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Abstract

This chapter is concerned with the identification and estimation of mod-
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tic’ labor supply model with proportional taxes and highlight the problems
surrounding nonparticipation and missing wages. The difference in dif-
ferences approach to estimation and identification is developed within the
context of the labour supply model. We also consider the impact of incor-
porating nonlinear taxation and welfare programme participation. Family
labor supply is looked at from botht e unitary and collective persepctives.
Finally we consider intertemporal models focusing on the difficulties that
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1. Introduction

This chapter is concerned with the identification and estimation of labor sup-
ply models. The specification and estimation of such models has already been the
subject of numerous studies and surveys. So why this one? The overall objective
of this chapter is to consider models that allow policy evaluation and simula-
tion allowing for individual heterogeneity. Evaluation concerns the assessment
of reforms that have taken place. Policy simulation concerns the assessment of
proposed reforms. For the most part it is the latter that has been the central
concern of empirical researchers. That is to construct a model that can reliably
be used for the assessment of proposed reforms. Since many policy proposals
involve the reform of highly nonlinear budget constraints and impact decisions
that are discrete and cover the whole life-cycle, we argue that a fully specified
dynamic structural model is the ideal. In particular, it is of central importance to
consider how labour supply and savings decisions interact and how policy affects
both labour supply decisions within a period as well as intertemporally. However,
this ideal has a number of practical and theoretical difficulties. In certain situa-
tions, the evaluation of existing reforms can be analyzed using much simpler and
potentially more robust techniques.
To best convey the set of issues surrounding estimation of labour supply mod-

els we start with the simplest static framework and build up to the more complete
dynamic models, adding important elements such as nonlinear budget sets on the
way. Thus, the layout of the chapter is as follows. Section 2 presents an assess-
ment of the estimation issues underlying the simple ‘static’ labor supply model
with proportional taxes and highlights the problems surrounding nonparticipa-
tion and missing wages. In section 3 we consider the natural experiment and
difference-in-differences approaches to estimation and evaluation of reforms, lay-
ing out the identifying assumptions underlying interpretation of the results. We
consider estimation of a simple discrete policy response parameter as well as the
estimation of income and substitution effects. In section 4 we examine the impact
of incorporating nonlinear taxation and welfare programme participation. Section
5 considers some of the specific issues that relate to family labor supply, including
the development of the collective approach and welfare programme participation
as previously articulated. Section 6 discusses intertemporal labor supply models.
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This section reviews the various approaches taken to dynamic modeling and ex-
amines the difficulties that arise with participation and heterogeneity. Section 7
concludes the chapter.

2. Estimation and Identification with Participation with Pro-
portional Taxes

We begin by considering the simple static model of hours and consumption
choices. We leave the discussion of nonlinear budget sets to section 4.

2.1. Static Specifications

2.1.1. The Allocation of Hours and Consumption

Utility is defined over hours of work h and consumption c, both of which are
restricted to be non-negative and h is restricted to be below a maximal amount
of an available time endowment. Formally, this discussion is easily extended to
the case of family labor supply decisions where h is a vector of household labor
supplies. However, there are many specific issues relating to joint participation
decisions and to the allocation of resources within the family that are central to
any study of family labor supply; we leave our discussion of family labor supply
models to section 5. Equally, consumption decisions can be disaggregated. This
disaggregation is central to the analysis of nonseparability of goods and leisure.
We turn to this below.
If we let y represent the total unearned income available for consumption, and

w the real wage rate, then the optimal choices for c and h are given by the solution
to

max
c,h

{U(c,h)|c−wh = y; c≥0;h ≥ 0} (2.1)

where U(c,h) is a quasiconcave utility index defined increasing in c and −h. The
resulting labor supply has the form

h = h(w, y). (2.2)

In the static model y is taken to be income from other sources. However it turns
out that the precise definition of y is crucial: If y is measured as the difference
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between total consumption expenditure and earnings, c−wh = y, it is consistent
both with intertemporal two-stage budgeting both in the absence of liquidity
constraints and with the presence of liquidity constraints that are unrelated to
labour supply. This is discussed in a subsection below.
The indirect utility representation of preferences is given by

V (w, y) ≡ U(wh(w, y) + y, h(w, y)) (2.3)

which is linear homogeneous, quasi-concave in p, w and y, decreasing in p and w

and increasing in y. The various representations of preferences (direct or indirect
utility) detailed below are going to be particularly useful in specifying empirical
models and defining the likelihood function.

2.1.2. Two-Stage Budgeting Specifications and Within Period Alloca-
tions

Labor supply and consumption models are frequently analyzed in a two good
framework. Such modelling is less restrictive than it sounds because under Gor-
man’s (1959, 1968) two stage budgeting, this labor supply model can be seen as
the top stage where “full income” is shared between consumption and leisure and
then the consumption budget is split among goods. However, for such an inter-
pretation with all goods being represented by one or two price indices, we require
some conditions on preferences.
Suppose utility is defined over hours of work h and a vector of goods q. Assume

the individual has a within period utility function of the form

υt = v(ct, ht,pt) = maxq,h {u (qt, ht) |p0tqt=ct} (2.4)

where pt is a vector of prices corresponding to the disaggregated commodity vector
qt. The function υt is a conditional indirect utility function which is increasing in
total consumption expenditure ct, decreasing and concave in prices and decreasing
in hours of work ht.
We say that qt is weakly separable from ht if the marginal rate of substitution

between goods qt does not depend on ht. In this case the utility function can
be written as u (u1(qt), ht) where u1 is a sub-utility function. If in addition the
marginal utilities of qt and ht do not depend on each other then we say that the
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utility function is additively separable, in which case the utility function can be
written as u1(qt)+u2(ht). Blackorby, Primont and Russell (1978) have a detailed
analysis of the concepts of separability and Deaton (1978) analyses the empirical
implications of the additive separability assumption.
Gorman has shown that if a set of goods x1 is separable from goods x2 then it

is possible to express the demands for goods x1 simply as a function of the total
expenditure allocated to this group ( x1 ) and the prices of these goods alone (say
p1). In addition, if preferences can be expressed in the generalized Gorman polar
form, then it is possible to express the overall expenditure allocations to each
group as a function of the price indices for each group. This theorem can justify
considering the allocation of total expenditure to overall consumption and leisure
separately from the problem of how expenditure is allocated to goods. However,
it has to be borne in mind that the justification which allows us to write labor
supply as a function of the real wage alone (rather than of all relative prices) does
imply restrictions on preferences.
These results offer a justification of the static model within an intertemporal

context since the concept of separability can extend both over goods and over
time.1 Typically we impose additive separability over time in which case the
marginal utility of consumption or hours of work in one period is unaffected by
consumption and hours in any other time period. Additive intertemporal sepa-
rability has the implication that we can use two stage budgeting to characterize
consumption choices: given the level of consumption and separability, the within
period demands for goods qt only depend on the prices of those goods and on
wages (if the goods are not separable from hours). The indirect utility function
defined by (2.4) then becomes the criterion function for allocating consumption
(and hours) over the life-cycle.2

It is well known that taking a monotonic transformation of the utility function
does not change the observed within period allocations. In an intertemporal con-
text this issue acquires a special importance: taking a monotonic transformation
does not alter the way that consumption and hours are allocated within period,

1See Gorman (1959), MaCurdy (1983), Blundell and Walker (1986) and Arellano and Meghir
(1992)

2Utility (2.4) implicitly assumes separability over time thus ruling out habits and / or ad-
justments costs (see Hotz, Kydland and Sedlacek (1988) and Meghir and Weber (1996)).
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under intertemporal separability. However, it does potentially change the mar-
ginal rate of substitution between periods. Hence, as we will discuss further below,
estimating intertemporal preferences generally requires intertemporal data.
Noting that modeling the monotonic transformation is modeling intertemporal

preferences, we use the slightly more elaborate notation

υt = ψ [U(ct, ht|z1t), z2t] (2.5)

where ψ[·] is a monotonic function of its first argument u and where z1 and z2
are variables (observed or otherwise) that affect preferences over consumption
and hours of work. In particular, z2t affects intertemporal allocations but not
within period ones (unless it contains common elements with z1t). Our focus in
this section is on within period allocations. The discussion here should make it
clear that one can work with the utility function (2.1) to represent within period
allocations of consumption and hours of work consistent with life-cycle choices.

2.1.3. Empirical Labor Supply Specifications

Preferences can be represented by direct utility functions, indirect utility
functions or by the labor supply equation itself. In each case the function has
satisfy some basic properties to be consistent with theory. Here we briefly review of
some standard specifications of the static labor supply model (2.2) and relate them
to their indirect utility function. Such specifications are usually chosen for ease
of estimation and here we simply consider the specifications and their underlying
model of preferences. With unobserved heterogeneity and nonparticipation it is
useful, if not essential, to have some relatively simple parametric specification in
mind.
The linear labor supply model

h = α+ βw + γy (2.6)

has indirect utility

V (w, y) = eγw(y +
β

γ
w − β

γ2
+

α

γ
) with γ ≤ 0 and β ≥ 0. (2.7)

Although popular (see Hausman (1981,1985), for example), it is arguable that
this linear specification allows too little curvature with wages.
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Alternative semilog specifications and their generalizations are also popular in
empirical work. For example, the semilog specification

h = α+ β lnw + γy (2.8)

with indirect utility

V (w, y) =
eγw

γ
(γy +α

β

γ
+ β lnw)− β

γ

Z
γy

eγy

γy
d(γy) with γ ≤ 0 and β ≥ 0. (2.9)

Moreover, the linearity of (2.8) in α and lnw makes it particularly amenable to an
empirical analysis with unobserved heterogeneity, endogenous wages and nonpar-
ticipation as discussed below. Consequently, this specification is used extensively
in our discussion of estimation that follows.
Neither (2.6) nor (2.8) allow backward bending labor supply behavior although

it is easy to generalize (2.8) by including a quadratic term in lnw. Note that
imposing integrability conditions at zero hours for either (2.6) or (2.8) implies
positive wage and negative income parameters. A simple specification that does
allow backward bending behavior, while retaining a three parameter linear in
variables form, is that used in Blundell, Duncan and Meghir (1994)

h = α+ β lnw + γ
y

w
(2.10)

with indirect utility

V (w, y) =
wβ+1

β + 1
(
y

w
(1 + γ)2 + β lnw + α− β

1 + γ
) with γ ≤ 0 and β ≥ 0. (2.11)

This form has similar properties to the MRS specification of Heckman (1974).
Generalizations of the Linear Expenditure System or Stone-Geary preferences

are also attractive from certain points of view. For example suppose the indirect
utility function for individual i in period t takes the form

Vit =

∙
wH + y − a(w)

b(w)

¸
(2.12)

where H is the maximum amount of hours available to be allocated between hours
and leisure. This is the quasi-homothetic “Gorman polar form”. The linear expen-
diture system belongs to this class. However, there is no need to impose additive
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separability between consumption and hours of work as would be the case un-
der Stone-Geary/LES preferences. Indeed, such separability assumptions severely
constrain the time path of consumption and hours of work and can lead to the
impression that the life-cycle model is unable to explain a number of observed
phenomena, see Heckman (1974). In particular we may specify

a(w) = a0 + a1w + 2a2w
1
2 (2.13)

and
b(w) = wβ (2.14)

which is a Generalized Leontief model. Preferences are additive and reduce to
LES if a2 = 0.
The implied labor supply function using (2.12), (2.13) and (2.14) can be derived

using Roy’s identity and takes the form

hit = (H − a1)− a2w
− 1
2 − β

w
(M − a0 + a1w + 2a2w

1
2 ) (2.15)

where M = wH + y. Unobserved heterogeneity can also easily be allowed for,
as well as measurement error in hours of work (but not in hourly wages) and or
consumption. For example, we can allow a1 to be heterogeneous across individuals
and time, i.e. a1 = ā1 + ε. Under the simplifying assumption that a1 is the only
source of heterogeneity the error term in the earnings equation now becomes ν =
−ε(1 + β).

2.2. Estimation of the Static Labor Supply model

The main estimation issue, ignoring problems related to participation and
nonlinear taxation (discussed below) is the endogeneity of wages w and unearned
income y. Wages may well be endogenous because unobservables affecting prefer-
ences for work may well be correlated with unobservables affecting productivity
and hence wages. Unearned income may be endogenous for a number of reasons:
If y represents asset income, then individuals who work harder (because of unob-
served preferences for work ) are also likely to have accumulated more assets.3

3If μ also represents income from spouses, positive assortative mating will imply that hard
working individuals will tend to marry. Hence unobserved preferences for work will correlate
with spousal income reflected in μ.
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Take as a simple example the semilog model of labor supply as above, i.e.

hi = α0xi + β lnwi + γyi + ui (2.16)

The subscript i denotes an individual. The variables x denote observables which
determine preferences. We avoid using the log of y because it is conceivable that it
is zero and, in some cases, even negative. We add to this system a wage equation

lnwi = δ01xi + δ02zi + vi

and a reduce form equation for unearned income

yi = ζ 01xi + ζ 02zi + εi .

Identification requires that the dimension of the variables excluded from the labor
supply equation, zi, is at least two. It also requires that the matrix [δ02 ζ

0
2] has

rank 2. In this linear framework estimation is straightforward - Two stage least
squares is the obvious choice. However, we will see below that it is convenient to
estimate the three reduce forms first and then impose the parametric restrictions
to recover the structural coefficients using minimum distance. The reduced form
labor supply model is

hi = (α+ βδ1 + γζ1)
0xi + (βδ2 + γζ2)

0zi + ui

Given estimates of all the reduced form coefficients the restrictions can then be
imposed using minimum distance. Thus let

α1 = (α+ βδ1 + γζ1)

α2 = (βδ2 + γζ2)

α3 = [δ
0
1 δ

0
2 ζ

0
1 ζ

0
2 ]
0

and let Ω represent the covariance matrix of the OLS estimator of the three equa-
tion reduced form system. Finally let α(θ) = [α1 α2 α3]0 where θ.represents the
set of parameters in the labor supply model, the wage equation and the unearned
income equation. Then the optimal minimum distance estimator is

θ̂ = argmin
θ
{(α̂− α(θ))0Ω−1(α̂− α(θ))
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The resulting estimator is efficient, to the extent that the first step estimator is
efficient.
When the labor supply model is non linear this straightforward procedure is

no longer available. In this case an alternative approach is Maximum likelihood
or semi-parametric instrumental variables. Maximum likelihood will be discussed
below in the context of the labor supply model with corner solutions and nonlinear
taxation. Hence we avoid duplication by deferring discussion until then.
In the absence of censoring one can use non-parametric Instrumental variables

as in Newey and Powell (2003) and Daroles, Florens and Renault (2000). Consider
the case where the labor supply is an unknown function of w and y

hi = h(wi, yi) + ui

The object is to estimate the function h. Suppose we have a set of instruments z
(at least two if we are to treat both the wage and other income as endogenous). If
we assume that the error in the labor supply function satisfies the rank condition
E(ui|zi) = 0. In addition one needs a strong identification assumption ensuring
that any function of w, y can be explained by the instruments z. Under these
conditions solving the moment condition

E(hi − h(wi, yi)|zi) = 0

for the function h(wi, yi) provides a non-parametric estimator.
In the context of censoring due to non-participation a control function ap-

proach turns out to be more useful. However, it is important to note that the
assumptions underlying the control function are different than those underlying
the IV approach above, unless the instruments are independent of the unobserv-
ables.4 A form of the control function approach relies on the assumption that

E(ui|z, x, w, y) = g(vi, εi)

where vi and εi are the error terms from the wage and unearned income equations
respectively.5 With unknown h identification also requires measurable separability

4Florens, Heckman, Meghir and Vytlacil (2003).
5For a more general case with unknown h see Newey, Powell and Vella (1999) or Heckman,

Florens, Meghir and Vytlacil (2003) who derive conditions for identification..
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which ensures that the functions g and h vary independently and is the equivalent
of the rank condition. In a parametric framework the requirements are less strin-
gent since we are restricting attention to specific functional forms. One approach
to estimation would be to take a series expansion of g. Alternatively we could use
some kernel estimator. The procedure works under a generalized rank condition;
however the important point to note is that even under non-linearity we do not
require explicit distributional assumptions, other than the restriction on the con-
ditional expectation of u.6 Nevertheless it should be noted that in practice it may
be difficult to motivate the control function assumption, which contrasts with the
orthogonality conditions above that are often derived from economic theory.

2.3. The Censored Regression Model

Labor market participation raises two key questions for modelling labor sup-
ply. First, what market wage distribution, should be used for nonparticipants?
Second, are there features of the labor market that make labor supply behavior
on the extensive margin (participation) fundamentally different from behavior on
the intensive margin (hours of work)? These questions are not wholly unrelated
since, without further restrictions on the distribution of offered wages among non-
participants, it is difficult to separately identify a process for nonparticipation and
for hours of work.
Among the most compelling reasons for separating these two margins is fixed

costs of work - either monetary or time. We take up the issue of fixed costs
in section 2.5, and begin by working through a model without fixed costs. We
consider first with semiparametric estimation in a model with missing wages.
Suppose individual heterogeneity in tastes for work is represented by the ran-

dom variable v. Observed hours of work (2.2) in the censored regression case can
be represented by

h = max{f(w, y, x, v), 0}. (2.17)

where f(w, y, x, v) represents desired hours of work

f(w, y, x, v) ≡ h∗. (2.18)

6Two functions g(e) and h(v) are measurably separable iff whenever g(e) − h(v) = 0 a.s.
implies g(e) and h(v) are constant functions.
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and where y represents some measure of current period unearned income.
The censored labor supply model implies the reservation wage condition

h > 0⇔ w > w∗(y, x, v) (2.19)

where w∗ is defined implicitly by

0 = f(w∗, y, x, v). (2.20)

The existence and uniqueness of the reservation wage in this simple world is
guaranteed by revealed preference arguments. Given the market wage w, (2.17)
also defines a threshold condition on the unobservable heterogeneity term v given
by

h > 0⇔ v ≥ v∗(w, y, x)

⇒ Pr(h > 0) =

Z
v≥v∗

g(v)dv.

where g(v) is the density function for v.
To implement this censored regression specification we define the index Ii as

an indicator variable that is unity if individual i participates7 and zero otherwise.
Observable hours of work then follow the rule

hi =

½
h∗i if Ii = 1
0 otherwise

¾
. (2.21)

That is

Ii = 1⇐⇒ h∗i > 0 (2.22)

= 1{h∗i > 0}. (2.23)

This implies that participation in work follows a simple corner-solution framework
and is equivalent to assuming there are no fixed costs.8

7By participation we mean participation in paid work.
8By contrast, the fixed costs framework retains

Ii = 1 =⇒ h∗i > 0

but not the reverse. As Cogan (1980) shows, fixed costs are equivalent to a positive reservation
hours of work. We elaborate on this in section 3.2 below.
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The log likelihood for an independently distributed random sample of n indi-
viduals in the censored model is given by

lnL(θ) =
nX
i=1

µ
Ii ln g(ν; θ) + (1− Ii) ln

Z
v≥v∗

g(v; θ)dv

¶
(2.24)

where θ are the unknown parameters of preferences and g is the distribution of v.
In a linear specification with a normal iid assumption on v, this is equivalent to
the Tobit censored regression specification.
The likelihood specification (2.24) makes two implicit assumptions on the wage

distribution. First, that wages are observed for all individuals irrespective of their
labor market status. Second, that wages are exogenous for labor supply. Neither
of these are apriori reasonable.

2.4. Missing Wages

Wages are not observed if h = 0. Suppose the model for wages can be written
as

lnw = γ1x+ γ2q + η (2.25)

where q are a set of variables that are exclusive to the determination of real
wages and where η is an iid error term with distribution gw(η). The likelihood
contribution for h = 0 becomes

h > 0 c0 = g(v)gw(η)

h = 0 c0 =
R∞ R v∗

g(v)gw(η)dvdη
(2.26)

By writing the joint distribution of ν and η as a product of the two marginals
we have implicitly maintained that wages are exogenous for labor supply. This
implies that the density of wages can be estimated separately; In a labor supply
model linear in log wages this further implies that we can simply impute wages
for all non workers and estimate the model as if wages are observed (correcting
the standard errors of course for generated regressor bias) However, if we wish
relax this assumption and permit w to be endogenous in the hours equation, the
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sample likelihood becomes

lnL(φ) =
nX
i=1

µ
Ii ln ghw(v, η) + (1− Ii) ln

Z ∞ Z v∗

ghw(v, η)dvdη

¶
(2.27)

where ghw(v, η;φ)is the joint distribution of ν and η.

The resulting estimator simplifies enormously if we assume a parametric speci-
fication that permits an explicit reduced form for desired hours of work. A popular
example of such a specification is the semi-log labor supply model to which we
now turn

2.4.1. A Semi-log Specification

Suppose we write the optimal labor supply choice for individual i as

h∗i = β1 lnwi + β2yi + β3xi + vi (2.28)

where β1, β2 and β3 are unknown parameters of labor supply. labor supply and
wages are now completely described by the triangular system consisting of (2.25)
and the following reduced form for desired hours of work

h∗i = (β1γ1 + β3)xi + β1γ2qi + β2yi + β1ηi + vi (2.29)

= π1xi + π2qi + π3yi + ωi (2.30)

= πzi + ωi (2.31)

2.4.2. Semi-parametric Estimation

If it can be assumed that vi and ηi are distributed independently of the
explanatory variables x, q and y then semiparametric identification and estimation
can take the following simple step wise procedure.
The π coefficients in (2.31) can be estimated from a standard censored regres-

sion estimation procedure. If gω(ω) describes the density of ω then the sample
likelihood for a random sample of i = 1, ..., n individuals is given by

L(π) =
nY
i=1

{gω(ω|π))}Ii
½
1−

Z
−π0zi

gω(ω|π)dω
¾1−Ii

(2.32)
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which is equivalent to the sample likelihood for the Tobit model when ω is ho-
moscedastic normal. Root-n consistent and asymptotically normal estimators of
π can be derived under much weaker assumptions on gω, see Powell(1984, 1986b),
Horowitz (1986).
Given π, the conditional mean of (2.25) for participants can be used to esti-

mate the wage equation parameters. This is the Heckman (1976, 1979) selectivity
framework. Suppose we assume

E(ηi|Ii > 0) = λη(πzi) (2.33)

then the conditional mean of (2.25) given Ii > 0 is simply written

E(lnwi|z, Ii > 0) = γ1xi + γ2qi + λη(πzi) (2.34)

If a joint normal distribution is assumed for vi and ηi then estimation can follow
the two-step selectivity estimation approach developed by Heckman (1979). Al-
ternatively, a

√
N consistent and asymptotically normal semiparametric estimator

can be constructed.
To consider the semiparametric estimator notice that the conditional expecta-

tion of (2.34) for participants given πzi is

E(lnwi|πzi, I > 0) = γ1E(xi|πzi) + γ2E(qi|πzi) + λη(πzi). (2.35)

Subtracting this from (2.34) eliminates the λη(πzi) term yielding

E(lnwi|z, Ii > 0)−E(lnwi|π0zi, I > 0) (2.36)

= δ0(xi − E(xi|π0zi)) + φ0(qi −E(qi|π0zi)).

The conditional expectation terms E(lnwi|πzi), E(xi|πzi) and E(qi|πzi) in
(2.36) can then be replaced by their unrestricted Nadaraya-Watson kernel regres-
sion estimators.9

The parameters of (2.34) can then be recovered by an instrumental variable

regression. Robinson (1988), suggests regressing lnw −dlnwh
(πz) on x − bxh(πz)

9e.g.
\E(qi|π0zi) = bqh(πz) = br(πz)bf(πz)
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and q − bqh(πz) using I[ bf(πz) > bN ]x and I[ bf(πz) > bN ]q as the respective in-
strumental variables, where I[ bf(lnx) > bN ] is an indicator function that trims
out observations for which bf(lnx) < bN , for some sequence of trimming con-
stants bN which tend to zero with the sample size at some appropriate rate. An
alternative estimator, due to Powell (1987), is to use bf(πz).x and bf(πz).q as in-
struments. This effectively removes the random denominators from the kernel
regression estimators.
Finally, given the γ1, γ2, π1, π2 and π3 parameters, the structural labor sup-

ply parameters β1, β2 and β3 can be recovered by minimum distance. In general,
these steps can be combined to improve efficiency. Provided a suitable instrumen-
tal variable is available, this procedure can also be extended to control for the
endogeneity of other income yi. We consider this in more detail below.

2.5. Fixed Costs

2.5.1. A Structural Model of Fixed Costs

Fixed costs imply that participation does not simply follow the corner solution
condition (2.22). Instead participation will depend on the determinants of fixed
costs as well as the determinants of h∗i . For example, suppose there is a fixed
monetary cost of working S, this implies that non-labor income in the budget
constraint becomes

y − S if h > 0
y if h = 0

and the distribution of S is only partially observable. If we denote utility in work
at the optimal hours point by the indirect utility level: ν(w, y, v) and utility at

in which br(πz) = 1

n

X
i

Kh (πz − πzi) qi,

and bf(πz) = 1

n

X
i

Kh (πz − πzi) ,

where Kh(·) = h−1k(·/h) for some symmetric kernel weight function k(.) which integrates to
one. The bandwidth h is assumed to satisfy h → 0 and nh → ∞ as n → ∞. Under standard
conditions the estimator is consistent and asymptotically normal, see Härdle (1990) and Härdle
and Linton (1994).
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h = 0 by the direct utility at h = 0: U(Y, 0, v). The decision to work follows from

ν(w, y, v) ≥ U(Y, 0, v).

Note that if S > S >> 0 then there will be a discontinuity in the hours distribution
at low wages which should reflect itself as a “hole” at the low end of the hours
distribution.10 This model is further developed in Section 4, here we analyse index
models empirical models that are motivated by the presence of fixed costs of work.
Cogan (1981) defines reservation hours h0 such that

U1(T − h0, y − S + wh0, x, v) = U0(T, y) (2.37)

h0 = h0(y − S,w, x, v) ≥ 0

and the participation decision becomes

Pr (work) = Pr(h > h0). (2.38)

For any v and η, nonparticipation will occur if fixed costs are sufficiently high
S > S∗(v, η).
Suppose we continue to assume wage equation (2.25) and also assume the

specification of fixed costs to be

S = θ1x+ θ2m+ s (2.39)

where m are a set of variables exclusive to the determination of fixed costs and s

represents unobserved heterogeneity in the distribution of fixed costs. In terms of
the likelihood contributions we have ‘no work’ regime:

c0 =

Z ∞

−∞

Z v∗

−∞

Z ∞

S∗
g(v, η, s)dsdvdη (2.40)

work regime:

c1 =

Z ∞

v∗

Z S∗

0

g(ε, v, η, s)dsdv. (2.41)

10This may not be visible since heterogeneity in fixed costs and in unobserved tastes may
imply a different possition for the discontinuity for different individuals, smoothinng out the
unconditional distribution. Hence looking for such “odd” features in the hours distributionn
may not be a very good empirical strategy for detecting fixed costs. However such features can
be seen in the distribution of relatively homogenous groups, e.g. Single women with no children
or single men.
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Given some parametric specification of direct (and indirect) utility, all the
structural parameters of fixed costs, preferences and wage determination are iden-
tified from a likelihood based on the contributions (2.40) and (2.41).
Finally note that if we specify a model on the basis of the indirect utility or cost

function we may not have an analytical expression for the direct utility function.
Consequently this has to be obtained numerically. One way of doing this is to
find the standard reservation wage when hours are zero and the fixed costs have
not been incurred. Evaluating the indirect utility function at that reservation
wage and non-labor income then provides us with the utility value of not working.
Another important difficulty is then to derive the probability of participation given
that the direct utility function at zero hours of work will depend on unobserved
heterogeneity both directly and via the reservation wage - hence it is likely to be
a highly non-linear function of the underlying error term. In practice, as we argue
later, it may be easier to work with a direct utility specification when we have to
deal with such non-convexities.

