-leukaemia Activity of Allodepleted Donor T cells 
 
The persistence of anti-leukaemic responses after selective allodepletion is critical if the 

benefits of adoptive transfer are not to be offset by leukaemic relapse, as in our previous study 
141and other studies using CD25 immunotoxin based allodepletion: in our study, 6 out of 11 

patients with haematological malignancies relapsed, 3/5 in The Necker study138, and 4/10 in 

The NIH study139. Similarly, relapse remains a significant problem after CD3/19 RIC haplo-

SCT (12/29 patients), despite the infusion of higher numbers of alloreactive NK cells 9. Our 

approach will deplete T-cell responses against the mismatched HLA alleles and ubiquitous 

minor histocompatibility antigens presented by the shared HLA alleles. Nonetheless, we and 

others 86,122,142have shown that anti-leukaemic activity may be retained after allodepletion. In 

particular, we have demonstrated that T-cell responses to potential myeloid tumour antigens 

are preserved by virtue of their lack of expression on the LCL used as stimulators. Potentially, 

such T-cell responses could be augmented after transfer of allodepleted donor T-cells into 

HLA-A2+ve patients with myeloid malignancies by vaccination with WT-1 or PR-1 peptides85 

Likewise, allorestricted responses against tumour- associated antigens presented through the 

non-shared haplotype143-146 should also be retained. It is unclear how many allodepleted donor 

T-cells would be required to confer clinically relevant anti-leukaemic responses in the 

haploidentical setting: because of the extreme lymphodepleted environment after haplo-SCT  

and the possibility of allorestricted responses, this may in fact be considerably lower than the 

numbers of DLI required to induce GVL after HLA-matched SCT, where T-cell doses of 107-

108/kg are required.78,192,193 Because of the limitations of experimental models, it may be that 

this question can only be answered in a clinical study. The close association of GVHD and 

GVL, nevertheless, suggests that these are intrinsically related, and by deleting the alloreactive 

T-cells that cause GVHD, we may abrogate responses to leukaemia. Further, it remains 

possible that even with the enhanced depletion of alloreactivity achieved with CD25/71 

allodepletion, it may still not possible to safely transfer enough T-cells for anti-leukaemic 

responses without causing GVHD. In order to overcome these limitations and to enable 

allodepleted T-cells to confer anti-leukaemic responses even in ALL, which is a frequent 

indication for haplo-SCT, we investigated whether it was possible to redirect the specificity of 

the allodepleted donor T-cells using a chimeric T-cell receptor transfer. We have shown that 
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the anti-leukaemic activity of allodepleted T-cells can be augmented, by transfer of a chimeric 

TCR recognising the surface molecule CD19. 

 

 The approach of chTCR transfer has a number of advantages in targeting residual leukaemic 

cells after SCT; 

1) It overcomes the lack of immunogenic tumour antigens on ALL blasts by redirecting T 

cells to surface molecules expressed by malignant cells. This has been the major 

obstacle to immunotherapy for ALL. 

2) It should not cause GVHD, as CD19 is highly expressed on B-ALLs, but is not 

expressed on non-haematopoietic cells. 

3) It enables targeting of tumour cells in a HLA-independent fashion, so that a single 

vector system can be used to treat all patients expressing this surface molecule 

4) It overcomes mechanisms by which leukaemic cells escape from T-cell recognition, 

including down regulation of HLA class I molecules or defects in antigen processing 

which may hinder alternative methods of enhancing anti-leukaemic activity of T cells 

e.g. TCR gene transfer. 

 

Redirected T-cells can also home to tumour sites, proliferate locally, and penetrate solid 

tumours.  

 

We investigated if lentiviral transfer of a chimeric TCR directed against CD19 could be used 

to redirect the specificity of allodepleted donor T-cells so that they recognize this malignancy. 

Previous studies have demonstrated that human T-cells expressing similar CD19 chimeric 

TCRs mediate regression of B-lineage malignancies in murine models 152,156. To preserve their 

phenotype and anti-viral specificity, we used a lentiviral vector and transduced allodepleted T- 

cells after stimulation with IL-2 alone rather than with mitogens. This regimen has been 

demonstrated to preserve the phenotype of naïve PBMCs, and not compromise anti-viral/third 

party activity.107,170 Due to a shortage of time we were unable to assess formally if anti-viral 

immunity is maintained with our CD19R/pHR-SIN-SE lentiviral vector. Potentially, this could 

be done using pentamer and IFNγ ELISPOT assays. As the transduced allodepleted donor T- 

cells recognize CD19 expressing B-cells, CMV (pp65) peptide mix-pulsed or adenovirally 

transduced autologous CD14+ monocytes rather than PBMCs could be used for such 

experiments. Further experiments to determine the phenotype of the transduced allodepleted 
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donor T cells (CD4/CD8, CD45RA, CD45RO, CD62L) after transduction will also be 

required. 
 

