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Abstract
The focus of this thesis is biological systems whose dynamics present an interest-

ing feature: only some dimensions drive the whole system. In our examples, the dy-

namics is expressed as ODEs, such that the i th equation depends on all the variables

Pxi D f .x1; : : : ; xi ; xiC1; : : :/, so that they cannot be solved by classical methods.

The authors in the literature found that one could express the variable of order bigger

than N as a function of the first N variables, thus closing the differential equations; the

approximations obtained were exponentially close to the non-approximated result.

In Nonlinear Dynamics, such functions are called Inertial Manifolds. They are defined as

manifolds that are invariant under the flow of the dynamical system, and attract all trajectories

exponentially.

The first example gives rise to a generalisation of a theorem which, in the literature,

is proved for the PDE Pu D �Au C V.u/. We prove existence for the most general case

Pu D �A.u/uC V.u/ and consider the validity of the results for the biological parameters.

We also present a theoretical discussion, by providing examples.

The second example arises from Statistics applied to population biology. The infinite

number of differential equations for the moments are approximated using a Moment Closure

technique, that is expressing moments of order higher than N as a function of the first

moments, generally using the function valid for the normal distribution. The example

shows exceptional approximation. Though this technique is often used, there is no complete

mathematical justification.

We examine the relation between the Moment Closure technique and Inertial Manifolds.

We prove that the approximated system can be seen as a perturbation of the original system,

that it admits an Inertial Manifold, which is close to the original one for � ! 0 and t !1.
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Notations

We have used the following notations:

� A Glossary in chapter 4 contains the definitions of all terms and concepts

� Chapters are numbered starting from 1, and beginning with the introduction

� Sections are numbered starting from 1, resetting the counter inside of each chapter

� Sub-sections are numbered starting from 1, resetting the counter inside of each

section

� 3.2.1 refers to chapter 3, section 2, sub-section 1; in the text we refer to it either

with “as in section 3.2.1” or with “as in 3.2.1”

� equations are numbered starting from 1, resetting the counter inside of each chapter

� E.4.5 refers to equation 5 in chapter 4; in the text we refer to it either with “as in

equation E.4.5” or with “as in E.4.5”

� Similarly, T.1.2 refers to theorem 2 in chapter 1, L.3.4 refers to lemma 4 in chapter

3, D.5.6 refers to definition 6 in chapter 5; they all share the same counter, which is

reset inside of each chapter

� M is always an Inertial Manifold

� u is always a time dependent variable of a differential equation in a Banach or

Hilbert space

� mi are always moments and �i are always cumulants

� 0 is used for the null element in a Banach or Hilbert space, and in general in a

function space; 0 is used for the null scalar

� the rest of the notation is specific to the chapter or section
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Chapter 1

Introduction

We give an overview of the thesis, including its

origins, motivations, the research programme, the

original results and a perspective of the published

work in the field.
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1 Introduction

Our aim in this introductory section is to give an overview of the work included in the

thesis, with the following objectives:

� to identify the motivations, mathematically speaking, that led us to choose this

subject as an appealing one for a PhD thesis;

� to present an account of the results by themselves;

� to describe their relevance to the framework of the published research in the field.

One fact, that might seem to be contingent, has influenced the three arguments above

in a variety of ways: I have interrupted my course of study for about 8 years, just before

undertaking the writing up of the thesis. Thanks to this pause, the mathematical results here

presented are not the same that would have been presented 8 years ago.

In the next section, we shall briefly indicate the effects of this interruption, and then

relate a more classical mathematical introduction in the following sections.
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1 - Introduction 1.1 - Genesis

1.1 Genesis
My PhD studies started back in 1996, and continued until 1999. During this period,

I was involved in a number of projects, all of which have originated from applications to

Biology. They had the same mathematical motivation, which is the understanding of the

simplification of complex dynamical systems.

I started with the investigation of Inertial Manifolds in a biological system describing

the dynamics of Gap Junctions, which is a dynamical form of cell-to-cell communication,

described in [1-BAI-1997]. The totality of the research I did under the guidance of Professor

Stark and Dr Baigent was published in [47-IAN-1998]; it consists of a generalisation of a

standard theorem about the existence of Inertial Manifolds. This theorem applies to systems

like Pu D �Au C V.u/ and gives conditions on the eigenvalues of a linear operator A and

the Lipschitz constant of V for an Inertial Manifold to exist. We generalised to a family of

linear operators A.u/. Briefly, an Inertial Manifold can be thought of as yielding a slaving

principle, stating that the coordinates u can be split into two sets of coordinates u D .s; '/

such that ' can be expressed as a function of s.

When I finally decided to resume the writing up of my thesis, I found out that, in the

10 years since the publication of this paper, almost no research had been published in the

meantime on generalisations of these sort of theorems.

Thus, when confronting the task of composing my thesis, it seemed natural to extend

the results originally published to include a proof of existence under very general conditions.

These results are included in section 2.4.4.

The other main subject I approached in 1998 and 1999, was the study of the dynamics

of the moments of a probability generating function for a parasite-host problem described in

[72-ISH-1995]. The Moment Closure technique was used, and it gave, surprisingly enough

for the author, a very good approximation. With Moment Closure technique, we refer to

a class of methods that express the moments of high order as functions of those of lower

order; a slaving principle as in the Inertial Manifold theory. The surprise came because it

was not always possible to justify in [72-ISH-1995] such an approximation from a statistical

or biological point of view. Furthermore, in the literature this method is widely used, though,

no general theoretical account of why it works is given from a dynamical perspective.
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Thus, I researched on the subject and found that the system, for the particular values of

the parameters, possesses an Inertial Manifold. I also found that there was a relation between

the function used in the Moment Closure and the one defining the Inertial Manifold. The

results I obtained at that time were published in [48-STA-2001]. Eight years later, I present

a version with all the mathematical details and a sound functional setting for an infinite

dimensional set of differential equations. In fact, we decided to use a different structure and

organisation so as to aim at a broader audience, possibly without a dynamical systems and

functional analysis mathematical background.

Once again, when I finally decided to complete my PhD thesis, I found that almost

no work had been published on the path I pursued; I was unable to find any reference or

published paper dedicated to understanding, using a dynamic perspective, why Moment

Closure functions work so well and if they hold any relation to Inertial Manifolds at all.

Thus, the most obvious line of investigation was to further develop the example above;

the results from this completely new piece of research, which I would not have pursued

in year 2000, are included in sections 3.3.4 and 3.3.5. The main finding is that the

normal approximation defines a manifold which tends coordinate-wise to the original Inertial

Manifold, though in a peculiar sense, that is for t ! 1 and � ! 0, where � is a small

parameter present in the biological model being studied.

As I have shown above, apart from the original results that I achieved before year 2000,

this 8-year lapse of time has contributed to directing my interest into the finding of original

results:

� the proof of a more general theorem of existence of Inertial Manifolds,

� an elucidation on the relation of Moment Closure and Inertial Manifolds.

On the other hand, during the last 8 years, though I worked in a mathematical related

subject, I had somehow reduced my contacts with the day-to-day usage of mathematics. This

is why I felt the urgent need to first understand and then explain in detail all the features of

Inertial Manifold I started investigating so long ago. This gave rise to a series of improved

proofs with detailed calculations made explicit, correction of mistakes and a complete new

series of examples.
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Improvements:

� detailed proof of Gronwall’s inequalities, used in the proof of the existence of the

Inertial Manifold;

� clarified description of Evolution Operator, including a correction of the proof of

its Lipschitz Property;

� clarification of the relation between the Gap Condition and the Strong Squeezing

Property for our generalisation;

� formal definition of all used Hilbert and Banach Spaces, including quoting the

correct theorems that prove existence and uniqueness of solution to the associated

PDEs.

Examples and new proofs:

� an example of a dynamical system, which does not satisfy the Cone Condition, but

nevertheless has an Inertial Manifold;

� example of the approximating flow for an Inertial Manifold that is asymptotically

complete;

� an example of Inertial Manifold that is not asymptotically complete;

� proof that the system I originally studied is asymptotically complete;

� relation between different Moment Closure approximations and the corresponding

rate of attraction;

� the proof that the Moment Closure used in [72-ISH-1995] is an Inertial Manifold

for a perturbation of the original system.
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1.2 What are Inertial Manifolds?
As we have seen so far, the basic topic of this thesis can be described as “understanding

how Inertial Manifold can be used to simplify complex biological models”. Before we

proceed to explain how we do this, it is then important that we give an account of what

Inertial Manifolds are.

We shall assume that the reader is familiar with the essentials of Function Analysis,

in particular with Banach and Hilbert spaces, and Semi-Group Theory. Good classical

references are given in 5.2.1 and 5.3.1.

Furthermore, we shall see that we derive differential equations from statistical models,

so that a basic understanding of Probability theory is assumed, especially the definition of

moments, cumulants, and of the most important generating functions: probability, moment

and cumulant generating functions. Nevertheless, a profound knowledge of this field is

neither assumed nor necessary.

A glossary in chapter 4 contains the definitions of all terms and concepts used in the

thesis.

Inertial Manifolds could be classified as a sub-topic of Dynamical Systems theory. A

good, not too technical introduction to the broad field of Dynamical Systems can be found in

[29-GLE-1994], and a more formal one in the books [39-TEM-1998] and [37-ROB-2001].

One could roughly define it as the study of those dynamical equations Pu D F.u/ where for

every time t u.t/ belongs to a Banach space V , Pu to the Banach space L, and F is a function

from V ! L. In such cases, many different behaviours can be observed. One of the most

famous is what is called chaos. This is a system which appears to behave randomly, though

what really is happening is that the dynamics are fully determined by the initial conditions

u0 and a small perturbation of u0 changes the solution completely; this means that a chaotic

system is sensitive to initial conditions, in the sense that two points might be arbitrarily close

and nevertheless the two trajectories starting at those points will be significantly different in

the future.

Clearly not all nonlinear dynamical systems are chaotic, and thus much effort has been

dedicated to identifying the conditions under which one can safely predict the behaviour

of a nonlinear dynamical system. In fact, many dynamical systems found in Nature are

dissipative, that is, if it were not for some driving force, they would stop evolving. This
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means that typically two forces, the dissipative one and the driving one, will interact so to

drive the system to its normal behaviour. This does not mean that the system is driven to a

steady state, but just that, no matter what the initial conditions are, usually the dynamics can

be reduced to that of a subset of the whole phase space. This subset is called the attractor. In

the informal words of Wikipedia, “an attractor is a set to which a dynamical system evolves

after a long enough time”. For a very formal definition one can refer to the books quoted

above. An attractor A can be semi-formally defined as a set that is invariant under the

dynamics, and for which there exists a non-empty set B.A/ consisting of the points that in

the limit enter A.

Attractors can contain any type of dynamics, fixed points, loops, tori or a chaotic

behaviour. Their importance is that they describe the dynamics of the system after a long

enough time.

A few basic questions can be asked: How long do we have to wait before entering the

attractor? What shape has it got? Does the attractor change under small perturbations like

Pu D F.u/C �G.u/?

The study of the third question is the leitmotiv of Perturbation Theory, with its branches

of Singular and Non-Singular Perturbation Theory. A comprehensive introduction is to be

found in [22-BER-2001].

A review in [31-GUT-1998] of the Moon-Earth-Sun dynamics gives an interesting

historical account of all the major techniques used in the study of Dynamical Systems,

especially nonlinear ones.

DEFINITION D.1.1 Dynamical System Formally, a dynamical system is

defined by a triplet .U; T ;S/ where U is a state space, T a set of times, and S a rule for

evolution, S W U � T ! U, that gives the consequent(s) to a state u 2 U.

This definition is taken from [35-MEI-2007]. A dynamical system is a model describing

the temporal evolution of a system: given a u 2 U, the rule S tells us where u will be after

a time t 2 T . Though one can study discrete times T , we deal only with the continuous

T D R, and U will be a Banach or Hilbert space. Our rule will be the semigroup S.t/

associated to a differential equation: S.u; t/ D S.t/u. This is often called the trajectory

and when u is the solution of a differential equation it is also indicated as u.t/, and if one
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wants to make explicit the dependency on the initial condition u0, then it may be indicated

as S.t/u0 or as uu0.t/.

We use the formal definition of global attractors given in [37-ROB-2001].

DEFINITION D.1.2 Global Attractor Given a semigroup S.t/, a global

attractor A is the maximal compact invariant set such that

S.t/A D A 8 t � 0

and the minimal set that attracts all bounded sets:

dist.S.t/X;A/! 0 as t !1

for all bounded sets X 2 U .

In proposition 10.14 at page 276 of [37-ROB-2001], the author proves that given a

trajectory u.t/ D S.t/u0, � > 0 and T > 0, then there exists a time � D �.�; T / and a point

v0 2 A such that

ju.� C t / � S.t/v0j � � 8 0 � t � T: E:1:1

Equation E.1.1 means that at any time T there exists a trajectory u on the manifold that

approximates S.t/u0 for small times.

In this sense, one can think of the attractor as describing the whole dynamics: though

a trajectory may never actually be in the attractor itself, there is always a point close to it in

the sense of E.1.1.

As remarked by Robinson, one cannot say that the trajectory S.t/v0 is the one that best

approximates u.t/; this is because equation E.1.1 is only valid between 0 and T ; thus if one

wants to follow u.t/ on the attractor for a longer time, we will have, in general, to switch to

another trajectory starting at another point v1 2 A.

At this point we introduce Inertial Manifolds. For an up-to-date review, one can also

consult [56-REG-2005].

These are simply defined as invariant manifolds that attract exponentially all the trajec-

tories of the flow defined by the dynamical system. An Inertial Manifold M is then defined

as follows.
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DEFINITION D.1.3 Inertial Manifold A finite dimensional Lipschitz man-

ifold M is an Inertial Manifold if

� M is forward invariant, that is for any point m 2 M, and for any time t � 0,

the flow starting at m will belong to M at every time t; in the language of

semi-groups, if S.t/ is the semigroup associated to the dynamics:

8m 2M; 8t � 0; S.t/m 2MI

� for any point m 62M, the distance between the flow starting at m and M will

decrease exponentially:

8m 62M; dist .S.t/m;M/ � Ce�˛tI

where ˛ is an appropriate positive constant depending on the dynamical sys-

tem and C is a constant depending on the initial condition.

Having defined Inertial Manifolds in this way it is clear that, while on the one hand they

contain the global attractor, on the other hand they provide a much nicer way of reducing the

study of dynamical systems. There are a number of reasons why this is so.

First of all, they attract all dynamics exponentially; this means that no matter what

the initial condition, after a very short transient the flow will be very close to the Inertial

Manifold; this is in contrast with E.1.1, from which we only know that the distance goes to

zero, but nothing is said about the rate of attraction. As remarked in [39-TEM-1998] in its

introduction to chapter 8 about Inertial Manifolds, “we can construct attractors which attract

the orbits at an arbitrary slow speed”.

Secondly, not included in the definition of Inertial Manifold, is that usually they are

proved to be asymptotically complete; this is defined as follows.

DEFINITION D.1.4 Asymptotically Complete Inertial Manifold An Inertial

Manifold is asymptotically complete if for any point m 62M there exists a point n 2M

such that the distance between the flow starting atm and the flow starting at n decreases

exponentially:

dist .S.t/m;S.t/n/ � Ce�˛t :
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This is indeed a very pleasant property. In fact, not only we know that no matter where

we started from, we end up quickly on the manifold, we also know that the flow can be

reproduced after a transient to an extreme degree of accuracy (exponential accuracy) with

a flow completely contained on the Inertial Manifold; in fact, if n 2 M ) S.t/n 2 M.

This is what, with perhaps a bit too much of passion, is defined in [56-REG-2005] as

“completely describing the long term dynamics without error”. Clearly there is an error,

though exponentially small.

Note that this is a much stronger requirement than E.1.1: here we find a unique trajectory

for all positive times on the Inertial Manifold that approximates the original trajectory, with

the additional property of the approximation having an exponentially small error.

A third reason is that they are Lipschitz manifolds, and so at least C 0; usually they are

proved to be at least C 1 with a Lyapunov-Perron proof, while a geometric type of proof gives

only C 0 and Lipschitz; however, the assumptions for both are the same or very similar, and

so C 1 is usually expected. Notice that attractors are not required to be regular, and in fact

they can even be of fractal dimension.

Last but not least, the Inertial Manifold is finite dimensional, while an attractor can even

be of fractal dimension. This means that with an Inertial Manifold we can reduce the study

of an infinite dimensional dynamical system, described by a PDE, to the study of a finite

dimensional differential equation, described by an ODE. As everybody knows, ODEs are

much easier to deal with than PDEs, therefore this feature of Inertial Manifolds is of great

utility, especially in numerical computations.

We see how this is usually done before turning to the next section. First of all, note that

the vast majority of the known Inertial Manifolds are given as graphs of functions; though

see section 2.5.3 for one that is not such in all coordinates systems. That is, the variable of

the dynamical system Pu D F.u/ can be split into two parts, u D .p; q/ where p belongs to

a finite dimensional subspace H 0 of H , and q 2 Q D H �H 0. Then there exists a function

h W H 0 ! Q such that the set of points M D fp; h.p/g is the Inertial Manifold. Then, the

finite dimensional ODE is given by

Pp D PF.p C h.p//; E:1:2

where PF denotes the projection on the subspace H 0 of the function F .

The importance of equation E.1.2 is reflected in the following definition.
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DEFINITION D.1.5 Inertial Form Given a dynamical system Pu D F.u/,

where u 2 V , which admits an Inertial Manifold expressed as a graph of a function

h W Rn ! V �Rn, the inertial form is

Pp D PF.p C h.p//:

Sometimes, we might speak of a function h being an Inertial Manifold; in this case

we mean that the graph of the function h is an Inertial Manifold. For example, we use this

shorter nomenclature in chapter 3; here we study whether a moment closure function is an

Inertial Manifold, that is whether the graph of such a function is or not an Inertial Manifold.

Before proceeding any further, we wish to emphasise the relation between Inertial

Manifolds and slow manifolds. Following [22-BER-2001], in the dynamical system

Px Df .x; y/

Py D�g.x; y/

E:1:3

where � is a small parameter, y is called the slow variable and x the fast variable. This is

because for small � one expects the changes in the y coordinate to be smaller that those along

the x coordinates. We give a slightly more formal argument following [22-BER-2001].

Taking the limit for � ! 0 one obtains the limiting system

Px Df .x; y/

Py Dconstant

E:1:4

where y plays the role of a parameter. The perturbed system in the form E.1.3 can be thought

of as a modification of the associated system E.1.4 in which the parameter y changes slowly

in time. Rescaling time and writing s D t
�

one can rewrite E.1.3 as

� Px Df .x; y/

Py Dg.x; y/

E:1:5

and now taking the limit for � ! 0 one obtains a mixed algebraic-differential system

0 Df .x; y/

Py Dg.x; y/

E:1:6
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Using the appropriate implicit function theorem, from 0 D f .x; y/ one can get x as a

function y, x D x�.y/. In [22-BER-2001] one observes that the set of points x D x�.y/, or

0 D f .x; y/, is a set of equilibrium points, such that the orbits are attracted to it, under certain

conditions. One can then split the attraction to the slow manifold into two components, the

component along the x coordinate and one along the y coordinate. The rate of attraction

along the x component is much faster than the rate along the y coordinate.

Thus slow manifolds are very similar to Inertial Manifolds.

DEFINITION D.1.6 Slow Manifold Slow manifolds are invariant manifolds,

which locally can be given as the graph of a function x D x�.y/ towards which trajectories

are attracted and the rate of attraction is faster in the x direction than in the y direction.

An Inertial Manifold improves on this, as it is a Lipschitz finite manifold, the slow

variable y is finite, the rate of attraction in the fast direction x is exponential, and is usually

given as a global graph of a function.

In the next section we shall discuss the utility of Inertial Manifolds for the biological

models we took as a starting point for our research. In the following sections we present

the conditions under which Inertial Manifolds exist in our examples. In section 1.5 we shall

review how they are employed in the Literature and what are the conditions most commonly

used for an Inertial Manifold to exist.
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1.3 Why Inertial Manifolds in our examples?
In the examples we will treat in this thesis, biological assumptions and observed data

give clue to the presence of an Inertial Manifold. Though the aim of this section is not to

give an account of the modelling of such biological system, which is left to later sections,

we review here, briefly and under general terms, why we decided to investigate Inertial

Manifolds in these examples.

Let us follow a chronological order and start by the gap junction example; the complete

details of this examples are given in chapter 2, and the original biological model was studied

in [1-BAI-1997]. In this model, two variables are studied; s represents the state of the gap

junctions, that is of the mechanism of communication amongst cells, and ' represents the

concentration of the various chemical species being exchanged. We will show that the system

is driven by the following differential equations:

Ps D�g.s; '/

P' D� B.s/' C w:

We see here one of the features of Inertial Manifolds that we shall see again later: the two

differential equations are coupled, that is each one depends on the other.

Now, if � D 0, s is a constant and ' is uniquely determined. As � is a small parameter,

one might ask if the system behaves not too differently when � remains small but different

from 0. This is what Perturbation Theory is about, that is to identify whether this is true or

not. Though we shall not follow this road, as explained in detail in chapter 2, one of the main

results one could possibly draw from this theory, is the existence of an invariant manifold,

persistent under small perturbations, towards which the dynamics of ' is attracted. This is

very similar to the result one obtains if an Inertial Manifold was proved to exist.

The other model arises from Statistics applied to population biology, is treated in chapter

3 and is about a host-parasite system; it studies the growth of a population of hosts under the

influence of parasites. This model possesses Moment Closure functions which have a strict

relation with Inertial Manifolds.

The model uses a random variableN representing the number of individuals in the pop-

ulation and derive differential equations for the probability, moment and cumulant generating
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functions. From these, one obtains an infinite number of ordinary differential equations for

the moments mi , which are of the form

Pmi D f .m1; : : : ; mi ; miC1/: E:1:7

Again we note that each equation in the system depends on all the others.

A difference with the previous model immediately catches the eye: there is no explicit

� here; there are no coordinates that can be initially thought of as slow, that is with a small

derivative, as in the case of Ps D �g.s; '/. However, in this case one or more functions

are introduced to close the system. The most notable of them is the so called normal

approximation. This is usually based on the biological assumption that the observed random

variables are approximately normal. The normal approximation states that all the cumulants

from the third on can be approximated by zero, that is one can “neglects all cumulants of

orders greater than the second”, as Whittle says in [84-WHI-1957]. This means that we can

use the relation m3 D 3m1m2 � 2m31 to close the first two equations of E.1.7:

Pm1 D f .m1; m2/;

Pm2 D f .m1; m2; m3/ D f .m1; m2; 3m1m2 � 2m
3
1/:

The other moments are then given by a function of the first two moments. This means that

again we have a new dynamics on a finite dimensional manifold M D fm1; m2;H.m1; m2/g,

where H is the function defining the normal approximation, whose first component, corre-

sponding to the third coordinate of M, is 3m1m2 � 2m31.

In the example we treat, experimental data show that these approximations are good,

in the sense that the steady state obtained by using the approximation is close to the exact

steady state of the original equation. One important feature of the model in [72-ISH-1995]

is that the transient time before convergence of the approximated moments to the true ones

is small, this suggesting exponential attraction.

We wish to make a further remark about the meaning that is usually given to the words

“good approximation” in most of the papers dealing with Moment Closure. The focus here

is not always about the whole dynamics and global attraction, as in Inertial Manifolds theory

or more generally speaking in Dynamical Systems Theory; sometimes the centre of attention
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in Statistics seems to be the steady states, independently of the dynamics. For example, this

is the case in [78-MAT-1996] and [80-NÅS-2003], where the attention is focused only on the

stationary distribution and the corresponding steady-state solutions and equilibrium values.

On the other hand, Isham in [72-ISH-1995] states that an argument justifying the use of the

normal approximation “would have to be an asymptotic one”, that is an argument based on

the behaviour of the dynamics as time t !1.

Most times, a biological and statistical assumption completely justifies the use of the

normal approximation. In the words of Keeling, in [74-KEE-2000], “this technique relies on

the assumption that the first few moments capture the distribution of population size”.

However, in [72-ISH-1995] the author explicitly states that “there is no suggestion in

the paper that N is, even approximately, normally distributed”. Nevertheless, the results

obtained by using this approximation are very satisfactory, “even in cases where the normal

distribution is a wholly inappropriate approximation to the true distribution”. We wish to

examine if Inertial Manifolds are behind this surprising fact.

In brief, we were drawn to investigate the presence of an Inertial Manifold by various

considerations: the normal approximation gives very good, exponential approximations, the

differential equations are coupled, the approximation are expressed as a function which can

be used to uncouple the equations. In short, all the features of Inertial Manifolds appear to

be present.

Recapitulating, we wanted to answer the following questions: do the dynamical systems

given in the examples have an Inertial Manifold? If so, does the Inertial Manifold explain

the biological observed data?
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1.4 The Inertial Manifolds in our examples
Having reviewed the definition of Inertial Manifolds and the motivations we had in

believing that this mathematical object was behind the biological models we were dealing

with, it is now time to take a look at the results we obtained.

While we proved existence of an Inertial Manifold for the gap junction model and

that it explained the biological observed data through an extension and generalisation of a

standard theorem, we proved that the normal approximation is not an Inertial Manifold in the

other population biology model. On the other hand, we did prove that it admits an Inertial

Manifold, and that the normal approximation is a function that is close to the true Inertial

Manifold; so we were able to give an explanation on why it works well.

How did we do it? Here is a brief mathematical account of the above mentioned results

and the techniques we used to prove them.

1.4.1 The generalisation

As we said before, the dynamics of the variables s 2 Rn and ' 2 Rm describing the

Gap Junction biological system are the solution of the differential equations:

Ps D�g.s; '/

P' D� B.s/' C w

E:1:8

where g is a Lipschitz function, w is a constant vector and B.s/ is a definite positive matrix

depending on s, that is a family of positive definitive linear operators from Rm ! Rm.

In the previous section 1.3, we have seen that the biological system represented by E.1.8

is likely to have an Inertial Manifold. What are then the conditions that guarantee existence

for an Inertial Manifold, as stated in the standard theorems one finds in the literature? Are

they satisfied by our example?

As we have said, most dynamical systems studied in the literature in relation to Inertial

Manifolds are expressed as

Pu D �AuC V.u/ E:1:9

where u belongs to a Banach or Hilbert space and A is a linear operator in such space.

The most common hypothesis used to prove the existence of an Inertial Manifold for such
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a system is the so-called “gap condition”. This is satisfied if A is a self-adjoint positive

operator which has two successive eigenvalues whose difference is sufficiently large relative

to the Lipschitz constant of V . We can certainly write our system E.1.8 in the form of E.1.9

by setting u D .s; '/ and B.s/ D B0 C B1.s/, so that 
Ps

P'

!
D �

 
0 0

0 B0

! 
s

'

!
C

 
�g.s; '/

�B1.s/' C w

!

and A would then be given by

A D

 
0 0

0 B0

!
:

The gap of the spectrum of A is therefore given by the size of the smallest eigenvalue of B0.

In fact, in the particular biological model we are dealing with, B0 is a symmetric positive

matrix. Hence, in order to satisfy the gap condition we require the Lipschitz constant of

B1.s/' to be small relative to this gap (and also � to be small). In the case of our model of

gap junction dynamics, we have no biological justification for such an assumption.

The main result in chapter 2 is therefore the generalisation of standard techniques to

show that systems of the form 
Ps

P'

!
D �

 
0 0

0 B.s/

! 
s

'

!
C

 
�g.s; '/

f .s; '/

!
E:1:10

possess an Inertial Manifold if � and the Lipschitz constant of f are small by comparison to

the smallest eigenvalue b of B.s/. In the above equation we have introduced the family A.s/

of positive definite operators

A.s/ D

 
0 0

0 B.s/

!
:

Note that in the case of a symmetric positive operator, b is defined as the minimum over s of

the minimum eigenvalue �.s/ of B.s/. Since in our biological model E.2.4, f D w which

is constant, this immediately implies the existence of an Inertial Manifold for this system for

small �. Furthermore, we shall give explicit estimates of the size of �.

Our assumptions on the family of operators B.s/ will be that their spectrum is discrete

and that there exist a b > 0 such that h1
2
.B.s/CB�.s//'; 'i > b j'j2 for all s and ', where

B�.s/ is the adjoint operator of B.s/. Notice that in the case of a symmetric positive family

of operators, b is then given by the smallest eigenvalue �.s/ of B.s/.
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We point out that systems of the form E.1.10 with non-constant f are more general

than required to deal with system E.2.2 (page 59), where this term is fixed. Also, instead

of setting E.1.10 in a finite Hilbert space Rn, we deal with a general Hilbert space H . The

reasons we include these generalisations are twofold. On the one hand, the modifications

required to treat them are minimal and require only a small additional effort which is mostly

algebraic and not conceptual; one thus gets the more general result almost for free. On the

other hand, a non-constant f gives rise to a number of biological additional applications and

extensions of the system that were not initially included in [1-BAI-1997]. Firstly, such an

extension permits us to treat the more realistic case in which membrane permeability is a

nonlinear function of '. This has been observed in some experiments, and it is useful to know

that the existence of an Inertial Manifold does not depend on linear membrane properties.

Secondly, the general form of our theorem allows us to consider the case where the molecules

transferred between cells are relatively large. The roles of s and ' are then reversed so that '

becomes the slow variable and we obtain an Inertial Manifold that is the graph of a function

of '.

It is also worth mentioning that though A.s/ depends only on s and not on ', one can

extend the same proof to a very general family of operators A.u/ defined as

A.u/ D

 
Bss.s; '/ Bs'.s; '/

B's.s; '/ B''.s; '/

!
; E:1:11

where the subscripts are not derivatives but merely labels. Full details on this extension are

given in section 2.4.4.

What is then the method we use? It is the Lyapunov-Perron method, which goes back

to the work in [34-LYA-1947] and [36-PER-1929], and is about 100 years old. It is a rather

general method used in Nonlinear Dynamics for proofs related to the existence of all sorts

of invariant manifolds. For example, the classical book [23-CAR-1981] uses this method in

relation to centre manifolds. Briefly, given a dynamical system as

Px D Ax C f .x; y/

Py D By C g.x; y/

E:1:12

where, amongst all the other conditions found in [23-CAR-1981], all the eigenvalues of the

matrix A have zero real parts and all the eigenvalues of the matrix B have negative real parts,
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f and g are sufficiently smooth and f .0; 0/ D g.0; 0/ D 0; a centre manifold is defined as

an invariant manifold y D h.x/ for E.1.12, where h is a function defined for small x with

h.0/ D 0 and Dh.0/ D 0. It is not surprising then that, in complete analogy with what

happens with an Inertial Manifold, the dynamics of y follows the dynamics of x and one may

say that x enslaves the variable y. One of the major differences between centre manifolds

and Inertial Manifolds is that one theory is local and the other one is global.

This method, sometimes also called the analytic method, is widely used in Inertial

Manifold theory: [39-TEM-1998], [53-MAL-1988], [41-CHO-1992], and most of the papers

quoted in the bibliographic section 5.3.3 use this method of proof. Nevertheless it is not

the only one, the most notable example is the geometric proof in [57-ROB-1995]; the same

author gives a comparison of the two methods in [58-ROB-1993].

We also remark that the geometrical approach to Inertial Manifolds is through the use

of cone conditions and in particular the strong squeezing property (see [57-ROB-1995] or

the glossary in chapter 4 for a definition). Just a few years before I first started my research

activities, [59-ROB-1994] proved that this is sufficient to ensure the existence of a Lipschitz

Inertial Manifold. It is easy to show that our system E.1.10 satisfies this condition for

sufficiently small �. Unfortunately, Robinson’s proof only yields a Lipschitz manifold, and

hence if we require the Inertial Manifold to be C 1, we need another approach, such as the

one used here.

The main motivation for requiring the Inertial Manifold to be C 1 is that this ensures

that the reduced dynamics on the manifold is also C 1. This allows us to apply all of the

standard techniques of low-dimensional Nonlinear Dynamics to the reduced system. Thus,

for instance, in [1-BAI-1997], the authors used Dulac’s test and the Poincaré-Bendixson

theorem to show that no oscillations are possible in the two-cell system. It is much more

straightforward to employ such methods in their standard setting ofC 1 systems. Furthermore,

when we come to do bifurcation analysis and consider the behaviour of eigenvalues of

equilibrium points, C 1 is absolutely essential. We also point out that we expect this type of

biological system to behave smoothly, and it would be rather strange if our reduced model

exhibited non-smooth features.

A standard approach to the Lyapunov-Perron method, which is used for example in

[23-CAR-1981], [32-HEN-1981] or [39-TEM-1998], is to derive a formal equation, via the
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variation of constants formula, which the Inertial Manifold should satisfy if it exists. From

this, an operator T on an appropriate space of functions is defined and one proves that T has

a fixed point; this fixed point is an Inertial Manifold. Note that the Inertial Manifold may not

be unique.

We first reproduce this approach in the following lines for the case Pu D �AuC V.u/,

and then indicate the modifications needed in the general case Pu D �A.u/uC V.u/.

To define T , first we split the Hilbert space H into two orthogonal subspaces H 0

and H � H 0: the first one corresponds to the enslaving coordinates s and the other to the

enslaved coordinates '. Denote now the projection onto H 0 by P , and the projection onto

its orthogonal complement by Q. Let X be the space of bounded Lipschitz functions from

H 0 D PH to QH . An element in H 0 will be denoted by p, and it corresponds to our s,

similarly q 2 QH corresponds to '. Fix h 2 X and let pp0;h be the solution with initial

value p.0/ D p0 of the equation

Pp D �PAp C PV.p C h.p//: E:1:13

This solution exists by classical results on ordinary differential equations and is continuous.

For example, the hypothesis of Picard-Lindelöf theorem are valid for any time t 2 R, stated

in the glossary in chapter 4. We wish to make explicit that the solution for E.1.13 exists for

any time, not just for positive times. In fact, since the function PV is globally Lipschitz on

PH , the solution pp0;h.t/ with pp0;h.0/ D p0 exists for all t 2 R and is unique.

Equation E.1.13 is also referred to as Inertial Form, as stated in definition D.1.5 (page 19).

An Inertial Manifold must then be a function h 2 X such that the function q.t/ D

h.p
p0;h

.t// satisfies the equation

Pq D �QAq CQV.p C Nh.p//: E:1:14

where p indicates pp0; Nh.t/. This is because the variable Nu.t/ D .pp0; Nh.t/;
Nh.pp0; Nh.t// is

then a solution to the original equation Pu D �AuC V.u/.

At this point, we note that once p0 and h are fixed, one defines the function

QV .t/ D QV.pp0;h.t/C h.pp0;h.t///
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and it is not difficult to prove (see [39-TEM-1998]) that there exists a unique function q.t/

which is the solution of

Pq D �QAq C QV .t/:

q.0/ D h.p0/

t 2 R

E:1:15

Obviously q depends on p0 and h.

Via the variation of constants formula, one can easily check that q.t/ is a solution of

E.1.15 if and only if

q.t/ D

Z t

�1

eQA.��t/QV.pp0;h.�/C h.pp0;h.�///d�;

which is equivalent to

q.0/ D

Z 0

�1

eQA.�/QV.pp0;h.�/C h.pp0;h.�///d�: E:1:16

The equivalence of the above equations is shown by applying E.1.16 to pp0;h.t/ and then

applying a change of coordinates � D t C � , as we do for our more general case in chapter

2.4.1. Also notice that A is positive, so that the eigenvalues of �A are negative and thus the

term expf�Atg vanishes in the variation of constants method at �1.

The right-hand side of E.1.16 is evidently an operator T on the spaceX : to each function

h is assigned another function T h, the value of which at p0 is defined as follows:

T h.p0/ D

Z 0

�1

eQA.�/QV.pp0;h.�/C h.pp0;h.�///d�: E:1:17

Thus, a function Nh is an invariant manifold if and only if it is a fixed point of T .

As previously mentioned, the most obvious approach to applying this method to systems

of the form E.1.8 is to decompose B.s/ as B.s/ D B0 C B1.s/ so that E.1.8 can be written

in the form  
Ps

P'

!
D �

 
0 0

0 B0

! 
s

'

!
C

 
�g.s; '/

�B1.s/' C w

!
:

The spaceH 0 then corresponds to the variable s, and in the case of a symmetric positive

operator the gap in the spectrum of A is simply the smallest eigenvalue of B0. As already

described, the disadvantage of this approach is that to prove the existence of an Inertial
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Manifold, we need to place restrictions on the Lipschitz constant of B1.s/', something for

which we have no biological justification in our particular model.

Although the above delineated method is not directly applicable to our case, we shall

follow it quite closely. We denote by sso;h the unique solution of the following finite

dimensional equation:

Ps D �g.s; h.s//

s.0/ D s0

t 2 R

E:1:18

with initial value s0. Note that this is the inertial form equivalent to E.1.13, and thus sso;h.t/

exists for all times t 2 R.

