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Abstract

Recent advances in science and technology promote the generation of a huge amount
of data from various sources including scientific experiments, social surveys and
practical observations. The availability of powerful computer hardware and software
offers easier ways to store datasets. However, more efficient and accurate
methodologies are required to analyse datasets and extract useful information from
them. This work aims at applying mathematical programming and optimisation
methodologies to analyse different forms of datasets. The research focuses on three
areas including data classification, community structure identification of complex

networks and DNA motif discovery.

Firstly, a general data classification problem is investigated. A mixed integer
optimisation-based approach is proposed to reveal the patterns hidden behind training
data samples using a hyper-box representation. An efficient solution methodology is
then developed to extend the applicability of hyper-box classifiers to datasets with

many training samples and complex structures.

Secondly, the network community structure identification problem is addressed. The
proposed mathematical model finds optimal modular structures of complex networks
through the maximisation of network modularity metric. Communities of
medium/large networks are identified through a two-stage solution algorithm

developed in this thesis.

Finally, the third part presents an optimisation-based framework to extract DNA
motifs and consensus sequences. The problem is formulated as a mixed integer linear
programming model and an iterative solution procedure is developed to identify
multiple motifs in each DNA sequence. The flexibility of the proposed motif finding

approach is then demonstrated to incorporate other biological features.
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Chapter 1

Introduction

Learning from data has been considered as one of the most promising research
avenues to recognise patterns and extract knowledge. The generation of complex
datasets requires more efficient and accurate data analysis methodologies to find
knowledge/patterns. Mathematical programming techniques and optimisation theory
have been recognised as a very fertile research area with a wide range of applications
in science, engineering and business. Mathematical programming has also made a
vital contribution to the field of process systems engineering since the pioneering
work of Prof. Roger Sargent (1977). Due to the availability of a number of modelling
software and the latest developments of solution algorithms together with the upgrade
of computing facilities, mathematical programming techniques have been applied
extensively to build up and solve models to analyse real world systems from the

optimisation point of view.



Chapter 1. Introduction

1.1 Research Developments and Challenges of Data Analysis
in the 21st Century

The 21* century is undoubtedly a data explosive era. Scientific and technological
advances together with the development of computer hardware and software
significantly accelerate the generation, collection and storage of data from a variety of
sources including research experiments, social survey, financial markets and so on.
Since data is the fundamental form of information that needs to be managed, mined
and interpreted to extract knowledge, discovering patterns from data becomes one of

the major challenges of the information age.

During the last 30 years, data analysis has attracted research communities from
different disciplines due to the increasing demands of data mining and pattern
discovery from both academia and industry. The research developments of data

analysis have mainly been driven by the following two areas:

e Information Technology Developments

Current development of computer hardware especially the availability of large
volume hard disks and their drastically dropping costs make the storage of
massive data possible and cheap. Internet and parallel distributed computing
facilities play an important role as an infrastructure to provide a global
connection force so that datasets can be shared publicly and analysed
simultaneously. On the other hand, database models and software tools
facilitate data collection and storage in a structural and efficient way

(Haughton et al., 2003).
e Research Developments of Data Analysis Methodologies

The explosive growth of data and databases has generated an urgent need for
novel methodologies that automatically and intelligently transform data into
knowledge. The research advances of data analysis, data mining, pattern
recognition and machine learning are contributed by not only mathematicians
and computer scientists, but also engineers from both academia and industry.
Diversified data analysis demands from engineering, banking, bioinformatics,

healthcare etc. have driven the researchers from different backgrounds to

14



Chapter 1. Introduction

develop novel data analysis methodologies (Bishop, 2006). The underlying
knowledge extracted through those methodologies has successfully facilitated

people’s understanding of complex systems and decision making.

However, we are inevitably facing a number of research challenges of data analysis:

The Increase of Data Scales and Complexity

The success of data collection and storage dramatically increase the number of
available datasets and the dimensions associated with each sample. Such
advances inevitably increase the complexity of extracting information from
data. Therefore, analysing data in a more efficient way by extending current
data analysis methodologies is crucially important to researchers from various

disciplines.
Development of Novel Data Analysis Approaches to New Data Types

Today, most data analysis methods focus on data with real-value matrix forms
and continuous distributions. However, datasets with non-conventional types
have been rapidly accumulated including data samples distributed in disjointed
regions, network topology datasets, sequence/string datasets and time series
datasets. Traditional data analysis approaches usually fail to achieve
satisfactory results on them. The development of novel methodologies for such

datasets has become a promising research avenue.

1.2 Data Analysis Methodologies

Datasets collected from various sources may have many different forms and reveal

distinct information. Therefore, suitable methodologies need to be developed to tackle

particular data analysis tasks. Most datasets collected have a matrix form which

includes a number of data samples (rows) and several distinct attributes/features

(columns). For example, the data collected from the business markets include massive

financial information of companies (samples). Each company is characterised by a

number of separated features such as share price, total assets, free cash flow, profit

margins etc.

15



Chapter 1. Introduction

Recently, network datasets have gradually been collected and reconstructed. Network
topological data contains entities included in the system studied and the connections
among them, it is considered as one of the most representative frameworks for
complex systems. Analysing such data provides a precious opportunity to interpret

their statistical, topological and organisational properties.

Another form of data especially generated due to the developments of molecular
biology and availability of high throughput technology is sequence data such as
DNAs, RNAs and proteins. A sequence data consists of a finite set of alphabet letters
linked sequentially so as to complete some functions alone or with other sequences.
Uncovering the hidden information using sequence data analysis methodologies is
critical for biologists to understand the fundamental biology of organisms and reveal

evolutionary relations of different species.

Data analysis and knowledge discovery are rapidly evolving areas lying are at the
intersection of several disciplines including statistics, engineering, operation research
and computer science. These involve the extraction and discovery of implicit and
potentially useful patterns/knowledge directly from available data. Among a number
of specific tasks of data mining, Clustering and Classification are two typical topics.
Clustering involves partitioning of a dataset without any qualitative information (class
membership) into subsets (clusters) so that samples in each cluster are close enough
and share some common traits accordingly. Clustering is an unsupervised procedure
where the final partition of data relies only on the distance metric of each pair of data
sample. Typical algorithms include hierarchical clustering, k-means clustering, fuzzy
c-means clustering, quality threshold clustering and graph theoretical approaches
(Duda et al., 2001). Classification is a supervised learning procedure from data with
known category labels and the prediction of new samples into known patterns. Data
classification usually comprises two procedures: training and testing. In the training
stage, classification functions are generated to separate samples of known class
membership into different groups using the attribute values associated with each
training sample. A new sample is then classified into one of those classes by
comparing its discriminant scores derived from classification functions in the testing
phase. Linear/Quadratic statistical discriminant analysis was first proposed
undertaking particular assumptions on group distributions. Recently, novel

classification and learning methodologies such as neural networks (Jain and Nag,

16



Chapter 1. Introduction

1995), support vector machines (Cortes and Vapnik, 1995), decision trees (Quinlan,
1986; Breiman et al., 1984) and mathematical programming approaches (Freed and
Glover, 1981a, 1981b, 1986; Gehrlein, 1986; Ryoo, 2006; Sueyoshi, 2006) have been
developed to solve various practical classification challenges including financial risk
evaluation, protein secondary structure prediction and process fault

detection/diagnosis.

Recently, network data analysis has attracted more and more attention from various
research communities since many complex systems such as Internet, social relations
and biological systems can be represented as network models. Statistical analysis has
reflected a number of structural and topological properties of different forms of
networks including small world effects, degree distribution and high network
transitivity (Barabasi and Albert, 1999; Newman, 2003; Boccaletti et al., 2006). Other
methods have been developed to investigate detailed network properties such as
community structures (Newman and Girvan, 2004; Duch and Arenas, 2005; Newman,
2006), network design and robustness issues (Dartnell et al., 2005; Estrada, 2006;
Deutscher et al., 2006; Paul et al., 2006).

Sequence data analysis plays an important role in various research fields particularly
in bioinformatics. Given a collection of sequences, quite a few computational
software tools including BLAST (Altschul, 1990), BLAST2 (Tatusova and Madden,
1999), CLUSTAL W (Thompson et al., 1994) together with statistical and
combinatorial sequence analysis frameworks have been developed to arrange the
primary sequences of DNAs, RNAs. or proteins and identify regions of similarity.
Highly reserved patterns obtained that may lead to the discovery of functional,

structural, or evolutionary relationships among those sequences.

According to the description above, there exists a clearly identified need to develop
optimisation-based data analysis frameworks to facilitate pattern recognition and
knowledge discovery in various fields and potentially lead to significant

understanding of practical complex systems investigated.

1.3 Optimisation-based Methodologies for Data Analysis

Mathematical programming refers to the study of problems in which one seeks to

minimise or maximise a real objective function by systematically designing

17



Chapter 1. Introduction

continuous and integer optimisation variables and building mathematical frameworks.
It provides a precious opportunity to investigate many real world systems by
formulating mathematical models and solve them from the optimisation point of view.
The maximum/minimum solutions of optimisation problems usua-lly provide a
guidance to optimally allocate natural/human recourses, design business strategies,

identify stable molecular configurations and so on.

However, expensive computational resources have hindered wider and deeper
applications of mathematical programming to various research fields and industries
until recently when computer hardware become fairly cheap and the availability of
modelling software and efficient solution algorithms. There have been seen truly
potentials to apply mathematical programming techniques to enormous fields around
the world such as engineering, planning and scheduling, business and finance,

chemistry and biology etc.

According to the systematic elaboration by Williams (1999), building mathematical

programming models usually is motivated by the following three reasons:

e To gain an insight into the problem. The actual exercise of building a
mathematical model often reveals relationships that were not apparent

previously. As a result, greater understanding of the problem is achieved.

e To identify non-obvious solutions. Having built a model it is then possible to
analyse it mathematically and help suggest course of actions that might not

otherwise be obvious.

e To investigate extreme aspects of the problem. Computational experiments
can be undertaken when it is not possible or desirable to conduct an
experiment in real-life and provide us with useful information concerning the

problem under investigation.

A number of mathematical programming models have been developed in the area of
data analysis and data mining. Most mathematical frameworks proposed focus on
typical data mining problems such as unsupervised clustering and supervised
classification problems. Hansen and Jaumard (1997) reviewed recent advances of
cluster analysis and highlighted a number of key mathematical programming-based

methodologies for various clustering problems. Linear programming (LP) models
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Chapter 1. Introduction

have first been proposed to tackle data classification problems (Freed and Glover,
1986; Mangasarian, 1997). Mixed integer programming (MIP) models later have been
addressed where binary variables were introduced to indicate whether the sample is
correctly or incorrectly classified (Gehrlein, 1986; Stam and Joachimsthaler, 1990;
Wilson, 1996). More complex classification models such as piecewise linear and
hyper-box classifiers have recently been developed as MILP formulations (Glen, 2005;
Ryoo, 2006; Uney and Turkay, 2006). Comparing with other computational
methodologies, the key advantage of developing data analysis models using
mathematical programming techniques is obvious: it is very straightforward to
implement classification and clustering models through standard modelling tools and
very few parameters are required. Linear or nonlinear optimisation models can be
developed via a series of algebraic equations and the relationships between data and

models can be expressed through logical constraints.

Various network models have been developed using mathematical programming.
Typical network path problems such as Minimum Spanning Trees, Shortest Path and
Travelling Salesman and Arc Routing problems can be formulated as mathematical
programming models (Eiselt and Sandblom, 2000). Practical network flows and
design problems such as supply chain networks (Tsiakis et al., 2001; Gjerdrum et al.,
2001), heat exchanger networks (Zamora and Grossmann, 1998; Shivakumar and
Narasimhan, 2002) and biological networks (Burgard and Maranas, 2001; Lin er al.,
2003) can also be investigated using mathematical programming. Particularly, Palsson
and his research group proposed Flux Balance Analysis (FBA) (Varma and Palsson,
1993), which provided a linear programming (LP) framework for modelling metabolic
networks and studying the metabolic capabilities of an organism. Moreover,
mathematical programming techniques have been used to investigate topological
characteristics of networks. Integer programming (IP) models were developed to find
cliques in networks (Balasundaram er al., 2005). Dartnell et al. (2005) proposed an

LP-based approach to study the network robustness under random and direct attacks.

There have been some attempts to apply mathematical programming to analyse
sequence data. Meneses er al. (2004, 2005) discussed typical problems in string
selection and comparison. A number of MILP models and heuristics were developed
to identify sub strings from a group of sequences using different objective functions.

A general integer programming-based approach was proposed to find repeated
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Chapter 1. Introduction

patterns/motifs of DNA and protein sequences (Zaslavsky and Singh, 2006). The
proposed model was flexible and robust so as to cope with several variants of the
motif finding problem. Kingsford et al. (2006) formulated a compact mathematical
programming model for DNA motif finding problems. A set of constraints were added
to tighten the linear relaxation of the proposed MIP model and an efficient separation
algorithm was developed to reduce the computational efforts. Lee et al. (2006)
presented a novel graph-theoretical approach for representing a wide variety of
sequence analysis problems and developed two MILP models to solve such problems.
Since those models have proven to be computationally intensive, a heuristic algorithm,
introduced herein for multiple sequence alignment, overcomes such challenges and is
capable of returning good sequence alignments within reasonable computational time.
Later, an MILP formulation was proposed to tackle the global piecewise protein
sequence alignment problem (McAllister et al., 2007). Not only does the proposed
formulation guarantee the identification of the global optimal alignment, but also it
provided a rank-ordered list of pairwise alignments to incorporate other biological

functions.

Apart from mathematical formulations described above, meta-heuristic or stochastic
search methods have also been applied to solve data analysis problems; examples
include Genetic Algorithms (GA), Simulated Annealing (SA) and Tabu Search (TS).
Meta-heuristics mainly invoke search procedures all over the feasible region and
intensify the search in some promising areas. Meta-heuristics cannot easily be trapped
in local optimal solutions while are computationally costly due to their slow
convergence. Meta-heuristics can be classified into population-based methods and
point-to-point methods. In the latter methods, the search invokes only one solution at
the end of each iteration from which the search will start in the next iteration. On the
other hand, the population-based methods invoke a set of many solutions at the end of
each iteration. Below, we highlight the principles of genetic algorithms as an example
of population-based methods, and simulated annealing as examples of point-to-point

methods.

Genetic algorithms (GA) (Booker et al., 1989) are meta-heuristic methods inspired by
a number of evolutionary biology mechanisms such as inheritance, mutation, selection
and crossover. GA is typically implemented as a simulation where a population of

abstract representations (called chromosomes) of candidate solutions (called
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Chapter 1. Introduction

individuals) to an optimisation problem evolves toward better solutions. As an
approach to global optimisation, GA has been applied to solve various data
classification problems. Sharpe and Glover (1999) proposed efficient GA-based
approaches for data classification. Peng (2003) combined GA and support vector
machines (SVM) to identify the types of cancer molecules. Finally, fuzzy-rule-based
classifiers were developed using GAs, which extracted the optimal parameters of the
fuzzy classifier including fuzzy membership functions and the size and structure of
fuzzy rules (Zhou and Khotanzad, 2007).

Simulated Annealing (SA) (Kirkpatrick et al., 1983) calculates the probability of
accepting a solution which is worse than the reference solution to a temperature-like
parameter based on an analogy of metal cooling processes. One of the most successful
applications of SA to data analysis involves the community structure identification of
network data. Guimera and Amaral (2005) applied SA to identify functional modules
in metabolic networks of twelve organisms from three different superkindoms by
maximising their modularity values. The same optimisation methodology was also
applied to analyse and benchmark social networks (Medus et al., 2005) where a trade-

off between quality of solutions and computational requirements was noted.

1.4 Aims and Objectives

Deeply motivated by the promise of better understanding and enhanced problem-
solving capabilities offered by mathematical programming, the aim of our work is to
propose optimisation-based approaches for data analysis. Our objectives are
specifically to develop a number of mathematical programming frameworks and

efficient solution methodologies to analyse different forms of data.
In order to achieve our goal, the following areas will be addressed:
e Data Classification using Mixed Integer Optimisation

This work involves the development of a mathematical programming
framework for the data classification problem using hyper-box classifiers. A
number of data samples are used in the training process and each sample is
characterised by a number of independent attributes together with a class label.

The dimensions and locations of each hyper-box are obtained after training
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representing the pattern of data samples. The class membership of a new
testing sample is predicted from the training outcome. Later, an efficient two-
stage solution algorithm is introduced to tackle classification of more training

samples and complex structures.

e Network Community Structure Identification through Mathematical

Programming

This area deals with the development of a optimisation-based framework to
automatically identify community structures in complex networks through
network modularity maximisation. In order to accommodate the combinatorial
nature of community structure identification of medium/large size networks,
efficient solution approaches are proposed to achieve near-optimal solutions

within reasonable computational times.
e Motif Identification from DNA Sequences using Mixed Integer Programming

This topic is to develop a novel mathematical programming formulation to
identify consensus sequences and motifs from a collection of DNA sequences.
The proposed optimisation framework determines not only the positions and
contents of motifs inside each DNA sequence but also the content of the
consensus sequence. The total matching scores between the consensus

sequence and motifs are maximised.

The problems described in the thesis are formulated as Mixed Integer Linear
Programming (MILP), Mixed Integer Quadratic Programming (MIQP) or Mixed
Integer Non-Linear Programming (MINLP) optimisation models. The General
Algebraic Modelling System (GAMS, Brooke, et al. 2003), a specially designed
modelling language coupled with many linear, nonlinear and mixed integer

programming solvers are used to obtain the solutions of the resulting models.

1.5 Thesis Outline

The rest of the thesis is structured in three parts as follows: Part I addresses the
problem of data classification and consists of Chapters 2 and 3. Part II tackles the

problem of network community structure identification and comprises of Chapters 4
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and 5. Part III involves the DNA motif finding problem which is included in Chapter
6.

Chapter 2 presents a mixed integer optimisation approach for data classification
problems. In the training stage, the classification problem is formulated as a mixed
integer linear programming (MILP) mathematical model capturing correctly classified
training samples using hyper-boxes. An iterative solution approach is then proposed
to allow multiple boxes for each single class of data samples. In the tésting part, the
distances between each new sample with unknown class membership and all
established hyper-boxes are calculated and testing samples are allocated to the nearest
hyper-box. Finally, the testing performances of the proposed optimisation-based

approach are compared with other linear/nonlinear classifiers.

In order to extend the applicability of optimisation-based hyper-box classifiers to
large scale datasets and complex data structures, an efficient two-stage decomposition
algorithm is proposed in Chapter 3. In this first stage, all training samples are split
into a number of disjoint regions without considering their class memberships.
Training data samples in each region are then completed using the optimisation-based
approach developed in Chapter 2. The computational results indicate that the
proposed decomposition scheme is able to accommodate more demanding data

classification tasks with very competitive testing performances.

In Chapter 4, a mathematical programming-based approach to identify the optimal
community structures of complex networks based on the maximisation of a network
modularity metric is proposed. The overall problem is formulated as aﬁ MIQP model,
which can then be solved to global optimality using a standard branch-and-bound
procedure. Special symmetry-breaking constraints are incorporated to eliminate
equivalent solutions. Additional features such as minimum/maximum module size and
balancing among modules can easily be incorporated in the model. The applicability
of the proposed optimisation-based approach is demonstrated by a number of

illustrative network examples.

The mathematical model proposed in Chapter 4 is able to obtain global optimal
solutions for small size networks. Chapter 5 presents a two-stage optimisation-based
solution approach to find community structures for medium/large networks with good

quality network modularity values. An iterative solution procedure is then developed
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to find finer modular structures with high resolution. The applicability of the proposed
approach is finally demonstrated by a number of synthetic and real networks. The
computational results are finally compared with other community structure

identification approaches in the literature.

An MILP model is developed in Chapter 6 to identify the consensus sequence of a set
of DNA sequences together with the DNA motifs of each sequence. The proposed
mathematical model determines the content of a consensus sequence and motif
locations of a collection of DNA sequences so as to maximise the total similarity
scores between the consensus subsequence and all sequence motifs. The predicted
motif contents are compared to the real DNA motifs identified through biological
experiments and the prediction accuracies of the proposed model are finally compared

with two other computational methodologies in the literature.

Finally, Chapter 7 summarises the main contributions of the thesis and provides

recommendations for further research work.
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Chapter 2

A Mixed Integer Optimisation Model for

Data Classification

In recent years, data mining and machine learning have become increasingly
important since the collection and storage of data are much easier and less expensive.
Data classification involves the automatic discrimination of patterns from data and
prediction of group memberships of unknown samples. Computational methodologies
for data classification have widely been applied to extract knowledge of many real
systems. In this chapter, a mixed integer linear programming (MILP) model is
proposed for general data classification problems using a hyper-box representation.
This representation is particularly suitable for capturing disjoint data regions. The
objective function used is the minimisation of the total number of misclassified data
samples. An iterative solution procedure is then developed to assign potential multiple
boxes to each single class so as to improve training and testing performances. Finally,
the applicability of the proposed approach is demonstrated through a number of

illustrative examples.
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2.1 Introduction and Literature Survey

Data classification is one of the fundamental problems in data mining and machine
learning. It deals with the identification of patterns and the assignment of new
samples into known groups. During the training process, classification functions are
generated to separate samples of known class membership into different groups using
all attribute values associated with each sample. A new sample is then classified into
one of those classes by comparing its discriminant scores derived from classification
functions. Different classification models have been successfully applied in a wide
range of fields including financial aspects (Becerra-Fernandez et al., 2002; Glen, 1999;
Sueyoshi, 2004; Zopounidis and Doumpos, 2002), fault diagnosis and quality control
(Chiang et al., 2004; Purintrapiban and Kachitvichyanukul, 2003; Shin e al., 2005),
flow regime identification (Tarca er al., 2004; Trafalis et al., 2005), and protein
secondary structure prediction (Ramnarayan er al., 2008; Turkay er al., 2005).
Generally, major classification methodologies include statistical methods, neural
networks, support vector machines, decision trees and mathematical programming

approaches. Next, a brief description of each methodology is provided.

Statistical Methods: The development of statistical classification models can be
tracked back to linear discriminant analysis (LDA) where the ratio of between groups
and within group variances is maximised. Previous statistical discriminant methods
were reviewed by McLachlan (1992). The conventional statistical discriminant
analysis methods usually undertake assumptions on group distributions. Sometimes
linear and quadratic discriminant functions can obtain very promising results; it is also
true that many datasets do not satisfy such distribution assumptions. Apart from
statistical discriminant analysis, other statistical methods have also been proposed
such as logistic regression and k-nearest neighbour (k-NN) approaches (Hand, 1997).
Logistic regression is a statistical method where the logistic transformation of a linear
function of the training samples is considered as the logarithm of the odds of class
membership. k-NN methods estimate the class membership based on k closest training

samples. The number of nearest neighbours, k, must be specified before the training.

Neural Networks: Neural network (NN) approaches have been applied extensively by
various researchers to solve different problems of data classification and pattern

recognition (Jain and Nag, 1995; Markham and Ragsdale, 1995; We, 2002; Autio et
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al., 2007). It should be mentioned that a min-max neural networks classifier using
fuzzy sets as pattern classes was described (Simpson, 1992). N-dimensional fuzzy set
hyper-boxes were defined by minimum and maximum points with a corresponding
membership function. The boundary points are determined through fuzzy min-max
learning algorithms. An efficient fuzzy partition of the feature space to generate fuzzy
if-then rules for pattern classification was addressed (Mandal, 1997). Overlapping
hyper-boxes were used to decompose the whole feature space. Simpson’s work was
later generalised and extended to combine the supervised and unsupervised learning
with a single learning algorithm (Gabrys and Bargiela, 2000). The boundaries of each
distinct class were represented by hyper-boxes and their sizes were adjusted through
the learning process. As demonstrated by Funahashi (1989) and Hornik et al. (1989),
NN can approximate unknown nonlinear functions to any degree of aécuracy without
any assumptions of the data distribution. It is so flexible that no prior specifications of
discriminant functions are needed. A problem associated with NN is that the global
optimality of NN solutions is not guaranteed. Also, NN is considered as a black box
and people can not find any relevance of input variables after the training. All we can

obtain are the optimised weights between the nodes hidden in the network structure.