 

The levels of cytotoxicity we observed with CD19-redirected allodepleted donor T-cells, was 

lower than that reported with retrovirally transduced T-cells expressing the CD19ζ transgene. 
150,153 This may reflect the fact that our transduction regimen resulted in predominantly naïve 

T- cells being transduced, which lack cytolytic activity. However, as outlined above, our 

transduction may be associated with a lower risk of activation induced cell death ,161 and may 

preserve anti-viral responses of our transduced cells 107,170, whereas, transduction regimens 

using OKT3/CD28 promote differentiation and activation of naïve PBMCs into terminally 

differentiated CTLs.156,194 T-cells transduced after polyclonal stimulation, despite 

demonstrating potent in vitro activity, may have reduced in vivo activity because of cytokine 

dependence, activation induced cell death, and reduced capacity to home to tumour sites, 

proliferate and resist apoptosis. In contrast, naïve PBMCs have shown superior anti tumour 

activity than terminally differentiated CTLs in mouse models, partly due to higher co- 

expression of CD62L.155 Furthermore, transfer of low doses of antigen specific T-cells has led 

to their dramatic expansion post haplo-SCT in response to their cognate antigen.101,141 Thus, it 

is possible CD19-redirected allodepleted donor T- cells could rapidly expand in vivo when 

administered to lymphopenic patients not receiving immunosuppressive medication for GvHD 

prophylaxis. The addition of a CD28 co-stimulatory domain to the CD19ζ construct would 

increase IL-2 secretion, and enhance persistence, but there is no evidence to suggest that such 

a domain would enhance cytotoxicity.194 However, the addition of a CD28 co-stimulatory 

domain enhances the risk of autonomous proliferation and the addition of a suicide gene to 

such constructs may be required by the regulatory agencies as an additional safety measure.   

 

Potentially we could compare CD19ζ constructs with and without CD28 co-stimulatory 

domains by assessing IFNγ, granzyme B secretion and proliferation of CD19ζ transduced and 

CD19/CD28ζ transduced allodepleted T cells to CD19+ targets, to determine if using 

constructs which have CD28 co-stimulatory enhance proliferation and cytokine release. 

Further comparisons between different CD19 chTCRs would be also useful: e.g. comparison 

between a fully humanised anti CD19 chTCR195 and the existing FMC63 ScFv receptor. A 

fully humanised CD19chTCR (in contrast to FMC63 where the ScFv is murine), would have 



 200

the advantage of being less immunogenic and may therefore enhance the survival of 

transduced allodepleted T-cells in vivo.  

 

 

There are numerous potential approaches to measuring anti-leukaemic activity of allodepleted 

donor T cells. Although the  51Cr cytotoxicity remains the gold standard, various alternative 

assays have been developed, such as the granzyme B ELISPOT assay.171 In direct comparisons 

of the granzyme B ELISPOT, and the 51Cr cytotoxicity, the results have correlated well 

between the two.171 Furthermore, the granzyme B ELISPOT assay is non radioactive and 

granzyme B is a molecule that is released upon CTL mediated killing.196 While granzyme B 

activity may underestimate cytotoxicity, as it does not measure FasL mediated apoptosis, this 

is equally true of the 51Cr release assays. Furthermore, it is well established that only a small 

fraction of antigen-specific T-cells secrete cytokines in response to their cognate antigen at a 

given time point. This explains why despite 19 % of allodepleted T-cells being transduced 

with the CD19ζ transgene, only 0.2 % of transduced allodepleted cells secreted IFNγ in 

response to primary ALL blasts, and 0.4 % secreted IFNγ in response to autologous LCLs. On 

the other hand, CTLs may degranulate normally, but certain targets may be inherently resistant 

to their effects. Thus, to be certain that degranulation is inducing target cell death, cytotoxicity 

assays should be performed alongside the granzyme B ELISPOT.  