2.5.2. Semi-parametric Estimation in the Fixed Costs Model

Although the (semiparametric) censored regression approach to estimation of
the hours equation described above is no longer valid in this fixed costs case, a
semiparametric procedure applied to hours of work among the participants can be
used as an approximation to the fixed costs model. The optimal choice of hours
of work among those individuals who decide to join the labor market will have
the form

h∗i = β1 lnwi + β2(yi − Si) + β3xi + vi (2.42)

= (β1γ1 + β2θ1 + β3)xi + β1γ2qi + β2yi (2.43)

+β2θ2mi + β1ηi + β2si + vi (2.44)

= eπ1xi + eπ2qi + eπ3yi + eπ4mi + ui (2.45)

= eπezi + ui (2.46)

where again the β1, β2 and β3 are unknown parameters of labor supply. labor
supply and wages are now completely described by the triangular system consisting
of (2.25) and (2.46).
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Assume that the participation condition (2.38) can be well approximated by
the discrete index model

Ii = 1⇐⇒ φezi + ei > 0 (2.47)

where ezi contain all the exogenous variables determining reservation hours, log
wages and desired hours of work. The term ei is a random unobservable whose
distribution Fe is normalized up to scale and assumed to be independent of ezi.
Parameters φ will be convolution of parameters of fixed costs, the wage equation
and preferences. They can be identified through the condition

E(Ii = 1|ezi) = Z
−φzi

dFe(e). (2.48)

The φ coefficients in (2.47) can be estimated up to scale from a standard binary
choice estimation procedure which replaces the censored regression rule (2.32) in
this fixed costs model. The sample likelihood for a random sample of i = 1, ..., n
individuals is given by

=(φ) =
nY
i=1

½Z
−φzi

dF (e)

¾Ii ½
1−

Z
−φzi

dF (e)

¾1−Ii
(2.49)

which is equivalent to the Probit likelihood when e is homoscedastic normal.√
N consistent and asymptotically normal estimators of φ up to scale can be

derived under much weaker index assumptions on f, see Klein and Spady(1993)
for example.
Given φ, the conditional mean of (2.25) for participants can be used to estimate

the wage and hours equation parameters. This is the Heckman (1976, 1979)
selectivity framework. Suppose we assume the single index framework

E(ηi|Ii > 0, ezi) = λη(φezi) (2.50)

and
E(ui|Ii > 0, ezi) = λu(φezi). (2.51)

then the conditional mean of (2.25) and (2.31) given Ii > 0 is simply written

E(lnwi|Ii > 0) = γ1xi + γ2qi + λη(φezi) (2.52)
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and

E(hi|Ii > 0, ezi) = (β1γ1+β2θ1+β3)xi+β1γ2qi+β2yi+β2θ2mi+λu(φezi). (2.53)
where ezi is taken to include all exogenous variables. If a joint normal distribution
is assumed for vi, ηi and si then estimation can follow the two-step selectivity
estimation approach developed by Heckman (1979).
Notice that (2.52) and (2.53) together only identify γ1, γ2, β1 and β2, the

parameters of fixed costs and β3 are not identified without more information on
fixed costs. A

√
N consistent and asymptotically normal semiparametric estimator

of these parameters can be constructed from a natural extension of the procedures
described above for the censored labor supply model.
For participants we have

E(hi|φezi, I > 0) = eπ1E(xi|φezi, I > 0) + eπ2E(qi|φezi, I > 0) (2.54)
+eπ3E(yi|φezi, I > 0) + eπ4E(mi|φezi, I > 0) + λu(φezi). (2.55)

The nonparametric term describing the selection of participants can be eliminated
as in (2.36) and root-n estimation of the unknown index parameters can also follow
the same semiparametric techniques.
Finally, we should note that endogeneity of yi can be handled in a similar

fashion. Suppose a reduced form for y is given by

yi = ϑ0di + ζ i (2.56)

since yi is continuously observed for all individuals, ϑ can be estimated by least
squares. Now suppose we also assume that

E(ui|Ii > 0, yi, ezi) = δyζi + λu(φezi). (2.57)

Then adding the estimated residual from the regression (2.56) into the selection
model (2.53) appropriately corrects for the endogeneity of yi. This is an impor-
tant consideration given the consumption based definition of yi in the life-cycle
consistent specification.
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3. Difference-in-Differences, Natural Experiments and Group-
ing Methods

One of the central issues in labour supply is the endogeneity of marginal (post-
tax) wages and other incomes. The work incentives facing individuals are usually
endogenous. Consider as an example a world with a progressive tax system, as will
be examined in detail in the next section. In this case individuals earning more
face a higher rate of tax and hence a lower marginal incentive to work. Now take
two individuals both of which have the same pre-tax wage but different tastes for
work. The person working longer hours will earn more and will face a higher tax
rate, which translates to a lower post-tax marginal wage. In a simple regression
framework we would estimate a negative effect of the wage on hours of work since
the person with higher hours (because of tastes) will be facing a lower wage.
This kind of endogeneity has prompted researchers to seek exogenous sources of
variation in policy that resemble experimental situations with a “treatment” group
affected by the policy and a “control” or “comparison” group which is unaffected.
The impact of incentives is then estimated by comparing the change n hours
between the two groups before and after the policy is implemented.
Using this basic idea one can attempt to estimate a “causal” impact of the

policy on labour supply, ignoring any structural considerations. Alternatively one
can think of the policy changes as an attempt to obtain qausiexperimental condi-
tions for estimating the structural parameters themselves. The former approach
attempts to ignore the underlying theory and wishes to go straight to the effects
of the particular policy. The latter is after structural parameters that can be
used for extrapolation to other policy situations, assuming the theory is a good
approximation of reality.
In the following sections we describe this approach to estimating the impact

of incentives on labour supply. We also discuss the validity of the approach under
different circumstances. As one may expect, even the “atheoretical” approach
which seeks to estimate the impacts of policy without reference to a model does
implicitly make strong assumptions about behaviour and/or the environment, and
we discuss this. We also discuss conditions under which the quasi-experimental
approach, which is a form of Instrumental Variables, can provide estimates of
structural parameters. We go through the difference in differences estimator and
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a more general grouping estimator considering also the effects of selection due to
nonparticipation.

3.1. Difference-in-Differences and Fixed Effects Models

Suppose one is interested in estimating the influence of a policy instrument on
an outcome for a group, say outcome hit measuring hours of work or participation.
The group consists of individuals i = 1, ..., N , with these individuals observed over
a sample horizon t = 1, 2, ... Suppose further that a policy instrument of interest
changes in a particular period t for only a segment of the individuals. Let δit
be a zero-one indicator that equals unity if the policy change was operative for
individual i in period t. Members of the group who experience the policy change
react according to a parameter γ. A framework for estimating expressed in terms
of a conventional fixed-effect model takes the form

hit = γδit + ηi +mt + εit (3.1)

where i is a time-invariant effect unique to individual i,mt is a time effect common
to all individuals in period t, and εit is an individual time-varying error distributed
independently across individuals and independently of all ηi and mt.
The least squares estimator of γ in (3.1), which regresses hit on δit and a set

of individual and time dummy variables, is precisely the difference in differences
estimator for the impact of the reform. It can be given the interpretation of a
causal impact of the reform if E(εit|ηi,mt, δit) = 0. In a heterogeneous response
model

hit = γiδit + ηi +mt + εit (3.2)

the least squares dummy variable estimator recovers the average of the response
parameters γi for those affected by the policy. Since the error term εit may be
correlated both over time and across individuals, this should be taken into account
when constructing standard errors.

Now suppose that the policy does not affect everyone in a treatment group,
but that the chance of being affected is higher among them (g = T ), than it is
among a control group (g = C). The error structure can be more general than
above. Consider a specification in which

hit = γδit + uit. (3.3)
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where uit represents an individual level heterogeneity term which may be fixed for
that individual over time or may vary over time. Moreover it may be correlated
across individuals and may have a cross section mean that is non zero. The
implicit macro component and the average group characteristics to which the
individual belongs may be correlated with δit. Suppose that limited time series
data is available across individuals, either in terms of repeated cross-sections or
as a panel data source. Under the following assumption, and the presumption
that the policy is introduced only for one group, the impact of the policy may be
identified by using two time periods of data, one before the reform and one after.
The assumption we require is that

A1 : E[uit|g, t] = ag +mt (3.4)

which can be interpreted as saying that in the absence of the reform the changes
in group means are the same across the two groups. Then with two groups and
two time periods the slope coefficient γ can be written as

γ =
∆E(hit | T, t)−∆E(hit | C, t)
∆E(δit | T, t)−∆E(δit | C, t)

the difference-in-differences estimator is the sample analog given by

bγ = ∆h
T

t −∆h
C

t

∆Pr(δit = 1 | T, t)−∆E(δit = 1 | C, t)
(3.5)

where the ‘bar’ denotes sample average, ∆ the first difference and the superscript
the group for which first differences are taken. bγ is consistent for γ. This estimator
is an instrumental variables estimator with excluded instruments the group time
interactions. If the effect of the treatment is heterogeneous and if the policy does
not decrease the chance of obtaining the treatment δ for anyone (monotonicity)
then the difference in differences estimator above identifies the impact of the policy
for those obtaining treatment as a result of the policy (Imbens and Angrist, 1994)
Assumption A1 is very strong indeed. Failure will result if there is a change

in group composition of unobservable individual effects over time or if there is a
differential impact of macro shocks across groups. Again it will depend critically
on the choice of groups which is a key issue in this framework. A1 implies:

22



(i) time invariant composition for each group
and
(ii) common time effects across groups.

3.2. Estimating a Structural Parameter

Here we consider the use of this method in the estimation of a simple labor
supply model (ignoring income effects for notational simplicity, we return to this
below)

hit = α+ β lnwit + uit (3.6)

Again uit represents an individual level heterogeneity term which may be fixed for
that individual over time or may vary over time. Moreover it may be correlated
across individuals and may have a cross section mean that is non zero. This
represents the impact of macro shocks to preferences on individual i’s labor supply.
Both the implicit macro component and the idiosyncratic heterogeneity may be
correlated with the log wage (lnwit).

Make the following assumptions

A1 : E[εit|g, t] = ag +mt (3.7)

A2 : [E[lnwit|g = T, t]−E[lnwit|g = C, t]]−[E[lnwit|g = T, t− 1]−E[lnwit|g = C, t− 1]] 6= 0
(3.8)

Then with two groups and two time periods the slope coefficient β can be written
as

β =
∆E(hit | T, t)−∆E(hit | C, t)

∆E(lnwit | T, t)−∆E(lnwit | C, t)
The difference-in-differences estimator is the sample analog given by

bβ = ∆h
T

t −∆h
C

t

∆lnw
T

it −∆lnw
C

it

(3.9)

and is consistent for β.
AssumptionA2 is simply analogous to a rank condition and should hold if the

groups are chosen to reflect some systematic reason for a differential growth in
lnwit across groups. The choice of groups in this difference in differences approach
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usually reflects some policy change which affects the real wage. A tax change, for
example, that can be argued to be incident on individuals in one group i ∈ [
g = T ] but not on individuals in another i ∈ [ g = C]. It is clear, however,
that the assumption A1 may be strong in some circumstances. However note the
big difference with the previous section. In the previous section the policy was
assumed to have no effect on wages of the treatment group relative to the control
group; this is the assumption implicit in the fact that we only need to condition
on time and group effects. Here we are conditioning on wages and we are adding
the assumption from economic theory, that log wages and taxes share the same
coefficient. Hence if the policy implicitly affecting incentives, changes pre-tax
wages as well, this is allowed for; this in itself makes the assumptions underlying
the difference in differences approach more credible. (see more on this below).
This method has some attractive features. It allows for correlated heterogene-

ity and for general common time effects. Although for many choices of grouping,
often precisely those associated with some policy reform, assumption A1 is likely
to be invalid, there are possible grouping procedures for estimating labor supply
models that are more convincing. This approach is also closely related to the
natural experiment or quasi-experimental estimators that typically employ before
and after comparisons relating directly to a policy reform.
Before moving on to consider these developments, we first simply outline how

this approach can be extended to allow for many groups, for many time periods
(or many reforms), for participation and for the inclusion of income terms and
other regressors.

3.3. Grouping Estimators

Suppose individuals can be categorized in one of a finite number of groups g
each sampled for at least two time periods. For any variable xit, define Dgt

x as the
residual from the following regression

E(xit|Pit, g, t) =
GX
g=1

ζgdg +
TX
t=1

ξtdt +Dgt
x , (3.10)

where Pit indicates that the individual is observed working, that is Pit ≡ {Iit = 1}
and where dg and dt are time and group dummies respectively. Analogously with
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A1 and A2 we make assumptions

A1.1 E(uit|Pit, g, t) = ag + kmt (3.11)

A2.1 E[Dgt
w ]
2 6= 0. (3.12)

AssumptionA1.1 summarizes the exclusion restrictions for identification; it states
that the unobserved differences in average labor supply across groups can be sum-
marized by a permanent group effect ag and an additive time effect mt . In other
words differences in average labor supply across groups, given the observables,
remain unchanged over time. It also says that any self selection into employment
(the conditioning on Pit) can be controlled for by group effects and time effects
additively. Assumption A2.1 is again equivalent to the rank condition for identi-
fication; it states that wages grow differentially across groups; this is because the
assumption requires that after we have taken away time and group effects there
is still some variance of wages left. For example, if there is a tax reform between
two periods, affecting the post tax wages of the two groups in different ways, and
assuming that tax incidence does not fully counteract the effects of the reforms,
identification of the wage elasticity will be guaranteed.
With these assumptions we can implement a generalized Wald estimator (see,

Heckman and Robb, 1985). Defining the sample counterpart of Dgt
x as x̃gt, i.e. the

residual from regressing the time-group cell mean on time and group dummies,
we can write the estimator as

bβ = P
g

P
t

h
h̃gt

i hglnwgt

i
ngtP

g

P
t

³glnwgt

´2
ngt

(3.13)

where ngt is the number of observations in cell (g, t). The implementation of this
estimator is simple; group the data for workers by g and by time and regress by
weighted least squares the group average of hours of work on the group average of
the log wage, including a set of time dummies and group dummies. An alternative
that gives numerically identical results is as follows: regress using OLS the log
after-tax wage rate on time dummies interacted with the group dummies, over the
sample of workers only and compute the residual from this regression. Then use
the original data to regress hours of work on the individual wage, a set of time
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dummies and group dummies and the wage residual. The t-value on the coefficient
of the latter is a test of exogeneity, once the standard errors have been corrected
for generated regressor bias and intra group dependence. It is also important to
allow for the possibility of serial correlation and correlation of idiosyncratic shocks
across individuals when computing the standard errors.

3.3.1. Controlling for Participation

A potential problem with the approach above is that it assumes that the
composition effects from changes in participation can be fully accounted for by
the additive time and group effects, ag + mt. First, changes in mt will cause
individuals to enter and leave the labor market. Second, with non-convexities, a
tax policy reform may lead to changes in participation. This will be particularly
true if fixed costs are large relative to the non-taxable allowance. The presence
of composition effects is equivalent to saying that E(uit|Pit, g, t) is some general
function of time and group and does not have the additive structure assumed in
A1.1.
To control for the possibility that E(uit|Pit, g, t) may vary over time requires

structural restrictions. A parsimonious specification is to make the assumption of
linear conditional expectation. For example, we may extend A1.1 and A2.1 by
assuming that

A1.2 E(uit|Pit, g, t) = ag +mt + δλgt (3.14)

A2.2 E[Dgtλ
w ]2 6= 0. (3.15)

where λgt is the inverse Mills’ ratio evaluated at Φ−1(Lgt), Φ
−1 being the inverse

function of the normal distribution and Lgt being the proportion of group g work-
ing in period t.11 Finally Dgtλ

w is defined by the population regression

E(wit|Pit, g, t) =
GX
g=1

ζgdg +
TX
t=1

ξtdt + δwλgt +Dgtλ
x , (3.16)

Assumption A1.2 models the way that composition changes affect differences in
the observed labor supplies across groups. It implies that

E(hit|Pit, g, t) = βE(lnwit|Pit, g, t) + ag +mt + δλgt (3.17)

11See Gronau (1974) and Heckman (1974, 1979).
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where all expectations are over workers only. Assumption A2.2 states that wages
must vary differentially across groups over time over and above any observed
variation induced by changes in sample composition. We have also implicitly
assumed that E[Dgt

λ ]
2 6= 0. If this is not the case, there is no selection bias on the

coefficients of interest (here the wage effect) because composition effects can be
accounted for by the linear time and group effects. In this case we can use (3.13).
We can now estimate the wage effect using a generalization of (3.13), i.e.

bβ = P
g

P
t

h
h̃gtλ

i hglnwgtλ

i
ngtP

g

P
t

³glnwgtλ

´2
ngt

(3.18)

As before this estimator can be implemented using a residual addition technique.
We can add an estimate of λgt as well as the residual of the wage equation esti-
mated on the sample of workers (with no correction for sample selection bias as
implied by (3.17) to an OLS regression of individual hours on individual wages,
time dummies and group dummies.
To determine whether (3.18) or (3.13) should best be used we can test the

null hypothesis that E[Dgt
λ ]
2 = 0 which implies that the group effects ag and the

time effects mt adequately control for any composition changes (given our choice
of groups). If we do not reject this we can use (3.13).
The assumption in A1.2 is worth some discussion. First note that where all

regressors are discrete and a full set of interactions are included in the selection
equation, use of the normal distribution to compute λ̂gt imposes no restrictions.
However, the linear conditional expectation assumption implies that a term linear
in λ̂gt is sufficient to control for selection effects and is potentially restrictive.
Using the results in Lee (1984) in general we have that

E(uit|Pit, g, t) = ag +mt +
KX
k=1

δkλ
(k)
gt (3.19)

where λ(k)gt are generalized residuals of order k. The linearity reduces the number
of parameters to be estimated and hence the number of periods over which we
require exogenous variability in wages. If it is found that E[Dgt

λ ]
2 6= 0 then one

can experiment by including higher order generalized residuals after checking that
they display sufficient independent variability.
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3.3.2. Income Effects

Income effects are important for labor supply and we need to take them into
account for at least two reasons. First, the wage elasticity cannot in general
be interpreted as an uncompensated wage elasticity, unless we control for other
income. Second, income effects are important if we wish to compute compensated
wage elasticities for the purpose of evaluating the welfare effects of tax reforms. It
is straightforward to extend the estimator in (3.18) to allow for extra regressors,
such as other income. This involves regressing h̃gtλ on glnwgtλ and eygtλ where
y is household other income. The rank condition for identification is now more
stringent: It requires that the covariance matrix V = Ezgtλz

0
gtλ is full rank, where

zgt = [D
gtλ
w , Dgtλ

y ]0.
This is equivalent to requiring that the matrix of coefficients on the excluded

exogenous variables in the reduced forms of log wage and other income, after
taking into account of composition effects, is rank 2. A necessary but not sufficient
condition for this to be true is that these coefficients are non-zero in each of the
reduced forms - i.e. that E(Dgtλ

w )2 and E(Dgtλ
y )2 are non-zero. As before if we

accept the hypothesis that E(Dgt
λ )

2 = 0 we need to consider whether the rank of
V ∗ = Ez∗gtz

∗0
gt is two, where z

∗
gt = [D

gt
w , D

gt
y ]
0. In this case we estimate the model

using the sample counterparts of z∗gt as regressors.

3.4. The Difference-in-Difference Estimator and Behavioral Responses

As we have seen the simplest implementation of the difference-in-differences
approach simply includes a policy reform dummy. This avoids directly specifying
a structural model in the sense that the effect of the policy is not tied to a wage
or income effect. The idea is that the policy should be evaluated directly without
the intermediation of an economic model.
Suppose again there are simply two periods and two groups. Suppose the

policy reform is a tax change in which τ is the change in the marginal tax rate
for the treatment group. The natural experiments approaches simply includes a
policy dummy δgt = 1{g = T, t = A} in the hours regression

hi = α+ βδgt + ζ it. (3.20)

The quasi-experimental estimator in this case is just the difference-in-differences
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estimator applied to (3.20).
To interpret this estimator suppose the hours equation has the simple form

(3.6). Suppose that pre and post reform wages are defined by:
Before Reform After Reform

i ⊂ Treated lnwiB ln((1− τ)wiA)

i ⊂ Control lnwiB lnwiA

Assuming A1 and A2, taking group means we find

h
g

t = α+ β ln(1− τ)δgt + βlnw
g

t + ag +mt (3.21)

If δgt = 1{g = T, t = A} is all that is included in the regression then the difference
in differences estimator will only recover β if log wages have the group and common
time effect form

lnw
g

t = eag + emt. (3.22)

This seems a particularly strong assumption given empirical knowledge about the

differential trends in wage group across different groups in the economy. Clearly,
the cost of including simply the policy reform dummy δgt = 1{g = T, t = A} alone
is that the common time effects and time invariant composition effects assumptions
become even more difficult to satisfy.

4. Estimation with Nonlinear Budget Constraints

A problem encountered in many analyses of consumption and labor supply
involves the presence of intricate nonlinearities in budget sets arising from wages
and prices that vary as a function of quantities. Tax and welfare programs con-
stitute a prominent source of such functional relationships in analyses of labor
supply, for these programs induce net wages to vary with the number of hours
worked even when the gross wages remain constant. Hedonic environments and
price schedules dependent upon quantities give rise to comparable sources of dis-
tortions in budget sets in many consumption settings.
To address the issues encountered with nonlinear budget sets, there has been

steady expansion in the use of sophisticated statistical models characterizing
distributions of discrete-continuous variables that jointly describe both interior
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choices and corner solutions in demand systems. These models offer a natural
framework for capturing irregularities in budget constraints, including those in-
duced by the institutional features of tax and welfare programs.
This section briefly describes approaches for estimating models incorporating

such features, keeping the context general enough to illustrate how these mod-
els can readily accommodate a wide variety of nonlinearities in price and wage
structures. The discussion begins with a brief overview of the methods imple-
mented to model budget constraints involving nonlinearities, and then goes on
to survey instrumental-variable procedures applied in the literature to estimate
behavioral relationships in the presence of such constraints. We summarize the
general approach for using maximum likelihood procedures to estimate the more
sophisticated variants of these models with either convex or nonconvex budget
sets. We provide simple illustrations of maximum likelihood methods to esti-
mate familiar specifications of labor supply with convex constraints. We outline
why the implementation of maximum likelihood procedures imposes interesting
and important restrictions on behavioral parameters in the presence of nonlinear
budget constraints. We then integrate the analysis of nonparticipation into our
analysis of non-linear budget constraints and discuss estimation when the avail-
ability of welfare programs affect the shapes of budget sets, which induces not
only nonconvexities but also opportunities for participating in multiple programs.
Finally, we consider computational simplifications adopted in the literature to
render maximum likelihood estimation feasible.

4.1. Modeling Nonlinear Features of Budget Constraints

A general formulation for the economic problem considered in the subsequent
discussion specifies an agent as solving the following optimization problem:

Max U (c, h, z, ν) subject to b (c, h,W, Y ) = 0 (4.1)

where U() delineates the utility function, c and h measure consumption and hours
of work, the quantities z and ν represent respectively the observed and unobserved
factors influencing choices beyond those incorporated in budget sets, and the func-
tion b() specifies the budget constraint with W and Y designating the real gross
wage per hour and nonlabor income (note that we use upper case to distinguish
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from marginal wage and virtual nonlabor income). For the moment, we restrict
the economic framework to be static and the quantities c and h to be single goods
rather than multidimensional vectors. In many applications the budget function,
b, is not differentiable, and in some it is not even continuous.
For the familiar linear specification of the budget constraint, b takes the form:

b (c, h,W, Y ) =Wh+ Y − c. (4.2)

Solving (4.1) for this form of b yields the following labor supply and consumption
functions:

h = c (W,Y,Z, ν) (4.3)

c = c (W,Y, Z, ν),

which correspond to the standard demand functions for nonmarket time (i.e.,
leisure) and consumption. (The subsequent analysis often suppresses the Z argu-
ment in the functions U(), c() and c() to simplify notation.)
Another popular specification of b() incorporates income or sales taxes in char-

acterizing choices, with the budget constraint written as some variant of

b (c, h,W, Y ) =Wh+ Y − c− τ(Wh,Y ) , (4.4)

where the function τ() gives the amount paid in taxes. This formulation for b
admits different tax rates on earnings (Wh) and nonlabor income (Y ). If these
income sources are instead taxed the same, then (4.4) further simplifies to

b (c, h,W, Y ) =Wh+ Y − c− τ(I) , (4.5)

where tax payments τ(I) = τ(I(h)) where I(h) = taxable income =Wh+Y −D

with D designating allowable deductions. Different marginal tax rates in the
various income brackets combined with the existence of nonlabor income creates
inherent nonlinearities in budget sets
The literature relies on two approaches for modeling nonlinearities in budget

sets: piecewise-linear characterizations and smooth differentiable functions. To
illustrate these approaches, the subsequent discussion principally focuses on the
income-tax formulation of b given by (4.4) and (4.5) to illustrate central concepts.
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4.1.1. Piecewise Linear Constraints

As a simple characterization of piecewise budget sets, Figure 4.1 shows a
hypothetical budget constraint for an individual faced with a typical progressive
income tax schedule defined by a series of income brackets. In this diagram, h
denotes hours of work, and C measures total after-tax income or the consump-
tion of market goods. The budget constraint is composed of several segments
corresponding to the different marginal tax rates that an individual faces. In par-
ticular, he faces a tax rate of t1 between ho hours and h2 hours (segment 1 of
his constraint) and tax rates of t3 and t5 respectively in the intervals (h2, h4) and
(h4, h6) (segments 3 and 5 in the figure). Thus, with the variable W denoting
the individual’s gross wage rate, the net wages associated with each segment are:
w1 = (1− t1)W for segment 1; w3 = (1− t3)W for segment 3; and w5 = (1− t5)W

for segment 5. Also, each segment has associated with it a virtual income (i.e.,
income associated with a linear extrapolation of the budget constraint) calculated
as:

y1 = Y − τ(0, Y ) ; (4.6)

yj = yj−2 +W (tj−2 − tj)hj−1 for j = 3, 5, ... .

So, y3 = y1 + (w1 − w3)h2;and y5 = y3 + (w3 − w5)h4. Changes in tax brackets
create the kink points which are designated 0, 2, 4, and 6.
Figure 4.2 illustrates stylized features of a budget constraint modified to incor-

porate an earned income tax credit (EITC) in conjunction with an income tax12,
and Figure 4.3 shows a prototype budget set induced by a conventional welfare
program (or social security tax).13 In Figure 4.2, the EITC increases benefits

12An earned income tax credit (EITC) constitutes a negative income tax scheme, which in-
duces two kinks in a person’s constraint in the simplest case: one where the proportional credit
reached its maximum (h2 in Figure 4.2), and one at the break even point where the credit was
fully taxed away (h4 in the figure). The tax rates associated with the first two segments are tA,
which is negative, and tB, which is positive. Thereafter, the EITC imposed no further tax.
13A welfare program pays a family some level of benefits at zero hours of work, and then

“taxes” this nonlabor income at some benefit reduction rate until all benefits are gone. Figure
4.3 assumes a proportional benefit reduction rate applies on earnings until benefits decline to
zero, after which the family pays normal income taxes whihc here too is assumed to be a
proportional rate. Thus, Figure 4.3 shows a constraint with a single interior kink (given by h1
in the figure) corresponding to the level of earning when welfare benefits first become zero. The
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until an individual reaches h1 hours of work, and then benefits decline until hours
attain h2 when the regular income tax schedule applies. In Figure 4.3, welfare
benefits start at y1− y2 when a family does not work, they steadily decline as the
family increases its hours of work until its earnings reach the value implied at h1
hours when the family becomes disqualified for welfare. Each of these low-income
support programs introduces regressive features in the overall tax schedule faced
by a family, which in turn induces nonconvex portions in the budget sets.
In real world applications of piecewise budget constraints, the combination of

various tax and public assistance programs faced by families implies budget sets
have two noteworthy features. First, the constraint faced by a typical individual
includes a large number of different rates. Translated into the hours-consumption
space, this implies a large number of kink points in the budget constraint. Second,
for most individuals the tax schedule contains nonconvex portions, arising from
four potential sources. The first arises from the EITC program, as illustrated
in Figure 4.2. A second source arises if a worker’s family participates in any
welfare program, within nonconvexities arise as benefits are withdrawn as earnings
increase as illustrated in Figure 4.3. Third, social security taxes phase out after
a fixed level of earnings, so they too induce a budget set similar in structure to
that given by Figure 4.3. Finally, the standard deduction present in most income
tax programs, wherein no taxes are paid on sufficiently low levels of income,
creates yet another source of regressivity in the tax schedule and corresponding
nonconvexities in the budget constraint.