Then we shall show that, for fixed s0 and h, there exists a unique solution, which is

continuous, for the following equation, equivalent to E.1.15:

P' D �B.sso;h/' C f .sso;h; h.sso;h//: E:1:19

Unfortunately, since QA.u/ D B.s/ depends on time, via the function s, it does not

generate a semigroup, or in other words eBt' is not the solution of P' D B.s/'. We thus

need to replace eBt in the variation of constants formula by a more general evolution operator

Us.t; �/ as in [18-AHM-1991] or [20-PAZ-1983]. This is a generalisation of the concept of

a semigroup to the case where the generator B depends on time. It is defined in such a way

that the function y.t/ D Us.t; �/� is the solution of

Py D �B.s.t//y

y.�/ D �:

� � t

E:1:20

When B is a scalar, U is thus given by

Us.t; t0/ D exp
�Z t

t0

B.s.�//d�
�
:

However, in higher dimensions where B is a matrix, no such closed form is possible.
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The operator T will now be defined by

T h.s0/ D

Z 0

�1

Us.0; �/f .ss0;h; h.ss0;h//d�; E:1:21

which is the equivalent of E.1.17. Having defined T , the proof of existence of an Inertial

Manifold for sufficiently small � is straightforward. We first show that T is well defined

on X , maps X into X and is a contraction. It thus has unique fixed point '?� which is an

invariant manifold, and which is Lipschitz by construction.

As remarked in [58-ROB-1993] in the case of a symmetric positive operator one heavily

uses the relations between the eigenvalues of B.s/, the Lipschitz constants of f and � in

proving the properties of T . This is how we can give explicit estimates on � and conclude

that the biological constants satisfy the conditions for the existence of an Inertial Manifold.

In order to prove differentiability, we introduce a second operator T 1
h

, which for every

fixed h maps the space of linear functionals on PH to itself. T 1
h

is obtained formally by

differentiating under the sign of the integral of the definition of T . This operator is shown to

be a contraction and its fixed point to be the derivative of our invariant manifold. Note that

this approach is similar to that used by [41-CHO-1992] to prove differentiability of Inertial

Manifolds for systems of the form E.1.9 satisfying a standard gap condition.

Finally, we use the differentiability and invariance of Nh, the fixed point of T , to show

directly that its graph is exponentially attracting.

The full proofs of the properties of T are given in section 2.4.1 and those of T 1
h

in

section 2.4.2. In this introduction, we wish to present just a hint of the flavour of these

proofs, and we do this by quickly reviewing the proof of the fact that T is a contraction,

proved in Lemma L.2.9 (page 83).

We wish to prove that there exists a constant � < 1 such that

jT h1.s0/ � T h2.s0/j � � kh1 � h2k E:1:22

for any two given functions h1; h2 2 X . Thus one wishes to analyse the difference

jT h1.s0/ � T h2.s0/j. We use the Lipschitz condition on f and g, a series of properties

of the evolution operator U , and a few Gronwall’s inequalities to derive an inequality like

E.1.22. The constant � is given as an expression of �, the Lipschitz constants of f and g
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and the eigenvalues of B.s/, when B.s/ is a family of symmetric positive operators. By

imposing that � < 1, which is a condition on �, one proves that T is a contraction. The whole

process of proof consists then in determining analytical inequalities satisfied by U and the

appropriate Gronwall’s inequalities that guarantee the properties of T .

By the definition E.1.21 ofT , adding and summing to the difference jT h1.s0/ � T h2.s0/j

the same term

Ush2 .0; �/f .sh1.�/; h1.sh1.�//;

we obtain that

jT h1.s0/ � T h2.s0/j

�

Z 0

�1

ˇ̌̌�
Ush1 .0; �/ � Ush2 .0; �/

�
f .sh1.�/; h1.sh1.�///

ˇ̌̌
d�

C

Z 0

�1

ˇ̌̌
Ush2 .0; �/

�
f .sh1.�/; h1.sh1.�/// � f .sh2.�/; h2.sh2.�///

�ˇ̌̌
d�:

In section 2.3 we prove some bounds on Ush.0; �/ that are useful in constructing the final

bound of E.1.22. One of these bounds relates the difference .Ush1 � Ush2 / to the difference

.sh1�sh2/; here is where we need to prove a Gronwall’s inequality. Each of these inequalities

is proved in a series of lemmas just before they are needed.

For example, we use the following inequalities

ˇ̌̌
Ush1 � Ush2

ˇ̌̌
� ˇe�b�

Z 0

�

ˇ̌
sh1.�/ � sh2.�/

ˇ̌
d�;

ˇ̌
sh1.t/ � sh2.t/

ˇ̌
<
kh1 � h2k

p1 C 1

h
e��
.p1C1/t � 1

i
ˇ̌̌
Ush1

ˇ̌̌
� eb�

and the Lipschitz property of f to obtain that

jT h1.s0/ � T h2.s0/j

� kh1 � h2k
b2�.p1 C 1/C bˇF � ˇF Œb � �
.p1 C 1/�

b2.b � �
.p1 C 1//.p1 C 1/
:

The bound on � consists in imposing

b2�.p1 C 1/C bˇF � ˇF Œb � �
.p1 C 1/�

b2.b � �
.p1 C 1//.p1 C 1/
< 1:
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Analysing our usage of the Lyapunov-Perron method, we see that the principal difference

between the results presented here and standard Inertial Manifold theorems is that we allow

the operatorA to depend on u , thereby incorporating some of the nonlinearity of the problem

into A. In effect, we can think of the form �AuC r.u/ as an expansion about u D 0, which

gives little control over the dynamics for large u, while by writing �A.u/uC V.u/, we are

in some sense linearizing locally about each u, and hence have far more information about

local contraction rates throughout the whole of phase-space.

In terms of the proof of our results the most significant effect of this change is to replace

the operator eBt in the variation of constants formula by a more general evolution operator

Us.t; �/, which gives the solution of the equation P' D B.s.t//' (see section 2.3 for more

details).

Full details can be found in chapter 2, which is structured in the following way.

� 2.1 - The biological model: a description of the construction of the biological

dynamical system;

� 2.2 - The functional settings: the functional setting for our dynamical

system;

� 2.3 - Preliminary results: proofs of the preliminary results related to the

evolution operator U ;

� 2.4 - The Inertial Manifold: the existence of a C 1 Lipschitz Inertial Mani-

fold, subdivided into:

� 2.4.1 - Existence: proofs of the properties of the operator T ;

� 2.4.2 - Smoothness: proofs of the properties of the operator T 1
h

;

� 2.4.3 - Exponential attraction and asymptotic completeness:

proof of the fact the M is exponentially attracting and asymptotically com-

plete;

� 2.4.4 - Further generalisation: the proof for the more general dynamical

system Pu D �A.u/uC V.u/ with A.u/ defined in E.1.11 (page 26).

� 2.4.5 - The gap condition and the strong squeezing property:

an account of the relation between the condition .1�k/b > � and the classical

Gap Condition;
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� 2.5 - Examples: examples clarifying asymptotic completeness property, an

Inertial Manifold that is not asymptotically complete, and a dynamical system

that has an Inertial Manifold even though it does not satisfy the Strong Squeezing

Property.

� 2.6 - Application to the biology: the application of our results to the Gap

Junction example of [1-BAI-1997].

1.4.2 The similarity

When trying to describe a natural phenomenon in mathematical terms, often the first

decision the scholar has to take is whether to use a deterministic or a stochastic approach.

However the two are not seen as being in contradiction, rather deterministic models are viewed

as “first degree” approximations to the stochastic models describing the same phenomenon,

even if sometimes they yield different results.

One could say that one of the questions, with which this thesis is concerned, is under

which conditions and up to what extent a deterministic model can be considered a good

approximation of a stochastic one. However, we do not approach the question under a

very general theoretical framework; rather, we are interested in contributing a little to this

important subject.

We do this by studying if, when the dynamics describing the evolution of the moments

of a probability distribution function can be well approximated by using a deterministic or

normal approximation, this can be explained by some dynamical properties of the dynamical

system, like Inertial Manifolds.

In fact, usually one of the major problems encountered when dealing with stochastic

models is that the variables, generally the moments of a probability function, are in infinite

number and thus, when studying a time-dependent problem, one obtains an infinite system

of differential equations.

In the simplest cases, e.g. when the transition probabilities are linear functions of

the random variables, the system can be solved recursively, that is the equation for the first

moment first, and so on, as the equation for the moment of order k involves only the moments

of order 1; : : : ; k.
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In many other cases, as stated in [14-BAI-1964], generally when the transition probabil-

ities are non-linear functions of the random variables, one obtains equations which cannot be

resolved recursively, as the equation for the moment of order k involves moments of higher

order.

However it is commonly assumed that the first few coordinates actually carry more

“information” than the others and often a very good description of a phenomenon is given by

ignoring the other coordinates. A system which is approximated by the equations involving

the first moment only is sometimes called a “deterministic approximation”, which suggests

a strong relation to a deterministic “equivalent” model.

This and other approximations can be obtained by assuming suitable relations among

the moments, which, if substituted into the equations, can simplify the system. For example,

from the differential equation in the first two moments m1 and m2

Pm1 D F1.m1; m2/;

one can assume a relation �2 D m2 �m21 D 0 to obtain

Pm1 D F1.m1; m
2
1/

and thus close the equation and reduce the dimension of the system.

This is the deterministic approximation and is obtained by setting to zero the variance

�2, that is a mathematical measure of how one “expects” the phenomenon to vary from one

observation to another. Another commonly used approximation is the “normal approxima-

tion”, which consists in assuming that the distribution is approximately normal and thus that

the relationm3 D 3m1�2Cm31 holds. What is common to the deterministic and normal ap-

proximation is that, in a sense, all the higher moments are ignored. As we saw in section 1.3,

for the example in [72-ISH-1995], this behaviour makes one initially suspect the existence

of an Inertial Manifold.

As we shall see below, the methods of the proofs contained in chapter 3 are not so

sophisticated as the Lyapunov-Perron method described before. Mostly, they rely on a

correct algebraic manipulation of the variables and on the adequate analysis and breakdown

of mathematical facts. This is a very complicated sentence just to say that the method of
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proof does not matter here at all, and what matters are the contents and the basic mathematical

reasoning on which they are built. Not much deep, sound knowledge of any particular branch

of mathematics is needed to follow them, just a mathematical spirit.

The equations governing the dynamics of the factorial moments gk of the population

dynamics in [72-ISH-1995] are originally nonlinear:

Pgk D hk C

k�1X
iD1

 
k

i

!
hk�igi C ˛g1gk � ˛gkC1 � .˛ C �/kgk :

Nevertheless, we show in section 3.2.1 that, with an appropriate change of coordinates, we

can express the same dynamics with linear differential equations:

P�k D hk � ˛�kC1 � .˛ C �/k�k : E:1:23

where the �k are the factorial cumulants, treated in section 3.2.2. The deterministic ap-

proximation �2 D 0 is expressed in the �k coordinates as �1 C �2 D 0 and the normal

approximation as �3 C 3�2 C �1 D 0.

In a suitable function spaceL, the above equation admits a unique steady point xR D f N�kg

which is also exponentially attracting (theorem T.3.2). Here it suffices to say that xR is such

that

N�1 D
h1

˛ C �
�

˛h2

2.˛ C �/2
CO

�
˛2

.˛ C �/3

�
;

and

N�2 D �1 C �2 D
h1

˛ C �
C

�h2

2.˛ C �/2
CO

�
˛2

.˛ C �/3

�
;

where ˛=� is small.

Next, we introduce the deterministic and normal approximation in the dynamics E.1.23,

so that we obtain two closed linear dynamical systems. One corresponds to the deterministic

approximation and is obtain introducing �2 D ��1 into equation E.1.23 for k D 1. We thus

obtain one linear equation in one variable �1:

P�1 D h1 � ��1: E:1:24

Similarly, the other dynamical system, corresponding to the normal approximation, gives us

two linear equations in two variables:

P�1 D h1 � ˛�2 � .˛ C �/�1

P�2 D h2 C ˛�1 � .2� � ˛/�2

E:1:25
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One then shows easily in section 3.3 that E.1.24 admits a unique steady point Q�1 D

h1=�. Equation E.1.25 also admits a unique globally attracting steady point . O�1; O�2/.

We demonstrate that if we assume that ˛ D ��, that is that ˛ � �, and we let � ! 0,

then . N�1 � Q�1/ ! 0 as � ! 0. Similarly, the distances . N�1 � O�1/ and . N�2 � O�2/ go to 0 as

� ! 0.

Section 3.3.3 is then concerned with the fact that the original fixed point xR and the

fixed points of the approximated dynamical systems are close. This is one of the reasons

why using the approximations gives good results. Nevertheless, this is not an explanation

that takes into account the global dynamics of the whole system.

From a dynamical point of view one would want that each fixed point attract the dynamics

like this:

rather than like this:

The second graphic is an example of a dynamical system where two flows tend at infinity
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to two points that are very close, but the distance between the two flows does not decrease

and does not go to zero. To this situation we prefer one where the two flows, apart from

tending to two points that are close, will get closer and closer, and the distance between the

two decreases.

Also note that in the above argument extracted from section 3.3.3 we never express any

relation between the higher coordinates and the first one (for the deterministic approximation)

or the first two (for the normal approximation). We just state that the first coordinates of the

fixed points are close. From the viewpoint of Inertial Manifolds, this is a serious limitation.

In fact, an Inertial Manifold is a finite dimensional manifold that can express the dynamics of

all the higher coordinates in terms of a finite set of coordinates. This is clearly seen when the

Inertial Manifold is given as graph of a function, which is the most common case. Therefore

if the deterministic or normal approximation, which are functions, were Inertial Manifolds,

one would expect that all high coordinates can be expressed in terms of the first coordinate

(deterministic) or the first two coordinates (normal).

The very definition of an Inertial Manifold h for systems like

Pu D F.u/ E:1:26

implies that for any initial condition u0 D .p0; q0/ we have that h.pp0.t// is exponentially

close to qu0.t/, where pp0.t/ is the solution of the inertial form E.1.2 (page 18) starting at

p0 and qu0.t/ is the q coordinate of the solution of E.1.26 starting at u0 (see sections 1.2,

2.4.3 and 2.5.1 for further details).

This means that the higher coordinates of any trajectory starting at any initial point are

exponentially approximated by a curve on the Inertial Manifold. Said otherwise, Inertial

Manifold theory is concerned with the reduction of the dimension of the dynamical system,

i.e. the main result one obtains from the existence of an Inertial Manifold is that one can

solve the ODE defined by the inertial form E.1.2 for the first few coordinates and then obtain

an approximated result for all the other coordinates by the function defining the Inertial

Manifold.

On the other hand, the focus of a moment closure technique is quite different. Generally

speaking, a moment closure function will be a function from Rn to H � Rn, so that each

coordinate mj for j > n can be expressed as mj D hj .m1; : : : ; mn/.
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Thus equation

Pmi D fi .m1; : : : ; mi ; miC1; : : :/

is reproduced with a small error by the ODE

m1 D f1.m1; : : : ; mn; hnC1.m1; : : : ; mn/; : : :/

: : :

mn D fn.m1; : : : ; mn; hnC1.m1; : : : ; mn/; : : :/

E:1:27

The main object of interest when using such a technique is the set of equations E.1.27; these

are then used to prove that the first n true moments are close to the first n approximated

moments. This is in contrast with the use of an Inertial Manifold; in fact no study of the

distance between the higher true moments and the higher approximated moments is usually

given via a moment closure function. On the other hand, the existence of an Inertial Manifold

does not by itself give any clue on the distance between the true first coordinates and the

approximated first coordinates, which is at the basis of the definition of an asymptotically

complete Inertial Manifold.

Recapitulating, both an Inertial Manifold and a moment closure function are represented

by a functionH from Rn toH �Rn, that is a relation between the first n coordinates and all

the others; thus H can be expressed as

H D fhnC1.m1; : : : ; mn/; hnC2.m1; : : : ; mn/; : : : ; hnCk.m1; : : : ; mn/; : : :g

They both are used to approximate the solutions m1; : : : ; mi ; : : : of an infinite dynamical

system

Pmi D fi .m1; : : : ; mi ; miC1; : : :/: E:1:28

Thus we can use H to define the inertial form:

m1 D f1.m1; : : : ; mn; hnC1.m1; : : : ; mn/; : : :/

: : :

mn D fn.m1; : : : ; mn; hnC1.m1; : : : ; mn/; : : :/

E:1:29
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Let us denote by xmj , 1 � j � n the solution of E.1.29 and by mk , k � 1 the solution of

E.1.28.

The difference between the two is then that an Inertial Manifold guarantees that

the distance between mk.t/ and hk. xm1.t/; : : : ; xmn.t// goes to zero exponentially for

k > n as t !1; on the contrary a moment closure approximation is used to study the

distance betweenmj .t/ and xmj .t/ for 1 � j � n.

In many statistical applications the function fi depends only on m1; : : : ; miC1, so that

in order to close the equations of system E.1.28, one only needs to use hnC1; in the case of

the normal approximation, this corresponds to setting the variance equal to zero. This usage

of the deterministic and normal approximations to obtain equations E.1.29 is so predominant

that some times authors just state that “the approximation to the mean is obtained by setting

�2 D 0” as in [72-ISH-1995]. However we stress that this is just a consequence of the

assumption of the normal approximation, which is equivalent to assuming that “the cumulants

of order higher than 2 are small” as in [80-NÅS-2003] and [84-WHI-1957].

For our purposes, it is extremely important to stress that when authors use the determin-

istic and normal approximations, they are actually defining an infinite dimensional function,

though they might only use the equations �2 D 0 or �3 D 0, respectively. Otherwise, we

would not be able to make any comparison at all between the normal approximation and an

Inertial Manifold.

Thus, to complete the study of the dynamical system treated in [72-ISH-1995] and

[48-STA-2001] from a dynamical perspective, we cannot limit ourselves to the observation

in section 3.3.3 that the functions defining the deterministic and normal approximations give

fixed points whose first coordinates are close to those defined by the true Inertial Manifold.

That is, the fact that the distances . N�1 � Q�1/, . N�1 � O�1/ and . N�2 � O�2/ go to 0 as � ! 0 is not

telling us anything about whether the moment closure is an Inertial Manifold or not.

To see this, we have to prove some stronger results relating the higher moments of the

original Inertial Manifold and the approximated ones. That is, in the case of the deterministic

approximation, we have to study if O�j for j � 2 is close or not to N�j . For the normal

approximation one just takes j � 3. Remember that the normal approximation defines each

O�j ; in fact the normal approximation states that all the higher cumulants are equal to 0; we
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shall find a relation in section 3.3.5 between the cumulants and the factorial cumulants, so

that setting to zero cumulant j is equivalent to define a relation between �j and �1; : : : ; �j�1.

Thus in order to find a justification based on a dynamical system perspective, we resort

to the arguments of section 3.3.4. Here we reproduce the arguments proved in this section,

but adapted to the deterministic approximation. In section 3.3.4 we prove the same results

also for the normal approximation and for a general Moment Closure function satisfying

certain conditions.

In words, we use the moment closure function to define a set of differential equations for

all the higher coordinates. This is an extension of the standard use of a moment closure, where,

as we have remarked, the focus is a set of equations E.1.27 which gives an approximation for

the first n moments. Then, we shall prove that this new set of equations admits an Inertial

Manifold, given by the moment closure function, and that this system can be regarded, in a

peculiar sense, as a “perturbed” dynamical system and that the “perturbed” and true Inertial

Manifolds are close.

Formally, we take L a suitable function space, and we notice that the function ˆ:

ˆ W R! L �R;

ˆ W �1 ‘ ˆ.�1/ D f N�2; N�3; : : :g:

defines a one dimensional Inertial Manifold for E.1.23:

M D f�1; ˆ.�1/g D f�1; N�2; N�3; : : :g:

Then we take the function ẑ .�1/ D �1; note that this functions defines the deterministic

approximation in the sense that this approximation is defined by �2 C ẑ .�1/ D 0. Thus we

introduce a change of coordinates z�2 D �2C ẑ .�1/� N�2 and create a new dynamical system

P�1 D h1 � ˛.z�2 C N�2 � �1/ � .˛ C �/�1 D h1 � ˛ N�2 � ˛z�2 � ��1

Pz�2 D P�2 C P�1

P�k D hk � ˛�kC1 � k.˛ C �/�k for k � 3:

E:1:30

We prove that the manifold �M D f�1; ẑ .�1/; N�3; : : :g is an Inertial Manifold for E.1.30.
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Given two set of points N D fn1; n2; : : :g 2 L and xN D fNn1; Nn2; : : :g 2 L, their

difference in our functional space L (see section 3.2.3) is given by

dist
�
N ; xN

�
D

1X
iD1

jni � Nni j
2 :

With this definition, we finally prove that the distance between �M and M goes to zero

as t ! 1 and � ! 0. In fact, these two manifolds are equal on all coordinates, except the

second one (in the case of the deterministic approximation). Then, on the one hand we prove

that

ẑ . N�1/! N�2 as � ! 0;

while on the other hand

8� > 0 ẑ .�1.t//! ẑ . N�1/ as t !1

This is the condition a Moment Closure function has to verify in order to be a good approxi-

mation from a Dynamical System perspective. As we remark in section 3.3.4, one can then

view z�2 as a perturbation of �2; in fact we can introduce ı.�; t/ D ẑ .�1.t//� N�2 which goes

to zero as � ! 0 and t !1 and then, by definition, z�2 D �2 C ı.�; t/.

Thus we can say that the deterministic and normal approximations are Inertial Manifold

for a perturbed dynamical system, and that the perturbed Inertial Manifolds are close to the

Inertial Manifold for the non-perturbed dynamical system.

Notice that we use the term perturbation in a peculiar way, and that is why we use a

slanted font for it. First of all, notice that the manifolds we have defined, M and zM are both

hyperplanes, and thus they cannot be a good approximation one of the other for all times.

These two manifolds are defined by two attracting points xR and zR, which are close for small

values of �. Notice now that the dynamics of E.1.23 (page 36) tends to xR as t !1 and that

of E.1.30 tends to zR as t !1. Thus, when both t !1 and � ! 0, the two dynamics are

close.

A limitation of the above argument is that it uses the Moment Closure function only to

define one component of zM, the second one for the deterministic approximation and the third

one for the normal approximation. In section 3.3.5 we overcome this limitation by adapting

the arguments above to a manifold xM which is defines as

xM D f�1; �2; ‰3.�1; �2/; ‰4.�1; �2/; : : : ; ‰n.�1; �2/; g;
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where ‰n is the function defining the normal approximation for the nth factorial cumulant.

We are able to show again that this manifold is an Inertial Manifold for a perturbation of

E.1.23. The interesting result is that ‰n. N�1; N�2/ is close to N�n, and so we can prove that for

� ! 0 and t !1 the normal approximation is approximating closely the Inertial Manifold

for the original system for each coordinate. Note that we do not prove that the distance

between the manifolds M and zM goes to 0, we only prove that the difference between each

pair of coordinates goes to 0; stated otherwise, we prove that

j‰n. N�1; N�2/ � N�nj ! 0

but we do not prove that

dist
�
M; zM

�
D

1X
nD3

j‰n. N�1; N�2/ � N�nj
2
! 0:

Notice that this particular example admits an exponentially attracting fixed point, and

thus all trajectories are Inertial Manifold. Why do we then consider in sections 3.3.4 and

3.3.5 very special Inertial Manifold, that is hyperplanes? The fact, is that in a sense we

are using Inertial Manifold to find a slow manifold in the sense of definition D.1.6 (page

20), and we are interested in the slowest manifold. As we prove in section 3.3.2, given the

hyperplanes Mn defined as

Mn D
˚
�1; : : : ; �n; N�nC1; N�nC2; : : :

	
;

then the hyperplane MnC1 is a slower manifold than the hyperplane Mn, that is the rate of

attraction along the fast coordinates is faster for MnC1 than for Mn.

From the perspective of biologically interpreting the results, our conclusions are that all

observed data are fully justified by the mathematical properties of the model: For example,

the short transient for convergence of the approximated moments is justified by global

exponential attraction in time for small � and the fact that the convergence of zM to the

true Inertial Manifold is coordinate-wise and not global is in complete accordance with the

reiterated observation in Isham’s paper that the random variable being studied is not normally

distributed, though the normal approximation is good.

Full details can be found in chapter 3, which is structured in the following way.
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� 3.1 - The biological model: derivation of the differential equations for the

biological model, as in [72-ISH-1995];

� 3.2 - The functional settings: describes the functional spaces in which

equation E.1.23 makes sense, and the factorial cumulants;

� 3.3 - Almost an Inertial Manifold: the proof that the normal approximation

is almost an Inertial Manifold;

� 3.3.1 - The fixed point and Inertial Manifolds: the fixed point of

E.1.23 defines various Inertial Manifolds;

� 3.3.2 - The best Inertial Manifold: a study of the rate of attraction

explains why the normal approximation is better than the deterministic one;

� 3.3.3 - Comparison of the steady states for the full and ap-

proximated models: from a steady state point of view, the first and second

approximated moments are close to the original one;

� 3.3.4 - Perturbations of the Inertial Manifold:the deterministic and

normal approximations can be seen as perturbations of the Inertial Manifold;

� 3.3.5 - Higher factorial cumulants for the normal approxima-

tion: the normal approximation is close to the Inertial Manifold, coordinate-

wise;

� 3.4 - Our choice of coordinates: explains why we chose to use the factorial

cumulants, though they are not the most familiar set of coordinates;

� 3.5 - Interpreting the results: why our results explain the observed features

of the biological example.

Inertial Manifolds in Biological Systems - PhD Thesis - Pasquale Iannelli - UCL, London 2009 44/216



1 - Introduction 1.5 - Inertial Manifolds in the Literature

1.5.1 - Generalisations

1.5 Inertial Manifolds in the Literature
Rather than presenting a strict and arid chronological review of Inertial Manifolds, we

prefer to focus on some of the main issues and deal with each one separately. The topics we

wish to treat are:

� some of the equations for which Inertial Manifold have been proven to exist; we

shall see that nearly all are expressed in the form Pu D �AuC V.u/;

� a review of other methods of proof and a brief comparison with the Lyapunov-

Perron method.

1.5.1 Generalisations

Let us then begin with the review of some examples. The Kuramoto-Sivashinsky

equation, a modified Navier-Stokes equation, and the Ginzburg-Landau equation are both

treated in [39-TEM-1998] and in [37-ROB-2001]. In both, the equations are proved to

satisfy the Gap Condition, and thus possess an Inertial Manifold. The difference between

the two books is the method they use to prove the existence of an Inertial Manifold when

the Gap Condition is satisfied; Temam uses the Lyapunov-Perron method and Robinson the

Geometric proof. What is of concern to us is that all these equations can be expressed in an

appropriate function space H as

Pu D �AuC V.u/: E:1:31

More references dealing with the same equations, and to which the two books refer back,

can also be found in section 5.3.3.

Equation E.1.31 is the most typical equation that one deals with, up to the point that

in the review in [56-REG-2005] dedicated to methods of dimension reduction it is the only

equation dealt with.

However, we were able to find a couple of references that treat the nonautonomous

differential equations

Pu D �A.t/uC V.t; u/: E:1:32

The authors Koksch and Siegmund have published a number of papers on the subject; we

quote only [50-KOK-2002] and [51-KOK-2003], which contain enough material for our
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purposes. In fact, in this thesis we deal only with autonomous differential equations, and

thus our interest in E.1.32 is limited to curiosity and background material. The main point

we wish to note is that in the two papers [50-KOK-2002] and [51-KOK-2003] the authors

assume that V.t; u/ is continuous in time and satisfies a Lipschitz-type condition in u, and

A.t/ is a family of linear operators from X ! Z, with X and Z two Banach spaces, such

that the linear evolution equation

Pu D� A.t/u

u.0/ Du0

E:1:33

admits a unique solution. Clearly one will not be able to use semigroups to define the

solution of E.1.33 and one has to resort to evolution operators, as we do in section 2.3.2

but for different reasons. In fact the solution to E.1.33 is defined as that evolution operator

U.t; �/ W R2 ! L.Z;Z/ such that for t � �

d
dt
U.t; �/ D� A.t/U.t; �/

U.�; �/ DI

where I is the identity operator from Z to Z. Also note that the evolution operator satisfies

a series of conditions that bound its norm, and that are similar to equation E.2.18 that we

prove in section 2.3.3.

Finally, in [50-KOK-2002] and [51-KOK-2003] the squeezing property and cone in-

variance are proved to hold for equation E.1.32; it is important to note that the form in which

these two properties are expressed in [50-KOK-2002] and [51-KOK-2003] is different from

our definitions, as it is an extension to the nonautonomous case.

This leads us to remark that in this thesis generalisation to equations like

Pu D �A.u/uC V.u/ E:1:34

does not bring in new definitions of any concepts; this is not surprising at all, as most of the

times the same differential equation can be expressed either as E.1.34 or as E.1.31; this is a

matter of choice and convenience. On the other hand, a nonautonomous differential equation

corresponds to a completely different problem, of a completely different nature.
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Another interesting paper is the one by Shao in [65-SHA-1998]. This paper was

published in 1998; it deals with an equation very similar to E.1.34. Nevertheless, the

conditions assumed in [65-SHA-1998] are different from those we deal with.

The setting of the differential equations for the dynamics studied in [65-SHA-1998] are

as follows:

� there are two Hilbert Spaces H1 and H2, u 2 H1 and v 2 H2;

� H1 can be divided into two orthogonal subspaces P and Q, where P is finite

dimensional; as usual u D .p; q/ where p 2 P and q 2 Q;

� the differential equations are

Pp DF.p; q; v/

Pq D� Cq CG.p; q; v/

Pv D�D.p; q/v CH.p; q/:

E:1:35

� C is a positive, self-adjoint linear operator from Q ! Q and generates the

semigroup e�Ct ;

� D is a uniformly positive and bounded operator on H2, that is there exist positive

constants 
 and � such that


 kvk2 � hv;D.p; q/vi � � kvk2

for all u D .p; q/ 2 H1 and v 2 H2; D is also assumed to be Lipschitz in .p; q/

in the operator norm;

� the functions F , G and H are all assumed to be bounded and Lipschitz.

If one now introduces the product Hilbert space H D H1�H2, then E.1.35 might seem

to be very similar to ours. In fact P � H and we could expect an Inertial Manifold from

P ! H � P . In such a case, we could introduce the variable w 2 H and consider that

w D .p; y/ where y D .q; v/. Thus our system

Ps D�g.s; '/

P' D� B.s/' C f .s; '/:

Inertial Manifolds in Biological Systems - PhD Thesis - Pasquale Iannelli - UCL, London 2009 47/216



1 - Introduction 1.5 - Inertial Manifolds in the Literature

1.5.2 - Methods of proof

would be similar to E.1.35 with s D p, ' D y, �g D F and substituting B.s/ with

zB.p; y/ D

 
C 0

0 D.p; q/

!

and f .s; '/ with

Qf D

 
G.p; q; v/

H.p; q/

!
:

We immediately see one difference, that is that the operator QB depends on q, and not only

on the finite coordinates p. One might then hope that one could apply our theory to the

generalisation, which we treat in section 2.4.4, where we consider a family of operators like

this:

A.u/ D

 
Bss.s; '/ Bs'.s; '/

B's.s; '/ B''.s; '/

!
:

However, the theorem proved in [65-SHA-1998] does not prove the existence of an

Inertial Manifold M W P ! H � P . It proves the existence of a Lipschitz, globally

exponentially attracting manifold M defined as the graph of a function ˆ W P ˝H2 ! H1.

The big difference with the theorems generally proved about Inertial Manifolds is that in

[65-SHA-1998] ˆ and thus M is not finite dimensional. In fact, H2 is only required to be a

Hilbert separable space; L2 is separable and is not finite dimensional.

The main assumption in Shao’s paper is that the Strong Squeezing property holds. The

method of proof is the graph transform method of Hadamard, which we will explain in the

next section.

One last remark: the two examples [65-SHA-1998] and [50-KOK-2002] are the only

ones we were able to trace in the literature that deal with systems different from E.1.31.

1.5.2 Methods of proof

Apart from the Lyapunov-Perron method used in this thesis, we can distinguish the

following other methods:

� the graph transform method of Hadamard, used for example in [53-MAL-1988],

[37-ROB-2001], [58-ROB-1993] and [65-SHA-1998];

� the Cauchy method of [25-CON-1989] and simplified in [57-ROB-1995];

� the elliptic method of [42-FAB-1991].
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The following methods all apply to the evolution equation

Pu D �AuC V.u/; E:1:36

though we have seen that they can be applied to generalisations.

Notice that the notion of an invariant manifold was first introduced by Lyapunov in 1892

in [34-LYA-1947], along with the method named after him. Since then, many methods have

been used to prove existence of various types of invariant manifolds, as for example Centre

Manifolds. These methods have been so successful that they have been adapted to prove

existence of Inertial Manifolds, and these adaptations resulted in the methods that we review

here. A good comparison of the various methods of proofs can be found in section 6 of the

paper [58-ROB-1993], where special attention is dedicated to the use of the gap condition in

the various methods of proof.

In the following we present a brief survey of methods for proving existence of Inertial

Manifolds.

The graph transform method or the Hadamard method

This method is based on the idea of taking one Lipschitz manifold and following its

evolution under the flow of E.1.36; if an Inertial Manifold exists, then this initial manifold

will converge to the Inertial Manifold, at least under certain assumptions such as the strong

squeezing property.

We reproduce closely the description of this method given in [53-MAL-1988]. The

strategy for constructing the Inertial Manifold M in the graph transform method is the

following: one begins with finite dimensional set M0 D P � f0g, where P is the finite

dimensional subspace of our Hilbert spaceH ; let us denote the projection on P by P and the

projection on Q D H �P byQ. Next one lets the dynamics of E.1.36 act on M0 for t > 0.

This yields the set Mt � H , which is defined to be the image of M0 under the flow at time

t . One then shows that for each t > 0 there is a Lipschitz function ˆt W P ! H � P such

that Mt D graph .ˆt /. In addition, one shows that for each t , the function ˆt is Lipschitz,

and the limit ˆt ! ˆ as t ! 1 will exist with a uniform exponential rate. The desired

invariant manifold M will be given as the graph of this limiting function.
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The geometric method or the Cauchy method

The geometric construction in [57-ROB-1995] starts by defining some set � as the

support of the function V in E.1.36. In the case that there exists an absorbing ball for E.1.36,

then clearly the dynamical system E.1.36 can be modified so that V is then zero outside of

a sphere � of radius �. Then one takes the boundary of the projection of the sphere on the

finite dimensional subspace P � H , � D @ .P�/ and the set † defined by

† D
[
t�0

S.t/�

where S.t/ is the semigroup generated by E.1.36. † is the closure of the union of the forward

trajectories starting on � .

The first step is to show that † is the graph of a Lipschitz function. This is done using

the cone condition. † is invariant and finite dimensional by definition. One then introduces

the manifold

M D † [
n
u W u 2 P ; juj � �

o
;

that is the union of † with the part of the subspace P that lies outside �. Notice that M is

invariant by definition and is Lipschitz because so is †. To show that M is exponentially

attracting one considers the set V.u/ given by the intersection of M with the complement

of the invariant cone from the strong squeezing property; V.u/ depends on the trajectory u

chosen:

V.u/ D
n
v 2M W jQ.v � u/j � jP.v � u/j

o
:

V .u/ is a compact finite dimensional set, and then one constructs a sequence of points in

V.u/ that approximate u.t/ exponentially, using the squeezing property. Notice that this

method conveys easily a numerical algorithm to compute an approximation of any trajectory

u.t/.

The elliptic regularisation method

Finally, the last method we review is the “elliptic regularisation” of [42-FAB-1991].

The elliptic regularisation method, introduced by Sacker in [63-SAC-1965], has the same

starting point as the method of Lyapunov-Perron and that of Hadamard. One begins with
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a finite dimensional subspace P � H and its orthogonal Q D H � P . Then, as we have

already seen, an Inertial Manifold h is the graph of a function h W P ! Q; on the one hand

one has that
dh.p.t//

dt
D �Ah.p/CQV.p; h.p//

and on the other that

dh.p.t//
dt

D Dh.�Ap C PV.p; h.p///;

so that one can prove that h is invariant if and only if it is a solution of

Dh.�Ap C PV.p; h.p/// D �Ah.p/CQV.p; h.p//: E:1:37

The method of elliptic regularisation consists in replacing E.1.37 with

���h� CDh�.�Ap C PV.p; h�.p///C Ah�.p/ D QV.p; h�.p// E:1:38

for � > 0 and to construct h by taking the limit of h� as � ! 0. � is the Laplacian operator

on P , which can guarantee that E.1.38 has a unique, sufficiently regular solution.

Notice that the elliptic regularisation method can be used to give a direct approximating

algorithm for the Inertial Manifold.

A comparison with the Lyapunov-Perron method

A couple of basic differences immediately catch the eye: firstly, the Hadamard and

Cauchy methods are more geometric in nature, and the other two are more analytic. Secondly,

the Cauchy method and the elliptic regularisation method can immediately provide numerical

algorithms for computing an approximating trajectory or the Inertial Manifold itself.

The Lyapunov-Perron method shares an interesting feature with the Hadamard method.