Support Vector Machines: Support vector machines (SVM), which are based on the
statistical learning theory developed by Vapnik and his group (1995), have been
considered as one of the most promising approaches for two-class classification
problems (Yajima, 2005). Given a series of training samples which belong to two
distinct categories, SVM tend to find an optimal separating hyper-plane so as to
maximise the margin between them. In order to improve the training performance,
nonlinear mapping is adopted from the input space to a higher dimensional feature
space by using several kernel functions. The overall problem is formulated as a
quadratic programming (QP) problem. SVM have been applied extensively to the area
of image recognition (Je er al., 2003), text categorisation (Kaufman, 1999; Platt,
1999), protein folding recognition (Ding and Dubchak, 2001) and so on. However, the
main difficulty when using SVM is the selection of optimal kernel functions and their
parameters before training. Also, SVM is originally designed for two-class
classification problems. The optimal design for multi-class SVM classifiers is a

further area for research (Navia-Vazquez, 2007; Zhong and Fukushima, 2007).
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Decision Trees: Decision trees (DT) create a discriminant tree that recursively splits
training samples into disjointed subsets until either no further splitting can produce
significant differences or the subsets are small enough. There are a number of
available models including ID3 (Quinlan, 1986) and CART (Breiman et al., 1984).
ID3 methods propose a top-down irrevocable strategy to construct a decision tree and
the attribute with the minimum entropy is selected to split the tree. In CART
techniques, the expected cost of misclassifications is minimised. DT techniques have
been considered as important pattern classification tools and were widely used in
knowledge discovery from manufacturing systems (Koone et al., 1997, Markham et
al., 1998); control chart patterns detection (Guh, 2005); protein cellular localisation
prediction (Lorena and de Carvalho, 2007) and so on. However, one of the
disadvantages of DT lies in its instability due to the hierarchical nature of the
classification process. The effect of an error on the top level of a tree can be
propagated down to other branches. The other issue of using DT methods is the
difficulty of designing optimal tree structures since the classification performance

heavily depends on how well the tree is constructed.

Mathematical Programming: Mathematical programming (MP) techniques have also
been proposed to various data classification problems. Comparing with other
approaches, MP methods are straightforward to implement through standard
modelling tools and very few parameters are required during training processes.
Linear or nonlinear classifiers (see Figure 2.1) can be designed via a series of
algebraic equations and the relationships between training samples and classifiers can
be expressed through logical constraints. More importantly, the patterns hidden from
data can be extracted mathematically from the coefficients of the classifiers. The
development of MP discriminant analysis methods was largely stimulated by the work
of Freed and Glover (1981a, 1981b, 1986). In the simplest form of MP discriminant
analysis, a discriminant function, which partitions a training sample with known
membership into the specified group, is generated using linear programming (LP)
models (Bajgier and Hill, 1982; Freed and Glover, 1986; Glover, 1990; Lam and Moy,
1996, 1997). In LP models, maximisation of the minimum deviation (MMD) and
minimisation of the sum of deviations (MSD) are the two most commonly used
optimisation criteria. Different ILP formulations and goal programming models were

recently compared by Bal er al. (2006). Extending LP models, the number of
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misclassifications can, however, be minimised directly in mixed integer programming
(MIP) models where a binary variable for each training sample was introduced to
indicate whether the sample is correctly classified (Gehrlein, 1986; Stam and
Joachimsthaler, 1990; Wilson, 1996). Recently, a series of non-parametric
discriminant analysis approaches called DEA-DA (Data Envelopment Analysis-
Discriminant Analysis) for two-class and multi-class data classification problems
were proposed (Sueyoshi, 2006). DEA-DA models provided a set of parallel linear
discriminant functions to determine group memberships. Glen (2001) presented an
MILP model to maximise the classification accuracy for two-group classification
problems. Later, piecewise linear classifiers were applied to approximate nonlinear
discriminant functions to improve the classification performance (Glen, 2005; Ryoo,
2006). Novel MILP models were developed to solve classification problems with
multiple classes (Lee and Wu, 2007). The resulting optimisation-based framework
was able to incorporate heterogeneous types of inputs and high dimensional data
transformation. Finally, Uney and Turkay (2006) proposed an MILP model using
hyper-box classifiers. The relationships among discrete variables in the model were
converted to the equivalent integer constraints using boolean algebra. The proposed
optimisation-based approach in this chapter shares similar concepts with the work of
Uney and Turkay (2006). Both approaches adopt a hyper-box representation to
enclose the correctly classified training samples. Comparing with the work of Uney
and Turkay (2006), we develop a completely different MILP formulation which
involves significantly fewer binary/continuous optimisation variables and constraints.
Comparing with LP models and statistical approaches, MIP-based methods may
obtain better performances, while the existence of binary variables make MIP models

solve datasets involving a relatively small number of training samples.

In addition to the standard MP-based models, several two-stage models have been
developed. Stam and Ragsdale (1992) proposed a two-stage approach where training
samples that were difficult to classify were initially identified and more details were
analysed in the second stage. The proposed two-stage approach was tested on
simulated two-group problems wusing both MSD and minimisation of
misclassifications as the second stage objective, with the results suggesting the
approach to be particularly suitable for discriminant problems with outlier

contaminated data. Later, Sueyoshi (2001) developed another two-stage MIP
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approach. In his approach, the overlapping region was identified in the first stage and
all samples which belong to the overlapping region were reclassified in the second
stage. However, one limitation of Sueyoshi’s method is that it considers two-class
problems only. Finally, Glen (2006) compared the performance of several two-stage

approaches using simulated and real datasets.

* o

Parallel hyper-planes Linear classifiers Hyper-boxes

Figure 2.1 Discriminant classifiers

In this chapter, an MILP model for data classification problems is presented. Hyper-
boxes are adopted to capture the discrete regions of the training samples. Special
constraints are introduced to avoid overlapping of boxes that belong to different
classes. An iterative solution algorithm is then proposed to improve the training and
prediction accuracy by allowing multiple boxes for each class. The rest of the chapter
is structured as follows: in the next section, typical mathematical programming-based
classification models are summarised. Section 2.3 states the problem of data
classification and section 2.4 presents a novel mathematical formulation for the
general data classification problem. An iterative solution algorithm is proposed in
section 2.5 and a testing procedure is described in section 2.6. In section 2.7, one
motivated example is presented in detail to illustrate the applicability of the proposed
optimisation-based approach. Five real examples and two synthetic datasets are
selected in section 2.8 to perform an extensive computational comparison between our
approach and other competing literature methods. Finally, some concluding remarks

are made in section 2.9.
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2.2 Summary of Typical Mathematical Programming-based

Classifiers

In this section, we summarise two typical mathematical programming models for data
classification problems. Both approaches proposed linear discriminant classifiers

using MILP representations.

2.2.1 An MILP Model for Linear Discriminant Classifiers (Gehrlein,
1986)

Consider a general data classification problem with C classes and S samples. Each
sample s is characterised by the values of M independent attributes. A linear
discriminant classifier model was proposed by Gehrlein (1986) through an MILP
representation. First, the linear discriminant function of class ¢ is mathematically

formulated as:

Y.=a!+) a,, A, 2.1)

where A, is the value of training sample s on attribute m. @’ and a_, are

discriminant function coefficients and are treated as continuous variables. The
following MILP model is proposed to discriminate training samples from different

classes using the above classification function (equation 2.1).
Min ) W, (2.2)

subject to

s

af +Za(.,,, ‘A, —(af + Za’m A )+U-W 2¢ Vs,m,c,,c‘ #zc, (2.3)

al.a,, :unrestricted ; W, € {O,l}

cm

where c, is the class sample s belongs and U is a suitable upper bound. Binary

variable W; is used here to indicate whether training sample s is correctly classified.

Constraint 2.3 shows the proposed linear discriminant function separate sample s

belonging to class ¢ from other classes c at least by a value of £ if this sample is

32



Chapter 2. A Mixed Integer Optimisation Model for Data Classification

correctly classified (W, =0 ). The objective function adopted in this model is

minimisation of total misclassified training samples.

After training, the testing score of testing sample s on each discriminant function

belonging to class ¢ can be calculated by & + Za‘ :

cm

A,, where @, and o, are the

m

optimal classification function parameters obtained during the training. Testing
sample s will be classified to one of classes ¢ for which

¢ =argmax (@ + ) ., A,,)

2.2.2 An MILP Model for Parallel Hyper-planes Classifiers (Sueyoshi,
2006)

Recently, Sueyoshi (2006) developed parallel classification hyper-planes using mixed
integer optimisation. The general MILP formulation for classification with multiple

groups is summarised below:

Min ) W, (2.4)
subject to

YA =A)-A, —w +U-W 20 Vsec,c=1..C-1 (2.5)
YA -A)A,-w_ -U-W,<-g Vsec,c=2,..C (2.6)
>+ A4 =1 27
e{iSA,<(; vm @8
£¢,<%, 5, vm 29)
SRTFES vm 210
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2+ =M (2.11)

w,: unrestricted; ¢,¢ W, e {01}; 2,4, >0
In this model, the linear discriminant function for class c is formulated as:

Y= (A, -4 A, —w. (2.12)

It should be noted that the classification hyper-plane of each class has the same
weight (4, — A4, ) with different coefficient w.. Here, the normalisation technique
proposed by Glen (1999) is incorporated in Equations (2.7) to (2.11). Constraint (2.7)

enforces that all A, and 4, have the values between 0 and 1. For each attribute, two
binary variables, ¢ and{ , are introduced in equations (2.8-2.10) so that only one

of A and A, have non-zero values. Finally, equation (2.11) illustrates that all

weights are used to construct the linear classifier.

Overall, training samples with C classes are separated by the optimal values of w. and

(X7 - ). After training, a new testing sample, s, is classified as:

If Z(/l: - 4,)-A,, 2w, then sample s belongs to class c;.
If w, <D (A, - 4,)- A, Sw._, —€ then sample s belongs to class ¢ (¢ =c,,....C = 1).

If (A, -24,)-A,, Swg_, —¢ then sample s is classified into class C.

2.3 Problem Statement

According to the review in section 2.1, the main task of data classification is to design
a type of classifier to differentiate data with unique class labels and the total number
of misclassifications should be minimised. The classifier structure needs to be fixed
and the parameters of discriminant function will be identified during the training
process. After training, the class membership of several new samples will be predicted

based on the classifiers derived during the training process.
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The prototype of our model is based on the MILP mathematical formulation for the
process plant layout problem proposed by Papageorgiou and Rotstein (1998) where
process facilities were simplified to rectangular boxes within two dimensional space
and the optimal facilities positioning was determined so as to minimise the total
connection cost of the process flowsheet. Our approach is based on the previous
MILP representation by extending it to cover M dimensions (where M is the number
of attributes). The specific patterns of training data are captured by hyper-boxes with
M dimensions. Each box is characterised by its centroid position and dimensions.
Linear constraints are used to avoid overlapping among hyper-boxes belonging to
different classes. The final objective function is the total number of misclassified

samples, which is minimised.

The overall problem investigated can be stated as follows:
Given:

Training data of S samples with M attributes

Classification of training data into one of C classes
Determine:

The optimal number of hyper-boxes

The optimal centroid position and dimensions of hyper-boxes.
so as to

Minimise the total number of misclassified samples

2.4 Mathematical Formulation

In this section, a rigorous mathematical model for data classification problems is
presented. It is first assumed that only one hyper-box is adopted to enclose the training
samples for each class. The above assumption is relaxed in section 2.5 where an
iterative solution procedure based on multiple boxes is introduced in order to improve

the training and testing accuracy.
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The indices and parameters associated with the data classification problem are listed

below:

Indices

K Sample (s=sy, 52, ..., S)

m Attribute (m=my;, ms, ..., M)

i,J Hyper-box (i,j=1,2, ..., N)

i Hyper-box which sample s belongs to

Parameters

A, Value of sample s on attribute m

£ Minimum distance between boxes that belong to different classes

The formulation is based on the following key variables:
Binary variables

E 1, if sample s is included in the corresponding hyper-box; O otherwise

s

Y,

im 0, if box i and j do not overlap each other on attribute m, 1 otherwise
Continuous variables

LE. Length of hyper-box i on attribute m

m

X, Central coordinate of hyper-box i on attribute m

m

2.4.1 Objective Function

The objective function used here is the minimisation of the total number of

misclassified samples.

min ) (1-E,) (2.13)
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2.4.2 Hyper-box Enclosing Constraints

In this model, hyper-boxes are used to enclose correctly classified samples. Binary
variables, E_, are introduced to describe if sample s is classified correctly within the

corresponding box. Therefore, a sample s is correctly classified if the following two

conditions are active at the same time:

LE,
A, z2X, ——— Vs, i ,,m (2.14)

sm inm 2

m (2.15)

sm im 5?

LE.
A, <X, + 2"" Vs, i

These enclosing conditions can mathematically be modelled in a mixed-integer linear

form:
ASMZXim——l%—U(l—ES) Vs,i,,m (2.16)
AsmSX,.m+—11§ﬂ+U(l—ES) Vs,i ,m 2.17)

where U is a suitable upper bound. Note that both constraints (2.14-2.15) are active

only if sample s is correctly classified (i.e. E, =1).

2.4.3 Non-overlapping Constraints

Since hyper-boxes represent the unique pattern of corresponding classes, any two
boxes that belong to different classes can not share the same position. If a region in
the attribute space is covered by two boxes that represent different classes, it is
possible that some new data samples are allocated to more than one class. The
prototype of non-overlapping constraints comes from the MILP formulation of
process plant layout problems proposed by Papageorgiou and Rotstein (1998) where
N process facilities were considered as rectangular boxes (i or j) within two
dimensional space (m; and m;). The conditions of any two facilities occupying the
same physical location are prohibited by activating at least one of the following four

inequality constraints:
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LE, +LE,
Xip =X 2= Wizl Nl j=it] N (2.18)
LElm, + l‘E‘jm| . . .
Xim =Xm 2 5 i=L.,N-1j=i+1,..,N (2.19)
LE, +LE,
Xipy =Xy 2—2—" Vi=l  N-lj=i+l.,N  (220)
LE, +LE,
X, = Xy, 2= izl N=Lj=it]..N @2.21)
m. A m, A
LEi’"l. h
X.'m2 1 Xim: l
LE;’m.. LEj’"l
J :
X LE,, X i, J
Xim ij, m, Xim, ij, m,
(a) (b)

Figure 2.2 Non-overlapping of hyper-boxes

The non-overlapping conditions are clearly depicted in Figure 2.2. For instance, in

case (a) of Figure 2.2, inequality (2.19) is active while in case (b) of Figure 2.2,

inequality (2.20) is active. These non-overlapping conditions can mathematically be

modelled by introducing a binary variable, Y, , together with the following constraints:

X =X, +UY, 2

ijmy
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LE, +LE,
Xpp =X +U Y, 22— im

i > Vi, j#i (2.23)

where U is a suitable upper bound. On dimension m, the non-overlapping condition

of facility / and j is active when Y,

iym

has a value of zero. Finally, overlapping between

any pair of facility boxes is avoided by forcing at least one of conditions (2.18) to

(2.21) to be active by:
Y.—,-,.., +inm. +qu2 +Yj‘.m2 <3 Vi=lL.,N-1j=i+l,..,N (2.24)

Next, we extend the non-overlapping conditions from two dimensions to M
dimensions, which will be used for data classification problems. Similar to the non-
overlapping inequalities described above (conditions 2.18 to 2.21), the overlapping of
boxes i and j on attribute m is avoided by satisfying the following condition:

LE. +LE.
> m jm

im jm = 2

+€&  Vm,i,j#i (2.25)

where € is defined as a small positive number in condition (2.25) to prevent two
boxes from sharing the same border on attribute m. Thus, the non-overlapping

conditions of boxes i and j can be enforced by:

LE, +LE,
X=X, +U-Y, >—"m—Jn

ijm 2 + £ Vm,i.j ¢l (226)

It should be added that boxes i and j are considered as non-overlapped when condition

(2.25) is satisfied for at least one dimension:

M
DY, +Y,)<S2M -1 Vi=L. ,N-1j=i+1.,N (2.27)

m=|

Overall, the MILP optimisation model for the Multi-Class data classification Problem

(MCP) is summarised as follows:
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[Problem MCP]
min ) (1-E,)

subject to
Hyper-box enclosing constraints: (2.16)-(2.17)
Non_overlapping constraints: (2.26)-(2.27)

E.Y, € {0o1};LE, >0; X, : unrestricted

2.5 An Iterative Solution Algorithm

In section 2.4, an MILP model for the data classification problem has been proposed.
As already mentioned, only one hyper-box for each class is first introduced to enclose
the maximum number of correctly classified samples. In this section, an iterative
solution procedure is proposed to allow multiple boxes for each class so as to improve
the training and testing performance. After solving the single level MILP (MCP), new

boxes are assigned to any misclassified samples (i.e. E, =0 ) during previous

iterations and the modified MILP model with more hyper-boxes is then solved. The
algorithm will terminate when the objective functions of two successive iterations
have the same value. It should be noted that when a new box is added, the non-

overlapping constraints (2.26) and (2.27) and the corresponding Y,

,m binary variables
are generated only for those boxes which belong to different classes. Therefore, we do
allow potential overlapping of boxes of the same class but not between different
classes. The following sets and scalars are defined for the description of the iterative

algorithm:
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Sets
H = Set of boxes that belong to the same class

A = Set of misclassified samples

Scalars

N = Number of boxes used

C = Number of class

The proposed iterative solution algorithm allowing Multiple Hyper-Boxes (Algorithm

Multi-HB) for each single class during training can be outlined as follows:
[Algorithm Multi-HB]

STEP 1: Initialise A=¢, H=¢, N=C.

STEP 2: Solve single level MILP (MCP, see section 2.4).

STEP 3: Identify samples outside hyper-boxes (E =0). UpdateA.

STEP 4: Add one more box for each class to samples in A .

UpdateN,i ,H .

STEP 5: Formulate new MCP problem with more added boxes. Non-

overlapping constraints and variables are generated for

i,j¢ Honly.

STEP 6. Solve the modified single level MILP (MCP) using

updated N boxes.

STEP 7: If the objective function values of two successive

iterations are the same, STOP; otherwise, go to STEP 3.

2.6 Testing Procedure

After the training process, the main patterns from the data are established. The other
important task for any classification methods is the ability to perform a successful

prediction based on the training outcome. According to our hyper-box approach, some
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new samples will be assigned to one of the existing hyper-boxes so as to identify their
class memberships. The basic idea of the testing scheme is that the unclassified
sample should be assigned to the nearest box. The variables used in the testing phase

are listed below:

LB,, Lower bound of box i on attribute m

UB,, Upper bound of box i on attribute m

DIST,,, Distance between sample s and hyper-box i on attribute m
DSI Distance between sample s and hyper-box i

First, the lower and upper bound of each hyper-box is calculated:

LE,

LB, =X, ==t Vi,m (2.28)
LE,

UB,, = X+ Vi,m (2.29)

The distance between sample s and box i on attribute m, DIST,,_, is defined to be:

sim °

DIST,, =max(0, A, —UB

stm

LB, —A,)  Vs.im (2.30)

im?

So, the distance between testing sample s and hyper-box i, DSI ,, is defined to be:
M

DS, = |> DIST,, Vs, i (2.31)
m=|

Figure 2.3 shows the actual calculation of DS/, in the two-dimensional space.

According to equations (2.30) and (2.31), if a sample lies within the boundaries of a
box on all attributes (see case a in Figure 2.3), the distance between the sample and
the box is zero. The membership of the testing sample is identified directly as the

class that is represented by the hyper-box enclosing the sample. If a testing is outside

all existing boxes (see case b in Figure 2.3), all DS/ ;values are positive. Sample s
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will then be allocated into one of the existing hyper-boxes, i" , for which

i" = argmin {DSI }.

case a case b

Figure 2.3 Calculation the distance between sample s and box i

2.7 Motivating Example

In this section, we introduce a motivated example to show how the proposed approach
captures patterns of training samples. This example involves 32 data points belonging
to four classes. Each sample is characterised by two independent attributes and
samples of classes 1 and 4 have disjoint regions. We choose 28 of the total 32 samples
to construct training hyper-boxes (see filled points in Figure 2.4) and the rest is used
for testing (see void points in Figure 2.5). After the training stage, It can clearly be
seen that the proposed optimisation-based approach perfectly capture all training
samples using six hyper-boxes (see Figure 2.5) through three iterations. After training,
the proposed testing method is used to predict the class membership of all 4 testing
samples. Two testing samples are directly assigned to classes 2 and 4 as they are
already included the corresponding hyper-boxes obtained. The other two testing

samples are outside all resulting hyper-boxes and are classified into the nearest box.
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Figure 2.4 Graphical representation of training samples for the motivated example
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Figure 2.5 Hyper-boxes enclosing training samples for the motivated example
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2.8 Computational Results

In this section, the applicability of the proposed methodology is demonstrated through
five real examples and two synthetic datasets. The computational results from the
iterative MILP approach Multi-HB (see section 2.5) are compared with six other
standard classification functions including Linear Discriminant Analysis (LDA),
Neural Networks (NN), Sequential Minimum Optimisation (SMO), OneR
classification rule and two MILP formulations for multi-group data classification. The
performances of all seven different classification models are compared according to

the following three training and testing schemes:

Scenario A: 70% of the samples of each class are extracted randomly for training and

the rest are used for testing.

Scenario B: 70% of the complete data samples are selected randomly for training and

testing is applied to the remaining samples.

Scenario C: leave-one-out scheme. This scheme drops one sample from the whole set
of samples for testing and the remaining set of samples are used for training. After

training, it will examine whether the omitted sample is correctly classified.

The proposed mathematical model and the iterative solution algorithm have been
implemented in GAMS modeling system (Brooke, er al. 2003) on a 3.40 GHz PC
with 2GB memory using the CPLEX mixed-integer optimisation solver (Ilog, 2006)
with 1% margin of optimality for the branch and bound procedure. Each MILP is
solved within a maximum CPU limit of 200 seconds. Scenarios A and B are repeated
50 times and the mean prediction accuracy are reported. The LDA is performed by

MASS package using the statistical computing language R (http://www.r-project.com).

All neural network classification analyses are performed using the weka open source

machine learning software (http://www.cs.waikato.ac.nz/ml/weka/) with the following

parameter details: Model: Multi-layer Perceptron, Number of Hidden layers: 2,
Learning Rule: Momentum (0.7), Step Size: 0.1, Maximum Number of Epochs:
10000, Weight Update Method: Batch Learning and Termination Method: Cap the
number of epochs. Two other methods, SMO and OneR, are also performed using
their default settings in the weka package. SMO trains support vector machines using

sequential minimal optimisation algorithms (Platt, 1999). Multi-class problems are
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solved through a pairwise classification scheme. The OneR approach builds a single
level decision tree, learns classification rules from each attribute of the training
samples and selects the rule with the smallest error rate (Witten and Frank, 2005). The
two MILP model presented here for comparison are linear discriminant classifiers
(Gehrlein, 1986) and parallel hyper-planes (Sueyoshi, 2006).

2.8.1 Real Datasets

The applicability of the proposed approach is demonstrated by five literature
examples. The first small example was initially used by Nath and Jones (1988). This
dataset consists of four financial ratios (Cash Flow to Total Debt; Net Income to Total
Assets; Current Assets to Current Liabilities; Current Assets to Net Sales) of 21
bankrupt firms and 25 non-bankrupt firms. The second example introduced by
Sueyoshi (2006) is related to the corporate bankruptcy in US electric power industry.
This dataset contains 61non-default firms (class 1) and 22 default firms (class 2). The
financial performance of all firms is characterised by 13 independent attributes (Cash
to Total Assets; Net Working Capital to Total Assets; Sales to Total Assets; Long-
term Debt to Total Assets; Shareholder Equity to Total Assets; Net Income to Total
Assets; Retained Earnings to Total Assets; Return on Equity; Market to Book Ratio;
Beta; Price over Earnings; Earnings per Share; Share Price). It should be mentioned
that the non-default firms are currently providers of US electricity market. All the
default firms have experienced their bankruptcy from 1996 to 2002. Data of both

examples are listed in Tables 2.1 and 2.2.