4.1.2. Constructing Differentiable Constraints

Several approaches exist for approximating the piecewise-linear tax schedules
by a differentiable function. A convenient method for constructing this function is
to fit the marginal tax rate schedule—a step function—by a differentiable function.
This approximation must itself be easily integrable to obtain a simple closed form
for the tax function.
An elementary candidate for constructing a differentiable approximation that

can be made as close as one desires to the piecewise-linear tax schedule has been

tax rate on the segment leading up to that kink is tA, switching to tB on the second segment.
The Social Security systems induces a similar effect on the budget constraint.

33



applied in MaCurdy et al.(1990). To understand the nature of the approximation,
return to Figure 4.1. One can represent the underlying schedule as follows:

τ e(Wh,Y ) = t1 from I(h0) to I(h2) (4.7)

= t3 from I(h2) to I(h4)

= t5 above I(h4) ,

where τ e(Wh, Y ) = the marginal tax rate on earnings

I(h) = taxable income at h hours of work, and

ti = marginal tax rate, i = 1,3,5.

For expositional simplicity, suppose that t1 = 0. Consider the following approxi-
mation of this schedule:

bτ e(Wh, Y ) = t3 ((Φ1(I(h))− Φ3(I(h)) + t5Φ3(I(h)) . (4.8)

This formulation for the marginal tax rate switches among three flat lines at the
heights t1 (= 0), t3 and t5. The weight functions Φi(I(h)) determine the rate at
which the shift occurs from one line to another, along with the points at which
the switches take place. Candidate weight functions are given by Φi(I(h)) =
the cumulative distribution function with mean yi and variance σ2i , i = 1, 3. The
middle segment of the tax schedule has height t3 and runs from taxable income
I(h2) to I(h4). To capture this feature, parameterize Φ1(·) and Φ3(·) with means
y1 = I(h2) and y3 = I(h4), respectively, with both variances set small. The first
distribution function, Φ1(·) takes a value close to zero for taxable income levels
below I(h2) and then switches quickly to take a value of one for higher values.
Similarly, Φ3(·) takes a value of zero until near I(h4) and one thereafter. The
difference between the two equals zero until I(h2), one from I(h2) to I(h4) and
zero thereafter. Thus, the difference takes a value of one just over the range
where t3 is relevant. Notice that we can control when that value of one begins
and ends by adjusting the values y1 and y3. Also, one can control how quickly
this branch of the estimated schedule turns on and off by adjusting the variances
of the cumulative distribution functions, trading off a more gradual, smoother
transition against more precision. In general, adjusting the mean and variance
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parameters allows one to fit each segment of a schedule virtually exactly, switch
quickly between segments, and still maintain differentiability at the switch points.
A generalization of this approximation takes the form

bτ e(Wh, Y ) =
X

i=1,3,...

[Φi−2(I(h))− Φi(I(h))] ti(I(h)) (4.9)

where the functions ti(I(h)) permit tax schedules to be nonconstant functions of
taxable income within brackets. With the Φi denoting many cdfs associated with
conventional continuously distributed distributions, function (4.9) yields closed
form solutions when it is either integrated or differentiated.14 Integrating (4.9)
yields a formulation for the budget constraint b(c, h,W, Y ). The resulting ap-
proximation can be made to look arbitrarily close to the budget set boundary
drawn in Figures 4.1, 4.2 or 4.3, except that the kink points are rounded.
Formula (4.9) can be extended to approximate virtually any specification of

b (c, h,W, Y ). One can readily allow for distinct relationships describing the
derivatives for each of the arguments of this function, and nonconvexities in budget
sets cause no particular problems.

4.2. Simple Characterizations of Labor Supply and Consumption with
Differentiable Constraints

A useful solution exists for the hours-of-work and consumption choices as-
sociated with utility maximization when budget constraints form a set with a

14Total taxes are given by: τ(I) =
R
τ 0(I)dI. The following relations enable one to calculate

an explicit form for τ(X): Z
ΦdI = IΦ+ ϕZ
IΦdI =

1

2
I2Φ− 1

2
Φ+

1

2
IϕZ

I2ΦdI =
1

3
I3Φ+

2

3
ϕ+

1

3
I2ϕZ

I3ΦdI =
1

4
I4Φ− 3

4
Φ+

3

4
IΦ+

1

4
I3ϕ

In this expression, Φ refers to any Φi’s, and ϕ designates the density function associated with
Φi.
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twice-differentiable boundary. Specify the marginal wage rate as:

ω = ω(h) = bh(c, h,W, Y ) = bh (4.10)

and “virtual” income as:

y = y(h) which solves the equation b(hbh + y, h,W, Y ) = 0. (4.11)

This solution for y satisfies:

y = y(h) = c− ωh .

For the familiar specification found in analyses taxes and labor supply given by
b(c, h,W, Y ) = Wh + Y − c − τ(Wh + Y ) with the function τ constituting the
amount paid in taxes at before-tax income Wh+ Y , the expressions for marginal
wage and virtual income y simplify to:

ω = ω(h) = (1− τ 0)W (4.12)

y = y(h) =Wh+ Y − ωh− τ = Y + τ 0Wh− τ

where τ and τ 0 (the derivative of the tax function with respect to income) are
evaluated at income level I = I(h) = Y + Wh which directly depends on the
value of h.
Utility maximization implies solutions for hours of work and consumption that

obey the implicit equations:

h = c (ω, y, z, v) = c (ω(h), y(h), z, v) (4.13)

c = c (ω, y, z, v) = c (ω(h), y(h), z, v)

where c and c represent the same conventional forms for labor supply and con-
sumption demand functions given by (4.3). Figures 4.1 and 4.3 illustrate this
representation of the solution for optimal hours of work and consumption. The
characterization portrays an individual as facing a linear budget constraint in the
presence of nonlinear tax programs. This linear constraint is constructed in a way
to make it tangent to the actual nonlinear opportunity set at the optimal solution
for hours of work. The implied slope of this linearized constraint is ω(h) and the
corresponding value of virtual income is y(h).
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Relationships (4.11) constitute structural equations that determine hours of
work and consumption. By applying the Implicit Function Theorem to spec-
ification (4.11), we can solve this implicit equation for h in terms of W,Y , and
other variables and parameters entering the functions b and U. This operation pro-
duces the labor supply and consumption functions applicable with general forms
of nonlinear budget sets.

4.3. Instrumental-Variable Estimation

The inclusion of taxes provide an additional reason for allowing for the endo-
geneity of (after tax) wages and other income. Writing the labor supply function
as

h = c (ω(h), y(h), z, υ) = c
∗
(ω(h), y(h), z) + v . (4.14)

makes the point explicitly. The Instrumental variable approach described ear-
lier can be applied as well as the grouping methods (which of course is just an
application of IV). The implementation of IV procedures imposes no parametric
restrictions and it allows one to consider a wide variety of exogeneity assumptions.
The fact that the error term does not interact with the wage and other income is
critical for the interpretation of IV as identifying the structural parameters of the
model.

4.3.1. Including Measurement Error

In many data sets there are serious suspicions that hours of work and wages
are reported with error. This issue acquires added importance when we are dealing
with non-linear tax schedules since this creates a problem of observability of the
correct tax rate, which is the reason we introduce the issue here.
Suppose H denotes measured hours of work and that the function

H = H(h, ε) (4.15)

relates H to actual hours h and to a randomly distributed error ε Typically,
analyses presume that the state h = 0 is observed without error.
Measurement errors in hours often induce errors in observed wage rates since

researchers construct wages by dividing total labor earnings, E, by hours worked
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in the period. Whereas W = E/h defines the true hourly wage rate, W̃ = E/H

designates the data available on wages. Measured wages W̃ are contaminated by
reporting errors even when E provides accurate quantities for each individual’s
total labor earnings and wages are indeed constant for hours worked over the
period. This formulation presumes a reciprocal relation in the measurement error
linking data on hours and wages. More generally, suppose W̃ links to the true
wage rate according to the relationship

W̃ = W̃ (W,h, ε) . (4.16)

In the reciprocal measurement error example, W̃ = Wh / H(h, ε) where H(h, ε)
comes from (4.15).
The presence of measurement errors in hours typically invalidates use of non-

linear IV procedures to estimate the structural labor supply equation given by
(4.14). Expressing this equation in terms of H rather than h involves merely
substituting (4.15) into (4.14); and if measurement error also carries over to wages,
then substitutions must be made for wages as well. These replacements typically
result in a variant of structural equation (4.14) that cannot be transformed into a
form that is linear in disturbances. Measurement errors in hours invariably render
the marginal tax rate unobservable, which in turn makes both the marginal wage
(ω(h)) and virtual income (y(h)) also unobservable. Sophisticated adjustments
must be included to account for such factors. These complications motivate many
researchers to turn to maximum likelihood procedures to estimate hours-of-work
specifications as we do below. However with some additional assumptions IV
procedures are still possible, at least when the issue of censoring does not arise.
Suppose measurement error is of the multiplicative kind

H = H(h, ε) = heε with W̃ = E/H, (4.17)

In the presence of such error, specifications can also be found that allow for use of
IV procedures to estimate substitution and income parameters. Incorporating the
multiplicative measurement error model (4.17) into the semilog functional form
of labor supply given in relation yields the empirical specification:

H = u+ Zγ + α lnωm + βy + u (4.18)
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where

lnωm = ln(E/H) + ln(1− τ 0)ey = y − ασ2ε/2

u = ν + α(ε−E(ε)) + (H − h) = ν + α(ε−E(ε)) + h(eε − 1).

The disturbance u possesses a zero mean since E(eε) = 1. Virtual income y(h)
and the marginal tax rate τ 0 are not contaminated by measurement error because
they are only functions of Y and hW = H W̃ , quantities which are both perfectly
observed (by assumption). The variable lnωm represents the natural logarithm of
the after-tax wage rate evaluated at observed hours, which differs from the actual
marginal wage due to the presence of reporting error in hours. Assuming the
error ε is distributed independently of all endogenous components determining h,
including the heterogeneity disturbance v, the instrumental variables X applica-
ble for estimation of the original specification can also serve as the instrumental
variables in estimating the coefficients of (4.18) by familiar IV methods.

4.3.2. Sources of Unobservables in Budget Sets

An important class of models not widely recognized in the literature involves
budget constraints that vary across individuals in ways that depend on unobserved
factors. The modification required in the above analysis to account for such
factors replaces budget function b() appearing in (4.1) by:

b (c, h,W, Y, z, ξ) = 0 . (4.19)

The quantity z captures the influence of measured characteristics on budget sets.
Classic examples include family characteristics that alter the form of the tax func-
tion relevant for families. The error component ξ represents unobserved factors
shifting budget sets. Classic examples here include unmeasured components of
fixed costs, prices, and elements determining tax obligations.
The presence of ξ in b() typically renders IV methods inappropriate for esti-

mating parameters of the labor supply function c. The usual problem comes about
since structural variants of c cannot be found that are linear in disturbances, and
this is especially true when nonlinearities exist in tax schedules. When ξ appears
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as a component of b(), researchers typically rely on the maximum likelihood meth-
ods summarized in the subsequent discussion to conduct estimation of behavioral
models of hour of work and consumption.

4.3.3. Complications of IV Estimation with Piecewise-Linear Constraints

Naive application of instrumental-variable methods with piecewise-linear bud-
get constraints generally produces inconsistent estimates of behavioral parameters,
even ignoring the potential presence of measurement error. Section 4.6 below
presents the structural specification—see (4.69)—implied for hours of work when
Figure 4.1 designates the budget set and everyone works. As noted in Section
4.1, this budget set is convex and consists of three segments. Inspection of
structural equation (4.69) reveals that the structural error is

P
j=1,2,3

d
j
v where dj

represents an indicator variable signifying whether an individual selects segment
j = 1, 2,or 3. If the individual occupies any kink, then

P
j=1,2,3

djv = 0. Suppose X

includes the set of instrumental variables presumed to satisfy E(ν|X) = 0. The
corresponding conditional expectation of the structural error implied by equation
(4.69) is

P
j=1,2,3

Pr(dj | X)E(v | dj = 1, X). This expectation is typically not zero,

a condition required to implement IV techniques. To use IV procedures in the
estimation of equation (4.69) necessitates the inclusion of sample selection terms
adjusting for the nonzero expectation of

P
j=1,2,3

djv.

4.3.4. Non Participation and Missing Wages

In the earlier sections we discussed how the estimation approach needs to
be generalized so as to allow for non-participation and for missing wages, which
present further complications for estimation. We argued that standard Instru-
mental Variables are not appropriate in this context. We now turn to Maximum
likelihood estimation which we set up to deal with the problems introduced above,
namely non-linear taxes, measurement error, missing and/or endogenous wages
and other income and of course non-participation.
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4.4. Maximum Likelihood Estimation: A General Representation

The instrumental variable estimator, developed in the last section, required
exclusion restrictions to consistently estimate the parameters of the labor-supply
and consumption models involving nonlinear budget sets. In contrast, Maximum
Likelihood estimation exploits the precise structure of the budget constraint and
need not rely on exclusion restrictions to identify parameters. Even though mar-
ginal wages and virtual incomes are endogenous, nonlinearities introduced through
distributional assumptions provide a valuable source of identification. However,
exclusion restrictions are only avoided in this approach if gross wages and incomes
are assumed to be exogenous and in many applications of maximum likelihood re-
searchers also impose stringent distributional and independence assumptions on
sources of errors capturing heterogeneity and measurement error. Nonetheless, one
can entertain a wide array of nonlinearities in budget sets and decision processes,
along with rich specifications for heterogeneity and mismeasurement of variables.
The following discussion begins with a general presentation describing the

application of maximum likelihood methods in hours of work and consumption
analyses allowing for flexible distributional assumptions and intricate forms of
nonlinearities in both preferences and budget constraints. This analysis draws
heavily upon Appendix A. Later subsections cover simple illustration of tech-
niques, many of which have been implemented in the empirical literature.

4.4.1. Dividing the Budget Constraint into Sets

Irrespective of whether one considers differentiable or piecewise-linear for-
mulations for budget constraints, the essential idea underlying development of
likelihood functions in the presence of nonlinear constraints involves defining a set
of "states of the world". Each state designates a particular segment of the budget
set boundary, with states being mutually exclusive and states jointly covering all
parts of budget constraints. One interprets individuals as being endowed with
a set of attributes determining of their tastes, resources and constraints, with
these attributes viewed as random variables continuously distributed across the
population. Based on the realizations of these variables, an individual selects
consumption and hours of work to optimize utility.
Regarding the distribution of these variables in the previous discussion, sup-
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pose unobserved heterogeneity influencing preferences, ν, the unmeasured factors
determining wages, η, and the unobservables incorporating budget sets, ξ, possess
the following joint density:

ϕ (v, η, ξ) ≡ ϕ (v, η, ξ | X) for (v, η, ξ) ∈ Ω. (4.20)

When errors, ε, contaminate the measurement of hours, the relevant joint distri-
bution becomes:

ϕ (v, η, ξ, ε) ≡ ϕ (v, η, ξ, ε | X) for (v, η, ξ, ε) ∈ Ω (4.21)

Both these expressions admit conditioning on a set of exogenous variables X,
but the subsequent analysis suppresses X to simplify the notation. The set Ω
designates the domain of these random variables.
In this setting, n states of the world can occur. The discrete random variable

δi signifies whether state i happens, with δi = 1 indicating realization of state i and
δi = 0 implying that some state other than i occurred. A state refers to locations
on boundaries of budget sets, to be explained further below. Consequently, the
value of δi depends on where (v, η, ξ) falls in its domain determined by the rule:

δi =

½
1
0

if (v, η, ξ) ∈ Ωi

otherwise
(4.22)

where the set Ωi constitutes that subset of the sample space Ω for which utility
maximization yields a solution for consumption and hours that lies within the
δi = 1 portion of the budget. The mutually exclusive and exhaustive feature of

the sets Ωi for i = 1, ..., n implies
nS
i=1

Ωi = Ω and Ωi ∩ Ωj = ∅ for i 6= j.

A central requirement invoked in dividing a budget constraint into its various
sections involves ensuring that unique solutions exist for c and h for any (v, η, ξ) ∈
Ωi. Consumption and hours of work may take on discrete values when (v, η, ξ) ∈
Ωi. Alternatively, there may be a continuous mapping relating C and h to (v, η, ξ)
within the set Ωi, but inverses must exist for the consumption and labor supply
functions

h = c (ω, y, z, v) = c (ω(h), y(h), z, v)

c = c (ω, y, z, v) = c (ω(h), y(h), z, v)
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expressed in terms of components of v. (These functions correspond directly
to those in (4.13) except that marginal wage ω and virtual income y now are
functions of ξ, the unobservable components b.) Considering the labor supply
function c, this requirement implies existence of the inverse function

v = vh (h, ω (h) , y (h) , z) ≡ c−1 (h, ω (h) , y (h) , z) (4.23)

for values of v within the set Ωi. If v is in fact multi-dimensional (i.e., v0 is a
vector), then an inverse must exist of the form

v1 = vh (h, ω (h) , y (h) , z, v02) ≡ c−1 (h, ω (h) , y (h) , z, v2) (4.24)

for some decomposition v0 = (v1, v
0
2).

Division of the budget constraint into the events δi = 1 for i = 1, ..., n gen-
erally creates two varieties of sets. First, differentiable segments of the budget
constraint over which consumption and hours vary continuously in response to
variation in preferences and constraint variables. Second, kink points at which
consumption and hours of work take fixed discrete values implied by the location
of the kink.

4.4.2. Maximum Utility Determines Placement on Budget Constraint

The portion of a budget constraint selected by an individual depends on the
level of utility assigned to this state. The following discussion first character-
izes maximum utility attainable on differentiable segments, and then considers
evaluations at kink points.
For the differentiable segments of the constraint, utility is determined by func-

tion

V = U (c (ω, y, z, ν), c (ω, y, z, ν), z, ν) (4.25)

= U (c (ω(h, ξ), y(h, ξ), z, ν, ξ), c (ω(h, ξ), y(h, ξ), z, ν, ξ), z, ν)

≡ V (ω (h, ξ) , y (h, ξ) , z, v)

= V (ω, y, z, v)

evaluated at optimal points in the specified set. The function V (W,Y, z, v) represents
the conventional indirect utility function associated with maximizing U (C, h, Z, ν)
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in (4.1) subject to the linear form of the budget constraint given by (4.2). Roy’s
Identity specifies that the labor supply function c can be written as

c (ω, y, z, ν) ≡ Vω (ω, y, z, ν)

Vy (ω, y, z, ν)
(4.26)

with Vω and Vy denoting the partial derivatives of V . Suppose the interval
(h̄i−1, h̄i+1) identifies the differential segment under consideration. The subse-
quent discussion refers to this segment as state i. Then the utility assigned to
state i corresponds to the maximum value of V achievable for hours falling in the
interval (h̄i−1, h̄i+1).
Difficulty in determining the achievable value of V depends on characteristics

of the budget function b(c, h,W, Y ). For the most general specifications of b,
inspection of relations (??) and (4.11) defining ω and y reveals that each depends
on both c and h through the derivative bh. If utility maximization occurs at
an interior point of (h̄i−1, h̄i+1) given the realization of (v, η, ξ), then the implied
values of c and h solve the system

h = c (ω, y, z, υ) ∈ (h̄i−1, h̄i+1) (4.27)

b (c, h,W, Y, ξ) = 0 .

Consequently, the maximum utility attainable on the interval (h̄i−1, h̄i+1) is V
(or U) evaluated at these solutions for c and h. Define this maximum utility
as V(i), where the (i) subscript on V signifies utility assigned to state i. If one
extends state i to include either of the exterior points h̄i−1or h̄i+1, and uniqueness
and differentiability continue to hold at these points, then the above procedure
still applies in assigning a value for V(i). The subsequent discussion ignores such
easily-handled extensions to simplify the exposition.
Use of indicator functions provides an expression for V(i). One can characterize

the set of values of C and h satisfying equations (4.27) as

{ (c, h) | I [ h = c (ω, y, z, υ) ∈ (h̄i−1, h̄i+1) ; b (c, h,W, Y ) = 0 ] = 1 } , (4.28)

where I denotes the indicator function defined by

I [ conditions ] =

½
1
0

if [ all conditions ] are true
if [ any condition ] is false .
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The indicator function I in (4.28) depends on satisfaction of 2 conditions. Using
I, a simple expression for the maximum utility attainable in state i is given by

V(i) = V (ω, y, z, v) ∗ I [ h = c (ω, y, z, υ) ∈ (hi−1, hi+1) ; b (c, h,W, Y ) = 0 ] .
(4.29)

For values of v, η and ξ not yielding a solution in state i, V(i) = 0. It is possible
in this analysis for V(i) = 0 for all values of admissible values of (v, η, ξ) (i.e.,
Ωi = ∅). Throughout this discussion, we assume a utility function normalized so
that U (c, h, z, ν) > 0 for all admissible values of variables. So the event V(i) = 0
always means that some state other than i has a higher assigned utility.
The most popular specifications of the budget function b(c, h,W, Y ) have deriv-

atives bh that depend on h but not on c. Examples include those specifications
incorporating income or sales taxes given by (4.4). Under these circumstances,
the first equation in (4.27) alone can be solved for h. Thus, V(i) simplifies to

V(i) = V (ω, y, z, v) ∗ I [ h = c (ω, y, z, υ) ∈ (hi−1, hi+1) ] (4.30)

This expression serves as the principal formulation used in the subsequent discus-
sion.
The portion of a budget constraint selected by an individual depend on the

level of utility assigned to this state. At kink points, utility takes the value

V(i) = U (C̄i, h̄i, z, ν) (4.31)

where C̄i and h̄i designate the values of consumption and hours at the kink point
associated with state i.
An individual occupies that portion of the budget constraint corresponding to

state i if the assigned utility is highest for this state. According to (4.22), the
subspace of (v, η, ξ) yielding this realization is the set Ωi. Correspondingly, one
can represent Ωi as

Ωi = { (v, η, ξ) | V(i) > V(j) for all j 6= i } . (4.32)

Relationships (4.29) (or (4.30)) and (4.31) define V(i) depending on characteristics
of the state. For expositional simplicity without loss of generality, the subsequent
discussion ignores equalities V(i) = V(j) in defining the sets Ωi since these events
are zero probability events.
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4.4.3. Density Functions for Hours and Wages

The distribution of consumption and hours of work depends on where in-
dividuals locate on the budget constraints. The probability that an individual
makes selections falling within the state i portion of the budget equals:

P (δi = 1) = P ((v, η, ξ) ∈ Ωi ) (4.33)

=

Z
· · ·
Z
Ωi

ϕ (v, η, ξ) dv dη dξ

≡
Z
Ωi

ϕ (v, η, ξ) dv dη dξ .

The notation
R
· · ·
R
Ωi
denotes integration over the set Ωi, which the third line

of this equation expresses in the shorthand notation
R
Ωi
. The joint distribution

of the δi’s takes the form:

P (δ1, ..., δm) =
Y
i∈M

[P (δi = 1)]
δi

where the set M refers to the set of all possible states i that comprise the entire
budget constraint. As noted previously, the events δi = 1 may refer to either
kinks or differentiable constraints.
When an optimum occurs at a kink point, the distribution of hours conditional

on this event is
P
¡
h = h̄i | δi = 1

¢
= 1 . (4.34)

This distribution is, of course, discrete.
On differentiable segments of the constraint, the distribution for hours is con-

tinuous. Performing a conventional change of variables yields the density

f (h, η, ξ) =
dvh

dh
ϕ
¡
vh, η, ξ

¢
(4.35)

=
dvh

dh
ϕ
¡
vh (h, ω, y, z) , η, ξ

¢
where

vh = vh (h, ω (h) , y (h) , Z) = c−1 (h, ω (h) , y (h) , z) (4.36)
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refers to the inverse of labor supply function (4.3), and the quantity

dvh

dh
= (

∂c

∂ω

∂ω

∂h
− ∂c

∂y

∂y

∂h
) (

∂c

∂v
)−1 (4.37)

represents the Jacobian associated with this inverse.15 The terms ∂c
∂ω
and ∂c

∂y
cor-

respond to the economic concepts of substitution and income effects, and the
quantity ∂c

∂v
determines how unobserved components of preferences influence la-

bor supply. (In applying the change-of-variables formula, Jacobians must be con-
structed to be uniquely signed for densities to be properly defined. This result
follows here because the selection of budget-set partitions ensures a unique solu-
tion exists for c and h for each partition combined with the innocuous assumption
that unobserved components enter preferences such that ∂c

∂v
> 0). For the re-

maining terms in (4.37), differentiation of the budget constraint implies:

∂w

∂h
= bhh (4.38)

and
∂y

∂h
= −bh

bc
− bh − bhhh (4.39)

where the subscripts on the budget function b signify partial derivatives.16 As-
suming the popular tax form for the budget function given by (4.5), expressions
(4.38) and (4.39) simplify to

∂ω

∂h
= (1− τ 0) W (4.40)

and

∂y

∂h
= τ 00 W 2 h (4.41)

15Derivation of this Jacobian follows from total differentiation of relation (4.4.x) with respect
to h—treating ν as a function of h—and solving for ∂ν

∂h .
16Derivation of the expression for ∂y

∂h follows from total differentiation of the relation (4.10)
defining y which yields

bc

µ
bh + bhhh+

∂y

∂h

¶
+ bh = 0

and solving this equation.
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where τ 0 and τ 00 denote the marginal tax rate and its derivative. Division of the
budget set into states ensures that inverse (4.36) and its Jacobian (4.37) exist in
the space defined by each state.
The implied density of h conditional on δi is

f (h | δi = 1) =

R
Φi|h

f (h, η, ξ) dη dξ

P (δi = 1)
for h ∈ Θi· h (4.42)

where the set Θi· h = (hi−1, hi+1) designates the domain of h given occurrence of
δi = 1 and the notation

R
Φi|h
denotes integration of (η, ξ) over the set

Φi|h = { (η, ξ) : | I [ h = c (ω, y, z, v) ; (v, η, ξ) ∈ Ωi ] = 1 } . (4.43)

The set Φi|h treats h as fixed and, therefore, is a function of h.
Performing a further change of variables for wages yields the following joint

density for hours and wages

f (h,W, ξ) =
dηw

dW
f (h, ηw, ξ) (4.44)

=
dηw

dW
f (h, ηw (W,Q) , ξ)

where

ηw = ηw (W,Q) =W−1 (W,Q) (4.45)

denotes the inverse of wage function, and the quantity

dηw

dW
= [

∂W

∂η
]−1 (4.46)

represents the Jacobian associated with this inverse. (For expositional conve-
nience, and without loss of generality, this analysis assumes that a monotonically
increasing relationship links W to η; so, (4.46) positive.)
The density of h and W conditional on δi is

f (h,W | δi = 1) =

R
Φi|h,W

f (h,W, ξ) dξ

P (δi = 1)
for (h,W ) ∈ Θi· h,W (4.47)
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where the notation
R
Φi|h,W

denotes integration of ξ over the set

Φi|h,W = { (ξ) | I [ h = c (ω, y, z, υ) ; W =W (Q, η) ; (v, η, ξ) ∈ Ωi ] = 1 } .
(4.48)

The set Φi|h,W is a function of h andW . One can express the setΘi· h,W appearing
in (4.47) as

Θi· h,W = { (h,W ) : ξ ∈ Φi|h,W } ,

which specifies the domain of h and W assuming occupancy of the state i part of
the budget constraint.
If v is multi-dimensional as specified in labor supply function (4.13), then

(4.47) becomes

f (h,W | δi = 1) =

R
Φi|h,W

f (h, v2,W, ξ) dv2 dξ

P (δi = 1)
for (h,W ) ∈ Θi· h,W

(4.49)
where f (h, v2,W, ξ) has a form analogous to (4.44), and the notationR

Φi|h,W
now denotes integration of (v2, ξ) over the set

Φi|h = { (v2, ξ) : I [ h = c (ω, y, Z, v) ; W =W (Q, η) ; (v, η, ξ) ∈ Ωi ] = 1 } .