In the first method, we define an operator T in a suitable function space X of Lipschitz

functions from PH to QH and we prove that it is a contraction. Being a contraction, we

can choose any h0 2 X and define the iterative sequence hn D T .hn�1/ and hn ! Nh, the

fixed point of T . The Hadamard method follows the evolution of a particular function in

X , that is the function Qh defining the hyperplane PH . Thus, if we take the initial function
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h0 D Qh, then we would be arriving to the same Inertial Manifold, though using two different

approximations. Notice that the similarity ends here, as the mapping of the operator T

does not hold immediate relation to the flow of the dynamical system used in the Hadamard

method.

Notice that the sequence hn could be used to approximate the Inertial Manifold, if we

were able to solve numerically the integral defining T .
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1.6 Moment Closure and Inertial Manifolds in the Literature
In this second section dedicated to the literature, we review very briefly Moment Closure

and Dynamical Systems techniques applied to Statistics, especially in biological modelling;

we also review when the Moment Closure technique is used successfully and when not. It is

important to emphasise that we do not present a review of Moment Closure as this departs

from the subject of this thesis. Notice that although the study of Moment Closure functions

and their relation with Dynamical Systems was first studied by Maxwell around 1866 for the

kinetics theory of gas motion, there are few applications to biological models.

Moment closure approximations have been around for a very long time now; since

Whittle’s paper [84-WHI-1957] they have been justified, some way or the other, by referring

back most of the times to some statistical properties of the system being studied. For

example, in [73-ISH-2005], the author says that the good results given by the moment

closure method “can sometimes be attributed to central limit effects”, though at the same

time the normal approximation might work well even when there is no statistical justification

that the population distribution is “even approximately normal”, as stated in [72-ISH-1995].

At the same time, as emphasised in [79-MAT-1999], there are not yet any general studies

that “investigate the general accuracy of the cumulant function approximations”.

Actually, the normal approximation and Moment Closure techniques in general do not

always provide good approximations. In [69-BER-1995] there are a couple of examples

where Moment Closure methods give very large errors and convergence “may not occur at

all”. For example, some moments were known to have finite value and yet according to

the moment closure function they exploded even if a finite element numerical method could

compute. In [81-NEW-2007] the authors study the mean and variance of the extinction time

for the stochastic logistic process using and comparing a few methods, one of which is the

moment closure approximation. This approximation fails to give correct predictions.

To sum up, Lloyd in [76-LLO-2004] says that “We do not yet have a simple criterion

for determining the validity of the solutions of the moment equations without recourse to

generating model realisations”. In other words, the underlying question being asked by

Lloyd is the same we are concerned with. We found that it is not possible to determine a

general criterion based solely on Inertial Manifolds. Notice that [76-LLO-2004] is one of the

two papers where [48-STA-2001] is actually quoted, the other being [73-ISH-2005], another
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paper by Isham. This might just not be a coincidence, as these two authors seem to me to be

making more commentaries regarding the importance of producing a rigourous statement of

why some dimension reduction techniques work better than others.

A technique different from moment closure and that relies on more dynamical aspects is

the aggregation technique, found for example in [68-AUG-2000]. This technique is applicable

when the biological system being studied can be divided into two levels of organisation, as for

example individuals and population. The individual level is more detailed, containing micro-

variables, and is subject to a fast dynamics, while the population level is a slow dynamics and

contains the macro-variables. The paper [68-AUG-2000] is a review of how one can obtain

the population dynamics from the individual dynamics using the aggregation method. For

example, Auger presents a model that investigates the effect of individual decisions of preys

and predators on the global stability of the community in the long run.

What is of interest to us is that the concept of slow-fast dynamics is used here to reduce

the “dimension” of the dynamical system. However, this is not a projection of the dynamics

on a subspace, and thus it is not to be understood as in the theory of Inertial Manifolds.

In fact, here the authors construct from a dynamical system with many micro-variables a

new dynamical system with fewer variables (the macro-variables) so that the two systems

are not in any functional relationship but rather “a sort of approximate relationship can be

demonstrated”.

For a comparison of other techniques as linearisation and simulation with moment

closure, one can refer to [77-MAR-2000]. Here a case is presented where local linearisation

outperforms the normal approximation.

It is important to stress that though we were not able to find any reference studying

the relationship between Inertial Manifolds and Moment Closure, there have been other

authors that have applied nonlinear dynamical techniques to the study of complex biological

stochastic systems. For example, [75-KEE-2001] studies the global attractor of the dynamics

of an epidemiological model.

A review of how nonlinear dynamics techniques have been applied to a number of

biological systems can be found in the introduction in [82-ROH-2002]. In this paper,

deterministic and stochastic effects are identified; the deterministic ones are shown to move

the dynamics towards the attractor, whilst the stochastic ones move it away from it. In
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[70-CUS-1998] a population dynamics is shown to have a stable manifold and an unstable

one.
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1.7 A short conclusion
Recapitulating, whilst on the one hand the normal approximation is not always a good

approximation, on the other hand we present an example where it is a good approximation

because it is related to Inertial Manifolds.

Summing up these facts, we feel that one general, broad conclusion we might draw from

this research is that, instead of studying whether the normal approximation is good or not for

a particular example, a more appropriate way of finding a simplification of the problem, at

least from a dynamical point of view, would be to study the existence of an Inertial Manifold

for that particular problem.

Furthermore in this thesis we have shown that, in order to check existence of an Inertial

Manifold, one might use the gap condition or a generalisation of it, and depending on how

one decides to represent the differential equation, the gap condition might be verified or not.

That is, we have presented the scientists with a broader choice for modelling their problems

from Nature, and thus more ways of studying the existence of an Inertial Manifold for a

particular problem.
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Chapter 2

Gap Junctions
a generalisation

From a model arising from cell-to-cell commu-

nication, we present a generalisation of a theorem

of existence of Inertial Manifold for such dynam-

ical systems as Pu D �A.u/u C V.u/. Examples

and applications to the biological system are also

described, as well as a elucidation on the role of the

Gap Condition and the Strong Squeezing Property.
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In this chapter of the thesis, we shall investigate the existence of an Inertial Manifold in

a dynamical system derived from the study of a network of biological cells. We shall use the

Lyapunov-Perron method applied to a very general class of systems of the form

Pu D �A.u/uC V.u/; E:2:1

where A.u/ is a family of bounded, positive linear operators in a Hilbert space. We do

have to stress the fact that in the literature, Inertial Manifolds are studied nearly only for

the case of a constant bounded linear operator, that is for the equation Pu D �Au C V.u/;

nevertheless, the semigroup (or rather the evolution operator) of an equation like E.2.1 is

studied in [20-PAZ-1983] and [18-AHM-1991].

Effective intercellular communication is essential for the proper functioning of any

multicellular organism. In many tissues, an important intercellular link is provided by the

exchange of ions and small molecules through such junctions. In this fashion, biological

signals may be relayed from one cell to a distant neighbour via a chain of intervening cells

and gap junctions. Gap junctions are dynamic structures whose permeability is sensitive to

changes in the configuration of neighbouring cells. In particular, many types of gap junction

respond to changes in electrical potential, tending to become more impermeable as the

potential across the junction is increased. Furthermore, such changes are not instantaneous,
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but generally occur with an exponential transient. It is possible to measure such changes

experimentally, but only in isolated cells, or pairs of cells. Given such information, it is

difficult to predict directly the behaviour of even a moderate number of coupled cells. To

address such questions requires the development of mathematical models of such networks

of cells. A class of such models has been previously developed in [1-BAI-1997], based

on detailed data taken from electrophysiological experiments carried out on early Xenopus

embryos. These describe the movement of chemical species through gap junctions linking

the cells that make up the embryo. As it was done in the original paper [47-IAN-1998], we

shall restrict ourselves to the case of a single chemical species, but the generalisation to an

arbitrary number is straightforward. The concentration of the chemical species in each cell

is denoted by a vector ' and the configuration of various gap junctions by a vector s.

The dynamics of these two variables is coupled and may be written in the form

Ps D�g.s; '/

P' D� B.s/' C w:

E:2:2

Here, g represents the dynamic response of the junctions to changes in the state of

adjoining cells, B.s/ is a positive definite matrix representing the permeabilities of the gap

junctions andw is a constant vector representing the membrane resting potentials of the cells.

In the case of Xenopus embryo the dynamics of the gap junctions are much slower than that

of the chemical concentrations of small ions and hence � is small; see section 2.6.2 for

detailed numerical values of the biological constants.

If we hold s fixed (i.e. set � D 0), it is clear that ' will converge to a unique glob-

ally attracting equilibrium '?.s/. The principal aim of this section of the thesis and of the

published paper on the same subject [47-IAN-1998] is to investigate the behaviour of the

system when we incorporate the dynamics of s. This falls within the realms of singular per-

turbation theory, and since we are interested in global results it is most appropriate to use the

techniques of geometric singular perturbation theory; see [27-FEN-1971], [28-FEN-1979],

[38-SAK-1990]. Recall that these are based on the concept of Normal Hyperbolicity. In par-

ticular, one can prove that, under certain conditions, the graph of '? is a normally hyperbolic

invariant manifold and hence persists for small perturbations. Hence the system E.2.2 for

small � has an attracting invariant manifold M, which is the graph of a function '?.
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Suppose that M is in fact globally attracting so that all trajectories converge to it. Then

the asymptotic dynamics of E.2.2 can be reduced to the dynamics on M, which can be written

in terms of s only:

Ps D �g.s; '?� .s//:

The function '?� then “slaves” the dynamics of ' to that of s. After an initial transient

during which ' rapidly converges to '?� , the dynamics of the whole system is therefore

determined by the dynamics of the gap junctions. This suggests that perhaps rather than the

conventional view of cells coupled by gap junctions, we should think of the system as gap

junctions coupled by cells.

Unfortunately, for our purposes, there would be two drawbacks if we were to choose an

approach based on Normal Hyperbolicity or Singular Perturbation Theory such as Tikhonov

theorem. Firstly, since this is a local theory, none of the standard theorems address the

question of whether or not M is globally attracting. In fact, for our particular system, this is

easy to verify once M has been constructed. More seriously, such standard results do not give

any explicit estimates of the size of � required to ensure the existence of M . This makes it

impossible to confirm whether such an invariant manifold exists for physiologically relevant

parameter values. One could, in principle, refine the proofs of such theorems to keep track

of the sizes of relevant quantities and hence obtain the required estimates. In practice, this is

not an attractive proposition.

A more promising approach, and the one adopted here, is to apply techniques from the

theory of Inertial Manifolds. Recall that an Inertial Manifold is defined to be a globally

attracting invariant manifold. It is normally constructed as the graph of a function from one

subset of variables to another, and hence, as described in the chapter 1, represents a “slaving”

principle between these subsets. Inertial Manifolds have been the subject of intense interest

in recent years, especially in the 80s and 90s, particularly in the context of certain classes

of partial differential equations, where they permit the reduction of the asymptotic dynamics

to finite dimensions; see [23-CAR-1981], [44-FOI-1988], [32-HEN-1981], [49-JON-1996]

and [57-ROB-1995] and the review in [67-TEM-1990]. Note also that, usually an Inertial

Manifold determines the dynamics of the whole system, in the sense that for any trajectory

� in the phase-space there exists a trajectory �m on the manifold which exponentially
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attracts �. This property is known as exponential tracking or asymptotic completeness (see

[60-ROB-1996] and section 2.4.3).

Although the construction of Inertial Manifolds is closely related to the proofs of

persistence of normally hyperbolic manifolds (and indeed of most other classes of invariant

manifolds) the assumptions made are normally somewhat stronger, leading to simpler proofs.

The framework for such results is usually that of a general evolution equation on a Hilbert

space

Pu D �AuC V.u/; E:2:3

where A is a positive linear operator and V a Lipschitz function. A common hypothesis

used to prove the existence of an Inertial Manifold for such a system is the so-called “gap

condition”.

As we saw in the introductory section 1.4.1, the main result in this section of the thesis

is therefore the generalisation of standard techniques to show that systems of the form 
Ps

P'

!
D �

 
0 0

0 B.s/

! 
s

'

!
C

 
�g.s; '/

f .s; '/

!
E:2:4

possess an Inertial Manifold if � and the Lipschitz constant of f are small by comparison

to the smallest eigenvalue of B.s/. Since in our biological model E.2.4, f D w which

is constant, this immediately implies the existence of an Inertial Manifold for this system

for small �. Furthermore, we shall give explicit estimates of the size of �. We have then

substituted the linear operator A in E.2.3 with a family A.s/ of linear operators:

A.s/ D

 
0 0

0 B.s/

!
E:2:5

Before proving the main theorem of existence of the Inertial Manifold, we describe in

the next section the biological model originally presented in [1-BAI-1997].
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2.1 The biological model
The biological model developed in [1-BAI-1997] describes the movement of an arbitrary

number of chemical species throughout a network of M cells connected by gap junctions.

Here we shall restrict ourselves to a single species, and denote its electrochemical potential

in the kth cell by 'k . Cells are connected by gap junction channels. In the model, each such

channel is controlled by gates which may be open or closed. It is assumed that each gap

junction has the same number N of gating configurations. Denote by si
lk

the fraction of gap

junction channels connecting cells l and k which are in state i . The probability per unit time

of the transition from state i to state j is given by ˛ij . This is assumed to depend on the

difference 'l � 'k of the electrochemical potentials of the chemical species in cells l and k.

The dynamics of gating states may then be expressed as

d
dt
s
j

lk
D

NX
iD1

�
˛ij .'l � 'k/s

i
lk

�
�

"
NX
iD1

˛j i .'l � 'k/

#
s
j

lk
: E:2:6

Since
PN
iD1 s

i
lk
D 1, we can eliminate one of the gating states from the dynamics, and

write E.2.6 in the form
d
dt
s D b.'/ � Qg.'/s; E:2:7

where both Qg and b depend on the potential ' via the difference 'l �'k between cells labled

l and k. In fact

NX
iD1

�
˛ij .'l � 'k/s

i
lk

�
D

N�1X
iD1

�
˛ij .'l � 'k/s

i
lk

�
C ˛Nj .'l � 'k/s

N
lk

D ˛Nj .'l � 'k/

C

N�1X
iD1

h
˛ij .'l � 'k/ � ˛

Nj .'l � 'k/
i
silk :

Define now b.'/ as the vector function with elements bj .'/ D ˛Nj .'l � 'k/ and Qg.'/ as

the matrix with elements Qgij .'/ D ˛ij .'l � 'k/ � ˛
Nj .'l � 'k/; this lets us finally write

the system E.2.6 as E.2.7.

Turning now to the dynamics of ', this is given by

Ck
d
dt
'k D I

g

k
C Imk C I

p

k
;
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where Ck is a generalisation of capacitance; I g
k

indicates the flux through the gap

junction, Im
k

through the membrane and Ip
k

through the active pumping. The last of these

is assumed to be constant and Im
k

is given by ��k.'k � Q'/, where �k is the permeability of

the membrane in cell k and Q' is the constant uniform extracellular electrochemical potential.

Finally

I
g

k
D

X
l2Nk

Plk.'l � 'k/;

where Plk is the permeability of the gap junction channels connecting cells l and k and Nk ,

is the set of indices of cells connected to cell k. This is given by

Plk D

NX
iD1

�ilks
i
lk ;

where �i
lk

is the permeability of state i . Combining these equations gives

Ps D b.'/ � Qg.'/s

P' D �B.s/' C w;

E:2:8

where the matrix B has components

Bkl D

†
�
Plk

Ck
if l 6D k

�k

Ck
C

X
j2Nk

Pjk

Ck
if l D k

and w is a constant vector given by

wk D
�k Q' C I

p

k

Ck
:

In our biological model all cells are identical. This means that the capacitance is the

same, i.e. Ck D C . On the other hand, if a gap junction connects cell l and cell k, then

the permeability Plk must be equal to Pkl ; this follows from the definition of Plk . Though

these two facts make the matrix B symmetric, we shall only use the fact that this matrix is

positive definite. Indeed the fact that B is symmetric is never used anywhere in the proof of

our main theorem; we only use it to show that the particular biological system from which

we started our investigation satisfies all the hypothesis of our theorem, including the fact that

B is positive definite.
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2.2 The functional settings
Rewriting the system E.2.8 in the form 

Ps

P'

!
D �

 
0 0

0 B.s/

! 
s

'

!
C

 
�g.s; '/

w

!
;

where w is still a constant, allows us to introduce the variable u D .s; '/ in the space RnCm,

where n is the dimension of s and m of '. Although RnCm is a finite dimensional space, we

shall work under the assumption that u belongs to a general Hilbert space, possibly infinite.

In fact our proof is completely valid in a general Hilbert space; the most important fact is

that this general Hilbert space can be divided into two orthogonal spaces, one being finite,

corresponding in our case to the space of s, and that dominates the whole dynamics. The

fact that the space spanned by the first eigenvalues dominates the whole dynamics is actually

included in the so called “gap condition”, or the similar condition we are dealing with.

The functional settings for this chapter are then the following. LetH be a Hilbert space,

and let u 2 H . Let A.u/ be a family of linear bounded operators from H to H ; this means

that for each u 2 H , A.u/ is a bounded linear operator. We assume that A is Lipschitz with

respect to u and thus continuous. Let V be a Lipschitz bounded function from H to H .

We can split the spaceH into two orthogonal subspacesH 0 D PH andQH D H�PH .

We denote s the elements of H 0 and ' the elements of QH . H 0 is finite dimensional and

QH may be infinite dimensional, though this is not required by the biological model in

[1-BAI-1997].

We now consider the system of the form

Pu D �A.u/uC V.u/: E:2:9

In our particular case we have

A.u/ D

 
0 0

0 B.s/

!
E:2:10

and

V.u/ D

 
�g.s; '/

w

!
:

Note that in our case A.u/ depends only on the first dimensions, so that the division of the

space H into two looks natural. Also, in general the second component of V.u/ is not a

constant but a function:

V.u/ D

 
�g.s; '/

f .s; '/

!
:
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In the reminder of this chapter we shall use the following notation for norms.

� j�j is the norm in H , jujH D jsjPH C j'jQH . We drop the subscripts, as always

jsj is a norm in the finite subspace PH and j'j is always the norm in QH .

� k�k is an operator norm, that is, it is always associated to the norm of an operator

in a function space. The subscript will indicate to which function space we refer,

when confusion may arise.
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2.3 Preliminary results

In this section we present a series of results that we shall need during the course of the

proof.

� First of all, we assume that an absorbing ball exists. We shall prove this result for

our particular biological model in 2.6.1.

� Secondly, we show how we can modify our system outside the absorbing ball, in

such a way that we can follow trajectories backwards in time. In other words, we

study a different system that coincides with the original one inside the absorbing

ball and has nice properties outside. Thus the Inertial Manifold for the modified

system coincides with an Inertial Manifold for the original one inside the absorbing

ball.

� Finally, we define the evolution operator Us.t; �/, study some of its properties,

prove that it is C 1 and that our biological system admits a well-defined evolution

operator.

2.3.1 The cut-off function

In order to prove the existence of an Inertial Manifold, we need to follow trajectories

backwards in time. In doing so, trajectories leave the absorbing ball. Unfortunately, we have

little control over the system outside this region. We therefore follow the standard approach

of modifying the system using a cut-off function outside the absorbing ball in such a way that

f and g are globally bounded and Lipschitz, and so that B is positive definite everywhere.

The system is not modified inside the absorbing ball and hence an Inertial Manifold for the

modified system is also an Inertial Manifold for the original system in the absorbing ball,

as required. Unfortunately, we cannot use the standard cut-off function, since this would

modify the inequality for � given in the statement of the theorem. Instead, we proceed as

follows.

Let rs be the radius of the absorbing ball on the coordinate s and r' the radius on the
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coordinate '; given ı > 0 we can always find a function  s.s/ such that

 s.s/ D

�
s

smooth, increasing

rs C ı

if jsj � rs

if rs � jsj � rs C 2ı

if jsj � rs C 2ı

We can also find a function  '.'/ which is defined similarly for ', using the same ı.

We choose the smooth parts in such a way that all these functions have Lipschitz constants

equal to 1.

We now define a modified system using
Qf D f . s.s/;  '.'// instead of f .s; '/;

Qg D g. s.s/;  '.'// instead of g.s; '/;

QB D B. s.s// instead of B.s/:

Denote the compact set where jsj � rs C 2ı and j'j � r' C 2ı by �.ı/. Let F.ı/ and

G.ı/ be the maxima of f and g on�.ı/ and b.ı/ the largest b satisfying
ˇ̌
'TB.s/'

ˇ̌
> b j'j2

on �.ı/. Similarly, let QF .ı/, QG.ı/, Qb.ı/ be analogous maxima for the modified system on

the whole of H . Since j s.s/j � jsj and
ˇ̌
 '.'/

ˇ̌
� j'j, it is clear that F.ı/ D QF .ı/,

G.ı/ D QG.ı/ and b.ı/ D Qb.ı/. Furthermore, F.ı/, G.ı/ and b.ı/ are continuous in ı and

hence QF .ı/! F.0/ D F as ı ! 0, and similarly for QG.ı/ and Qb.ı/.

Next, let �.ı/ be the Lipschitz constant for f on �.ı/ and Q�.ı/ be the corresponding

constant for Qf on the whole of Rn. Note thatˇ̌̌
Ds Qf .s; '/

ˇ̌̌
D
ˇ̌
Dsf . s.s/;  '.'//

ˇ̌
jDs s.s/j �

ˇ̌
Dsf . s.s/;  '.'//

ˇ̌
;

where Ds is the derivation operator with respect to s and similarly for differentiation with

respect to '. Since the Lipschitz constant is the maximum of the derivatives with respect

to s and ', it is clear that Q�.ı/ � �.ı/. On the other hand, since f and Qf are identical on

�.0/, we have �.0/ � Q�.ı/. Finally �.ı/ is continuous in ı, and hence Q�.ı/! �.0/ D � as

ı ! 0. Similarly, if we define 
.ı/ and Q
.ı/ as the corresponding Lipschitz constants for g

and Qg respectively, we get Q
.ı/! 
 as ı ! 0. The same argument also applies to ˇ.

We can now proceed as follows. We shall show that if for some ı the modified system

satisfies

� �
k Qb.ı/

2 Q
.ı/

.1 � k/2 Qb.ı/2 � 2.1 � k/ Qb.ı/ Q�.ı/

Q̌.ı/ QF .ı/C .1 � k/2 Qb.ı/ � .1 � k/ Qb.ı/ Q�.ı/
; E:2:11
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then it possesses an Inertial Manifold M.ı/. Since the original and the modified systems are

the same inside the absorbing ball, we can conclude that there exists an Inertial Manifold M0

for the unmodified system, equal to M.ı/ inside the absorbing ball. But the right-hand side

of E.2.11 is continuous at ı D 0 and hence if � satisfies

� <
kb

2


.1 � k/2b2 � 2.1 � k/b�

ˇF C .1 � k/2b2 � .1 � k/b�
E:2:12

then it satisfies E.2.11 for all sufficiently small ı > 0. Hence, if E.2.12 is satisfied, the

unmodified system has an Inertial Manifold in the absorbing ball, as required. Note that the

Inertial Manifolds M.ı/ for different ı are not necessarily identical (which is why the Inertial

Manifold M0 is not necessarily unique), so we do not try to take the limit of the M.ı/ as

ı ! 0. Instead we just pick one fixed ı which is sufficiently small.

We will continue by proving the theorem for the modified system, but without using the

Qf notation; i.e. we drop the tilde for notational convenience.

2.3.2 The evolution operator: definition

Before we continue, we shall introduce the evolution operator associated to the matrix

Cs.t/ D �B.s.t//, which appears in equation E.1.19 (page 30):

P' D �B.sso;h/' C f .sso;h; h.sso;h//:

We will follow the notations and methods in [18-AHM-1991] and [20-PAZ-1983];

although in the original paper [47-IAN-1998] we restricted our discussion to the finite

dimensional case, in this thesis we will use the same arguments adapted to a general Hilbert

space.

The evolution operator is the generalisation of a semigroup of operators to the case in

which the generator depends on time, say via a function of time, such as the solution of the

system itself. That is, given s.t/ any function of the time t and given the equation defined in

the Hilbert space H

Py D Cs.t/y

y.�/ D z

E:2:13
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the evolution operator might be defined as the solution y.t/ D Us.t; �/z of the above system.

More formally, letCs.t/ be a family of operators depending on time t and on a bounded,

Lipschitz function s.t/, such that, for each time t and for each bounded, Lipschitz function

s.t/, Cs.t/ is the infinitesimal generator of a continuous semigroup St;s.�/ on the space H .

We note now that in the original paper [47-IAN-1998] we cited incorrectly some results

from the books [18-AHM-1991] and [20-PAZ-1983] to prove a series of results on the

evolution operator Us.t; �/, especially the Lipschitz property of U . We explain this incorrect

interpretation in detail.

On the one hand, we interpreted correctly that the operator Cs.t/ does not depend on the

variable y: if we recapitulate the procedure we follow in the proof, we first find a solution

ss0;h.t/ to the inertial form:

Ps D �g.s; h.s//; E:2:14

and then we plug this function of time into

P' D �B.sso;h/' C f .sso;h; h.sso;h//I E:2:15

at this point it is clear that we are interested in an evolution operator which depends only

upon time and not on the variable of the differential equation. That is, �B.sso;h/ depends on

time through the function of time s.t/ and not on '.

On the other hand, we were mislead by the presence of s in the definition of B.s/ and

we quoted lemma 5.3.10 in [18-AHM-1991], page 176. This theorem refers to an evolution

operator associated to the differential equation

Px D C.t; x/x C f .t; x/;

and here the operator C depends both on time and on the variable. We have seen this is not

our case.

In our case the operator C depends on time through a function: C D C.s.t//.

This means that, though we can still use all those results proved in [18-AHM-1991] and

[20-PAZ-1983] for operators depending only on time, we will have to provide an original

proof for those results that use explicitly the dependency of C on a function of time:

� the evolution operator Us is Lipschitz with respect to s,

� the evolution operator Us is differentiable with respect to s.

Inertial Manifolds in Biological Systems - PhD Thesis - Pasquale Iannelli - UCL, London 2009 69/216



2 - Gap Junctions: a generalisation 2.3 - Preliminary results

2.3.3 - The evolution operator: properties

2.3.3 The evolution operator: properties

In this section we consider the operator Cs.t/ as a family of operators depending on

time t , each being the infinitesimal generator of a continuous semigroup St;s.�/ on the space

H . Suppose that there exist two real numbers M � 1; ! 2 R such that the resolvents of the

family fCs.t/g contain the set .!;1/ for every .t; s/ and if for every finite non-decreasing

sequence 0 � t1 � : : : � tn � T the norm of the product

nY
jD1

Stj ;s.tj /.�j / �M exp

(
!

nX
jD1

�j

)
E:2:16

whenever the �j are positive; then there exists an operator valued functionUs.t; �/, sometimes

called the evolution operator associated to Cs , such that Us.t; t/ D I , where I is the identity

operator, and Us.t; r/Us.r; �/ D Us.t; �/, as one would expect from the fact that Us.t; �/ is

the ‘solution’ of E.2.13.

Let us recall that the resolvent set of an operator A is the set of all those � such that the

operator �I �A is invertible. Also, if T .t/ is the semigroup generated by A, then the inverse

R.�/ of �I � A is given by

R.�/x D

Z 1
0

e��tT .t/xdt; E:2:17

where x is any element of the Hilbert space over which A is defined.

Under these assumptions, theorem 5.2.26 (page 163) of [18-AHM-1991] and theorem

3.1 (page 135) of [20-PAZ-1983] prove that if for every time such that 0 � � � t � T <1

the operator Cs is strongly continuous, then there exist a unique evolution operator Us for

the equation E.2.13, which also admits a unique solution y.t/ D Us.t; �/z, and the evolution

operator satisfies the following properties:

kUs.t; �/k �M expf!.t � �/g; E:2:18

@

@t
Us.t; �/ D Cs.t/Us.t; �/; E:2:19

@

@�
Us.t; �/ D �Us.t; �/Cs.�/: E:2:20

Clearly the fact that Cs.t/ depends upon time through a function s.t/ is irrelevant.
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2.3.4 The evolution operator: Lipschitz

We shall now consider the fact that the operatorCs depends on time through a function of

time. We are interested in studying how the evolution operatorUs varies when s changes. We

shall prove a sort of Lipschitz condition on the evolution operator, as stated in the following

Lemma.

LEMMA L.2.1 If the operator Cs is Lipschitz with respect to s with Lipschitz

constant �, then



Us1.t; �/ � Us2.t; �/

 �M 2�e!.t��/
Z t

�

js1.�/ � s2.�/j d�: E:2:21

Proof The proof is very simple. First of all, thanks to E.2.19 and E.2.20, the following

holds:

@

@�

h
Us1.t; �/Us2.�; �/

i
D Us1.t; �/

h
� Cs1.�/C Cs2.�/

i
Us2.�; �/:

If we now integrate the left hand side of this equation between � and t , we obtain thatZ t

�

@

@�

h
Us1.t; �/Us2.�; �/

i
d� D Us1.t; t/Us2.t; �/ � Us1.t; �/Us2.�; �/

D Us2.t; �/ � Us1.t; �/:

Now we can take the norm of this expression:



Us1.t; �/ � Us2.t; �/

 � Z t

�





 @@� hUs1.t; �/Us2.�; �/i




 d�

D

Z t

�




Us1.t; �/h � Cs1.�/C Cs2.�/iUs2.�; �/


 d�

using E.2.18

�

Z t

�

Me!.t��/Me!.���/


Cs1.�/ � Cs2.�/

 d�

�M 2e!.t��/
Z t

�

� js1.�/ � s2.�/j d�:

With this, the proof is complete.

======
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2.3.5 The evolution operator: differentiability

In this section we shall show an original result regarding the differentiability of Us , not

included in neither [18-AHM-1991] nor [20-PAZ-1983].

LEMMA L.2.2 If Cs is Fréchet differentiable with respect to s so is Us.t; �/ and its

derivative is given by

@

@s
Us.t; �/ı D

Z t

�

Us.t; �/
@

@s
Cs.�/ıUs.�; �/d�: E:2:22

Proof First of all, as we saw in the previous lemma

@

@�

h
UsCı.t; �/Us.�; �/

i
D UsCı.t; �/

h
Cs.�/ � CsCı.�/

i
Us.�; �/:

Integrating it over the interval Œ�; t � and multiplying both sides by �1:

UsCı.t; �/ � Us.t; �/ D

Z t

�

UsCı.t; �/
h
CsCı.�/ � Cs.�/

i
Us.�; �/d�: E:2:23

By definition of Fréchet differentiability, we now want to show that the following norm goes

to zero as kık goes to zero



UsCı.t; �/ � Us.t; �/ � @

@s
Us.t; �/ı





 jıj�1 :
To do this, we first use the above formula for UsCı.t; �/�Us.t; �/, and then add and subtract

the term
R
UsCı.t; �/

@
@s
Cs.�/ıUs.�; �/. So we obtain the following chain of inequalities:




UsCı.t; �/ � Us.t; �/ � @

@s
Us.t; �/ı






 kık�1
D jıj�1







Z t

�

h
UsCı.t; �/CsCı.�/ � UsCı.t; �/Cs.�/

i
Us.�; �/

� Us.t; �/
@

@s
Cs.�/ıUs.�; �/d�







� M jıj�1

Z t

�






UsCı.t; �/CsCı.�/ � UsCı.t; �/Cs.�/
� UsCı.t; �/

@

@s
Cs.�/ı






e!.���/d�
CM jıj�1

Z t

�





UsCı.t; �/ @@sCs.�/ı � Us.t; �/ @@sCs.�/ı




 e!.���/d�
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� M jıj�1
Z t

�

kUsCı.t; �/k





CsCı.�/ � Cs.�/ � @

@s
Cs.�/ı





 e!.���/d�
CM jıj�1

Z t

�

kUsCı.t; �/ � Us.t; �/k





 @@sCs.�/ı




 e!.���/d�:

It is clear at this point that asUs is continuous with respect to s andCs is Fréchet differentiable

with respect to s, the above norm goes to zero as kık ! 0 and the theorem holds.

======

We also note that the norm of the derivative of Us is bounded by

M 2e!.t��/




@Cs@s





 .t � �/: E:2:24

2.3.6 The evolution operator of our system

In this section we shall show that the theory just described can be applied to our problem

by identifying Cs.t/ D �B.s.t//. We shall prove that indeed for any function s.t/ the

hypothesis defined in 2.3.3holds with M D 1, ! D �b and � D ˇ.

First of all, we use theorem 5.1 at page 127 of [20-PAZ-1983] to show that indeed

Cs.t/ D �B.s.t// is the infinitesimal generator of an evolution operator. The only conditions

for this to be true is that for every t , Cs.t/ is a bounded linear operator, which is true, and

that the function t ! Cs.t/ be continuous in the uniform operator topology.

This is true if for every � > 0 there exists a ı > 0 such that for every j� j < ı we have

that kCs.t C �/ � Cs.t/k < �. B being by hypothesis Lipschitz, one has

kCs.t C �/ � Cs.t/k D kB.s.t C �// � B.s.t//k � ˇ js.t C �/ � s.t/j

where ˇ is the Lipschitz constant of B; thanks to the fact that s is continuous in time, one

has that Cs.t/ is continuous in the uniform operator topology.

Now we want to show that the resolvent of Cs.t/ D �B.s.t// is contained in the set

.�b;1/ for all s and t . Using E.2.17 (page 70) and the fact that for fixed s and t the
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semigroup associated to �B.s.t// is given by expf�B.s.t//�g, we can write

kR.�/k D





Z 1
0

e���e�B.s.t//�d�






�

Z 1
0

e���e�b�d�

D
1

�C b

which is finite for � > �b. Note that we have used the fact that B.s/ is a bounded linear

operator, thus generating a uniformly continuous semigroup.

In order to show that E.2.16 (page 70) holds it suffices to show that (using theorem 2.2

at page 131 of [20-PAZ-1983])






kY

jD1

R.�j W Cs.tj //







 �M
kY

jD1

1

�j � !
:

This follows again by using the formula E.2.17:






kY

jD1

R.�j W Cs.tj //







 D







kY

jD1

Z 1
0

e��j te�B.s.tj //tdt








�

kY
jD1

Z 1
0

e��j te�btdt

D

kY
jD1

1

�j C b
:

Thus now equation E.2.18 is:

kUs.t; �/k � e
�b.t��/;

equation E.2.21 is:



Us1.t; �/ � Us2.t; �/

 � ˇe�b.t��/ Z t

�

js1.�/ � s2.�/j d�;

and equation E.2.24 is: 



@Us@s




 � e�b.t��/ 



@Cs@s





 .t � �/:
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2.4 The Inertial Manifold
As we saw in section 2.3.1, we assume that our system has an absorbing, bounded

region where B is definite positive. This fact will be proved in section 2.6.1 for our

particular model. We then modify B in the usual way using a “bump” function to assure that

it is positive-definite everywhere.

We define b as the maximum value for which the following inequality holds for every s

and every ':

h';B.s/'i � b j'j2 : E:2:25

The main result in this section is as follows.

THEOREM T.2.3 If for the system E.2.4 (page 61) , there exists an absorbing ball

whereB.s/ is definite positive, b is defined by E.2.25 , the derivative ofB.s/with respect

to s has norm ˇ, f and g are Lipschitz bounded differentiable functions with Lipschitz

derivative, the maxima of f and g are F and G and the Lipschitz constants are � and


 respectively and if there exists a constant k 2 .0; 1/ such that .1�k/b > 2� , then for

small positive � the system E.2.4 admits an Inertial Manifold which is the graph of a

function h.s/ which is Lipschitz, bounded, differentiable and with Lipschitz derivative.

The bound on � is

� <
kb

2


.1 � k/2b2 � 2.1 � k/b�

ˇF C .1 � k/2b2 � .1 � k/b�
: E:2 :26

It may be worth noting that since the first eigenvalues of A.u/ are zero, when A is given

in the form E.2.5 (page 61) used throughout the proof, the condition .1� k/b > 2� could be

erroneously regarded as the classical gap condition. This is not the case. In fact the classical

definitions of the gap condition (see glossary), for example the one given in [39-TEM-1998],

compare the difference of two eigenvalues of A (in this case b and 0) with the Lipschitz

constant of all the nonlinear parts, that is in our case the sum of ˇ and � . Thus the condition

.1 � k/b > 2� is not the classical gap condition but a weaker form of it, clearly implied by

the former but different from it (see section 2.4.5 for details).

Also note that E.2.4 (page 61) admits an Inertial Manifold although the classical gap

condition is not satisfied, which seems to be a rather rare case. See also [53-MAL-1988] for

another result in this direction.
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2.4.1 Existence

Before proceeding, we want to prove that equation E.2.15 (page 69) admits one and only

one solution. In the system originally treated in [47-IAN-1998], the existence is immediate

since we were dealing with the finite dimensional case only.

To prove uniqueness, consider '1 and '2 two solutions of E.2.15, but corresponding to

the same initial value '1.0/ D '2.0/. Then let ' D '1 � '2. It obviously satisfies

P' D �B.ss0;h/':

By multiplication by 'T we obtain

1

2

d
dt
j'j2 � �b j'j2 ;

which readily implies ' D 0 (since '.0/ D 0/ and hence uniqueness.

In this thesis, where we are dealing with the general case of a possibly infinite

Hilbert space, existence and uniqueness are provided by the results in [18-AHM-1991]

and [20-PAZ-1983] that we quoted in section 2.3.3.