 

We plan to FACS sort our transduced allodepleted donor T-cells and assess cytotoxicity 

against CD19+ targets either in a conventional 51Cr release assay or with a FACS based 

cytotoxicity assay. In the latter approach, FACS cell sorted (CD3+, α Fc+) transduced and 

mock transduced allodepleted T-cells would be co-cultured with an equal number of CD19+/- 

targets such as Daudi, SUP-B15 and HSB-2 using a target: effector ratio of 1:1. After a week 

cells would be stained with 7 AA-D, CD19 and trucount counting beads added. A fixed 

number of beads would be acquired and the number of viable CD19+/- targets would then be 

determined in each co-culture. We anticipate that CD19ζ transduced allodepleted T-cells 

would lyse CD19+ ve but not –ve targets.  Irradiated donor LCLs could also be added to co- 

cultures to promote co-stimulation 

 

An alternative means of assessing anti-leukaemic activity is with MHC-peptide multimers to 

detect T-cells recognising leukaemia-associated antigens. Amrolia et al demonstrated that 
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proteinase 1 (PR1 +)  T cells were maintained after allodepletion with CD25 IT whilst using 

LCLs as APCs using tetramer studies 86 Likewise, it is possible to detect CD8+ ve T cells 

recognising the PR1 epitope of proteinase 3 in patients with myeloid malignancies.83,85 

Unfortunately, while we predict T-cell directed against myeloid leukaemia associated antigens 

should similarly be preserved following CD25/71 allodepletion by virtue of their lack of 

expression on LCL stimulators, we were unable to obtain patient samples with detectable 

WT1+ or PR1+ T-cells to determine if our refined allodepletion method affects the frequency 

of such T-cells. Potentially, we could co-culture PBMCs from HLA-A 0201+ve donors who 

have detectable CD8+ WT1+/PR1+ T cells, with HLA- A2+  mismatched LCLs and compare 

the frequency of CD8+ WT1+/PR1+ T cells in unmanipulated PBMCs and CD25/71 

allodepleted T-cells flow cytometrically with WT1/PR-1 specific multimers. 

 

 

Whilst tetramer studies, enable the size of a particular population to be determined and are 

restricted to defined antigens, they do not give functional data. A number of groups have used 

LDA based assays to assess functional responses to leukaemic blasts. For example, Mavroudis 

et al 142 demonstrated preserved HTLp responses to myeloid tumours after allodepletion using 

a CD25 immunotoxin, and Montagna et al 122 showed preserved CTLp responses to leukaemic 

blasts after a similar approach. As highlighted previously, these data are complicated by the 

indirect nature of the CTLp and HTLp assays, which involve in vitro restimulation, as well as 

by the wide confidence intervals for these assays, which may obscure significant changes. The 

rationale for using the HTLp assay (which depends on donor CD4+ T cells) to measure a GVL 

effect rests on accumulating evidence implicating CD4+ T cells in the alloresponse to CML.142  

In experimental studies, CD4+ cells inhibit leukaemia growth and are cytotoxic to myeloid 

leukaemia cells. Although HTLp assays may correlate with GVL reactivity, they do not 

directly measure a cytotoxic effector function against leukaemia. Similarly, our IFNγ 

ELISPOT assays with CD19ζ transduced allodepleted T-cells give us information primarily 

about CD4+ GVL responses, but not directly about cytotoxicity. Nevertheless, in vivo studies 

suggest that CD4+ T cells may play a critical role in tumor rejection via cross presentation of 

tumor antigens, and such T helper assistance may be of vital assistance in eradicating 

malignancies.197  
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The anti-leukaemic effects of CD19ζ transduced allodepleted donor T-cells needs to be tested 

in an animal model prior to scale up studies. One possibility is to test this approach using 

allodepleted mouse T-cells in a MHC mismatched mouse with a subcutaneous B-cell 

lymphoma, as has been done following administration of donor T cells and  T regs 112, 

administration of PDP treated T cells52 and fludarabine treated DLI120. However, the relevance 

of such models is unclear, as responses in such models are frequently more impressive than 

clinical responses e.g. to DLI. Further, such experiments would require the use of anti-mouse 

CD25/71 mouse antibodies which may well have different avidities to their anti-human 

counterparts, so that it is very difficult to extrapolate from such models. An alternative model 

is to use a xenogeneic approach in an immunodeficient mouse models e.g. NOD/SCID mouse 

which has been irradiated and then injected subcutaneously with a human 

lymphoma/leukaemia cell line. Such models have previously been used successfully to 

demonstrate the anti-leukaemic effect of T-cells retrovirally transduced with a chimeric TCR 

against CD19.152,176 Large doses of transduced donor T-cells expanded ex vivo in the presence 

of IL-15 were required to mediate regression of Raji cell tumors and data on long term 

persistence of transduced T-cells is lacking. Further, clearly such models do not mimic the 

localization of leukaemia to the bone marrow. Despite these limitations, this model remains 

the best available to evaluate anti tumor adoptive immunotherapy in vivo.  In future studies, we 

will evaluate the anti- leukaemic activity of CD19ζ transduced allodepleted donor T cells in a  
Rag I/II deficient, γ chain deficient, C5 deficient NOD/SCID mouse model. Mice would be 

irradiated and then be subcutaneously injected with a variety of human tumours e.g. primary 

human ALL blasts, Ramos cells, and LCLs.  Human CD19 ζ transduced and mock transduced 

allodepleted T cells could then be infused and survival and tumour growth could be 

documented. Tumour cells could also be labelled with luciferase using a retroviral vector and 

in vivo imaging performed following administration of ζCD19 transduced/mock transduced 

allodepleted donor T cells to determine if transduced allodepleted T-cells mediate tumour 

regression. 