The set Φi|h,W still remains a function of h and W .
Finally, when an individual selects an optimum at a kink point and h = h̄ is

discrete, then the distribution of wages takes the form

f
¡
h̄,W | δi = 1

¢
=

R
Φi|h̄,W

f (ν,W, ξ) dν dξ

P (δi = 1)
for W ∈ Θi· W (4.50)

where the density f (ν,W, ξ) is specified analogous to (4.44), and the set Φi|h̄,W
is a function of h̄ and W defined by

Φi|h̄,W = { (ν, ξ) : h = h̄i ; W =W (Q, η) (v, η, ξ) ∈ Ωi } . (4.51)

The domain Θi· W of W in (4.50) corresponds to that part of the overall range
of W consistent with being at kink h̄i.
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4.4.4. Likelihood Functions for Hours and Wages

Appendix A presents the results required to develop a complete specification
of the joint likelihood function for hours (h ) and wages (W ). Suppose the state
δ0 = 1 refers to an individual choosing not to work; the states δi = 1 for i ∈ Mc

designate those circumstances when the person works and selects optimums on
differentiable segments of budget constraints; and the states δi = 1 for i ∈ Md

denote those events when an individual chooses hours located at a kink point.
Hours (h) are continuously distributed for states in the set i ∈ Mc, and h is
discretely distributed in the no-work state and for states in the set i ∈Md. Hours
possess a combined continuous/discrete distribution. Knowledge of the value of h
entirely determines the values of δ0, ..., δn where n+1 designates the total number
of states.
Formula (A.26) of Appendix A implies that the following specification delimits

the joint likelihood function of (h,W ):

L (h,W ) = L (h,W, δ0, ..., δn) = [P ((v, η, ξ) ∈ Ω0 )]
δ0 ∗ (4.52)Y

i ∈ Mc

"Z
Φi|h,W

f (h, v2,W, ξ) dv2 dξ

#δi
∗

Y
i ∈ Md

"Z
Φi|h̄,W

f (ν,W, ξ) dν dξ

#δi
.

The first line of this expression delineates the probability of not working; the
second line—comprised of the numerators of (4.49)—designates the densities of
(h,W ) unconditional on δi = 1; and the third line—encompassing the numera-
tors of (4.50)—demarcates the probability that h = h̄i combined with the density
of W unconditional on δi = 1.

4.4.5. Density Functions Accounting for Measurement Error

With measurement error contaminating hours of work, h is no longer ob-
served and one instead has data on measured hours H specified by relation (4.15).
Without loss of generality, suppose (4.15) constitutes a monotically increasing re-
lationship that links H to the measurement error component ε. The joint density
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function (4.21) relates the distribution of ε to the distributions of the structural
errors ν, η, and ξ.
On differentiable segments of the budget constraint, the density function for

true hours and wages is f (h,W, ξ, ε) which has a form entirely analogous to (4.44).
Performing a conventional change of variables using relationship (??) yields the
density

f (h,W, ξ,H) =
∂εH

∂H
f
¡
h,W, ξ, εH

¢
(4.53)

=
∂εH

∂H
f
¡
h,W, ξ, εH (H,h)

¢
where

εH = εH (H, h) = H−1 (H, h) (4.54)

refers to the inverse of measurement error function (4.15), and the quantity

∂εH

∂H
= [

∂H

∂h
]−1 (4.55)

designates the Jacobian associated with this inverse. The corresponding density
of H and W conditional on δi = 1 is

f (H,W | δi = 1) =

R
Θi· h

R
Φi|h,W̃

f (h,W, ξ,H) dξ dh

P (δi = 1)
for (H,W ) ∈ Θi· H,W

(4.56)
where

R
Θi· h

denotes integration over the setΘi· h which corresponds to the domain
of h conditional on δi = 1.
When wages are also measured with error through mismeasurement of hours

as characterized by relation (4.16), then (4.53) is replaced by

f
³
h, W̃ , ξ,H

´
= f

³
h, W̃−1(W̃ , h,H), ξ,H

´
(4.57)

where
W = W̃−1

³
W̃ , h, εH (H, h)

´
≡ W̃−1

³
W̃ , h,H

´
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refers to the inverse of measurement error function (4.16). The corresponding
density of H and W̃ conditional on δi = 1 becomes

f
³
H, W̃ | δi = 1

´
=

R
Θi· h

R
Φi|h,W

f
³
h, W̃ , ξ,H

´
dξ dh

P (δi = 1)
for (H, W̃ ) ∈ Θi· H,W̃

(4.58)
No change of variables occurs in deriving this expression since W̃ is fully known
given values for h,W and H.
A similar situation applies to incorporating measurement error when an in-

dividual selects an optimum at a kink point of the budget set. Conditional on
realization of the state δi = 1, the value of ε is known since one sees H and h = h̄i
with probability one. Defining the f (ν,W, ξ, ε) as the generalization of the joint
density function appearing in (4.50) incorporating measurement error, then sub-
stitution of the inverse functions W̃−1(W̃ , h̄i,H) and εH

¡
H, h̄i

¢
introduced above

into this joint density yields

f
³
ν, W̃ , ξ,H

´
= f

³
ν, W̃−1(W̃ , h̄i, H), ξ, ε

H
¡
H, h̄i

¢´
. (4.59)

Following the steps above, one can readily verify that the density of (H, W̃ ) con-
ditional on δi = 1 takes the form

f
³
H, W̃ | δi = 1

´
=

R
Φi|h̄,W̃

f
³
ν, W̃ , ξ,H

´
dν dξ

P (δi = 1)
for W̃ ∈ Θi· W̃ . (4.60)

Clearly, both specifications (4.59) and (4.60) depend directly on h̄i, but as in
representation of other specifications the only arguments included in the function
are those variables which are random in the state; h̄i is fixed and known given
δi = 1.

4.4.6. Likelihood Functions for Measured Hours and Wages

Formulating the likelihood function for (H, W̃ ) is complicated by the fact that
a researcher does not observe precisely which portion of the budget constraint an
individual selects since this decision reveals h and this quantity is unknown. Thus,
when a person works, one cannot distinguish which individual state i occurs. On
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the other hand, a researcher does observe when a person does not work. Expressed
in terms of the endogenous dummy variables δi, these circumstances imply that
the data reveal the event δo = 1 but not the individual events δi = 1 for
i ∈ M = Mc ∪Md. Instead, one merely observes whether δ1 ≡

P
i∈M δi = 1 or

δ1 = 0.
Appealing to formula (??) of Appendix A, the following specification represents

the joint likelihood function of (h,W ):

L
³
H, W̃

´
= [P ((v, η, ξ) ∈ Ω0 )]

δ0 ∗"X
i∈Mt

Z
Θi

"Z
Φi|h,W

f
³
h, v2, W̃ , ξ,H

´
dv2 dξ

#
dh+

X
i∈Mt

Z
Φi|h̄,W

f
³
ν, W̃ , ξ,H

´
The first line of this expression delineates the probability of not working; and the
second line designates the density of (H, W̃ ) unconditional on δ1. Accordingly,
both H and W̃ are continuously distributed throughout the range on H > 0.

4.5. Maximum Likelihood: Convex Differentiable Constraints with Full
Participation

Developing specifications for likelihood functions when budget sets are convex
and have differentiable boundaries is straightforward, especially assuming labor
force participation is not a factor for the population under investigation. The
following discussion presents two examples of such specifications to illustrate ele-
mentary versions of the general formulas presented above.

4.5.1. Specifications for Linear Parameterizations of Labor Supply

Derivation of likelihood functions assuming a linear specification for hours of
work when (4.5) describes the budget constraint—wherein tax payments depend
only on a single taxable income quantity—follows directly from the previous results.
Assuming no measurement error (i.e., H = h), a change in variables from the
heterogeneity error ν to actual hours h using relation (??) yields the likelihood
function for h:

fh(h) =
dν

dh
ϕν (h− yν − zγ − αω − βy) (4.62)
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where ϕv (v) denotes the density of the heterogeneity component ν, and the Ja-
cobian term is

dν

dh
= 1 + (α− βh)W 2∂τ

0

∂I
. (4.63)

This Jacobian term is restricted to be non-negative over the admissible range.
Maximizing (4.62) yields maximum-likelihood estimates for the parameters of the
labor supply function, c, which provide the information needed to infer the work
disincentive effects of taxation.
If hours are indeed contaminated by additive measurement error, then the

likelihood function for observed hours H = h+ ε is given by:

fH(H) =

Z maxhours

0

ϕε(H − h)ϕh(h)dh (4.64)

where ϕε (ε) denotes the density of the heterogeneity component ε. This expres-
sion resembles relation (4.62) except that integration occurs over hours to account
for the existence of reporting error, and H replaces actual hours h in the Jacobian
term in (4.63).

4.5.2. Specifications for Multiplicative Measurement Error

Now consider maximum-likelihood estimation of the semilog specification of
labor supply. Suppose the heterogeneity-error-component ν in structural labor-
supply equation and the disturbance ε in the measurement-error equation for
hours of work possess the joint distribution ϕνε(ν, ε), where ϕνε designates a den-
sity function. For the moment, suppose (ν, ε) are independently distributed of
the gross wage and other income. Using relations (4.35) and (4.44) to perform
a standard change in variables from the errors ν and ε to the variables h and
H produces the likelihood function needed to compute maximum-likelihood esti-
mates. The transformation from (ν, ε) to (h, H) is monotonic for a wide range of
functional forms for c as long as the underlying preferences satisfy quasiconcavity
and budget sets are convex.
Without measurement error, the likelihood function for hours of work, h, takes

the form

fh(h) =
dν

dh
ϕν (h− y − zγ − α lnW − α ln(1− τ 0)− βy) (4.65)
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where ϕν is the marginal density for ν, and the Jacobian term is

dν

dh
= 1 +

µµ
α

W (1− τ 0)
− βh

¶
W 2∂τ

0

∂I

¶
(4.66)

which is required to be non-negative. In these expressions, the derivative τ 0 is
evaluated at I =Wh+ Y − τ(Wh+ Y ).
With multiplicative measurement error, the likelihood function for observed

hours H becomes

L =
Z maxwage

0

Z maxhours

0

dν

dh
fνεw (h− y − zγ − α lnω− βy, lnH − lnh,W ) dh dW

(4.67)
where integration occurs over the hourly wage, which is unobserved, using the
joint density fνεw (ν, ε,W ). The non-negativity of the Jacobian term clearly
places restrictions on the behavioral parameters and we discuss these restrictions
further below.

4.6. Maximum Likelihood: Convex Piecewise-Linear Constraints with
Full Participation

The majority of empirical labor-supply studies incorporating taxes treat the
tax schedule as a series of brackets implying a piecewise-linear budget set. With
such a tax function, the familiar change-in-variables techniques implemented in
conventional maximum likelihood do not apply due to the nonexistence of the Ja-
cobian over measurable segments of the sample space arising from nondifferentia-
bility of functional relationships characterizing hours-of-work choices. Moreover,
a piecewise-linear budget set creates endogenous variables (hours and after-tax
wages) that are both discrete and continuous in character. Section 4.4 covers
specifications for likelihood functions for such endogenous variables.

4.6.1. Characterization of Labor Supply with Piecewise-Linear Con-
straints

To illustrate the derivation of an estimable labor supply model using the
piecewise-linear approach assuming the linear structural specification for hours
of work, consider the simple case of a budget set with only three segments as
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presented in Figure 4.1. (To simplify the exposition here, we number the kink
points as 0,1,2, and 3 rather than as 0, 2, 4, and 6 .) The preceding discussion
defines the variables yj, ωj and hj appearing in this figure. To locate the kinks
and slopes of the budget constraint for an individual, a researcher must know
the individual’s level of non-labor income, gross wage rate, hours of work, and
the structure of the tax system. The hours of work at which kinks occur are
given by hj = (Ij − Y +D)/W , where Y and D, respectively, represent taxable
non-labor income and deductions, and Ij is the maximum taxable income for
segment j. The slope of each segment is given by the marginal wage rate for that
segment: ωj = W (1− tj), where j denotes the segment, tj signifies the marginal
tax rate for that segment, and W is the gross wage rate per hour. Finally, the
non-labor income at zero hours of work - the intercept of the budget line - is
y1 = Y − τ(Y −D), where τ(·) is the tax function evaluated at the individual’s
taxable income at zero earnings. Given this intercept value, virtual incomes or the
intercepts associated with successive budget segments are computed by repeated
application of the formula: yj = yj−1 + (ωj−1 − ωj)hj−1.
Given a convex budget constraint, an individual’s optimization problem amounts

to maximizing U(C, h) subject to

C = y1 if h = 0
= ω1h+ y1 if h0 < h ≤ h1
= ω2h+ y2 if h1 < h ≤ h2
= ω3h+ y3 if h2 < h ≤ h3
= ω3h3 + y3 if h = h3

(4.68)

The solution of this maximization problem decomposes into two steps. First,
determine the choice of h conditional on locating on a particular segment or a
kink. This step yields the solution:

h = 0 if h = 0 (lower limit)
= c(ω1, y1, ν) if 0 < h < h1 (segment 1)
= h1 if h = h1 (kink 1)
= c(ω2, y2, ν) if h1 < h < h2 (segment 2)
= h2 if h = h2 (kink 2)
= c(ω3, y3, ν) if h2 < h < h3 (segment 3)
= h3 if h = h3 (kink 3 = upper limit)

(4.69)
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Second, determine the segment or the kink on which the person locates. The
following relations characterize this solution: choose:

0 if c(ω1, y1, ν) ≤ 0
(Segment 1) if h0 < c(ω1, y1, ν) < h1
(Kink 1) if c(ω2, y2, ν) ≤ h1 < c(ω1, y1, ν)
(Segment 2) if h1 < c(ω2, y2, ν) < h2
(Kink 2) if c(ω3, y3, ν) ≤ h2 < c(ω2, y2, ν)
(Segment 3) if h2 < c(ω3, y3, ν) < h3
(Kink 3) if c(ω3, y3, ν) ≥ h3

(4.70)

Combined, these two steps imply the values of h and C that represent the utility-
maximizing solution for labor supply and consumption.
All studies implementing the piecewise-linear approach assume the existence

of measurement error in hours of work. With the linear measurement error model
given by (4.16), observed hours H = h + ε. As long as the measurement error
component ε is continuously distributed, so is H. In contrast to information on h,
knowledge of H suffices neither to allocate individuals to the correct branch of the
budget constraint nor to identify the marginal tax rate faced by individuals, other
than at zero hours of work. The state of the world an individual occupies can no
longer be directly observed, and one confronts a discrete-data version of an errors-
in-variables problem. The interpretation of measurement error maintained in this
analysis is that ε represents reporting error that contaminates the observation on
h for persons who work.17

With measurement error, the linear specification of c given by (??) with bhj ≡
17Note that expected hours of work, in this convex piece-wise linear case, is additive in each

hours choice weighted by the probability of each segment or kink. Each term in this sum being
at most a function of two marginal wages and two virtual incomes. Blomquist and Newey (1997)
exploit this observation to develop a semi-parametric estimator for hours of work imposing the
additivity through a series estimator.
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μ+αωj+ yj+Zγ implies the following stochastic specification for labor supply:bh1 + ν + ε if 0 < bh1 + ν ≤ h1 (segment 1)
h1 + ε if bh2 + ν < h1 < bh1 + ν (kink 1)

H = bh2 + ν + ε if h1 < bh2 + ν ≤ h2 (segment 2)
h2 + ε if bh3 + ν < h2 < bh2 + ν (kink 2)bh3 + ν + ε if h2 < bh3 + ν ≤ h3 (segment 3)
h3 + ε if bh3 + ν ≥ h3 (upper limit)

(4.71)

This represents a sophisticated variant of an econometric model that combines
discrete and continuous choice elements.

4.6.2. Likelihood Function with Measurement Error When All Work

The log-likelihood function for this model is given by
P

i ln fH(H), where i
indexes observations. Defining νj = hj−1 − bhj and vj = hj − bhj, the components
fH (H) are given by

fH(H) =
3P

j=1

vjZ
νj

ϕ
2
(H − bhj, ν) dν (segments 1, 2, 3) (4.72)

+
2P

j=1

νj+1Z
vj

ϕ1 (H − hj, ν) dν (kinks 1, 2)

+

∞Z
v3

ϕ1 (H − h3, ν) dν (upper limit)

where ϕ1(·, ·) and ϕ2(·, ·) are the bivariate density functions of (ε, ν) and (ε +
ν, ν), respectively. Maximizing the log-likelihood function produces estimates of
the coefficients of the labor supply function c. These estimates provide the
information used to infer both substitution and income responses, which in turn
provide the basis for calculating the work disincentive effects of income taxation.

4.6.3. Shortcomings of Conventional Piecewise-Linear Analyses

The piecewise-linear approach for estimating the work disincentive effects of
taxes offers both advantages and disadvantages relative to other methods. Con-
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cerning the attractive features of this approach, piecewise-linear analyses recognize
that institutional features of tax systems induce budget sets with linear segments
and kinks. This is important if one believes that a smooth tax function does not
provide a reasonably accurate description of the tax schedule. The piecewise-linear
approach admits randomness in hours of work arising from both measurement
error and variation in individual preferences and it explicitly accounts for endo-
geneity of the marginal tax rate in estimation, but so do the instrumental-variable
and differentiable likelihood methods discussed above. As we will see below, the
piecewise-linear approach more readily incorporates fixed costs of holding a job,
regressive features of the tax code, and multiple program participation than other
procedures due to the discrete-continuous character of hours-of-work choices in-
duced in these environments. These features of the piecewise-linear method make
it a vital approach in empirical analyses of labor supply.
On the other hand, the following shortcomings of the piecewise-linear proce-

dure raise serious doubts about the reliability of its estimates of work disincentive
effects. First, the piecewise-linear methodology assumes that both the econometri-
cian and each individual in the sample have perfect knowledge of the entire budget
constraint that is relevant for the worker in question. Errors are permitted neither
in perceptions nor in measuring budget constraints. Taken literally, this means
that: all income and wage variables used to compute each sample member’s taxes
are observed perfectly by the econometrician; individuals making labor supply
choices know these variables exactly prior to deciding on hours of work; each in-
dividual and the econometrician know when the taxpayer will itemize deductions
and the amount of these itemizations; and each taxpayer’s understanding of the
tax system is equivalent to that of the econometrician (e.g., the operation of such
features as earned-income credits). Clearly, given virtual certainty that most of
these assumptions are violated in empirical analyses of labor supply, the estimates
produced by methods relying on these assumptions must be interpreted very cau-
tiously. The differentiable-likelihood methods rely on the same assumptions. The
instrumental-variable methods do not, so they are likely to be more robust.
Second, measurement error plays an artificial role in econometric models based

on the piecewise-linear approach. Its presence is needed to avoid implausible pre-
dictions of the model. The statistical framework induced by the piecewise-linear
approach implies that bunching in hours of work should occur at kink points if
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hours precisely measure h. However, for the vast majority of data sources cur-
rently used in the literature, only a trivial number of individuals, if indeed any
at all, report hours of work at interior kink points. Unless one presumes that
the data on hours do not directly represent h, such evidence provides the basis
for immediately rejecting the distributional implications of the above specifica-
tions. Considering, for example, the labor-supply characterization proposed in
equation (4.69), almost any test of the distributional assumptions implied by this
specification would be readily rejected because observed hours would take the
values h0, h1, h2 and h3 with only a trivial or zero probability. Instead, observed
hours essentially look as if they are distributed according to a continuous distri-
bution. When a continuously-distributed measurement error ε is added to the
model, observed hours H are continuously distributed. This provides an essen-
tial reason for introducing measurement error in the data, for without it, the
piecewise-linear structure provides a framework that is grossly inconsistent with
the data. Of course, several sound reasons exist for admitting measurement er-
ror in a labor supply model, including the widespread suspicion that reporting
error contaminates data on hours of work. However, measurement error in hours
of work implies measurement error in wages, since they are typically computed
as average hourly earnings. Current applications of the piecewise-linear analy-
sis mistakenly ignore this by assuming perfectly measured budget constraints.18

The unnatural role played by measurement error raises questions about the cred-
ibility of findings derived from the piecewise-linear approach. In contrast to the
piecewise-linear approach, it is not essential to introduce measurement error in
either the differentiable-likelihood or the instrumental-variable approach because
hours in the distribution of h are continuous without measurement error.
Third, existing research implementing the piecewise-linear methodology relies

on very strong exogeneity assumptions. Other than hours of work, all variables
involved in the calculation of taxes are presumed to be exogenous determinants of
labor supply behavior, both from a statistical and from an economic perspective.
These variables include gross wages, the various components of non-labor income,
and deductions. In light of the evidence supporting the view that wages and
income are endogenous variables in labor supply analyses, particularly in the case

18It is possible to argue that this error does not result in measurement error in the hourly
wage, if the measurement error is interpreted as an “optimization” error.
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of wages, suspicions arise regarding the dependability of estimated substitution
and income effects based on procedures that ignore such possibilities. Most of
the exogeneity assumptions are also maintained in the differentiable-likelihood
approach, but are easily relaxed when applying instrumental-variable procedures
(given the availability of a sufficient number of other instrumental variables).
Fourth, some concerns about the reliability of estimates produced by the

piecewise-linear approach ensue due to the static behavioral framework maintained
in the formulation of empirical relations. Piecewise-linear studies invariably rely
on the textbook one-period model of labor supply as a description of hours-of-
work choices, and impose it to estimate parameters. Existing implementations
of the differentiable-likelihood approach suffer from the same problem. Everyone
acknowledges that individuals are not simply myopic optimizers; they transfer
income across periods to achieve consumption plans that are infeasible without
savings. A serious question arises concerning the relevance of such considerations
in estimating substitution and income effects used to predict responses to tax
policy.

4.7. Maximum Likelihood Estimation Imposes Restrictions on Behav-
ioral Responses

The implementation of maximum likelihood procedures imposes interesting
and important restrictions on behavioral parameters in the presence of non-linear
budget constraints. These restrictions come about in defining the statistical model
to be coherent, requiring probabilities to fall in the [0,1] interval and densities to
be nonnegative.

4.7.1. Restrictions Imposed Under Piecewise-Linear Constraints

The econometric model produced by the piece-wise linear formulation given
by (4.72) implicitly imposes parametric restrictions that constraint the signs of es-
timated substitution and income effects. As developed in MaCurdy et al. (1990),
particular inequality restrictions must hold in the application of estimation pro-
cedures with piecewise-linear budget constraints for likelihood functions to be
defined (i.e., to ensure that the components of these functions are non-negative).
More specifically, in applications of such procedures, the Slutsky condition must
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be locally satisfied at all interior kink points of budget sets that represent feasible
options for any individual in the sample such that the compensated substitution
effect must be positive. For the linear specification of the labor supply function
considered in the preceding discussion, the specific inequality constraints imposed
are

α− βhjk ≥ 0, ∀ j, k (4.73)

where the quantities hjk represent the hours-of-work values that correspond to
interior kink points j on a sample member k’s budget set. Because many values
of hjk exist in most analyses of piecewise-linear constraints, fulfillment of relations
(4.73) essentially require global satisfaction of the Slutsky condition by the labor
supply function. Such a requirement, in essence, globally dictates that the uncom-
pensated substitution effect of a wage change on hours of work must be positive
for the labor supply specification considered in the preceding discussion, and the
income effect for hours of work must be negative. The imposition of these restric-
tions, especially for men, is highly suspect given the available evidence from other
studies. These restrictions carry over to more general labor supply functions.

4.7.2. Restrictions Imposed Under Differentiable Constraints

Maximum likelihood estimation with differentiable constraints induces com-
parable restrictions. Consider, for example, likelihood function (4.62). For this
specification to be a properly-defined likelihood function, the Jacobian dν

dh
must

be non-negative. Violation of this condition implies that the density function for
h is negative, which obviously cannot occur. Non-negativity of dν

dh
translates into

the property
∂c

∂w
− ∂c

∂y
h ≥ −

µ
∂τ

∂I
W 2

¶−1
≤ 0, (4.74)

where c refers to the labor supply function. The left-hand side of this inequality is
the Slutsky term. This inequality result does not require compensated substitution
effects to be positive as quasi-concave preferences mandate, only that these effects
cannot become too negative.
Maximum likelihood procedures yield nonsensical results unless equation (4.74)

holds. Without measurement error, estimated parameter values cannot imply
a violation of equation (4.74) at any of the data combinations (h,w(h), y(h))
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actually observed in the sample. If a violation occurs, then the evaluation of
(4.62) for the observation associated with this combination would result in a non-
positive value which causes the overall log likelihood function to approach minus
infinity which clearly cannot represent a maximum.
With measurement error, maximum likelihood estimation applied to function

(4.64) ensures that a weighted average of density functions appearing in (4.64)
holds, with weighting occurring over all combinations of hours, marginal wages,
and virtual income lying in the feasible range of the budget constraint of any indi-
vidual included in the sample. Since maximum likelihood procedures assume the
validity of such restrictions when calculating estimates of the coefficients of c, the
resulting estimated labor supply function can be expected to exhibit compensated
substitution effects that obey inequality (4.74.) over a very wide range of hours,
wages, and incomes.19

4.8. Maximum Likelihood: Accounting for Participation and Missing
Wages

As mentioned in previous sections, some applications of the piecewise-linear
approach incorporate fixed costs to working - costs such as transportation that
must be paid for any amount of work but which may vary across individuals.
This significantly complicates the analysis because the optimized level of work
under the budget constraint while working may not represent the optimal choice
overall; one must explicitly consider the option of not working and thus avoiding
the fixed cost. For any level of fixed costs, a minimum number of hours worked is
implied creating an attainable range in the observable hours of work distribution;
individuals will not work unless the gain is large enough to overcome the fixed
costs. In essence, these complications arise because the budget constraint is not
convex, invalidating simple maximization procedures.

19It is, of course, computationally feasible to use (4.5.3) in estimation and not require fh
to be defined over the entire range of its support. Computationally one merely requires fh to
be non-negative over a sufficiently large region to ensure (4.5.3) > 0. Of course, not requiring
fh ≥ 0 over its relevant range produces a nonsensical statistical model.
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4.8.1. Fixed Costs of Working

If an individual must pay fixed monetary costs, F , to work, then non-labor
income, Y , in the above budget constraints is replaced by

Y − F, if h > 0, (4.75)

Y, if h = 0.

F is partially unobservable and, thus, modelled as a stochastic element, varying
across individuals. Hence, we see that the budget constraint discontinuously jumps
down by F when the individual chooses to work.
To solve for the optimum when faced with this budget constraint, two regimes

must explicitly be considered: working and not working. Estimation proceeds
by finding the maximum utility under each regime and then comparing these to
determine which option is chosen. In neither regime, the utility function U(C, h, ν)
- where we explicitly note the unobserved component, ν - is maximized subject to
optimization problem (4.1) with (4.4) modified by (4.75).
In the no-work regime, the solution is simple. We know h is 0, so utility is

given by U(Y − τ(Y −D), 0, ν).
The solution in the work regime closely follows the solution presented in Section

4.6. Again utilizing the labor supply function, c(ω, y, ν) yields the solution for h
given in (4.69), where the virtual income y now subtracts fixed costs F . However,
to compute maximum utility in this regime requires associating a utility level with
each possible hours choice. Utility along any segment, j, is given by the indirect
utility function, V (ωj, yj, ν). At kinks, the direct utility function must be used,
so the utility at kink j is given by U(ωjhj+ yj , hj, ν). Hence, utilizing exactly the
same solution procedure exploited in Section 4.6, we can define maximized utility
when working, V ∗:

−∞ c1 ≤ 0
V (ω1, y1, ν) 0 < c1 < h1
U(ω1h1 + y1, h1, ν) c2 < h1 ≤ c1

V ∗ (w, y, v) = V (ω2, y2, ν) h1 < c2 < h2
U(ω2h2 + y2, h2, ν) c3 < h2 ≤ c2
V (ω3, y3, ν) h2 < c3 < h3
U(ω3hm + y3, hm, ν) c3 ≥ hm

(4.76)
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where

cj ≡ c(ωj, yj, ν) ≡
Vω(ωj, yj, ν)

Vy(ωj, yj, ν)
(4.77)

with Vω and Vy denoting the partial derivatives of V ; relation (4.77) is, of course,
Roy’s identity defining the labor supply function, c, evaluated at wage and income
levels ωj and yj. The use of −∞ for h = 0 simply indicates that h = 0 is not
included in this regime and, thus, selecting it indicates that the no-work regime
is preferred. Given functional forms for V and U , finding V ∗ is straightforward.
Given maximized utility under each regime, the final step in the solution is to

compare the two regimes. An individual chooses to work at the hours specified
by the solution in (4.69) if

V ∗(ω, y, ν) ≥ U(Y − τ(Y −D), 0, ν) (4.78)

and chooses not to work otherwise. For any level of ν, treating equation (4.78) as
an equality implies a critical level of fixed costs, F ∗(ν) above which the individual
will choose not to work; F enters this relation through the virtual income variable
y. Because desired hours of work increase with ν, this critical value will generally
be increasing in ν - greater propensity to work implies that higher fixed costs are
required to prefer the no-work option. If restrictions are placed on the support
of F , such as F > F , there will be values of ν low enough to rule out the work
regime, thus implying a hole at the low end of the h distribution.
As a final step before deriving the likelihood function, note that in the no-work

regime, gross wage, W , is not observed and, thus, the budget constraint cannot
be derived. Hence, W must be endogenized. Such a step amounts to modeling
the offered gross wage rate as being generated by a variant of equation (??) which
presumes that W is randomly distributed across the population depending on
measured characteristics Q and unobservable components η. To simplify the
discussion below, we assume that the linear variant of specification (??) (i.e.,
W =W ∗(Q) + η) generates W .