We shall use the set X consisting of all those bounded Lipschitz functions from PH to

its orthogonal QH , bounded by p and with Lipschitz constant p1. Notice that X � L1,

the space of all essentially bounded functions, which is proved to be a Banach space in many

text books, such as [37-ROB-2001] or [8-RUD-1987]. The L1 norm, that is the norm of all

essentially bounded functions, is given by

khk1 D sup
x2H

jh.x/j :

We will apply the Banach fixed point theorem to X , thus we need X to be a closed set,

which we prove in the following lemma:

LEMMA L.2.4 Every Cauchy sequence fhng in X in the L1 norm converges to an

element h 2 X .

Proof Take a Cauchy sequence fhng in X in the L1 norm. L1 being a Banach space,

there exists h 2 L1 to which hn converges.

By theorem 3.12 of [8-RUD-1987], there exists a subsequence that converges point-wise to

h.x/ almost everywhere, thus khk1 � p.
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By considering the following

8x; y 2 PH 8n 2 N
jhn.x/ � hn.y/j

jx � yj
� p1; E:2:27

and taking the limit for n!1 in E.2.27 proves that the Lipschitz constant of h is less than

p1.

We have thus proved that h 2 X and thus X is a closed subset of L1.

======

Consider now the operator T , obtained with the variation of constants formula as earlier,

mapping X to X , given by

T h.s0/ D

Z 0

�1

Us0;h.0; �/f .ss0;h.�/; h.ss0;h.�///d�;

where Us0;h is the evolution operator associated to the equation E.2.15 for a fixed so and

h 2 X .

We claim that this operator is well defined and that it is a contraction for certain ranges

of values of �; p; p1. Moreover, its fixed point is an Inertial Manifold for E.2.4 (page 61).

This is because, from the definition of the operator T , its fixed point is an invariant manifold

and it is exponentially attracting.

It is easy to see that the fixed point of T is an invariant manifold by following the method

used in [32-HEN-1981] or in [41-CHO-1992]. In fact, any fixed point of T will satisfy for

any � 2 PH the relation h.�/ D .T h/.�/; so taking now the solution �.t/ D ss0;h.t/ of the

inertial form E.2.14 (page 69), for any time t we have that

h.ss0;h.t// D

Z 0

�1

UŒss0;h.t/�;h
.0; �/f .sŒss0;h.t/�;h

.�/; h.sŒss0;h.t/�;h
.�///d�; E:2:28

where sŒss0;h.t/�;h.�/ is the solution of the inertial form E.2.14 starting at time � D 0 at the

point ss0;h.t/, and evaluated at time � . Clearly, by using basic properties of semi-groups,

this solution is the same as ss0;h.t C �/ that is the solution of E.2.14 starting at point s0

and evaluated at time t C � . Also, the evolution operator UŒss0;h.t/�;h.0; �/ corresponds to

the solution of E.2.15 that at time � starts at the point ss0;h.t/, and this corresponds to the

evolution operator starting at time t C � at point s0. So we can re-write E.2.28 as

h.ss0;h.t// D

Z 0

�1

Us0;h.0; t C �/f .ss0;h.t C �/; h.ss0;h.t C �///d�: E:2:29
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Now we can introduce the change of variable � D t C � and obtain:

'.t/ D h.ss0;h.t// D

Z t

�1

Us0;h.t; �/f .ss0;h.�/; h.ss0;h.�///d�:

An easy differentiation shows that the fixed point of T is indeed invariant. In fact, using

E.2.19 (page 70):

P'.t/ D

Z t

�1

Cs.t/Us0;h.t; �/f .ss0;h.�/; h.ss0;h.�///d�

C Us0;h.t; t/f .ss0;h.t/; h.ss0;h.t///

DCs.t/'.t/C f .ss0;h.t/; h.ss0;h.t///;

E:2:30

where Cs.t/ comes out of the integral because we are integrating in d� .

LEMMA L.2.5 The operator T maps the space of functions bounded by p to itself.

Proof To simplify the notation we shall write ss0 instead of ss0;h.t/. Then

ˇ̌
T h.ss0/

ˇ̌
�

Z 0

�1

ˇ̌̌
Uss0 .0; �/f .ss0 ; h.ss0//

ˇ̌̌
d�

�

Z 0

�1

eb�F d� D
F

b
;

where F is the maximum of f . Thus, when p � F=b, we have that
ˇ̌
T h.ss0/

ˇ̌
� p.

======

LEMMA L.2.6 Gronwall’s inequality applied to E.2.14 gives the following inequal-

ity for t < 0, whenever g has Lipschitz constant 
 and h has Lipschitz constant p1

ˇ̌
ss0.t/ � ss1.t/

ˇ̌
< js0 � s1j e

��
.p1C1/t : E:2:31

Proof The solution ss0.t/ of the system E.2.14 (page 69) corresponding to the initial

value s0 satisfies the equality

ss0.0/ � ss0.t/ D s0 � ss0.t/ D

Z 0

t

�g.ss0.�/; h.ss0.�///d�: E:2:32

Now, if we get two initial values s0 and s1 and their corresponding solutions ss0 and ss1 and
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subtract the two equations E.2.32 term by term we have thatˇ̌
ss0.t/ � ss1.t/

ˇ̌
D

ˇ̌̌̌
s0 � s1 C �

Z 0

t

g.ss0.�/; h.ss0.�/// � g.ss1.�/; h.ss1.�///d�
ˇ̌̌̌

� js0 � s1j C �

Z 0

t

ˇ̌
g.ss0.�/; h.ss0.�/// � g.ss1.�/; h.ss1.�///

ˇ̌
d�

� js0 � s1j C �

Z 0

t



h ˇ̌
ss0.�/ � ss1.�/

ˇ̌
C
ˇ̌
h.ss0.�// � h.ss1.�//

ˇ̌ i
d�

� js0 � s1j C �

Z 0

t



h ˇ̌
ss0.�/ � ss1.�/

ˇ̌
C p1

ˇ̌
ss0.�/ � ss1.�/

ˇ̌ i
d�

D js0 � s1j C �
.p1 C 1/

Z 0

t

ˇ̌
ss0.�/ � ss1.�/

ˇ̌
d�:

Gronwall’s lemma (see glossary) states that if we have two positive functions of time a and

b and a constant c such that

a.t1/ � c C

Z t1

t0

b.s/a.s/ds

then

a.t1/ � c exp
�Z t1

t0

b.s/ds
�
:

We can thus apply Gronwall’s lemma with t1 D 0, t0 D t , a.t/ D
ˇ̌
ss0.t/ � ss1.t/

ˇ̌
,

b.t/ D �
.p1 C 1/ and c D js0 � s1j, to obtain that

ˇ̌
ss0.t/ � ss1.t/

ˇ̌
� js0 � s1j e

R 0
t
�
.p1C1/ds D js0 � s1j e

��
.p1C1/t :

======

LEMMA L.2.7 For sufficiently small � the operator T maps the space of p1 Lipschitz

functions to itself.

Proof First of all we shall simplify the notation and suppress the explicit dependency

on time and on h and we shall write ss0 for ss0;h.�/, h.ss0/ for h.ss0;h.�//, and similarly for

ss1 and h.ss1/.

Secondly, we shall use the fact that f is Lipschitz with constant � and that h is Lipschitz

with constant p1, so that we have the following inequality:ˇ̌
f .ss0 ; h.ss0// � f .ss1 ; h.ss1//

ˇ̌
� �

h ˇ̌
ss0 � ss1

ˇ̌
C
ˇ̌
h.ss0/ � h.ss1/

ˇ̌ i
� �

h ˇ̌
ss0 � ss1

ˇ̌
C p1

ˇ̌
ss0 � ss1

ˇ̌ i
D �.p1 C 1/

ˇ̌
ss0 � ss1

ˇ̌
:
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This inequality will be used throughout this chapter, although we explicitly mention it only

here.

Using E.2.21 (page 71) and adding and subtracting the term Uss1 .0; �/f .ss0 ; h.ss0//, we

have

jT h.s0/� T h.s1/j

�

Z 0

�1

ˇ̌̌
Uss0 .0; �/f .ss0 ; h.ss0// � Uss1 .0; �/f .ss1 ; h.ss1//

ˇ̌̌
d�

�

Z 0

�1

ˇ̌̌h
Uss0 .0; �/ � Uss1 .0; �/

i
f .ss0 ; h.ss0.�///

ˇ̌̌
d�

C

Z 0

�1

ˇ̌̌
Uss1 .0; �/

�
f .ss0 ; h.ss0// � f .ss1 ; h.ss1//

�ˇ̌̌
d�

�

Z 0

�1

ˇFeb�
�Z 0

�

ˇ̌
ss0.�/ � ss1.�/

ˇ̌
d�
�

d�

C

Z 0

�1

eb��.p1 C 1/
ˇ̌
ss0.�/ � ss1.�/

ˇ̌
d�;

E:2:33

where ˇ is the Lipschitz constant of B .

Using lemma L.2.6 we have that equation E.2.33 is dominated byZ 0

�1

ˇF

�
.p1 C 1/
.eb���
.p1C1/� � eb� / js0 � s1j d�

C

Z 0

�1

�.p1 C 1/e
b���
.p1C1/� js0 � s1j d�

D
ˇF

�
.p1 C 1/

�
1

.b � �
.p1 C 1//
�
1

b

�
js0 � s1j

C �.p1 C 1/
1

.b � �
.p1 C 1//
js0 � s1j

D

�
ˇF

b.b � �
.p1 C 1//
C

�.p1 C 1/

.b � �
.p1 C 1//

�
js0 � s1j

E:2:34

where, in order to obtain finite integrals, we impose that

� � k
b


.p1 C 1/
E:2:35

with k a number between 0 and 1, which will be chosen later. Using E.2.35 one can write

b � �
.p1 C 1/ D .1 � k/b C kb � �
.p1 C 1/ � .1 � k/b: E:2:36

Thus we have that the right hand side of E.2.34 is dominated by�
ˇF

b.1 � k/b
C
�.p1 C 1/

.1 � k/b

�
js0 � s1j :
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We shall now impose that the above term be less than p1 js0 � s1j, so that finally

jT h.s0/ � T h.s1/j � p1 js0 � s1j

and T h is a Lipschitz function with constant p1.

Imposing that
ˇF

b.1 � k/b
C
�.p1 C 1/

.1 � k/b
� p1

is equivalent to

ˇF C b� � p1..1 � k/b
2
� b�/

which can also be written as

p1 �
ˇF C b�

.1 � k/b2 � b�
: E:2:37

======

So, thanks to Lemmas L.2.5 and L.2.7, the operator T is well defined in the space

of functions X , provided E.2.37 holds and p � F=b.

LEMMA L.2.8 Gronwall’s inequality applied to E.2.14 gives the following in-

equality for t < 0, whenever g has Lipschitz constant 
 and h1, h2 have Lipschitz constant

p1

ˇ̌
sh1.t/ � sh2.t/

ˇ̌
<
kh1 � h2k1
p1 C 1

h
e��
.p1C1/t � 1

i
: E:2:38

Proof In order to simplify the notation, we suppress again the explicit dependency on

time and the initial condition and we denote by sh1 and sh2 the two solutions of E.2.14 (page

69) corresponding to the same initial value s0 but to two different functions h1 and h2. We

also suppress the dt variable of integration.

As we did in the proof of L.2.6 we subtract the two integral equations corresponding

to the two solutions sh1 and sh2 .ˇ̌
sh1.t/ � sh2.t/

ˇ̌
D

ˇ̌̌̌
sh1.0/ � sh2.0/C

Z 0

t

�g.sh1 ; h1.sh1// � �g.sh2 ; h2.sh2//

ˇ̌̌̌
�

Z 0

t

�
ˇ̌
g.sh1 ; h1.sh1// � g.sh2 ; h2.sh2//

ˇ̌
�

Z 0

t

�

h ˇ̌
sh1 � sh2

ˇ̌
C
ˇ̌
h1.sh1/ � h2.sh2/

ˇ̌ i
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�

Z 0

t

�

h ˇ̌
sh1 � sh2

ˇ̌
C
ˇ̌
h1.sh1/ � h1.sh2/

ˇ̌
C
ˇ̌
h1.sh2/ � h2.sh2/

ˇ̌ i
�

Z 0

t

�

h ˇ̌
sh1 � sh2

ˇ̌
C p1

ˇ̌
sh1 � sh2

ˇ̌
C
ˇ̌
h1.sh2/ � h2.sh2/

ˇ̌ i
�

Z 0

t

�

h
.p1 C 1/

ˇ̌
sh1 � sh2

ˇ̌
C kh1 � h2k1

i
D

Z 0

t

�
.p1 C 1/
h ˇ̌
sh1 � sh2

ˇ̌
C
kh1 � h2k1
p1 C 1

i
where kh1 � h2k1 is the L1 norm, i.e. the sup on s of jh1.s/ � h2.s/j, which is finite as

both h1; h2 2 X .

Now add the term kh1 � h2k1 =.p1 C 1/ to both terms of the above inequality:

ˇ̌
sh1.t/ � sh2.t/

ˇ̌
C
kh1 � h2k1
p1 C 1

�
kh1 � h2k1
p1 C 1

C

Z 0

t

�
.p1 C 1/
h ˇ̌
sh1 � sh2

ˇ̌
C
kh1 � h2k1
p1 C 1

i
:

We are ready to apply Gronwall’s lemma with

a.t/ D
ˇ̌
sh1.t/ � sh2.t/

ˇ̌
C
kh1 � h2k1
p1 C 1

b.t/ D �
.p1 C 1/

c D
kh1 � h2k1
p1 C 1

to obtain ˇ̌
sh1.t/ � sh2.t/

ˇ̌
C
kh1 � h2k1
p1 C 1

�
kh1 � h2k1
p1 C 1

e��
.p1C1/t

which is exactly the inequality stated in the lemma.

======

The existence of a fixed point, which we prove in the next lemma using a contraction

principle, could be also proved using the Schauder fixed point theorem. This theorem states

that if T is a continuous mapping from a closed convex subsetK of a Banach space to itself,

then T has at least one fixed point.

Unfortunately so far we have only proved that T is well defined and not that it is

continuous. In fact, so far we have only considered for a fixed h 2 X the value of kT hk

and the value of jT h.s0/ � T h.s1/j. In order to prove continuity one has to evaluate the

difference kT h1 � T h2k which is essentially what we do in the next lemma.
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LEMMA L.2.9 The operator T W X ! X is a contraction for sufficiently small �.

Proof As we have done until now, we will suppress some of the notation; we write sh1

for ss0;h1.�/ and Ush1 for Uss0;h1 .0; �/.

We must prove that for any h1; h2 2 X the following relation holds for a constant

ı 2 .0; 1/

kT h1 � T h2k1 � ı kh1 � h2k1 I

which is equivalent to proving that for any s0 2 H the following holds

jT h1.s0/ � T h2.s0/j � ı kh1 � h2k1 :

Given h1 and h2 in X and any point s0 in Rn we can write

jT h1.s0/ � T h2.s0/j �

Z 0

�1

ˇ̌̌�
Ush1 � Ush2

�
f .sh1 ; h1.sh1//

ˇ̌̌
d�

C

Z 0

�1

ˇ̌̌
Ush2

�
f .sh1 ; h1.sh1// � f .sh2 ; h2.sh2//

�ˇ̌̌
d�

�

Z 0

�1

ˇFeb�
�Z 0

�

ˇ̌
sh1.�/ � sh2.�/

ˇ̌
d�
�

d�

C

Z 0

�1

eb��
�
.p1 C 1/

ˇ̌
sh1 � sh2

ˇ̌
C kh1 � h2k1

�
d�:

E:2:39

Now, applying lemma L.2.8 to E.2.39 and using E.2.35 (page 80) to obtain finite integrals,

yields

ˇ̌̌
T h1.s0/ � T h2.s0/

ˇ̌̌
�

Z 0

�1

ˇFeb�
�Z 0

�

kh1 � h2k1
p1 C 1

h
e��
.p1C1/� � 1

i
d�
�

d�

C

Z 0

�1

eb�� kh1 � h2k1

h
e��
.p1C1/� � 1

i
d� C

�

b
kh1 � h2k1

D

Z 0

�1

ˇF
kh1 � h2k1
�
.p1 C 1/2

eb�
h
e��
.p1C1/� � 1

i
d�

C

Z 0

�1

ˇF
kh1 � h2k1
.p1 C 1/

eb��d�

C
�

.b � �
.p1 C 1//
kh1 � h2k1

Dkh1 � h2k1
b2�.p1 C 1/C bˇF � ˇF Œb � �
.p1 C 1/�

b2.b � �
.p1 C 1//.p1 C 1/
;

E:2:40
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where we have used the fact that

Z 0

�1

e�rrdr D �
1

�2
:

Using E.2.36 (page 80) again to find a bound on E.2.40 yields the inequality:

jT h1.s0/ � T h2.s0/j � kh1 � h2k1
b�.p1 C 1/C ˇF � ˇF.1 � k/

b2.1 � k/.p1 C 1/
: E:2:41

Now the right-hand side of E.2.41 is less than ˛ kh1 � h2k1 for some 0 < ˛ < 1, this

yielding the Lipschitz condition for T , if and only if

p1 >
kˇF

.1 � k/b2 � b�
� 1: E:2:42

This last inequality is proved by imposing that the constant in right hand side of E.2.41 be

strictly less than 1:
b�.p1 C 1/C ˇF � ˇF.1 � k/

b2.1 � k/.p1 C 1/
< 1

which is equivalent to

b�.p1 C 1/C kˇF < b2.1 � k/.p1 C 1/;

and grouping p1 on one side gives exactly the inequality E.2.42.

======

Thus only three conditions E.2.35, E.2.37, E.2.42, plus p � F=b guarantee that T is

a contraction in the space X . In the next section we shall show that its fixed point is also

differentiable with continuous derivative.

2.4.2 Smoothness

To show that the invariant manifold is C 1, that is continuously differentiable, we shall

introduce an operator on the spaceX1p1 , which in a sense is a space of derivatives. This space

is defined as follows:

X1p1 D
n
� W PH ‘ L.PH;QH/I k�kX1 D sup

s
k�.s/kL � p1

o
:
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In the biological model PH D Rn and QH D Rm. We define an operator T 1
h

, depending

on h 2 X , which mapsX1p1 to itself. We show that for every h 2 X it is a contraction inX1p1 ;

then we take the fixed point x� corresponding to the fixed point Nh of T and we show that it is

indeed the derivative of Nh.

In words, L.PH;QH/ is the function space of all the linear operators from PH to

QH ; X1p1 is the space of all functions from PH to L.PH;QH/ with bounded norm; to

each element in PH it associates a linear operator. This is a derivative, something that one

can see thinking about the scalar case: to each element in R we associate the slope of the

tangent to a function, the slope being nothing less than a scalar, which can be viewed as a

linear operator.

Finally T 1
h

is a function that to each function in X1p1 associates another function.

Thus, if we have s; � 2 PH , the notation T 1
h
�.s/� will have to be read as follows:

� � is a function in X1p1 ;

� T 1
h
� is the function in X1p1 associated to � by T 1

h
; lets denote T 1

h
.�/ by ‚;

� T 1
h
�.s/ D ‚.s/ is an operator in L.PH;QH/, and is the operator associated to

s by the function ‚ D T 1
h
.�/; lets denote it by A

� T 1
h
�.s/� D ‚.s/� D A� is an element inQH , and is the element associated to �

by A, which is a linear operator;

� thus the norm of T 1
h
�.s/� will be indicated by j�j, as it is an element inQH � H .

Before proceeding with the proof of the theorem, we shall show that X1p1 is a closed

subset of a Banach space.

LEMMA L.2.10 The space of functions X1 D f� W PH ‘ L.PH;QH/g is a

Banach space when provided with the following norm

k�kX1 D sup
s
k�.s/kL :

Proof We will use the notation L D L.PH;PQ/.

First we show that X1 is closed under linear operations, then that k�kX1 is a norm, and

finally that X1 is complete.

To show thatX1 is closed under linear operations, we get�1; �2 2 X1 and � 2 R, and

we show that �1 C ��2 is well defined in X1.
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By definition of X1, 8s 2 PH we have that �1.s/ 2 L and �2.s/ 2 L. Using the fact that

L.PH;PQ/ is well defined under linear operations, it follows that 8s 2 PH we have that

Œ�1.s/C ��2.s/� 2 L.

Thus�1C ��2 is defined for each s 2 PH as�1.s/C ��2.s/, and thus�1C ��2 2 X1.

Now we prove that k�kX1 is a norm.

First we show that if k�kX1 D 0 then � D 0. By definition, k�kX1 D 0 implies that

8s 2 PH k�.s/kL D 0. L being a normed space, this implies that 8s 2 PH �.s/ D 0.

Now we show that k�1 C ��2kX1 � k�1kX1 C j�j k�2kX1 . Once again we use the

fact that L is a normed space:

k�1 C ��2kX1 D sup
s
k�1.s/C ��2.s/kL

� sup
s

˚
k�1.s/kL C j�j k�2.s/kL

	
� sup

s
k�1.s/kL C j�j sup

s
k�2.s/kL

D k�1kX1 C j�j k�2kX1 :

We need only to show thatX1 is complete. Take then a sequence�n which is a Cauchy

sequence. By definition 8� > 0 there exist N such that for n;m > N ,

k�n ��mkX1 D sup
s
k�n.s/ ��m.s/kL < �:

This means that for every s the sequence �n.s/ is Cauchy in L. L being a complete space,

for every s there exist the limit �.s/ D limn!1�n.s/ 2 L. We can now define � as the

function from PH ! L given by �.s/ for every s 2 PH .

We thus just need showing that� 2 X1 and�n ! � in the X1 norm. By definition of

Cauchy sequence we have:

8� > 0 9N I 8n;m > N sup
s
k�m.s/ ��n.s/kL < �:

Now let m!1 and obtain that

8� > 0 9N I 8n > N sup
s
k�.s/ ��n.s/kL < �; E:2:43

which shows that �n ! � in the X1 norm.
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Also, by applying the triangular inequality jaj�jbj � ja � bj valid in any Banach space

to E.2.43 we have that

k�kX1 � k�nkX1 C � <1;

which shows that � 2 X1.

======

Clearly the ball X1p1 of radius p1 is closed in X1.

In order to define the operator T 1
h

we shall consider the linearisation of E.2.14 (page 69).

First of all, fix s0 2 PH and h 2 X , then consider a solution ss0;h of E.2.14 corresponding

to s0 and h. Finally the linearised differential equation is expressed in terms of the variable

� and is

P� D �Dg.ss0;h; h.ss0;h//.�C�.ss0;h/�/

�.0/ D �0

E:2:44

Suppressing some notation and writing s for ss0;h the above equation might be more readable:

P� D �Dg.s; h.s//.�C�.s/�/:

Notice that the linearisation corresponds simply to applying the chain rule of derivation.

� being finite dimensional, it is immediate from classical results that this equation admits

a unique solution that we shall call ��0;�. Suppressing the explicit dependency on time and

writing ss0;h for ss0;h.�/, we can define the operator

T 1h�.s0/�0 D

Z 0

�1

Uss0;hDf.ss0;h; h.ss0;h//
�
��0;� C�.ss0;h/��0;�

�
d�

C

Z 0

�1

DUss0;h��0;�f .ss0;h; h.ss0;h//d�

where DU indicates the Fréchet derivative of U with respect to s, which exists thanks to

lemma L.2.2 (page 72). Notice that T 1
h

is obtained by formally calculating the derivative of

T .

LEMMA L.2.11 Gronwall’s inequality applied to E.2.44 gives the following in-

equality for t < 0, whenever g has Lipschitz constant 
 and � 2 X1p1

ˇ̌
��0;�.t/

ˇ̌
� j�0j e

��
.p1C1/t : E:2:45
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Proof We suppress explicit dependency on time, initial condition and h, so that we can

write s for ss0;h.�/.

Integrating E.2.44 between t and 0 we have that

ˇ̌
��0;�.t/

ˇ̌
D

ˇ̌̌̌
�0 C

Z 0

t

�Dg.s; h.s//.��0;� C�.s/��0;�/

ˇ̌̌̌
� j�0j C

Z 0

t

ˇ̌
�Dg.s; h.s//.��0;� C�.s/��0;�/

ˇ̌
� j�0j C

Z 0

t

� jDg.s; h.s//j
ˇ̌
.��0;� C�.s/��0;�/

ˇ̌
� j�0j C

Z 0

t

�

ˇ̌
��0;�

ˇ̌
.1C p1/:

We can now apply Gronwall’s lemma with

a.t/ D ��0;�.t/

b.t/ D �
.1C p1/

c D j�0j

and thus obtain the inequality stated in the lemma.

======

LEMMA L.2.12 For small � the operator T 1
h

is well defined.

Proof First, we notice that for every s0; h, the operator T 1
h
�.s0/�0 is linear in �0. To

see that T 1
h

is well defined, we just need to show that the norm


T 1
h
�



1

is bounded by p1.

As usual we simplify the notation. In the following text, s indicates ss0;h and f .s/ D

f .ss0;h; h.ss0;h//; also Us is evaluated at .0; �/.

ˇ̌
T 1h�.s0/�0

ˇ̌
�

Z 0

�1

kUsk jDf.s/j
ˇ̌
��0;� C�.s/��0;�

ˇ̌
C kDU k

ˇ̌
��0;�

ˇ̌
jf .s/j

using E.2.18 (page 70) and E.2.24 (page 73)

�

Z 0

�1

eb� Œ�.p1 C 1/ � �ˇF �
ˇ̌
��0;�

ˇ̌
:

E:2:46

Using E.2.45 we obtain that

ˇ̌
T 1h�.s0/�0

ˇ̌
�

Z 0

�1

eb���
.p1C1/� Œ�.p1 C 1/ � �ˇF � j�0j

D

�
�.p1 C 1/

b � �
.p1 C 1/
C

ˇF

Œb � �
.p1 C 1/�2

�
j�0j ;

E:2:47
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where again we have used E.2.35 (page 80). Now using E.2.36 the constant multiplying �0

on the right hand side of E.2.47 is bounded by:

�.p1 C 1/

.1 � k/b
C

ˇF

.1 � k/2b2

which is less than p1 if and only if

.1 � k/b�p1 C .1 � k/b� C ˇF � .1 � k/
2b2p1;

which is equivalent to

p1 �
ˇF C .1 � k/b�

.1 � k/2b2 � .1 � k/b�
: E:2:48

Now remember that the norm of a linear operator is defined as the smallest number c

such that kLxk � c kxk. We have just proved that for any �; s0; �0

ˇ̌
T 1h�.s0/�0

ˇ̌
� p1 j�0j

and so the norm of the linear operator T 1
h
�.s0/ is certainly smaller than p1. Now the norm

of T 1
h
� in X1 is the sup on s0 of the operator norms. This shows that the norm in X1 is

always less than p1. Thus T 1
h

is well defined if E.2.35 and E.2.48 hold.

======

LEMMA L.2.13 Gronwall’s inequality applied to E.2.44 gives the following in-

equality for t < 0, whenever g has Lipschitz constant 
 and �1; �2 2 X1p1

ˇ̌
��1.t/ � ��2.t/

ˇ̌
�
k�1 ��2kX1

p1 C 1
j�0j e

�2�
.p1C1/t : E:2:49

Proof As usual, we suppress some notation and in this case we write s for ss0;h.�/; we

also suppress the d� notation under the sign of integral.

We fix h 2 X; s0; �0 2 PH and take �1; �2 2 X1p1 . Now consider �1 the solution of

E.2.44 corresponding to �1 and �2 the solution corresponding to �2. Integrating the two
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corresponding equations and subtracting them we have:

j�1.t/ � �2.t/j �

Z 0

t

� jDg.s/.�1 C�1.s/�1/ �Dg.s/.�2 C�2.s/�2/j

� �


Z 0

t

j�1.s/�1 ��2.s/�2j C j�1 � �2j

� �


Z 0

t

j�1.s/�2 ��2.s/�2j C j�1.s/�1 ��1.s/�2j C j�1 � �2j

� �


Z 0

t

k�1.s/ ��2.s/kL j�2j C p1 j�1 � �2j C j�1 � �2j

where we used the definition of the operator norm as the smallest number c such that

kLxk � c jxj applied to the operator �1.s/ ��2.s/.

Now, we can also use the definition of the norm in X1 as

k�1 ��2kX1 D sup
s

˚
k�1.s/ ��2.s/kL

	
:

We now suppress the X1 in the notation of the norm in X1 and write k�k for k�kX1 .

We apply L.2.11 to �2 in the above equation and obtain

j�1.t/ � �2.t/j �

Z 0

t

�
 k�1 ��2k j�j2 C �
.p1 C 1/ j�1 � �2j

�

Z 0

t

�
 k�1 ��2k j�0j e
��
.p1C1/� C

Z 0

t

�
.p1 C 1/ j�1 � �2j

D �
 k�1 ��2k j�0j

"
e��
.p1C1/t � 1

�
.p1 C 1/

#
C

Z 0

t

�
.p1 C 1/ j�1 � �2j

�
k�1 ��2k

.p1 C 1/
j�0j e

��
.p1C1/t C

Z 0

t

�
.p1 C 1/ j�1 � �2j :

Now multiply both sides of the inequality by the strictly positive function e�
.p1C1/t :

j�1.t/ � �2.t/je
�
.p1C1/t

�
k�1 ��2k

.p1 C 1/
j�0j C e

�
.p1C1/t

Z 0

t

�
.p1 C 1/ j�1 � �2j :

E:2:50

As we are integrating in Œt; 0� for negative times, we have that for each � � t , e�
.p1C1/t �

e�
.p1C1/� . Thus

e�
.p1C1/t
Z 0

t

�
.p1 C 1/ j�1 � �2j D

Z 0

t

e�
.p1C1/t�
.p1 C 1/ j�1 � �2j

�

Z 0

t

e�
.p1C1/��
.p1 C 1/ j�1 � �2j
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and using this inequality in E.2.50 we have that

j�1.t/ � �2.t/je
�
.p1C1/t

�
k�1 ��2k

.p1 C 1/
j�0j C

Z 0

t

�
.p1 C 1/ j�1 � �2j e
�
.p1C1/� :

E:2:51

We can apply Gronwall’s lemma to

a.t/ D j�1.t/ � �2.t/j e
�
.p1C1/t

b.t/ D �
.p1 C 1/

c D
k�1 ��2k

.p1 C 1/
j�0j

to obtain

j�1.t/ � �2.t/j e
�
.p1C1/t �

k�1 ��2kX1

.p1 C 1/
j�0j e

��
.p1C1/t

and by multiplying both sides by e��
.p1C1/t we prove the lemma.

======

LEMMA L.2.14 For small � and for fixed h the operator T 1
h

is a contraction.

Proof In the following computation, we fix h 2 X; s0; �0 2 PH . As usual we simplify

the notation. In the following text, s indicates ss0;h and f .s/ D f .ss0;h; h.ss0;h//; also Us is

evaluated at .0; �/.

ˇ̌
T 1h�1.s0/�0 �T

1
h�2.s0/�0

ˇ̌
�

Z 0

�1

ˇ̌
UsDf.s/.��1 C�1��1 � ��2 ��2��2/

ˇ̌
C

Z 0

�1

ˇ̌
DUs��1f .s/ �DUs��2f .s/

ˇ̌
using E.2.18

�

Z 0

�1

eb��
ˇ̌
��1 C�1��1 � ��2 ��2��2

ˇ̌
C

Z 0

�1

ˇ̌
DUs��1f .s/ �DUs��2f .s/

ˇ̌
adding and subtracting �1��2 and using E.2.24

�

Z 0

�1

eb��
ˇ̌
��1 � ��2

ˇ̌
C

Z 0

�1

eb��
ˇ̌
�1��1 ��1��2

ˇ̌
C

Z 0

�1

eb��
ˇ̌
�1��2 ��2��2

ˇ̌
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�

Z 0

�1

eb�ˇ�F
ˇ̌
��1 � ��2

ˇ̌
�

Z 0

�1

eb� .�.p1 C 1/ � �ˇF /
ˇ̌
��1 � ��2

ˇ̌
C

Z 0

�1

eb��
ˇ̌
��1

ˇ̌
k�1 ��2kX1 : E:2:52

From now on we shall also write k�1 ��2k for k�1 ��2kX1 . Thus, using L.2.11 and

L.2.13, E.2.52 reads as

ˇ̌
T 1h�1.s0/�0 �T

1
h�2.s0/�0

ˇ̌
�

Z 0

�1

eb��2�
.p1C1/� Œ�.p1 C 1/ � �ˇF �
k�1 ��2k

p1 C 1
j�0j

C

Z 0

�1

eb���
.p1C1/�� j�0j k�1 ��2k

D k�1 ��2k j�0j E:2:53

�

�
ˇF

Œb � 2�
.p1 C 1/�2.p1 C 1/
C

�

b � �
.p1 C 1/

�
C k�1 ��2k j�0j

�

b � 2�
.p1 C 1/
:

Now we substitute E.2.35 (page 80) with the following, which implies E.2.35 and all the

previous lemmas derived from E.2.35:

� �
k

2

b


.p1 C 1/
: E:2:54

Thus the right hand side of E.2.53 is bounded by

k�1 ��2k j�0j

�
ˇF

.1 � k/2b2.p1 C 1/
C

2�

.1 � k/b

�
:

We now impose that the above formula be strictly dominated by k�1 ��2k j�0j, that is that

the constant multiplying this factor be strictly less than one, which is the definition of T 1
h

being a contraction. Thus we have that

ˇF

.1 � k/2b2.p1 C 1/
C

2�

.1 � k/b
< 1

if and only if

p1 >
ˇF C 2.1 � k/b� � .1 � k/2b2

.1 � k/2b2 � 2.1 � k/b�
: E:2:55
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We note that 2.1 � k/b� � .1 � k/2b2 is strictly negative if and only if 2� � .1 � k/b is

strictly negative. Thus provided that .1 � k/b > 2� we have that if

p1 >
ˇF

.1 � k/2b2 � 2.1 � k/b�
E:2:56

then E.2.55 holds and T 1
h

is a contraction.

======

Now we would like to show that the fixed point x� of T 1
h

is the derivative of the fixed point

Nh of T . To do so, first we have to show that for any h 2 X
T
C 1 we have DTh D T 1

h
Dh.

Once this is done, the rest is trivial. In fact, if we take a Lipschitz function h0 2 C 1.

Obviously, h0 2 X and �0 D Dho 2 X1. We define

hn D T hn�1

�n D Dhn D T
1
hn�1

Dhn�1

Now hn converges to the fixed point Nh of T and�n to the fixed point x� of T 1
h

, and since the

convergence is uniform in X and X1, it follows from elementary properties of sequences of

functions that Nh 2 C 1 and x� D D Nh.

LEMMA L.2.15 The derivative of T h is T 1
h
Dh.

Proof We show that for every � > 0 there exists � > 0 such that, if j� j < j�j, then

T h.s0 C �/ � T h.s0/ � T 1hDh.s0/�

 < �
which is the definition of a Fréchet derivative.

Thus, simplifying the notation and summing and subtracting the term Uss0C�f .ss0/, we

have:

kT h.s0 C �/ �T h.s0/ � T
1
hDh.s0/�




�

Z 0

�1

ˇ̌̌
Uss0C�f .ss0C� / � Uss0f .ss0/

ˇ̌̌
C


T 1hDh.s0/�



�

Z 0

�1

ˇ̌̌
Uss0C�f .ss0C� / � Uss0C�f .ss0/

ˇ̌̌
C

Z 0

�1

ˇ̌̌
Uss0C�f .ss0/ � Uss0f .ss0/

ˇ̌̌
C


T 1hDh.s0/�

 :
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Use now the results E.2.18 (page 70) to E.2.21 on the evolution operator U and equation

E.2.47 (page 88) for the bound of


T 1
h
Dh.s0/�



 and obtain:

kT h.s0 C �/ �T h.s0/ � T
1
hDh.s0/�




�

Z 0

�1

eb��.p1 C 1/
ˇ̌
ss0C� .�/ � ss0.�/

ˇ̌
C

Z 0

�1

ˇFeb�
Z 0

�

ˇ̌
ss0C� .r/ � ss0.r/

ˇ̌
dr

C

�
�.p1 C 1/

b � �
.p1 C 1/
C

ˇF

Œb � �
.p1 C 1/�2

�
j� j

Now we shall use again L.2.6 (page 78) applied to
ˇ̌
ss0C� � ss0

ˇ̌
to obtain that

kT h.s0 C �/ �T h.s0/ � T
1
hDh.s0/�




�

Z 0

�1

eb��.p1 C 1/ js0 C � � s0j e
��
.p1C1/�

C

Z 0

�1

ˇFeb�
Z 0

�

js0 C � � s0j e
��
.p1C1/rdr

C

�
�.p1 C 1/

b � �
.p1 C 1/
C

ˇF

Œb � �
.p1 C 1/�2

�
j� j

D

Z 0

�1

�.p1 C 1/ j� j e
.b��
.p1C1//�

C

Z 0

�1

ˇFeb� j� j

�
1

�
.p1 C 1/
e��
.p1C1/� �

1

�
.p1 C 1/

�
C

�
�.p1 C 1/

b � �
.p1 C 1/
C

ˇF

Œb � �
.p1 C 1/�2

�
j� j

Solving the integrals:

kT h.s0 C �/ �T h.s0/ � T
1
hDh.s0/�




�

�.p1 C 1/

b � �
.p1 C 1/
j� j

C
ˇF

�
.p1 C 1/ .b � �
.p1 C 1//
j� j

�
ˇF

�
.p1 C 1/b
j� j

C

�
�.p1 C 1/

b � �
.p1 C 1/
C

ˇF

Œb � �
.p1 C 1/�2

�
j� j

and being b > b � �
.p1 C 1/ we have that the right hand side of the above equation is

bounded by a strictly positive constant L multiplying j� j. It is thus immediate that we can
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satisfy the condition for the Fréchet derivative to exist. In fact, for every � > 0 there exists

a � > 0 such that 8 j� j < � one has


T h.s0 C �/ � T h.s0/ � T 1hDh.s0/�

 < �; just put

� D �=L.