Apart from the above two financial datasets, three more examples (Iris, Glass and E.
coli) with multiple groups are selected from UCI machine learning database

(http://kdd.ics.uci.edu). The third example used is the famous iris data (Fisher, 1936),

which consists of 3 classes of 50 instances each, where each class refers to a type of
iris plant. The class membership of each sample is characterised by four independent
factors: sepal length, sepal width, petal length and petal width. One class is linearly
separable from the other two and the remaining two classes are not linearly separable.
The fourth example involves 214 training samples and considers the identification of
six different types of glass based on 10 composite measurements for each sample. The
last example includes an E. coli dataset with 336 protein sequences labelled to 8

classes of localisation sites. Two redundant attributes are deleted from the original
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dataset and the rest 5 attributes are used for training and testing. The prediction
performances for the proposed five examples under three different scenarios (A, B
and C) are summarised in Table 2.4. The best performance for each scenario is

indicated in bold.

Table 2.1 Financial ratios of bankrupt and non-bankrupt firms (Example 1)

Class 1- Bankrupt Firms Class 2- Non-bankrupt Firms
Values of Financial Ratios Values of Financial Ratios

Firm CF/TD NITA CA/CL CA/NS Firm CF/TD NI/TA CA/CL CA/NS
1 -0.4485 -0.4106 1.0865 0.4526 22 0.5135 0.1001 2.4871 0.5368
2 -0.5633 -0.3114 1.5134 0.1642 23 0.0769 0.0195 2.0069 0.5304
3 0.0643 0.0156 1.0077 0.3978 24 0.3776 0.1075 3.2651 0.3548
4 -0.0721 -0.0930 1.4544 0.2589 25 0.1933 0.0473 2.2506 0.3309
5 -0.1002 -0.0917 1.5644 0.6683 26 0.3248 0.0718 4.2401 0.6279
6 -0.1421 -0.0651 0.7066 0.2794 27 03132 0.0511 4.4500 0.6852
7 0.0351 0.0147 1.5046 0.7080 28 0.1184 0.0499 2.5210 0.6925
8 -0.0653 -0.0566 1.3737 0.4032 29 -0.0173 0.0233 2.0528 0.3484
9 0.0724 -0.0076 1.3723 0.3361 30 0.2169 0.0779 2.3489 0.3970
10 -0.1353 -0.1433 1.4196 0.4347 31 0.1703 0.0695 1.7973 0.5174
11 -0.2298 -0.2961 0.331 0.1824 32 0.1460 0.0518 2.1692 0.5500
12 0.0713 0.0205 1.3124 0.2497 33 -0.0985- -0.0123 2.5029 0.5778
13 0.0109 0.0011 2.1495 0.6969 34 0.1398 -0.0312 0.4611 0.2643
14 -0.2777 -0.2316 1.1918 0.6601 35 0.1379 0.0728 26123 0.5151
15 0.1454 0.0500 1.8762 0.2723 36 0.1486 0.0564 2.2347 0.5563
16 0.3703 0.1098 1.9941 0.3828 37 0.1633 0.0486 2.3080 0.1978
17 -0.0757 -0.0821 1.5077 0.4215 38 0.2907 0.0597 1.8381 0.3786
18 0.0451 0.0263 1.6756 0.9494 39 0.5383 0.1064 2.3293 0.4835
19 0.0115 -0.0032 1.2602 0.6038 40 -0.3330 -0.0854 3.0124 0.4730
20 0.1227 0.1055 1.1434 0.1655 41 0.4785 0.0910 1.2444 0.1847
21 -0.2843 -0.2703 1.2722 0.5128 42 0.5603 0.1112 42918 0.4443
43 0.2029 0.0792 1.9939 0.3018

44 0.4746 0.1380 2.9166 0.4487

45 0.1661 0.035t 2.4527 0.137

46 0.5808 0.0371 5.0594 0.1268

CF/TD=Cash Flow/Total Debt; N/TA=Net Income/Total Assets; CA/CL=Current Assets/Current Liabilities; CA/NS=Current
Assets/Net Sales
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Table 2.2 Financial performance of non-default and default firms (Example 2)

Fim C/TA  WCTA S/TA LTD/TA SETA NI/TA RETA ROE  MK/BK BETA PE EPS  PRICE
(CLASS 1) Non-default firms
1 0.03 -0.01 0.25 0.53 0.15 0.01 0.08 8.43 1.70 1.77 16.35 0.88 16.35
2 0.00 -0.16 0.93 0.29 0.25 0.04 0.10 16.57 1.67 0.32 9.08 374 36.22
3 0.07 0.06 0.47 0.28 0.35 0.04 0.13 1124 1.86 -0.11 15.09 1.70 25.20
4 0.02 -0.02 0.44 0.39 031 0.03 0.13 9.66 1.50 -0.02 12.65 2.30 30.36
S 0.01 -0.07 0.43 0.27 0.34 0.05 0.17 14.20 1.73 0.02 12.82 3.46 42.30
6 0.01 -0.12 1.43 0.21 0.17 0.02 0.07 12.19 1.67 -0.11 19.26 311 43.583
7 0.04 0.05 2.43 0.29 0.50 0.00 0.03 794 0.86 0.38 4.72 1.21 13.26
8 0.10 0.13 343 0.00 0.42 0.12 -0.11 29.49 1.06 0.64 3.42 2.60 9.40
9 0.02 -0.22 4.43 0.25 0.31 0.05 0.15 17.18 1.79 0.20 8.12 345 33.84
10 0.07 0.04 5.43 0.33 0.14 0.03 0.06 21.29 1.77 0.73 7.33 211 16.79
11 0.09 0.09 6.43 0.31 0.40 0.00 0.13 0.49 1.02 0.26 17.04 0.08 16.70
12 0.11 0.14 7.43 0.18 0.46 0.04 0.14 10.24 1.46 0.14 17.11 3.11 43.47
13 0.01 -0.09 8.43 0.29 0.24 0.04 0.11 15.04 1.83 -0.19 12.57 2.78 3343
14 0.01 -0.11 9.43 0.35 0.29 0.04 0.19 14.31 2,03 0.08 15.47 1.56 21.97
15 0.01 -0.05 1043 0.40 0.11 -0.03 -0.06 -17.51 1.61 042 7068  -2.53 24.03
16 0.01 -0.21 11.43 0.22 0.21 0.04 0.03 29.87 1.72 0.15 5.34 427 24.49
17 0.02 -0.05 0.57 0.32 035 0.04 0.31 12.49 1.35 -0.03 12.60 3.21 40.36
18 0.01 -0.12 0.28 0.19 0.29 0.01 0.11 2.14 1.07 0.21 9.76 0.52 26.55
19 0.01 -0.06 0.31 034 0.30 0.02 0.03 6.50 1.98 0.10 19.33 2.17 60.10
20 0.00 0.01 0.28 0.51 0.20 0.05 0.21 26.20 3.1 0.12 14.15 1.81 24.08
21 0.00 -0.02 0.40 0.37 0.16 -0.05 0.24 -30.27 1.78 0.22 -16.75  -2.75 18.93
22 0.02 -0.02 041 0.39 0.24 0.02 0.10 1.17 1.51 -0.16 24.53 2.15 41.94
23 0.0t -0.02 1.23 0.25 0.27 0.04 0.13 15.60 244 -0.06 14.65 2.58 39.26
24 0.1t -0.06 0.31 0.34 0.09 0.03 0.04 7341 4.49 -0.17 -1.34 137 15.10
25 0.02 0.02 0.47 0.36 0.27 0.04 0.16 14.63 1.65 0.26 11.07 1.30 14.50
26 0.01 -0.08 0.30 0.35 0.30 0.0t 0.05 3.88 1.59 -0.14 27.27 0.59 21.00
27 0.06 0.05 0.52 0.34 0.30 0.03 0.14 10.53 1.27 0.25 12.75 1.61 18.99
28 0.01 -0.02 0.37 0.28 0.30 0.03 0.14 9.43 1.15 -0.02 11.50 3.18 39.11
29 0.02 -0.02 0.43 0.37 0.24 0.04 0.03 17.21 1.98 -0.06 13.60 4.42 47.88
30 0.01 -0.06 0.21 0.31 0.21 0.02 0.04 8.85 1.64 -0.06 12.49 2.85 3498
31 0.00 -0.12 0.49 0.28 0.36 0.04 0.18 12.98 1.66 -0.01 13.06 4.63 56.40
32 0.02 -0.01 0.86 0.23 0.34 0.03 0.02 10.72 1.05 -0.31 13.32 1.93 18.65
33 0.05 -0.45 0.20 0.13 0.11 0.0t 0.02 11.59 1.55 0.04 12.91 3.19 40.28
34 0.04 0.00 03s 0.24 0.30 0.04 0.25 12.26 1.13 -0.09 8.80 3.33 29.56
35 0.04 -0.06 1.38 0.26 0.24 0.02 0.03 10.24 1.16 0.13 9.00 1.65 16.02
36 0.01 -0.12 0.54 0.33 0.20 0.01 0.05 6.10 1.37 0.17 22.81 1.03 23.06
37 0.01 0.01 0.67 0.22 0.22 0.02 0.07 12.56 1.10 045 9.09 1.97 17.63
38 0.02 -0.12 1.62 0.32 0.22 0.02 0.04 11.20 1.45 -0.11 13.72 2.03 21.05
39 0.03 -0.06 0.23 0.61 0.17 0.02 0.05 11.86 1.42 0.13 11.07 1.36 15.50
40 0.01 -0.11 0.60 0.26 0.25 0.00 0.06 -0.19 1.88 0.13 186.88  -0.05  44.85
41 0.16 0.14 0.64 0.20 0.43 0.03 -0.03 25.22 1.89 -0.09 -1.98 3.00 19.24
42 0.00 -0.08 0.57 0.33 0.31 0.04 0.13 13.10 1.42 -0.07 10.62 3.86 41.85
43 0.0l 0.01 0.80 0.33 0.34 0.05 0.14 14.81 1.08 0.39 6.85 3.83 27.95
44 0.00 -0.02 0.78 0.37 0.34 0.04 0.14 8.96 1.30 -0.03 7.23 1.51 22.57
45 0.08 0.04 0.46 044 0.15 0.01 0.08 9.10 2.19 0.35 8.34 116 34.85
46 0.00 0.00 0.41 0.46 0.29 0.03 0.10 9.02 1.59 -0.03 14.72 2.65 45.03
47 0.01 -0.12 033 041 0.16 0.03 0.07 18.44 213 -0.0t 11.37 3.67 42.19
48 0.02 -0.03 0.61 0.38 0.27 0.02 0.01 8.31 1.38 0.10 10.84 1.31 21.89
49 0.01 -0.11 1.51 0.19 0.22 0.03 0.10 13.39 1.47 0.16 13.46 317 26.52
50 0.01 0.00 0.61 0.38 0.34 0.03 0.07 8.91 1.67 0.07 16.35 2.00 37.60
51 0.03 0.00 0.44 0.34 0.30 0.07 0.16 24.57 1.37 -0.02 497 5.15 27.83
52 0.01 -0.04 0.56 0.41 0.21 0.01 0.00 1.76 0.89 0.22 37625 0.34 15.05
53 0.01 -0.05 0.34 0.28 0.27 0.04 0.15 14.02 221 -0.35 16.36 1.62 25.35
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Table 2.2 (continued)

Fim C/TA  WC/TA S/TA LTD/TA SETA NIU/TA  RETA ROE MK/BK  BETA PE EPS PRICE
54 0.02 -0.17 0.39 0.27 0.32 0.05 0.19 1540 1.90 0.02 11.66 2.26 26.24
55 0.03 -0.08 0.66 0.38 0.19 0.02 0.04 10.57 1.55 -0.19 1371 312 47.15
56 0.13 0.09 0.20 0.37 0.30 0.03 -0.04 9.48 0.95 1.41 11.69 0.57 4.56
57 0.05 -0.02 0.58 0.27 0.27 0.03 0.12 11.87 1.47 0.18 12.89 421 §$1.30
58 0.08 -0.04 0.53 0.29 0.16 0.02 -0.09 14.33 1.48 0.30 983 1.83 18.19
59 0.01 0.01 0.47 0.39 0.25 0.03 0.15 10.14 1.27 -0.01 13.19 1.78 22,56
60 0.02 0.03 093 0.25 0.27 0.03 0.13 10.84 1.69 -0.03 14.28 275 36.55
61 0.02 -0.07 0.52 042 0.22 0.03 0.09 12.60 1.54 -0.01 12.06 228 27.74

(CLASS 2) Default firms
62 0.03 -0.10 0.96 0.72 0.27 -0.28 -0.28 -91.47 0.22 1.13 -0.46 -1.93 0.84
63 0.03 -0.10 0.19 0.0t 0.20 0.01 -0.73 -6.36 0.01 -0.22 0.08 -0.23 0.04
64 0.02 -0.05 0.69 0.17 033 -0.41 -110 12538 0.77 0.69 <231 -1.07 1.50
65 0.12 0.05 0.53 1.40 -0.57 -0.10 -2.26 20.17 -0.18 0.92 30.83 -1.54 0.93
66 0.02 -0.28 0.43 0.86 -0.22 -0.48 -0.67 220.16 1.99 0.29 -0.67 -10.21 4.00
67 0.03 -0.08 0.34 0.50 0.00 -0.07 -0.06 -3720 091 0.82 -4.00 -4.65 4.52
68 0.12 0.15 0.49 1.0t -0.15 -0.41 -0.32 237.02 0.23 -0.71 5.40 -9.67 0.69
69 0.06 0.02 0.45 0.39 0.33 0.01 0.02 4.47 0.37 0.69 5.03 0.47 3.88
70 0.02 045 2.89 0.13 0.18 0.01 0.05 8.66 6.12 0.58 61.57 1.22 83.13
71 0.00 -0.18 7.82 0.22 0.03 -0.01 -0.55 -22.62 5.05 0.04 20.62 -0.54 15.05
72 0.00 0.05 0.40 0.9 -0.15 -0.47 -0.66 313.70 0.33 0.86 -0.35 -12.65 2.63
73 0.03 -0.17 0.71 0.18 0.26 -0.13 -0.11 -48.87 0.61 1.29 -1.55 -2.30 3.56
74 0.04 0.14 0.48 0.72 -0.53 0.02 -1.02 -2.90 -0.16 1.33 -0.10 0.15 0.81
7S 0.19 0.32 119 0.00 0.63 -1.21 -1.76 -193.51 0.12 215 -0.19 -6.38 0.74
76 0.02 0.22 1.49 0.06 0.49 -0.21 -0.59 -42.86 0.80 0.69 -0.97 -0.86 0.81
77 0.06 031 0.74 0.15 0.07 -0.16 -0.09 -314.34 1.78 0.69 5.40 -9.29 18.25
78 0.04 -0.17 0.55 0.93 -0.20 -0.29 -0.68 142.04 -2.01 0.25 -1.08 -1.74 0.86
79 0.03 -1.10 0.13 0.00 -0.21 -0.12 -0.74 59.18 -0.01 0.69 -0.02 -1.08 0.02
80 0.01 0.01 041 0.50 0.11 -0.13 -0.11 -111.42 0.35 0.51 -0.93 -6.60 3.60
81 0.02 -0.47 1.08 0.35 -0.01 -0.06 -0.09 166.68 -12.3 1.72 -1.36 -3.01 3.19
82 0.01 -0.45 043 023 -0.08 -0.22 -0.33 274.42 0.85 0.10 -1.05 -1.95 0.88
83 0.01 -0.71 0.14 0.00 0.15 0.0t -0.10 9.91 0.23 0.72 4.83 0.24 0.58

C/TA: Cash/Total Assets; NWC/TA: Net Working Capital/Total Assets; S/TA: Sales/Total Assets; LTD/TA: Long-term
Debt/Total Assets; SE/TA: Shareholder Equity/Total Assets; NI/TA: Net Income/Total Assets; RE/TA: Retained Earnings/Total
Assets; ROE: Return on Equity; MK/BK: Market/Book Ratio; BETA: Beta; PE: Price over Earnings; EPS: Earnings per Share;
PRICE: Share Price

Table 2.3 Bounds of hyper-boxes for Example 1

Hyper-boxes

& Classes CF/TD NI/'TA CA/CL CA/NS
LB UB LB UB LB UB LB UB
Boxl-classt  -0.56 0.12 -0.41 0.11 0.33 1.68 0.16 0095
Box2-class2  -0.33 058 -0.09 0.14 1.80 506 0.13  0.69
Box3-class2 0.14 048 -0.03 0.09 046 124  0.19 0.26
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Table 2.4 Computation results for real datasets

Examples Models Scenario A Scenario B Scenario C

Our work 83.23% 81.83% 86.96 %

Gehrlein (1986) 82.00% 81.69% 86.96 %

Sueyoshi (2006) 72.77% 69.53% 76.09%

E(’;%“ﬂ‘;";’)' SMO 77.89% 77.56% 71.74%
OneR 79.38% 81.38% 80.43%

LDA 81.43% 76.28% 84.78%

NN 78.81% 79.53% 71.74%

Our work 91.33% 90.92% 91.57%

Gehrlein (1986) 85.17% 86.67% 81.93%

Sueyoshi (2006) 89.46% 89.41% 89.16%

E("Ifi‘rrl‘ﬁlze)z SMO 95.25% 93.16% 95.18%
OneR 93.25% 92.55% 92.77%

LDA 89.68% 90.24% 90.36%

NN 90.31% 90.82% 91.56%

Our work 95.33% 95.16% 97.33%

Gehrlein (1986) 93.51% 93.64% 94.00%

Sueyoshi (2006) 91.42% 91.91% 90.67%

Ex?{:‘ils’;e 3 SMO 96.09% 96.67% 96.67%
OneR 94.31% 94.22% 92.67%

LDA 96.84 % 97.06% 98.00 %

NN 95.13% 95.51% 96.67%
Our work 64.84%" 62.75%" 65.89%"

Gehrlein (1986) 57.16%° 56.68%" 56.07%"

Sueyoshi (2006) 44.34%" 45.34%" 43.48%"

E’(‘g’;;g‘:) 4 LDA 61.07% 60.56% 64.95%
SMO 55.38% 55.84% 54.67%

OneR 55.85% 55.12% 55.14%

NN 61.43% 59.97% 59.35%
Our work 85.48%" 85.34%" 85.42%"

Gehrlein (1986) 79.20%" 78.98%" 79.17%"

Sueyoshi (2006) 56.00%" 53.54%" 52.38%"

E(";“({E'{;’:f SMO 81.25% 82.35% 82.14%
' OneR 64.08% 64.82% 64.88%
LDA 84.81% 85.19% 85.12%

NN 76.97% 75.95% 74.40%

a: some of the MILPs solved to optimality within 200 seconds; b: none of the MILPs solved to optimality within 200 seconds

50



Chapter 2. A Mixed Integer Optimisation Model for Data Classification

Table 2.3 shows dimensions (lower and upper bounds) of hyper-boxes for each class
as designed by our proposed approach using the complete dataset of example 1 for
training. Three hyper-boxes successfully capture the patterns of bankrupt and non-
bankrupt firms and only three samples are misclassified. The testing accuracy of the
proposed approach is then evaluated and compared with six other classification
methods over three testing scenarios (scenario A, B and C) listed above. According to
the computational results (see Table 2.4), our hyperbox-based approach obtains the
best prediction accuracy under all scenarios for three out of all five datasets studied.
In the second example, our approach lists as the third best methods out of all six
literature methodologies. In the Iris dataset (example 3), our method obtains slightly
worse results than LDA, SMO and NN but better than OneR and the other two

mathematical programming approaches.

2.8.2 Synthetic Datasets

In this section, two synthetic datasets are generated using different uniform
distribution functions to evaluate the performance of our approach. In the first
synthetic example, 100 samples with two attributes are generated belonging to two
classes with 50 samples per class. Particular characteristics of the proposed datasets
are that two classes of data are well separated but samples of each class distribute
within different disjoint regions. The second synthetic dataset consists of 200 samples,
100 points for each class (50% of all training samples overlap). Table 2.5 provides
details for the distribution of all synthetic data samples and Figure 2.6 and 2.7

graphically show both synthetic examples used in our study.

Table 2.5 Data distribution of synthetic examples

Data Samples Attribute 1 Attribute 2 Class membership
Sy = S5 U(1,2) U(1,3) Classl
Synthetic S26 — Sso U(2,3) U2.4) Classl
Example 1 S5 — S35 U(1,2) U@3,4) Class 2
S16 = S100 U(2,3) U(1,2) Class2
Synthetic )= Si00 U(1,2) U(1,2) Class1
Example 2 Si01 = S200 U(1.5,2.5) U(1,2) Class2
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Table 2.6 Bounds of hyper-boxes for synthetic example 1

Hyper-boxes& Classes Attributel Attribute?2
Lower Upper Lower Upper
Box1-classl 1.07 2.00 3.11 3.87
Box2-class2 1.01 2.98 2.01 3.09
Box3-classl 2.03 2.93 1.01 1.99
Box4-class2 1.10 1.40 1.09 1.73
Box5-class2 2.01 2.85 3.12 3.90

Table 2.7 Computational results for synthetic examples

Examples Models Scenario A Scenario B Scenario C

Our work 92.07% 91.20% 93.00%

Gehrlein (1986) 63.00% 62.00% 72.00%

Sueyoshi (2006) 65.67% 63.60% 71.00%

Synthetic SMO 49.60% 48.30% 82.00%
Example 1

OneR 74.53% 73.67% 75.00%

LDA 43.27% 44.20% 43.00%

NN 83.61% 82.73% 87.00%

Our work 79.27 % 78.47% 81.00%

Gebhrlein (1986) 78.67% 77.93% 77.50%

Sueyoshi (2006) 58.63% 57.13% 60.00%

Synthetic SMO 78.90% 79.33% 78.00%
Example 2

OneR 79.16% 78.87% 77.00%

LDA 78.77% 77.88% 79.00%

NN 77.12% 76.93% 77.50%

First, all samples in the first synthetic dataset are used for training and Table 2.6 lists
the lower and upper bounds of all hyper-boxes generated. According to the hyper-
boxes obtained, disjoint regions of these two classes of samples are captured
successfully by five boxes and only one sample is misclassified. In terms of prediction
accuracy, our approach is compared with other six classification methods. According
to the computational results obtained in Table 2.7, the proposed methodology
outperforms other approaches over all three scenarios in the first synthetic example. In

the second synthetic example, we show how our approach can solve not only disjoint
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datasets but also examples with severe overlap characteristics. In this dataset, the
distributions of each class of data samples partially overlap each other. Under the
three testing scenarios, it can be seen that our method still gets the best performance
among all seven classifiers over scenarios A and C. On scenario B, our approach

achieves the third best prediction over all methodologies listed (see Table 2.7).

Finally, we adopt the following scoring scheme to evaluate the testing performance of
each methodology over all seven examples studied (five real and two synthetic
datasets). For each example and particular scenario, the method with the highest
testing accuracy is given seven points; the second highest approach obtains six points
and so on. The average score of each approach over all examples is reported in Table
2.8 and the highest score for each scenario is in bold. It can clearly be seen that our
approach outperforms the other six methods in terms of prediction accuracy over all

three testing scenarios.

Table 2.8 Average scores of each approach for all three scenarios

Approaches Scenario A Scenario B Scenario C
Our work 6.43 6.00 6.57
Gehrlein (1986) 3.29 3.43 3.86
Sueyoshi (2006) 1.57 1.57 2.00
SMO 4.14 4.71 4.57
OneR 4.14 4.14 3.71
LDA 4.43 4.00 5.00
NN 4.00 4.14 4.29

2.9 Concluding Remarks

In this chapter, a rigorous mixed integer optimisation model for data classification
problems has been proposed. In the training part, hyper-boxes are constructed to
enclose the samples which belong to the same class. The optimal location and
dimension of each box is determined by an MILP model so as to minimise the total
number of misclassifications. An iterative solution procedure has been proposed to
allow multiple boxes for each class. In the testing stage, the memberships of some
new data samples have been identified by calculating the distances between testing

samples to all existing hyper-boxes established in the training part. The unclassified
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sample is then assigned to the closest box. Finally, the applicability of the
methodology has been demonstrated through five literature examples and two
synthetic datasets. The computational results indicate that our approach is competitive
in terms of prediction accuracy when compared with other alternative classification

methodologies.