4.8.2. Likelihood Function Incorporating Fixed Costs

To derive the likelihood function, first consider the likelihood contribution
of an individual who does not work. We assume this no-work decision can be
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observed, so there is no measurement error. In the no-work case, one of two
situations applies: (i) fixed costs are sufficiently high with F > F ∗ ≡ F ∗(ν, η)

for any given ν and η, or (ii) if this fixed-cost threshold falls below the lowest
admissible value for F (i.e. F ∗ ≤ F ), then desired hours are sufficiently low with
ν < ν∗ ≡ ν∗(η) for any η.20 The probability of this event is

L0 =
∞Z

−∞

ν∗Z
−∞

∞Z
F∗

ϕνηF (ν, η, F ) dF dη dν (4.79)

where ϕνηF is joint density of (ν, η, F ).
For the work regime, the likelihood contribution looks very much like that

derived in specification (4.72), as we continue to assume the linear hours of work
function and the form of measurement error assumed there. The only changes are
the addition of terms for δ and F (accounting for the fact that F < F ∗(ν)) and
the removal of the term for the lower limit which is no longer part of that regime
and is now perfectly observable. Using ϕ1 and ϕ2 to denote the distribution of
(ε, ν, η, F ) and (ε+ ν, ν, η, F ) yields:

L1 =
3P

j=1

νjZ
νj

F∗Z
0

ϕ2 (H − bhj, ν,W −W ∗(Q), F ) dF dν (4.80)

+
2P

j=1

νj+1Z
νj

F∗Z
0

ϕ1(H − hj, ν,W −W ∗(Q), F ) dF dν

+

∞Z
ν3

F∗Z
0

ϕ1 (H − h3, ν,W −W ∗(Q), F ) dF dν

where

νj solves the equation c(ωj, yj, νj) = hj−1 (4.81)

νj solves the equation c(ωj, yj, νj) = hj.

20The critical value υ* solves relation (4.8.4) treated as an equality with virtual income y
evaluated at F .
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All variables appearing in these expressions are defined as in Section 4.6.
The likelihood function for an individual is given by

L = (L1)δE(L0)1−δE (4.82)

where δE = 1 if the individual works and = 0 otherwise. Estimation proceeds
by maximizing the sum of log likelihoods across individuals, as always. This
is quite complex in this case, requiring knowledge of both the direct utility U

and the indirect utility, V , and also requiring comparisons across regimes for all
individuals and all parameter values.

4.9. Welfare Participation: MaximumLikelihood with NonConvex Con-
straints

A common source of non-linearity in budget constraints involves participation
in welfare programs. To illustrate this situation, consider the simplest case in
which the only taxes faced by an individual result from benefit reduction on a
single welfare program. Figure 4.3 presents this scenario. Under most welfare
programs, individuals face very high effective tax rates when they initially work
due to large reductions in their benefits occurring when earnings increase. Once
benefits reach 0, the tax rate drops to a lower level, creating a non-convex kink
in the budget constraint. This non-convexity invalidates the simple procedures
exploited in Section 4.6 implemented to divide sample spaces into locations on
budget sets.

4.9.1. Simple Nonconvex Constraints with No Welfare Stigma

Following the picture portrayed in Figure 4.3, an individual maximizes U(c, h, ν)
subject to the budget constraint

c =Wh+ Y + b(I(h)), (4.83)

where benefits are given by the simple benefit schedule:

B(I(h)) =

½
G− ρWh, if G− ρWh > 0,
0 otherwise.

(4.84)
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G gives the guarantee amount which is reduced at the benefit reduction rate ρ
as the earnings, Wh, increase. This implies a kink point at h1 = G/ρW where
benefits reach 0 and, thus, the marginal wage rises to W . So, the individual faces
two segments: segment 1 has h < h1 with net wage ω1 = (1 − ρ)W and virtual
income y1 = Y +G; and segment 2 has h > h1 with net wage ω2 =W and virtual
income y2 = Y .21

Because the budget constraint is non-convex, the solution cannot be character-
ized simply by finding a tangency with the budget constraint as it was in Section
4.6. Multiple tangencies are possible and these must be directly compared to de-
termine the optimum. Hence, one requires the regime shift approach summarized
in Section 4.4.
Consider first the regime in which positive benefits are received; that is, h < h1.

Maximization, given the effective wage and income, on this linear segment follows
the approach of Section 4.4. We can characterize the optimal choice according to
the function c(ω1, y1, ν). Denotes the value of ν which implies c(ω1, y1, ν) = 0 as
ν0. Then the optimal hours choice along that segment is given by

h = c1 = c(ω1, y1, ν), ν > ν0, h = 0, ν ≤ ν0. (4.85)

The optimized value on this segment (including the zero work option), ac-
counting for the fact that h > h1 is not allowed, is given by

V ∗1 (ω1, y1, ν) =

⎧⎨⎩ V (ω1, y1, ν), 0 < c1 ≤ h1
U(y1, 0, ν), c1 ≤ 0
−∞, c1 > h1,

(4.86)

where equation (4.85) defines c1.
Next, consider the regime without benefits, that is with h ≥ h1. Again the

optimal choice, given the wage and income, on this segment is given by the labor
supply function c2 = c(ω2, y2, ν). The optimized value, accounting for the fact
that h < h1 is not admissible, is given by22

V ∗2 (ω2, y2, ν) =

½
V (ω2, y2, ν), c2 ≥ h1,
−∞, c2 < h1.

(4.87)

21We ignore any upper bound on hours worked for simplicity.
22In the following formulation, we implicitly assume that the event c2 ≥ H occurs with zero

probability.
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Hence, the individual selects regime 1, with welfare receipt, if V ∗1 > V ∗2 , and
regime 2 otherwise. Since work propensity increases with ν, this can be charac-
terized by a cutoff value, ν∗, defined by

V ∗1 (ω1, y1, ν
∗) = V ∗2 (ω2, y2, ν

∗). (4.88)

For values of ν above ν∗, regime 2 is chosen; and for values below ν∗, regime 1 is
realized.
We can define three sets, Ω0, Ω1, and Ω2, such that for ν ∈ Ω0 the individual

chooses not to work, for ν ∈ Ω1 the individual locates on segment 1 receiving
benefits with positive hours of work, and for ν ∈ Ω2 the individual locates on
segment 2. We must consider two cases to define these sets exactly. First, suppose
ν∗ > ν0. Then we have

Ω0 = {ν | ν ≤ ν0} (4.89)

Ω1 = {ν | ν0 < ν ≤ ν∗}
Ω2 = {ν | ν > ν∗}

Alternatively, if ν∗ ≤ ν0, then the switch to regime 2 occurs before positive hours
are worked in regime 1, that is

Ω0 = {ν | ν ≤ ν∗} (4.90)

Ω1 = ∅
Ω2 = {ν | ν > ν∗} .

Hence, for certain individuals and parameter values, no value of ν exists such that
they will locate on segment 1 with positive hours of work.
To characterize the likelihood function we again need a functional form for the

gross wage of the form W = W (Z) + η. We ignore measurement error here for
simplicity, and because there is no problem with individuals failing to locate at the
kink in this non-convex case. Define δB = 1 if the individual receives benefits, and
δE = 1 is the individual works, both 0 otherwise. The likelihood function is given
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as follows, incorporating ϕην (η, υ) and the general inverse function ν = ν(h):

δB = 1, δE = 1, L11 =
∂ν

∂h
ϕνη (ν(h),W −W (Z)) I(ν ∈ Ω1), (4.91)

δB = 0, δE = 1, L01 =
∂ν

∂h
ϕνη (ν(h),W −W (Z)) I(ν ∈ Ω2),

δB = 1, δE = 0, L10 =
Z
Ω0

ϕνη(ν, η)dνdη.

where I(·) represents an indicator function equal to 1 if the condition in the
parentheses is true. Because the value of ν implied by the hours choice may
be inconsistent with the value implied by the regime choice, it is possible to
have “holes” in the hours distribution around the kink point. For example, an
individual on segment 1 must have ν ≤ ν∗. If his hours choice is too close to
the kink, this may imply a value of ν > ν∗ and thus an observation with zero
likelihood.
The overall likelihood function is given by

l = (L11)(δB)(δE) (L01)(1−δB)(δE) (L10)(δB)(1−δE). (4.92)

Estimation proceeds by maximizing the sum of log likelihoods across individuals,
as always. This is quite complex in this case, requiring knowledge of both the
direct utility U and the indirect utility, V , and also requiring comparisons across
regimes for all individuals and all parameter values.

4.9.2. Welfare Stigma Implies Selection of Budget Constraint

The above analysis assumes that all individuals eligible for welfare are on wel-
fare. Individuals working less than h0 but failing to receive welfare are operating
below the implied budget constraint, a possibility not permitted in the analysis.
Yet, many individuals are in exactly this situation. This is generally explained by
assuming the existence of some utility loss or stigma associated with welfare.
To capture welfare stigma the utility function is modified to take the form

U = U(c, h, ν)− δB ζ, (4.93)
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where ζ is the level of welfare stigma which is greater than 0 and varies across
individuals.23 Two unobserved components now enter preferences, ν and ζ. Such
cases were considered in the general analysis of Section 4.4. In terms of the
notation of this preceding section, in relationship (4.49) ν corresponds to ν1 and
ζ corresponds to ν2.
With this modification we again consider the welfare and non-welfare regimes.

Since the welfare stigma term does not affect the marginal decisions, given that
the individual is on welfare, the discussion of hours of work presented above for
regime 1 is still valid. The optimal utility is now given by

V ∗(ω1, y1, ν) =

⎧⎨⎩ V1(ω1, y1, ν)− ζ, 0 < c1 ≤ h1,
U(y1, 0, ν)− ζ, c1 ≤ 0,
−∞, c1 > h1.

(4.94)

The analysis for regime 2 is altered in this case, because an individual can be
observed not receiving welfare for any value of h - that is, given welfare stigma,
it is possible to observe an individual with h < h1, but δB = 0. So regime 2 is
now defined solely by δB = 0. Optimal hours of work, given ω2 and y2, are given
by c(ω2, y2, ν). Defining the value of ν for which c(ω2, y2, ν) = 0 as ν+, hours of
work under this regime are now given by

h = c2 = c(ω2, y2, ν), ν > ν+, (4.95)

h = 0, ν ≤ ν+.

Optimized utility is now

V ∗2 (ω2, y2, ν) =

½
V (ω2, y2, ν), c2 > 0
U(y2, 0, ν), c2 ≤ 0.

(4.96)

Choice of regime still proceeds by comparing V ∗1 and V
∗
2 , as done in relationship

(4.88). For any ν in the sets Ω0 or Ω1 defined by expressions (4.89) or (4.90),
there is now some critical level of ζ∗ = ζ∗(ν), which depends on ν, such that
regime 2 is chosen when ζ > ζ∗; regime 1 is chosen otherwise.

23This additive form is used for simplicity. More general forms can be used, but change none
of the substantive points presented here.

71



Given this characterization, we can derive the likelihood function for each
combination of δB and δE, using the joint densities ϕνζη (ν, ζ, η) and ϕνη (ν, η):

δB = 1, δE = 1, L11 = ∂ν
∂h

R ζ∗
0

ϕνζη(ν(h), ζ,W −W (z)) I(ν ∈ Ω1) dζ
δB = 0, δE = 1, L01 = ∂ν

∂h
ϕνη(ν(h),W −W ∗(Z)) I(ν ∈ Ω1)

+ ∂ν
∂h

R∞
ζ∗ ϕνζη(ν(h), ζW −W ∗(Z)) I(ν ∈ Ω1) dζ

δB = 1, δE = 0, L10 =
R∞
−∞
R
Ω0

R ζ∗
0

ϕνζη(ν, ζ, η) dζ dν dη

δB = 0, δE = 0, L00 =
R∞
−∞
R ν∗
−∞
R ζ∗
0

ϕνζη(ν, ζη) dζ dν dη .
(4.97)

Estimation proceeds as in the non-stigma case by selecting the appropriate
likelihood branch for each individual and then maximizing the sum of the log
likelihoods.
As with the fixed cost case, the likelihood function is complex even in this

extremely simplified welfare case. For each possible set of parameter values, the
maximum must be computed for each regime and then compared to compute
ζ∗. Adding the tax codes, with their implied kinks, increases computational
complexity. As a result, the literature has adopted a simplifying methodology
which we present in Section 4.10 below.

4.9.3. Multiple Program Participation

In principle, the extension to the case of multiple program participation is
straightforward. For simplicity, we consider a case in which the individual can
choose between participating in no welfare programs, participating in welfare pro-
gram 1, participating only in program 2, or participating in both welfare programs
1 and 2. We extend the utility function as follows:

U = U(c, h, ν)− δ1ζ − δ2χ (4.98)

where δ1 = 1 if the individual participates in program 1, and δ2 = 1 if the
individual participates in program 2.24 Benefits from program j, Bj(I(h)), are
given:

Bj(I(h)) =

½
Gj − ρjWh, if Gj − ρjWh > 0,
0, otherwise.

(4.99)

24The use of two additive errors is a simplifying assumption which ensures that the stigma
from both programs is higher than stigma from program 1 alone.
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Benefits from both together are given as

B1(I(h))+B2(I(h)) =

½
G1 +G2 − ρ1Wh− ρ2Wh = G− ρWh, if G− ρWh > 0,
0 otherwise,

(4.100)
where G = G1+G2 and ρ = ρ1+ρ2. In general, the benefit functions for programs
1 and 2 will have different breakeven points, implying the values of hours defining
kinks (h1 in Figure 4.3) will not be the same.
This formulation expands the model considered in Sections 4.6 and 4.9.2. To

adapt this earlier model, one must designate three distinct regimes in place of
regime 1 specified above: regime 1a indicating an individual participates only in
program 1, regime 1b signifying this person collects benefits only from welfare pro-
gram 2, and regime 1c designating participation in both programs. Optimal hours
and utility for participation in a regime are given by (4.85), (4.86), (4.94), (4.95),
and (4.96), with net wages and virtual income in these formulations specified as
ωj = W (1− ρj) and yj = Y +Gj, with j = 1a, 1b, or 1c. In particular, relations
analogous to (4.85) and (4.86) define the labor supply and utility functions for
each of the new regimes for the “on-welfare” segments associated with relevant
combination of welfare programs. Relations (4.95) and (4.96) still define the labor
supply and utility functions for the non-welfare regime. The set of relations define
thresholds for ν demarcating the regions of unobserved tastes determining when
a person works (ν0 in (4.85) and ν+ in (4.95)). Maximization again requires se-
lection of a regime. Relations analogous to (4.94) and (4.96) characterize utilities
corresponding to the various regimes. Conditional on values ν, these relations
in turn imply thresholds for the stigma errors ζ, χ, and ζ + χ that determine
individuals’ welfare participation. The likelihood function for this model takes
a form similar to equation (4.97), with more branches appearing in the function
reflecting the additional regimes analyzed in this formulation.
Again, note the complexity of these extremely simplified welfare cases, even

these involve significantly financial burden. For each possible set of parameter
values, one must compute the maximum for each regime, account for the benefit
structure, and then compare these to compute the error ranges for the likelihood
function. When the individual is unemployed, one must perform these calcula-
tions for all possible wage values and all values of ν consistent with the no-work
decision. Adding the tax code, with its implied kinks, increases computational dif-
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ficulties. Introducing additional sources of unobserved heterogeneity enlarges the
number of dimensions over which one must calculate integrals, requiring sophisti-
cated numerical procedures and considerable computer resources. As a result, the
literature has adopted simplifying methodologies, a topic to which we now turn.

4.10. Computational Simplification by Making Hours Choices Discrete

To make estimation problems manageable, a popular method is to presume
that consumers face only a limited set of hours choices. For example, a worker
may choose only full-time work, part-time work, or no work, with each of these
options implying a prescribed number of hours. Formally, this is done by assuming
that unobservable tastes components, ν, possess a discrete distribution, usually
characterized as a multinomial distribution conditional on covariates. Combined
with a 0/1 welfare decision, this finite set of hours choices yields a relatively small
set of discrete states, say a set of S states, over which the utility function must
be maximized.
Given a specific form for the preference function, utility can be readily eval-

uated at each of the hours choices and the maximum can be determined. Given
an assumed joint distribution for unobservable taste components, ν, for the error
component determining wages, η, and for welfare stigma, ζ, one can compute a
probability that a family selects alternative j. This in turn defines a sample log
likelihood of the form

L =
P

j ∈ S

dj lnP (j | X, θ) (4.101)

where dj is an indicator for whether individual i chooses alternative j, X is a
vector of observable characteristics, and P (j|X, θ) is the probability of choos-
ing alternative j with θ the set of unknown parameters. Such formulations are
substantially less complicated than the specifications considered above because
one avoids the intricate process of calculating thresholds and dealing with com-
bined continuous-discrete endogenous variables; only discrete choices are allowed
for here.
This formulation requires each individual to be placed into a limited set of

preassigned work states, even though observed hours worked take many more val-
ues, making hours look as if they were continuously distributed. To overcome this
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issue, analyses applying this approach necessarily introduce measurement error
in hours of work to admit hours to deviate from the discrete values assumed for
the choice set. Hence, conditional on ν, each alternative j contributes some posi-
tive probability P (j|X, θ, ν) which now depends on the value of the unobservable
measurement error variables.
We illustrate this approach by considering the linear measurement error model

given by (4.16) where the reporting error ε ∼ ϕε, with ε and ν independent. Fur-
ther, as typically assumed, we specify that hours are not subject to measurement
error in no-work states. The likelihood function for hours now takes the form

L =
Ã P

j ∈ S0

dj lnP (j|X, θ)

!1−δE Ã P
j ∈ S1

dj ln (ϕε(H − hj) P (j|X, θ))

!δE

(4.102)
where δE denotes a 0/1 variable with 1 indicating that the individual works, S0
designates the set of all states associated with the individual not working, the set
S1 includes all states in which the individual works, and hj denotes the admissible
values of true hours. Earnings depend on the values of hj and wages. In (4.102),
observed hours (H) are continuously distributed among workers.

5. Family Labor Supply

The study of family labor supply is motivated by a need to understand how
a couple responds to tax and welfare benefit incentives when the benefit rules
create links in the incentive structure as well as the need to understand how
welfare is distributed within the household, so as to design the targeting of benefits
appropriately. Indeed the structure of family labour supply has changed quite
substantially and this may be partly due to changes in the benefit structure as
well as a re sult of changes in relative wages. For example, in the UK there has
been a large increase in the participation rate of married women and a decrease
in the participation of men. These changes have been accompanied by an increase
in the number of families where no one works. This is perhaps predictable given
the structure of the benefit system. However the design of income maintenance
programs that target the right households and offer the right incentive system is
of course important and crucially relies our knowing the way that family labor
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supply is determined.
The basic family labor supply model for a married couple is the unitary model

where the household is seen as maximizing one (household) utility function whose
arguments are male and female labor supply and consumption. Applying demand
analysis one can derive the implications of changes in wages and unearned income
on behavior. Since taxes can be viewed as changes in wages and unearned income,
such models can be used to simulate the labor market effects of changes in the tax
system or welfare benefits. However in this model intra-household distribution
has little meaning and of course the model has nothing to say about this. In
addition it is unclear how the household utility function can come about from the
interaction of two individuals with incentives that are not necessarily perfectly
aligned. This has led to the recognition that even when dealing with households
we need to account for individuals within households and we need to model the
way they share resources. This leads to potentially richer models of behavior that
are capable of explaining much more than the standard household model.
In the sections that follow we outline the two models and some of their impli-

cations in greater detail.

5.1. The Standard ‘Unitary’ Family Labor Supply Model

Consider the family labor supply and consumption problem

maxU(c, h1, h2, x)

st c = y + w1h1 + w2h2

where U is a strictly quasiconcave function of consumption C and the two labor
supplies hi.The budget constraint equates household consumption to total income,
consisting of unearned income (y) and the two earnings (wihi), T being total
time available for market work and wi the two wages. In addition to the budget
constraint, leisure cannot exceed T and hence labor supply must be positive or
zero (hi). This is a standard demand analysis problem with the complication that
there may be corner solutions and wages being individual specific are not observed
when the individual is working.
The first order conditions for an interior solution simply state that the marginal

rate of substitution between the two leisures will equal the ratio of wages
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Uh1
Uh2

= w1
w2

(5.1)

An implication of this model is that behavior is neutral to within household
lump sum redistributions of income. Thus paying a benefit to the male or the
female will have exactly the same effect, so long as it does not distort wages. This
is often termed the income pooling hypothesis and we revisit the issue when we
discuss the collective model. Here it suffices to note that the symmetry condition
and the income pooling hypothesis are properties of the unitary model and may
not be satisfied in the collective one.

5.1.1. Nonparticipation

In this subsection we show how to deal with non-participation and missing
wages in the family labour context. The issues are very similar to those already
discussed in the single person labour supply model.
The first issue to be addressed is allowing for unobserved heterogeneity in the

parameters of the utility function. Typically this can be addressed in a number
of ways. One way would be to assume that the marginal rate of substitution for
each of the two leisures with consumption included a multiplicative error term (see
Heckman, 1974 for example). In this case we could write the first order conditions
as

log
³
−Uh1

UC

´
= log (w1) + ε1

log
³
−Uh2

UC

´
= log (w2) + ε2

(5.2)

We can also assume a (bivariate) density for the wage rates, say f(w1, w2|z) where
z are the observable characteristics that drive wages and ε1 and ε2 will be taken
to be independent of them. Typically one would assume a distribution function
for ε = [ε1, ε2]0, for example N(0,Ω).
The functions 5.2 together with the distributional assumption for the unob-

served heterogeneity define the distribution of hours of work. Hence the likelihood
contribution for a couple where both are participating is simply the joint density
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of hours of work and wages for the two of them.

c(h1, h2, w1, w2) =

| J | g
³
log
³
−Uh1

UC

´
− log (w1) , log

³
Uh2
UC

´
− log (w2) |w1, w2, x

´
× f(w1, w2|z)

J = ∂ε
∂h0 [Jacobian]

where x are observables affecting individual preferences and h = [h1 h2]
0. When

one or both partners are not working, hours of work are censored and the respective
wage is unobserved. Take as an example the case where one of the two is not
working (say 1). In this case note that ε1 < log

³
−Uh1

UC

´
− log (w1) , where −

Uh1
UC

is the marginal rate of substitution evaluated at hours h1 = 0. The likelihood
contribution must be written taking this censoring into account. We will write
this in terms of the joint density of hours and wages given above. Thus the
likelihood contribution for this case is

c(h1 = 0, h2, w1, w2) =
R
w1

R
h1≤0 c(h1, h2, w1, w2)dh1dw1

The integration with respect to the wage takes place over the entire range of
wages. The contributions to the likelihood for the case of the other partner not
working or both not working can similarly be derived. The sample likelihood
is then the product of all contributions. In a similar fashion one can construct
the likelihood contribution for the case where neither member of the household is
working. The sample likelihood is then the product of the contributions for each
observation. This is th basic likelihood structure. We next discuss issues relating
to introducing taxation in this framework.

5.2. Discrete Hours of Work and Program Participation

It is straightforward to allow for proportionate taxes, or even piece-wise linear
taxes, so long as these lead to a budget constraint that is convex and so long as
the endogeneity of the tax rate is taken into account. However, most welfare
programs are designed is such a way that they define a non-convex budget set:
Implicit marginal tax rates are higher at low hours of work, where increases in
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earnings lead to a rapid withdrawal of benefits and lower at higher hours where the
individual pays the usual taxes. As we showed earlier, this is a complex problem
itself and in the family labor supply context even more so because the benefits
may be interdependent.
To simplify the problem it has now become almost standard to discretize hours

of work. Then the problem of utility maximization becomes one of choosing
packages of consumption and earnings - consumption is defined by the earnings
of the individual, the tax system and the benefit system. Within this context
we can also account for fixed costs of work (another non-convexity) and for the
decision to participate (or not) in a welfare program. (Hoynes (1996) and Keane
and Moffitt (1998))
We start with a utility function defined over hours of work H1 and H2 and we

discretize the distribution of hours. For example hours can take the discrete values
H ={0,20,40}. Suppose we write family utility at hours H1 = hi, H2 = hj where
hi and hj are the ith and jth point of the discrete hours distribution respectively.

Uhihj = U(H1 = hi, H2 = hj, c, ε)− ηPB + uhihj

where PB is a 0-1 program participation dummy. The term ηPB reflects the
utility costs of program participation such as “stigma”. This may be randomly
distributed over the population. The term ε reflects unobserved heterogeneity in
preferences and the term uhihj hours specific unobserved heterogeneity. Given the
associated wage the discrete hours imply a corresponding set of earnings for each
individual.
The budget constraint incorporates all relevant aspects of the tax and benefit

system to define the resulting level of consumption.

c = w1H1 + w2H2 + y − T (y,w1H1, w2H2) +B(y,w1H1, w2H2)PB

where
T - tax function
B - program benefit function

The likelihood is derived taking into account program participation. First note
that the observation on whether an individual is participating in welfare programs
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or not is informative about the range in which the participation cost η lies. Note
also that for any given η the utility function and the budget constraint define
whether the person will be a participant or not. At each observation we can
derive the probability that the chosen point pr(Uhihj > Uhkhs , ∀ k 6= i and s 6=
j|w1, w2, η, ε) is optimal, conditional on η and the heterogeneity terms ε. If the
person is eligible for a welfare program at the observed point and he does actually
participate (i.e. receives benefits) then the range in which η lies is defined by the
fact that the utility gain from participating is higher than the cost η. For the non-
participants η lies in the complement of this set. This allows us to integrate out
η over the relevant range. When the person is ineligible at the observed point no
information is available for η and we integrate over its entire range. In this case as
we move over different values of η the probabilities change not only because of the
direct effect of η through the utility function but also because it induces different
potential participation decisions at each discrete hours points, thus changing both
optimal hours and consumption. Thus consider the likelihood contribution for a
couple where both work and participate in a welfare program - (in work benefits).
This will take the formnR

η�Q

R
ε
pr(Uhihj > Uhkhs ,∀k 6= i and s 6= j|w1, w2, η, ε)dεdη

o
f(w1, w2|z)

where Q is the set of η such that program participation is optimal at the point of
observation. The form of the probability is defined by uhihj . Imposing a logistic is
not restrictive if we allow for unobserved heterogeneity through the ε (Manski and
McFadden, 1981). The contribution to the likelihood for a non-worker must also
take into account the fact that the wage will not be observed in that case. This
is done as before by integrating over all possible wages. Of course the practical
difficulty is that the probability of participation is a complicated function of the
wage rate through the formulae of the tax and welfare benefit system.
The models estimated in this way have the great attraction that they allow us

to simulate policies allowing for possible changes in the take-up of means tested
benefits. To the extent that there is sufficient genuine exogenous variation in the
data allowing us to identify the factors that determine take up these can be very
useful for the ex ante evaluation of welfare policies.
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5.3. Collective Models of Family Labor Supply

The family labour supply model presented above treats the household as a
single optimising decision unit, and has nothing to say about within household
allocations. It also imposes stronger restrictions than necessary, such as symmetry.
An alternative approach, the Collective model, looks upon the household as a set
of individuals with their own preferences, whoa have to decide how to share the
overall set of resources available to them. Within this framework we can have
private goods (enjoyed by the members separately), public goods and household
production. The main empirical issue is that of identification: What can we
learn about individual preferences and the sharing rule when we observe aggregate
household consumption. This has led to a number of important theoretical results
by Chiappori (1988, 1992) recently extended by Blundell, Chiappori, Magnac and
Meghir (2006) to allow for corner solutions and to discuss identification in the
presence of unobserved heterogeneity.
The framework we describe here is the collective model with two household

members and no public goods or household production.25 Each member supplies
labor hi (i = m, f) and consumes a private good (Ci). A critical assumption in
the collective approach as introduced by Chiappori is that the household only
takes Pareto-efficient decisions. That is, for any set of male and female wages and
unearned income (wf , wm, y), there exist some level of male utility ūm(wf , wm, y)

such that labor supply and consumption for each household member (hi, Ci) is a
solution to the program :

max
hf ,hm,Cf ,Cm

Uf [1− hf , Cf ] (5.3)

Um [1− hm, Cm] ≥ ūm(wf , wm, y)

C = wf .h
f + wm.h

m + y

0 ≤ hi ≤ 1, i = m, f

where the labor supply has been normalized to lie between 0 and 1. The function
ūm(wf , wm, y) defines the level of utility that member m can command when the

25Blundell, Chiappori and Meghir (2005) further extend the model to discuss identification
conditions with public goods.
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relevant exogenous variables take the values wf , wm, y. Underlying the determina-
tion of ūm is some allocation mechanism (such as a bargaining model) that leads
to Pareto efficient allocations. The nice thing about the collective approach is that
there is no need to be explicit about such a mechanism; identification does not
rely on specific assumptions about the precise way that couples share resources.
Suppose first that preferences are such that there are never any corner solu-

tions. It is assumed that we observe aggregate household consumption C = Cm+

Cf and that we know the locus of labor supplies as a function of (wf , wm, y).Then
Chiappori (1988) proves the following:

Proposition 5.1. (Chiappori 1988) Assume that hm and hf are twice differen-
tiable functions of wages and non labor income. Generically, the observation of
hm and hf allows to recover individual preferences and individual consumptions
of the private good up to an additive constant.