======

At this point, we note that E.2.54 (page 92) and

p1 >
ˇF C .1 � k/b�

.1 � k/2b2 � 2.1 � k/b�
E:2:57

imply the previous lemmas, since they imply E.2.37 (page 81), E.2.42 (page 84), E.2.48

(page 89) and E.2.56 (page 93). First of all note that

ˇF C .1 � k/b�

.1 � k/2b2 � 2.1 � k/b�
D

1

.1 � k/

ˇF C .1 � k/b�

.1 � k/b2 � 2b�

D
1

.1 � k/

ˇF

.1 � k/b2 � 2b�
C

b�

.1 � k/b2 � 2b�
:

We now use the above equality to show each implication.

�E.2.57) E.2.37 because 0 < k < 1 and

p1 >
ˇF C .1 � k/b�

.1 � k/2b2 � 2.1 � k/b�

>
ˇF

.1 � k/b2 � 2b�
C

b�

.1 � k/b2 � 2b�

>
ˇF C b�

.1 � k/b2 � b�
I

�E.2.57) E.2.42 because 0 < k < 1 and

p1 >
ˇF C .1 � k/b�

.1 � k/2b2 � 2.1 � k/b�

>
ˇF

.1 � k/b2 � 2b�
C

b�

.1 � k/b2 � 2b�

>
kˇF

.1 � k/b2 � b�
C 0

>
kˇF

.1 � k/b2 � b�
� 1I

�E.2.57) E.2.48 is straightforward:

p1 >
ˇF C .1 � k/b�

.1 � k/2b2 � 2.1 � k/b�

>
ˇF C .1 � k/b�

.1 � k/2b2 � .1 � k/b�
I

Inertial Manifolds in Biological Systems - PhD Thesis - Pasquale Iannelli - UCL, London 2009 95/216



2 - Gap Junctions: a generalisation 2.4 - The Inertial Manifold

2.4.3 - Exponential attraction and asymptotic completeness

�E.2.57) E.2.56 because .1 � k/b � � > 0 and

p1 >
ˇF C .1 � k/b�

.1 � k/2b2 � 2.1 � k/b�

>
ˇF

.1 � k/2b2 � 2.1 � k/b�
:

To obtain a bound on � simply substitute E.2.57 in E.2.54:

� �
kb

2


.1 � k/2b2 � 2.1 � k/b�

ˇF C .1 � k/2b2 � .1 � k/b�
: E:2:58

2.4.3 Exponential attraction and asymptotic completeness

In this section we shall present results regarding the rate of attraction of the trajectories

of system E.2.4 (page 61) to the invariant manifold M obtained as the graph of a function.

In fact, so far we have just proved the existence of a C 1 invariant manifold, and in order

for the manifold to be “inertial” we have to show that all trajectories are attracted to it in

an exponential fashion. In the next lemma, originally proved in [47-IAN-1998], we show

that this is indeed the case; additionally we shall then prove a stronger result, not proved

in [47-IAN-1998], i.e. the asymptotic completeness of the Inertial Manifold. Recall that

according to the definition D.1.4 (page 17) an Inertial Manifold is asymptotically complete

if any trajectory v.t/ of the dynamical system can be exponentially approximated by a

trajectory Nv.t/ completely contained in the Inertial Manifold. In order to prove asymptotic

completeness of our Inertial Manifold, we shall use the technique and results developed in

[60-ROB-1996].

Before proceeding with the actual proofs of the lemmas contained in this section, we

would like to make some comments on one equation that an invariant manifold satisfies:

d
dt
h.s.t// D �B.s/h.s/C f .s; h.s//: E:2:59

We proved it with equation E.2.30 (page 78), when s is the solution of the inertial form. In

order to prove that it is valid for a solution s.t/ of E.2.4, we follow [39-TEM-1998], page

550.

Take now any initial condition Z0 D .s0; '0/ and the solution .s.t/; '.t// of E.2.4

(page 61) associated to Z0. It is clear that .s.t/; h.s.t/// belongs to the Inertial Manifold;
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nevertheless it is not the solution of E.2.4; it is just a curve, given by the projection on the

Manifold of the flow starting outside the Manifold. If if it were a solution of E.2.4, then all

Inertial Manifolds would be asymptotically complete, which is just not the case as we show

in section 2.5.2.

Define now for any time t the solution Qss.t/;h.�/ of the inertial form E.2.14 (page 69)

starting at time � D 0 at point s.t/. Using equation E.2.59 applied to Qss.t/;h.�/, given any

time t and for any time � , one has that (without suppressing any notation)

d
d�
h.ss.t/;h.�// D �B.ss.t/;h.�//h.ss.t/;h.�//C f .ss.t/;h.�/; h.ss.t/;h.�///:

which is true also for � D 0, which proves that E.2.59 is true for any solution s.t/ of E.2.4.

We can see the curve represented by .s.t/; h.s.t/// in the next graphic:

This graphic corresponds to the dynamical system in cylindrical coordinates:

Pz D� z;

Pr D1 � r;

P� D1 � r C z;

E:2:60
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which will be extensively studied in section 2.5.1. Here it just suffices to know that the

hyperplane Z D fz D 0g is an Inertial Manifold. We have drawn in red 6 flows of E.2.60.

The one descending towards the hyperplane Z is the solution corresponding to the initial

condition z0 D 3; r0 D 2; �0 D � , and is the equivalent of the flow .s.t/; '.t//. The other

five are solutions lying on Z and corresponding to the initial conditions starting from the

projection of the flow onto the manifold at different times. We have then drawn in blue the

curve represented by .s.t/; h.s.t//: this curve is the projection on the Inertial Manifold of

the flow starting outside the Inertial Manifold. We can see graphically that this curve does

not correspond to a flow on the Manifold.

Let us now continue by showing the next lemma.

LEMMA L.2.16 The invariant manifold is exponentially attracting.

Proof We follow the method of proof given in [41-CHO-1992], [64-SEL-1992] and

[61-ROD-2007] and [39-TEM-1998].

Given any solution .s.t/; '.t// of the system E.2.4 for any initial condition, we want to

evaluate the difference

z.t/ D '.t/ � h.s.t//:

First of all, note that the fact that h is invariant, means that, as we have just seen above,

it satisfies the equation

d
dt
h.s.t// D �B.s/h.s/C f .s; h.s//: E:2:61

Notice that the derivative of h.s.t//, apart from E.2.61, also satisfies the equation

d
dt
h.s.t// D

dh
ds

ds
dt
D .Dh/.�g.s; h.s///I

and thus the following relation holds:

�Dhg.s; h.s// D �B.s/h.s/C f .s; h.s//: E:2:62
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In the following we shall write h for h.s/. Now we can differentiate z.t/ and obtain

Pz D P' �DhPs

D �B.s/' C f .s; '/ � �Dhg.s; '/

D �B.s/z � B.s/hC f .s; z C h/ � �Dhg.s; z C h/

using E.2.62

D �B.s/z C �Dhg.s; h/ � f .s; h/C f .s; z C h/ � �Dhg.s; z C h/

D �B.s/z C �
�
Dhg.s; h/ �Dhg.s; z C h/

�
C f .s; z C h/ � f .s; h/:

E:2:63

We now take the scalar product of equation E.2.63 with z to obtain

1

2

d
dt
jzj2 D �hz; B.s/zi C �hz;Dhg.s; h/ �Dhg.s; z C h/i

C hz; f .s; z C h/ � f .s; h/i:

Now

hz;Dh
�
g.s; h/ � g.s; z C h/

�
i � jzj2 p1


and

hz; f .s; z C h/ � f .s; h/i � � jzj2 :

Hence, since hz; Bzi � b jzj2, we have

1

2

d
dt
jzj2 � .�b C �p1
 C �/ jzj

2 : E:2:64

If

� <
b � �

p1

E:2:65

then .�bC �p1
 C �/ is negative, permitting us to conclude that z tends to 0 exponentially.

The following short and simple computation shows that E.2.54 (page 92) and .1�k/b >

2� imply E.2.65.

Consider .1 � k/b > 2� ; this is equivalent to kb=2 < b=2 � � , which implies kb=2 <

b � � . On the other hand for any �; 
; p1 � 0 we have that �
p1 � �
.p1 C 1/; by E.2.54

the right hand side is in turn less than kb=2. Chaining all the inequalities we have

�
p1 � �
.p1 C 1/ �
kb

2
< b � �
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which is exactly E.2.65.

======

We have thus completed the proof of theorem T.2.3 (page 75), that is, we have shown

the existence of an invariant manifold which attracts exponentially all orbits.

We now proceed to show the asymptotic completeness of our Inertial Manifold.

LEMMA L.2.17 The Inertial Manifold is asymptotically complete.

Proof As in [60-ROB-1996] and [41-CHO-1992] we consider an initial condition u0 D

.s0; '0/ and both the solution u.t/ D .s.t/; '.t// of E.2.2 (page 59), and any solution

Nu.t/ D .Ns.t/; h.Ns.t/// on the Inertial Manifold, where Ns.t/ is any solution of E.2.14 (page

69). Let’s calculate the distance between u.t/ and Nu.t/. By our choice of norm:

ju.t/ � Nu.t/j � js.t/ � Ns.t/j C j'.t/ � h.Ns.t//j

� js.t/ � Ns.t/j C j'.t/ � h.s.t//j C jh.s.t// � h.Ns.t//j

� .p1 C 1/ js.t/ � Ns.t/j C j'.t/ � h.s.t//j :

E:2:66

From the previous lemma we know that j'.t/ � h.s.t//j � C0e�&t , where C0 is a constant

depending on the initial condition, that is C0 D j'.0/ � h.s.0//j. Clearly the difference

between s.t/ and Ns.t/ will not tend to zero, as Ns.t/ is just any solution of E.2.14. However if

we show that js.t/ � Ns.t/j tends to zero exponentially for some particular solution Ns.t/, then

we have proved our lemma. In fact for a given initial condition u0 take this particular solution

of the inertial form and call it Ns; then the inequalities in E.2.66 show us that ju.t/ � Nu.t/j

tends to zero exponentially.

We note that we shall not prove this result directly, rather we shall use some of the

results in [60-ROB-1996].

First of all we rewrite the equation for s.t/ as

Ps D �g.s; '/

D �g.s; '/ � �g.s; h.s//C �g.s; h.s//

D �g.s; h.s//C ı.t; s0; '0/
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where ı.t; s0; '0/ D �g.s; '/ � �g.s; h.s//.

Note that we have rewritten the equation for s.t/ as a perturbation of the inertial form.

After we have shown that the term ı tends to zero exponentially, we shall use theorem 3.2

in [60-ROB-1996] to show that under these conditions, there exists a solution Ns.t/ that tends

exponentially to s.t/.

This theorem in [60-ROB-1996] is stated for a general ODE of the form

Px D r.x/ E:2:67

so that, setting x D s and r D �g, our equation Ps D �g.s; h.s// is of the form in E.2.67 and

we can use these results directly. Robinson then compares this system with a perturbation

Px D R.x/: E:2:68

Theorem 3.2 of [60-ROB-1996] states that, given an ODE of the form E.2.67 and

given a perturbation of it of the form E.2.68, such that for any x.t/ solution of E.2.68

jR.x/ � r.x/j � Be��t for some � > 0, with r.x/ Lipschitz and such that any two

solutions x1 and x2 of E.2.67 satisfy

jx1.t/ � x2.t/j � C jx1.0/ � x2.0/j e
��t

where 0 < � < �, then for any solution x.t/ of E.2.68 there exists a solution y.t/ of E.2.67

such that

jx.t/ � y.t/j � De��t :

Notice that y.t/ does not necessarily start at x.0/, that is the approximating flow does not

necessarily start at the projection of the the flow on the manifold, as we saw in the introduction

of this section. More of this will be seen in section 2.5.1.

In our case, setting x D s, we can write

r.x/ D �g.x; h.x//;

R.x/ D �g.x; h.x//C ı.t; x0/:
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First we show that jR.x/ � r.x/j � Be��t :

jR.s/ � r.s/j D jı.t; s0/j

D j�g.s; '/ � �g.s; h.s//j

� �
 Œjs � sj C j' � h.s/j�

� �
C0e
�&t ;

where we have used the result of lemma L.2.16 (page 98). Thus the first condition of the

theorem holds with B D �
C0 and � D & D b � �p1
 � � . Now note that the second

condition of the theorem is exactly lemma L.2.6 (page 78), with � D �
.p1 C 1/. The

condition � < � is thus �
.p1C1/ < b��p1
�� , which is true if �
.p1C1/ < .b��/=2.

At this point note that the conditions E.2.54 (page 92) and .1 � k/b > � imply

�
.p1 C 1/ <
1

2
kb <

1

2
.b � �/;

and the proof is complete.

======

2.4.4 Further generalisation

As we have seen so far, one of the major contributions of our paper [47-IAN-1998] has

been to generalise results for the existence of Inertial Manifold to dynamical systems of the

form

Pu D �A.u/uC f .u/:

Nevertheless, this generalisation so far has been confined to a particular case, namely a

system where A.u/ is of the form E.2.5 (page 61)

A.u/ D

 
0 0

0 B.s/

!
:

In this section we shall proceed to present more general results. Indeed we shall show how

one can easily adapt not only the Lyapunov-Perron method of proof employed so far, but

also the detailed proof itself. In fact, there are just a few points where one has to take care of
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some algebraic details in order for the proof to hold unchanged. Thus, rather than repeating

the whole proof, we prefer to indicate for each step the changes one has to make.

First of all, we shall just consider a family of operators like this:

A.u/ D

 
Bss.s; '/ Bs'.s; '/

B's.s; '/ B''.s; '/

!
;

where the subscripts are not derivatives but merely labels, and a dynamical system like 
Ps

P'

!
D �

 
Bss.s; '/ Bs'.s; '/

B's.s; '/ B''.s; '/

! 
s

'

!
C

 
g.s; '/

f .s; '/

!
; E:2:69

where we have incorporated the � term into the function g. We do this, as we have now

shifted our focus from the fact that g is a small function, to a general relation among the

various eigenvalues and Lipschitz constants.

We shall assume that E.2.69 admits an absorbing ball, so that we can modify all our

functions as in section 2.3.1. This way, we can assume that we say Lipschitz for globally

Lipschitz, and bounded for globally bounded.

In such a case the inertial form equivalent to E.2.14 (page 69) is given by

Ps D �Bss.s; h.s//s � Bs'.s; h.s//h.s/C g.s; h.s//: E:2:70

We can now introduce the function g1.s; '/ D �Bs'.s; h.s//' C g.s; '/, which is bounded

and Lipschitz if Bs' , h and g are Lipschitz. So E.2.70 looks like

Ps D �Bss.s; h.s//s C g1.s; h.s//: E:2:71

If we assume that Bss is Lipschitz with Lipschitz constant ˇss , then for any Lipschitz

function h classical results guarantee that E.2.71 admits a unique solution for any initial

condition. We shall call ss0;h such a solution.

Consider now the dynamics:

P' D �B's.ss0;h; h.ss0;h//ss0;h � B''.ss0;h; h.ss0;h//' C f .ss0;h; h.ss0;h//;

and introduce the function f1.s; '/ D �B's.s; '/s C f .s; '/ so that we can rewrite the

above equation as

P' D �B''.ss0;h; h.ss0;h//' C f1.ss0;h; h.ss0;h//: E:2:72

Inertial Manifolds in Biological Systems - PhD Thesis - Pasquale Iannelli - UCL, London 2009 103/216



2 - Gap Junctions: a generalisation 2.4 - The Inertial Manifold

2.4.4 - Further generalisation

Once again, f1 is a bounded Lipschitz function if so are B's , h and f . Thus we have

diagonalised our equation E.2.69 to this form 
Ps

P'

!
D �

 
Bss.s; '/ 0

0 B''.s; '/

! 
s

'

!
C

 
g1.s; '/

f1.s; '/

!
: E:2:73

Remember that the system has been appropriately prepared, so that the following con-

stants make sense:

� ˆM as the radius of the attracting ball in the ' coordinates,

� SM as the radius of the attracting ball in the s coordinates.

� ˇ'' the Lipschitz constant of B'' ,

� ˇss the Lipschitz constant of Bss ,

� Bss as the superior limit on .s; '/ of the maximum eigenvalue of Bss , in case

Bss is self-adjoint and positive, and as the biggest positive constant such that

hBss.u/s; si � Bss jsj
2,

� B'' as the inferior limit on .s; '/ of the minimum eigenvalue of B'' ,in case

Bss is self-adjoint and positive, and as the smallest positive constant such that

hB''.u/'; 'i � B'' j'j
2,

� 
1 the Lipschitz constant of g1,

� F1 the maximum of f1,

� �1 the Lipschitz constant of f1,

We can now consider the evolution operator, depending on time, defined by Cs.t/ D

B''.s.t/; h.s.t///. This operator satisfies the same hypothesis as the evolution operator

defined in section 2.3.6. The only thing we have to prove that Cs.t/ is uniformly continuous

with respect to t . This is true if for every � > 0 there exists a ı > 0 such that for every

j� j < ı we have that kCs.t C �/ � Cs.t/k < �. As by hypothesis B'' and h are Lipschitz,

one has

kCs.t C �/ � Cs.t/k D


B''.s.t C �/; h.s.t C �/// � B''.s.t/; h.s.t///


�ˇ''.p1 C 1/ js.t C �/ � s.t/j

where p1 is the Lipschitz constant of h; thus Cs.t/ is continuous in the uniform operator

topology.
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Again, as we saw in section 2.3.2, note that Cs.t/ depends on time through a function

of time and not on the variable of differentiation.

This example of the use of the Lipschitz constants of B'' and h is really clarifying. It

is telling us that whenever in the proof of theorem T.2.3 (page 75) we find the Lipschitz

constant ˇ we shall just substitute it with ˇ''.p1 C 1/. In fact, the family of operators

Cs.t/ D �B''.s; h.s// is Lipschitz with respect to s with Lipschitz constant ˇ''.p1 C 1/.

Clearly we can now simply define the operator T using the same formula as before:

T h.s0/ D

Z 0

�1

Us0;h.0; �/f1.s0;h.�/; h.s0;h.�///d�:

We want to prove that T maps the space X of bounded, Lipschitz functions to itself and

that it is a contraction. Then we shall take its fixed point and prove that it is invariant and

exponentially attracting.

The fact that a fixed point of T is invariant can be proved using exactly the same method

we used in section 2.4.1.

It is immediate that this operator maps functions bounded by p to functions bounded by

p, as the proof of lemma L.2.5 (page 78) holds without any change at all.

In order for us to prove that T maps Lipschitz functions to Lipschitz functions, we can

rewrite equation E.2.33 (page 80):

jT h.s0/ � T h.s1/j �

Z 0

�1

ˇ̌̌
Uss0 .0; �/f1.ss0 ; h.ss0// � Uss1 .0; �/f1.ss1 ; h.ss1//

ˇ̌̌
d�

�

Z 0

�1

ˇ̌̌h
Uss0 .0; �/ � Uss1 .0; �/

i
f1.ss0 ; h.ss0.�///

ˇ̌̌
d�

C

Z 0

�1

ˇ̌̌
Uss1 .0; �/

�
f1.ss0 ; h.ss0// � f1.ss1 ; h.ss1//

�ˇ̌̌
d�

�

Z 0

�1

ˇ''.p1 C 1/F1e
ˇss�

�Z 0

�

ˇ̌
ss0.�/ � ss1.�/

ˇ̌
d�
�

d�

C

Z 0

�1

eˇss��1.p1 C 1/
ˇ̌
ss0.�/ � ss1.�/

ˇ̌
d�;

where we have substituted ˇ with ˇ''.p1C 1/. This is because E.2.21 (page 71) holds with

the Lipschitz constant of Cs with respect to s, that is with ˇ''.p1 C 1/. It is clear from this

point on, that the rest of the proof of Lemma L.2.7 (page 79) will be exactly the same, if one

can find an equivalent equation E.2.31 given in L.2.6.
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As in the proof of L.2.6, we shall evaluate the difference of two solutions of the inertial

form E.2.71.

ˇ̌
ss0.t/ � ss1.t/

ˇ̌
� js0 � s1j C

Z 0

t


1.p1 C 1/
ˇ̌
ss0.�/ � ss1.�/

ˇ̌
d�

C

Z 0

t

ˇ̌
Bss.ss0 ; h.ss0//ss0 � Bss.ss1 ; h.ss1//ss1

ˇ̌
d�

� js0 � s1j C

Z 0

t


1.p1 C 1/
ˇ̌
ss0.�/ � ss1.�/

ˇ̌
d�

C

Z 0

t

ˇ̌
Bss.ss0 ; h.ss0//ss0 � Bss.ss0 ; h.ss0//ss1

ˇ̌
d�

C

Z 0

t

ˇ̌
Bss.ss0 ; h.ss0//ss1 � Bss.ss1 ; h.ss1//ss1

ˇ̌
d�

� js0 � s1j C

Z 0

t


1.p1 C 1/
ˇ̌
ss0.�/ � ss1.�/

ˇ̌
d�

C

Z 0

t

Bss

ˇ̌
ss0.�/ � ss1.�/

ˇ̌
C SMˇss.p1 C 1/

ˇ̌
ss0.�/ � ss1.�/

ˇ̌
d�

Is is clear now that E.2.31 holds with the following formulation:

ˇ̌
ss0.t/ � ss1.t/

ˇ̌
< js0 � s1j e

�Q
t :

where Q
 D 
1.p1 C 1/CBss C SMˇss.p1 C 1/.

We have thus demonstrated that the operator T is well defined. In fact one can simply

take the proof of lemma L.2.7 and substitute Q
 for �
 and ˇ''.p1 C 1/ for ˇ and obtain

equivalent constraints of all the various constants. As we said before, in this section we are

not interested in solving the actual algebra, but just in showing that the theory of Inertial

Manifolds can be extended with some little efforts to a larger class of functions than those

generally studied in the literature. The only difficulty would reside neither in the method

of proof, nor in the actual algebra involved in the proof, but in representing a dynamical

system in the form E.2.69 in such a way that the various Lipschitz constants and the constants

Bss and B'' satisfy the condition given by the proof. One can think of this condition as

an extended “Gap Condition”; in fact, it will represent a relation between these constants,

though not in a simple form as the standard gap condition, as it will incorporate the Lipschitz

constants of both B'' and Bss . We will speak about the gap condition more extensively in

section 2.4.5.
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We now continue with the proof of the fact that T is a contraction. Again, if we look

at equation E.2.39 (page 83), we have to substitute ˇ with ˇ''.p1 C 1/. The other thing

to prove is an inequality similar to E.2.38. As in the proof of Lemma L.2.8, we take the

difference of two solutions corresponding to the same initial condition, but to two different

functions h1; h2 2 X , for negative times:ˇ̌
sh1.t/ � sh2.t/

ˇ̌
�

Z 0

t

ˇ̌
Bss.sh1 ; h1.sh1//sh1 � Bss.sh2 ; h2.sh2//sh2

ˇ̌
C

Z 0

t

ˇ̌
g1.sh1 ; h1.sh1// � g1.sh2 ; h2.sh2//

ˇ̌
�

Z 0

t

ˇ̌
Bss.sh1 ; h1.sh1//sh1 � Bss.sh1 ; h1.sh1//sh2

ˇ̌
C

Z 0

t

ˇ̌
Bss.sh1 ; h1.sh1//sh2 � Bss.sh2 ; h2.sh2//sh2

ˇ̌
C

Z 0

t


1.p1 C 1/
h ˇ̌
sh1 � sh2

ˇ̌
C
kh1 � h2k

p1 C 1

i
�

Z 0

t

Bss

ˇ̌
sh1 � sh2

ˇ̌
C

Z 0

t

.SMˇss C 
1/.p1 C 1/
h ˇ̌
sh1 � sh2

ˇ̌
C
kh1 � h2k

p1 C 1

i
�

Z 0

t

h
Bss C .SMˇss C 
1/.p1 C 1/

ih ˇ̌
sh1 � sh2

ˇ̌
C
kh1 � h2k

p1 C 1

i
and we get the same inequality E.2.38:ˇ̌

sh1.t/ � sh2.t/
ˇ̌
<
kh1 � h2k

p1 C 1

h
e�Q
t � 1

i
where Q
 D Bss C .SMˇss C 
1/.p1 C 1/.

Before proceeding to prove that the fixed point is indeed exponentially attracting, we

shall prove that it is C 1. Note that there are two reasons why we want this. The first one is

that this result is mathematically interesting on its own. The second one is that we needC 1 to

use exactly the same technique of section 2.4.3 to prove that the fixed point is exponentially

attracting.

We remember that in order to prove this result, we looked for a solution of E.2.44 (page

87), that is the linearised equation of the inertial form. As we have done so far, we study the

equation equivalent to E.2.44:

P� D �Bss.ss0;h; h.ss0;h//�CDg1.ss0;h; h.ss0;h//.�C�.ss0;h/�/

�.0/ D �0

E:2:74
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where s0 2 PH is an initial condition, h 2 X is a Lipschitz bounded function, ss0;h is a

solution of the inertial form E.2.71 corresponding to s0 and h, and � 2 X1 is a function

from PH to L.PH;PQ/, and so �.ss0;h.t// is a the linear functional from PH to QH for

every time t .

Let us recall the definition of the operator T 1
h

, which, for a given h 2 X is an operator

from X1 ! X1, which we shall prove to be well defined and a contraction:

T 1h�.s0/�0 D

Z 0

�1

Uss0;hDf.ss0;h; h.ss0;h//
�
��0;� C�.ss0;h/��0;�

�
d�

C

Z 0

�1

DUss0;h��0;�f .ss0;h; h.ss0;h//d�

where now ��0;� is the solution of E.2.74. Reviewing the proofs that T 1
h

is well defined, is

a contraction and that DTh D T 1
h
Dh, one can see that they only depend on properties of f

and Uss0;h which are the same, independently of whether B.u/ is a function only of s or both

of s and '; the only algebra that actually changes is the one depending on the estimates on

��0;�.

The proofs for lemmas L.2.12, L.2.14 and L.2.15 remain untouched and we

shall just have to substitute the recurrent term �
.1C p1/ with some other N
 derived by the

appropriate Gronwall’s inequality.

Let us now indicate how the Gronwall’s inequalities E.2.45 (page 87) and E.2.49 (page

89) are modified. Regarding E.2.45, let us simply note that

ˇ̌
��0;�.t/

ˇ̌
D j�0j C

Z 0

t

jBss.s; h.s//�j C

Z 0

t

ˇ̌
Dg1.s; h.s//.��0;� C�.s/��0;�/

ˇ̌
� j�0j C

Z 0

t

.
1 CBss/.1C p1/
ˇ̌
��0;�

ˇ̌
;

so that in this case N
 D 
1.1C p1/CBss .

As for the second Gronwall’s inequality, the one regarding two different �1; �2 2 X1,
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here goes the modification:

j�1.t/ � �2.t/j �

Z 0

t

jBss.s; h.s//.�1 � �2/j

C

Z 0

t

jDg1.s/.�1 C�1.s/�1/ �Dg1.s/.�2 C�2.s/�2/j

�

Z 0

t

Bss j�1 � �2j

C

Z 0

t


1 j�1.s/�1 ��2.s/�2j C 
1 j�1 � �2j

�

Z 0

t


1 k�1.s/ ��2.s/kL j�2j C .
1.1C p1/CBss/ j�1 � �2j

and from this point of the proof we can use the same N
 D 
1.1C p1/CBss .

We now proceed to show that the invariant fixed point is exponentially attracting. As in

lemma L.2.16 (page 98) we take z.t/ D '.t/ � h.s.t//; writing h for h.s/, we obtain that

on the one hand

d
dt
h.s.t// D

dh
ds

ds
dt
D .Dh/.�Bss.s; h/s C g1.s; h//;

and on the other, h being an invariant manifold,

d
dt
h.s.t// D �B''.s; h/hC f1.s; h/;

and thus the following relation holds:

�B''.s; h/h D �DhBss.s; h/s CDhg1.s; h// � f1.s; h/: E:2:75

So we can differentiate z.t/ and obtain the analogous of E.2.63 (page 99)

Pz D P' �DhPs

D� B''.s; '/' C f1.s; '/ �DhŒ�Bss.s; '//s C g1.s; '/�

D� B''.s; z C h/z � B''.s; z C h/hC f1.s; z C h/

CDhBss.s; z C h//s �Dhg1.s; z C h/�:

E:2:76

Analysing the calculations in E.2.63, we note that we substituted the term corresponding

to B''.s; z C h/h, that is �B.s/h, with the result corresponding to E.2.75. We must now
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note that this is not directly possible in our case, as the actual expression in E.2.75 does not

depend on ' as B''.s; z C h/h does. We shall then add and subtract this term to E.2.75 and

obtain thus the following

�B''.s; z C h/h D� B''.s; z C h/h

C B''.s; h/h �DhBss.s; h/s CDhg1.s; h/ � f1.s; h/:

E:2:77

We can now substitute this value in E.2.76 and rearranging the terms to bring together the

similar ones:

Pz D� B''.s; z C h/z

C B''.s; h/h � B''.s; z C h/h

CDhg1.s; h/ �Dhg1.s; z C h/

C f1.s; z C h/ � f1.s; h/

CDhBss.s; z C h//s �DhBss.s; h/s:

We can now take the scalar product with z and obtain

1

2

d
dt
jzj2 D� hz; B''.s; z C h/zi

C hz;
�
B''.s; h/ � B''.s; z C h/

�
hi

C hz;Dhg1.s; h// �Dhg1.s; z C h/i

C hz; f1.s; z C h/ � f1.s; h/i

C hz; .DhBss.s; z C h/ �DhBss.s; h// si:

It is clear now that by using the facts that

� the system is dissipative,

� h and s are bounded,

� B'' , Bss , f1 and g1 are all Lipschitz functions,

� B'' is strictly positive,
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we can prove again that z tends to zero as it satisfies the following inequality

1

2

d
dt
jzj2 �

�
�B'' C ˇ''ˆM C 
1 C �1p1 C ˇssSM

�
jzj2 ;

which will be negative for appropriate values of the constants.

To conclude this section, we refer again to the original biological dynamical system

E.2.6 (page 62). Remember that the dynamics of gating states may then be expressed as

d
dt
s
j

lk
D

NX
iD1

�
˛ij .'l � 'k/s

i
lk

�
�

"
NX
iD1

˛j i .'l � 'k/

#
s
j

lk

and, eliminating one of the gating states, as

d
dt
s D b.'/ � Qg.'/s:

It is clear now, that one could have written the dynamics of the s part of the system with

Bss.s; '/ D Qg.'/s and g1.s; '/ D b.'/ so to apply the more general theory presented in

this section:

Ps D �Bss.s; '/s C g1.s; '/ E:2:78

Note that even if one knows that the system admits an Inertial Manifold, it does not necessarily

mean that the representation of the system as given in E.2.78 satisfies the inequalities among

the various eigenvalues and Lipschitz constant that guarantee the existence of an Inertial

Manifold for the given representation. In fact, the whole of this research was originated from

the fact that the standard Gap Condition could not be proven for the system represented as

Pu D �AuC f .u/. This is a clear example of the multiple choices the scientist has to make

when deciding how to best represent the system in order to prove the existence of an Inertial

Manifold; with the development of a more general theory, many more possibilities can arise

and not all of them will give rise to the appropriate inequalities.

2.4.5 The gap condition and the strong squeezing property

In this section we shall study the relation between the condition .1 � k/b > � ,

the classical Gap Condition and the Strong Squeezing Property, as stated for example in

[39-TEM-1998]. This condition is always stated as a relation between the difference of
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two consecutive eigenvalues of the linear operator A of the system E.2.3 (page 61) and the

Lipschitz constant of the nonlinear part V of E.2.3. Usually this condition is used to prove

that the strong squeezing property holds and subsequently that an Inertial Manifold exists.

In fact it was shown by Robinson in [57-ROB-1995] that the strong squeezing property is

sufficient for an Inertial Manifold to exist. However, as we stated earlier, this proof only

yields a Lipschitz manifold and not a differentiable one.

The strong squeezing property is defined as a two part property for the dynamics under

the flow of E.2.3. The first part is often called the cone invariance property, and it says that

if a point u1 belongs to the cone of radius � centred in the point u2, i.e. if

jQ.u1 � u2/j � � jP.u1 � u2/j

then the flow u1.t/ starting at u1 will always belong to the cone centred in u2.t/, i.e. for

every t � 0

jQ.u1.t/ � u2.t//j � � jP.u1.t/ � u2.t//j :

The second part is often called the squeezing property and states that if a point u1 does

not belong to the cone of radius � centred in the point u2, then only two things can occur:

either u1.t/ will eventually enter the cone centred in u2.t/, and thus it will remain there, or

the distance between u1.t/ and u2.t/ will decay to zero exponentially:

jQ.u1.t/ � u2.t//j � jQ.u1 � u2/j e
��t

for some � > 0.

In our case the system E.2.4 does not satisfy the classical gap condition. However we

have proved that an Inertial Manifold exists. We shall now prove that our system satisfies the

strong squeezing property.

LEMMA L.2.18 For small � and with .1� k/b > � , the Strong Squeezing Property

holds for E.2.4 .

Proof We shall follow the proof given in [39-TEM-1998] to show that the Gap Condition

implies the Strong Squeezing Property.

To show the Cone Property, it will suffice to show that if the trajectory starting at

u1.0/ would leave the cone of radius � centred in u2.0/, then there would be a time t > 0
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such that u1.t/ D .s1.t/; '1.t// belongs to the boundary of the cone of radius � centred

in u2.t/ D .s2.t/; '2.t//. Showing that whenever a trajectory reaches the boundary of the

cone, the trajectory is pushed back into the cone shows that no trajectory can ever leave the

cone. This is equivalent to showing that at such time t the quantity

d
dt

�
q2.t/ � �2p2.t/

�
is strictly negative, where q.t/ D j'2.t/ � '1.t/j and p.t/ D js2.t/ � s1.t/j.

Let us write down the equation for p0.t/, writing p for p.t/, q for q.t/ and Qp D

s2.t/ � s1.t/:
1

2

d
dt
p2 D h Qp;

d
dt
Qpi D h Qp; � .g.s2; '2/ � g.s1; '1//i

� �p�
 .p C q/

D ��

�
p2 C pq

�
where we used the fact that in any Hilbert space jha; bij � jaj jbj.

Now we write down the equation for q 0.t/, writing Qq D '2.t/ � '1.t/:

1

2

d
dt
q2 DhQq;

d
dt
Qqi D h Qq;�B.s2/'2 C B.s1/'1 C f .s2; '2/ � f .s1; '1/i

Dh Qq;�B.s2/'2 C B.s2/'1 � B.s2/'1 C B.s1/'1 C f .s2; '2/ � f .s1; '1/i

Dh Qq;�B.s2/'2 C B.s2/'1i C h Qq;�B.s2/'1 C B.s1/'1i

C h Qq; f .s2; '2/ � f .s1; '1/i

� � bq2 C ˇqp j'1j C �.qp C q
2/

where we have used E.2.25 (page 75). Remembering that we are dealing with a modified

system for which j'1j < r' (see section 2.3.1):

1

2

d
dt
q2 � �bq2 C ˇr'qp C �.qp C q

2/: E:2:79

We can now evaluate the expression

1

2

d
dt

�
q2 � �2p2

�
� �bq2 C ˇr'qp C �.qp C q

2/C �2�

�
p2 C pq

�
:
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Now if u2.t/ belongs to the boundary of the cone at a point t , then by definition of the cone

at this point q.t/ D �p.t/ and

1

2

d
dt

�
q.t/2 � �2p.t/2

�
�

�
�b C

ˇr'
�
C
�

�
C � C �
 C ��


�
q2

which is strictly negative if

�2�
 C �.�b C �
 C �/C ˇr' C � < 0: E:2:80

This is a second degree inequality in � which admits real solutions if and only if its discrim-

inant is positive, that is if and only if .�b C �
 C �/2 > 4�
.ˇr' C �/, which is certainly

true for small �. Thus we have proved that the Cone Condition holds for a cone of radius �,

where � is any real positive number satisfying

b � �
 � � �
p
�

2�

< � <

b � �
 � � C
p
�

2�

; E:2:81

whenever � D .�b C �
 C �/2 � 4�
.ˇr' C �/ > 0.