As mentioned in several papers (Adem and Gochet, 2006; Gallagher et al., 1997; Glen,
1999; Stam and Joachimsthaler, 1990), the existence of binary variables makes MIP-
based classification models difficult to achieve optimality. Similarly to other MIP
representations, our approach can only solve problems with relatively few training
samples. In the next chapter, an efficient solution approach is developed to tackle

datasets with more training instances and complex data structures.
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Chapter 3

A Two-stage Optimisation-based Solution

Approach for Data Classification

In this chapter, an efficient two-stage solution approach for data classification
problems is developed using mixed integer optimisation. In the first stage, all training
samples are initially partitioned into a number of disjoint regions without considering
their class labels. In the second stage, the hyper-box based approach (Multi-HB)
proposed in Chapter 2 is then applied to each partitioned region to complete training.
This treatment decomposes all training samples into a number of independent batches
thus reducing significantly the computational burden of approach (Multi-HB) and
extending the applicability of hyper-box classifiers to larger and more complex data

mining tasks.
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3.1 Introduction

In Chapter 2, hyper-box classifiers have been developed to solve data classification
problems using mixed integer optimisation. The applicability of the proposed
optimisation approach (Multi-HB) has been demonstrated through a number of
synthetic and real datasets. The computational results indicated that this approach is
very competitive in terms of prediction accuracy when compared with other literature
approaches. It is widely accepted that the existence of binary variables makes MIP-
based classifiers difficult to achieve optimality. A number of mathematical
programming-based heuristics have been developed to reduce the computational
efforts when solving the corresponding MIP models. Stam and Ragsdale (1992)
proposed a two-stage method where training samples that are more difficult to classify
are identified in the first stage and analysed in more detail in the second stage. The
computational results suggested that the approach is particularly suitable for
discriminant problems with outlier contaminated data. Sueyoshi (2001) developed a
modified two-stage heuristic and tested it on both real and synthetic datasets. This
modified two-stage method outperformed standard LP-based discriminant analysis
models (Freed and Glover, 1986) and the two-stage method by Stam and Ragsdale
(1992). Recently, an extensive computational comparison of both two-stage
mathematical programming approaches was performed by Glen (2006). Different
objective functions such as minimisation of the sum of deviations (MSD) and
maximisation of classification accuracy (MCA) are used to test the prediction
performances of both approaches using synthetic and real datasets. The computational
results showed MP-based methods are' competitive when comparing with other
methodologies such as Linear Discriminant Analysis (LDA). It is also noted that a
single technique does not produce the best prediction under all data conditions.
Different methods should therefore be considered in developing classification models,

with the most appropriate method chosen for a particular problem.

In Chapter 2, an iterative solution approach, Multi-HB, was proposed to solve general
data classification problems. This approach involves solving a series of MILP models
by allowing possible assignment of multiple hyper-boxes for each single class so as to
identify hidden patterns behind training datasets. Similar to other MIP-based
methodologies, the proposed approach, Multi-HB, in Chapter 2 can only solve

57



Chapter 3. A Two-stage Optimisation-based Solution Approach for Data Classification

problems with relatively few training samples. Such computational difficulties usually
exist in MIP-based classifiers due to the existence of binary variables (Adem and
Gochet, 2006; Gallagher et al., 1997; Glen, 1999; Stam and Joachimsthaler, 1990).
The aim of this chapter is to propose efficient solution algorithms based on hyper-box
classifiers for general data classification problems so as to tackle data classification
cases with more training samples and complex structures without compromising
significantly the prediction accuracy. The basic idea is to develop an efficient
decomposition scheme to split training samples into a number of batches. Each
training batch involves fewer samples thus reducing the computational burden when

using the Multi-HB approach.

This chapter is structured as follows: in the next section, two mixed integer linear
programming (MILP) models are proposed to partition all training samples into two
non-overlapped regions through the most separable attribute. An iterative
decomposition scheme is developed in section 3.3 to split training samples further into
multiple disjoint sub regions. Section 3.4 applies hyper-box classifiers to each
partitioned region identified during the first stage to complete training using Multi-HB.
Section 3.5 illustrates the applicability of the proposed solution approach through a
number of synthetic and real datasets. Finally, some concluding remarks are made in

section 3.6.

3.2 A Mathematical Model for Partitioning Training

Samples

In order to reduce the computational efforts needed in the training stage of Multi-HB
approach (see Chapter 2), a two-stage solution algorithm is proposed in this chapter.
First, a decomposition scheme is developed to partition all training samples involved
into a number of disjoint, non-overlapped regions without considering their class
memberships. In the second stage, hyper-box classifiers are then applied to each

region to complete training using Multi-HB.

In order to achieve the goal of the first stage, mathematical programming techniques
are applied first to allocate all samples into two regions. An iterative splitting
procedure is then developed in the next section to further partition all training samples

into potentially multiple non-overlapping regions.
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Here, a mixed integer linear programming (MILP) model (Bi-Split) is formulated to
partition all samples into two non-overlapped regions. Two hyper-boxes with M
dimensions are used to enclose all training samples. Non-overlapping constraints are
introduced to avoid these two regions occupying the same position. Balancing
constraints are proposed to avoid the existence of regions enclosing too many or too
few samples. The sets, parameters and variables involved in the proposed model are

listed below:

Indices

s Sample (s=s), 52, ..., §)

m Attribute (m=m,, my, ..., M)

my Most separable attribute

L j Regions

Set

F Feature selected for partition

A Samples needed for partition
Parameters

A, Value of sample s on attribute m

£ Minimum distance between different regions.
LB, Lower bound of partitioned regions
UB, Upper bound of partitioned regions

The formulation is based on the following key variables:
Binary variables

E 1, if sample s is included in disjoint region 1; O, if sample s is enclosed

5

in disjoint region 2.
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Y 0, if regions i and j do not overlap each other on attribute m; 1 otherwise

ijm
Continuous variables

LE. Length of region i on attribute m

m

X Central coordinate of region i on attribute m

m

3.2.1 Data Enclosing Constraints

First, all samples should be enclosed either in regions i ori,. Therefore, the following

constraints:
LEI' m
AstXil,m_ 2" Vse A,m (3.1)
LEi m
A < X,‘I_"I + 2" Vse A,m (3.2)
or
LE,
A,2X, - 22' Vse A,m 3.3)
LEi m
A < Xi:,rn + 2" Vse A,m (3.4)

must be satisfied. These enclosing conditions (3.1-3.4) can mathematically be

modelled in a mixed integer linear form:

LEi m N

A,2X, - 2" -U(1-E)) Vse A,m (3.5)
LEi m

A2 X, == =UE, VseAm  (3.6)
LEi m

Ap <Xyt — 2+ U(=E,) VseAm  (3.7)
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LEim
A <X. + 22‘ +U-E, Vse A,m (3.8)

sm im

where binary variable E is used to indicate if sample s is allocated into region i/ and
U is a suitable upper bound. When binary variable E has a value of 1, constraints
(3.1) and (3.2) are active and sample s is allocated to region {, . Sample s is in region i,
when E_ has a zero value. It should be noted that the above constraints (3.5-3.8)

guarantee every sample in the training set is included in either region i ori, .

3.2.2 Non-overlapping Constraints

In order to guarantee that both regions do not overlap each other, the following

inequality condition needs to be satisfied on at least one of M attributes:

LE, +LE
X -xXx >-—-_ 7

im jm — 2

+e  Vmij#i (3.9)

where € is defined as a small positive number in condition (3.9) to prevent two
regions from sharing the same border on attribute m. The above non-overlapping

condition can be modelled as the following mixed integer linear form:

LEim+LE'm
X=X, +U Y, 2—"m _—in

2= e Vm,i, j#i  (3.10)

where binary variable Y,

,m has a value of zero when regions i/ and i, are non-
overlapped on attribute m. Overlapping between these two regions is avoided by

enforcing Y, to the value of zero on at least one dimension:

ijm

M

Y, +Y,)S2M -1 Vi< (3.11)

Jjim
m=1

In order to reduce the computational demands of the model, the above non-
overlapping constraints (3.10 and 3.11) can be activated only on a number of selected
attributes, F. Therefore inequality constraints (3.10) and (3.11) can be rewritten as:

LE_+LE.
X=X, +U"-Y, Z—ﬂz—’—"'+e Vme F,i,j#i (3.12)

ijm
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> (¥, +Y,)S2F|-1 Vi< (3.13)

meF

where ]F | denotes the cardinality of set F. In this chapter, we only select the most

separable feature, my, to perform the partition (see section 3.2.4 to select the most
separable feature). Therefore, constraint (3.13) can be eliminated and the non-

overlapping constraint can be simplified as:

LE, +LE,,
> 1y 21y

iymg - im, = 2

+& (3.14)

3.2.3 Boundary Conditions

The lower and upper bounds of regions i, and i, should not exceed particular boundary

conditions:

LE

X, -==21B, Vi,m (3.15)
X, +I—‘?ﬂs UB, Vi,m (3.16)

where LB, and UB, denote the lower and upper bounds of sub region i. These
boundaries will be updated as the minimum/maximum values of the parent region of
i,andi,. Such an iterative algorithm is applied later in this chapter (see section 3.3) to

decompose all training samples into multiple regions. Setting appropriate boundaries

of each region guarantees all partitioned regions are not overlapped each other.

3.2.4 Balancing Constraints

Next, we describe how the maximum number of samples included in each region is
enforced. Developing such constraints is able to balance the number of samples
enclosed in each region thus avoiding the existence of regions including too many or

too few samples. Since binary variable E_ is introduced to indicate if sample s is

enclosed in regioni, ZES denotes the total number of samples in region i and

s

Z(I—Es) indicates the number of samples in regioni,. The following balancing

s
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constraints enforce that the number of training samples enclosed in each region are

less than N_S:

DY ESN_S (3.17)
D (A-E)SN_S (3.18)

Here, N_S is a user-defined parameter which should be greater than 50% of the total
number of samples involved to guarantee all samples are included. In this chapter,
N_S is set as 2/3 of all partitioned samples. Overall, the proposed MILP model to
partition all training samples into two disjoint regions is to find an feasible solution

(lower and upper bounds of each region) so as to satisfy:
[Bi-Split]
Data enclosing constraints: (3.5)-(3.8)
Non-overlapping constraint: (3.14)
Boundary conditions: (3.15) and (3.16)
Balancing constraints: (3.17) and (3.18)

E.Y, e{0I}LE, 20

In the Bi-Split model, we aim at finding a feasible solution satisfying all constraints
listed above. This can be achieved by optimising a pseudo objective function (i.e.
maximise Obj where Obj is fixed to a constant) under all constraints required. It is
also noted that non-overlapping constraint (3.14) are only active on the most separable
feature, my. Next, we propose an MILP model to find such an attribute. Recently,
Frank and Rubin (2003) described an MILP formulation for feature selection and data
transformation based on maximisation of pairwise class separability. Here, a
simplified MILP formulation is proposed below to identify the most separable
attribute among all classes using the same optimisation objective. The indices,
parameters and variables used in the proposed MILP model (MILP-FS) are listed

below:
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Indices

m Attribute (m=m,, my, ..., M)

cc' Class (¢ =¢,c,..C)

Parameters

B.., Separability of samples in classes ¢ and ¢'on attribute m
r The total number of selected features

Binary variables

EY, 1, if attribute m is selected; O otherwise

The objective function is maximisation of the separability of all pairs of classes on all

attributes:

Max > > > B, EY,

Binary variable EY, is used to indicate if feature m is selected. Selecting at most r

features can mathematically be modelled as:

D EY, <r

In this chapter, parameter r is set as 1 to find the most separable feature, my. The term

B, in the objective function denotes the separability function between classes ¢ and

¢' on attribute m and is defined by:

/’lrm - #c'm

Gcm ’ Gr%
Gcm + O-c'm

B ., =tanh(c- ) Ve,c',m

where x4, and o, are the mean value and standard deviation of samples belonging to

classes ¢ on attribute m. It should be added that model MILP-FS is resolved for all
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training samples in every partition level described in section 3.3 to obtain the most

separable attribute for each region to be partitioned.

3.3 An Iterative Bi-Partition Procedure

In this section, an iterative partition procedure is introduced to enclose all training
samples into multiple sub regions using the MILP models proposed in section 3.2.
The algorithm starts by including all samples into two regions using models Bi-Split
and MILP-FS. If the number of samples inside a sub region is more than a user-
defined parameter, N_P, both models (Bi-Split and MILP-FS) are used to partition
that region further into two smaller sub regions. The algorithm stops when the number
of enclosed samples in each sub region is less than N_P. Figure 3.1 illustrates the
detailed partition procedure where all samples are included in five regions. First, ail
training samples are partitioned into two regions (R; and R;). Since both regions
contain more than N_P samples (indicated as white boxes at level 1 of Figure 3.1), R,
is further decomposed in to regions R;; and R;; while R; is partitioned into R>; and R;..
It is noted that the lower and upper bounds of sub regions R;; and R;; are the
minimum and maximum values of their parent region R; while the boundaries of
region R; are set as the boundary conditions of R;; and R,;. Such treatment can
guarantee that all current partitioned regions (R;;, R;2, R2; and Rz;) do not overlap
each other. Sub regions R;;, R;; and R;; are highlighted as grey boxes as they contain
fewer than N_P samples thus no further partition is required. Region R; is then
partitioned one level further to guarantee all disjointed regions meet the termination
criterion. Figures 3.2 to 3.4 demonstrate graphically how two classes of samples are
partitioned into five sub regions indicated in Figure 3.1. Solid lines in Figures 3.4
indicate final partitions while partitions of the previous levels are highlighted as dash

lines.

For each particular partition level, disjoint regions i, and /, are independent so that
further partitioning of one region will not affect the other regions. For example,
partitioning region R; into sub regions R;; and R, in Figure 3.1 does not influence the
partition procedure of region R,. Therefore, the proposed iterative bi-partition
procedure can also be parallised by simply distributing each disjoint region into

different machines so as to accomplish the partition.
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3.4 Training and Testing in Disjoint Regions

In sections 3.2 and 3.3, all training samples are partitioned into a number of non-
overlapped, disjoint regions. In the second stage of our approach, samples in each
region are used for the training using the iterative hyper-box based procedure, Multi-
HB, which has been developed in Chapter 2. It should be noted that the lower and
upper bounds of all hyper-boxes during the training procedure is enforced by the
corresponding boundaries of each partitioned region described in sections 3.2 and 3.3.
By splitting all samples into a number of non-overlapping batches, the training task
involves solving the associated MILP models in algorithm Multi-HB on fewer

training samples thus reducing significantly the required computational resources.

Similar to the iterative bi-partition procedure developed in the first stage of our
approach, the training of each disjoint region is also independent of each other.
Hyper-boxes can be obtained through training samples in each partitioned regions
using Multi-HB. Therefore, the training task can be completed in parallel on different
computers to finish training of each partition region without considering other data

samples.

The sets and parameters involved in the proposed two-stage solution algorithm are

listed below:

Sets

1 Region including all training samples
0 Regions to be partitioned

o Training regions

Overall, the proposed solution approach for data classification problems is

summarised below (see Figure 3.5 for the algorithm flowchart):
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[Algorithm MILP-decomp]
STEP 1: Initialisation ©=1.®=0.

STEP 2: Solve MILP-FS to find the most separable

attribute for each region in ©.

STEP 3: Solve Bi-Split to partition each region in ©
into two disjoint regions i and i,. Update © by replacing

parent region i by sub regions i and i,.

STEP 4: Move all regions in © with no more than N_P

samples in ® . If © =0, go to STEP 5; otherwise, go to
STEPW2I,

STEP 5: Solve MILP-HB to each derived region in @ to

obtain hyper-box classifiers.

Solve MILP-FS to find the
most separable feature for

each region in © .

Solve Bi-Split to partition
each regions in © into
two disjoint sub regions

Move all regions in ©
with no more than N_P
samples in @ .

Solve MILP-HB to each
derived region in @ . STAGE 2

Figure 3.5 Flowchart of the proposed two-stage data classification algorithm
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After training, the same testing scheme introduced in Chapter 2 is applied to predict
the class membership of any new sample. The distances between testing sample s to
all hyper-boxes obtained from the training procedure are calculated and sample s will

then be allocated to the nearest existing hyper-box.

3.5 Computational Results

In this section, the applicability of the proposed two-stage approach (MILP-decomp)
is demonstrated via a number of synthetic and real examples. All mathematical
models and solution algorithms are implemented in GAMS modelling system (Brooke,
et al., 2003) on a 3.40 GHz PC with 2GB memory using the CPLEX mixed-integer
optimisation solver with 1% margin of optimality for the branch and bound procedure.
Each MILP model is solved within 200 seconds. In our two-stage solution algorithm,
different values of N_P (50 and 100) are tried and the corresponding prediction
accuracies are reported respectively. Moreover, the prediction performances of the
proposed approach are compared with six different classification models including
LDA, SMO, NN, OneR and two MILP formulations (Gehrlein, 1986; Sueyoshi, 2006)
through the same training and testing scenarios (Scenarios A, B and C) described in
Chapter 2. Scenarios A and B are repeated 50 times and the mean prediction accuracy
are reported in Tables 3.1 and 3.3. All other literature approaches adopt the same

parameter settings as those used in Chapter 2.

3.5.1 Real Datasets

In this section, five real datasets are selected to evaluate the prediction performances
of the proposed approach. The first four examples are available in UCI machine

learning database (http://kdd.ics.uci.edu) and the last real dataset is provided by Dr. P.

Angeli, UCL, through personal communication. The first two examples (Glass and E. coli
datasets) appeared in Chapter 2 are revisited in this chapter. The third example is the
BUPA liver disorder dataset involving two classes (normal and disorder) and 345
samples. Each sample consists of six independent features. The first five features are
all blood tests which are sensitive to liver disorders that might arise from excessive
alcohol consumption. The last feature is the number of half-pint equivalents of
alcoholic beverages drunk per day. The fourth dataset contains the records of 768

diabetes patients (two classes). Each sample includes eight features. The last real
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dataset reflects the flow patterns of gas-liquid two phase flows in microreactors. All
524 samples are partitioned into three distinct classes (Taylor, Bubbly and Thrun
flows) and each sample is characterised by five dimensionless numbers. The
prediction performances for the selected five real examples under three different
scenarios (A, B and C) are summarised in Table 3.1 and the best performance for each

scenario is indicated in bold.

Table 3.1 Comparative prediction accuracies for real datasets

Examples Models Scenario A Scenario B Scenario C
MILP-decomp50° 66.00% 64.66% 67.76%
MILP-decomp100 65.78%" 64.59% * 67.76% *

Gehrlein (1986) 57.16% ° 56.68% " 56.07% °
Sueyoshi (2006) 44.34% ° 45.34% ® 43.48% °

Glass SMO 61.07% 60.56% 64.95%
OneR 55.38% 55.84% 54.67%

LDA 61.07% 60.56% 64.95%

NN 61.43% 59.97% 59.35%

MILP-decomp50 83.76% * 84.02% * 84.21%"
MILP-decomp100 84.16% * 84.04% ° 84.42%"
Gehrlein (1986) 79.20% ® 78.98% ° 79.17% °
Sueyoshi (2006) 56.00% ° 53.54% ° 52.38%°

E. coli SMO 81.25% 82.35% 82.14%
OneR 64.08% 64.82% 64.88%

LDA 84.81% 85.19% 85.12%

NN 76.97% 75.95% 74.40%

MILP-decomp50 65.40% * 64.66% * 66.08% *
MILP-decompl00  67.75% * 66.85% * 69.65%"

Gehrlein (1986) 49.70% ° 50.25% ° 48.70%"

. Sueyoshi (2006) 64.91% ° 64.61% 66.67%"
Liver SMO 57.42% 57.90% 57.97%
OneR 55.89% 56.22% 53.33%

LDA 65.98% 66.01% 69.85%

NN 67.61% 67.87% 67.24%

a: some of MILPs are not solved to optimality; b: all MILPs are not solved to optimality; ¢: can not return any solution after
10000 seconds; d: the number after MILP-decomp denotes the value of N_P used
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Table 3.1 (continued)

Examples Models Scenario A Scenario B Scenario C
MILP-decomp50°  69.77%* 68.24%° 66.80% *
MILP-decomp100  72.38%* 71.20%* 73.44%°

Gehrlein (1986) 76.75% ® 76.46% " 76.95% °

. Sueyoshi (2006) 63.77%" 64.09%"° 64.98%

Diabetes

SMO 68.57% 68.24% 68.75%

OneR 62.91% 61.13% 60.81%

LDA 76.70% 76.39% 77.34%

NN N/AS N/AC N/A®

MILP-decomp50 78.89% 79.11% 79.92%
MILP-decomp100 83.55% 83.10% 83.23%

Gehrlein (1986) 83.26% 82.45% 83.40%

Flow Sueyoshi (2006) 57.70% 57.54% 58.26%
SMO 82.32% 81.51% 82.06%

OneR 82.01% 81.02% - 80.72%

LDA 83.33% 82.97% 78.81%

NN 86.32% 87.54% 86.06%

a: some of MILPs are not solved to optimality; b: all MILPs are not solved to optimality; c: can not return any solution after
10000 seconds; d: the number after MILP-decomp denotes the value of N_P used

The first two real examples (Glass and E. coli datasets) solved by the proposed hyper-
box approaches in Chapter 2 are revisited here. Comparing with the iterative method
(Multi-HB) in Chapter 2, better prediction accuracies are achieved for the Glass
example while slightly worse performance is obtained for E. coli example using
MILP-decomp. For the following three real examples (Liver, Diabetes and Flow
datasets), the iterative hyper-boxes approach (Multi-HB) in Chapter 2 becomes very
difficult to solve. In comparison, the proposed solution approach in this chapter is able
to obtain very promising prediction accuracies when compared to other competing

literature methodologies (see Table 3.1).

It is not surprising that fewer disjoint regions are obtained when partitioning all
samples using larger N_P values in the first stage of our approach. It is indicated that
more samples are to be trained simultaneously in the second stage through hyper-box
classifiers (Multi-HB). Therefore, more demanding computational resources are

needed when larger N_P are used (see Table 3.1).
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3.5.2 Synthetic Datasets

In this section, two synthetic datasets are generated to evaluate the performance of our

two-stage approach (MILP-decomp). Both datasets consist of 400 samples with two

classes and adopt the same data distribution functions introduced in Chapter 2. (see

Table 3.2).
Table 3.2 Data distribution of synthetic examples
Data Samples Attribute 1 Attribute 2 Class membership
S, = S100 U(1,2) U(1,3) Classl
Synthetic S101 = S200 U@2,3) U2,4) Class1
Example 1 s, — 530, u(1,2) UG4) Class 2
S301 = Sa00 U(2,3) U(1,2) Class2
Synthetic S, = Sa00 U(1,2) U(1,2) Classl
Example 2 Sa01 = Sa00 U(1.5,2.5) U(1,2) Class2
Table 3.3 Comparative results for synthetic datasets
Examples Models Scenario A Scenario B Scenario C
MILP-decomp50° 98.00% 98.18% 98.50%
MILP-decomp100 98.47 % 98.27 % 99.00% *
Gehrlein (1986) 65.55% ° 64.58% ° 58.00% °
Synthetic  Sueyoshi (2006) 64.52% ° 64.67% ° 73.00% °
Example 1 SMO 56.00% 53.00% 48.75%
OneR 70.00% 69.00% 66.00%
LDA 48.77% 50.45% 51.75%
NN 80.12% 77.85% 81.25%
MILP-decomp50 75.50% 73.40% 70.00%
MILP-decomp100 78.35% 77.97 % 79.50 %
Gebhrlein (1986) 76.33% 75.43% 73.50%
Synthetic Sueyoshi (2006) 60.85% 60.77% 60.25%
SMO 76.47% 75.88% 77.75%
Example 2 OneR 76.66% 76.58% 77.50%
LDA 75.82% 75.75% 77.25%
NN 76.93% 76.17% 76.75%

a: some of MILPs are not solved to optimality within 200 seconds; b: all MILPs are not solved to optimality within 200 seconds
d: the number after MILP-decomp denotes the value of N_P used
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Table 3.3 summarises the comparative results of our approach with other six literature
methodologies. The computational results clearly show that our approach MILP-
decompl00 achieves the best prediction accuracy over all three testing scenarios.
Furthermore, it is noted that our approach obtains very high prediction accuracies
(98% to 99%) when classifying samples with disjoint regions due to the hyper-box

nature of our approach (see the synthetic example 1 in Table 3.3).