There are two critical issues to be resolved following this proposition: One is
what happens with corner solutions and with discrete labor supply. The other is
what happens with unobserved heterogeneity in preferences, i.e. when we do not
know the exact loci hm and hf .

Blundell, Chiappori, Magnac and Meghir (2006) set up a framework where the
male decision is discrete (work or not) and the female is continuous - however she
can choose not to work. The framework underlying the proposition above exploits
the fact that the marginal rates of substitution between consumption and labor
supply for each agent will be equalized within the household, under efficiency.
This result cannot help when one of the labor supplies is discrete. Define the
participation frontier to be the set of male and female wages and unearned income
y so that member m is indifferent between working and on working. Blundell et
al (2006) then exploit the following implication of efficiency:
Definition and Lemma DI (double indifference): The participation fron-

tier L is such that member m is indifferent between participating or not. Pareto
efficiency then implies that f is indifferent as well about whether m participates
or not.

Technically, this amounts to assuming that in the program above, ūm is a
continuous function of both wages and non labor income. This will imply that
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the behavior of the female will depend on the male market wage even when he is
not working. This continuity assumption restricts the set of possible behavior and
plays a key role for identification. We will not go through the technical details,
all of which are available in the paper referenced above. However, identification
of preferences and the consumption sharing rule (up to an additive constant)
follows from the assumption that all goods are private (no public goods and no
household production) as well as from the assumption above. Blundell, Chiappori
and Meghir (2005) discuss results in the presence of public goods. The essence of
the results there is that full identification of preferences over private and public
goods and the sharing rule follows when preferences over private consumption and
labor supply are weakly separable from the public good. In any case it is shown
that some aspects of the public good must be observable.
The next important obstacle for identification here is unobserved heterogene-

ity. The results outlined above relate to the case where we know the locus of the
observable endogenous variables (labor supplies, the public good etc.) as functions
of wages and unearned income. However for empirical purposes we need to estab-
lish identification in the presence of unobserved heterogeneity in preferences. This
is generally complicated by the fact that any unobserved components affecting in-
dividual preferences are likely to affect the sharing rule. Since this can take any
form (more or less) we may well end up with error terms that are non-separable,
which of course may lead to lack of identification in general. Identification prob-
lems are compounded by the specific context of labor supply where wages are only
observed for workers. Blundell et al. (2006) have established identification in the
special case where the labor supplies and the sharing rule are linear in log wages
and all have additive unobservables. Even in this case the proof is not trivial
because they do not rely on distributional assumptions. One conclusion of this
study is that identification in more complex preference structures will have to be
established on a case by case basis. Nevertheless, the dividends of such an exer-
cise are probably very high. Blundell et al (2006) reject the unitary model, while
the collective model is not rejected and gives interesting insights into the way
that resources are split up within the household. Further empirical work needs
to include public goods and household production. This will allow an extension
of this analysis to households with children. Finally, this framework needs to be
extended to deal explicitly with the issues of taxation and means tested benefits,
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which the previous analysis of the collective model has not developed.

6. Intertemporal Models of labor Supply

The models discussed up to now focused on the work decision within a period.
The lifecycle and dynamic issues have not been addressed. However, studying
dynamics is of critical importance because of the numerous intertemporal depen-
dencies in labor supply their implications and for the design of policy.
The most obvious intertemporal dependence comes through borrowing and

saving. In this framework the credit market is used to shift labor income across
periods of the life-cycle so that labor supply can be concentrated in periods when
the relative benefit of supplying labor is highest or costs are lowest. This allows a
reduction in labor supply during college, during childbirth and during retirement
while consumption can be maintained at a level consistent with expectations and
overall uncertainty. An additional reason for changes in labor supply over the
life-cycle is the precautionary motive, which implies more labor supply when one
is young and less when one is older and some of the uncertainty has been resolved
(Low 1999)
However, intertemporal dependence may be more direct. Labor supply prefer-

ences may depend on past actions (habit formation); current work may improve
future wages through learning by doing; current work may increase a future pen-
sion entitlement. Since a rational individual will take into account the impact of
current actions on future budgets or preferences, the standard static labor sup-
ply model does not tell the complete story and may in fact be misleading. With
intertemporal dependencies the individual may find it rational to work in circum-
stances where the static model would exclude such a possibility. For example, it
may still be worth working when welfare benefits are reduced one for one with
earnings, because work offers future returns in the form of higher wages.
The recent intertemporal labor supply literature has developed along two lines.

This is reflected in these two intertemporal aspects on labor supply - through credit
markets and saving, and through intertemporal non-separabilities. In the former
case applications exploit the continuity of consumption and saving to derive Euler
equation conditions for intertemporal labor supply. In the later case the focus is
more on participation and intertemporal nonseprabilities, largely ignoring savings
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decisions.
This classification of approaches is necessarily too restrictive. There are in-

tertemporal substitution applications that allow nonseparability over time, but
these are few and typically do not account for fixed costs and nonparticipation.
Also there are examples of dynamic programing models that account for savings
decisions but to date these have been quite rare and based on very specific as-
sumptions concerning preferences and markets.
This section presents dynamic models of labor supply and consumption and

discusses their estimation. We start by presenting the standard dynamic frame-
work, followed by the empirical models of MaCurdy (1981) and Heckman and
MaCurdy (1980). We then discuss issues to do with intertemporal non-separability,
unobserved heterogeneity in the context of incomplete insurance markets. We con-
clude with the presentation of a framework in which all these aspects are taken
into account in a theoretically coherent fashion.

6.1. Intertemporal Labor Supply with Saving

As we have mentioned in section 2, the ‘static’ labor supply model can be
made consistent with an additively separable life cycle model under uncertainty
using the two-stage budgeting framework. However, this does not recover all of
the parameters necessary for intertemporal analysis and for that we need to look
directly at the first order conditions for intertemporal optimization. Before moving
to consider the problems of unobserved heterogeneity in the context of uncertainty
and with the possibility of corner solutions we consider a simpler model.
Using the framework of Heckman and MaCurdy (1980) and MaCurdy (1981)

we discuss estimation of lifecycle labor supply models in a complete markets set-
ting, i.e. with no uninsurable uncertainty and no aggregate shocks. We start by
expositing the case of no corner solutions, where all individuals work. We then al-
low for non-participation. Next we introduce uncertainty, first by considering the
no corners case and later allowing for corners as well. Finally we discuss the issue
of unobserved heterogeneity in models with uncertainty and corner solutions and
present an estimation framework based on the complete dynamic programming
characterisation of the problem..
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6.1.1. The Life-Cycle Model

Before discussing the identification and estimation issues in the dynamic mod-
els of labor supply and consumption we present the standard life-cycle model.
The individual maximizes expected life-time utility subject to an intertemporal

budget constraint. We assume that future wage rates, prices and interest rates are
uncertain and that labor market risk is uninsurable. Define At to be the assets,
denominated in the same units as consumption. Letting it denote the nominal
interest rate and pt the price level, we define the real rate of return on assets to
be 1 + rt =

pt
pt+1
(1 + it). Thus rt is to be taken as uncertain in period t. The real

wage rate is denoted by wt.

Denote by Et the expectations operator with respect to the distribution of
uncertain future variables conditional on information in period t. These include
interest rates, wages, the price level, possible preference shocks and other vari-
ables which affect choices either through their impact on expectations or directly.
Denote the collection of such state variables by St. The state variables contain all
the information that is needed to summarize the individual’s position at any point
in time. Thus, conditional on the state variables the past otherwise is irrelevant.
We can also think of the taste shifter variables z1t and z2t as being uncertain in
future periods, in which case expectations are taken with respect to their distri-
bution as well. We abstract from issues relating to uncertain date of death and
the presence or absence of perfect annuity markets. Hence we take the personal
discount factor β to be constant over time as a simplifying assumption.
We can write the intertemporal optimization problem as

V0 = max
ht,ct

(
E0

TX
t=0

βtψ [U(ct, ht|z1t), z2t] |
TX
t=0

1Qt
s=0(1 + rs)

(ct − wtht) ≥ 0
)

where the second part in the expression is the intertemporal budget constraint.
The way it is written implies that the individual can borrow and lend freely at a
market rate of interest rt.
The additive structure of this problem is viewed from the perspective of period

0. However, since there exists uninsurable uncertainty the individual will replan
in each period as news arrives. In this context and since the problem is recursive
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(trivially since it is additive over time) it is more convenient to use the Bellman
equation formulation

Vt(At|St) = maxht,ct {ψ [U(ct, ht|z1t), z2t] +EtβVt+1(At+1|St+1)} (6.1)

where Vt(At|St) is the optimum value function given information up to period t

and St are relevant state variables which help predict future uncertain income,
interest rates and characteristics.
In the absence of credit market restrictions the intertemporal budget constraint

implies that
At+1 = (1 + rt)(At + wtht − ct)

with the terminal value of assets fixed at some value (say zero).26 This implies
that the revenues and expenditures need to balance over the entire lifecycle but
not necessarily at any point in time.
The first order conditions for labor supply and consumption can be written as

−u0h ≥ λtwt ht ≥ 0

u0c ≥ λt ct ≥ 0

Usually an Inada condition is imposed which ensures that optimal consumption
will always be strictly positive. However, optimal labor supply may be zero which
leads to a corner solution.
For individuals with an interior solution the optimal allocation between con-

sumption and hours of work within a period, equates the marginal rate of substi-
tution to the real wage rate. The important point is that even in this dynamic
context the marginal rate if substitution is the ratio of within period marginal
utilities. Thus consumption and labor supply satisfy

∩u
0
h

u0c
= wt (6.2)

where u0x is the marginal utility of x. The important point to note is that the within
period marginal rate of substitution between consumption and hours of work does

26We abstract from issues relating to portfolio choices and rt is the return to the market
portfolio.
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not depend directly on any expectations about the future, nor does it depend
on interest rates. Crucially, it does not depend on the monotonic transformation
of the utility function ψ. This is important because it implies that in general we
can not estimate the parameters governing intertemporal allocations just by using
within period ones. Condition 6.2 is the basis of the life-cycle consistent ‘static’
labor supply model of the earlier sections.
We can apply the envelope condition for assets on (6.1) to characterise the link

between decisions over time . This gives

V 0
t = Et

©
β(1 + rt)V

0
t+1

ª
Since the first order conditions also imply that

ψ0tU
0
ct = Et

©
β(1 + rt)V

0
t+1

ª
and

ψ0tU
0
ht = −Et

©
β(1 + rt)wtV

0
t+1

ª
we can characterize the intertemporal rates of substitution for consumption and
hours of work for interior solutions as

ψ0tU
0
ct = Et

©
β(1 + rt)ψ

0
t+1U

0
ct+1

ª
(6.3)

ψ0tU
0
ht = Et

½
β(1 + rt)

wt

wt+1
ψ0t+1U

0
ht+1

¾
(6.4)

The object of the exercise is to estimate the parameters of ψ [U(ct, ht|z1), z2]
from observations of consumption and labor supply over time. It turns out that
we need to use two of the three conditions (6.2), (6.3) and (6.4). At this point note
that the variables in z1 affect both the within period marginal rate of substitution
and intertemporal allocations. The z2 variables only affect directly intertemporal
allocations because they cancel out of the monotonic transformation. Of course
they do affect within period allocations indirectly and in a full solution the con-
sumption and labor supply functions will depend on all variables affecting tastes,
expectations and the budget.
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6.1.2. A simplification: A model with full participation

Before complicating the matters with non-participation we consider the esti-
mation problem in a simpler model presented by MaCurdy (1981) where every-
body works. The utility specification he used does not allow for corner solutions
and takes the form

Ut = BtC
γ
t −AtH

α 0 < γ < 1, α > 1 (6.5)

where Ht corresponds to hours of work (rather than leisure) and Ct to consump-
tion. The range of parameters ensures positive marginal utility of consumption,
negative marginal utility of hours of work and concavity in both arguments. Ap-
plying exactly the same analysis as above the implied intertemporal Frisch labor
supply becomes

logHt = A∗t + log λ+
1

α− 1 lnwt +
ρ− r

α− 1t (6.6)

where the use of log hours of work presumes that all individuals work and hence
H > 0. In (6.6) λ is the shadow value of the lifetime budget constraint and t

is the age of the individual. Finally A∗t reflects preferences and is defined by
A∗t = − 1

α−1 logAt.

This equation is the Frisch labor supply equation. The important insight is
that under certainty (complete markets - no aggregate shocks) all relevant future
variables, such as wages are summarized by the fixed effect λ. So this equation
has a simple message: Hours of work are higher at the points of the lifecycle when
wages are high ( 1

α−1 > 0). Moreover if the personal discount rate is lower than
the interest rate, hours of work decline over the lifecycle. Finally, hours of work
will vary over the life-cycle with A∗t , which could be a function of demographic
composition or other taste shifter variables.
Specifying A∗t = γ0xt + η1 + ut we obtain an econometric equation of the form

logHt = γ0xt +
1

α− 1 lnwt +
ρ− r

α− 1t+
∙

1

α− 1 log λ+ η1

¸
+ ut (6.7)

where
£

1
α−1 log λ+ η1

¤
is a fixed unobservable individual effect consisting of the

marginal utility of wealth and of a permanent unobserved preference component.
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ut is an idiosyncratic shock to individual preference. For simplicity we take this
as serially uncorrelated.
As it is, this equation presents a problem for estimation to the extent that

the fixed unobservable effect (or the idiosyncratic shock ut) is correlated with
the hourly wage rate wt. Because λ is a function of all wages over the life-cycle
and because wages are highly persistent it is not tenable to assume that the fixed
unobservable is not correlated with wages. The simplest case here is to assume that
all right hand side variables, including wages are strictly exogenous, namely that
E(ut|xs, logws∀s = 1, ..., T ) = 0 in which case the model can be estimated using
within groups: variables are transformed into deviations from their individual
specific time-mean and OLS is applied on

]logHt = γ0x̃t +
1

α− 1
glnwt +

ρ− r

α− 1
et+ ũt (6.8)

where z̃t = zt − z̄ represents the deviation of an individual specific variable from
the time mean for this individual. the first difference operator (i.e. ∆zt = zt −
zt−1). This model is estimable using panel data with a relatively small number
of repeated observations for each of many individuals.27 Here Ordinary Least
Squares on the transformed model is consistent and fully efficient.
This empirical strategy is sensitive to measurement error for the right hand

side variables. Suppose that log wages are measured with additive and serially
uncorrelated (classical) measurement error. In this case the strict exogeneity as-
sumption is violated and 6.7 cannot be estimated by within groups. An alternative
approach in this case would be to take first differences, thus eliminating the fixed
effect and then using instrumental variables to estimate the parameters based on
the transformed equation. The instruments would have to be dated t-2 or earlier
because the error in the first difference equation will have an MA(1) structure.
Thus, under the assumptions made, valid instruments would be hours and wages
lagged at least two periods. However, these instruments will only be valid if they
are able to explain future growth in wages (∆ logwt); hence this rank condition
needs to be tested (see Steiger and Stock (1998), for example).

27FIxed T and large N asymptotics
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6.1.3. The Heckman and MaCurdy Study

The MaCurdy (1981) paper set out the first clear analysis of issues to do with
estimating intertemporal labour supply relationships. However the approach did
not deal with corner solutions, which is particularly relevant for women. The first
attempt to do so in the context of a life-cycle model of labor supply and consump-
tion is the paper by Heckman and MaCurdy (1980). In this model women are
endowed with an explicitly additive utility function for leisure L and consumption
C in period t, of the form:

Ut = At
Lα
t − 1
α

+Bt
Cγ
t − 1
γ

α, γ < 1 (6.9)

Consumers are assumed to maximise life-cycle utility

Vt =
TX
t=1

βtUt

subject to the lifetime budget constraint

TX
t=1

1

(1 + r)t
[wtht − ct] ≥ 0

where ht = L− Lt, L being maximal time available for work and where wt is the
hourly wage rate. Note that now utility depends on leisure and is well defined at
the point where hours are zero since there one obtains maximum leisure.
Optimization is assumed to take place under perfect foresight. Solving for the

first order conditions we obtain the following equation for leisure

= A∗t +
1

α−1 lnwt +
ρ−r
a−1t+ λ∗ when the woman works

lnLt

= lnL otherwise
(6.10)

where
λ∗ =

1

α− 1 lnλ and A∗t = −
1

α− 1 lnAt (6.11)

and where we have approximated ln1+ρ
1+r
≈ ρ − r. As before in (6.11) λ is the

shadow value of the lifetime budget constraint and t is the age of the individual
which again is a fixed effect because of the complete markets assumption.
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Estimation with non-participation To estimate the model, Heckman and
MaCurdy specify Bt = γ0xt+η1+u1t where u1t is normally distributed and where
η1 is a fixed effect reflecting permanent unobserved differences in tastes across
individuals.
Given λ∗, η1 and wages wt this gives rise to a Tobit model, with censoring

whenever the interior solution requires more hours of leisure than are available
(Lt > L̄). There are two main difficulties with this however. First, hourly wage
rates are not observed for non-workers. Second, λ∗ and η1 are unobserved and
cannot be differenced out in a conventional manner since the Tobit model is es-
sentially nonlinear. Finally, a problem addressed only indirectly before (through
the treatment of measurement error) is that of the endogeneity of wages. To solve
these problems and to take into account that wages may be endogenous we may
specify a wage equation of the form

lnwt = z0tβ2 + η2 + u2t

with η2 being an unobserved fixed effect reflecting permanent productivity char-
acteristics of the individual and u2t being normally distributed. Endogeneity may
arise if either the fixed effects in the wage and labor supply equations are corre-
lated or if the idiosyncratic components are correlated (or both). In the former
case (correlated fixed effects) treating the problem of fixed effects will also solve
the endogeneity problem. In this sense we can think of wages as being endogenous
in the case where we dealt with no corner solutions.
To proceed we can use the approach described earlier in the context of the

static labor supply models. The wage equation is substituted into the structural
labor supply equation and the conditions for an interior solution or otherwise is
given in terms of the reduced form, i.e. not conditional on the wage rate. Hence
we get

= γ0xt +
1

α−1z
0
tβ2 +

ρ−r
a−1t+ f + υt when

lnLt υt < lnL − (γ0xt + 1
α−1z

0
tβ2 +

ρ−r
a−1t+ f)

= lnL otherwise

where f = λ∗ + η1 + η2, υ = u1t + u2t. This gives rise to a Tobit model for
the reduced form parameters. However, two important difficulties need to be
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addressed. The first relates to estimating this reduced form. The second to
recovering the structural parameters characterising labour supply.
The reduced form labour supply includes a fixed effect f . In a linear model

and with strict exogeneity the within groups estimator is consistent and efficient.
The model here is nonlinear because of censoring. Heckman and MaCurdy (1980)
treated them as parameters to be estimated. Formally speaking, when the model
is nonlinear, this estimator is not consistent as the number of individuals N grows,
while the number of time periods per individual T remains fixed. This is because
the number of (incidental) parameters grows with the sample size. In practice the
estimator is likely to work well with strictly exogenous regressors for moderate to
large T. Heckman and MaCurdy provide Monte Carlo evidence showing that in
their context the bias involved when using this approach is likely to be minimal
for moderate T . However, this is not a general result and it depends very much
on the model, the data and the number of time periods available. For example
with lagged endogenous variables the biases could be substantial. Such lagged
endogenous variables could appear in time non-separable models and in models
with incomplete insurance markets as we will see subsequently. Thus the complete
markets assumption turns out to be particularly powerful as far as identification
is concerned.
An alternative approach is to use a semi-parametric LAD estimator introduced

by Honore (1992). This estimator, relies on symmetry of the difference of the errors
(uit−uit−1) conditional on the sum of the errors (uit+uit−1) and on the regressors,
which is weaker than the assumption of normality combined with iid errors.
We have described how the reduced form labour supply equation can be esti-

mated. This does not provide the parameters of the structural model because they
are a function of the parameters of the wage equation. The next step is to recover
the structural parameters. The difficulty here is that we first need to identify the
parameters of the wage equation. This is not a simple problem because wages
are observed for workers only, who are endogenously selected. In addition both
the selection mechanism and probably the wage equation depend on fixed effects.
Before we discuss estimation first we need to ensure that the parameters are iden-
tified. A necessary condition is that the wage equation includes variables that are
excluded from the structural labour supply equation. Under normality no further
restrictions are required. However, if one applies a semi-parametric estimation
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framework, that relaxes the normality assumption one also requires variables in-
cluded in the labour supply equation that are excluded from the wage equation.
One approach to completing estimation is to apply the Kyriazidou (1997) esti-
mator to the wage equation. This controls for selection allowing for fixed effects
in both the wage and the participation equations. Once the parameters of the
wage equation have been recovered, one can use minimum distance to back out
the parameters of the labour supply equation, which were estimated as above.
An alternative approach, and one followed by Heckman and MaCurdy is to

use maximum likelihood treating the fixed effects as parameters to be estimated
jointly (as discussed above). We turn to this approach now.

Maximum Likelihood Estimation The first step is to specify the joint
distribution of hours of work and wages, conditional on the observables and the
fixed unobserved effects. This is denoted by

ghw(h,w|z, f, η) = gh(h|x, f, w)gw(w|z, η1) (6.12)

where z are the observed variables in the wage equation, which include all those in
the labor supply equation (x) and more for identification purposes. In the above
gh(h|x, f, w) is the conditional density of hours of work given wages, x, and f and
gw(w|z, η1) is the conditional distribution of wages given z and η1. Thus the model
likelihood is bivariate with the wage equation estimated at the same time.
The likelihood has the general form

L =
Y

workers

gh(h|x, f, w)gw(w|z, η1).Y
non−workers

Z
h<0

Z
w

gh(h|x, f, w)gw(w|z, η1)dwdh (6.13)

The first part of the likelihood relates to workers, where both wages and hours are
jointly observed. The second part of the likelihood refers to non-workers where
all we know is that desired hours are negative. Hence we integrate over h < 0 and
over the entire support of the wage distribution, since for any wage rate there is
a configuration of unobservables that would make the person a non-participant
- being a non-worker conveys no information about wages. This likelihood can
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recover the parameters in the reduced form labor supply equation and in the wage
equation.
As mentioned above, to identify the structural parameters of labor supply and

the wage equation it is necessary to impose exclusion restrictions or some other
form of parametric restrictions. Moreover, note that any variables that are fixed
cannot be used for identification since they will be absorbed by the fixed effect.
Heckman and MaCurdy exclude education/age interactions and aggregate unem-
ployment from the labor supply equations and husband’s labor market behavior
from the wage equation. The former restriction effectively implies that differences
in tastes across education groups vis a vis labor supply do not change with age.
Consequently any change in observed behavior across education groups at differ-
ent ages is attributed to education specific changes is individual productivity and
hence to wages. The business cycle indicator (the unemployment rate) serves to
identify wages for the non-workers through the aggregate price of human capi-
tal. Note however, that given the functional form assumptions the model is then
overidentified.
The Heckman and MaCurdy model presented above offers a way of handling

unobserved heterogeneity and corner solutions and even allows for persistent het-
erogeneity and endogenous wages. These properties have been delivered at a cost.
Preferences between consumption and female hours are explicitly additively sepa-
rable and no uncertainty is allowed for. The explicit additivity implies that, given
consumption data, all parameters could be identified in principle using just within
period allocations. This is worrying since it implies that intertemporal allocations
are tied to the way that resources are allocated within period - an implication
that does not come from economic theory. However, this assumption is testable
since we can compare the estimates obtained from data on within period and data
on intertemporal allocations. Finally, the perfect foresight assumption which is
equivalent to complete markets with no aggregate shocks is also strong given the
available evidence.
However, easy as it may be to criticize such an approach, it turns out that it

is very hard to generalize. In what follows we discuss how the existing literature
has attempted to build on this and what are the successes and shortcomings of
these attempts. We start by describing an estimation strategy for a model of con-
sumption and labor supply with corner solutions but with no explicit treatment of
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unobserved heterogeneity. As we argue below, an explicit treatment of unobserved
heterogeneity places extensive requirements on data and an approach based on the
complete solution of the life-cycle model, rather than on Euler equations.

6.1.4. Estimating the intertemporal substitution elasticity and other
preference parameters under uncertainty

We now consider explicitly estimation in the presence of uninsurable uncer-
tainty. Estimation will be based on two marginal conditions: One defines the
within period allocations and the other the intertemporal allocation. Combining
these two conditions in a suitable way can allow us to identify all parameters while
accounting for corner solutions.
We start by characterizing within period preferences using the indirect utility

function and appealing to two-stage budgeting. The within period indirect utility
function is defined by

ψ [vt(w, y)|zt] = max
h,c

{ψ [Ut (h, c)|zt] |ct = wth+ yt} (6.14)

where the variables zt are shown explicitly to emphasize that intertemporal al-
locations will typically depend on taste shifter variables. As explained earlier in
the chapter, the variable yt reflects net saving or dissaving. Because ct is realized
consumption and wtht are actual earnings this amount (yt) will only equal un-
earned income (e.g. from transfers or income from investments) if there is neither
borrowing nor saving by the individual. Based on Roy’s identity it is possible to
derive the implied within period (or Marshallian) labor supply function, i.e.

h(w, y) =
∂v/∂w

∂v/∂y
(6.15)

This labor supply function is conditional on yt which reflects intertemporal deci-
sions.
The labor supply function originating from (6.15) can be estimated using the

methods described in earlier sections. The estimation of the within period labor
supply function allows us to estimate all the parameters characterizing within
period preferences, i.e. the function vt(w, y) in (6.14) but not the parameters of
the function ψ. The latter affects intertemporal allocations only.
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Thus we now need data on intertemporal allocations to estimate the para-
meters implicit in the monotonic transformation ψ, which characterizes savings
behavior and intertemporal substitution in labor supply.
Consider again the Euler equation in an environment with uninsurable risk.

This equates the marginal utility of consumption today with the expected mar-
ginal utility of consumption tomorrow

ψ0tv
0
yt = Et

©
β(1 + rt)ψ

0
t+1v

0
yt+1

ª
.