 

CD19R/ pHR –SIN-SE transduced allodepleted donor T cells efficiently secreted IFN-γ and 

the cytolytic effector molecule granzyme B in response to CD19 tumor cell lines and primary 

ALL blasts. Our data suggest that potentially CD19-redirected allodepleted donor T-cells 

could be used to augment both anti-viral and anti-leukemic T-cell responses after haplo-SCT. 

Since CD19 is expressed only on the B- cell lineage, and the T-cells are allodepleted, such an 
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approach should not cause toxicity to extra-haematopoietic tissues. However, targeting of 

normal B-cells is likely to induce B-cell lymphopoenia, and impair humoral immunity 

necessitating, immunoglobulin replacement. At worst, the clinical consequences of this are 

likely to resemble X-linked (Bruton’s) agammaglobulinaemia, a genetic disorder of B-cell 

development. When receiving regular immunoglobulin replacements, such patients have a 

normal life expectancy. In patients at high risk of leukaemic relapse, this may be an acceptable 

price to pay for the potential benefit in reducing relapse risk. 

 

One of the concerns of retroviral transduction of human PBMCs is the risk of insertional 

mutagenesis. Acute leukaemia has developed in 4 of 9 children treated with gene therapy for 

X- linked SCID in France and 1 out of 10 in the UK. This adverse event was attributed to the 

integration of the retrovirus into the LMO2 locus in 3 patients, a key transcription factor in T- 

lymphoid progenitors, resulting in aberrant expression of this gene and uncontrolled 

proliferation of T lymphoid blasts. In above study, CD34 selected haematopoietic progenitors 

were transduced. However, there have been no reported cases of insertional mutagenesis in 

over 100 patients followed up over an extended period following treatment with retrovirally 

transduced mature T-cells. Likewise, there have also been no reported cases of insertional 

mutagenesis, in patients treated with T cells retrovirally transduced with a chimeric TCR to 

treat HIV or neuroblastoma. Thus, the risks of insertional mutagenesis following transduction 

of mature PBMCs is very low. Furthermore, our use of a self inactivating (SIN) lentiviral 

construct further reduces the risks of insertional mutagenesis 161, arising in transduced 

allodepleted T-cells. 

 

 

Scale Up 
 

Our studies suggest that for strategies targeting surface markers or cytokines secreted by 

alloreactive T-cells, CD25/71 is the optimal combination for effective depletion of alloreactive 

T-cells. Further studies comparing residual alloreactivity and preservation of anti-viral 

responses after CD25/71 depletion and other methodologies such as photodynamic 

purging52,140,178 using standardised assays will be required. However, these methodologies 

have not yet been tested clinically and their complexity/need for specialised equipment may 

limit their applicability. In contrast, combined CD25/71 depletion is simple and feasible 
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clinically. Keeping the period of co-culture short (3 days), and manipulations simple would be 

a major advantage in terms of clinical feasibility. The separation methodology used is already 

in widespread clinical use for CD34 selection in centres performing haplo-SCT and easily 

performed under Good Manufacturing Practice (GMP) conditions. Clinical grade anti-CD25 

and anti-biotin immunomagnetic beads are available and we are currently generating a GMP 

grade biotinylated anti-CD71. The mean yield of PBMCs using combined CD25/71 depletion 

was 17.1 % of the initial PBMC dose (range 14.5-25.4 %). We are routinely able to generate 8 

x 107 allodepleted T-cells from a 450 ml blood donation, so that add back of 106/kg CD25/71 

allodepleted donor T-cells would be feasible from a blood draw without the need for 

leucapheresis.  

 

The optimum APC for further clinical studies is a key issue, as optimizing antigen presentation 

is critical to allodepletion. PBMCs are easily accessible, but the phenotype is variable and they 

may not be available in aplastic patients. We have previously demonstrated that LCL 

stimulation resulted in a more consistent depletion of in vitro alloreactivity than stimulation 

with host PBMCs using anti CD25IT based allodepletion.86 Because of the difficulty in 

obtaining sufficient PBMCs, particularly in children, some groups have investigated using 

PBMCs from the non-donor parent as stimulators for allodepletion. However, we believe this 

approach is flawed, as it will not activate (and hence deplete) T-cell responses against minor 

histocompatibility antigens that differ between the donor and the recipient presented through 

the shared HLA molecules or against allorestricted minor histocompatibility antigens which 

differ between the recipient and the non-donor parent presented through the non-shared 

haplotype. Hence, we believe that the APC used for stimulation must be recipient derived.  