It is widely accepted that no approach can be superior to all other methodologies for
all examples examined (Lam and Moy, 2002; Adem and Gochet, 2006). The method
which obtains the best prediction accuracy on one dataset may perform badly on the
other. The prediction performances are subject to a number of issues including the
distribution of data samples, the mathematical structures of classifiers and the
parameter values specified. In order to justify the prediction competitiveness of each
approach compared in this chapter, the same scoring scheme proposed in Chapter 2 is
applied to evaluate the testing performance of each methodology over all seven
examples studied (five real and two synthetic datasets). For each example and
particular scenario, the method with the highest testing accuracy is given eight points;
the second highest approach obtains seven points and so on. The average score of
each approach over all examples is reported in Table 3.4 and the best average score
for each scenario is highlighted in bold. It can clearly be seen that our approach
(MILP-decomp 100) outperforms all other six methods in terms of prediction

accuracy over all three testing scenarios.

Table 3.4 Average scores of each approach for all three scenarios

Approaches Scenario A Scenario B Scenario C
MILP-decomp50 5.00 5.00 4.86
MILP-decomp100 7.29 7.14 7.14
Gehrlein (1986) 4.29 4.00 4.29
Sueyoshi (2006) 2.14 243 2.71
SMO 4.00 4.29 4.71
OneR 3.29 3.57 343
LDA 5.14 543 5.71
NN 543 5.43 4.86
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3.6 Concluding Remarks

In this chapter, an efficient two-stage solution approach (MILP-decomp) for data
classification problems has been developed using mixed integer optimisation. In the
first stage, an iterative algorithm has been proposed to partition all training samples
into a number of non-overlapped, disjoint regions without considering the class
membership of each sample. In the second stage, hyper-box classifiers (Multi-HB)
have been applied to each region to complete the training task. Such approach
involves solving relatively smaller MILP models comparing with Multi-HB thus
extending the applicability of mathematical programming-based classification
methodologies to large and complex datasets. The prediction accuracy of the proposed
solution approach has been compared with other literature methodologies under three
different testing scenarios through a number of synthetic and real datasets. It is shown
that the proposed two-stage solution algorithm (MILP-decomp100) has successfully
achieved competitive predictions within modest computational requirements. It is also
noted that no more than 100 samples are included in each partitioned disjoint region is
suitable for all cases selected in this chapter to achieve satisfactory prediction
accuracies. Finally, we should emphasise that the solution approach described in this
chapter has a highly parallel structure which can be further exploited to improve the

computational efficiency.
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Chapter 4

Finding Community Structures in Complex

Networks using Mixed Integer Optimisation

Complex networks are general and flexible to virtually represent any natural/synthetic
systems. Many real networks of interest including social, technological and biological
networks are found to divide naturally into communities. Such modular structures
usually shed light on distinct functionalities. The detection of community structure
has been used to reveal the relationships between individual objects and their
groupings in networks. Since the quality of partitioning a network into communities
was measured by the Modularity metric (Newman and Girvan, 2004), the optimal
community structure a network can be achieved by optimising its network modularity
value. This chapter presents a mathematical programming approach to identify
optimal community structures in complex networks based on the maximisation of
network modularity metric for partitioning a network into modules. The proposed
optimisation-based methodology can be solved to global optimality using standard

optimisation software. Special symmetry-breaking constraints are developed to
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eliminate equivalent solutions. Additional features such as minimum/maximum
module size and balancing among modules can easily be incorporated in the model.
The applicability of the proposed approach is demonstrated by a number of illustrative

examples.

4.1 Introduction and Literature Survey

Managing complexity is one of the major concerns in current scientific research
especially in the area of process systems engineering. Modelling process systems
across time and scale inevitably need analysis and management of system complexity.
Proper representations of complex systems are crucially important for researchers to

gain deeper insights into such systems and propose appropriate modelling frameworks.

Many complex systems such as the Internet, process plant flowsheets, social and
biological relations have been represented as networks consisting of a set of nodes
joined in pairs by edges to reflect the number of components in the systems and
connections among them. Complex networks research can be considered as lying at
the intersection among graph theory, statistical mechanics and other physical and
engineering sciences. One of the main reasons behind complex networks popularity is
their flexibility and generality for representing virtually any natural structure

including complex systems evolution undergoing dynamic changes of topology.

The study of complex networks can be traced back to the pioneering works on
percolation and random graphs by Flory (1941), Rapoport (1951, 1953, 1957), and
Erdos and Rényi (1959, 1960, 1961). Recently, the study of complex networks has
attracted more attention of the research community of many disciplines since many
real networks have been found to posses characteristics which are not explained by
uniformly random connectivity. Instead, networks derived from real data involve
community structures, power law degree distributions and hubs. For example,
statistical analysis of networks has revealed a number of properties such as small
world effects, degree distribution and high network transitivity (Barabasi and Albert,

1999; Newman, 2003; Boccaletti ez al., 2006).
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Although graph theory is a well-established and developed area in mathematics and
has been widely used to study networks, many of the recent developments in complex
networks have taken place in various areas such as sociology, biology and physics.
Supported by the availability of high performance computers and large data
collections, results like the discovery of the scale-free structure of the Internet
(Faloutsos et al., 1999) and of the WWW (Barabasi et al., 1999) were of major
importance for the increased interest in the new area of complex networks, whose
growing relevance has been substantiated by the large number of recent related

publications.

Four main types of complex networks include weighted directed, unweighted directed,
weighted undirected and unweighted undirected networks. The operation of symmetry
can be used to transform a directed network into an undirected graph and the
operation of thresholding can be applied to transform a weighted graph into its
unweighted counterpart. In this study, the proposed mathematical frameworks are

based on unweighted and undirected networks.

The random graph developed by Rapoport (1951, 1953, 1957) and independently by
Erdos and Rényi (1959, 1960, 1961) can be considered the most basic model of
complex networks. Starting with N disconnected vertices, the network is constructed
by the addition of M edges at random, avoiding multiple and self connections.
Furthermore, many real world networks exhibit what is called the small world
property, i.e. most vertices can be reached from the others through a small number of
edges. This characteristic is found, for example, in social networks, where everyone in

the world can be reached through a short chain of social acquaintance (Watts, 1999).

Apart from investigation of large-scale statistical properties of networks mentioned
above, recent research has focused on the study of detailed properties of networks:
network communities. Community structures are often found in various types of
networks where the vertices are naturally clustered into tightly connected modules
with large number of within-module edges and few inter-module links (see Figure

4.1).
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Figure 4.1 A representative network with three communities

The ability to identify and analyse such structures could be of vital importance in
practice. For example, groups within the World Wide Web may reveal the thematic
relationships of websites on similar topics (Eckmann and Moses, 2002; Flake et al.,
2002); modules found in social networks may correspond to different local
communities (Girvan and Newman, 2002; Guimera er al., 2003); subgroups in
metabolic and cellular networks may reflect distinct functions in biological systems
and evolutionary properties of biological molecules and species (Holme ez al., 2003;
Guimera and Amaral, 2005). Therefore, the modular view of networks provides a
clearer understanding on how complex systems are constructed from a number of

fundamental components and sheds light into the interactions of such components.

A number of computational approaches have been proposed by various research
groups to detect community structures in networks. Traditional methods comprise
graph partitioning (Garey and Johnson, 1979) and hierarchical clustering (Fisher,
1996). Graph partitioning deals with the separation of a network into several groups
with roughly equal sizes so as to minimise the inter-group communications (Newman,
2004; Boettcher and Percus, 2001). In the area of parallel computing, graph
partitioning is applied in order to distribute different tasks to several processors while
minimising inter-processor communications. As partitioning a graph is NP-complete

(Garey and Johnson, 1979), most heuristic algorithms proposed were bisection-based
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where a network was divided into a number of communities by an iterative bisection
procedure (Kernighan and Lin, 1970). It should be noted that the optimal solutions to
the graph partitioning problem cannot be guaranteed since both the number of

communities as well as the sizes of each group are previously fixed by the user.

Hierarchical clustering has also been applied extensively in the investigation of
community structures of social and biological systems (Holme er al., 2003;
Gustafsson et al., 2006; Rives and Galitski, 2003; Mering et al., 2003). It is an
agglomerative procedure transforming a distance matrix of pair-wise similarity
measurements between all pairs of nodes into a hierarchical partition tree. Initially,
each node forms an independent module and the number of modules is gradually
reduced by merging the two most similar clusters iteratively until the whole network
is included in one community. Any horizontal cut of the hierarchical tree splits the
network into a number of subgroups (see Figure 4.2 for a network of 10 nodes and 3
modules). Although hierarchical clustering does not require any specification of the
size or number of modules, it cannot reveal which partition is the best one. Another
problem associated with hierarchical clustering lies in its tendency to group only
tightly connected nodes in the early stage of clustering because of their strong
similarities. However, it cannot always classify nodes with few connectivities

correctly since end solution depends on where the agglomerative procedure starts.

o O e O O O
Module 1 Module 2 Module 3

Figure 4.2 A dendrogram of a 10-node network generated by hierarchical clustering
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Apart from traditional methodologies proposed above, a number of local algorithms
and physical models were applied to detect community structures. First, a set of self-
contained local algorithms to detect network communities were proposed (Castellano
et al., 2004; Radicchi et al., 2004). The algorithms kept the same level of liability and
outperformed other existing approaches with respect to computational costs.
Networks were also treated as electric circuits and communities were identified based
on notions of voltage drops across networks (Wu and Huberman, 2004). Furthermore,
an algorithm based on a modified g-state Potts model was presented (Reichardt and
Bornholdt, 2004). Communities are considered as domains with equal spin values
near the ground state of the system, which was approximated using Monte Carlo
optimisation. Finally, Son et al. (2006) developed a random field Ising model to
determine the community structure. The ground state problem is equivalent to the
maximum flow problems, which can be solved using combinatorial optimisation

algorithms.

In more systematic investigations of network properties, the Modularity metric
(Newman and Girvan, 2004) was introduced as a measure of network partition quality.
Network modularity is the fraction of all edges that lie within communities minus the
expected value of the same quantity in a graph in which the vertices have the same
degrees but edges are placed at random. A modularity value of O indicates that the
network considered is equivalent to random networks and no obvious community
structures are observed; modularity approaching the maximum value of 1, indicates a

strong community structure.

Newman and Girvan (2004) developed a series of divisive algorithms to discover
community structures, involving the iterative removal of edges with the highest
“betweeness” score to split the network into communities. These algorithms were
highly effective at discovering community structures for many testing cases at the cost
of very high computational resources when analysing large-scale networks. More
computationally efficient algorithms were proposed to tackle networks with larger
sizes (Clauset et al., 2004; Newman, 2004). Newman proved that network modularity
can be rewritten as eigenvectors of a modularity matrix and this expression leads to a
spectral algorithm for community detection resulting in higher quality solutions when

compared to competing approaches (Newman, 2006).
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Since proposing the concept of modularity, the community structure detection
problem can be posed as an optimisation task which finds an optimal partition at the
maximum value for modularity. Simulated annealing (SA) was first used to identify
functional modules in metabolic networks of twelve organisms from three different
superkindoms by maximising their modularity values (Guimera and Amaral, 2005).
The same optimisation methodology was also applied to analyse and benchmark
social networks (Medus er al., 2005) where a trade-off between quality of solutions
and computational requirements was noted. Moreover, the applicability of extremal
optimisation was demonstrated through a number of test cases of computer-simulated

and real networks (Duch and Arenas, 2005).

Recently, Fortunato and Barthelemy (2007) reported the observation that the
optimisation of modularity metric has a resolution limit, so submodules smaller than a
certain scale in large networks may fail to be detected since the modularity
optimisation procedure tends to combine small communities into larger ones.
Kumpula et al. (2007) showed that the g-state Potts model introduced by Reichardt
and Bornholdt (2004) also has a resolution threshold. Both findings raised major
concerns of the reliability of modularity optimisation. However, Arenas et al. (2007)
overcome such problems by proposing a systematic method to discover community

structures at different resolution levels using the original modularity concept.

Although the presence of resolution limit of modularity maximisation makes some
small modules in large networks invisible, modularity is still one of the most widely
accepted metrics to detect community structures. All approaches mentioned above are
able to achieve good quality modularity values when partitioning networks of various
sizes. However, a major limitation is that global optimality of the solutions cannot be
guaranteed. Here, a general mathematical programming formulation for the network
community structure identification problem is presented where the objective function
considered is maximisation of the modularity value and can be solved to global
optimality. More importantly, the proposed optimisation model can easily be extended
in the future to detect communities more accurately when alternative measures
become available. Other additional features such as minimum/maximum module size
and balancing among modules can also be incorporated using mathematical

programming to aid accurate detection.
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This chapter is structured as follows: the problem statement for network community
detection is defined in the next section. Section 4.3 presents an MIQP model to detect
community structures of a network with the maximum modularity value. Symmetry
breaking constraints are then proposed to avoid redundant equivalent solutions thus
reducing the computational requirements significantly. The applicability of the
proposed mathematical model is demonstrated in section 4.4 through the use of four
network examples and comparisons of the present methodology with other literature

approaches. Finally, some concluding remarks are made in section 4.5.

4.2 Problem Statement

Networks are defined by a set of nodes and links connecting them. Each link is
undirected and unweighted. Overall, the problem of network community structure

identification can be stated as follows:

Given:

e An undirected network consisting of N nodes and L links
Determine:

e Optimal number of modules

e Node-module allocation

So as to:

Maximise the network modularity metric

4.3 Mathematical Formulation

The indices, sets and parameters associated with the mathematical model are listed

below:;
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Indices

n.e Nodes

l Links

m,k Modules

Parameters

N Total number of nodes

L Total number of links

M Total number of modules

d, Degree of node n

a Minimum module size

y’) Maximum module size

£ Maximum size difference between any pair of modules
Sets

S M most connected nodes

AM, Allowed modules for assignment to node ne §
ML, Allowable modules for link /

Avp, Nodes allowed assignment to module m

B, Nodes with higher connectivity than node n

The mathematical formulation is based on the following optimisation variables:

Binary variables

E 1 if module m exists; O otherwise

m

X, 1 if link / belongs to module m; 0, otherwise

m
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Y 1 if node n belongs to module m; 0, otherwise

Positive continuous variables
L, Number of links among nodes within module m
Dp, Degree of module m

4.3.1 Objective Function

The objective function considered here is the maximisation of the network modularity

metric as proposed by Newman and Girvan (2004):

o352 “

4.3.2 Allocation Constraints
Each node should be allocated to exactly one module:

DY, =1 Vn (4.2)

Link / belongs to module m if both nodes associated with / (i.e. nodes n ande) are

allocated to module m. This logical condition can be written mathematically as:
2X, <Y, +7Y, Vm,l ={n,e} (4.3)

Constraint (4.3) can alternatively be disaggregated into two tighter inequalities:

X, <Y _ Vm,l ={n,e} (4.4)
X, <Y, Vm,l ={n,e} (4.5)

4.3.3 Definition of L and D,
L,, is defined as the total number of links within module m:

L,=)X, Vm (4.6)
1
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D, is defined similarly to be equal to the sum of the degrees of nodes allocated to

module m:

D,=>4d, 7Y, Vm 4.7

4.3.4 Additional Constraints

One of the key advantages of using mathematical programming approaches is the ease
of accommodating user-defined conditions. Here, a number of additional features are

formulated mathematically.

First, we describe how minimum and/or maximum module sizes can be incorporated.

A binary variable, E_, is introduced to determine the existence or not of module m. A

degeneracy constraint is proposed to enforce that module m is allowed only when the

previous module exists (i.e. £, _, =1):

E <E

m m-1

Vm=2,..M (4.8)

Note that if module m-1 does not exist (i.e. E, , =0), then module m, does not exist

as well (i.e. E,, =0). Module m is not empty when the following two constraints are

active at the same time:

X, 2« Vm 4.9)
!

> X, <8 Vm (4.10)

The above constraints (4.9) and (4.10) should be activated only if module m exists and

therefore, they should be rewritten as:

dYXn,20E, Vm (4.11)
!

> X.SPE, 0 (4.12)
!
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It is worth mentioning that the above constraints (4.8, 4.11 and 4.12) safeguard that all
occupied modules are first ranked to avoid equivalent solutions and then module sizes

within prespecified bounds are enforced.

Next, we demonstrate how balancing issues among modules, if required, can easily be
accommodated in the current optimisation approach. By balancing, we denote that any

two non-empty modules m and k, (i.e. E, = E, =1) cannot differ by more than a

user-defined number of links, €:
IL, - L/]|s¢ Vm,k >m (4.13)
The above absolute-value inequality can mathematically be written as:
L —-L <¢ Vm,k >m (4.14)
L -L <& Vm,k >m (4.15)

It should be added that the above constraints are activated only if both modules m and

k are selected (i.e. E, = E, =1). Thus, constraints (4.14) and (4.15) can be rewritten

as:
L -L <e+B(2-E, -E,) Vm,k > m (4.16)
L,~L <e+BQ2-E,-E,) Vm,k >m (4.17)

The degeneracy constraint (4.8) indicates that the value of E, can be forced to 1 when

module k is non-empty (i.e. E, =1), so constraints (4.16) and (4.17) can be simplified

as:
L -L <e+pB(-E,) Vm,k > m (4.18)
L,-L <e+f(-E,) Vm,k > m (4.19)

Overall, the resulting mathematical model (ModMax) for determining community
structures based on the modularity metric for network community identification is

formulated as follows:
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[ModMax]:

2
Maximise Q = Z LTM —(%)

subject to
constraints (4.2, 4.4-4.8,4.11-4.12, 4.18-4.19).

E, X

im?>

Y, ef{o1}; L ,D >0

4.3.5 Symmetry-Breaking Constraints

It is widely believed that when a set of objects is clustered into a number of modules,
any renumbering of the modules generates an equivalent solution (Klein and Aronson,
1991). Specifically, if a network ends up with M optimal communities, there are M!
equivalent solutions. Table 4.1 enumerates equivalent solutions for a network
example with 8 nodes and 3 modules. Here, two symmetry breaking constraints are
proposed to eliminate equivalent solutions and thus to reduce the number of nodes

explored during a branch-and bound solution procedure.

Table 4.1 Equivalent solutions for a three-module problem

Module 1 Module 2 Module 3
Solution 1 n,,n, Ny, N, N, Ny, Ns, N
Solution 2 n,,n, Ny, Ng,Ng Ny, Ny, N,
Solution 3 n,,ng,ng n,,n, ny,n,,ng
Solution 4 n,,ng,ng nsy,n,,ng n,,n,
Solution 5 Ny, Ny, Ny n,n, n,,ng,ng
Solution 6 ny,n,,ng n,,Ns,Ng ny,n,

Suppose we seek to partition all nodes into M modules. In order to avoid equivalent
solutions through the renumbering of modules, each node is allowed to be allocated to
one of a particular set of modules, AM,. First, all nodes are sorted based on their

connectivities. For the example shown in Table 4.1, let us assume thatn, is the most
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connected node, n, is the second most connected node and so on. The AM,, set is then
constructed as: n, is allocated to module 1 only; n, can be assigned to either module 1

or 2. All other nodes can be allocated to any of the three available modules.

Therefore, constraint (4.2) can be rewritten as the following equality:

>y, =1 Vn (4.20)

me AM

By activating constraint (4.20), solutions 3 to 6 in Table 4.1 can be eliminated as node
n, is allocated to module 1. It should be mentioned that similar constraints as in (4.20)

have also been reported by Klein and Aronson (1991) in the case of cluster analysis.

Since each node n has its own allowable set of modules (AM,), link / that connects
nodes n and e can be allocated to the modules that appear in both AM , and AM, .
Here, we define set ML, (allowable modules for link ) as AM NAM, ,

wherel = {n,e}. Consequently, constraints (4.4) and (4.5) can be replaced by:

X, <Y, Vi={ne}me ML, 4.21)
X, <Y, Vi={ne}me ML, (4.22)
X, =0 Vi,me ML, (4.23)

Another logical condition can be imposed by not allowing node n to be allocated to

module m (assumingme AM ) if all previous nodes e (e€ B, N Ay, _,) have not been

assigned to module m-1 (i.e. ZYe_m_, =0, then Y, =0). Note that B, denotes the

ee(B,NAv,, ;)
set of nodes e with larger number of connections than n and Av,, denotes the set of
nodes that can be assigned to module m. Considering the example shown in Table 4.1,
we then have: B,,l =¢ , an ={nl} s B,,j ={n,,n2} ; Ay, ={nI ,nz,...,ng} R
Ay, = {nz,n3,...,n8}, Av, = {n3,n4,...,ns} and so on. As a consequence, if nodes n, and
n, are allocated to module 1, then node n, should not be placed to module 3; if nodes
n,and n, are allocated to module 2, then node n, should not be assigned to module 4,
if nodes n,,n,and n, are assigned to module 1, then node n,is also excluded from

module 3 etc.
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Based on the above description, the following logical constraint is proposed:

Y.< DY, Vn23,m=3.,AM,

nm

(4.24)

ec(B,NAv, ;)

When applying the above constraint to the example shown in Table 4.1, we do not

allow node n, to be assigned to module 3 as node n, appears in module 1 together

with node n, . Thus, solution 2 is eliminated and only solution 1 is feasible.

Symmetry breaking constraints (4.20) and (4.24) avoid all other M’-1 equivalent
solutions. From our experience, significant computational enhancements are also
achieved by only considering the M most connected nodes (defined as set S). Both

symmetry breaking constraints are active for all nodes in S:

>y, =1 Vne § (4.25)
me AM
Y, =1 Vne S (4.26)
Y.< DY, Vne S,n23,m=3...,|AM | (4.27)
ec(B,NAv, )

Overall, the resulting mathematical model (OptMod) for determining community
structures based on the modularity metric incorporating the above symmetry breaking

constraints for network community identification is formulated as follows:

[OptMod]:

- L, (D,Y
Maximise Q = ;l:—i—'— - (2—2) }
subject to
constraints (4.6-4.8,4.11-4.12, 4.18-4.19, 4.21-4.23, 4.25-4.27).
E,.X.Yme{0l}; L,,D, >0

The resulting mathematical formulation is a mixed integer quadratic programming
(MIQP) model comprising a concave quadratic objective function which is maximised

with a set of linear constraints and mixed binary/continuous optimisation variables.

91



Chapter 4. Finding Community Structures in Complex Networks using Mixed Integer Optimisation

The CPLEX mixed integer optimisation solver (Ilog, 2006) is used to solve the
proposed model to global optimality, due to its convexity, through the branch-and-

bound procedure (see, for example, Floudas, 1995).

4.4 Computational Results

The proposed mathematical models ModMax and OptMod are applied to four
network examples from different research areas. All examples are implemented in
GAMS (General Algebraic Modelling System) (Brooke, et al. 2003) using the
CPLEX mixed integer optimisation solver with 0% margin of optimality and 10000
seconds CPU limit. First, ModMax and OptMod are performed using all selected
example networks to demonstrate the efficiency of symmetry breaking constraints.
The computational statistics shown in Table 4.2 clear indicate that symmetry breaking
constraints save computational resources significantly. Second, the computational
statistics and the optimal modularity values obtained by the proposed MIQP OptMod
are reported in Table 2. The optimal modularity is then compared with other literature
approaches for community structure identification (see Table 4.3). As an alternative,
the computational requirements and the best modularity value for each partition from
hierarchical clustering are reported. The hierarchical clustering runs are performed by

the cluster package using the statistical computing language R (www.r-project.org).

The community structures for all networks are displayed through the Pajek network

analysis program (http://vlado.fmf.uni-lj.si/pub/networks/pajek/). In each figure,

dotted lines are used to reveal the modules obtained.

The first example considers a social network compiled by Zachary (1977), who spent
two years in observing the social communications between members in a karate club
at an American University. Nodes in the network stand for club members and the
links reflect the social relations between them (see Figure 4.3). According to the
literature (Zachary, 1977), the club naturally split in two smaller communities because
of a dispute between the club’s administrator (around node 1) and the karate teacher
(around node 34). This actual division is visualised in and where squares and circles
denote the members of each community. Our approach shows that the optimal
partition is found at a modularity value of 0.4198 when splitting the network into four
independent modules (see Figure 4.3 for the optimal partition). It can been seen

clearly that the optimal partition from the proposed model perfectly reflects the real
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community structure (Nodes of modules I and II stand for members around the
administrator and modules III and IV belong to the teacher’s group). Similar results
were produced by hierarchical clustering (Gustafsson et al, 2006), greedy
optimisation algorithm (Clauset et al., 2004), simulated annealing (Medus et al.,
2005), extremal optimisation (Duch and Arenas, 2005) and the betweenness-based
iterative algorithms (Newman and Girvan, 2004) (see Table 4.3). It is noted that
hierarchical clustering identifies the same community structures as the optimal
partition. The betweenness-based algorithm (Newman and Girvan, 2004) finds five
modules with modularity of 0.3724 (see Figure 4.4). Node 10, which is considered as
an independent module through that algorithm, should be allocated together with node
34. The betweenness-based algorithm also resulted in one misclassification (node 3)
when compared with the actual community structure according to observations by
Zachary (1977).