The term v0yt =
∂v
∂y
is the marginal utility of money, and ψ0t =

∂ψ[vt(w,y)|zt]
∂vt

reflects
the monotonic transformation of the utility function, which determines the in-
tertemporal substitution. The marginal utility of money v0yt can be estimated at
a first step based on observations relating to within period allocations. We de-
note the estimated quantity by v̂0yt. The next step is to parameterize the function
ψ which can then be estimated using the Euler condition. To write the Euler
condition based on the indirect utility function we can use the envelope theorem
to see that U 0

ct = v0yt where U
0
ct is the marginal utility of consumption which ap-

pears in the Euler condition 6.3.Based on this we can estimate the parameters
characterizing ψ0t using the following equation

ψ0tbv0yt = β(1 + rt)ψ
0
t+1bv0yt+1 + uit+1 + εit (6.16)

where εit represents the estimation error due to the fact we are replacing v0yt with
its estimated value. Under the hypothesis of rational expectations any variable
dated t or earlier will be orthogonal to uit+1. This observation can serve as a basis
for estimation using GMM (see Hansen, 1982 and Hansen and Singleton, 1983).
Asymptotically εit will become irrelevant if the first step estimator is consistent,
but can have serious implications in small samples.
With uninsurable uncertainty and in the presence of aggregate shocks it is

imperative to estimate 6.16 using long enough time series. The innovation to
the marginal utility of wealth uit+1 reflects uninsurable idiosyncratic risk and
aggregate uncertainty. As Altug and Miller (1990 and 1998) have shown, the
moment conditions do not hold in the cross section. In fact, the conditional
expectation E(uit+1|t, zit) = m(zit) where zit represents the vector of instruments.
Consequently with idiosyncratic uninsurable risk and aggregate uncertainty the
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model is not identifiable using methods that rely on fixed T ; we require methods
that rely on large T asymptotics and in practice we need long enough time series
of data that allows the aggregate shocks to average out. The suitable time series
dimension depends on the variance of such shocks, with longer series required the
higher the variance. However, we do not require to observe the same individual
for a large number of time periods; just that the data covers long T.28 Moreover,
aggregate shocks cannot be accounted for using time dummies as emphasized by
Altug and Miller (1990) unless there is no idiosyncratic uncertainty.

Linearising the Euler equation A simpler way to go about estimation
is to loglinearise 6.16.

−∆ ln v̂0iyt+1 + log(1 + rt) = dit +∆ lnψ0t+1 + εit (6.17)

where dit = log
£
Et

©
β(1 + rt)ψ

0
t+1bv0yt+1ª¤−Etlog

£
β(1 + rt)ψ

0
t+1bv0yt+1¤ .In the sim-

plest case where the discounted marginal utility of consumption muit+1 = β(1 +

rt)ψ
0
t+1bv0yt+1 is a log-normal random variable dit will be proportional to its variance

conditional on information in period t, i.e. dit = V art {muit+1}2. It is precisely
this point that gives rise to the identification issue since the conditional variance
will depend on variables relevant for predicting future income or wage realiza-
tions. However, if we are willing to restrict what the conditional variance depends
on (and hence the stochastic process governing wages), this linearization offers a
great simplification and often makes it easier to deal with measurement error in
the underlying variables forming the marginal utility. Under non-normality dit
will also depend on higher order moments of the marginal utility of consumption
muit+1.
Log linearization has been widely used in the empirical analysis of consump-

tion. However, identification in this case, requires more restrictions than those
implied by the theory. Its usage has been controversial (see Carroll, 1997 and Lud-
vigson and Paxson, 2001) precisely because the basic exclusion restrictions used
for identification in 6.16 may no longer be valid in 6.17. Implicitly linearization
imposes restrictions on expectation formation and on the underlying process of
uncertainty. Attanasio and Low (2002) examine these issues using Monte Carlo

28Meghir and Weber (1996) discuss this point in relation to estimating Euler equations.
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analysis in a wide variety of settings and conclude that in practice linearization is
unlikely to bias the results in a serious way.

Accounting for corner solutions with no fixed costs When hours
of work are at a corner solution the Euler condition 6.16 does not hold when
evaluated at market prices. However, we can use the results of Heckman (1974)
and Neary and Roberts (1980) to keep the Euler equation representation evaluated
at shadow prices. Here we assume that there are no fixed costs of work and no
search frictions and consequently that participation decision is fully characterized
by the standard reservation wage condition (Heckman, 1974). In particular non-
workers have a negative desired labor supply at the market wage corresponding to
their skills, while workers have a positive desired labor supply, which is observed.
It is easy to show that the intertemporal first order conditions still hold, so long
as we evaluate the indirect utility function at the shadow (reservation) wage wR

it

defined by
h(wR

it , yit) = 0 (6.18)

Estimating the ‘static’ within period labor supply function as described in earlier
sections allows us to obtain a labor supply model that can then be solved for the
reservation wage as in 6.18. In the next step the consumption Euler equation
can be estimated using observed market wages for workers and shadow wages for
non-workers.

An Example Consider the labor supply model

hit = α(zit) + β lnwit + γ
yit
wit

(6.19)

where zit are preference shifters such as household characteristics. This corre-
sponds to a particular form of the indirect utility function presented in an earlier
section. The term y is defined by y = c− wh, where w is the after tax wage and
c is total household (non-durable) consumption, and hence is endogenous. The
utility index can be computed by using the formula in 2.7. This gives the value
of ν̂t,from which bv0yt can be calculated. For workers the relevant wage will be the
observed wage. For non-workers the relevant wage at which to evaluate within
period utility is the reservation wage which is given by the positive solution for w
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in equation 6.19 when h = 0, for given y. This has to be solved for numerically in
this example. Using the reservation wage, is equivalent to computing the direct
utility function when hours are zero. This calculation is only valid if there are no
fixed costs of work.
In the next step we can specify the part of the utility function that is not re-

vealed by within period choices. This is the monotonic transformation. One simple
possibility would be to use a linear transformation; for example ψ [vt(wit, yit)|zit] =
a(zit)v(cit, hit), which would be interpretable as saying that characteristics zit
affect the discount rate. A more general alternative would be to allow char-
acteristics to also affect the intertemporal substitution elasticity; for example
ψ [vt(wit, y)|zit] = a(zit)

1+ρ(zit)
vit(wit, yit)

1+ρ(zit), for some negative valued function ρ(zit).
The fact that all or some of the characteristics z affect within period allocations
does not imply that they will not also affect risk aversion or the way the future is
discounted.
To obtain an example specification let a(zit) = 1 and ρ(zit)= ρ0+ρ1fsit where

fsit is family size for household i in period t. Using the utility function 2.7 term
v̂0yt = (1 + γ̂)2 wβ̂

β̂+1
which can be evaluated at the estimated parameters. In this

case the Euler equation for consumption over time will take the form

v̂0iytv̂
ρ0+ρ1fsit
it = Et

n
β(1 + rt)v̂

0
iyt+1v̂

ρ0+ρ1fsit
it+1

o
. (6.20)

This can be estimated using non-linear GMM treating the estimated marginal
utility of money v̂0iyt and the within period utility index v̂t as known (see Hansen
(1982) and Hansen and Singleton (1983)). The fact that the expression depends
on estimated parameters does not affect consistency because as the sample size
goes to infinity the parameters estimated on the first stage converge to the true
values. Inference however requires us to correct the standard errors for the fact
that we are relying on pre-estimated parameters.
The linearized version of the Euler equation here takes the form

−∆ log v̂0iyt+1 − log(1 + rt) = dit + log β + ρo∆ log v̂it+1 + ρ01∆ log fsitv̂it+1 + εit

which, given the assumptions implied by the log-linearisation can be estimated by
linear GMM.
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Testing for liquidity Constraints One key issue for the interpretation
of intertemporal behaviour is the extent to which individuals are liquidity con-
strained which is defined as being able to borrow and save freely at a constant
interest rate. It has been observed from very early on that consumption seems
to track income, which is a fact often cited as evidence for liquidity constraints.
However, this phenomenon can be explained within the model we have presented.
First, Heckman (1974) has argued that such income tracking can be induced

by non-separabilty of consumption and labor supply: If consumption and leisure
are strong enough substitutes, higher amounts of consumption will be related to
higher levels of labor supply and hence higher income.
Second, family size and demographics, which affect consumption and labor

supply allocations, evolve very much alongside income over the life-cycle, with
family size growing when income grows most and declining when income declines
(probably endogenously see Blundell, Browning and Meghir, 1994). By allowing
for this in our model we have effectively accounted for another reason for tracking.
Finally, the evolution of the conditional variance of the marginal utility dit

also leads to consumption growth. This variance is likely to decline over the
lifecycle as uncertainty is revealed. This is particularly true if shocks to wages
are permanent or highly persistent. Thus a high dit when young and a lower dit
when old will imply rapid consumption growth early on declining later, much like
the evolution of income over the lifecycle (Carroll and Samwick (1998), Attanasio,
Banks, Meghir and Weber, 1999)
The empirical challenge is to find sources of predictable income growth not

already included in the model to account for preferences (e.g. non-separability)
and to test the hypothesis that they do not affect consumption growth. Browning
and Collado (2001) use the powerful idea of predictable changes in income due
to pre-announced and regular seasonal bonuses in Spain and establish that con-
sumption growth is not sensitive to these totally predictable changes in income.
However we are not always as fortunate as that and we need to use other perhaps
less compelling sources of predictable growth. One possibility is to include labor
income growth. This is a useful source of variation for two reasons: Conditional
on the wage rate labor income would have variability because hours of work may
change in a predictable way for other exogenous reasons. Second hours should
not enter the Euler equation once we also include wages. Nevertheless it is still
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an issue of what the exogenous source of hours would be that has not to do with
preferences or changes in wages. Another possibility is to use predictable changes
in other income. The problem is that income from investments etc. are likely to
be positive only for the wealthier individuals who are unlikely to want to borrow
anyway.
Tests of liquidity constraints find no evidence of their importance once non-

separabilities and demographics are allowed for. This should not be interpreted
as saying that anyone can borrow any amount they wish at a fixed rate; after all
the lack of complete markets is now generally accepted with moral hazard as its
most probable source. However it may well mean that the lack of perfect credit
markets is not important because individuals do not wish to borrow much against
future income growth anyway when they would most need it (i.e. when young)
because of uncertainty.

6.2. Further Issues in the Specification and Estimation of Dynamic
Models of labor Supply and Consumption

The model we have presented up to now in the context of intertemporal
optimisation lacks a number of potentially important features. These include un-
observed preference heterogeneity, fixed costs of work and non-separability over
time. We now discuss these issues in turn and we complete our chapter by pre-
senting the estimation of a model containing potentially all these features.

6.2.1. Unobserved heterogeneity

Allowing for unobserved preference heterogeneity seems like a natural step
in constructing realistic models. Thus for example, both MaCurdy (1981) and
Heckman and MaCurdy (1980) recognise this and include fixed effects in their
models. They recognise that preference heterogeneity could be persistent and
may well be correlated with wages. The question is how to account for unobserved
heterogeneity in a model without complete markets. The key difficulty stems from
the fact that it is not possible to specify a model where both the Euler equation and
the within period condition have additive errors without restricting the structure
of intertemporal preferences. Inevitably a model with unrestricted intertemporal
preferences and unobserved heterogeneity will be non-separable in unobservables.
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Standard orthogonality conditions do not suffice for identification in this case.
In the HM study the errors are effectively non-separable because of the corner
solutions. However, the complete markets assumption meant that a fixed effects
Tobit estimator worked well even with moderate T.
There is a developing literature on the identification and estimation of mod-

els with nonseparable errors and endogenous regressors (e.g. Florens, Heckman,
Meghir and Vytlacil, 2006, Imbens and Newey 2003, Blundell and Powell, 2003),
which provide alternative identifying conditions in this case. Even if one is to
impose these stronger assumptions there remains the problem of finding suitable
instruments, which are an ingredient of all such methods. The problem is particu-
larly acute if unobserved heterogeneity is serially correlated , since the instruments
are likely to be predetermined decisions. These difficulties will lead us to an esti-
mation method based on a complete solution of the dynamic programming model.

6.2.2. Estimating the intertemporal substitution model with fixed costs
of work

Fixed costs of work or other non-convexities in the budget constraint pose a
very serious challenge to the empirical analysis, even within a static framework. In
this context the labor supply function is discontinuous at low hourly wage rates.
Moreover as Cogan (1981) pointed out the standard reservation wage which sets
labor supply to zero does not generate a participation condition. Generally the
participation and hours margins are explained by different models, which could
be the result of the existence of fixed costs of work or of search frictions. The
separation between the intensive and extensive margins (hours of work) requires
extra identifying assumptions.
Within an intertemporal context fixed costs pose additional difficulties for

modelling the participation decision: This involves a comparison between the
lifecycle utility of work and non-work, which requires solving the life-cycle model
conditional on the person working and conditional on the person not working.
Such a solution allows one to evaluate the current and future welfare consequences
of the two decisions.
In the presence of fixed costs we can follow two empirical strategies. The first

is a partial one and seeks to estimate the subset of parameters that are identifiable
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if one keeps labor supply behaviour fixed. As such it cannot be informative for
policy questions whose answer relies on the quantification of the complete labor
supply and consumption response. However, it offers a way of testing some aspects
of the life-cycle model in a relatively general setting and may be a first step in a
stepwise approach for identifying the complete set of preferences.
The second approach specifies a complete structural model of labor supply and

participation and uses methods from dynamic discrete choice to estimate labor
supply responses. Before moving to a discussion of the full solution approach we
briefly outline the conditional approach.

6.2.3. The Conditional Euler Equation for Consumption

Consider the definition of the indirect utility function within period, based
on a vector of goods qt and prices pt conditional on labor supply behavior ht

υt = ψ [v(ct|pt, ht), ht] = maxq {ψ [u (qt|ht) , ht] |p0tqt= ct} (6.21)

We can then base the analysis of the intertemporal allocations on the utility index
υt = ψ [v(ct|pt, ht), ht]. As in the case of the joint labor supply and consumption
model presented earlier, all parameters implicit in v(ct|pt, ht) can be estimated us-
ing a conditional (on ht) within period demand system (see Browning and Meghir,
1991). This will on ht if and only if the goods q are nonseparable from ht. Under
weak separability ht will not affect demands directly. However, the intertemporal
allocations can still depend on ht without this having any implications for the
structure of the within period marginal rate of substitution functions between
goods. This point has been noted now in several papers, all of which have demon-
strated its empirical importance.29

The estimation approach is broadly similar to the one described above so we
do not go over it again in detail. Once the within period demand system char-
acterizing the conditional choice of qt has been estimated, we can construct the
utility index v(ct|pt, ht). The Euler equation for ct can then be used to estimate
the parameters of the function ψ up to an explicitly additive function of ht. In

29Attanasio and Weber (1993, 1996) and Blundell, Browning and Meghir (1994), Meghir and
Weber (1996) all strongly reject the hypothesis that intertemporal allocations do not depend
directly on observed labour supply.
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general, the Euler equation as well as the demand system will be a function of h.
This can include both hours of work as a continuous variable and indicators of
whether the person is working or not, or other functions of h that are considered
relevant. The crucial point to recognize however, is that labor supply is endoge-
nous both for within period and for intertemporal allocations. Thus estimation
requires suitable instruments. One possibility is to use lags in labor supply for
this purpose. In the absence of unobserved heterogeneity the approach is valid.
However, if persistent preference shocks have been ignored this approach could
lead to inconsistent parameter estimates.
The conditional Euler equation for consumption provides a very powerful ve-

hicle for testing the lifecycle model in relation to consumption behavior and for
estimating some of the parameters in a way that is robust to the specific model of
labour supply. In principle, hours of work can be determined in a number of ways,
which we do not have to specify, subject to the proviso that we can specify instru-
ments that can “predict” labour supply. However, from a policy perspective, the
conditional Euler equation for consumption is of limited interest because it does
not provide the full set of parameters required to answer even a simple partial
equilibrium question. Thus a complete analysis of intertemporal labor supply and
consumption needs to address directly estimation of a model for the determination
of hours of work.

6.2.4. Intertemporal non-separability

A final issue is whether preferences should be taken as separable over time.
It is well documented that labor supply behaviour is very persistent which may
be interpreted as being due to non-separability, although the source of persistence
could well be unobserved heterogeneity. Another source of non-separability can
be the structure of the intertemporal budget constraint since current behaviour
may affect eligibility for welfare programs. Finally, if wages depend on past work
experience, current work affects future earning prospects, which also leads to
intertemporal non-separability. These issues are considered in the next section.
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6.3. Dynamic Discrete ChoiceModels and Intertemporal Non-Separability

To address many of the issues presented above in a coherent and unified way
we need to consider a complete model of lifecycle labor supply and consumption.
This can be very complex and demanding on data. Thus in our presentation we
start with a simplified model along these lines which ignores the savings decision
but offers a way forward on the issue of fixed costs and non-separability. We
subsequently build on this to present a more complete model that includes savings.
One of the first attempts to model the dynamics of participation decisions

when choices are discrete is given by Eckstein and Wolpin (1989). Their model
concerns the labor supply of women. Husband’s income is taken as exogenous.
The within period utility function, which is non-separable in consumption ct and
participation pt takes the form

Ut = ct + a1pt + a2ctpt + a3ptKt−1 + ΣJ
j=1a4jNtjpt + a5ptS (6.22)

where Kt−1 is the number of periods worked in the past; depending on the sign
of a3 this may turn out to reinforce work habits or not. The law of motion of
Kt is simply Kt = Kt−1 + pt. Finally, S represents years of schooling and Ntj

represents the number of children in age group j. This utility function in itself
gives rise to intertemporal dependencies since current participation affects future
preferences and a forward looking individual will take this into account when
making participation decisions. Further dynamics are induced by the budget
constraint. This takes the form

ywt pt + yht = ct + ΣJ
j=1κjNtjpt + bpt (6.23)

where κj are costs relating to children in the jth age group and b is a fixed cost
of work and yht is husbands income, which is taken to be an exogenous stochastic
process, affecting female utility only through total resources. The female wage
ywt , depends on past work decisions

lnywt = β1 + β2Kt−1 + β3K
2
t−1 + β4S + εt (6.24)

where εt is an independently and identically distributed normal shock to wages.
Hence the implied dynamics in this model are quite intricate: Past work deci-
sions produce human capital and enhance earnings potential. This should lead to
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increases in participation. On the other hand, past work decisions change prefer-
ences, either dampening down or reinforcing the effects due to enhanced human
capital.
At this stage the only source of stochastic variation is the iid shock to wages

εt.This formulation has the undesirable feature that the minimum observed wage
is a consistent estimator for the reservation wage; this is because preferences are
homogeneous in the population. To overcome this problem Eckstein and Wolpin
allow observed wages to be measured with error, which turns out to be particularly
important empirically. Thus observed wages satisfy

lnyw∗t = lnywt + ut (6.25)

Eckstein and Wolpin assume that ut is normally distributed.
In such dynamic discrete choice models estimation is complicated by the fact

that participation in this period confers benefit/costs in future period. Thus
the future impact of current choices needs to be computed explicitly in order to
compute the probability of participation. Eckstein and Wolpin follow a maximum
likelihood approach where the parameters of the participation decision, of wages
and of the measurement error process are estimated simultaneously.
Their estimation approach can be described as follows: An individual partic-

ipates if the utility from doing so is higher than the utility from not working.
To illustrate the approach we simplify further their model by assuming additive
separability between consumption and participation. In this case the husband’s
income will not affect female labor supply. For notational simplicity we also
drop the schooling (S) and household composition terms ( Ntj). In this simplified
framework, utility when participating can be written as

V
(1)
t = ywt + yht − b+ a1 + a3Kt−1 + δEVt+1(Kt−1 + 1)

= exp
¡
β1 + β2Kt−1 + β3K

2
t−1 + β4S + εt

¢
+ yht − b+ a1 + a3Kt−1 + δEVt+1(Kt−1 + 1)

(6.26)

while the utility from nonparticipation is given by

V
(0)
t = yht + δEVt+1(Kt−1) (6.27)
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where δ is the personal discount factor. Note that when the woman participates in
this period, human capital increases by one and does not increase otherwise. This
is what gives rise to the difference in the future values associated with the current
actions. In the expressions above the expectation is taken over the uncertain
realizations of εt (and of the husband’s income). This expectation is conditional
on information known in period t. However, since the shock is iid conditional and
unconditional expectations coincide.
A participation rule can be derived now from these two expressions written

in terms of thresholds for the unobserved shock εt. Workers are individuals with
wage shocks such that30

εt > ln [b− a1 − a3Kt−1 + δ (EVt+1(Kt−1)−EVt+1(Kt−1 + 1))]

−(β1 + β2Kt−1 + β3K
2
t−1 + β4S)

or
εt > ε∗t (Kt−1)

(6.28)

Given a distributional assumption on εt this leads to a probability of participation.
Note however, that the expression in 6.28 depends on the future expected gain
from working. Hence to estimate the model this gain needs to be computed. This
is achieved by backwards induction.
For a given set of parameters of the utility function and the distribution of the

unobservable εt the value of participation and non participation is constructed in a
terminal period, given all possible values of the state variables (in this caseK). For

each K we then compute EVT (K) = E
h
max(V

(1)
T , V

(0)
T )

i
where the expectation

is over the realizations εT . Computing the value in period T is very simple since
the problem is essentially static then.
The only way by which past decisions affect the future is through the state

variable K. Hence the future gain from working this period when the current
experience stock is K is simply EVT (K + 1)− EVT (K). Whether this is positive
or negative will depend on the effect of an extra unit of human capital on wages
and on preferences. Given the terminal value function we can now compute the

30In our simplified model the husbands income plays no role in the wife’s decision. This is not
a feature of the Eckstein and Wolpin model but a result of our simplified exposition in which
we have assumed additive separability.
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values in period T−1 for all possibleK accumulated by period T−1 and so on until
we reach period t. This computation is a simple recursion. The procedure requires
one to specify a terminal period (age) T. It also require us to be specific about
what happens beyond that period. In models that require backwards induction
it is often necessary to parameterize separately a terminal value function. In
Eckstein and Wolpin the value beyond the last decision period T is assumed to
be zero.
Given a way to compute EVt+1(Kt−1)−EVt+1(Kt−1+1) we can now easily con-

struct the likelihood function. For non-workers this is simply Pr(εt < ε∗t (Kt−1)) =

Φ(ε∗t (Kt−1)) where Φ is the standard normal distribution function. For workers
the contribution to the likelihood function is the joint density of wages (driven
by the sum of the shock εt and the measurement error ut) and the probability
that εt > ε∗t (Kt−1). Hence estimation proceeds as follows: For an initial set of
parameters the future gains from work are computed. Then the observed event
is computed and the likelihood function is constructed for each observation. A
Newton type algorithm can then be used to update the parameters. The value
functions need to be recomputed at each iteration when updated parameters are
available - this is what makes dynamic discrete choice computationally burden-
some.
Estimation of this model requires observations on Kt−1 and the choice pt as

well as wages. In general retrospective information on periods worked can be
used, although entire work histories constructed over time as event unfold would
reduce the chance of measurement error. Administrative data has now become
available which improves the data situation substantially (see Adda, Dustmann,
Meghir and Robin, 2006).
The dynamic discrete choice model described above is a coherent and power-

ful way of modelling the dynamics of participation and the evolution in wages.
However, it does not allow for unobserved heterogeneity and thus all dependence
on the past is in effect assumed to be pure state dependence.
The model by Eckstein and Wolpin is a prototype on which other researchers

have built, drawing also from the experience gained in the analysis of discrete
choice in other fields or in labor supply (Rust, 1987 Pakes 1986, Hotz and Miller
1988, Berkovec and Stern 1991). One of the most important subsequent contri-
butions in the field of labor supply is the paper by Rust and Phellan (1997). The

109



crucial aspect of this paper is that it models explicitly the relationship between
work and future social security entitlements, thus building a model that can be
used to evaluate the impact of policy reforms. An important feature, which com-
plicates the model and makes it much harder to implement is that the individual’s
choice depends on a large number of state variables that evolve stochastically. In
the Eckstein and Wolpin prototypical model there was basically only one state
variable: the number of periods worked in the past. Here the state space includes
health status, own earnings, spouse’s earnings and social security income. Some
of these variables are affected by past decisions. Hence the intertemporal non-
separabilities in this model are primarily induced by the structure of the budget
set: Current work decisions affect both future earnings and future social security
receipts.
The principle of estimating such a model does not differ fundamentally from

that of estimating the Eckstein and Wolpin model: The stochastic process for
the exogenous state variables is estimated from the data. Then, following the
specification of a distribution for the unobservables, the probability of observed
choices is constructed, which depends on the future and current utility gains from
this choice. As before, for each set of parameter values and at each value of the
state variables the model has to be solved and the optimal choice determined.
The probabilities at each data point are combined in the usual way to form the
sample likelihood function. However, the problem is more complicated because
of the many sources of uncertainty, originating from the large number of stochas-
tically evolving state variables. These components are critical additions because
they recognize explicitly that there are events such as the possibility of death or
taste shifter variables such as health that affect behavior but are fundamentally
uncertain. Such uncertainty is very likely to affect labor supply and retirement
behavior of individuals.

6.4. Estimation with Savings, Participation and Unobserved Hetero-
geneity

We conclude our chapter by a brief discussion of estimation of dynamic models
with savings in the absence of complete markets, which bring together the entire
set of issues we have identified as challenges in estimating labor supply models
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and takes us right against the research frontier in this field.

6.4.1. Estimation with Complete Markets

Altug and Miller (1998) specify a model of consumption and labour supply,
where preferences are non-separable over time and where wages depend on past
labour supply (experience). In a departure from the earlier literature, savings are
explicitly taken into account as are aggregate shocks. Moreover, the estimation
methods proposed are relatively simple since they exploit a modified version of the
conditional choice probability estimator developed in Hotz and Miller (1993). The
key assumption that allows them to estimate such a complex model is that markets
are complete. They also assume that preferences for leisure and consumption are
additive. Finally the problem is simplified further by assuming that preference
shocks are independently and identically distributed over time (and individuals)
and there is no source of persistent heterogeneity in preferences.
The complete markets assumption allows them to express consumption allo-

cations as a function of a fixed effect and an aggregate time effect. This solves
at one go the problem of dealing with aggregate shocks when the time period
is short (Chamberlain, 1984) and the problem of having to simulate alternative
consumption paths explicitly when solving the dynamic programming problem.
In Altug and Miller the complete markets assumption can be viewed as an

approximation that allows them to estimate a more general economic model than
the ones considered earlier in the literature. Indeed their model is particularly rich,
because it allows for endogenous human capital accumulation, for non-separable
preferences as well as savings. However, the complete markets assumption is
resoundingly rejected whenever it is tested (Cochrane, 1991 and Attanasio and
Davis, 1996). It is not known how much bias the assumption would introduce
in the parameter estimates. Nevertheless, the real empirical challenge is to relax
both the complete markets assumption and relax the structure of unobserved
heterogeneity. In the next section we review the issues surrounding this challenge.
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6.4.2. Estimation with Uninsurable idiosyncratic risk

We consider an economy where some idiosyncratic risk remains uninsurable.
However we assume that perfect credit markets are available.31 Consider a utility
function depending on hours of work hit, on participation pit (to reflect fixed costs)
and on consumption cit.