 

Our current studies suggest that allodepletion with anti CD25/71 beads following stimulation 

with host LCLs or DC, appears more consistently effective in depleting in vitro alloreactivity 

than after stimulation with cytokine stimulated host PBMCs  The levels of CD25 and CD71 

up regulation appear equivalent with DC and LCL, as do residual responses to host after 

CD25/71 allodepletion in 2º MLRs. PBMCs are easily accessible, though they have a variable 

phenotype, and are less effective as APCs compared to LCLs. In our comparison of DCs, 

cytokine stimulated PBMCs, and LCLs as APCs, the use of host/3rd party LCLs as secondary 

stimulators in the 2º MLR, may have led to higher responses in the DC/PBMC arm, due to 

preserved EBV responses through shared HLA antigens. We plan to repeat these experiments, 

but use host/3rd party PBMCs as secondary stimulators. LCLs are an excellent APC, as they 
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strongly express co-stimulatory molecules, have a standard phenotype, can be generated even 

in aplastics and do not express potential myeloid leukaemia antigens, and thus may retain a 

GVL response to myeloid leukaemias. However, they take 6 weeks to generate, significantly 

complicate generation of allodepleted cells under GMP conditions, and results in deletion of 

EBV-specific T-cells restricted through the shared haplotype. Though there were high levels of 

EBV PCR detected in aciclovir treated LCL co-cultures, co-culture of irradiated LCLs with 

donor PBMCs did not lead to their transformation and no EBV-associated lymphoproliferation 

was seen in our previous studies. On the other hand, DCs are excellent APCs, which can be 

generated much more rapidly (7 days), but will require much larger volumes of recipient 

blood. We estimate that while allodepleted T-cell doses of 106/kg could be generated from a 

blood draw, larger doses will require a leucapheresis. Because of the potential preservation of 

anti-leukaemic responses, use of LCL stimulators may be advantageous in clinical studies in 

myeloid malignancies such as AML. However, in view of the regulatory complexity of using 

LCLs under GMP conditions, for further studies in non-malignant patients we plan to use DCs 

as stimulators.  

 

Prior to a proposed clinical study, we will need to scale up our experiments in the cell/gene 

therapy laboratories at Great Ormond Street Hospital, to determine if we can reproduce our in 

vitro data on a large scale. One concern, from studies from The Necker Hospital group198, was 

the failure to reproduce their in small scale in vitro data using CD25 beads, when scaled up on 

the CliniMACS system. After co-culturing donor PBMCs with HLA-mismatched irradiated 

PBMCs, they performed 3 CD25 immunomagnetic depletion using a CliniMACs system. 

Initially, allodepleted cells were infused without prior assessment of residual alloreactivity and 

2 of 4 such patients developed severe GVHD. Subsequently, residual responses were tested in 

a HTLp-based LDA assay and CD25 bead allodepleted T-cells only met the release criteria of 

1.2 log depletion on host reactivity in half the cases. One limitation of their approach was the 

use of the PBMCs from the non-donor parent as APCs. As noted above, PBMCs may be sub-

optimal APCs for allodepletion, particularly when derived from the non-donor parent. Clearly, 

however, we need to demonstrate effective depletion of T-cell responses directed against the 

host in large scale experiments using our system. We hope that our use of host DCs as APCs, 

combined with targeting an additional marker expressed on CD25 negative alloreactive T-cells 

will enable us to achieve effective allodepletion even in the clinical setting.  Our initial scale-

up in 1 donor-recipient pair, suggested that this may well be possible although clearly this will 

need to be replicated in other donor-recipient pairs. 
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Our group is currently optimising conditions for CD25/71 immunomagnetic allodepletion 

under GMP conditions using the CliniMACS system. We have shown that use of upright T-

175 flasks rather than cell culture bags results in both better activation of donor T-cells and 

improved cell recovery. Our group is now testing whether the combination of αCD71 + anti-

CD25 beads/anti-biotin beads or αCD25 + αCD71 biotin and anti-biotin beads gives more 

effective depletion of alloreactivity. Additionally, we will perform further experiments to 

determine, whether as suggested from our previous large scale run, CLINIMACs depletion 

tubing sets (which are designed for depletion of larger number of cells) result in improved 

allodepletion compared to TS tubing sets. 