Now we shall prove that the squeezing property holds. Assume that for all positive

times the orbit of u2 never enters the cone, that is q.t/ > �p.t/. Substituting this in E.2.79

we obtain
1

2

d
dt
q2 �

�
�b C

ˇr'
�
C � C

�

�

�
q2

which, together with the fact that b > .1 � k/b > � , gives exponential decay for

� >
ˇr' C �

b � �
: E:2:82

It is clear that for small � there exists a � satisfying both E.2.81 and E.2.82. This is not

surprising as E.2.82 is the same condition as E.2.80 when � D 0. In fact, we have that any

solution of E.2.80 satisfies

0 < �2�
 < �.b � �
 � �/ � ˇr' � �;

so that

� >
ˇr' C �

b � �
 � �
>
ˇr' C �

b � �
:

======
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As we have already said, the condition .1 � k/b > � is not the classical gap condition,

as the Lipschitz constant 
 does not appear in the equation.

Furthermore, we would like to point out that as stated in [39-TEM-1998], the radius �

of the cone appears explicitly in the gap condition, in a form similar to E.2.82. Once again,

we have to stress the fact that E.2.82 is not the classical gap condition, if not for anything

else, at least because there appears the Lipschitz constant ˇ of B.s/, which cannot possibly

appear in the classical gap condition as the operator used in such systems does not depend

neither on time nor on the variable u as it is in our case.

Finally, we would like to point out that in L.2.16 (page 98) we have used inequalities

quite similar to those used in proving the Strong Squeezing Property.
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2.5 Examples
In this section we develop a few examples:

� the first example is about an Inertial Manifold that is asymptotically complete, and

the difference between the flow of the complete dynamics, the approximating flow

of the reduced dynamics and the projection of the original flow on the P subspace;

� the second one is about an Inertial Manifold that is not asymptotically complete,

i.e. that does not admit an approximating flow;

� the third one is about a dynamical system that has an Inertial Manifold even though

it does not satisfy the Strong Squeezing Property.

2.5.1 The approximating projected flow

We begin with some remarks on the difference between a manifold being exponentially

attracting and one being asymptotically complete.

Though it is self-evident that being asymptotically complete is a stronger requirement

than just exponentially attracting, we want to point out that finding the flow on the manifold

that is the actual approximation of a general flow is not really straightforward. In fact, one

might think that given any initial condition .s0; '0/ 2 H , the approximating flow on the

manifold is the one starting at .s0; h.s0//. This is not always the case, as the following

example will demonstrate. Additionally, remember that in the proof of lemma L.2.17 (page

100) we used Theorem 3.2 of [60-ROB-1996] to find an approximation of the flow, and in

this theorem the approximated flow was not required to start at the projection of the initial

value on the manifold. Also remember the introduction to section 2.4.3, where we saw the

difference between the projection of the flow on the Inertial Manifold and a flow on the

Inertial Manifold starting at a point projected on the Manifold.

Let’s consider the dynamics in cylindrical coordinates in R3 given by the solution to the

differential equation:

Pz D� z;

Pr D1 � r;

P� D1 � r C z;

E:2:83
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where r and � are polar coordinates.

Given an initial condition .z0; r0; �0/, the solution of E.2.83 is given by

z.t/ Dz0e
�t ;

r.t/ D.r0 � 1/e
�t
C 1;

�.t/ D�0 � .1 � r0 C z0/e
�t
C .1 � r0 C z0/:

E:2:84

This system is dissipative, as everything is attracted to the unit circle on the hyperplane

Z D fz D 0g. Considering that z is exponentially attracted to the hyperplane Z D fz D 0g,

it is clear that Z satisfies all the conditions of the definition of an Inertial Manifold: it is a

Lipschitz, invariant, finite dimensional manifold, exponentially attracting. In this example,

the coordinate s is given by the two coordinates .r; �/ and ' by the coordinate z.

We now show that it is also asymptotically complete, by explicitly finding for any

trajectory �.t/ starting at any initial condition .z0; r0; �0/ a correspondent trajectory Q� on Z

starting at . Qr0; Q�0/ that approximates exponentially �.

On the Inertial Manifold the dynamics is reduced to

Pr D1 � r;

P� D1 � r;

E:2:85

which has the unique solution

r.t/ D.r0 � 1/e
�t
C 1;

�.t/ D�0 � .1 � r0/e
�t
C .1 � r0/:

E:2:86

For � satisfying E.2.84 we have that the various coordinates tend to the following values

exponentially:

z.t/! 0;

r.t/! 1;

�.t/! �0 C .1 � r0 � z0/:
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For Q� we have

r.t/! 1;

�.t/! Q�0 C .1 � Qr0/;

It is now clear that the trajectory starting at Qr0 D r0 and Q�0 D �0C z0 is a trajectory Q�.t/ that

approximates exponentially �.t/.

We are now ready to show that for this example one cannot take the trajectory on

the Inertial Manifold starting at .s0; h.s0// as the one that approximates exponentially the

trajectory starting at .s0; '0/. In fact, for our example E.2.83, this would correspond to

taking the flow starting at .0; r0; �0/. Now, � will tend to �0C 1� r0 which is different from

�0 C .1 � r0 C z0/ unless z0 D 0. It is also remarkable that the two dynamics can be very

different indeed. For example, for r0 D 2 and z0 D 3, one has that P�.t/ D 2e�t C 2 and

so �.t/ grows clockwise, while for r0 D 2 and z0 D 0 the behaviour of � is quite different,

as P�.t/ D �e�t � 1 and �.t/ decreases anticlockwise. We show the two curves in the next

picture; the red line corresponds to the curve starting at .z0 D 3; r0 D 2; �0 D �/ and the

blue line to the curve starting at .z0 D 0; r0 D 2; �0 D �/.

We would like now to give some indications on how one can define generally the
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approximating trajectory. Both in the paper [60-ROB-1996] and in [41-CHO-1992], one

can find constructive proofs of when an Inertial Manifold is asymptotically complete. The

two methods are slightly different, but following the proof, one can define an approximating

trajectory on the Inertial Manifold through a definition of the difference between the two

trajectories as the solution of a new differential equation.

For example, in [41-CHO-1992] the authors study a system like

Pu D �AuC f .u/; E:2:87

where A is a positive definite bounded linear operator on a Hilbert space H to which u

belongs. The space H is then split into the two usual orthogonal spaces PH and QH , and

we denote p D Pu and q D Qu. Then the solution approximating a trajectory starting at

.p0; q0/ is given by a solution of the inertial form starting at .p0 C ı0; h.p0 C ı0// where

ı0 D �

Z 1
0

ePAs ŒPf .p; h.p/C r/ � Pf .p C ı; h.p C ı/� ds

where h is the Inertial Manifold, .p.t/; q.t// is the solution of E.2.87, r D q � h.p/, and ı

is the solution of

Pı D �PAı C Pf .p; h.p/C r/ � Pf .p C ı; h.p C ı//:

2.5.2 An Inertial Manifold not asymptotically complete
We wish to continue by remarking that there exist Inertial Manifolds that are not asymp-

totically complete. In the paper [60-ROB-1996] one finds an example of an invariant manifold

which is attracting (though not exponentially attracting) but not asymptotically complete. In

the same paper a sufficient condition for an Inertial Manifold to be asymptotically complete

is given, whilst in the paper [52-LAN-1999] this condition is extended to a sufficient con-

dition for an invariant, attracting manifold to be complete, and the rate of attraction of the

approximating trajectory is the same as the rate of attraction to the manifold.

We present the example in [60-ROB-1996], and then construct from this an example of

an Inertial Manifold which is not asymptotically complete. Take the differential equation

Pz D ��z jzj

Pr D 0;

P� D .1C z/w.r/

E:2:88
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where w.r/ is a function such that w.1/ D 1. The hyperplane Z D fz D 0g is an invariant

attracting manifold, though it is not an Inertial Manifold because it is not exponentially

attracting. The solution to E.2.88 for an initial condition .1; �0; z0/ is:

z.t/ D
z0

1C � jz0j t

r.t/ D 1

�.t/ D �0 C t C
1

�
ln .1C � jz0j t /

and the difference between the trajectory �.t/ and the trajectory Q�.t/ laying on the invariant

manifold Z and starting at .1; Q�0; 0/ is given byˇ̌̌
�.t/ � Q�.t/

ˇ̌̌
D

ˇ̌̌̌
�0 C t C

1

�
ln .1C � jz0j t / � Q�0 � t �

1

�
ln .1/

ˇ̌̌̌
D

ˇ̌̌̌
�0 � Q�0 C

1

�
ln .1C � jz0j t /

ˇ̌̌̌
which is an expression that for 8 �0; Q�0; z0 tends to infinity and not to zero.

We now give an example of a dynamical system that admits an Inertial Manifold but is

not asymptotically complete. We base our example on the idea presented in [60-ROB-1996],

that is we find a z.t/ that converges to 0, this time exponentially, and a y.t/ that depends

on z.t/ in such a way that the term depending on z0 diverges to1 unless z0 D 0. We will

consider the following dynamical system

Pz D �z

Px D 2x;

Py D
zx

1C zx

E:2:89

which admits the hyperplane Z D fz D 0g as an Inertial Manifold. In fact the solution of

E.2.89 for the initial condition .z0; x0; y0/ is given by

z.t/ D z0e
�t

x.t/ D x0e
2t

y.t/ D y0 C ln
�
1C z0x0e

t
�
� ln.1C z0x0/
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while on the hyperplane Z, the solution corresponding to . Qx0; Qy0/ is

x.t/ D Qx0e
2t ;

y.t/ D Qy0I

again the difference between the trajectory .z.t/; x.t/; y.t// and any trajectory . Qx.t/; Qy.t//

starting at .0; Qx0; Qy0/ is given by

jx.t/ � Qx.t/j D
ˇ̌
x0e

2t
� Qx0e

2t
ˇ̌
;

jy.t/ � Qy.t/j D
ˇ̌
y0 � Qy0 C ln

�
1C z0x0e

t
�
� ln .1C z0x0/

ˇ̌
:

E:2:90

Note now that 8 z0; x0; y0 not belonging to the hyperplane Z D fz D 0g, the expressions in

E.2.90 tend both to zero if and only if

Qx0 D x0 D 0;

Qy0 D y0I

while in any other case they both tend to infinity. We have thus constructed a dynamical

system that admits an Inertial Manifold that is not asymptotically complete, as there exist

trajectories that cannot be approximated by any other trajectory completely on the Inertial

Manifold, these trajectories being all those that start at any point with z0 ¤ 0 and x0 ¤ 0.

2.5.3 An Inertial Manifold without squeezing property

In the literature one usually finds a great deal of references to various forms of the gap

condition, how it implies the strong squeezing property and finally a series of proofs (and

explanations) on why the strong squeezing property implies the existence of an Inertial Mani-

fold. For example, one could look at the book by Temam [39-TEM-1998], or [37-ROB-2001]

by Robinson, and a number of papers like [59-ROB-1994].

Nevertheless, the literature does not seem to be deeply concerned about counterexam-

ples. Indeed we were able to find only two papers that present counterexamples concerning

the existence of Inertial Manifolds; they are [54-MAL-1992], where examples are given of

Inertial Manifold for systems that do not satisfy the spectral gap condition but satisfy the
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strong squeezing property, and [62-ROM-2000], where one can find examples of various

dynamical systems that, in spite of being dissipative, do not have an Inertial Manifold. Yet

we were not able to find any reference of counterexamples of dynamical systems that possess

an Inertial Manifold without possessing the strong squeezing property.

Before proceeding, we shall recall that the gap condition implies the strong squeezing

property, and that this is composed of the cone invariance (things in the cone will remain in

the cone) plus the squeezing property (things outside the cone will get exponentially closer

to the cone). For full definitions, refer to the glossary in chapter 4.

As we have seen, our dynamical system E.2.4 (page 61) satisfies the strong squeezing

property and has an Inertial Manifold, though at the time of first writing the paper more than

10 years ago we did not realise that this was the case; indeed we were quite happy about

our results, because it seemed to be the counterexample we are now talking about. Now, 10

years later, we appreciate the fact that we were dealing with an example of a system that does

not satisfy the classical gap condition but at the same time does satisfy the strong squeezing

property.

Thus now the question arises about the existence of a dynamical system with an Inertial

Manifold that does not satisfy the strong squeezing property. As a result of carefully

pondering the meaning of the cone condition part of the strong squeezing property, we were

able to find such a counterexample and thus illustrate the fact that the strong squeezing

property is not necessary for a dynamical system to have an Inertial Manifold.

As we have seen in section 2.4.5, the first part of the strong squeezing property is usually

called the cone invariance property and it says that if a point u1 belongs to the cone of radius

� centred in the point u2, then the flow u1.t/ starting at u1 will always belong to the cone

centred in u2.t/. As explained in [39-TEM-1998] and [37-ROB-2001], this property means

in a way that if two flows start together (inside the cone), then they will always stay together.

Thus we concentrated in finding a dynamics which has flows attracted (exponentially) to the

same manifold but from two different directions.

In order to get such a flow, the first thing that one can think about is a flow that is

attracted to a closed curve, like the unit circle C , and such that it flows clockwise inside C

and anticlockwise outside C , as we show in the following figure:
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Thus, one can see in a graphic way that, no matter how large we create a cone, there will

always be points that start inside the cone, but will end up leaving the cone. We can see this

graphically in the following image
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and then, observing the same picture after some time has elapsed:

In the three pictures above we have drawn the unit circle, 4 trajectories starting inside the unit circle and 4 other

trajectories starting outside it; additionally in the second picture we present a cone centred at point p on one of

the internal trajectories, and in the third one we finally draw the same cone, with the same radius, but centred

on the same trajectory but after a certain time t has elapsed.

We now proceed to present the counterexample formally and with detailed analytical

results.

First of all, note that the fact that a flow grows clockwise or anticlockwise simply means

that in polar coordinates the angle of the flow increases or decreases. Thus polar coordinates

seem to be a natural choice for our example, as we can say that the flow is clockwise or

anticlockwise by simply telling the sign of the derivative of the angle. So, we want to

find a differential equation which represents the graphics above and satisfies the following

properties:

� the flow is continuous,

� the flow is dissipative,

� the differential equations for the radius r and the angle � are not independent,

� the radius converges to 1,
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� the derivative of the angle is negative outside the unit circle C and positive inside the

unit circle C .

A system that has these properties is:

Pr D 1 � r

P� D 1 � r

E:2:91

which clearly satisfies all the above properties.

We now give the explicit solution to E.2.91 for the initial condition .r0; �0/:

r.t/ D .r0 � 1/e
�t
C 1;

�.t/ D �0 C .r0 � 1/e
�t
� .r0 � 1/:

E:2:92

Note that C is composed of fixed points, as both Pr D P� D 0, that is it is an invariant

manifold; furthermore all points are exponentially attracted to it, as r tends to 1 exponentially

and � tends to �0�.r0�1/ also exponentially. That is, the unit circle C is an Inertial Manifold.

We now want to show that no two points on the same circle (inside or outside the C )

tend to the same point on the unit circle C , and that given a circle Cr0 (inside or outside C )

and any point Np on C then there exists a point p0 on Cr0 so that p0 tends to Np. In fact, given

two different points on Cr0 , they will have the same radius, r0 but two different angles �1 and

�2. The first point will tend to the point on C with angle N� D �1� r0C 1 and the second one

to the point with angle N� D �2 � r0C 1, which are different as �1 ¤ �2. The same argument

shows that given a point Np on C with angle N� , the flow starting at angle N� � 1C r0 will tend

to Np.

The above argument, together with the fact that the flow is invariant under rotation,

means that we can prove any property for any point we like and then that property will apply

to all points with the same radius. Thus we shall restrict our study of the cone invariance

property to just one point. Again, we shall also restrict to the study of cones whose axis is

parallel to the x axis; in fact, the dynamical system being invariant under rotation, we can

always rotate any cone to the one with the same angle but with axis parallel to the x axis.

It is now geometrically easy to understand that the cone condition does not hold. We

shall use a reductio ad absurdum proof. Suppose that the cone condition holds and take the
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cone centred at a point p inside the unit circle C . The vertex of the cone does then evolve

towards a point Np on the unit circle. Take now the section of circle outside C , as show in the

figure below.

On the one hand, these points are all attracted to the Inertial Manifold C , and are all

attracted to different points of the Inertial Manifold. On the other hand, if the cone invariance

property holds, then they must remain inside the cone, and at infinity, the segment of the unit

circle inside the cone will reduce to a single point, that is the point Np, which is a contradiction.

This result holds for any angle of the cone.

So we have found an example of a continuous dissipative system that admits an Inertial

Manifold but not the cone invariance property. One could argue that generally Inertial

Manifolds are given as graph of functions and not loops, and that the strong squeezing

property holds an Inertial Manifold that is the graph of a function; and so our argument

would not be really complete. Nevertheless, we can add a third dimension to the system,

with the equation Pz D �z which has a solution z.t/ D z0e�t which is exponentially attracted

to the plane described by r and � , and that does not change our argument about the cone

property not holding. Yet this system has an Inertial Manifold which is the graph of a

function, the plane Z D fz D 0g.
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We point out that if we were to consider the coordinates r; � as coordinates in the Banach

space R2, then the Inertial Manifold is indeed the graph of a function, r D 1:

and a cone in this new coordinate system would look like this:

In the two pictures above we have again drawn a trajectory r D 1 , corresponding to the polar coordinates unit

circle, and 4 trajectories starting below the straight line r D 1 (corresponding to polar coordinates inside the

unit circle) and 4 other trajectories starting above it (corresponding to polar coordinates outside the unit circle);

additionally in the second picture we present a cone centred at point p on one of trajectories below.

This shows that the section of the Inertial Manifold spanned by this cone eventually includes

the whole Inertial Manifold, and thus the cone invariance property holds. This is not surprising
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at all, as if we interpret the polar coordinates as coordinates of a Banach space, the equation

can be represented as

Pu D �AuC f .u/

where u D .r; �/, f .u/ is the constant function .1; 1/ and

A D

 
1 0

1 0

!
:

Now, f has Lipschitz constant equal to 0 and A has two real eigenvalues 0 and 1. Thus

the gap condition holds and the system admits an Inertial Manifold. Obviously there is

no contraction, as the cone in the .r; �/ coordinates looks nothing like a cone in standard

coordinates:

In the picture above we have drawn the image in the (x; y) coordinates of a standard cone in the (r; � )

coordinates. Here, the cone in the (r; � ) coordinates is r D ˙t=4 C 0 :7 which in the (x; y) coordinates is

the region delimited by the two lines parameterised by the parameter t :

x(t ) D .˙t=4 C 0 :7/ sin t;

y(t ) D .˙t=4 C 0 :7/ cos t :
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2.6 Application to the biology
In this section, we will consider the application of T.2.3 (page 75) to a dynamical

system which models the evolution of a network of cells connected by gap junctions. In other

words, the objective of this section is to mathematically justify an intuitively obvious result,

that is the fact that the dynamics of ' is much faster than that of s; we do this by proving

that the parameters defining the equation for the concrete example satisfy the condition of

our theorem.

Since our experimental data were derived from electrophysiological experiments, we

will only consider a specific approximation of the model in which the intercellular concen-

trations are assumed constant. Thus the electrochemical potential reduces to the electrical

potential.

Although we will prove that the general form of gating dynamics E.2.6 (page 62)

has bounded solutions, we will be applying our theory to the specific gating mechanism

described in [1-BAI-1997] which consists of three states with fractional populations s1, s2

and s0 D 1 � s1 � s2. For this case, equations E.2.6 become

ds1

dt
D ˇ.u/ � Œ˛.u/C ˇ.u/�s2 � ˇ.u/s1

ds2

dt
D ˇ.�u/ � Œ˛.�u/C ˇ.�u/�s1 � ˇ.�u/s2

E:2:93

where ˛ and ˇ are the transition rates given by

˛.u/ D � expŒ�Aˇ .u � v0/�

ˇ.u/; D � expŒAˇ .u � v0/�:

E:2:94

Here v0 is the transjunctional voltage for which the channel opening rate equals the

channel closing rate, u is the transjunctional electrochemical difference 'l � 'k between

cells labled l and k and �, A˛ and Aˇ are positive constants. We will assume that the gap

junctions are identical in structure, so that their transition rates are equal. The permeability

of the channels in populations s1
lk

, s2
lk

will be denoted by gmin and the permeability of those

channels in the remaining population will be denoted by gmax . The conductance of each gap

junction is then given by Rlk D gmin C .gmin � gmax/.s
1
lk
C s2

lk
/. For each gap junction

linking cell l to cell k, equations E.2.93 and E.2.94 take the compact form

d
dt
slk D glk.s; '/ D blk.'/ � Qglk.'/slk E:2:95
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where slk D .s1lk ; s
2
lk
/T , blk D .ˇ.'l � 'k/; ˇ.'k � 'l //

T and

Qglk D

 
˛.'l � 'k/C ˇ.'l � 'k/ ˇ.'l � 'k/

ˇ.'k � 'l / ˛.'k � 'l /C ˇ.'k � 'l /

!
: E:2:96

Note that we can rewrite this in matrix notation as

Ps D b.'/ �G.'/s

which is useful for applying the result of our theorem to the case of transfer of larger charged

molecules.

2.6.1 Boundedness of the solution

To show that the dynamics E.2.8 (page 63) has an absorbing set, we first show that the

dynamics of the gating of each gap junction, as given by E.2.6 (page 62), is bounded. Thus,

we consider a gating mechanism of the general form

dsj

dt
D

NX
iD1

˛ij .u/si �

"
NX
iD1

˛ij .u/

#
sj E:2:97

where 0 � sj � 1,
PN
iD1 s

i D 1, and each rate constant ˛ij .u/ is positive for all transjunc-

tional electrochemical differences u.

Let
P
N denote the simplex fs 2 RNC W

PN
iD1 s

i D 1g. Note that we require all initial

data for s to lie in
P
N , since we are dealing with fractional populations. If sj D 0, then,

since we assume that ˛ij .u/ > 0, Psj D
PN
iD1 ˛

ij .u/si > 0, and thus all such boundary

points of
P
N will move inwards under the dynamics. In other words, we have proved that

if a trajectory were to meet an hyperplane at a time Nt , that is one the coordinate sj .Nt / D 0,

then its derivative would be strictly positive at that instant Nt , and thus sj would be still be

positive in a neighbourhood of Nt .

Furthermore, summing E.2.97 over j we obtain

d
dt

NX
jD1

sj D

NX
jD1

NX
iD1

˛ij .u/si �

NX
jD1

"
NX
iD1

˛j i .u/

#
sj

D

NX
jD1

NX
iD1

˛ij .u/si �

NX
jD1

NX
iD1

˛j i .u/sj D 0

Inertial Manifolds in Biological Systems - PhD Thesis - Pasquale Iannelli - UCL, London 2009 130/216



2 - Gap Junctions: a generalisation 2.6 - Application to the biology

2.6.1 - Boundedness of the solution

and so
PN
iD1 s

i .t/ D 1 for all t > 0 (provided s.0/ 2
P
N ). Hence the dynamics E.2.97

leaves the simplex
P
N invariant. Note that this result is true regardless of the functional

form of the rate constants ˛ij ; it is sufficient that they be positive.

Now this result combined with the fact that all coordinates will always remain non-negative

for t > 0, implies that all sj are bounded. Grouping the gap junction dynamics together

shows that s evolves in the set
�P

N

�ng , where ng is the number of gap junctions.

The next step is to show that the matrix B.s/ is positive definite, which is crucial to

the proof of T.2.3 (page 75). We will do this by showing that each eigenvalue � of B.s/

is positive. First note that B.s/ has real eigenvalues because it is real and symmetric; in

particular it is symmetric because we are supposing that all cells are equal, thus they have

the same capacitance, that is 8i; Ci D C . Notice again that the fact that B is symmetric is

never used in the proof of our theorem, and thus it is not necessary for our theory to hold.

We only mention it it here because it is a convenient way of proving that the matrix B of the

biological system satisfies the condition of the theorem.

Now decompose the matrix B.s/ D D � F where D is the diagonal matrix with i th

diagonal element

di i D
�i

C
C

X
l2Ni

Rli

C

and F has zeros along the diagonal with fij D Rij =C if j 2 Ni (Ni is the set of the indexes

of the cells connected to cell i ) and fij D 0 otherwise. Then using Gerschgorin’s circle

theorem, all eigenvalues of B.s/ must lie in the union of circles
S
Wi where

Wi D

(
z 2 C W jz � di i j �

X
j¤i

ˇ̌
fij
ˇ̌ )
:

In our case

Wi D

˚
z 2 R W

ˇ̌̌̌
ˇ̌z � �iC �X

l2Ni

Rli

C

ˇ̌̌̌
ˇ̌ � X

j2Ni

Rij

C

	
:

Now using the inequality ja � bj � jaj � jbj and the fact that Rij D Rj i we have that
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2.6.1 - Boundedness of the solution

if z 2 Wi then X
j2Ni

Rij

C
�

ˇ̌̌̌
ˇ̌z � �iC �X

l2Ni

Rli

C

ˇ̌̌̌
ˇ̌

� jzj �

ˇ̌̌̌
ˇ̌�iC CX

l2Ni

Rli

C

ˇ̌̌̌
ˇ̌

D jzj �
�i

C
�

X
l2Ni

Rli

C

and thus

jzj �
�i

C
C 2

X
j2Ni

Rij

C
:

We can also use the inequality jb � aj D ja � bj � jaj � jbj to write that if z 2 Wi then

X
j2Ni

Rij

C
�

ˇ̌̌̌
ˇ̌�iC CX

l2Ni

Rli

C

ˇ̌̌̌
ˇ̌ � jzj

D
�i

C
C

X
l2Ni

Rli

C
� jzj

which can then we written again as

jzj �
�i

C
:

This shows that each eigenvalue �k satisfies

0 < min
i

�i

C
� �k � max

i

0@�i
C
C 2

X
j2Ni

Rij

C

1A
and so B.s/ is positive-definite.

From E.2.8 (page 63), we have

1

2

d
dt
j'j22 D �'

TB.s/' C 'Tw

where j�j2 denotes the usual Euclidean norm. Now, B being positive definitive we have that

1

2

d
dt
j'j22 � �b j'j

2
C jwj j'j D j'j .�b j'j C jwj/

where b is the minimum eigenvalue of B.s/. Now clearly the right hand side is negative for

all j'j > R0 D jwj =b. This shows that all components '.t/ of solutions of E.2.8 (page 63)

eventually enter the set �0 defined by j'j � R0.
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2.6.2 - Evaluation of constants

2.6.2 Evaluation of constants
In this section, we evaluate the various constants used in the bounds stated in Theorem

T.2.3 (page 75).

First note that in our application f .s; '/ D w, a constant vector, and, since we may

assume that the extracellular potential is zero and that the Ck are all equal to a constant C :

F D max
k
jw=Ckj1 D max

k

ˇ̌̌̌
ˇI
p

k

C

ˇ̌̌̌
ˇ :

The Lipschitz constant of f is clearly � D 0. The condition .1 � k/b > 2� is trivially

satisfied for k 2 .0; 1/.

In the previous section we proved that b � mink �k=C , where b is the minimum on s

of the minimum eigenvalue of B.S/.

Now, recalling that g D ��1.b.'/ � Qg.'/s/, we calculate

G D max
l;k
jglkj1

D ��1max
l;k
jblk � Qglkslkj1

� ��1max
u
j˛.u/C ˇ.u/j :

Similarly, the Lipschitz constant for g is


 D max
l;k
jDglkj1

D max
l;k

max
˚ˇ̌
D'glk

ˇ̌
1
; jDsglkj1

	
� ��1max

l;k
max

˚
j Qglkj1 ; A˛ j˛j1 C Aˇ jˇj1

	
� 2��1G

since A˛; Aˇ < 1. Finally, we need the norm of the derivative of the matrix B.s/. This is

ˇ D jBsj1

D max
l;k
jDsBkl j1

D max
k

ˇ̌̌̌
ˇ̌ X
j2Nk

�
gmin � gmax

Ck

�
.1; 1/T

ˇ̌̌̌
ˇ̌
1

� .gmin � gmax/max
k

�
jNkj

Ck

�
:
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2.6.3 - Interpreting the results

We are now in a position to check that the conditions of Theorem T.2.3 are satisfied

when the model is fitted with experimentally determined parameter values for small ion

transfer [1-BAI-1997]. In the first instance, we will assume that the cells are identical. This

provides a sensible base from which we may study the results of varying the parameters. Thus

we assume the following typical parameter values as derived from recent electrophysiological

experiments on Xenopus cell pairs. These are as follows.

�k D �0 � 10
�7mho; Ck D C0 � 1:0 � 10

�10F

gmin D 0:05 � 10
�7mho; gmax D 1:0 � 10

�7mho;

� D 0:3s�1; u0 D 0:014V�1; A˛ D 80V�1; Aˇ D 140V�1;

Using these parameters we estimate

b D 103; ˇ D 103 NN; G D 15��1; 
 D 2��1G D ��230;

where NN is the typical number of cells joined to a given cell, and we suppose NN D 4. (For

the estimation of G see Fig A1 in [1-BAI-1997].)

With these parameter values, we check the validity of inequality E.2.26. For � D 0

�
 <
kb

2

.1 � k/2b2

ˇF C .1 � k/2b2
: E:2:98

Here we are free to choose k between 0 and 1 to get the estimate. Setting � D 1 and using

the parameters just obtained, we have for b D Nb

�
 D 20 <
k

2
500

1

1C 0:004.1 � k/2
: E:2:99

A simple calculation, performed with Mathematica, shows that the right-hand side is max-

imised at k D 0:66, and that the maximum is 245. Hence, the left-hand side of E.2.99 being

non-decreasing in b, and b being greater than Nb, E.2.99 holds also for b defined in E.2.25

(page 75).

Thus, for the parameters chosen, we do satisfy the conditions of the existence theorem.
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2.6.3 - Interpreting the results

2.6.3 Interpreting the results

Observe that for a fixed s, the dynamics of ' is a gradient system, which has a unique

attracting equilibrium state '? D B.s/�1w. Furthermore, with respect to small ions the

capacitance of typical cells is small, so that .Ck/
�1 is several orders of magnitude larger

than that of Qg, in other words the ' dynamics is much faster than the s dynamics. For

large molecules, the reverse is true: .Ck/
�1 is much smaller than Qg. Our data, given the

experimentally observed size of .Ck/
�1, are likely to correspond to currents composed of

small ions. Since data measuring the intercellular transfer of larger charged molecules are not

yet available, here we will focus on the case .Ck/
�1
� 1, although as we will demonstrate

in our discussion, the case .Ck/
�1
� 1 can also be dealt with using our theory.

We thus expect ' to move rapidly towards '?.s/ and then to track '?.s/ closely in

response to the much slower changes in s. This informal description is made rigourous

by proving the existence of an Inertial Manifold for the system. If we write g.s; '/ D

��1Œb.'/ � Qg..'/s� , this will follow from our general result on the existence of such

manifolds for systems of the form given by E.2.2 (page 59).

Finally, we discuss two extensions of this model which can immediately be treated by the

theory developed in this chapter. The first is the case of nonlinear membrane permeability.

This is obtained by perturbing �k to �k C f . The theorem then tells us that an Inertial

Manifold can be found provided that the Lipschitz constant of f is sufficiently small when

compared to the smallest eigenvalue b, or in biological terms, the membrane nonlinearity is

sufficiently weak. This gives us an indication of the strength of feedback required to produce

a network of cells with additional properties, such as excitability.

The second is the case when the molecules transferred are no longer ions but larger

charged molecules, such as cyclic AMP. In this case the system E.2.4 (page 61) is replaced

by

Ps D g.s; '/

P' D � Œ�B.s/' C f .s; '/�

where �� 1. The actual form of g, given in detail in section 2.1, is

g.s; '/ D �G.'/s C b.'/
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2.6.3 - Interpreting the results

whereG is a block diagonal matrix whose diagonal elements consist of 2 x 2 positive-definite

matrices, so that G itself is positive definite. Hence Theorem T.2.3 can be applied to the

new system for which ' is now the slow variable, s the fast variable and G plays the role of

B . The theorem shows that for certain parameter ranges an Inertial Manifold exists, so that

the system will rapidly approach a dynamical regime in which the gap junctions are slaved

to the cell potentials.
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Chapter 3

Stochastic Processes
a similarity

As they appear to have much in common, we

study the similarity of Moment Closure techniques

and Inertial Manifolds. In our example, they are al-

most the same, the Moment Closure functions be-

ing a “perturbation” of the original Inertial Mani-

fold for t !1 and � ! 0. The Moment Closure is

proved to be close to the Inertial Manifold, at least

coordinate-wise.
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Since the publication of Whittle’s classic paper [84-WHI-1957] about the use of normal

approximation, which is just one of the many Moment Closure methods nowadays used in

the literature, this technique of dimension reduction has been extensively used in many areas

of Statistics; naturally the method has been extended to include a larger class of Moment

Closure methods, as for example in [80-NÅS-2003] the two methods of setting the third or

the fourth cumulant equal to zero have been compared; in [79-MAT-1999] the fifth cumulant

is set to zero and in [83-SIN-2007] a nonstandard Moment Closure technique is used, that is

a function ˆ.m1; : : : ; mk/ D
Q
mj .

As Isham says in [73-ISH-2005], “the success of the moment closure method can some-

times be attributed to central limit effects”, and thus often there will be a biological/statistical

assumption such as that the random variables are normally distributed, as in Whittle’s paper.

As we saw in the introductory chapter 1, we were not able to find much published work

where an explanation of the good results provided by Moment Closure methods in biological

examples would be based on a purely dynamical perspective.

In fact, we are not aware of any other paper, apart from ours [48-STA-2001], on

the parallel between the Moment Closure methods and Inertial (invariant) Manifolds. We

personally think that it is worthwhile to continue this line of investigation, and so we decided

to analyse this relationship through the study of the example in [72-ISH-1995]. Notice
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however that in kinetic theory much work has been carried out since Maxwell theory of

thermodynamics at the end of the 19th century. See for example [30-GOR-2005] for references

and an up-to-date review and state-of-the-art research on the subject of invariant manifolds

applied to physical and chemical kinetics.

The aim of this chapter of the thesis is thus to investigate the similarity between these

two mathematical phenomena, between the phenomenon of constraining higher moments

(Moment Closure) and the one of constraining higher coordinates (Inertial Manifold).

We will pursue our aim by studying a concrete example found in [72-ISH-1995]. The

author of [72-ISH-1995] considers the differential equation obtained for the probability

generating function for a stochastic model describing the interaction between macroparasites

and their hosts. The parasite load within a single host is investigated. The author obtains

exact algebraic results and presents a method of approximating the moments of the probability

generating function for the parasite load. Since the author has exact results for the probability

generating function one can easily compare these results with those produced by using a

deterministic or normal approximation. Isham also notes that the normal approximation

gives better approximation. Notice that the model in [72-ISH-1995] is a simple one and a

more extended version was studied in [71-HER-2000]. However, for sake of simplicity we

just treat the case of [72-ISH-1995].

In the introductory chapter 1 we detail the reasons why we believe that the normal

approximation might be similar to Inertial Manifolds, at least for the example we treat in this

thesis. We will show that the deterministic and normal approximation used in [72-ISH-1995]

are actually very close to being Inertial Manifolds.

Let us take a dynamical system like

Pu D F.u/ E:3:1

where u belongs to a (possible infinite dimensional) Hilbert spaceH , that can be split into two

spaces, one finite dimensional H 0, and the other Q D H �H 0 . Then u can be represented

as u D .p; q/, where p indicates an element of H 0 and q an element of Q. An Inertial

Manifold is then a Lipschitz function from H 0 ! Q such that all the trajectories of E.3.1

are exponentially attracted to .p; h.p// and the dynamics of E.3.1 can be reproduced, with
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an exponentially small error, by the ODE

Pp D PF.p C h.p//: E:3:2

In a very similar fashion, a Moment Closure approximation starts from an infinite

dynamical system of differential equations

Pmi D fi .m1; : : : ; mi ; miC1; : : :/ E:3:3

where � D fmig belongs to some Hilbert space H and the introduction of a function h

from Rn to H � Rn, so that each coordinate mj for j > n can be expressed as mj D

hj .m1; : : : ; mn/ and equation E.3.2 is reproduced with a small error by the ODE

m1 D f1.m1; : : : ; mn; hnC1.m1; : : : ; mn/; : : :/

: : :

mn D fn.m1; : : : ; mn; hnC1.m1; : : : ; mn/; : : :/

E:3:4

In both cases a non closed infinite dimensional system is well approximated using a

relation (the function h) that can express the “non-important” coordinates in terms of the

“important” ones and that closes the system formed by the first n equations.

Remember, as we remarked in section 1.4.2 at page 38, that the moment closure tech-

nique is aimed at providing an approximated solution xmj close to the solution mj of the full

system E.3.2 for 1 � j � n, in contrast with what happens with an Inertial Manifold, which

is used to show that hj . xm1; : : : ; xmn/ is close to mj for j > n.