Figure 4.3 Optimal community structure for the Zachary’s karate club network using
OptMod
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Figure 4.4 Community structures identified through betweenness-based iterative

algorithm (Newman and Girvan, 2004) for the Zachary’s karate club network

The sensitivity of the network modularity value with respect to different values of
user-defined link difference between modules, £ (from 1 to 30) in balancing
constraints is investigated for the Zachary example (see Figure 4.5). It is observed that
the network is partitioned to two subgroups with equal sizes resulting to a modularity
value of 0.3718 whene¢ is less than six. As the value of € is further increased, the
Zachary network is then divided into three or four modules with better modularity
values. The optimal partition is finally obtained with the maximum modularity value
of 0.4198 when the value of € is larger or equal to 17. It can clearly be seen from
Figure 4.5 that low £ values enforce nodes to distribute evenly within modules while
sacrificing the solution quality. Large & relaxes the balancing constraints thus leading
to the optimal partition achieved by the proposed MIQP model. Consequently, user
criteria can prioritise the prevalence of either module size balancing or network
partitioning optimality. We note that only this example has been analysed with
balancing constraints in order to showcase their use. It is obvious that this type of

constraint can be used at will in any other examples as required by the user.
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Figure 4.5 Sensitivity of optimal modularity values with parameter &

In the second example, we present a community of 62 bottlenose dolphins living in
Doubtful Sound, New Zealand, constructed by Lusseau (2003) after seven years of
field studies. Each node represents a dolphin and the links in the network are
identified based on the significantly frequent communications among them. Using this
network as input to the proposed MIQP model, five communities are found. Module I
and modules II-V reflect the real division observed by Lusseau (2003) with zero
misclassification and the MIQP model indicates the existence of four smaller
communities in the second group (see Figure 4.6 for the optimal division by our
approach; squares and circles denote the actual partition reported by Lusseau).
Comparing with the division from hierarchical clustering (see Figures 4.6 and 4.7),
the optimal community structure merge groups I and II of Figure 4.6, while partition
module IV from hierarchical clustering into two groups (see modules II and IV of
Figure 4.6). Hierarchical clustering also results in two misclassifications (nodes 8 and
20) when compared with the real partition. It can be seen from Table 4.3 that all
methods partition the dolphin network into five communities. Hierarchical clustering
and the betweenness-based iterative algorithms algorithm achieved a modularity value

of 0.5084 and 0.5200, respectively. Our approach results in a maximum value of
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0.5285, which is 3.80% and 1.61% more efficient than the other two literature

approaches.
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Figure 4.6 Optimal community structure for the bottlenose dollphins of Doubtful

Sound using OptMod

Figure 4.7 Community structures identified through hierarchical clustering for

dolphins of Doubtful Sound
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The third example considered here is the network showing the connections between
major characters in Victor Hugo’s novel of crime and redemption in post-restoration
France, Les Miserables. This network was constructed by Knuth (Knuth, 1993) where
nodes represent characters and edges reveal the coappearence of the corresponding
characters in one or more scenes. A modularity value of 0.5400 was reported by
Newman and Girvan (2004) when partitioning the network into 11 communities and
hierarchical clustering results in 0.5000 with 19 communities. However, a number of
modules identified by both approaches show few modular characteristics as they
contain only one node. According to our model, optimal community presence is
identified when the number of modules is optimised to six with the maximum
modularity value of 0.5600 (better than previous approaches). The optimal partition
shown in Figure 4.8 clearly reflects the plot structure of the novel and the importance
of each character in this book: each module corresponds to the stories that the
characters are involved in and a number of dominant characters such as Jean Valjean
(node 12) and Javert (node 49) act as hubs of their communities (modules I and VI,

respectively).

.vl :
: w":!
VA
el

vV I L ‘I \\\\

Figure 4.8 Optimal community structures for the Les Miserables network

VI
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In the last example, we apply our model to the pS3 protein-protein interaction network
constructed by Dartnell er al. (2005). A list of proteins in this network is included in
the appendix. This network involves an annotated protein interaction map in
mammalian cell cycle, DNA repair and apoptosis. As a key element in maintaining
genomic stability, protein p53 lies in the centre of the network and controls the intra-
and intercellular signals with gene transcription. The pS3 network consisting of 104
proteins and 226 interactions has been proven to have a scale-free topology (Dartnell
et al., 2005) showing that a vast majority of the nodes are poorly connected while few
of them act as hubs with a high centrality. Hierarchical clustering found nine modules
with modularity of 0.4580. The maximum modularity value (0.5351) is again reported
by our model partitioning the p53 network into seven communities (see Figure 4.9). It
is not surprising that module I lies in the centre of the network and communicates
with all other six modules. Node 68 (protein pS53), the most central protein to the

network, is included in this module.

Figure 4.9 Optimal community structure for the pS3 protein-protein interaction

network

98



Chapter 4. Finding Community Structures in Complex Networks using Mixed Integer Optimisation

Finally, the power of symmetry-breaking constraints has been revealed in Table 4.2

by comparing the computational resources used for models ModMax and OptMod. As

mentioned in section 4.3.5, symmetry-breaking constraints are used to eliminate

equivalent solutions of the proposed MIQP model ModMax. It can clearly be seen

from Table 4.2 that the MIQP model with symmetry-breaking constraints (model

OptMod) is able to achieve the global optimal solution using significantly less

computational efforts.

Table 4.2 Computational results of ModMax and OptMod for all illustrative examples

OptMod ModMax
Examples OBJ*  Npoa® CPUS OBJ Ninodu CPU
Zachary 0.4198 4 1.03 0.4198 4 4.77
Dolphin 0.5285 5 197.89 0.5285 ) 4964.80
Les Miserables  0.5600 6 55.58 0.5600 6 4973.81
pS3 0.5351 7 1844.31  0.5351 7 10000.00¢
a: Best modularity value found; b: Number of modules; c¢: CPU time in seconds; d: Maximum CPU limit
Table 4.3 Comparative results for illustrative examples
Hierarchical Literature
OptMod Clustering Approaches
Examples OBJ* Npoa® CPU°  OBJ Npow CPU OBJ  Npod
04190 4
Zachary 0.4198 4 1.03 0.4198 4 0.33
0.3724° 5
Dolphin  0.5285 5 197.89 0.5084 5 1.10 0.5200° 5
Les 0.5400° 11
Miserables 0.5600 6 55.58  0.5000 19 1.82
0.5460" 5
p33 0.5351 7 1844.31 0.4580 9 3.58 N/A N/A

a: Best modularity value found; b: Number of modules; c¢: CPU time in seconds; d: Newman, 2006; e: Newman and Girvan, 2004; f:

Medus et al., 2005.
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4.5 Concluding Remarks

Many social, technical and biological systems can be represented as networks of
interacting components. Community structures are usually found in those systems
where nodes are naturally divided into subgroups with dense within-module
connections. Detection of such structures can be vitally beneficial to the study of
various complex systems since nodes within the same module may share similar
functional properties and novel patterns or functions can be deducted through the

analysis of the interacting modules.

In this chapter, a rigorous MIQP model has been proposed to identify optimal
community structure in complex networks. The objective function considered is
maximisation of the network modularity proposed previously (Newman and Girvan,
2004). Symmetry breaking constraints have been introduced to avoid the generation
of equivalent solutions thus enhancing the computational performance of the proposed
model. Our results have shown that global optimal solutions have been achieved for
all examples studied. More importantly, the power of mathematical programming is
demonstrated by easily incorporating other additional features such as
minimum/maximum module size and balancing among modules in the proposed
optimisation model. It should be noted that the proposed MIQP model can
successfully detect the optimal community structure of small size networks. In this
next chapter, a two-stage solution approach is developed to identify accurate modular

structures of medium/large networks within reasonable computational times.
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Chapter 5

A Two-stage Solution Approach for
Network Community Identification using

Mathematical Programming

Finding network modules or communities is widely accepted as a major avenue to
reveal the underlying properties of complex systems. Since the adoption of the
Modularity metric to express the modular structure of a network (Newman and Girvan,
2004), a number of computational methodologies for community structure discovery
have been developed using modularity maximisation. In Chapter 4, an MIQP model
has been developed to identify network communities of small/medium networks. The
proposed mathematical model is able to achieve optimal community structures of
networks with small/medium sizes. Due to the NP-hard nature of modularity

maximisation, finding communities with medium/large networks is computationally

101



Chapter 5. A Two-stage Solution Approach for Network Community ldentification using Mathematical

Programming

demanding. In this chapter, we present a novel two-stage solution approach to identify
network communities using mixed integer optimisation. Computational results show
that the proposed algorithm outperforms previous attempts from the literature, being
able to tackle large-scale network implementations. Furthermore, in order to
overcome the resolution limit of modularity maximisation, a solution procedure is

developed to find finer modular structures with high resolution.

5.1 Introduction and Literature Survey

In Chapter 4, the problem of network community structure identification has clearly
stated. A simultaneous mixed integer quadratic programming (MIQP) model OptMod
has been develop to find the optimal community structure of complex networks based
on modularity maximisation. The proposed mathematical programming framework is
able to achieve global optimal solutions of small size networks due to the convexity of
the model. As modularity optimisation is NP-hard, efficient algorithms to find the
maximum modularity values are unlikely to exist. Therefore, most approaches employ
heuristics that aim at finding near-optimal solutions within modest computational

expense.

The use of mathematical programming for modularity optimisation has been recently
reported (Agarwal and Kempe, 2007): an algorithm based on the rounding of a
fractional linear programming model and a hierarchical partition through the repeated
rounding of a vector programming model to solution were shown to be effective in
small to medium size networks. An efficient hierarchical agglomeration algorithm
was developed for detecting community structures (Cléuset et al., 2004). In this
agglomerative procedure, two nodes combine together to form a new cluster if this
merge results a maximum modularity increase. This algorithm was later improved by
revising the initial hierarchical agglomeration process as random walks so that the
computational requirements can be significantly reduced (Pujol et al., 2006). Finally,
a near-linear time algorithm has been proposed (Raghavan er al., 2007) where every
node is initialised with a unique module label and each node adopts the label that most
of its neighbours currently have. After this iterative process, densely connected groups

of nodes form a consensus on a unique label to form communities. The algorithm has
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been demonstrated to take an almost linear time scale and hence it is computationally

less expensive than most current methodologies.

Based on current research development on network community structure
identification, crucial considerations in assessing the performance of modularity
optimisation approaches are: (i) the scale and optimality handled by modularity
optimisation methods and (ii) the resolution limit problem for small-size modules in
large networks. These points are discussed further in the next paragraphs and form the

main focus of this chapter.

First, there seems to be a trade-off between network size and optimality achieved
through modularity optimisation, with methods that guarantee global optimal
solutions for modularity maximisation able to operate only in small to medium-sized
networks (Xu et al., 2007). For example, divisive algorithms (Newman and Girvan,
2004) and mathematical programming (Agarwal and Kempe, 2007) were found to be
prohibitively computationally expensive for large networks. Other methods, such as
stochastic optimisation through simulated annealing (Guimera and Amaral, 2005;
Medus et al., 2005) and extremal optimisation (Duch and Arenas, 2005) that could be
used on large networks, may yield sub-optimal solutions and so may suffer poor
performance. In our own work, we have previously reported a rigorous mixed integer
quadratic programming (MIQP) formulation to optimise the modularity metric with a
set of linear constraints and mixed binary/continuous optimisation variables (Xu et al.,
2007). Due to the convexity properties of the model, global optimal solutions are
achieved through the standard branch-and-bound procedure with commercial
optimisation solvers, but its use is limited to small-medium scale networks due to NP-

hardness.

Second, doubts have been raised over the use of modularity optimisation for
community detection recently due to the observation that such procedures can reach a
resolution limit (Fortunato and Barthelemy, 2007). This effect essentially entails
modules smaller that a specific scale not being detected, as the optimisation process
combines smaller communities into larger ones so as to achieve better modularity.
Some solutions have been suggested through either re-optimising each module
without considering the inter-community links (Fortunato and Barthelemy, 2007) or

tuning a resolution parameter (Arenas et al., 2007).
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Here, we aim to enhance the efficient application of mathematical programming to
community structure identification by: (i) extending our previous mathematical
programming methodology proposed in Chapter 4 to tackle larger networks and (ii)
incorporating methodologies for dealing systematically with the problem of resolution
limit through modularity optimisation. In overview, a two-stage solution approach for
community identification using mathematical programming is described in the next
section, the resolution limit problem of modularity optimisation is addressed in
section 5.3 through the introduction of a solution procedure to produce network
communities with high resolution and the applicability of the proposed approaches is
demonstrated through a number of network examples in section 5.4. Finally, some

concluding remarks are made in section 5.5.

S.2 Module Identification via Two-Stage Mathematical

Programming

The solution approach proposed in this paper is a two-stage, iterative modularity
optimisation procedure, which we call iMod. First, a mixed integer nonlinear
programming (MINLP) model (named MINLP_Mod) is formulated to obtain a
feasible solution efficiently. An initial partition with a good quality modularity value
is selected frorﬁ a set of MINLP solutions with random starting poihts. Second, the
solution obtained in the first stage is improved through an iterative optimisation
procedure employing the model previously developed in Chapter 4, which was shown
to be very efficient for community detection in small to medium size networks
through a global maximum of the modularity metric (Xu et al., 2007). The overall
approach here combining the two aforementioned stages is intended to extend the use
of mathematical programming methodologies for larger size networks. The sets and

parameters in this approach are defined below.

Indices

n,e Node

m, m' Module

k Major iteration
Sets
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I Set of nodes in module m
RE,, Set of remaining nodes to be released
CN, Set of nodes connecting node n
4 Set of nodes released
Parameters
N Total number of nodes
L Total number of links
M Total number of modules
IM Number of runs of the MINLP_Mod in the first stage
N™ Maximum number of runs for MINLP_Mod
N_R Number of released nodes
MAX' Maximum number of released nodes for module m

Binary Variables
Yom 1 if node n is allocated to module m; 0, otherwise
Yo The node-module allocation with the maximum modularity value from

the multiple runs of MINLP_Mod

Positive Continuous Variables

Ly, Number of links among nodes within module m
Dy, Degree of module m

Ok Network modularity for major iteration k.

o™ Best modularity value obtained from stage 1

Each stage of the proposed procedure is described in the next sections in more detail.

5.2.1 Stage 1 - Initial Network Partition

Given a network with N nodes and L edges, the modularity metric, Q, of a partition

the network into M communities is represented as:
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m

Programming

where L, denotes the number of links in module m and D, is the degree of all nodes
in module m. The modularity metric, Q, measures the difference of the fraction of
links within communities and the expected fraction values when links are allocated
randomly (Newman and Girvan, 2004). The objective function employed here is the
maximisation of the network modularity metric shown in equation (5.1). First, each

node is allocated to exactly one module:

3Y,, =1 Vn (5.2)

As previously defined, D, is equal to the sum of the degrees of nodes allocated to

module m:

D,=>d, Y, Vm (5.3)

A link will be allocated to module m only when both nodes connected by it are in

module m. Therefore, the total number of links in module m, L, , is defined as the

following nonlinear constraint:

L,=> >7Y, Y, Vm (5.4
" <en,

Overall, the resulting MINLP model (MINLP_Mod) for determining community

structures based on the modularity metric maximisation is formulated as:

[MINLP_Mod]

L (DY

Maximise: 0= ) | ——| —=
et 0 Z{ L (2L”
subject to: Constraints (5.2-5.4)

Since global optimality of MINLP models can not be guaranteed, different initial
solutions are tested and the best division is selected from a set of candidate solutions.

In this approach, we perform N™ runs of MINLP_Mod from random initial points
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and the node-module allocation and the maximum modularity value is stored for the
second stage. We have found that using N"**=100 provides a good representation of

the solution space.

5.2.2 Stage 2 - Iterative Improvement of Network Partition

Having selected a node-module association with maximum modularity from the
previous stage, module allocation is further improved through an iterative fixing and
releasing scheme. This stage initially fixes all node-module allocations from stage 1

as binary variablesY . and nodes in each module are sequentially released while the

positions of all other nodes are maintained. After releasing the node-module

allocation variable Y, for all selected nodes, the reduced MIQP model (OptMod) is

solved. Comparing the single level MIQP model OptMod, in Chapter 4 to the reduced
MIQP models proposed here, the latter involves fewer variables and constraints and
can be terminated efficiently. To justify the reason for an iterative reduced MIQP to
be preferred over MINLPs we should mention that improved solutions have been
achieved by solving a series of reduced MIQP models while no improvements are
observed when solving reduced MINLP models iteratively. To avoid releasing too
many nodes so that the reduced OptMod model is still difficult to solve, the maximum

number of released nodes for module m is set to:

MAX = v (5.5)

r=
Aver,

where Aver, denotes the average degree in module m without considering the inter-
module links and U is a user-defined parameter. Our computational experiments show
that the value of U=200 is able to provide satisfactory results for all the examples
studied. To illustrate how the improvement procedure works, nodes are first released
in m,, if the number of nodes in module m; is greater than MAX ,;I then nodes in
module m; will be split into a number of batches and released sequentially. After all
nodes in module m; are released, the same scheme is applied sequentially to
remaining modules until all nodes in the network are released, which completes one

round of the major improvement iteration. The same strategy starts again from module
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m; until no improvement of the mndulanty value is reported for two successive major

iterations. This procedure is schematically represented in Figure 5.1.

StepZ:Fall r_ =¢ :
N _R = min {RE, | MAY

Figure 5.1 Flowchart of the iMod Algorithm
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5.3 A Solution Procedure to Correct for Resolution
Limitations

Although the modularity metric has been widely accepted as a standard to quantify the
community composition in networks and detect modules, resolution limit problems
can hinder its application. Such effects entail the failure of modularity optimisation to
detect modules smaller than a scale which depends on the size of the network and the
degree of inter-connectedness of the modules (Fortunato and Barthelemy, 2007), as
the algorithm tends to combine small modules together to achieve larger modularity
values (Reichardt and Bornholdt, 2004; Fortunato and Barthelemy, 2007; Kumpula et
al., 2007). Methodologies that aim to overcome resolution limits can provide deeper
insights into finer structures of modules in complex networks and provide a more

accurate depiction of community structure.

In this section, we adopt a solution procedure (ResMod) to apply the two-stage
approach for module detection, iMod, iteratively in each module so that smaller
modules become apparent. Over-partitioning is avoided by enforcing a threshold,
whereby modularity values in each module less than that threshold will lead to no
further partitioning. The overall procedure is shown schematically in Figure 5.2. The

sets and parameters involved in the ResMod solution procedure are defined below:

Indices

n Nodes

m Module

Set

1 All nodes

Parameters

NM Number of modules found from iMod
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Solve iMod for
every n e/

Delete inter-module
links. m=1

Solve iMod

for each resulting module

<
STOP

Figure 5.2 Flowchart of the ResMod algorithm

To illustrate how the proposed methodology can be used to overcome resolution
limitations when suggesting community structure, two synthetic examples from the
literature (Fortunato and Barthelemy, 2007) are used as particularly challenging cases.
These network examples are shown schematically in Figures 5.3 and 5.4 and Table
5.1 lists the names, total number of nodes, N, total number of links, L. Median and
best modularity values Q are reported after module detection with the iMod
methodology (out of ten runs). Modularity (Q_Reso) is shown after accounting for
resolution problems with the ResMod approach. Number of modules before and after

correcting for resolution is also reported.

Table 5.1 Computational results for simulated network examples

Networks iMod ResMod
Name N L MedianQ BestQ No.modules Q_Reso No.modules
Simul 30 40 0.6750  0.6750 b 0.6500 10
Simu2 50 40 05426  0.5426 3 0.5416 4
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The first example (simul) is a ring-shaped network composed of 10 identical
complete graphs, represented by circles, inter-connected by the minimal number of
links. This example has been discussed previously (Danon et al., 2005; Fortunato and
Barthelemy, 2007) as a test case of maximal modularity: modularity converges to one

as the number of complete graphs goes to infinity (Fortunato and Barthelemy, 2007).

Figure 5.3 Community structures for network example (simul).

Modularity maximisation using iMod suggests the existence of five modules, in
accordance to other approaches. However, when implementing ResMod to correct for
resolution limits by optimising each community further without considering the inter-

module links, two smaller groups within each module are correctly identified.

The second synthetic example (simu2) comprises four groups, each group is denoted
by a circle and consists of completely connected graphs: the two leftmost groups
comprise of 20 nodes and the two on the right consist of five nodes each (Fortunato
and Barthelemy, 2007). Methods that perform modularity maximisation will tend to
merge the two smallest groups; as such a partition will yield the highest modularity

value, though without representing the correct community structure. Here, partitioning
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the network through iMod and optimising each module through ResMod yields the
accurate number of modules and network partitions. Both synthetic examples are
rather extreme cases that aim to verify the accurate detection of community structure
through iMod and ResMod. The overall results for module detection and resolution

correction for the synthetic examples discussed here are shown in Table 5.2.

Figure 5.4 Community structures for network example (simu2).

5.4 Results and Discussion

Module detection through iMod and correction for resolution limitations through
ResMod are illustrated in this section through a number of network examples. All
implementations were performed in GAMS (General Algebraic Modelling System)
(Brooke, et al. 2003) and models (MINLP and MIQP) are solved using SBB
(http://www.gams.com/dd/docs/solvers/sbb.pdf) and CPLEX (llog, 2006) mixed
integer optimisation solvers within 3600 seconds. Each round of a module detection
experiment involves running iMod (incorporating MINLP_Mod and OptMod) ten
times and reporting the best and median modularity values, as shown in Table 5.2.
ResMod is subsequently used on the partitioned networks to resolve possible
resolution problems and identify finer modular structures that may be present. A
comprehensive comparison of our approach with other module detection
methodologies from the literature is presented to show that the method proposed here

is a significant improvement over previous approaches.
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Programming

A number of networks identified from the literature serve as test cases to showcase
the efficiency of the computational methodology presented here. Overall, we used
eight examples with varying sizes in terms of total number of nodes and links. These
cases are inspired from social or biological relationships and represent well-studied
cases in network analysis and related algorithm development. The networks
describing social interactions are (in ascending number of nodes): the Zachary
network of social relationships in an American university club (Zachary, 1977), the
communications among dolphins constructed through a field study (Lusseau, 2003),
relations among roles in Les Miserables novel (Knuth, 1993), a network of jazz
musicians as described through their recordings (Gleiser and Danon, 2003) and a
university network of email communication (Guimera er al., 2003). Biological
networks assessed in this study are: the p53 protein interaction network (Dartnell er
al., 2005), the transcriptional network of the bacterium Escherichia coli (Shen-Orr et
al., 2002), the transcriptional network of the yeast Saccharomyces cerevisiae (Milo et
al., 2002) and the network of metabolic reactions of the nematode Caenorhabditis

elegans (Jeong et al., 2000).

The choice of example networks used here was based on these cases for which
module detection through modularity optimisation was previously performed and
reported. Even though our main experience and interest is in the analysis of biological
networks, we also report the use of social networks for comparison purposes with
previous methodologies that have been implemented using in these examples. We
would like to mention here an intrinsic difference between social and biological
networks: modules in social networks suggest patterns of communication between the
underlying parties, whereas as modularity in biological networks is much more
complex and can suggest different patterns of evolutionary inheritance of features,
genome organisation properties and functional attributes (Ravasz et al., 2002). The

analysis of such effects will be the subject of future work.