 

Once we have optimised our large-scale CD25/71 allodepletion under GMP conditions, we 

plan to collaborate with Prof. Cavazzana-Calvo’s group in Paris to systematically compare 

CD25/71 allodepletion with photodynamic purging using the Kiadis method131, in the same 

donor-recipient pairs, using standardised assays to assess residual alloreactivity. We plan to 

co-culture normal donor PBMC from buffy coats of 4 donors with HLA-mismatched DC (at a 

ratio of 10:1) under serum-free conditions in T-175 flasks for 3 days. Co-cultures will be split 

into 2 arms and allodepletion performed under GMP conditions using either immunomagnetic 

CD25/71 negative selection or photodynamic purging. Allodepleted T-cells from each arm will 

be plated out in a LDA proliferation assay, or rested in serum-free, cytokine-free media for 2 

days and then restimulated to host/3rd party PBMCs in a delayed 2ºMLRs.  The residual 

responses to host and 3rd party using both allodepletion methods will be compared to those of 

unmanipulated PBMCs from the same donor. The preservation of anti-viral responses after 

both methods will also be compared. These experiments will involve collaboration between 

several European groups and will determine the optimum method for selective allodepletion, 

as a prelude to a further collaborative study of allodepletion after non malignant haplo-SCTs.  

Proposed Clinical Trial 
 
While functional assays can provide useful comparisons of the efficiency of allodepletion, they 

cannot fully predict clinical outcome. We therefore now plan a further clinical study of 

immunotherapy with allodepleted donor T-cells to determine if CD25/71 allodepleted T-cells 

can safely augment anti-viral and anti-leukaemic responses after paediatric haplo-SCT. 
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If our scale-up experiments above our successful, we will assess the safety and biological 

effects of adoptive transfer of allodepleted donor T-cells generated using negative 

immunomagnetic selection for CD25/71 in a multi-centre, phaseI/II study children with non-

malignant disorders undergoing haploidentical or multiply HLA-mismatched unrelated donor 

SCT with a CD34-selected graft. We have chosen to focus, on patients with non-malignant 

diseases in this study in order to determine the impact of this intervention without the 

confounding factor of relapse of malignant disease. Eligibility criteria are shown below; 

 

Inclusion Criteria: 

Patients with the following non-malignant conditions who lack an HLA matched (10/10 or 

9/10 allelic) donor and are planned for SCT from a haploidentical or mismatched ( ≤ 8/10 

allelic) family/unrelated donor:  

           

Haemophagocytic lymphohistiocytosis 

Combined immunodeficiency state or SCID 

Severe aplastic anaemia unresponsive to immunosuppression 

Transfusion-dependent Fanconi’s anaemia 

Osteopetrosis 

Hurler’s syndrome 

Exclusion Criteria: 

1. Patients with a life expectancy (< 6 weeks) limited by diseases other than the primary 

indication for transplant 

2. Patients with pre-existing severe restrictive lung disease (FVC or FEV1< 50%       

predicted) 

3. Patients with severe hepatic disease (bilirubin greater than 50 uM or ALT>500IU/ml) 

4. Acute graft-versus-host disease ≥ grade 2 (Seattle criteria) at time of infusion of 

allodepleted cells 

5. Pulmonary disease requiring > 28% O2 supplementation or active pulmonary infiltrates 

on chest X-ray at time of infusion of allo-depleted cells 

6. Presence of severe intercurrent infection at time of infusion of allo-depleted T-cells (if 

present consult with principle investigator) 
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7. Patients in whom allodepleted donor T-cells do not meet release criteria will be 

excluded   

 
 

 

 

 

 

Four weeks prior to SCT, the patient will undergo an unstimulated leucapheresis for generation 

of recipient DCs. Prior to receiving G-CSF for CD34 mobilisation, 500 ml blood will be taken 

from the SCT donor for generation of allodepleted donor T-cells.  For parental donors who 

consent to entry on the study this should be straightforward and for mismatched unrelated 

donors in previous studies we have routinely obtained this volume of blood for adoptive 

immunotherapy from unrelated donor registries. Mononuclear cells from the stem cell donor 

will be co-cultured with recipient DCs and allo-depletion performed using anti-CD71 biotin + 

anti-CD25/anti-biotin immunomagnetic beads under GMP conditions at Great Ormond St 

Children’s Hospital according to established Standard Operating Procedures (see Appendix). 

Samples of the allodepleted donor T-cells will be tested to ensure the efficacy of allodepletion 

and sterility and the remainder cryopreserved in aliquots. Sufficient allo-depleted T cells will 

be prepared and safety tested at one time for a complete course for each patient. The efficacy 

of allo-depletion will be confirmed pre-infusion using immunophenotyping (< 1% CD3+71+ve 

cells), primary MLR (< 10% residual proliferation to host) and delayed secondary MLR assays 

(> 10-fold reduction in proliferative responses to host PBMCs compared to unmanipulated 

donor PBMC) studies. Allodepleted donor-T cells will be tested for bacterial/ fungal sterility 

(Bactec assay), Mycoplasma (by PCR) and endotoxin (LAL assay).  