Uit = U1(cit, hit, pit, fi|zit)+U2(hit, fi|zit)+γ(zit)pit+pitν
(1)
it +(1−pit)ν

(2)
it (6.29)

where zitaretaste shifter variables and where fi, ν
(1)
it and ν

(2)
it are heterogeneity

terms, the first being time invariant. Assets accumulate according to the difference
equation

Ait+1 = (1 + rt)(Ait + withit − cit)

The terminal condition for assets is

AiT = 0

where T is the last period of the planning horizon. We do not discuss retirement
explicitly. However, early retirement can be induced by the availability of pensions
later in life, the accumulation of private assets, by aspects of the welfare system
such as easily available disability insurance and/or by a decline in wages at an
older age.
We assume wages take the form

lnwit = det + κi + ζed
0
xit + eit

where det is the log price of human capital for education group e, xit denotes
observable characteristics, some of which may be common with xit, κi is a fixed
effect and eit is an iid shock with a known distribution, say normal.32

Suppose the function U1 in 6.29 is non-additive in participation p,hours h

and consumption c with no components that are additive in p or h. In this

31Some may view this as a contradiction. However, given uncertainty, most individuals will
typically not want much uncolateralised borrowing, making the modelling of LCs probably
redundant for all practical purposes. This may be why many tests for Liquidty Constraints fail
to reject the null of no constraints.
32Richer stochastic structures are in principle possible, but they do increase the state space

substantially.
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case it is possible to estimate U1 and U2 based on the conditional Euler equation
for consumption and on the within period labour supply decision as discussed
earlier, subject to being able to deal with unobserved heterogeneity. However, the
parameter γ cannot be identified in this way. This missing component will be
key to simulating counterfactual employment, hours and consumption paths for
individuals. Despite the relative simplicity of preferences and the wage function,
both of which exclude intertemporal dependencies, the estimation of all relevant
parameters requires the full solution of the dynamic optimisation problem: the
probability of working is a function of the utility gain from doing so. To compute
this utility gain one must know the consumption in the counterfactual state. With
incomplete markets and idiosyncratic shocks this is not as straightforward as in
the Altug and Miller case. We outline a possible approach.
We start by simplifying the model and assume a constant interest rate rt =

r. Next specify the conditional distribution governing the evolution of all other
state variables, i.e. gs(Sit|Sit−1, ..., St−p), where S includes all stochastically time
varying in x and ztaken to be exogenous. In general gs can be estimated separately
and we can condition on it during estimation of the rest of the model.
In general heterogeneity in the wage rate κi will be correlated with the hetero-

geneity in preferences fi. This implies that wages are endogenous for both labor
supply and consumption and this reflects the idea that unobserved productivity
and the tastes for work are related. A simplifying assumption could be made
reducing the dimension of heterogeneity, i.e. fi ∝ κi.

In this model assets are the only endogenous state variable, which in princi-
ple should include all sources of household wealth, including housing and pension
wealth. This causes a very serious measurement problem. Leaving this aside,
given suitable data the model is solved numerically to obtain the value of con-
sumption conditional on the person’s labour market state. Denote the optimal
solutions as follows; workers : c(1)it = c

(1)
t (wit, Ait|Sit, fi, pit = 1), non-workers c(0)it =

c
(0)
t (Ait|Sit, fi, pit = 0) and h

(1)
it = ht(wit, Ait|Sit, fi, pit = 1). In general there will

be no closed form solutions to these functions and they will need to be computed
numerically during estimation. To compute these policy functions we need to solve
for the future optimal policies. One approach, for this finite horizon problem is
to use backwards induction. Starting from some terminal period, the optimal
policies are evaluated for all possible values of the state variables backwards up
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until the current period. At his point we have all the ingredients to evaluate th
probability of work, including c(1) and c(0) and the future values conditional on
current actions1 (EV (1)

it+1) and not working (EV
(0)
it+1).The current value of working

and not working is then given by

V
(1)
it = U(c

(1)
it , h

(1)
it , pit = 1, fi) + ν

(1)
it + βEtV

(1)
it+1

V
(0)
it = U(c

(0)
it , hit = 0, pit = 0, fi) + ν

(0)
it + βEtV

(0)
it+1

which now allows us to specify the probability of working as

Pr(pit = 1|Ait, Sit, fi) = Pr(ν
(1)
it − ν

(0)
it > U

(0)
it − U

(1)
it + β

h
EtV

(0)
it+1 −EtV

(1)
it+1

i
The consumption and labour supply as derived above are deterministic given the
fixed effect fi. The reason for this is that the time varying heterogeneity terms
v(1) and v(0) do not affect the marginal utility of hours (given participation) or
consumption. One simple way to enrich the stochastic specification is to allow
for measurement error in consumption and hours. This will induce a density of
observed hoursmh among workers and observed consumptionm

(1)
c for workers and

m
(0)
c for nonworkers.Thus the likelihood conditional on the heterogeneity term is

L =
QN

i=1

QTi
t=1{

h
m
(1)
h m

(1)
c g (wit|κi, Sit)Pr(pit = 1|wit, Ait, Sit, fi)

ipit
hR h

m
(0)
c g (wit|fi, Sit) (1− Pr(pit = 1|wit, Ait, Sit, fi))

i
dwit

i1−pit
}

QN
i=1

QTi
t=1 Lit(fi)

where g(·) is the density of wages, N is the number of individuals and Ti is the
number of time periods over which individual i is observed and Lit(fi) is the
likelihood contribution for individual i. The stochastic dependence between the
various elements in the likelihood is driven by the unobserved component fi, which
needs to be integrated out. .
Allowing for persistent unobserved heterogeneity is complicated by the fact

that at any point in time fi will be correlated with: these are the outcome of
past decisions, themselves a function of fi.Thus in a panel of individual data the
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initial value of assets cannot be taken as exogenous in general. To solve this
problem we need to specify a model for the initial value (Ai0), conditional on a
set of variables assumed themselves to be exogenous. Denote the distribution of
initial assets by gA(Ai0|ζ i, zit) where zit are a set of instruments explaining initial
assets, which are excludable from the participation probability. Finding such
instruments is not straightforward. One possibility could be to use random shocks
that affected wealth at some point, but did not change preferences, such as, for
example, parental health. The unobserved variables ζi and fi may be correlated,
which is the source of endogeneity of initial assets. If these are exogenous, fi and
ζi would be independent of each other.

33

Given a model for initial assets and using a discrete mixture as an approxi-
mation to the distribution of the pair (fi, ζi) (see Heckman and Singer, 1983) the
likelihood function now becomes

L =
NY
i=1

KX
k=1

SX
s=1

(
prksgA(Ai0|ζs, zit)

TiY
t=1

Lit(fk)

)

where K and S are the number of points of support for the distribution of fi and ζ i
respectively and prks is the probability mass at a point of the (fi, ζi) distribution.
The computational burden in these models arises from having to solve the

model at each iteration and each individual type (defined by the observable and
unobservable characteristics) for all values of the state variables. If these are
continuous (such as assets) they need to be discretised.
Macroeconomic shocks
The model allows for macroeconomic shocks through wages. In its simplest

form there is just one type of human capital and the time effect on the wage reflects
its value relative to the consumption good. In a richer setting there are different
types of human capital with relative prices that vary. To allow for macro-shocks in
the model we require a model that predicts forward prices as a function of current
observables. In principle, this process will have to be estimated simultaneously
with the model, because of the changes in labour force composition over time,
which the model accounts for.
33See Ham and LaLonde (1996) and Meghir and Whitehouse (1997), for applications in dy-

namic transition models.
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6.4.3. Why allow for savings

Allowing for savings is complicated both computationally and empirically. Allow-
ing for a linear utility in consumption would eliminate the complications. So why
should we get into all this trouble? The answer lies in the fact that individuals
are risk averse and risk in not fully insurable. Modelling savings in this context
is important for understanding a number of issues, including self-insurance for
events such unemployment (Low 1999) and more importantly pensions and re-
tirement. For example, to understand the policy impact of changes in pension
arrangements we need to understand how such policies interact with savings. The
extent to which public policies crowd out private savings can only be studied in a
model that accounts for both. Similar issues will arise when studying the impact
of policies such as taxes and tax credits. The complete labour supply effect can-
not be understood if we do not know how savings behaviour will be affected. On
the other hand, there are many questions relating to whether our fully rational
forward looking model is a good enough representation of reality. Ignoring the
issue is, however, not the way forward.

7. Summary and Conclusions

The study of labour supply is valuable from a number of perspectives. The
analysis of the impact of taxes and benefits is perhaps the best established mo-
tivation. Within this field we are concerned with the impact of taxes on effort
as well as the role of taxes and benefits in affecting education decisions; in this
latter case labour supply is seen as an alternative to school or training for younger
individuals. From a more dynamic perspective, focus recently has also shifted to
labour supply as a way of responding to uncertainty and mitigating the amount of
saving as well a for understanding the evolution of consumption over the life-cycle:
without allowing for changes in labour supply, it is very difficult to rationalize the
observed behaviour of consumption. Finally, the relationship of consumption and
labour supply is critical for understanding issues to do with optimal taxes and
the design of benefits - in work benefits in particular. For all the above reason, it
is clearly important to understand the way labour supply is determined and how
this relates to intertemporal considerations, such as savings
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This chapter outlines a number of approaches to the study of labour supply
beginning with the original static models and ending with dynamic ones that allow
for savings and possibly intertemporal non-separabilities. Along the way we have
discussed incorporating taxes and allowing for non-convex budget sets and the
importance of unobserved heterogeneity. Allowing for the latter has proved par-
ticularly important empirically for estimating reliable models that are capable of
fitting the data and accounting for the large persistence in labour supply patterns.
Empirically labour supply analysis poses significant challenges not only because
of the non-convexities but also because of the endogeneity of the main variables
whose effect we are attempting to measure. High effort people, are likely to have
invested more in human capital and thus have higher wages. They also accumu-
late more wealth making asset income potentially endogenous as well. Adding
dynamics and allowing for non-convexities in the budget sets compounds the dif-
ficulties. We have attempted to provide a flavour of these difficulties and point to
solutions. However, it is clear that there is more to be done. One relatively new
and important area of research which we did not touch upon is modelling the en-
tire career, starting with education choice and continuing with labour supply over
the life-cycle. This is likely to be of key importance for understanding the longer
term impact of public policy: programmes, such as tax credits, that encourage
labour supply may well discourage education. Trading off these two margins of
adjustment is important and requires reliable models for both. Thus consider-
ing the dynamics of labour supply and developing reliable modeling methods will
continue to be of key importance for policy purposes.
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8. Appendix

This appendix reviews general formulations for likelihood functions applicable to
econometric models involving any combination of five types of endogenous vari-
ables: (1) discrete, (2) continuous, (3) censored, (4) truncated and (5) continu-
ous/discrete. The subsequent discussion opens with an overview of the statistical
framework considered here. It next considers increasingly complex variants of
this framework, starting with models incorporating just discrete variables, adding
in continuous variables, and then including endogenous variables of a combined
continuous-discrete character. The analysis proceeds to cover specifications ap-
propriate when one does not observe all states of the world but instead only knows
whether various combination of states has occurred. The concluding subsection
presents alternative representations of likelihood functions commonly found in the
literature comparable to the specifications presented here, as well as presenting
simple extensions of specifications that allow for dependence on exogenous vari-
ables.
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8.1. Overview of Statistical Framework

The basic idea at the foundation of econometric models characterizing distri-
butions of discrete-continuous variables relies on the notion that all endogenous
quantities depend on the values of an underlying set of continuously-distributed
random variables. Specify these underlying variables by the vector U , assumed to
include r linearly-independent components. This rx1 vector possesses the joint
density function:

ϕ(U) for U ∈ Ω (A.1)

where the set Ω designates the sample space or domain of the random variables
U .
In this model, m states of the world can occur. The discrete random variable

δi signifies whether state i happens, with δi = 1 indicating realization of state
i and δi = 0 implying that some state other than i occurred. The value of δi
depends on where U falls in its sample space; specifically,

δi =

½
1
0

if U ∈ Ωi

otherwise
(A.2)

where the set Ωi represents a nontrivial subset of the entire sample space Ω.
Without loss of generality, assume that the sets Ωi for i = 1, ...,m are mutually

exclusive and exhaustive, meaning
mS
i=1

Ωi = Ω and the sets Ωi ∩ Ωj = ∅ for i 6= j

(i.e., the sets Ωi and Ωj are disjoint).
In association with state i, there exists ni continuously distributed random

variables designated Yji, j = 1, ..., ni. The following equations determine the
values of these continuous variables:

Yji = gji(U) . (A.3)

Stacking these individual random variables into a vector yields

Yi =

⎛⎜⎝ Y1i
...

Ynii

⎞⎟⎠ =

⎛⎜⎝ g1i
...

gnii

⎞⎟⎠ = gi . (A.4)
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To avoid introduction of redundant or ill-defined Yji’s, assume there exists an
inverse of gi such that

U(i) = g−1i (Yi, Ui) (A.5)

for some subvector U(i) comprised of any ni components of U .34 The subvector
Ui includes those elements of U not included in U(i). Designate Φi as the domain
of (Yi, Ui) and Θi as the domain of Yi .
Another interesting class of random variables consists of quantities that take a

fixed single value in some states and a continuous set of values in others. Denote
these discrete/continuous variables as Zji, with the index i signalling the state
realized and j = 1, ..., ki signifying the particular Z realized in this state. The
value of Zji follows a rule of the form:

Zji =

½
Yji
Z∗ji

for j ∈ Kci

for j ∈ Kdi
(A.6)

where the set Kci indexes those Zji taking the form of a continuous variable in
state i, and the set Kdi identifies those Zji equaling a constant value Z∗ji in state
i. Define Zi as the vector containing the Zji j = 1, ..., ki as elements analogous
to Yi specified in (A.4).
Finally, form all the unique variables appearing in any of the Yi’s into the

vector Y , assumed to be of dimension nx1, and all the variables making up the
Zi’s into the vector Z, assumed to be of dimension kx1. For any event δi = 1, Y

consists of two sets of components: the vector Yi incorporating all the continuous
random variables registering in state i, and Y(i) made up of all other continuous
variables unobserved in this state but seen in some other state j 6= i. Similarly,
Z consists of the vector Zi and Z(i) defined analogously. In some states i, all of
the elements of Y and Z may be observed, and in others none may be.
The subsequent discussion characterizes formulations of conditional and un-

conditional likelihood functions associated with Y , Z and combinations of the δi’s.
34“Assuming existence of the inverse of gi in () is not as restrictive as one might first surmise.

If an inverse does not exist on set Φi , then one can replace Φi with a further segment of this
set inverses defined on each of these smaller sets. The subsequent analysis can then be carried
out for this expanded decomposition of Φ.”

131



As briefly noted at the end of this appendix, one can readily introduce the pres-
ence of exogenous variables both in specifying the distribution of U and in defining
the regions of definition of δi. An exogenous variable in this analysis must be
observed in all states; otherwise, this variable must be include as a component of
Y or Z.

8.2. Discrete Variables: All and Combinations of States

Initially consider empirical frameworks in which one observes only discrete
variables whose outcomes register the realization ofm distinct regimes determined
by the relative values of U .
A common formulation specifies that a researcher sees exactly which state m

occurs, implying that one observes all individual δi, i = 1, ...,m. From (A.2) we
see that the probability that δi = 1 equals:

P (δi = 1) = P (U ∈ Ωi) (A.7)

=

Z
· · ·
Z
Ωi

ϕ (U) dU

≡
Z
Ωi

ϕ (U) dU .

The notation
R
· · ·
R
Ωi
denotes integration over the set Ωi, which the third line

of this equation expresses in the shorthand notation
R
Ωi
. The joint distribution

of the δi’s takes the form:

P (δ1, ..., δm) =
mY

i =1

[P (δi = 1)]
δi (A.8)

=
Y
i∈M

[P (δi = 1)]
δi

In the second line of this equation, the notation M = {i : i = 1, ...,m} refers to
the set of all possible states i.
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In other formulations, a researcher does not observe or chooses to ignore each
state individually. Instead, one accounts for only whether some combination of
states has been realized. More specifically, suppose one knows that at least one
δi = 1 when i ∈ Mt ⊂ M , but one does not account for which particular δi in
this group actually occurred. So,

if i ∈Mt , then δt ≡
X
i∈Mt

δi = 1 ; otherwise, δt = 0 . (A.9)

The sets Mt, t = 1, ..., τ , are mutually exclusive and exhaustive (i.e.,
τS
t=1

Mi =M

and Mt ∩ Mj = ∅ for t 6= j). The probability of the occurrence of group state t
equals

P
¡
δt = 1

¢
=
X
i∈Mt

P (δi = 1) . (A.10)

The joint distribution of the δt’s takes the form:

P
¡
δ1, ..., δτ

¢
=
Y
t∈T

£
P (δt = 1)

¤δt (A.11)

where the notation T = {t : t = 1, ..., τ} refers to the set of all possible "group"
states t.

8.3. Continuous Variables: All States Observed

Consider those models in which one observes each individual δi along with
vectors Yi of continuously distributed random variables for states i ∈ My ⊆ M

. Conditional on occurrence of a state, the components of Yi may either be
truncated or censored. The truncated elements of Yi refer to those that lie in a
strict subset of their overall domain given realization of the selection mechanism
U ∈ Ωi (or, equivalently, (Yi, Ui) ∈ Φi ). The censored elements consist of those

that instead range over their entire domain. The set Θ =
mS
i=1

Θi defines the sample

space of Y . So, if Yi includes truncated components, then Θi ⊂ Θ.
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The first step in formulating specifications for the distributions of the Yi’s
involves recognizing that the density of underlying random variables U conditional
on the event δi = 1 takes the form:

ϕ (U | δi = 1) =
ϕ (U)

P (δi = 1)
(A.12)

where relationship (A.7) gives the formula for P (δi = 1). An alternative expres-
sion (A.7) is given by:

P (δi = 1) = P (U ∈ Ωi) (A.13)

= P ((Yi, Ui) ∈ Φi)

=

Z
Φi

hi (Yi, Ui) dYidUi

where the set Φ =
nS
i=1

Φi defines the domain of (Y,U1, ...Un).

Application of a conventional change-in-variables formula exploiting relations
(A.3) and (A.5) yields the following specification for the density of Yi conditional
on δi:

f (Yi | δi = 1) =

R
Φi|Yi

hi (Yi, Ui) dUi

P (δi = 1)
for Yi ∈ Θi (A.14)

where

hi (Yi, Ui) = Ji ϕ
¡
g−1i (Yi, Ui) , Ui

¢
with Ji =

¯̄̄̄
∂g−1i
∂Y

0
i

¯̄̄̄+
, (A.15)

and the notation
R
Φi|Yi

denotes integration of Ui over the set

Φi|Yi = {Ui : (Yi, Ui) ∈ Φi} . (A.16)

The term Ji in (A.*) represents the Jacobian of the transformation associated with
(A.5) (i.e., Ji is the absolute value of the determinant of the matrix of partial
derivatives ∂g−1i

∂Y
0
i

). One can express the domain of Yi as

Θi = Θi· Yi =
©
Yi : Ui ∈ Φi|Yi

ª
, (A.17)
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where the notation Θi· Yi simply signifies that this set is a suspace of Yi.
A compact expression for the conditional density of Y is

f (Y | δi , i ∈My) =
Y
i∈My

[f (Yi | δi = 1)]δi (A.18)

where as defined above My designates the set of states in which one observes at
least one element of Y . An alternative representation for this conditional density
takes the form:

f (Y | δ1, ..., δm) =
Y
i∈My

[f (Yi | δi = 1)]δi
Y
i∈Mc

y

[1]δi , (A.19)

where the setM c
y denotes the complement ofMy with respect toM . Realizations

of i ∈M c
y mean that all elements of Y are either undefined or unobserved.

The joint density of Y and δ1, ..., δm is the product of the conditional density
of Y given by (A.19) and the joint probability of δ1, ..., δm given by (A.8) yielding:

f (Y, δ1, ..., δm) =
Y
i∈My

[f (Yi | δi = 1) P (δi = 1)]
δi
Y
i∈Mc

y

[P (δi = 1)]
δi(A.20)

=
Y
i∈My

"Z
Φi|Yi

hi (Yi, Ui) dUi

#δi Y
i∈Mc

y

∙Z
Ωi

ϕ (U) dU

¸δi
.

The second line of this expression follows by substituting relationships from (A.7)
and (A.14).

8.4. Discrete/Continuous Variables: All States Observed

Consider models in which one observes individual δi along with the vectors
Zi comprised of discrete/continuous random variables for states i ∈ Mz ⊆ M .
The components included in Zi are either distributed continuously or equal to
constants according to the following rule:

Zi =

µ
Zci

Zdi

¶
=

µ
Yi
Z∗di

¶
for i ∈Mz . (A.21)
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Inspection of (A.6) reveals that those individual Zji for j ∈ Kci make up the
elements of the vector Zci; and those Zji for j ∈ Kdi form the vector Zdi. The
set Mz comprises all states in which any component of Z is realized.
For states i ∈My, one can express the distribution of Zi conditional on δi = 1

as:

f(Zi | δi = 1) = f(Zci, Zdi | δi = 1) (A.22)

= f(Zci | Zdi , δi = 1) P (Zdi | δi = 1)
= f(Yi | Z∗di , δi = 1)

where the third line follows from

P (Zdi = Z∗di | δi = 1) = 1 . (A.23)

Formally, the argument Z∗di in f(Yi | Z∗di , δi = 1) is redundant since the event
δi = 1 already implies Zdi = Z∗di; the argument is included merely to remind the
reader that the density appearing the last row of (A.22) typically depends on Z∗di.
A compact expression for the conditional density of Z is

f (Z | δi , i ∈Mz) =
Y
i∈My

[ f (Yi | Z∗di , δi = 1)]
δi
Y
i∈Md

[1]δi . (A.24)

Realizations of i ∈My mean that some of the elements of Zi are continuously dis-
tributed, whereas occurrence of i ∈Md imply that all elements of Zi are discrete.
One can write an alternative representation for this conditional density as:

f (Z | δ1, ..., δm) =
Y
i∈My

[f (Yi | Z∗di , δi = 1)]
δi

Y
i∈Md

[1]δi
Y
i∈Mu

[1]δi (A.25)

=
Y
i∈My

[f (Yi | Z∗di , δi = 1)]
δi

Y
i∈Md∪Myu

[1]δi .

Realizations of i ∈ Mu mean that all components of Z are either undefined or
unknown.
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The joint density of Z and δ1, ..., δm is the product of the conditional density
of Z given by (A.25) and the joint probability of δ1, ..., δm given by (A.8) yielding:

f (Z, δ1, ..., δm) =
Y
i∈My

[f (Yi | Z∗di , δi = 1) P (δi = 1)]
δi

Y
i∈Md∪Mu

[P (δi = 1)]
δi(A.26)

=
Y
i∈My

"Z
Φi|Yi Z∗

di

hi (Yi, Ui) dUi

#δi Y
i∈Md∪Mu

∙Z
Ωi

ϕ (U) dU

¸δi
.

The second line of this expression follows by substituting relationships from (A.7)
and (A.14), where the notation Φi|Yi Z∗di

still refers to the set Φi|Yi defined by
(A.16) with emphasis added to indicate that this set also depends on Z∗di.

8.5. Discrete/Continuous Variables: Combinations of States

An important category of models involves characterizing the distribution of
continuous and discrete/continuous variables when one either observes or chooses
to distinguish the occurrence of groups rather than individual states. Define the
relevant groups of states by the δt’s specified in (A.9) for t ∈ T as outlined in
Section A.2.
Consider the distribution of the continuous random variable

Yt =
X
i∈Mt

δiYi . (A.27)

Relation (A.27) implicitly assumes that each Yi is defined and of comparable
dimension for i ∈ Mt. Application of the law of iterated expectations yields the
following density for Yt conditional on δt = 1:

f
¡
Yt | δt = 1

¢
=

X
i∈Mt

f
¡
Yt | δi = 1, δt = 1

¢
P
¡
δi = 1 | δt = 1

¢
(A.28)

=
X
i∈Mt

f (Yt | δi = 1) P
¡
δi = 1 | δt = 1

¢
=

X
i∈Mt

f (Yt | δi = 1)
P (δi = 1)

P
¡
δt = 1

¢
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The latter two lines of this relationship follow from the assumptions that the
individual states δi = 1 for i ∈ Mt making up the event δt = 1 are mutually
exhaustive and exclusive.
Discrete/continuous variables are realized according to the following rule:

Zt =

µ
Zct

Zdt

¶
=

µ
Yt
Z∗dt

¶
for t ∈ Tz . (A.28)

The set Tz = Ty∪ Td comprises all group states in which any component of Z
is realized. The set Ty includes those group states t in which Zt incorporates
the continuously-distributed vector Yt specified by (A.27); and the set Td includes
those group states wherein all the components of Zt equals constant values.35

For group states t ∈ Tc, the distribution of Zt conditional on δt = 1 takes the
form:

f(Zt | δt = 1) = f(Zct, Zdt | δt = 1) (A.29)

= f(Zct | Zdt , δt = 1) P
¡
Zdt | δt = 1

¢
= f(Yi | Z∗dt , δt = 1) ,

where this latter expression exploits the relationship:

P
¡
Zdt = Z∗dt | δt = 1

¢
= 1 for t ∈ Td . (A.30)

Analogous to (A.25), a compact expression for the conditional density of Z is

f
¡
Z | δ1, ..., δτ

¢
=
Y
t∈Ty

£
f
¡
Yt | Z∗dt , δt = 1

¢¤δt Y
t∈Td∪Tu

[1]δt (A.31)

where the set Tu includes those state groups in which no Zjt are either undefined
or unknown.
35“For notational simplicity, the specification of the values of Zt when t ∈ Td presumes that

Z∗t is common across the individual states i ∈ Mt making up group state t. One can instead
replace the common value Z∗t by a set {Z∗t } consisting of several discrete values at the expense
of introducing some complexity in specifying likelihood functions.”
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Multiplying the conditional density (A.25) by the joint probability of the events
δ1,...,δτ given by (A.8) generates the following joint density for Z and the δt’s:

f
¡
Z, δ1, ..., δτ

¢
=

Y
t∈Ty

£
f
¡
Yt | Z∗dt , δt = 1

¢
P (δt = 1)

¤δt Y
t∈Td∪Tu

£
P (δt = 1)

¤δt (A.32)
=

Y
t∈Ty

"X
i∈Mt

Z
Φi|Yt Z∗

dt

hi (Yt, Ui) dUi

#δt Y
t∈Td∪Tu

"X
i∈Mt

Z
Ωi

ϕ (U) dU

#δt
The second line of this expression follows from substitution of relationships from
(A.7), (A.10), (A.14), and (A.28).

8.6. Accounting for Unobserved and Exogenous Variables

Specification (A.32) presents a general formulation for likelihood functions
incorporating discrete, continuous and discrete/continuous variables. One often
sees alternative representations of this specification in the literature that may at
first not appear as a special case of (A.32).
One such representation defines a set of continuous or discrete/continuous

variables Z that are then presumed to be unobserved and, therefore, must be
eliminated as arguments of the f ’s in (A.32). In particular, suppose Z consists
of two components Z

0
t = (Z

0
1t , Z

0
2t) where the variables Z

0
1t are observed and

those included in Z
0
2t are not. Correspondingly, decompose Y

0
t = (Y

0
1t , Y

0
2t) and

Z
0
dt = (Z

0
1dt , Z

0
2dt), with the random variables Y

0
2t and Z

0
2dt unobserved.

Integrating (or summing) the joint likelihood function (A.32) over Z
0
2t produces

the marginal for Z
0
1t. This exercise yields:

f
¡
Z1, δ1, ..., δτ

¢
=

Y
t∈Ty

Z
Θt· Y2t

f(Y1t, Y2t | Z∗dt, δt = 1)dY2t P (δt = 1)δt
Y

t∈Td∪Tu

£
P (δt = 1)

¤δt(A.33)

=
Y
t∈Ty

f(Y1t | Z∗d1t, δt = 1) P (δt = 1)δt
Y

t∈Td∪Tu

£
P (δt = 1)

¤δt .

The second line of this expression exploits the relationship:Z
Θt· Y2t

f (Y1t, Y2t | Z∗dt, δt = 1)dZ2t =

Z
Θt· Y2t

f(Y2t | Y1t , Z∗dt, δt = 1)dY2t f(Y1t | Z∗dt, δt = 1)

= f(Y1t | Z∗dt, δt = 1) ,
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which follows since Θt· Y2t constitutes the domain of Y2t given the event δt = 1.
Clearly, the second expression in (A.33) is a special case of (A.32). This merely
reflects the fact that an unobserved Y2t has been reinterpreted as a component of
the Ui’s implicit in (A.32). The variables making up Ui in a state i (or t) may be
observed as a Yj in some other state.
Finally, throughout the above discussion one can readily interpret the distri-

bution of U as being conditional on a set of exogenous variables X, as well as
define the regions of definition of δi to depend on X ( so, Ωi = Ωi (X) ). To
be deemed exogenous, each component of X must be observed in all states; oth-
erwise, this variable must be treated as a component of Y or Z in the previous
analysis. Modifying the above formula to admit exogenous X merely involves
adding X as an argument of f (·) and interpreting the sample subspaces Ωi, Φi|Yi
, and Θi as functions of X.
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