This is why we do not limit ourselves to the study of the steady states of section 3.3.3,

but wish to give a more dynamical account for all higher coordinates in sections 3.3.4 and

3.3.5. Thus the statement that “the deterministic and normal approximation are close to

being Inertial Manifolds”, can be interpreted in two ways:

� steady state result: the first one or two coordinates of the steady points of the

approximated system are close to the steady point of the full system, which in turn

is an Inertial Manifold;

� dynamical system result: all the moments mj for j � 3 obtained by the function

defining the moment closure are close to those of the Inertial Manifold of the full

system.
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Notice that in the actual example we will treat here, the functions fi depend only on the

first i C 1 coordinates, that is equation E.3.3 is given by

Pmi D fi .m1; : : : ; mi ; miC1/:
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3.1 The biological model
We reproduce here some of the results from the paper [72-ISH-1995] that originated the

research in this section.

Isham is interested in modelling host-macroparasite interaction, which is a particular

case of host-parasite interaction. Macroparasites are those parasites whose lifecycle is

external to the host so that the host’s parasite load only builds up through reinfection.

See the references in [72-ISH-1995] for an account on the literature on the mathematical

modelling of such problems.

In a general model the state of the host is described by the 3 variables I.a/, L.a/ and

M.a/, where I.a/ represents the host’s immunity level and L.a/ is the number of parasite

larvae and M.a/ of those mature parasites, all evaluated at the host’s age a. Thus M.a/ is

the number of parasites present in an individual host of age a. Isham’s paper deals with a

simplified case where one does not distinguish between mature and larvae stages of parasites,

and no immune reaction is provoked by the parasites, in the sense that they neither induce an

increased host mortality rate nor stimulate immune reaction.

Thus, Isham considers a model where the only non trivial variable isM.a/. In particular,

she assumes that at birth the host is free of parasites, that is M.0/ D 0; then the host will

acquire a random number C of parasites at time points modelled by a Poisson process. C

is described by its probability generating function Nh.z/ D
P1
cD0 hcz

c . The author makes

some assumptions on the parasite, in particular that the parasites level in the environment is

constant.

The death rate at age a of the host in the absence of parasites is given by �H .a/; when

parasites are present, this rate is increased by an amount ˛ for each parasite present. Parasites

die at rate �M per parasite. The exposure to parasites is is model by a Poisson process of

rate ˆ.a/.

We can now calculate the possible transitions for a host that has survived to age a. If

the number of parasites infecting the host is M.a/ D m, then the host can:

� increase its parasite load, to mC c at rate ˆ.a/hc for c D 1; 2 : : :;

� decrease its parasite load, tom� 1 at rate �Mm; as the probability of the parasites

dying is �M and the number of parasites is m;

� the host may die, at rate �H .a/C ˛m.

Inertial Manifolds in Biological Systems - PhD Thesis - Pasquale Iannelli - UCL, London 2009 142/216



3 - Stochastic Processes: a similarity 3.1 - The biological model

The probability pm.a/ is defined as the probability that the host survives to age a and

has parasite load M.a/ D m. We now proceed to derive the differential equation governing

pm. Notice that the following calculations is not directly given in [72-ISH-1995], the likely

reason being that they are quite trivial given the above rates. Nevertheless, I feel the need

to explicitly give them, as I am more familiar with the Functional Analysis and Nonlinear

Dynamics areas of mathematics than with Statistics or Probability.

According to the above transitions, the rate of change of probability pm.a/will be given

by a sum of terms, which are derived in the following lines:

dpm.a/
da

D %1 C %2 C %3 C %4 C %5

According to the first transition, if the host had a load of m � c, then it will reach load m

with rate ˆ.a/hc , that is

%1 D Cˆ.a/

mX
cD1

pm�c.a/hc I

similarly, if the host has load m, then it will go to any other load mC c, with rate ˆ.a/hc ;

this means that the only case it will not increase its load is if it stays the same, which it does

with rate .1 � h0/ˆ.a/:

%2 D �.1 � h0/ˆ.a/pm.a/:

The second transition means that the probability of a host remaining with a load m will

decrease, as it will have m � 1 with a rate proportional to �Mm:

%3 D ��Mmpm.a/I

similarly, the probability of reaching parasite load m will increase if the load was mC 1:

%4 D C�M .mC 1/pmC1.a/:

Finally, if a host has survived to age a, then the probability rate at which it will die is

.�H .a/C ˛m/pm.a/; thus Ppm must be decreased by such a term:

%5 D �.�H .a/C ˛m/pm.a/:
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Finally, adding all terms together:

dpm.a/
da

D%1 C %2 C %3 C %4 C %5

D�
˚
�H .a/C ˛mC .1 � h0/ˆ.a/C �Mm

	
pm.a/

C �M .mC 1/pmC1.a/Cˆ.a/

mX
cD1

pm�c.a/hc :

E:3:5

We derive the differential equation satisfied by the probability generating function

R.a; z/ D
P1
mD0 pmz

m. This equation is obtained by explicitly deriving the series defining

the probability generating function, substituting the term Ppm with E.3.5 and rearranging the

terms. Remember that @R.a;z/
@z
D
P1
mD0mpm.a/z

m�1.

@R.a; z/

@a
D

1X
mD0

dpm
da

zm

D

1X
mD0

(
�

�
�H .a/C .1 � h0/ˆ.a/

�
pm.a/Cˆ.a/

mX
cD1

pm�c.a/hc

� .˛mC �Mm/pm.a/C �M .mC 1/pmC1.a/

)
zm

D� �H .a/

1X
mD0

pm.a/z
m

Cˆ.a/

1X
mD0

 
mX
cD0

pm�c.a/hc

!
zm �ˆ.a/

1X
mD0

pm.a/z
m

� .˛ C �M /

1X
mD0

mpm.a/z
m
C �M

1X
mD0

.mC 1/pmC1.a/z
m

D�

n
�H .a/ �ˆ.a/

�
Nh.z/ � 1

� o
R.a; z/

�
˚
.˛ C �M /z � �M

	@R.a; z/
@z

:

Now, the probability of the host surviving to age a, is given by the function S.a/ D

R.a; 1/. Remembering that Nh.z/ is a probability generating function, so Nh.1/ D 1, we can

derive the equation for S.a/:

dS.a/
da

D�

n
�H .a/ �ˆ.a/

�
Nh.1/ � 1

� o
R.a; 1/

�
˚
.˛ C �M /1 � �M

	@R.a; 1/
@z

:

D� �H .a/S.a/ � ˛mM .a/S.a/;
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where mM is the expected value of M.a/. We follow Isham in emphasising that the parasite

load M.a/ is conditional upon survival of the host to age a; this is important for probability

generating function Q, we are going to define next, to make sense.

We are finally ready to give the equation that was studied in [72-ISH-1995] using the

normal and deterministic approximations, those same approximations that we shall prove to

be related to an Inertial Manifold. Consider the probability generating function Q.a; z/ D

R.a; z/=S.a/, that is the probability for loads given survival to age a. The differential

equation for Q is obtained in the following calculations:

@Q.a; z/

@a
D
@R.a; z/

@a

1

S.a/
�
R.a; z/

S2.a/

@S.a/

@a

D�

n
�H .a/ �ˆ.a/

�
Nh.z/ � 1

� oR.a; z/
S.a/

�
˚
.˛ C �M /z � �M

	@R.a; z/
@z

1

S.a/

�
R.a; z/

S2.a/

�
� �H .a/S.a/ � ˛mM .a/S.a/

�
D

n
ˆ.a/

�
1 � Nh.z/

�
C ˛mM

o
Q.a; z/

�
˚
.˛ C �M /z � �M

	@Q.a; z/
@z

:

E:3:6

This is the equation we are interested in.
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3.2.1 - The dynamical system

3.2 The functional settings
In this section we present the differential equation we will study, the coordinate system

we shall be working in, and formal functional analysis settings under which the equation

makes sense.

3.2.1 The dynamical system
In the following we will substitute the notation a for age by t for time, as usual in

Functional Analysis.

Given a probability measure P on the positive integers which is time dependent, so

that the measure of the set fmg at time t is given by lm.t/, we can define the probability

generating function associated to this measure as the power series

Q.t;Z/ D
X
m

lm.t/Z
m;

which is defined at least for Z 2 Œ0; 1�. Note that Q.t; 1/ D
P
m lm.t/ � 1 at any time t by

definition of probability measure.

mk.t/ D
X
m

M klm D E.M
k.t//;

where E.M k/ is the expected value (or integral) of the polynomial M k with respect to the

measure P . It is a well known result (see [14-BAI-1964] at page 7) that the expected value

of the polynomials vk.M/ D .M/.M � 1/ : : : .M � k C 1/ are given by the kth derivative

of Q with respect to z and evaluated at z D 1. In symbols:

gk D E.vk/ D D
k
zQ.t;Z/jzD1:

They are also called the factorial moments.

In [72-ISH-1995] the author studies equation E.3.6, under the assumptions that follow.

First of all, ˆ.t/ is assumed a constant, so that the term ˆ.t/Œ1 � Nh.z/� is a function only

of z, and we shall denoted it from now on by h.z/. Secondly, remember that mM is the

expectation ofM.t/, so that it is also equal to the derivative ofQ with respect to z evaluated

at z D 1. Thus we can re-write equation E.3.6 as

@Q

@t
D F.Q/ D

�
h.z/C ˛

@Q

@z
.z D 1/

�
Q �

˚
.˛ C �/z � �

	@Q
@z
: E:3:7

The methodology we should follow is the following:
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� first we should find a differential equation for the moments M D .mk.t//, PM D

f .M /,

� then study the space of co-ordinatesmk , and see if there exists an Inertial Manifold.

Let us notice first of all that, while the derivation of an equation for the vector of

factorial moments G.t/ D .gk.t// is straightforward, the derivation of the equation for M

is quite complicated and laborious. However, as the moment of order k is an invertible

linear combination of g1; g2; : : : ; gk , it follows that any relation between the moments can

be translated into a relation between the factorial moments and vice-versa.

In order to find the differential equation for the gk it is sufficient to derive both members

of E.3.7 with respect to z k times and then put z D 1. After some algebra E.3.7 gives

Pgk D hk C

k�1X
iD1

 
k

i

!
hk�igi C ˛g1gk � ˛gkC1 � .˛ C �/kgk : E:3:8

where hk D Dk
z h.z/jzD1.

This equation is not linear, due to the term ˛g1gk , and its study could be quite cum-

bersome. However it is possible to use a different set of co-ordinates which gives a linear

differential equation. We shall find that establishing the existence of a relation in the new set

of co-ordinates is equivalent to establishing a relation among the gk and thus among themk .

In order to simplify the system we note that if we divide both members of E.3.7 by Q

and substitute P D lnQ we have the linear differential equation in P

@P

@t
D h.z/C ˛

@P

@z
.z D 1/ �

˚
.˛ C �/z � �

	@P
@z
; E:3:9

thanks to the equality Pz.z D 1/ D Qz.z D 1/=Q.z D 1/ D Qz.z D 1/, where Pz and

Qz denote the partial derivative with respect to z of P and Q respectively. The function P

is called the factorial cumulant generating function.

Thus the fact that Q.z D 1/ D 1 is extremely important. In fact, we shall now use the

variables �k.t/ D DkP.t; z D 1/, where D is the derivative with respect to z. We note that

any gk is expressible as a polynomial of degree k of the variables �1; �2; : : : ; �k , and this is

due to Q.z D 1/ D 1. The variables �k are called factorial cumulants.

By deriving both members of equation E.3.9 with respect to z k times, and then putting

z D 1 we obtain the very simple linear differential equation in �k

P�k D hk � ˛�kC1 � .˛ C �/k�k : E:3:10
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Notice that although this method of linearisation might probably be a known procedure, we

have been unable to find a reference to it.
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3.2.2 The factorial cumulants

Before proceeding to the next section, we give the details of the relation between the

factorial cumulants �k , the factorial moments and the moments. This is a digression from

the central theme of this chapter, which can be skipped completely. For references look at

[48-STA-2001] and [15-ITO-1993].

As any textbook in Statistics or Probability will say (see references in the bibliography),

the factorial moments gk and the moments mk are given by

gk D

$
@kQ.t/

@tn

%
1

mk D

$
@kM.t/

@tn

%
0

whereQ.t/ is the probability generating function, that is the expectation of t ,Q.t/ D E.tX /,

andM.t/ is the moment generating function, that is the expectation of et ,M.t/ D E.etX / D

Q.et /.

By definition, the factorial cumulants �k are given by

�k D

$
@kP.t/

@tn

%
1

:

Remembering that P.t/ D lnQ.t/ and that Q.1/ D 1, one can write

�1 D

�
@P.t/

@t

�
1

D

�
1

Q.t/

@Q.t/

@t

�
1

D g1

�2 D

�
@2P.t/

@t2

�
1

D

$
�

1

.Q.t//2

�
@Q.t/

@t

�2
C

1

Q.t/

@2Q.t/

@t2

%
1

D �g21 C g2

�3 D

�
@3P.t/

@t3

�
1

D

$
2

.Q.t//3

�
@Q.t/

@t

�3
�

2

.Q.t//2
@Q.t/

@t

@2Q.t/

@t2

�
1

.Q.t//2
@Q.t/

@t

@2Q.t/

@t2
C

1

Q.t/

@3Q.t/

@t3

�
1

D2g31 � 3g1g2 C g3
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and

m1 D

�
@M.t/

@t

�
0

D

�
@Q.et /

@t
et
�
0

D g1

m2 D

�
@2M.t/

@t2

�
0

D

�
@2Q.et /

@t2
e2t C

@Q.et /

@t
et
�
0

D g2 C g1

m3 D

�
@3M.t/

@t3

�
0

D

�
@3Q.et /

@t3
e3t C 2

@2Q.et /

@t2
e2t C

@2Q.et /

@t2
e2t C

@Q.et /

@t
et
�
0

Dg3 C 3g2 C g1:

We can finally relate the first three factorial moments to the first three factorial cumulants.

m1 D g1 D �1

g2 D �2 C g
2
1 D �2 C �

2
1

m2 D g2 C g1 D �2 C �
2
1 C �1

�2 D m2 �m
2
1 D �1 C �2 C �

2
1 � �

2
1 D �1 C �2

g3 D �3 � 2�
3
1 C 3�1.�2 C �

2
1/ D �3 C �

3
1 C 3�1�2

m3 D g3 C 3g2 C g1 D �3 C �
3
1 C 3�1�2 C 3�

2
1 C 3�2 C �1:

3.2.3 The functional spaces

We shall now give the function space settings for this equation. Let R be the sequence

.�k/, let L stand for the space of all R such that kRk2 D
P
�2
k
< 1, and let V be the

subspace of L of all R such that
P
k2�2

k
< 1. These two spaces can be seen as the two

Sobolev spacesL2 andH 1 defined on a discrete measure space, that is the space of all square-

summable functions and the space of all these functions whose distributional derivative is

square-summable. The �k are then, using this similarity, the “Fourier coefficients” of those

functions. However we shall not carry forward this similitude. We now prove that these two

spaces are Hilbert spaces.

LEMMA L.3.1 The spaces L and V are Hilbert spaces, on the scalar field R, when
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endowed with the following scalar products:

hR1; R2iL D
X
k

akbk ;

hR1; R2iV D
X
k

k2akbk ;

where R1 D .ak/ and R2 D .bk/.

Proof It is evident that they are scalar products:

� the conjugate property is satisfied: hR1; R2iL D
P
k akbk D

P
k bkak D

hR2; R1iL, and similarly for hR1; R2iV ;

� the linearity property is satisfied:

h˛R1 C ˇR2; R3iL D
X
k

.˛ak C ˇbk/ck

D˛
X
k

akck C ˇ
X
k

bkck

D˛hR1; R3iL C ˇhR2; R3iL;

and similarly for h˛R1 C ˇR2; R3iV ;

� the non-negativity property is satisfied: hR1; R1iL D
P
k.ak/

2 � 0, and similarly

for hR1; R1iV ;

� the non-degeneracy property is satisfied: suppose R1 is such that hR1; R1iL D 0,

then clearly every component ak D 0, thus R1 D 0, and similarly for hR1; R1iV .

The only thing that remains to be proved is that L and V are complete; we will prove it

only for V , as the proof for L is similar and is usually given as an exercise in any functional

analysis book. TakeRn a Cauchy sequence in V , we have to prove that it converges to a point

in V . Take thus � > 0 and the corresponding N such that 8n;m > N kRn �RmkV � �;

let ank be the components of Rn and amk those of Rm:

kRn �Rmk
2
V D hRn �Rm; Rn �RmiV D

1X
kD1

k2 .ank � amk/
2 < �2I

In particular it is true that 8k we also have that k jank � amkj < �; thus we have formally

that

8� > 0 9N.�/ > 0 such that 8n;m > N 8k k jank � amkj < �I
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and thanks to the fact that k does not depend onN nor on �, the above expression is equivalent

to

8k 8� > 0 9N.�/ > 0 such that 8n;m > N k jank � amkj < �: E:3:11

If we now fix k and set � D "k, E.3.11 makes the sequence ank a Cauchy sequence in R, so

a convergent one. We now define the point-wise limit

R D

�
ak D lim

n!1
ank

�
;

and prove that it belongs to V , and that Rn ! R in V .

From the fact that fRng is a Cauchy sequence in V , it follows that for any � > 0 there

exists N such that for all n;m > N , kRn �Rmk < �2; in particular we can take any j 2 N

and write
jX
kD1

k2 jank � amkj
2
� kRn �Rmk

2
V < �

2:

Having fixed j 2 N the above is a finite sum, thus we can let m!1 and obtain

jX
kD1

k2 jank � akj
2 < �2: E:3:12

Use now the triangular inequality jaj � jbj � ja � bj we can rewrite E.3.12 asvuut jX
kD1

k2 jakj
2
� � C

vuut jX
kD1

k2 jankj
2
� � C kRnkV <1: E:3:13

Notice that E.3.13 is valid for all j 2 N and thus letting j ! 1 in E.3.13 will show that

R 2 V . Letting j !1 in E.3.12 will show that Rn ! R in the V -norm.

======

Now let T W L! L, be the operator defined by TR D .�2; �3; : : :/, and let� W V ! L

be the operator defined by �R D .k�k/. Define now A W L ! L as AR D ˛TR C .˛ C

�/�R. A is a linear operator, whose domain in L is V .

We can now rewrite equation E.3.10 (page 147) as

PR D �˛TR � .˛ C �/�RCH D �ARCH; E:3:14

Inertial Manifolds in Biological Systems - PhD Thesis - Pasquale Iannelli - UCL, London 2009 152/216



3 - Stochastic Processes: a similarity 3.2 - The functional settings

3.2.3 - The functional spaces

where we remember that H is the vector with component hk D Dk
z h.z/jzD1, and R has

components �k .

We now follow chapter 3 of [39-TEM-1998] to prove existence and uniqueness of

solutions of E.3.14. To do this we have to establish that A is coercive, that is, there exists a

positive constant C such that for every R 2 V

hAR;RiL � C kRk
2
L :

First of all, we have that

kTRk2 D
X
j

ˇ̌
�jC1

ˇ̌
�

X
j

ˇ̌
�j
ˇ̌
D kRk2 W

Now, thanks to the Cauchy-Schwarz relation valid in all Hilbert spaces jhu; vij � kuk kvk

we have that

jh˛TR;RiLj � ˛ kTRk kRk � ˛ kRk
2
L : E:3:15

On the other hand, as the norm k:k is a summation on all k � 1, we also have

h.˛ C �/�R;RiL D .˛ C �/
X

k�2k � .˛ C �/
X

�2k D .˛ C �/ kRk
2
L : E:3:16

We finally have

hAR;RiL Dh˛TR;RiL C h.˛ C �/�R;RiL

� � ˛ kRk2L C .˛ C �/ kRk
2
L

D� kRk2L :

E:3:17

This has very important consequences for us. First of all, theorem 3.1 in chapter 3 of

[39-TEM-1998] asserts that under these conditions the differential equation E.3.14 admits

one and only one solution. Secondly, theorem 2.1 in chapter 2 of [39-TEM-1998] shows that

the operator A is an isomorphism from V to L. This means that, for any given H 2 L, the

following equation

0 D �ARCH E:3:18

admits one and only one solution xR 2 V . Such xR is the only fixed point for our dynamical

system. We shall prove in the next section that this fixed point is globally and exponentially

attracting.

Inertial Manifolds in Biological Systems - PhD Thesis - Pasquale Iannelli - UCL, London 2009 153/216



3 - Stochastic Processes: a similarity 3.3 - Almost an Inertial Manifold

3.3.1 - The fixed point and Inertial Manifolds

3.3 Almost an Inertial Manifold
In this section we present all our results regarding the normal approximation and its

similarity to Inertial Manifolds.

3.3.1 The fixed point and Inertial Manifolds

In this section and the next two sections, apart from proving that system E.3.14 admits

one and only one exponentially attracting fixed point xR, we wish to analyse what happens

when we introduce either the deterministic or normal approximation. As we shall see, these

two approximations allow us to find approximated dynamical systems, which also admit fixed

points . Q�1/ and . O�1; O�2/. We shall prove that, under admissible parameter values, these fixed

points are close. This is the first part of the explanation of why these two types of Moment

Closure work well in this example: if we fix our attention on the steady states, then they are

very close. As we saw in the introduction, this is not a global dynamical explanation; we

treat this point of view in the following sections.

Let us now begin this section by proving the following lemma.

THEOREM T.3.2 The fixed point xR of E.3.14 is exponentially attracting.

Proof Take any point R0 2 V and take R as the unique solution of E.3.14 (page 152)

with R0 as initial condition. Both R and xR satisfy E.3.14:

PR D H � AR;

PxR D H � A xR:

Take now the difference between the two, take the scalar product on both sides by R � xR,

write u.t/ D R.t/ � xR.t/ and obtain:

h Pu; uiL D h�Au; uiL � �C kuk
2
L :

The left hand side is equal to

h Pu; uiL D
1

2

@ kuk2L
@t

;

thus we have, by a trivial integration,

ku.t/k2L � ku.0/k
2
L e
�2Ct ;

Inertial Manifolds in Biological Systems - PhD Thesis - Pasquale Iannelli - UCL, London 2009 154/216



3 - Stochastic Processes: a similarity 3.3 - Almost an Inertial Manifold

3.3.1 - The fixed point and Inertial Manifolds

which proves that the fixed point xR is globally and exponentially attracting in L.

======

The fact that the system E.3.14 admits an exponentially attracting fixed point, clearly

defines an Inertial Manifold: the fixed point xR itself. In fact, xR is finite dimensional,

invariant and exponentially attracting. Using this point, we can actually define more Inertial

Manifolds.

On the one hand, the closure of any trajectory defines an Inertial Manifold. In fact, the

closure of any trajectory will be composed of the trajectory itself plus the fixed point. By

definition such set is finite dimensional, invariant and exponentially attracting.

We shall find useful to prove that other manifolds too are Inertial Manifolds. In fact, we

can show that the hyperplane of dimension n obtained by fixing all the coordinates, with the

exception of the first n ones, equal to the fixed point coordinates, is an Inertial Manifold for

the original system:

Mn D
˚
�1; : : : ; �n; ˆn.�1; : : : ; �n/

	
D
˚
�1; : : : ; �n; N�nC1; N�nC2; : : :

	
:

We will use these hyperplanes Mn to show that the normal and deterministic approximation

are actually defining a good approximation not only for the first and second moment, but

for all moments. We will do this in sections 3.3.4 and 3.3.5, where we will obtain via the

moment closure functions new systems which will admit the moment closure functions as

Inertial Manifolds and which will be close to Mn for t !1 and � D ˛=�! 0.

LEMMA L.3.3 For every n 2 N the function ˆn defined by

ˆn W R
n
! L �Rn

ˆn W .�1; : : : ; �n/‘ . N�nC1; N�nC2; : : :/;

where N�i are the coordinates of the fixed point of E.3.10 , is an Inertial Manifold for the

dynamical system E.3.10 .

Proof The manifold Mn is given by f.x;ˆn.x//I x 2 Rng. Explicitly:

Mn D
˚
x;ˆn.x/

	
D
˚
�1; : : : ; �n; N�nC1; N�nC2; : : :
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Clearly Mn is Lipschitz and finite dimensional, being an hyperplane. Furthermore, as the

fixed point xR belongs to Mn, it is also globally exponentially attracting.

Regarding invariance, we show that .x;ˆn.x// satisfies equation E.3.10 (page 147) for

all k. First of all, note that by definition of ˆn, that is being composed of the coordinates of

the fixed point, it is immediate that equation E.3.10 is satisfied for all k > n:

P�k D hk � ˛ N�kC1 � .˛ C �/k N�k D 0: E:3:19

Regarding the first n coordinates, note that this is the same as solving the corresponding

inertial form for k � n

P�k D hk � ˛�kC1 � .˛ C �/k�k

P�n D hn � ˛ N�nC1 � .˛ C �/n�n

Setting x D .�1; : : : ; �n/ the above can be written as the following finite dimensional system:

Px D Hn � Ax E:3:20

where Hn D .h1; h2; : : : ; hn � ˛ N�nC1/ and A is the upper diagonal matrix

A D

�
�.˛ C �/ �˛ 0 0 : : : 0

0 �2.˛ C �/ �˛ 0 : : : 0

: : :

0 0 : : : 0 �.n � 1/.˛ C �/ �˛

0 0 : : : 0 0 �n.˛ C �/

˘

:

Clearly, A is invertible and thus for any initial condition x0 E.3.20 admits the unique solution

x.t/ D HnA
�1
C .x0 �HnA

�1/e�At :

======

In the next section we study the rate of attraction to each Mn.

3.3.2 The best Inertial Manifold

We now proceed to study the rate of attraction of any trajectory of E.3.10 to the various

Inertial Manifolds Mn. Clearly they all attract the trajectory in an exponential fashion, this
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meaning that taking a trajectoryR.t/ of E.3.10 corresponding to an initial solutionR0, as we

did in the proof of T.3.2 (page 154), the distance between R.t/ and the Inertial Manifold

satisfies

dist
�
R.t/;Mn

�
� e��.n/t :

Investigating the dependency of �.n/ on n, we shall be able to find the best Inertial Manifold,

that is the Inertial Manifold Mn with the largest �.n/.

To perform this task, we could just quote any theorem of [39-TEM-1998], giving

definitions of �.n/ in terms of the eigenvalues of A and Lipschitz constants: remember that

the Lipschitz constant of H is zero, all the eigenvalues of the dynamical system E.3.10 are

negative, the kth eigenvalue being �.˛ C �/k, and that the gap between one eigenvalue and

the next increases with k.

However we prefer to detail the not so difficult calculations needed in this simple case;

this is because these calculations will give us a very good hindsight on what is happening

and a better understanding of the relation between the Moment Closure technique and the

Inertial Manifold method. At the end of the day, this chapter of the thesis is dedicated to

understanding this relationship (if any) and not to develop any difficult mathematical theory.

So, as we did in the proof of T.3.2, let us take the fixed point xR and R.t/. Instead of

calculating the difference xR � R.t/ , as we did in T.3.2, we just calculate the difference

between the projection of xR and R.t/ on Q D V � Rn. Write un.t/ D Q xR �QR.t/, and

evaluate

h Pun; uni D h�QAun; uni: E:3:21

Instead of using the generic constant C used in T.3.2, we calculate it more accurately; we

follow the same calculations as for E.3.15 (page 153), E.3.16 and E.3.17.

First of all, remembering that n > 1, we can write the projected form of E.3.15:

jh˛QTR;QRiLj � ˛ kQRk
2
L � ˛n kQRk

2
L :

Now write the correspondent equation for E.3.16:

h.˛ C �/Q�R;QRiL D .˛ C �/
X
k>n

k�2k � .˛ C �/n kQRk
2
L :
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Finally:

hQAR;QRiL � n� kQRk
2
L :

Going now back to E.3.21, one can write

h Pun; uni � �n� kunk
2
L ;

which gives

kun.t/k
2
L � kun.0/k

2
L e
�2n�t :

It is now clear that the bigger the n, the faster the rate of attraction. This is why the normal

approximation gives better results than the deterministic one. This also implies that we could

find an even better approximation by considering the first three moments, and then the first

four. In fact Mn �MnC1 and �.n/ < �.nC 1/. Remembering definition D.1.6 (page 20),

we have proved that the manifold MnC1 is slower than the manifold Mn because the rate of

attraction along the fast coordinates is faster.

It might initially appear that this results is self-evident; in fact we are saying that taking

into account one more moment will give better approximations. Nevertheless we have to

stress that we are considering a dynamical process, and the best slow manifold will be given

by the Inertial Manifold with the bigger rate of attraction. The rate of attraction to the nth

coordinate is given by the nth eigenvalue.

In this example it happens that the order of the coordinates is the same as the order of the

eigenvalues but in general it might not be true that �.n/ < �.nC 1/. In such a case, in order

to apply the theory of Inertial Manifold, one would have to rearrange the coordinates so that

the associated eigenvalues are then ordered. For example, it might happen that the second

moment appears before the first moment and that in between there might be many other

moments. In general, it might happen that for some n and m such that n > m, �.n/ < �.m/

and so the moment of order n appears before the moment of order m. This implies that the

above result is not self-evident and that one has to do the analysis contained in this chapter.

3.3.3 Comparison of the steady states for the full and approximated
models

In this section, we analyse how the fixed point is related to the deterministic and normal

approximations studied in [72-ISH-1995]. In this paper the author finds that using either of
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the two relations among the moments

�2 D 0 E:3:22

or

m3 D 3m1�
2
Cm31 E:3:23

does indeed result in a very good approximation. Using the algebra in section 3.2.2, we

translate these two relations for the moments in the equivalent for our coordinates �k :

m1 D �1;

�2 D �1 C �2;

m3 D �3 C �
3
1 C 3�1�2 C 3�

2
1 C 3�2 C �1:

Using the above relations, equation E.3.22 reads as

�1 C �2 D 0 E:3:24

and E.3.23 as

�3 C 3�2 C �1 D 0: E:3:25

Using the first relation �2 D 0 or E.3.24, i.e. the deterministic approximation, we can solve

the approximated equation for �1; E.3.10 becomes

P�1 D h1 � ��1: E:3:26

Let us note that the solution of this equation converges exponentially towards a fixed point

Q�1 D h1=�. If the situation was that Q�1 was equal to the first co-ordinate of xR, then it would

be immediately clear why the approximation is a good one. However, we shall presently see

that this is not the case.

We have the same situation when we use the relation E.3.25, the normal approximation.

This time we have the approximated equations for the first two co-ordinates:

P�1 D h1 � ˛�2 � .˛ C �/�1

P�2 D h2 C .˛ � 2�/�2 C ˛�1

E:3:27
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Again the solutions to this equation tend towards a fixed point . O�1; O�2/, which are different

from the first two co-ordinates of xR. However, let us note that the eigenvalues of the stability

matrix for E.3.27  
�.˛ C �/ �˛

˛ .˛ � 2�/

!
have negative real parts, and are real and negative for � > 4˛ which is true for the particular

values assumed in the biology of [72-ISH-1995]: � D 10 and ˛ D 0:02.

We shall now proceed to prove that the approximations used in [72-ISH-1995] are good

because the parameters are such that the fixed points of E.3.26, E.3.27 and E.3.14 are very

close when ˛ � � , that is when the parasite-induced mortality is smaller than the parasites

death rate.

In order to accomplish this task, let us first find a formula for xR. The co-ordinates of

the fixed point xR satisfy the following equations

N�kC1 D
hk

˛
�
˛ C �

˛
k N�k .k D 1; 2 : : :/: E:3:28

Using E.3.28 recursively, we obtain

N�kC1 D
hk

˛
�
˛ C �

˛
k

�
hk�1

˛
�
˛ C �

˛
.k � 1/�k�1

�
D
hk

˛
�
.˛ C �/

˛2
khk�1 C

.˛ C �/2

˛2
k.k � 1/�k�1

D
hk

˛
�
.˛ C �/

˛2
khk�1 C

.˛ C �/2

˛2
k.k � 1/

�
hk�2

˛
�
˛ C �

˛
.k � 2/�k�2

�
D
hk

˛
�
.˛ C �/

˛2
khk�1 C

.˛ C �/2

˛3
k.k � 1/hk�2

�
.˛ C �/3

˛3
k.k � 1/.k � 2/�k�2

D : : :

D.�1/k
�
˛ C �

˛

�k
kŠ

24 N�1 C 1

˛

kX
jD1

 
.�1/jhj

1

j Š

�
˛

˛ C �

�j!35 :
So all the co-ordinates of xR are expressible just in terms of N�1. Imposing that xR 2 V

means that
P
k k

2 N�2
k
<1. This can be obtained only if N�k ! 0, i.e. only if

N�1 D �
1

˛

1X
kD1

.�1/khk
1

kŠ

�
˛

˛ C �

�k
: E:3:29
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As H belongs to V the hk are bounded, let’s say by H , and thus N�1 is finite because it is

dominated by the exponential series

H

˛

X 1

kŠ

�
˛

˛ C �

�k
D

H

˛
exp

�
˛

˛ C �

�
:

Note also that we could have used this sort of algebraic argument to prove the existence and

uniqueness of the fixed point, the above proving uniqueness.

We write explicitly the expansion of N�1 up to the first two terms:

N�1 D
h1

˛ C �
�

˛h2

2.˛ C �/2
C tail;

and the expression for N�2, the variance of the fixed point:

N�2 D N�1 C N�2

using E.3.28

D
h1

˛
�
�

˛
N�1

using E.3.29 (page 160)

D
h1

˛ C �
C

�h2

2.˛ C �/2
C tail:

Now the fixed point for the deterministic approximation has, as first co-ordinate,

Q�1 D
h1

�
:

At this point we are interested in the parameters values. In [72-ISH-1995] the value of

˛ is much smaller than the value of �; in a typical case ˛ D 0:02 and � D 10. Thus we

assume that the ratio ˛=� tends to 0.

Let � D ˛=�, so that ˛ D ��, and let � ! 0. With this relation we have

N�1 �
h1

.1C �/�
;

which converges to Q�1 as � ! 0; this explains the good approximation. Also note that as in

[72-ISH-1995] Q�1 � N�1 and that the deterministic assumption is equivalent to the assumption

� D 0.
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We now give the expressions for the first co-ordinate (the mean) of the fixed point given

by the normal approximation, which agree with the limiting form of the exact mean of the

normal approximation given in [72-ISH-1995]. This is obtained by setting P�1 D P�2 D 0 in

E.3.27.

O�1 D
2� � ˛

�.˛ C 2�/
h1 �

˛

�.˛ C 2�/
h2:

Again we substitute ˛ D �� and obtain

O�1 D
2 � �

.2C �/�
h1 �

�

.2C �/�
h2

N�1 �
1

.1C �/�
h1 �

�

2.1C �/2�
h2:

Note again that as � ! 0, the distance between N�1 and O�1 tends to 0. In [72-ISH-1995] the

author also notes that the approximated mean is always smaller than the true mean. In fact it

is easy to verify that for � � 0 we have

2 � �

.2C �/
�

1

.1C �/

�

.2C �/
�

�

2.1C �/2
:

Finally we prove that the variance given by the normal approximation

O�2 D O�1 C O�2

D
2

˛ C 2�
h1 C

1

˛ C 2�
h2 D

2

.2C �/�
h1 C

1

.2C �/�
h2:

and the variance of the real fixed point, obtained using E.3.28 and E.3.29 (page 160),

N�2 �
1

.1C �/�
h1 C

1

2.1C �/2�
h2;

again converge towards the same limit. Furthermore it is straightforward algebra to prove

that, as noted in [72-ISH-1995], O�2 � N�2. Also note that the expression O�2 agrees with the

limiting form of the exact variance of the normal approximation given in [72-ISH-1995].

Note that these results do not depend on the form of H . It is enough to suppose that

H 2 L. We shall see the biological significance of this in section 3.5.

Finally, it is important to stress the fact that the arguments above are concerned only

with the first two coordinates in the case of the normal approximation and the first coordinate
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in the case of the deterministic approximation. Nothing is said about the behaviour of the

higher coordinates. We try to overcome this limitation in the following sections.

3.3.4 Perturbations of the Inertial Manifold

In the previous section we studied the modified equations obtained by using the deter-

ministic and normal assumptions. The modified systems and the original one admit globally

attracting fixed points, and we noted that, when ˛ is a small parameter, the first coordinates

of the fixed points are close.

In this section we give a more dynamical account of what is happening. We show

that both the deterministic and normal approximations are Inertial Manifolds for dynamical

systems related to the original one, and that these Inertial Manifolds are very close to the

Inertial Manifold of E.3.10, for the actual parameter values ˛ and � and for t !1. We go

a step further and we give a general algorithm that can be applied to show that a Moment

Closure approximation is an Inertial Manifold for a dynamical system related to E.3.10 (page

147). Notice that the last step is the only one depending on the values of the parameters ˛

and �.

We are trying to overcome the limitation of the previous section where the only thing

we said is that the first coordinates of the fixed points are close. See the explanation at page

38 in section 1.4.2 for more details on this limitation.

In the case these Moment Closure functions were Inertial Manifolds, then all higher

coordinates would be expressed as functions of the first one (deterministic approximation) or

the first two (normal approximation). Here we prove that this is the case for a perturbation

of E.3.10, but only for the second coordinate (deterministic approximation) and for the third

coordinate (normal approximation).