 

Patients will then proceed with their transplant with the conditioning/GHVD prophylaxis and a 

CD34 selected graft. If patients have engrafted with no acute GVHD≥ 2, and allodepleted T-

cells meet the release criteria, they will receive intravenous infusions of allodepleted donor T-

cells at increasing doses (104/kg at day 30 post-SCT, 105/kg at day 60 and 106/kg at day 90) at 

monthly intervals post-SCT until either their circulating CD3 count > 1000/L or they develop 

acute GVHD ≥ Grade 2. Patients will be monitored for the outcome measures outlined below 

by clinical examination and laboratory assays on the for the first year post-SCT to assess for 
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toxicity and GVHD, incidence of virus-associated/invasive fungal disease, immune 

reconstitution and survival. 

 

 

Outcome measures 

 

Primary 

1. Toxicity attributable to  transfer of allodepleted donor T-cells: 

(a) Incidence of grade III or grade IV toxicity (graded by the NCI BMT Toxicity Criteria 

Version 2.0) attributable to transfer of allodepleted donor T-cells 

(b) Incidence of Grade II-IV and Grade III-IV acute GVHD before day 100 (graded by Seattle 

criteria) and limited/extensive chronic GVHD between days 100-365. 

 

2.   Time to recovery post-SCT of circulating T-cells to > 1000/µL and CD4 count to > 300/µL 

 

Secondary 

1. Incidence of virus-associated and invasive fungal disease in the first year post-SCT 

2. Time to recovery post-SCT of normal TCR diversity as assessed by Vβ spectratyping 

3. In vitro anti-viral responses of circulating PBMC after adoptive transfer of allodepleted 

donor T-cells using interferon-γ ELISPOT and HLA-peptide pentamer assays. 

4. Transplant-related mortality and overall survival at 1 and 2 years post-HSCT. 

 
 

This study will determine if immunotherapy with allodepleted donor T-cells generated using 

CD25/71 immunomagnetic depletion is safe and improves T-cell reconstitution after HLA-

mismatched SCT compared with historical control data. This will lay the foundation for larger, 

randomised studies to assess the effect of immunotherapy with allodepleted donor T-cells on 

transplant-related mortality and survival after HLA-mismatched SCT. 
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APPENDIX 
 
SOP for CD25/71 allodepletion 
 

Purpose and Principle of the Procedure 

 
Viral infections and relapse are the major causes of morbidity and mortality following a 

haploidentical (genetically mismatched parental) stem cell transplant. Infusion of donor 

lymphocytes can prevent or treat disease relapse and infections but there is a high incidence of 

GVHD using unmanipulated donor lymphocytes, due to the presence of alloreactive T-cells. 

The elimination of alloreactive T-cells may minimize the possibility of GVHD without 

eliminating T-cells responsible for the desirable anti-viral effects, so that infusion of such T- 

cells may improve T-cell reconstitution and decrease infections post –haploidentical 

transplantation.  Alloreactive T-cells express CD25 and CD71 and they can be removed by 

CD25 and CD71 beads in an allergenic MLR. The residual T-cells can then be infused to 

improve the immune reconstitution of the patient post transfer after bone marrow 

transplantation 

 
Material 

Clinical Grade AIM V     Invitrogen 

T75 vented flasks      Nunc (178891) 

Ficoll        GE Healthcare (17-1440-03) 

EBV–Lymphoblastoid cell lines (LCL) 

Biotinylated anti Human CD71 Antibody   BD Biosciences (555535)  

Biotinylated anti Human CD25 Antibody   Roche/Miltenyi (0.1ug/ml) 

CliniMACS®  plus Instrument     Miltenyi Biotec (151-01)  

CliniMACS®  CD25 reagent        Miltenyi Biotec (274-01)  

CliniMACS®  Flexible Labelling System (FLS)   Miltenyi Biotec (173-01) 

CliniMACS®   Tubing set     Miltenyi Biotec (161-01) 

Presystem –Filter      Miltenyi Biotec (181-01) 

CliniMACS®  Buffer       Miltenyi Biotec (700-25) 

Sample site coupler      Miltenyi Biotec (189-01) 

Transfer Set Coupler/Needle     Miltenyi Biotec (185-01) 
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Transfer Bag 600 mls       Miltenyi Biotec (190-01) 

Luer/Spike Interconnector     Miltenyi Biotec (187-01) 