Similar approaches from the literature for modularity maximisation that we compare
our methods against are: an algorithm based on edge-betweenness (GN) (Newman
and Girvan 2004) that involves the iterative removal of edges with the highest
similarity score to split the network into communities, the eigenvector approach (EIG)

where network modularity was rewritten as eigenvectors of a modularity matrix and
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lead to a spectral algorithm for community detection (Newman 2006), extremal
optimisation (DA) (Duch and Arenas, 2005), simulated annealing (SA) (Fortunato and
Barthelemy, 2007) and rounding mathematical programming algorithms (AK)
(Agarwal and Kempe, 2007). The results obtained from iMod are compared with
these methodologies and the best modularity values are highlighted in bold (Table
5.2). In every example tested, iMod obtained the best value for modularity, as

compared to all other approaches.

The first four examples (Zachary, dolphin, Les Miserables and p53 networks) are
small in size and can be solved to global optimality through simultaneous MIQP
model OptMod proposed in Chapter 4. The computational results are reported in
Table 5.2 and clearly show that the iMod algorithm achieves all the optimal solutions
for these small-scale examples, demonstrating the favourable results from the

proposed approach compared to the other methodologies.

As we reported previously in Chapter 4 and mentioned above, the second stage of our
two-stage methodology, OptMod, performs excellently in small to medium size
network partitions and can identify a global maximum value of modularity. The
benefits of the combination of both stages in the two-stage approach become more
apparent as we move to larger examples, which we discuss below. Table 5.2 lists
details of five larger networks considered, namely the jazz, E. coli, S. cerevisiae, C.
elegans and email networks. Even in large networks, the iMod two-stage process
achieved a network partition with the highest value of modularity among all

approaches tested.

Further refinement of the community structures proposed is achieved through
handling resolution limits of modularity maximisation. Network modules obtained
through the iMod process are further partitioned using ResMod ignoring all inter-
module links. Finer modular structures are identified if the modularity value of the
resulting community is more than a threshold value of 0.3. This threshold value was
selected since modularity more than 0.3 indicates strong community structures
(Newman 2003). In other words, modules will be further partitioned only if further
division still shows strong modular presence (the modularity of each individual
module is great than a threshold value). This criterion is implemented to successfully

avoid over-partition that may hinder method applicability. The synthetic networks
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presented in the previous section have been used as benchmarks to verify that

resolution problems are addressed accurately here.

Improved module structures have been detected for the dolphin, p53, E. coli and S.
cerevisiae networks, while no improvement has been detected for the remaining
examples (see Table 5.3). Excluding the dolphin network for which a marginal
increase to the number of modules was observed after ResMod, all larger size
networks have shown a significant increment to the number of modules proposed after
the treatment for resolution. As indicated in Table 5.3, modules more than doubled in
the p53 and S. cerevisiae networks and were four-fold higher in the E. coli and
C.elegans cases. Such wide differences indicate the importance of an accurate
procedure in module detection, especially in the cases of larger networks and in
biological networks. Future work will concentrate on providing quality control
measure in module detection methodologies and thus assessing related computational
methodologies not only on the computational efficiency but also on which partitioning

relates best to physical significance.

The only other computational methodology that accounts for resolution limitations
(Fortunato and Barthelemy, 2007) is the use of simulated annealing for modularity
maximisation, followed by the same methodology applied to each module discovered
to find out whether any sub-module are identified. Similar results have been reported
compared to our methodology: the E. coli network was partitioned into 79 modules
with a modularity of 0.675 here, compared to 76 modules with modularity of 0.661
(Fortunato and Barthelemy, 2007) and for the yeast network we report 66 modules
with modularity of 0.693, as opposed to 57 modules with a total community
modularity of 0.677. In both cases, ResMod succeeded in further dividing a higher
number of modules and achieved a partition with a better overall modularity score.
Furthermore, on the simulated annealing approach there is no indication that small
communities obtained from the further partitions still present strong modular
structures since it can not be guaranteed that all submodules are not over-partitioned.
In contrast, ResMod will only partition modules further if there is indication of strong
modular presence (the modularity of each individual module is great than a threshold

value), which successfully avoids over-partition.

116



Chapter 5. A Two-stage Solution Approach for Network Community Identification using Mathematical
Programming

Table 5.3 Computational comparison of the modularity achieved without correction
for resolution problems (iMod) and after accounting for resolution (ResMod) with

indication of the number of modules detected in each of these two cases.

Name iMod No. modules ResMod No. modules
Q Q

Zachary 0.420 4 0.420 4
Dolphin 0.529 5 0.504 7
Les Miseables 0.560 6 0.560 6
P53 0.535 7 0.469 16
Jazz 0.445 4 0.445 4
E. coli 0.781 19 0.675 79
S. cerevisiae 0.775 25 0.693 66
C. elegans 0.453 9 0.366 44
Email 0.580 9 0.432 72

5.5 Concluding Remarks

Detecting community structures in complex networks is of crucially importance to
reveal the relations between structures and functions of many complex systems. Most
existing approaches rely on a quality index, called “modularity” to measure the
community structure quality. A general mathematical programming model for
network community structure identification has been developed in Chapter 4 to
identify the optimal community structure based on modularity maximisation.
However, the mathematical framework can only achieve global optimal solutions for
small/medium networks. In this chapter, the applicability of mathematical
programming to network community detection has been extended by proposing a two-
stage solution approach iMod for medium/large networks using mixed integer
optimisation. In the first stage, a good initial partition is selected from a number of
candidate solutions after solving an MINLP model with different starting points.
Furthermore, an iterative procedure has been adopted to improve the solution obtained
from the first stage. In order to overcome the resolution limit problem of modularity
optimisation, an iterative process ResMod was applied to detect small modules hidden

inside each community. The applicability of the proposed methodology has finally
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been demonstrated through a number of simulated and real network examples.
Comparing with other existing methodologies in the literature, the proposed approach
obtained more accurate community structures with higher modularity values.
Furthermore, a solution procedure, ResMod, is applied to each network community
obtained without considering the inter-community links so that finer community
structures become visible. Overall, the proposed optimisation-based approaches in this
chapter successfully extend the applicability of mathematical programming
techniques in the area of network community structure identification and accurately

achieved modular structures of medium/large scale complex networks.
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Chapter 6

Finding DNA Motifs and Consensus
Sequences using Mathematical

Programming

Discovering motifs involves the identification of sub sequences with high similarities
in DNA sequences. Finding such motif is crucially important to identify regulatory
regions which usually correspond to protein binding sits in DNA sequences for
transcription factors. In this chapter, we propose a general mathematical
programming framework for motif finding. The overall problem is formulated as a
mixed integer linear programming (MILP) model which determines the contents of a
consensus sequence and motifs for all DNA sequences so as to maximise the total
matching scores between the consensus sequence and all motifs. An iterative solution
procedure is developed to find multiple motifs for each single DNA sequence. The
power of mathematical programming to incorporate other biological features is also

revealed. The applicability of the proposed approach is demonstrated by a number of
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examples and the DNA motifs and consensus sequence found are compared to
validated biological motifs and the predicted results of two other computational

methodologies.

6.1 Introduction and Literature Survey

A major challenge of post-genomic biology is to understand the mechanisms of
regulating the expression of genes. One important step is to identify regulatory
elements/motifs, which usually correspond to protein binding sites in DNA sequences
for transcription factors. Finding DNA motifs is crucially important for biologists to
locate gene regulatory sites, identify drug targets and investigate cell reactions under
physiological and pathological conditions. A number of computational methodologies
have been proposed to tackle such problems considering different motif representation,
scoring functions for motif quality assessment as well as the search procedure. Next, a

brief description of major methodologies for DNA motif finding is provided.

Probabilistic Approaches: probabilistic approaches typically maximise the
information entropy of the chosen motif instances or the likelihood ratio of the motif
model to the background model. The log likelihood ratio and information content are
two major commonly used functions. First, Hertz et al. (1990) developed a method for
identifying consensus patterns in a set of unaligned DNA sequences. Such sequences
are known to bind a common protein or to have some other common biochemical
functions. The goal of the proposed method is to find the most significant motifs
which have the lowest probability of occurring by chance out of all candidate motifs
formed from the set of related sequences. Lawrence and Reilly (1990) improved such
method by proposing an expectation maximisation (EM) process to find motif
locations and contents. Later, the MEME (Multiple Em for Motif Elicitation)
algorithm developed by Bailey and Elkan (1995) extends the EM algorithm for
identifying motifs in unaligned DNA sequences. MEME expands the range of
problems which can be solved using EM and increases the chance of finding good
solutions. Sub sequences which actually occur in the DNA sequences are used as
starting points for the EM algorithm to increase the probability of finding global
optimal motifs. The assumption that each sequence contains exactly one occurrence of
the shared motif is relaxed, which allows multiple appearances of a motif to occur in

any sequence and permits the algorithm to ignore sequences with no appearance of
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shared motifs. Shared motifs can be erased so that several distinct motifs can be found
in the same set of sequences. However, EM has a weakness that it cannot escape local
optimal solutions since EM-based approaches are gradient descent methods and

always converge in a small number of iterations.

Gibbs sampling method is another extensively used motif finding approach. Initially,
Lawrence et al. (1993) presented a Gibbs sampling algorithm for the DNA and
protein local alignment problem. Later, Roth et al. (1998) developed the motif finding
algorithm, namely AlignACE (Aligns Nucleic Acid Conserved Elements). The
AlignACE approach used a maximum a priori log likelihood score, which gauges the
degree of overrepresentation and returns a series of motifs as weight matrices that are
overrepresented in the input set of DNA sequences. It also takes into account the
sequence of the entire genome and highlights those motifs found preferentially in
association with the genes under consideration. Moreover, the GLAM (Gapless Local
Alignment of Multiple sequences) algorithm proposed by Frith er al. (2004)
automatically determined the optimal motif length and evaluated the statistical
significance of the resulting output. Finally, Thompson et al. (2003) developed the
Gibbs Motif Sampler software package, containing a number of major Gibbs

sampling techniques proposed by Lawrence er al. (1993), Liu et al. (1995) etc.

Apart from expectation maximisation methods and Gibbs sampling-based approaches,
other probabilistic methodologies are also proposed. Hu et al. (2006) proposed a
clustering-based ensemble algorithm named EMD for de novo DNA motif discovery.
EMD approach is able to combine multiple predictions from multiple runs of one or
more basic component algorithms proposed from the literature so as to improve the
prediction accuracy. Redhat and Bailey (2007) proposed novel discriminative
probabilistic algorithm, namely, DEME, to discover DNA and protein motifs.
Comparing with other motif finding algorithms, the proposed approach needs two sets
of input sequences called “positive set” and “negative set”. Local and global search
procedures were applied to discriminate negative sequence sets from positive
sequences. Finally, Chakravarty et al. (2007) developed a novel ensemble learning
method, SCOPE. The proposed approach assumed that transcription factor binding
sites belong to one of three broad classes of motifs: non-degenerate, degenerate and
gapped motifs. SCOPE employs a unified scoring metric to combine the results from

three motif finding algorithms each aimed at the discovery of one of these classes of
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motifs. Finally, Larsson et al. (2007) developed a web-based motif discovery tool,
HeliCis, to detect DNA motifs with periodic spacing. By tuning the parameter settings
of the tool, colocalised motifs without periodicity or motifs with known or unknown

lengths separated by fixed and periodic gaps can be identified.

Recently, Tompa et al. (2005) performed a summary of most existing statistical
computational tools available for DNA motif finding and provided an extensive runs
on a variety of testing examples. This work provided some guidance to users
regarding the accuracy of currently available tools through a number of benchmark
datasets. They also proposed a number of statistics to assess the prediction
performance of all computational tools. Hu et al. (2005) developed a comprehensive
set of performance measures at the nucleotide, binding site and motif levels and
systematically evaluated five motif discovery algorithms using a prokaryotic motif
dataset. The computational results indicated that there are number of limitations of
current probabilistic approaches. First, the prediction accuracy of most methodologies
is still relatively low. Second, the probability-based methods have little flexibility to
incorporate other biological features. Third, many popular motif discovery algorithms
are based on heuristics which usually result in local optimal solutions rather than
global ones. Finally, the performances of these methods are highly subject to user-

defined parameter values and starting points in the search space.

Combinatorial Approaches: Compared to the probabilistic approaches, combinatorial
methods search motifs by proposing a number of mathematical frameworks to
optimise different objectives such as the information content aﬁd sum-of-pair
matching scores. Combinatorial models are straightforward to implement through
standard modeling tools and very few parameters are required. More importantly, it is
relatively easy to extend current mathematical models by incorporating other
additional conditions and constraints using algebraic equations. A number of
mathematical programming models and solution procedures have been developed to
solve string selection and comparison problems including the closest string, closest
sub string and fastest string problems share many similarities with motif finding. Li et
al. (2002) showed most combinatorial models for string comparison and motif finding
are NP-hard and proposed a polynomial time approximation algorithm to achieve near
optimal solution efficiently. Meneses et al. (2004) proposed three integer-

programming (IP) formulations and a heuristic to solve the closest string problems.
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Tight constraints are used to provide upper bounds of optimal solutions. These results
showed that the proposed mathematical programming approach is able to solve
instances of moderate size to optimality. Later, Meneses et al. (2005) have
summarised a number of optimisation models and solution approaches for various
string comparison problems. Li and Fu (2005) developed an MILP model to tackle the
DNA consensus sequence identification problem where the optimisation model
determined a consensus sequence with fixed length and the positions of motifs in each
DNA sequence so that the total matching scores between the consensus sequence and
the DNA motifs are maximised. Zaslavsky and Singh (2006) introduced a
combinatorial optimization framework for diverse motif finding problems. The
proposed mathematical model combined graph pruning techniques with a novel
integer linear programming (ILP) formulation. The objective function is maximisation
of total similarity scores of all pairs of DNA motifs. This optimisation-based approach
was proved to be flexible and robust enough to model several variants of the motif
finding problem. Finally, a more compact mathematical programming model was
presented for DNA motif discovery (Kingsford et al., 2006) using the distances
between sub sequences come from a limited set of possibilities rather than all pairs of

potential motifs.

In this chapter, a general mathematical programming framework is proposed to solve
DNA motif finding problems. The overall problem is formulated as a mixed integer
linear programming (MILP) model, which determines the content of a consensus sub
sequence within a collection of DNA sequences and motifs for each sequence so that
the total matching scores between the consensus sequence and each motif are
maximised. The key advantages of the proposed mathematical programming
framework are: (i) global optimal solutions for the motif and consensus sequence
identification problem are guaranteed. (ii) better prediction accuracies are achieved
when compared with the other two probabilistic methodologies and (iii) additional
biological features can easily be incorporated into current framework thus illustrating
the flexibility of our approach for further expansion. In the next section, the general
DNA motif finding problem is stated. Section 6.3 presents a novel mathematical
formulation for the DNA motif identification problem and section 6.4 presents an

iterative algorithm to find multiple motifs for each sequence. In section 6.5, the
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applicability of the proposed methodology is demonstrated by a number of illustrative

examples. Finally, some concluding remarks are made in section 6.6.

6.2 Problem Statement

Consider a DNA motif finding problem with 7L DNA sequences. Each DNA string
may have different length and consists of A, T, G and C. Motifs represent a set of sub
sequences with high similarities inside a set of DNA sequences. The consensus
sequence is a sub sequence with same length as those of motifs indicating the most
conserved regions of the motifs. Figure 6.1 clearly shows the process of identifying
consensus sequence and motifs. In Figure 6.1, we assume that there are three DNA
sequences available and each sequence contains eleven positions. The length of the
consensus sequence and motifs are fixed as six. The DNA motifs identification
problem proposed here aims at finding the highly reserved region for each sequence
(see the grey area of each DNA sequence in Figure 6.1) and identifying a consensus

sequence representing the feature of all motifs.

DNA sequence 1: TGCGTAAAGTT
DNA sequence 2: GTACGGCGTTA
DNA sequence 3: AGGGCGTTACT

Consensus sequence: GCGTTA

Figure 6.1 Motifs and consensus sequence identified from three DNA sequences
Overall, The DNA motif identification problem can be stated as follows:

Given:
e A collection of DNA sequences

e The length of consensus sequence and motifs

Determine:
e The consensus sequence content

e The motif positions and contents of each DNA sequence

so as to
e Maximise the total matching scores between the consensus sequence and

motifs
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6.3 Mathematical Formulation

In this section, a rigorous mathematical model for DNA motif finding problems is

presented. It is first assumed that only one motif will be identified for each DNA

sequence. The above assumption is relaxed in section 6.4 to discover multiple motifs

for each sequence. The indices, parameters and variables associated with the DNA

motif finding problem are listed below:

Indices

Parameters
dl

ip

Isi

LE,

m

M

DNA sequence (I=!), I, ...,TL)

DNA position (p=p,, p2, ..., P)

Motif starting position (s=s,, s, ..., S)
Consensus sequence position (i=1,2, ..., 1)

DNA letters (k=A, T, G, C)

Set of candidate motifs that have letter k on position i

Letter of position p on sequence /

Letter of position i of candidate motif in sequence / starting from

position s
Motif and consensus sequence length

Length of sequence /

Iteration number in algorithm MultiMotif

Total number of motifs per sequence

Binary variables
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1 if motif in sequence [ starts from position s; 0 otherwise
L, 1 if position i of consensus sequence is letter k; O otherwise

Continuous variables

W,

e Matching scores of letter k£ on position i

6.3.1 Sequence Data Pre-processing

The data pre-processing step generates candidate motifs with length of / from the

DNA sequencé set. A DNA sequence having LE, letters can be decomposed into a

collection of sub sequences with length of I:

:d Vl,s,i (61)

Isi Li+s-]

It can easily be seen that for a DNA sequence with LE, letters, equation (6.1) can
generate LE, -I+1 candidate motifs. Figure 6.2 illustrates the enumeration all

candidate motifs of the DNA sequence sets described in Figure 6.1. DNA motifs for
each sequence will be selected from the candidate sets through the proposed
mathematical model. It is also noted that the data pre-processing stage is also able to
generate other potential motifs (e.g. motifs with gaps; reverse complementary motifs)

if particular patterns of DNA motifs are required.

Candidate motifs from sequence 1:

TGCGTA GCGTAA  CGTAAA

GTAAAG  TAAAGT AAAGTT
Candidate motifs from sequence 2:

GTACGG TACGGC ACGGCG

CGGCGT GGCGTT GCGTTA
Candidate motifs from sequence 3:

AGGGCG  GGGCGT  GGCGTT

GCGTTA CGTTAC GTTACT

Figure 6.2 Enumeration of all candidate motifs
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6.3.2 Allocation Constraints

First, only one letter from {A,T,G,C} can be allocated into each position in the

consensus sequence:

k

Second, each motif can only start from one position in each DNA sequence:

>z, =1 Vi (6.3)

5

6.3.3 Definition of W,

W, is defined as the total matching scores of letter k on position i between the
consensus sequence and all DNA motifs. SK,, is the set include all positions from

candidate motifs with letter k:
SKy = {(l’ s)ltm = k}

If the potential motif from sequence / starting from position s is selected (i.e. binary

variable Z,, =1), also the ith position of the selected motif is letter k, such motif will

contribute to the value of W, :

W,< >z, Vi, k (6.4)

(.5)eSK,
6.3.4 Logical Constraint
The following logical constraint is introduced between binary variables W, and L, :
W,<TL-L, Vi k (6.5)

where TL denotes the total number of DNA sequences involved and binary variable
L, denotes whether position i of the consensus sequence is letter k. Therefore, the

above constraint enforces that W, will have non-zero value only when position i of the

consensus is letter k (i.e. L, =1).
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6.3.5 Objective Function

The objective function used in this model is the maximisation of the total matching

scores between the consensus sequence and motifs:
max D YW, (6.6)
Pk

Overall, the resulting mathematical model (OptMotif) for determining DNA motif and

consensus sequences is formulated as follows:

[OptMotif]:
Maximise ZZW«*
ik

subject to
constraints (6.2-6.5).
Z,. L, {1} w, 20

The resulting mathematical formulation is a mixed integer linear programming (MILP)
model. The CPLEX (Ilog, 2006) mixed integer optimisation solver is used to solve the

proposed model to global optimality through the branch-and-bound procedure.

6.4 Searching Multiple Motifs

The optimisation-based mathematical model proposed in the previous section searches
only for one motif per DNA sequence. It is also important from the biological point of
view to provide alternative motifs. Here, the proposed mathematical model is
extended to identify multiple motifs existing in a set of sequences. If more motifs are
required per sequence, then an iterative procedure could be employed. After solving
the OptMotif model to obtain the consensus sequence and motifs through the optimal

values of variables L, and Z, , respectively, we then i:) fix the optimal consensus
sequence content (i.e. fix the L, variable to be the values obtained by OptMotif) and

ii:) exclude the motifs already found. The reduced MILP model is then solved to find
alternative motifs. The flow chart of solution approach, MultiMotif, is described as

follows (Figure 6.3):
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[Algorithm MultiMotif]

Initialisation
m=1
ik

Solve OptMotif to Eliminate motifs with
Z, =1 from candidate

motif sets SKj,

Fix the optimal
value of L

<

obtain L, and Z,,

Figure 6.3 Flowchart of Algorithm MultiMotif

6.5 Results and Discussion

In this section, the applicability of the proposed methodology is demonstrated through
a number of DNA sequences. The proposed mathematical model and the iterative
solution algorithm have been implemented in the GAMS modeling system (Brook et
al., 1998) on a 3.40 GHz PC with 2GB memory using the CPLEX mixed-integer
optimisation solver with 0% margin of optimality for the branch-and-bound procedure.
The computational results from the proposed MILP-based approach are compared
with other two motif finding methodologies: MEME and Gibbs Sampler.

6.5.1 DNA Motif Identification

We apply our method to identify the binding sites of six E.coli transcription factors.
These selected datasets have been used by Zaslavsky and Singh (2006). In addition,
the crp example provided by Hertz er al. (1990) is also selected in this study since it

has been extensively investigated by a number of researchers (Hertz et al., 1990; Li
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and Fu, 2005). The DNA sequence length varies from 105 to 650 and the motif length
parameters range from 14 to 22. The consistencies between motif predictions made by
our approach and the known motifs are evaluated using the nucleotide level
performance coefficient (nPC) (Tompa et al., 2005; Zaslavsky and Singh, 2006). Let
nTP, nFP, nTN, nFN refer to nucleotide level true positives, false positives, true
negatives and false negatives, respectively. Suppose nTP is the number of nucleotides
in common between the known and predicted motifs. The nPC is calculated as
nTP/(nTP + nFN + nFP), which penalises the predictions which fail to identify any
nucleotide belonging to the motif as well as falsely predict any nucleotide not
belonging to the real motif. In this study, we compare the prediction performance of
our method to two other well known DNA motif finding methodologies MEME
(Bailey and Elkan, 1995) and Gibbs Motif Sampler (Thompson et al., 2003) and
combinatorial optimisation-based methodologies (Zaslavsky and Singh, 2006).
MEME is used through its web-based version

(http://meme.sdsc.edu/meme/meme.html). Gibbs Motif Sampler is downloaded from

http://bayesweb.wadsworth.org/gibbs/gibbs.html and run with 100 random restarts in

a Linux operating system to obtain sufficient sampling of the search space. For all
these three approaches, all parameters are kept as their default values. In this study,
we search two motifs per DNA sequence (i.e. M=2) using all three approaches and
compare them to the real motif available. The closest predicted motif is then selected

to calculate the nPC value.

Table 6.1 Prediction accuracy comparison (nPC value) of all examples

Examples No.Seq® Motif-Len®  MultiMotif MEME Gibbs
arcA 11 15 0.521 0.304 0.071
cpxR 7 14 0.500 0.235 0.065
dnaA 6 15 0.875 0.452 0.667
fruR 10 16 0.818 1.000 0.799
met] S 16 0.650 0.455 0.571
ntrC 4 17 1.000 0.600 0.850

crp 18 22 0.764¢ 0.788 0.612

a number of sequences; b: motif length; ¢ feasible solution within 10,000 seconds
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Figure 6.5 Difference of nPC values between MultiMotif and Gibbs Motif Sampler
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Table 6.1 lists the statistics of all selected examples and the nPC values of all three
approaches. Figure 6.4 and Figure 6.5 show the nPC value difference between the
proposed optimisation-based approach and other computational methodologies. For
every dataset, the height of the bar indicates the nPC value difference two approaches
compared. Bars above zero indicate better prediction performances for the proposed
approach and bars below zero otherwise. The comparative results clearly show that
our optimisation framework is very competitive in terms of prediction accuracy when

compared with MEME and Gibbs Motif Samplers.