Human Serum albumin  

Tubing Slide Clamps/ Scissor Clamps 

18 G needle 

Biological Safety Cabinet 

Refrigerator (4-8ºC) 

Centrifuge 

Incubator (37ºC/5% CO2) 

Haemacytometer and Trypan Blue 

Cryovials 

FACS tubes 

Cell strainer 70µm      BD Biosciences (352350) 

FACS Buffer ( PBS, 1% HSA) 

 

 

 

 

1. Day-42  Preparation of recipient LCL 

2. Day-10 Spin down 1 T-72 flask of recipient LCL and resuspend in 40 mls AIMV with 

100µM acyclovir. Transfer 20mls to each of 2 x T-75 flasks 

3. Day -7 Setting up co-culture and primary MLR. Obtain 300 mls of peripheral blood in 

preservative free heparin for co-culture and a further 10 mls for ID testing and tissue typing. 

Donor PBMCs need to be fresh. Prepare donor PBMCs over Ficoll gradient. Freeze 4 aliquots 

of 5x 106 PBMCs for follow up studies. 

4. Resuspend donor PBMCs at 2x 106/ml in AIMV. 

5. Harvest 40 mls of aciclovir treated recipient LCL in mid log phase into a 50 ml centrifuge 

tube. Centrifuge 400g X 5mins and resuspend in 3 mls AIMV. Count viable cells  using 

haemacytometer and adjust cell concentration to 2x106/ml 

6. Irradiate LCL to 70 Gy (DCs to 40 Gy) 

7. Add 1/40th volume of recipient irradiated LCLs to donor PBMC aliquot 

8. Incubate co-culture in 37ºC/5 % CO2 for 4 days 
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Day -4 CD25/71 depletion 

1. Take 2mls of co-culture using 5 ml Eppendorf Pippettman for FACS analysis 

2. Harvest co-culture into 50 ml centrifuge tube. Rinse the flask twice with 5 mls AIMV and 

pass the contents through a 70µm cell strainer these into a 50 ml centrifuge tube 

3. Centrifuge the tube at 400g X 5minutes 

4. Remove the supernatant and resuspend in 10 ml CliniMACS® buffer/0.5% HSA (“buffer”) 

to break any clumps. Bring up the volume to 50 mls buffer, count and centrifuge 400g X 

5minutes again. 

5. Remove the supernatant and resuspend to adjust concentration to 800µl buffer/108 PBMCs 

in buffer in 50 ml centrifuge tube. 

6. Clean the bung of one vial biotinylated anti human CD71 antibody with an alcohol wipe 

and allow to air dry. 

7. Draw up using a 18 G needle and syringe. Add 200 µl of biotin CD71 antibody and 2µg of 

biotin CD25 antibody/108 PBMCs.  Add the contents to the co-culture and incubate for 15 

mins at 4 degrees. (Biotinylated CD71 – clone MA712). Mix well 

8. Wash with buffer by filling up the tube (50 mls buffer/108 PBMCs) and resuspend cells in 

1ml/108 PBMCs buffer. 

9. Clean the bung with an alcohol wipe of one vial FLS reagent and allow to air dry.  

10. Using 18 G needle and syringe add 100 ul FLS reagent each per 108 PBMCs. Mix well 

and incubate at room temperature for 30 minutes on a roller. 

11. Wash again with  buffer and then resuspend at 1x 108  PBMC per ml buffer, in a minimum 

volume of 40ml 
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Allodepletion with Chemotherapy Agents 

(a) 
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Figure 61:Dose viability Experiments for Trimetrexate (a) and fludarabine (b). Varying 
concentrations of trimetrexate and fludarabine were added to resting T cells or PHA stimulated T cells. The 
trimetrexate was added on day 0 and the fludarabine on day 2. The number of viable T cells was then determined 
by trypan staining and divided by the number of cells on day 0 to determine % viability. The optimum dose for 
trimetrexate was 1µm and for fludarabine was 50 ng/ml (n=5) 
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Figure 63:Trimetrexate Selectively deletes Proliferating Alloreactive T cells. (n=5). 
Fludarabine, Trimetrexate and bortezomib were added to allo MLRs. (consisting of CFSE labelled T cells co 
cultured with HLA- mismatched DCs). Controls consisted of CFSE labelled T cells alone or co cultures without 
chemotherapy drugs. On day 3, the % of CFSE Dim proliferating alloreactive T cells (including CD25-ve) and 
bystander CFSE bright was determined using Trucout beads. Bortezomib led to deletion of all cells, whilst 
fludarabine had little effect on proliferating alloreactive T-cells. Trimetrexate led to over 80 % reduction in CFSE 
Dim population, a 60 % reduction in CFSE Dim CD25 negative and a 20 % reduction in bystander cells. 
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