6.5.2 Incorporating Additional Biological Information

For most existing motif finding methodologies proposed such as MEME and Gibbs
Motif Sampler, it is very difficult to implement particular biological information. In
this section, we propose an illustrative example to demonstrate how additional
biological features can easily be incorporated as logical constraints in the proposed

mathematical programming framework, when required.

Take crp dataset as an example, biological research from the literature showed that
the consensus sequences of crp example used in Table 6.1 have complementary
symmetric structures due to the dimmer structure of the binding protein (Stormo and
Hartzell, 1989). The complementary symmetric condition can mathematically be

expressed as:

L,=1if L, ;=1 Vi= 1,2,...,-;— (6.7)
. . I

Ly=1if L, ., ,=1 Vi= 1a2,-~-,5 (6.8)
. . 1

Lo=1if L, =1 Vi= 1,2,---,5 (6.9)
. . I/

LiC =1 lf LI——i+lG =1 Vl = 1’2»---95 (610)

It is very difficult for most probabilistic approaches to incorporate such biological
features. However, additional conditions can easily be accommodated into the

proposed optimisation model by adding the following constraint:
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a'LiA +ﬂ'Lir + 7'Lia +5‘Lir :a'Ll-mr +/6'Ll-i+m +7‘Ll-i+lc +5'L1-i+|c

Vi= 1,2,...,—;— (6.11)

where @, 3, 7,6 are constants and @ # S # ¥y # 0. According to allocation constraint
(6.2), only one of binary variables L,, L, L, Lhas the value of 1 and all other three

are forced to zero. Therefore, only one term of the left hand side of equation (6.11)
has a non-zero value. In order to satisfy constraint (6.11), the term with the same
coefficient on the right hand side will be automatically forced to have non-zero values.

Therefore, the pair of variables with the same coefficient (e.g. L, and L,_,, ;) will

simultaneously be forced to 1 so as to satisfy equation (6.11).

The extended proposed MILP model (OptMotif-E) incorporating the above logical
constraint is used to predict the motifs of example crp. Similar to section 6.4.1, we
search two motifs per DNA sequence by simply replacing model OptMotif in steps 2
and 3 of algorithm MultiMotif as OptMotif-E and name the new solution algorithm
MultiMotif-E. Comparing both motifs obtained to the real motif, the closest one is
reported. Table 6.2 lists the starting positions of biologically identified motifs and all
predicted motifs from other three approaches. Figure 6.6 graphically shows the actual
predicted motif in each DNA sequence. The comparative results listed in Table 6.2
clearly show that MultiMotif-E identifies exactly the same motif locations when
compared to the real biological findings after accommodating the complementary

symmetric constraint (6.11).
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Table 6.2 Comparative results between MultiMotif-E and all other two approaches

Sequences Kricz)\;/;illdn(;tif MultiMotif-E MEME  Gibbs
cole 17,61 61 60 60
ecoarabop 17,55 55 54 54
ecobglrl 76 76 77 75
ecocrp 63 63 62 62
ecocya 50 50 51 42
ecodeop 7,60 7,60 6 6
ecogale 42 42 23 41
ecoilvbpr 39 39 38 38
ecolac 9,81 9,81 8 8
ecomale 14 14 13 13
ecomalk 29 29 62 53
ecomalt 4] 41 42 33
ecoompa 48 48 47 47
ecotnaa 71 71 72 63
ecouxul 17 17 18 9
pbr-p4 53 53 54 45
trn9cat 84 84 54 N/A
tdc 78 78 77 75
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Seq1....ACTGT TTTTTTGATCGTTTTCACAAAA ATGGA.....
Seq 2.....ATTG ATTATTTGCACGGCGTCACACT TTGCT.....
Seq 3.... TTAAT AACTGTGAGCATGGTCATATTT TTATC.....
Seq 4....TGCAT GTATGCAAAGGACGTCACATTA CCGTG.....
Seq5.....CAGCA AGGTGTTAAATTGATCACGTTT TAGAC.....
Seq 6.....GTGAA TTATTTGAACCAGATCGCATTA CAGTG.....
Seq7.... TCCAC TAATTTATTCCATGGCACACTT TTCGC.....
Seq 8.....GTACA AAACGTGATCAACCCCTCAATT TTCCC.....
Seq9....GCAAT TAATGTGAGTTAGCTCACTCAT TAGGC.....
Seq 10...GCCAA TTCTGTAACAGAGATCACACAA AGCGA.....
Seq 11...ACGGC TTCTGTGAACTAAACCGAGGTC ATGTA.....
Seq 12...TTTGG AATTGTGACACAGTGCAAATTC AGACA.....
Seq 13....TTCAT ATGCCTGACGGAGTTCACACTT GTAAG.....
Seq 14...CGAAC GATTGTGATTCGATTCACATTT AACAA

Seq 15...GAAAT TGTTGTGATGTGGTTAACCCAA TTAGA.....
Seq 16....ATATG CGGTGTGAAATACCGCACAGAT GCGTA.....
Seq 17...GGCGA AAATGAGACGTTGATCGGCACG

Seq 18....AGTTA ATTTGTGAGTGGTCGCACATAT CCTG.....

Figure 6.6 Motifs identified of crp dataset through MultiMotif-E

6.6 Concluding Remarks

DNA motif finding is considered as one of the most important tasks in post genomic
era. It focuses on the identification of repeated patterns inside a collection of DNA
sequences. There have been quite a few computational methodologies developed to
identify DNA motifs over the last 30 years. Most approaches use probabilistic
approaches and combinatorial models. However, computational prediction of such
regulatory elements is still a complex challenge. In this chapter, a general
mathematical programming approach has been proposed to identify the consensus
sequence and motifs within a set of DNA sequences. Initially, the pre-processing step
generates a collection of potential motifs from all available sequences. Secondly, an
optimisation model has been proposed to determine the contents of the consensus
sequence and DNA motifs so that the total matching scores between the consensus
sub sequence and all DNA motifs are maximised. The overall problem has been

formulated as an MILP optimisation model which can be solved to global optimality
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using standard branch-and-bound procedure. An iterative solution procedure has been
developed to identify multiple motifs for each sequence. The applicability of the
proposed approach has been demonstrated through a number of illustrative examples.
The prediction performance of our approach has been compared with two other
standard DNA motif finding methodologies. The computational results indicate that
our approach is very competitive in terms of prediction accuracy when compared with
literature computational methodologies. Finally, one additional biological constraint
has easily been incorporated in the proposed methodology to improve the motif
prediction accuracy thus illustrating the power and flexibility of the proposed

mathematical programming framework to accommodate other biological information.
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Conclusions and Future Directions

The aim of the thesis is to facilitate pattern recognition and knowledge discovery by
applying mathematical programming to analyse different forms of data. Towards this
objective, a number of mathematical models and solution procedures have been
developed in order to assist researchers from various disciplines to extract patterns
and information from data. The key contributions of the thesis are summarised in the
next section, while section 7.2 suggests promising new directions for future research

work.
7.1 Contributions of the Thesis

7.1.1 Data Classification using Mixed Integer Optimisation

Part I of the thesis concerned with the problem of data classification with two or
multiple groups and consists of Chapters 2 and 3. In Chapter 2, a mixed integer

optimisation-based approach has been proposed for the general data classification
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problem. First, an extensive and comprehensive literature survey was presented in
order to familiarise readers with general data classification problems and major
research developments particularly mathematical programming-based classification
models. Following the literature survey, we focus on the data classification problem
using hyper-box classifiers. The overall problem has been formulated as an MILP
representation where the boundaries of each distinct class have been determined by
one hyper-box classifier so as to enclose the maximum correctly classified training
samples and the total misclassified samples are minimised. In order to improve the
training and testing performances of the proposed approach, an iterative solution
algorithm has been developed to allow multiple hyper-boxes for each single class. In
the testing stage, the memberships of some new data samples with unknown class
labels have been identified by calculating the distances between testing samples to all
existing hyper-boxes established in the training part. The unclassified sample is then
assigned to the closest box. Finally, the applicability of the methodology has been
demonstrated through five literature examples and two synthetic datasets. The hyper-
box representation has been shown to be particularly suitable to classify data samples
with disjoint regions. The prediction performance of our approach has been compared
with six other standard classification methods over three different testing scenarios.
The computational results indicated that our approach is competitive in terms of
prediction accuracy when compared with other alternative classification

methodologies.

The proposed optimisation-based approach for data classification problems in Chapter
2 was able to complete the training task with a relatively few samples due the
existence of binary variables in the MILP models involved. In Chapter 3, an efficient
two-stage solution algorithm was developed to extend the applicability of hyper-box
classifiers to larger and more complex datasets. In the first stage, an efficient
decomposition scheme was introduced to partition all training samples into a number
disjoint and non-overlapped regions without considering their class memberships. In
the second stage, hyper-box classifiers were applied to complete the training of each
partitioned region using the optimisation-based approach proposed in Chapter 2. In
order to test the prediction performance of the proposed approach, an extensive
computational experiment was carried out using five real datasets and two synthetic

examples. These datasets involved large training samples and complex data
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distributions and can not be solved efficiently using the mixed integer optimisation-
based approach developed in Chapter 2. The computational results revealed that our
approach was very competitive when comparing the prediction accuracies of other
competing methodologies from the literature. It was also noted that the proposed two-
stage solution approach showed a strong parallel structure that can be used by
distributing the whole task into different computers so as to significantly improve the

computational efficiency.

7.1.2 Network Community Structure Identification

Part II of the thesis involved the problem of network community structure
identification and contained Chapters 4 and 5. In Chapter 4, a simultaneous mixed
integer quadratic programming (MIQP) model was developed to identify the
community structures of small/medium network. First, a comprehensive introduction
was performed to indicate how networks represent various real world complex
systems. The importance of identifying modular structures of networks to study
system functions was also indicated. Recent approaches to find network community
structures were then summarised in the literature review section and the major
strength and weakness of each approach was pointed out. Since proposing the concept
of network modularity (Newman and Girvan, 2004), the community structure
detection problem can be posed as an optimisation task which finds an optimal
partition at the maximum modularity value. The major disadvantage of all existing
approaches based on modularity maximisation is the global optimal solution can not
be guaranteed. We then presented a general mathematical programming framework to
identify the optimal partition of a network into communities with the maximum
modularity metric. The resulting mathematical formulation is an MIQP model
comprising a concave quadratic objective function which is maximised with a set of
linear constraints and mixed binary/continuous optimisation variables. Due to its
convexity, the proposed mathematical model can be solved to global optimality
through the branch-and-bound procedure. The solution procedure was further
enhanced by developing special symmetry-breaking constraints to eliminate
equivalent solutions. Other additional features such as minimum/maximum module
size and balancing among modules can easily be incorporated in the proposed

mathematical model. The applicability of the proposed optimisation-based approach
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has been demonstrated by four network examples. Comparative results with other
methodologies from the literature showed that the proposed methodology obtained
superior performance while global optimum is guaranteed. The computational results
also indicated that small and medium size network examples were solved successfully
by employing the proposed model. The achievement of optimal solutions for

medium/large networks has proved to be a very computationally demanding task.

The computational limitations of the proposed MIQP model described in Chapter 4
necessitated the development of an efficient solution methodology to tackle
medium/large networks. For this reason, a two-stage optimisation-based solution
procedure was developed in Chapter 5 to identify community structures with good
quality modularity values. In the first stage, a good initial partition is selected from a
number of candidate solutions after solving a MINLP model with different starting
points. In the second stage, an iterative procedure was adopted to improve the solution
obtained from the first stage. In order to overcome the resolution limit problem of
modularity optimisation, an iterative process was applied to detect smaller modules
hidden inside each community. Finally, the applicability of the proposed solution
methodology has finally been demonstrated through a number of simulated and real
network examples. Comparing with other existing methodologies in the literature, the
proposed approach obtained more accurate community structures with higher
modularity values. Moreover, the solution procedure was applied to each network
community obtained without considering the inter-community links and the

computational results showed finer community structures become successfully visible.

7.1.3 Motif Identification for DNA Sequence Data

The prediction of consensus sub sequences and motifs from a collection of DNA
sequence data sets is the third objective of the thesis. In Chapter 6, an MILP model for
DNA motif discovery was presented. Recent development of sequence analysis in the
area of bioinformatics was initially introduced to bring readers this fascinating
research area. A number of mathematical programming approaches for DNA
sequence alignment and pattern discovery problems were also highlighted to
demonstrate their suitability and flexibility to extract useful information from DNA

sequences.
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Given a collection of DNA sequences with variable lengths, the overall problem has
been formulated as an MILP model, determining the content of the consensus
sequence of all sequences and motifs for each sequence so that the total similarity
scores between the consensus sub sequence and all motifs identified are maximised.
The applicability of the mathematical programming framework was demonstrated via
a number of DNA sequence sets selected from the literature. The resulting motifs
identified through the proposed optimisation-based approach were compared with real
motifs found via biological experiments and the predicted accuracy was calculated.
Finally, the prediction performances of our approach were compared with other motif
finding methodologies from the literature. The computational results clearly indicated
that our method is competitive in terms of prediction accuracy when compared to

other existing methodologies.

In this section, the key contributions of the thesis are summarised. This thesis covers
three important data analysis topics using mathematical programming techniques
including data classification, network community structure identification and DNA
sequence analysis. Since data classification is one of major challenges in data mining
and pattern recognition, a novel optimisation-based approach has been developed to
tackle such problem using hyper-box classifiers. Secondly, optimisation models and
solution algorithms have been proposed to identify communities in complex networks
thus indicating a very promising research avenue to analyse network topological data
through the use of mathematical programming. Finally, an optimisation-based
frémework has been developed to find DNA motifs and consensus sequences. Overall,
the power of mathematical programming techniques to tackle various data analysis
problems has been revealed through the competitiveness of the computational results
when compared with methodologies from other research communities and the
convenience of incorporating other additional features. Next, a number of research

directions are recommended for further investigation.

7.2 Recommendations for Future Work

A number of promising future research directions related to the application of
optimisation theory and mathematical programming techniques to data analysis are
presented in this section. The aim of this section is to provide readers with some

future insights in the area of optimisation-based data analysis and pattern discovery as
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well as highlight a number of emerging research issues that could benefit from the
mathematical modelling frameworks developed in the thesis. Next, we consider those

future research issues in detail.

7.2.1 Data Classification through Mathematical Programming

In the first part of the thesis, an optimisation-based approach has been proposed to
solve the data classification problem with two or multiple groups. Hyper-box
classifiers have been used to discriminate training samples from different classes. The
proposed optimisation-based framework successfully captured the patterns of training
samples thus illustrating the applicability of mathematical programming techniques in
data mining and machine learning. It is also widely accepted that no data
classification approaches are superior to all other methods on every dataset (Lam and
Moy, 2002; Adem and Gochet, 2006). The method which obtains the best prediction
accuracy on one dataset may perform badly on the other. The training and prediction
performances are determined by several issues such as the characteristics of datasets,
the structures of classifiers and the parameter values specified. The proposed data
classification-based framework in this thesis has been shown to particularly be
suitable for samples with disjoint regions. It is noted that other approaches such as
linear discriminant analysis (LDA) and neural networks (NN) are also achieved very
good training and testing performances on some cases. Therefore, developing a hybrid
approach combining the strengths of hyper-box classifiers and other discriminant
functions is a very interesting direction to tackle classification problems with huge

training samples and complex structures.

Hyper-box classifier proposed in Chapter 2 together with linear discriminant
classification functions developed by Gehrlein (1986) and Sueyoshi (2006) opened a
very promising research avenue to apply mathematical programming techniques to
data classification. Recently, piecewise linear classifiers were developed (Glen, 2005;
Ryoo, 2006) for only two class classification problems using MILP models.
Comparing with the linear classifiers (Gehrlein, 1986; Sueyoshi, 2006), piecewise
linear functions use more than one linear classifier to separate data samples with
different class labels so as to improve training and testing accuracies. Moreover, Kim
and Ryoo (2007a, 2007b) developed MILP models to separate two-class data samples

using a finite number of nonlinear and nonconvex discriminant functions, which were
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general enough to separate data samples with linear and/or nonlinear boundaries.
Stimulated by the above research work, two directions are worth trying in the future.
The first direction is to extend the piecewise linear classifier developed by Glen (2005)
and Ryoo (2006) to multi-class data classification cases. The other avenue could be
the generalisation of the proposed hyper-box classifiers into convex hulls so as to

improve the training and testing performances.

7.2.2 Community Structure Identification of Complex Networks

Chapters 4 and 5 proposed optimisation-based approaches to identify community
structures of complex networks. This research work demonstrated the power of
mathematical programming techniques to investigate the topological characteristics of
complex networks. Such frameworks were able to find communities of undirected and
unweighted networks. Recently, the availability of various data made more networks
directed and weighted so as to approach real properties of complex systems. For
example, the weights appeared in social network edges may indicate the
communication frequencies between the two nodes linked each other. The
directionality of metabolic networks may reflect reversible/irreversible biochemical
reactions. The extension of our optimisation-based approaches to general network
models could be of crucially importance to identify communities and investigate the

properties and functions of such modules more accurately.

The mathematical programming framework developed in Chapters 4 and 5 were
capable of finding communities for networks with medium/large sizes. The
computational results clearly indicated that the proposed framework identified
network modules more accurately when compared to other competing methodologies.
Recently, scientific and technological advances made a number of large-scale network
data available. For instance, the network of coauthorships between scientists posting
preprints on the Condensed Matter E-Print Archive has more than 30,000 nodes. The
website connection of Notre Dame University involves more than 325,729 nodes. A
number of algorithms were developed to tackle networks with that scale (Claust ez al.,
2004; Pujol er al., 2006; Raghavan et al., 2007). Although they were efficient from
computational point of view, all these approaches suffered from the random nature of

the algorithms proposed or poor solution quality. Therefofe, the development of more
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efficient and accurate optimisation-based approaches for very large networks could be

very beneficial to the research community.

The optimisation-based methodologies developed in Chapters 4 and 5 were able to
find modular structures of networks with no more than 1200 nodes. Optimising the
modularity metric of very large-scale networks become computationally challenging.
In the near future, it is very interesting to propose some hybrid approaches for large
networks. First, a number of efficient algorithms such as hierarchical clustering can be
applied to partition the whole network into a number of small communities (i.e. 500-
1000 clusters). Each small cluster can be treated as a pseudo node and are aggregated
into larger modules using the proposed optimisation-based frameworks in this thesis.
In addition, other modularity improvement techniques such as the fine tuning
technique introduced by Newman (2006) can be used as the final postprocessing stage
of the multi-stage hybrid approach so as to achieve accurate community structures of

large networks.

It is noted that the mathematical models and solution approaches developed in
Chapters 4 and 5 provided a general framework to identify network communities
using mathematical programming techniques. Our approaches were general enough to
incorporate other network partition qualification metric. Recently, Li et al. (2008)
introduced a novel quantitative function for network community detection. The new
metric, named as modularity density, was verified theoretically to be able to avoid the
resolution limitations of maximisation of the modularity metric. Moreover, different
parameters associated with the modularity density metric were also introduced in this
work to enlarge the understanding of complex network topology. In the future, it is
very promising to extend our methodologies to accurately-identify modular structures

and investigate other properties of complex networks.

In the area of network community structure identification described so far, the
modules detected are assumed to be non-overlapped, which indicates each node must
be allocated into only one distinct module. There are also great interests to detect
overlapping/fuzzy communities since quite a few complex systems have modules that
partially overlapped each other. Nodes being allocated into more then one community
are generally considered as the bridge among distinct modules. Palla et al. (2005)

proposed a novel approach to detect overlapping clusters in nature and society. Zhang
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et al. (2007) applied c-means clustering algorithms to identify overlapping
communities in social networks. Finally, Napusz et al. (2008) complemented and
expanded the concept of overlapping communities and developed an algorithm to
detect such structures. The proposed approach allowed each vertex of the graph to
belong to multiple communities at the same time. The node-module allocation was
determined by exact numerical membership degrees, even in the presence of
uncertainty in the data being analysed. All these research work stimulated a very
promising direction to apply mathematical programming techniques to identify

overlapping/fuzzy community structures of real complex systems.

7.2.3 Finding DNA Motifs and Consensus Sequences using

Mathematical Programming

In the sixth chapter of the thesis, a general mathematical programming model was
developed to find the consensus sequences and motifs among a collection of DNA
sequences. It should be noted that the proposed optimisation model was general to be
applied to other sequence datasets. One future direction of this topic is to apply the

resulting mathematical model to other forms of sequences.

The computational results shown in Chapter 6 indicated that the proposed MILP
model is able to find motifs and consensus sequences with length of up to 18 positions.
The identification of longer patterns was hindered by the demanding computational
requirements. Recently, Kinsford er al. (2006) have developed a combinatorial
optimisation approach combining a graph pruning techniques coupled with an integer
linear programming (ILP) formulation for diverse motif finding problems. The
computational results indicated such approach benefits from its efficiency. Therefore,
the second avenue of this topic will be the improvement of our current model by
incorporating tighter constraints and efficient heuristics to find longer motifs without

sacrificing the solution quality.

It is also indicated that some DNA sequences involve gaps. The number of gap
positions also has uncertainties. Li and Fu (2005) developed a mathematical
programming approach to identify unknown binding sites with uncertain gaps in DNA

sequences. In the near future, the mathematical framework proposed in Chapter 6 can
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be extended to solve motif identification problems with variable motif lengths and

uncertain gaps.

In this section, a number of research directions associated with optimisation-based
data analysis have been introduced. All optimisation-based methodologies proposed
in this thesis involve the analysis of static datasets. It is also widely known that the
area of data analysis is developing in an unexpected pace especially the generation of
dynamic datasets. For example, the operating conditions of process plants vary with
time; dynamic evolutions of regulatory networks have been found on all levels in
biology. Therefore, the development of methodologies to analyse dynamic datasets is
of crucial importance to extract knowledge from dynamic systems. The success of the
application of mathematical programming techniques to analyse static datasets shown
in this thesis indicates a very promising research opportunity to tackle more complex

data analysis tasks from optimisation point of view.
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Appendix
Appendix

List of Proteins in p53 Network

node 1 14-3-3 node 36 E2F5 node 71 p68
node 2 Abl node 37 E2F6 node 72 PARP
node 3 AP2 node 38 E-cad node 73 Paxillin
node 4 APC node 39 ERCC1 node 74 pCAF
node 5 ATM node 40 FEN-1 node 75 PCNA
node 6 Bax node 41 Fos node 76 PKC
node 7 BRCA1 node 42 Gadd45 node 77 Plk1
node 8 C-EBP node 43 HBP1 node 78 pRb
node 9 Casp3 node 44 HDACH1 node 79 cdk2
node 10 Cdc25A node 45 Histones node 80 Rad51
node 11 Cdc25C node 46 HMG node 81 Rad52
node 12 Cdk1 node 47 HR23B node 82 Raf1
node 13 Cdk4-6 node 48 JNK node 83 Ras
node 14 Cdk7 node 49 Jun node 84 Rep_fork
node 15 Chk1 node 50  Karp-1 node 85 RF-C
node 16 CK1id-k node 51 Ku70 node 86 RHA
node 17 CK2 node 52 Ku80 node 87 Rpase_2
node 18 Cks1 node 53 Ligase_1 node 88 Skp1
node 19 Crk node 54 Ligase_3 node 89 Skp2
node 20 CSB node 55 MAPK node 90 SL1
node 21 C-TAK1 node 56 Max node 91 Sp1
node 22 CycA node 57 Mdm2 node 92 ssb
node 23 CycB node 58 Myc node 93 ssDNA
node 24 CycD node 59 Myt1 node 94  TAFII250
node 25 CycE node 60 p107 node 95 TBP
node 26 CycH node 61 p130 node 96 TFHH
node 27 DMP1 node 62 p16 node 97 U-glyc
node 28 DNA-PK node 63 p19ARF node 98 Weet1
node 29 DP1-2 node 64 p21 node 99 XPA
node 30 Dpase_a node 65 p27 node 100 XPB
node 31 Dpase_b node 66 p300 node 101 XPC
node 32 Dpase_d node 67 p36MATI node 102 XPD
node 33 dsDNA node 68 p53 node 103 XPF
node 34 E2F1-2-3 node 69 rpa node 104 XRCC1
node 35 E2F4 node 70 p57
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