Our aim is thus to use the moment closure function to define a dynamical system, which

will be a perturbation of the original one, though in a peculiar sense, so that the moment

closure is an Inertial Manifold for this system. It is important to stress that the new system is

defined for all the coordinates �k , and not just for the first n coordinates defining the moment

closure being used. This is how we can overcome the limitation of the previous section, and
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actually study the relation between the higher coordinates of the approximated system and

those of the original one.

Therefore, in this section we define Mn as the Inertial Manifold of E.3.10, and for a

Moment Closure approximation, given as a function of the first n coordinates, we define zMn

which is equal to Mn except for the .nC 1/th coordinate. We then prove that this .nC 1/th

coordinate is close to the .nC 1/th coordinate of Mn, at least for � ! 0 and t !1.

Here goes the algorithm:

� First of all, we have shown in lemma L.3.3 (page 155) that the hyperplane of

dimension n obtained by fixing all the coordinates, with the exception of the first

n ones, equal to the fixed point coordinates, is an Inertial Manifold for the original

system:

Mn D
˚
�1; : : : ; �n; ˆn.�1; : : : ; �n/

	
D
˚
�1; : : : ; �n; N�nC1; N�nC2; : : :

	
:

� Then we introduce a Moment Closure approximation of order n, defined by a

function ẑn.�1; : : : ; �n/ such that the Moment Closure can be expressed as �nC1C

ẑ
n.�1; : : : ; �n/ D 0. The deterministic approximation is then defined by the

function

ẑ
1.�1/ D �1

and the normal approximation by the function

ẑ
2.�1; �2/ D 3�2 C �1:

� Introduce now the change of variables

z�nC1 D�nC1 C ẑn.�1; : : : ; �n/ �ˆn;nC1.�1; : : : ; �n/

D�nC1 C ẑn.�1; : : : ; �n/ � N�nC1

E:3:30

whereˆn;j .�1; : : : ; �n/ is the j th coordinate of the functionˆn defining Mn. With

this notation, for the deterministic approximation we have

z�2 D �2 C �1 � N�2;

and for the normal approximation

z�3 D �3 C 3�2 C �1 � N�3:
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� To simplify the notation, we now write ẑn for ẑn.�1; : : : ; �n/ and ˆn;j for

ˆn;j .�1; : : : ; �n/. Finally we show that, if ẑn is Lipschitz, the manifold

�Mn D
˚
�1; : : : ; �n; Q̂ n; ˆn;nC2; ˆn;nC3; : : :

	 E:3:31

is an Inertial Manifold for the dynamical system

P�k D hk � ˛�kC1 � .˛ C �/k�k for k � n;

Pz�nC1 D
d ẑn.�1; : : : ; �n/

dt
;

P�k D hk � ˛�kC1 � .˛ C �/k�k for k � nC 2;

E:3:32

which is obtained by substituting P�k with Pz�nC1 D
d ẑn.�1; : : : ; �n/

dt into the system

E.3.10.

� In the L norm, the distance between Mn and �Mn is given by the square sum of the

difference of all coordinates. Being the two manifolds equal for all coordinates,

except the .nC 1/th coordinate, we have that

dist
�
Mn; �Mn

�
D

ˇ̌̌
N�nC1 � ẑn

ˇ̌̌2
:

We show that this difference goes to zero at infinity for the normal and deterministic

approximation for the values of the parameters ˛ and � used in the biological

example of [72-ISH-1995]; that is

zMn����!
t!1
�!0

Mn

We now continue with formal proofs of the steps of the above algorithm. The first point was

already proved in lemma L.3.3 (page 155). The other steps of the procedure defined at the

beginning of this section are quite automatic. The most interesting bit is the last step, that is

the proof that . N�nC1� ẑn/ is small. Clearly this cannot be done in general; that is depending

on the values of the parameters ˛ and � and on the Moment Closure function, the algorithm

will be valid or not.

We prove in the following lemmas two results that we shall need later to prove that the

procedure can be applied to the deterministic and the normal approximations.
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LEMMA L.3.4 The difference . N�2 � N�1/, expressed as a quantity depending on ˛

and � D ˛=�, goes to zero as � ! 0.

Proof Using E.3.28 (page 160) and E.3.29, we have

N�2 D
h1

˛
�
˛ C �

˛
N�1

D
h1

˛
�
˛ C �

˛

 
�
1

˛

1X
kD1

.�1/khk
1

kŠ

�
˛

˛ C �

�k!

D
h1

˛
�
˛ C �

˛

�
1

˛
h1

˛

˛ C �

�
�
˛ C �

˛

 
�
1

˛

1X
kD2

.�1/khk
1

kŠ

�
˛

˛ C �

�k!

DC
1

˛

1X
kD2

hk
.�1/k

kŠ

�
˛

˛ C �

�k�1
: E:3:33

Now we can write

j N�1 � N�2j D

ˇ̌̌̌
ˇ h1

˛ C �

�
1

˛

1X
kD2

.�1/khk
1

kŠ

�
˛

˛ C �

�k

�
1

˛

1X
kD2

hk
.�1/k

kŠ

�
˛

˛ C �

�k�1 ˇ̌̌̌ˇ
D

ˇ̌̌̌
ˇ h1

˛ C �
�
1

˛

1X
kD2

.�1/khk
1

kŠ

 
˛k C ˛k�1.˛ C �/

.˛ C �/k

! ˇ̌̌̌
ˇ

�
H

˛ C �
C

H

˛

1X
kD2

˛k�1�C 2˛k

kŠ.˛ C �/k
;

E:3:34

where H is a constant dominating the sequence fhkg, for example its norm. With the

assumption � D ˛=�, it is true that the above difference is bounded by a term tending to zero

for � ! 0. We can see this in the following calculation:

j N�1 � N�2j �
H�

�˛ C ˛
C

H

˛

1X
kD2

�k.˛k�1˛ C 2�˛k/

�kŠ.�˛ C ˛/k
;

D
H�

�˛ C ˛
C

H

˛

1X
kD2

�k.1C 2�/

�kŠ.� C 1/k

D
H�

�˛ C ˛
C

H

˛

.1C 2�/

�

1X
kD2

�k

kŠ.� C 1/k

D
H�

�˛ C ˛
C

H

˛

.1C 2�/

�

�
e�=.�C1/ � 1 �

�

� C 1

�
D

H�

�˛ C ˛
C

H

˛

.1C 2�/

�

�
e�=.�C1/ �

1C 2�

� C 1

�
;
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which goes to zero as � ! 0, as an easy application of l’Hôpital’s rule will show.

======

LEMMA L.3.5 The difference . N�3 � 3 N�2 � N�1/, expressed as a quantity depending

on ˛ and � D ˛=�, goes to zero as � ! 0.

Proof First of all, using E.3.33, we find the expression for N�3:

N�3 D
h2

˛
� 2

˛ C �

˛
N�2

D
h2

˛
� 2

˛ C �

˛

1

˛

1X
kD2

hk
.�1/k

kŠ

�
˛

˛ C �

�k�1
D
h2

˛
� 2

˛ C �

˛2
h2.�1/

2

2Š

˛

˛ C �
� 2

˛ C �

˛2

1X
kD3

hk
.�1/k

kŠ

�
˛

˛ C �

�k�1
D �

2

˛

1X
kD3

hk
.�1/k

kŠ

�
˛

˛ C �

�k�2
:

Again we note that ẑ .�1; �2/! 3 N�2C N�1. Take the difference between this number and N�3:

j N�3 � 3 N�2 � N�1j D

ˇ̌̌̌
ˇ� 2˛

1X
kD3

hk
.�1/k

kŠ

�
˛

˛ C �

�k�2
�
3

˛

1X
kD2

hk
.�1/k

kŠ

�
˛

˛ C �

�k�1

C
1

˛

1X
kD1

hk
.�1/k

kŠ

�
˛

˛ C �

�k ˇ̌̌̌ˇ
D
1

˛

ˇ̌̌̌
ˇ�32 h2˛

˛ C �
�

h1˛

˛ C �
C
h2

2

�
˛

˛ C �

�2
C

1X
kD3

hk
.�1/k

kŠ

"
�2

�
˛

˛ C �

�k�2
� 3

�
˛

˛ C �

�k�1
C

�
˛

˛ C �

�k#ˇ̌̌̌ˇ ;
which again, with the assumption � D ˛=�, is bounded by a term tending to zero for � ! 0.

We can see it in the following calculation:

j N�3 � 3 N�2 � N�1j �
1

˛

(
3

2

H�˛

�˛ C ˛
C

H�˛

�˛ C ˛
C

H

2

�
�˛

�˛ C ˛

�2
CH

1X
kD3

1

kŠ

"
2

�
�˛

�˛ C ˛

�k�2
C 3

�
�˛

�˛ C ˛

�k�1
C

�
�˛

�˛ C ˛

�k#)

D
1

˛

(
H

�

� C 1

6� C 5

2.� C 1/
CH

6�2 C 7� C 2

.� C 1/2

1X
kD3

1

kŠ

�
�

� C 1

�k�2)
:
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The first term of the right hand side clearly goes to 0 as � ! 0, whilst the second term

behaves like 2H multiplied by the following exponential series:

1X
kD3

1

kŠ

�
�

� C 1

�k�2
D

�
� C 1

�

�2 1X
kD3

1

kŠ

�
�

� C 1

�k
D

�
� C 1

�

�2 �
ee=�C1 � 1 �

�

� C 1
�

�

2� C 2

�
;

which again is a series whose limit for � ! 0 is 0 thanks to l’Hôpital’s rule.

======

We finally prove a lemma regarding the dynamical system E.3.10, valid for any value

of ˛ and �.

LEMMA L.3.6 �Mn defined in E.3.31 is an Inertial Manifold for E.3.32 .

Proof To simplify the notation, in the following ẑn stands for ẑn.�1; : : : ; �n/ and ẑn.t/

for ẑn.�1.t/; : : : ; �n.t//.

First we prove invariance. Take a point R D frkg lying on the manifold �Mn, i.e

satisfying the equations

rnC1 D ẑn D ẑn.r1; : : : ; rn/;

rk D N�k for k � nC 2:

Take this point as an initial condition and show that the solution of E.3.32 associated to this

fixed points lies on the manifold.

By definition E.3.31 of �Mn we have

z�nC1.0/ D rnC1 D ẑn.0/

and by definition E.3.30 of z�nC1 we have

z�nC1.0/ D �nC1.0/C ẑn.0/ � N�nC1:

The two above equations put together give

ẑ
n.0/ D z�nC1.0/ D �nC1.0/C ẑn.0/ � N�nC1
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which clearly implies

�nC1.0/ D N�nC1:

Now, we have to remember that equation E.3.32 is the same as E.3.10, with a change

of variables. This means that for i � 1, rnCi has the coordinates of the fixed point xR of

E.3.10, and, as in this equation for the j th coordinate depends only on the j th and .j C 1/th

coordinates, we can conclude that

�nCi .t/ D N�nCi

for all i � 1 and for all t � 0.

In particular, �nC1.t/ D N�nC1 and thus

z�nC1.t/ D �nC1.t/C ẑn.t/ � N�nC1 D ẑn.t/:

This shows invariance: if we start on �Mn, that is if z�nC1.0/ D rnC1 D ẑn.0/, then the

trajectory will always stay on �Mn, that is z�nC1.t/ D ẑn.t/.

The fact that the manifold is exponentially attracting is trivial, as every trajectory is

exponentially attracted to the point

zR D
˚
N�1; : : : ; N�n; ẑn. N�1; : : : ; N�n/; N�nC2; : : :

	
which lies on the manifold. In fact, we know that 8i � 1 �i .t/ ! N�i exponentially. This

means that

z�nC1.t/ D �nC1.t/C ẑn.t/ � N�nC1

! N�nC1 C ẑn. N�1; : : : ; N�n/ � N�nC1

D ẑn. N�1; : : : ; N�n/:

Finally the manifold �Mn is finite dimensional, and it is Lipschitz if so is ẑn.

======

We are now ready to prove that the deterministic and normal approximation are very

close to the original Inertial Manifold.
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THEOREM T.3.7 Given zM1 and zM2 the manifolds respectively given by the

Moment Closure approximations ẑ 1.�1/ D �1 and ẑ 2.�1; �2/ D 3�2 C �1, then the

distance between M1 and zM1 and the distance M2 and zM2 can be expressed as a term

ı.�; t/ which goes to zero as �! 0 and t !1.

Proof In lemmas L.3.4 and L.3.5 we have seen that for the deterministic and normal

approximation

lim
�!0

ẑ
n. N�1; : : : ; N�n/ D N�nC1:

In the last paragraph of the above proof, we have used the fact that 8� > 0

lim
t!1

ẑ
n.�1.t/; : : : ; �n.t// D ẑn. N�1; : : : ; N�n/:

If in the above limits we express ẑn as a function of � and time t , by making formally explicit

the dependency on ˛ and � D ˛=� and on time through �1.t/; : : : ; �n.t/, then it is clear that

z�nC1 would be equal to �nC1 plus a small term ı.�; t/ D ẑn.t/ � N�nC1. The above limits

show that ı.�; t/! 0 as � ! 0 and t !1.

======

It is important to remark the limitations of what we have shown. In fact, we have proved

that in the limit of both � ! 0 and t ! 1 the two inertial manifolds are close. So it is

not possible for us to speak properly of a “perturbation”; in fact the manifold zMn is a linear,

first degree approximation of another linear manifold Mn. Clearly, two hyperplanes cannot

be an approximation of each other for all times.

3.3.5 Higher factorial cumulants for the normal approximation

In this section we wish to give some insight on the behaviour of the higher factorial

cumulants for the normal approximation. In fact, if the normal approximation were really an

Inertial Manifold, then it would be describing all higher factorial cumulants as functions of

the first two, as explained in section 1.4.2. In section 3.3.3 we have seen that the O�1 is close to

N�1 and O�2 is close to N�2. In section 3.3.4 we have further seen that the normal approximation

expresses, at least for � ! 0 and t ! 1 the third component �3 as a function of �1 and

�2. Here we investigate whether all the other higher components of the manifold given as
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the graph of the function defining the normal approximation are close to the corresponding

higher components of the Inertial Manifold of the original dynamical system E.3.10 (page

147).

First of all, setting f .t/ D ln.E.tX // and g.t/ D et , the cumulants are given by the

formula

�n D

�
@nf .g.t//

@tn

�
0

:

Now, use Faà di Bruno’s formula (see glossary)

@nf .g.t//

@tn
D

i
�2‡n

@j�jf .g.t//

@t j�j

Y
B2�

@jBjg.t/

@t jBj
;

where ‡n are all the partitions of the set f1; : : : ; ng, � is such a partition, B 2 � means the

variable B runs through the list of all of the blocks of the partition � , and jAj denotes the

cardinality of the set A.

Remembering that the factorial cumulant is defined as

�n D

�
@nf .t/

@tn

�
1

and that g.0/ D 1 and g0.t/ D g.t/, we have easily that

8�

$Y
B2�

@jBjg.t/

@t jBj

%
0

D 1;

so that

�n D

�
@nf .g.t//

@tn

�
0

D

6664X
�2‡n

@j�jf .g.t//

@t j�j

7775
0

D

X
�2…n

�� : E:3:35

Now, we use the normal approximation, that is the fact that all cumulants �n D 0 for n � 3,

to find a formula for the �n. Remember that there is only one partition �1 of the first n

numbers f1; 2; : : : ; ng with cardinality n, which is �1 D ff1g; : : : ; fngg. Thus the normal

approximation can be expressed, for n � 3, in terms of the factorial cumulants as

�n D �
X
�2z‡n

�� E:3:36

where z‡n are all the partitions of the set of the first n numbers minus the one partition with

cardinality n.
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Take now a closer look at E.3.36, for example for n D 3. There are 3 partitions �i such

that j�i j D 2, that is with cardinality 2; these are the partitions with two sets, one of size 1 and

the other of size 2, namely �2 D ff1; 2gI f3gg , �3 D ff1; 3gI f2gg and �4 D ff2; 3gI f1gg.

Also, there is only one way of partitioning this set such that j�5j D 1, that is �5 D ff1; 2; 3gg.

Thus E.3.36 reads as follows, for n D 3:

�3 D �ẑ 2.�1; �2/ D �3�2 � �1;

which is exactly the negative of the function defining the normal approximation in the �

coordinates. Remember that we used this relation in lemma L.3.5 (page 167), where we

proved that the difference ẑ 2. N�1; N�2/ � N�3 tends to zero. We used this fact to prove that the

change of variable in the system E.3.32 (page 165)

z�3 D �3 C ẑ 2.�1; �2/ � N�3:

would give us an approximated Inertial Manifold, close to the original one for � ! 0 and

t !1.

Now, we would like to extend this result to the higher coordinates N�n of the fixed point

xR for n � 4. In order to do this, we first notice that E.3.36 is actually saying that we can

recursively solve the �n and express them as a polynomial function of �1 and �2. Let us

denote such a function by ‰n. This is the same of the normal approximation function, but

expressed in the factorial cumulants coordinates.

LEMMA L.3.8 For all n � 3, N�n is close to ‰n. N�1; N�2/, as � !1.

Proof The proof is not difficult as it consists just of some algebraic manipulations of the

above formulas. First we find a formula for N�n as a function of hk ; ˛; �. Then we show that

this function is such that N�n �‰n. N�1; N�2/ tends to zero as � ! 0.

We show that each N�n satisfies the formula

N�n D .�1/
n .n � 1/Š

˛

1X
kDn

hk
.�1/k

kŠ

�
˛

˛ C �

�k�nC1
: E:3:37

We have shown in lemma L.3.4 (page 166) that the above is true for n D 2 and in lemma

L.3.5 (page 167) that it is true for n D 3. We now use induction to prove it for all n. Suppose
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it is true for n and use formula E.3.28 (page 160) for N�nC1:

N�nC1 D
hn

˛
�
˛ C �

˛
n N�n

using E.3.37 for �n

D
hn

˛
�
˛ C �

˛
n

(
.�1/n

.n � 1/Š

˛

1X
kDn

hk
.�1/k

kŠ

�
˛

˛ C �

�k�nC1)

D
hn

˛
�
˛ C �

˛
n.�1/n

.n � 1/Š

˛
hn
.�1/n

nŠ

�
˛

˛ C �

�n�nC1
�
˛ C �

˛
n.�1/n

.n � 1/Š

˛

1X
kDnC1

hk
.�1/k

kŠ

�
˛

˛ C �

�k�nC1

D
hn

˛
�
hn

˛
C .�1/nC1

nŠ

˛

1X
kDnC1

hk
.�1/k

kŠ

�
˛

˛ C �

�k�.nC1/C1
which is exactly formula E.3.37.

Let us turn now our attention to E.3.36. Introduce the Stirling numbers of second kind

(see glossary) Sn; k which are defined for k D 1; : : : ; n as the number of partitions of the set

f1; : : : ; ng with cardinality k. Now, formula E.3.36 can be written as

�n D �

n�1X
kD1

Sn; k�k : E:3:38

This means that, if the normal approximation holds, the �n are a linear combination of the

previous factorial cumulants. Apply now recursively the above formula to �n�1:

�n D�

n�1X
kD1

Sn; k�k

D� Sn; n�1�n�1 �

n�2X
kD1

Sn; k�k

applying E.3.38 again

DSn; n�1

n�2X
kD1

Sn�1; k�k �

n�2X
kD1

Sn; k�k

D

n�2X
kD1

�
Sn; n�1Sn�1; k � Sn; k

�
�k : E:3:39

It is clear now that �n can be expressed as a very special polynomial of �1 and �2:

�n D ‰n.�1; �2/ D !n; 1 �1 C !n; 2 �2; E:3:40
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where !n; 1 and !n; 2 are two numbers given by the recursive formula E.3.39.

We are now ready to show that no matter the actual form of !n; 1 and !n; 2, the fact that

the formula E.3.40 is linear in �1 and �2 guarantees that N�n �‰n. N�1; N�2/ is close to zero.To

do this, use the formulas E.3.37 (page 172), E.3.33 (page 166) and E.3.29 (page 160):

ˇ̌
N�n �‰n. N�1; N�2/

ˇ̌
D

ˇ̌̌̌
ˇ.�1/n .n � 1/Š˛

1X
kDn

hk
.�1/k

kŠ

�
˛

˛ C �

�k�nC1
C !n; 1

1

˛

1X
kD1

.�1/khk
1

kŠ

�
˛

˛ C �

�k

� !n; 2
1

˛

1X
kD2

hk
.�1/k

kŠ

�
˛

˛ C �

�k�1 ˇ̌̌̌ˇ
so that

ˇ̌
N�n �‰n. N�1; N�2/

ˇ̌
�

H

˛

(
.n � 1/Š

1X
kDn

1

kŠ

�
˛

˛ C �

�k�nC1

C !n; 1

1X
kD1

1

kŠ

�
˛

˛ C �

�k
C !n; 2

1X
kD2

1

kŠ

�
˛

˛ C �

�k�1 )

D
H

˛

(
!n; 1

˛

˛ C �
C

n�1X
kD2

"
1

kŠ

�
˛

˛ C �

�k�1
.!n; 1 C !n; 2/ ˛ C !n; 2�

˛ C �

#

C

"
.n � 1/ŠC !n; 1

�
˛

˛ C �

�n�1
C !n; 1

�
˛

˛ C �

�n�2# 1X
kDn

1

kŠ

�
˛

˛ C �

�k�nC1)
:

Substitute now � D ˛=� in the above, as we did in lemmas L.3.4 (page 166) and L.3.5

(page 167).

ˇ̌
N�n �‰n. N�1; N�2/

ˇ̌
�

H

˛

(
!n; 1

�

1C �
C

n�1X
kD2

"
1

kŠ

�
�

1C �

�k�1
.!n; 1 C !n; 2/ � C !n; 2

1C �

#

C

�
.n � 1/ŠC !n; 1

� �

1C �

�n�1
C !n; 1

� �

1C �

�n�2� 1X
kDn

1

kŠ

� �

1C �

�k�nC1)
:

Obviously

�

1C �
����!
�!0

0:

Inertial Manifolds in Biological Systems - PhD Thesis - Pasquale Iannelli - UCL, London 2009 174/216



3 - Stochastic Processes: a similarity 3.3 - Almost an Inertial Manifold

3.3.5 - Higher factorial cumulants for the normal approximation

The following finite sum also tends to 0 for � ! 0:

n�1X
kD2

"
1

kŠ

�
�

1C �

�k�1
.!n; 1 C !n; 2/ � C !n; 2

1C �

#
����!
�!0

0:

The following term tends to .n � 1/Š:

.n � 1/ŠC !n; 1

� �

1C �

�n�1
C !n; 1

� �

1C �

�n�2
����!
�!0

.n � 1/Š;

which is finite for any n. We need only showing that the following infinite series tends to 0

as � ! 0:
1X
kDn

1

kŠ

� �

1C �

�k�nC1
D

�
1C �

�

�n�1 1X
kDn

1

kŠ

� �

1C �

�k
D

�
1C �

�

�n�1 "
e�=.1C�/ �

n�1X
kD0

1

kŠ

� �

1C �

�k#
:

Once again an application of l’Hôpital’s rule guarantees that the above tends to 0 as � ! 0.

======

In this section we have proven that the coordinates of the fixed point, for the particular

choice of the parameter values, are such that they are indeed close to the normal approximation

for all n � 3 and that they can be expressed by a function ‰n of just N�1 and N�2. Again,

though this looks as an Inertial Manifold, we have to remark that this is not the case. In fact,

if this were the case, then for any initial condition, �n.t/! ‰n.�1; �2/ for t !1. This is

not what we have shown. We have shown that N�n ! ‰n. N�1; N�2/ for � ! 0. Furthermore,

we have not proven one essential bit: this manifold is not invariant for E.3.10 (page 147).

Thus it cannot be an Inertial Manifold.

However, the following is true:

�n.t/ �‰n.�1.t/; �2.t//����!
t!1

N�n.t/ �‰n. N�1.t/; N�2.t//����!
�!0

0;

so that in a sense the normal approximation holds for all �k but for small values of � and for

big times t , similarly with what happens with third coordinate of the approximated Inertial

Manifold of the previous section.

In fact, if we go back to the algorithm of section 3.3.4, then we can see that in the case

of the normal approximation one might substitute the manifold zM2 with the following

xM D
˚
�1; �2; ‰3.�1; �2/; ‰4.�1; �2/; : : : ; ‰n.�1; �2/; : : :

	
: E:3:41
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In the above lemma L.3.8 we have shown that each coordinate is such that

‰n.�1; �2/����!
t!1
�!0

N�n:

However, it is important to stress that if M and xM were close in the L norm, that is if

xM����!
t!1
�!0

M;

then we should have that

dist
�
M; xM

�
L
D

X
n

j�n �‰n.�1; �2/j
2
����!
t!1
�!0

0:

The above is not true, as this infinite series contains a term that grows as nŠ.e� � 1/, and thus

it does not go to zero as both n!1 and � ! 0.

Therefore, while on the one hand we have shown that all coordinates of xM are close to

the corresponding coordinate of M, and thus we have improved on the definition of zM2, on

the other hand this time we cannot say that that xM is a “perturbation” of M for small � and

big t .

Nevertheless, we can easily adapt the proof of lemma L.3.6 (page 168) to obtain a

“perturbation” of E.3.10, which admits xM as an Inertial Manifold.

THEOREM T.3.9 The manifold xM defined in E.3.41 is an Inertial Manifold for

the dynamical system obtained by the change of variables

Q�n D ˆn.�n; �1; �2/ D �n C‰n.�1; �2/ � N�n 8n � 3:

Proof The proof is exactly the same as that of L.3.6, so we omit some of the minor

details. The dynamical system is

P�1 Dh1 � ˛�2 � .˛ C �/�1

P�2 Dh2 � ˛�3 � 2.˛ C �/�2

Pz�n D
dˆn.�n; �1; �2/

dt
8n � 3

E:3:42
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We first prove invariance. Take a point R D fr1; r2; ‰3.r1; r2/; : : :g 2 xM and z�n.t/ as

the solution of E.3.42. By definition of Q�n and by definition of xM we have:

‰n.r1; r2/ D Q�n.0/ D �n.0/C‰n.r1; r2/ � N�n:

Thus �n.0/ D N�n, that is f�n.0/g 2M, so that �n.t/ 2M for all times. This means that

Q�n.t/ D �n.t/C‰n.�1.t/; �2.t// � N�n D ‰n.�1.t/; �2.t//;

which proves invariance.

Remember that for E.3.10 �n.t/! N�n exponentially, when �n.t/ is a solution starting

at any initial point. Thus

Q�n.t/ D �n.t/C‰n.�1.t/; �2.t// � N�n ����! N�n C‰n. N�1; N�2/ � N�n D ‰n. N�1; N�2/;

and again the exponential attraction is proved.

The manifold xM is clearly finite dimensional and Lipschitz.

======

Again we wish to stress the fact that xM is a good coordinate-wise approximation of M

only for t !1 and � ! 0. In fact, once more, xM is a linear function of �1 and �2, that is

a two-dimensional hyperplane and which cannot be a global good approximation to another

hyperplane.
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We would like to spend some time explaining our choice of coordinates. In fact,

considering that the change of coordinates from the cumulants to the factorial cumulants is

linear, it would seem so much better to work in a set of coordinates with which the scientific

community is more familiar. Apart from the simple fact that we initially developed the theory

using the factorial cumulants, there are a number of reasons why we discarded the idea of

rewriting the whole section of this thesis using the cumulants as the main coordinate system.

Let us take a look closely at equation E.3.35 (page 171), which describes the linear

relation between the cumulants �n and the factorial cumulants �n:

�n D
X
�2…n

�� :

Clearly the cumulant of order n depends on the factorial cumulants �1; : : : ; �n via a linear,

invertible relation.

Thus when we considered whether we would be getting any additional or slightly

different result, we found out that the answer was bounded to be “no”. The change of

coordinates from the cumulants to the factorial cumulants is linear, so that we would be getting

again one globally, exponentially attracting fixed point, the moment closure functions would

be defining “perturbations” of the original system with the same limitations we expressed in

the previous sections, these systems would have an Inertial Manifold that approximate the

original one as both t !1 and � ! 0, the rate of attraction would be exactly the same and

finally the the manifold xM would be a coordinate-wise, good exponential approximation of

M, but not a global approximation.

On the other hand, when we pondered whether obtaining such results would be easier,

we found out that it would be indeed much more complicated.

In fact, consider now equation E.3.10 (page 147). This equation expresses the derivative

of �n via a function of �n and �nC1. Additionally the dependency on the .nC1/th coordinate

is given through a small parameter ˛.

These facts put together mean that if we were to write down the differential equation for

the cumulant �n, it would depend on all the cumulants �1; : : : ; �n; �nC1, and the dependency
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on �nC1 will be given again through the same small parameter ˛:
�
P�1

P�2
:::

P�n
:::

˘

D

�
z11 ˛z21 0 0 : : : 0 : : :

z21 z22 ˛z23 0 : : : 0 : : :

:::
: : :

zn1 zn2 : : : znn ˛zn; nC1 0 : : :

:::

˘�
�1

�2
:::

�n
:::

˘

: E:3:43

It is immediate now that the algebra involved in solving the following issues would be much

more complicated and convoluted:

� The formula for the fixed point would be almost impossible to handle; this is a

mayor factor, considering how heavily we rely on such formula when evaluating

the distance between ẑn. N�1; : : : ; N�n/ and N�nC1.

� The rate of attraction could not be given exactly as we do in section 3.3.2; in fact

one cannot calculate explicitly the eigenvalues of equation E.3.43, and we should

be relying on some perturbation theorem, such as that in [6-ROS-1955]. This

theorem states that if we have a linear operator T and a bounded linear operator

U and a small parameter � then the ith eigenvalue of T C �U can be expressed

as a continuous function of �U , that is �i D �i .�U /, which is invertible in a

neighbourhood of U D 0 and such that �i .0/ D 0 is the ith eigenvalue of T .

This theorem is an infinite dimensional version of the implicit function theorem

and it is saying that the eigenvalues of the perturbed operator T C �U are similar

to those of T . However verifying the conditions for such theorem to hold is not

really straightforward, as it involves calculating the norms of these operators in

dual Banach spaces, as well the norm of the Fréchet derivative of a Banach space

function defined through these operators.

� For the same reasons above, the proof that the differential equation for the cumulants

is defined via a coercive operator given in section 3.2.3, and the proof of theorem

T.3.2 (page 154), will have to be completely revised, as we use the eigenvalues of

the matrix A appearing in the differential equation for the factorial cumulants.

� Thus the proof itself of the fact that M is an Inertial Manifold would be more

complicated.
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Our conclusions are thus that using the cumulants as a basis would have the only

advantage of working with a set of coordinates more commonly used in Mathematics. The

disadvantage would be to have a much messier algebra, a more complicated functional

analysis settings and norms which would be more difficult to evaluate; at the end of the day,

a more error prone proof of exactly the same results. No additional results would be proven,

and those that we could prove would have the same limitations. We concluded that such little

gain was not worth the extra, additional effort.
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3.5 Interpreting the results
The aim of this section is to explain how our results of the previous sections are helpful

in clarifying the behaviour of the biological model described in [72-ISH-1995].

In section 3.3.4 we have proved that the normal approximation defines an Inertial

Manifold �M2 which converges to the true Inertial Manifold for � ! 0 and t ! 1, the

convergence in time being exponential. In simple words, this means that when the parameter

� D ˛=� is small, that is when ˛ is small, then we can expect that a good approximation

of the true steady state is reached very quickly. The numerical calculations used by Isham

confirm this result, in fact “the approximations do well even at small ages”. In Isham’s paper

host age is measured in years, and we can appreciate from the graphics included in the paper

that the approximation is good fairly quickly, within a few months; that is, one does not have

to wait a long transient before the approximated results are good. The remark is important

from a statistical point of view, as Isham states that in this model a normal distribution cannot

be justified for small ages.

Going back to the random variable M.a/, that is the number of parasites present in a

host of age a, we can say that all the moments of M.a/ are very close to those of a normally

distributed random variable. Notice that we say "all the moments" and not that the random

variable itself is normally distributed. Isham is quite insistent on this, and reiterates a few

times that the fact that the moments she evaluates (mean and variance) are close to those

provided by the normal approximation does not mean that M.a/ is approximately normally

distributed. Using her words, “it is possible for the approximate moments to be good even

in cases where the normal distribution is a wholly inappropriate approximation to the true

distribution”.

The above fact is fully reflected in section 3.3.5; here we prove that through the normal

approximation we can defined a new manifold xM, whose higher coordinates are all expressed

in terms of the moment closure function. This is in contrast with the manifold �M2 of the

previous section, where the normal approximation is used only to define the third coordinate

of �M2. One thus expects the manifold xM to represent more closely the nature of the normal

approximation. In fact, while one can prove that the manifold �M2 converges in norm to the

true Inertial Manifold M, one can prove only a partial results for xM: the convergence is

coordinate-wise.
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To this regard, our results confirm those in [72-ISH-1995] and improve on them in the

sense that we consider all the higher moments, that is we have generalised and formalised

the arguments given in the quoted paper to all higher moments. From an Inertial Manifold

point of view, this is quite important: Inertial Manifolds are a way of approximating higher

coordinates as function of a finite set of lower coordinates. This is the motivation of sections

3.3.4 and 3.3.5. We understand from this that the fact that the first two coordinates are well

approximated is not the central point of having an Inertial Manifold; however, when there is

an asymptotically complete Inertial Manifold, one does expect this result to hold. The fact

that our original Inertial Manifold is such is quite trivial, as the Inertial Manifold is just a fixed

point, so that all coordinates are exponentially approximated by the fixed point coordinates.

One more comment that the author of [72-ISH-1995] writes is that the normal approxi-

mation is “surprisingly good even close to the boundary, when M.a/ is zero or very small”.

In a sense, the normal approximation is not generally expected to give good results for all

initial values. Nevertheless, in this particular model, the normal approximation is related

to the existence of an Inertial Manifold, and these manifolds are globally, exponentially

attracting manifolds. This means, that the approximation will be good for all initial values,

even for those initial values which are not biologically meaningful.

Finally, there is one more remark that we wish to make. In Isham’s paper, results and

comparisons are made for a number of different probability distribution functions C of a

host acquiring parasites at age a. The numerical calculations given in this paper prove that

the above results are valid for the distribution functions used, that is the approximation gives

good results fairly quickly for any of these functions. As we have already noted in section

3.3.3, our results are valid for all H 2 L, and H represents the probability distribution

C in our model. It means that we have proved formally that the actual way in which the

host acquires parasites is not important, and regardless of the form of C , always the normal

approximation will give good results after a short transient.
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3.6 Applying the results to other models
In this section we wish to give a few hints on how one could apply the theory developed

in this chapter to other statistical models where a moment closure function is used to reduce

the dimensions of the system. Remember that the underlying question we would like to

answer is whether or not the moment closure function captures the complete behaviour of

the system. As we have seen, a manifold which does attract the whole dynamics, and so

describes the whole behaviour of the system, is an Inertial Manifold.

It is important to notice two things. Firstly, the example we have studied is quite a

simple one, and thus all calculations can be carried out in a straight forward manner. This has

the advantage that one can concentrate on the ideas rather than on the technical details; but

it has the drawback that, in other models, this might not be the case, and more complicated

formulas can arise. Secondly, we do not give any parametric method to obtain the Inertial

Manifold, nor we give any formula whose result could tell us if a moment closure function is

close or not to the Inertial Manifold. We are not aware of any formula as such, so the proof

of the answers to these questions will be part of the process in each case.

1) The first step is to define the differential equations for all the moments, cumulants

or factorial moments or any other coordinate one prefers; it is important to stress this

point as sometimes authors in statistics just explicitly give the first few equations,

as they might be extremely complicated. However, if this step is not done, one

cannot apply any of the results in this chapter. One then will have defined an

equation like

Pu D �AuC F.u/

or

Pu D �A.u/uC F.u/

where u is the variable of all the moments u D fmkg or all the cumulants or

factorial moments.

2) The next step will have to be that of defining the appropriate functional space

settings; this is important as the properties of the operatorA in the above dynamical

system might depend on the space being used. For example, the easiest way
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of identifying the existence of an Inertial Manifold is through the classical gap

condition, which is more easily verified if A is a self-adjoint operator.

3) One will study if the classical gap condition or a generalisation of it, as the one

used in chapter 2, is satisfied or not. The objective here is to find an Inertial

Manifold, hopefully as a function of a finite set of N coordinates to all the others.

Notice again that the finite set of N coordinates might not be given by the first

N moments, and one will have usually to rearrange the moments so that the first

coordinates correspond to the finite subspace of the N slow moments.

4) Having obtained an Inertial Manifold in such a way, we notice that this manifold

represents a relation amongst the moments, and so defines the limiting distribution

for the whole system. This distribution is nice because it is defined by a finite set of

N moments, though not necessarily the firstN ones. This will generally mean that

this might not be a known distribution, so that the study of its statistical properties

is necessary.

5) The final step will be to study whether the given moment closure function is close

or not to the Inertial Manifold. One can do this by using techniques similar to those

of sections 3.3.4 and 3.3.5. In fact, a moment closure function defines a manifold

and we wish to identify if the manifold given by the moment closure function is

close or not to the Inertial Manifold, at least coordinate-wise. One then might

complete this step by identifying if the two manifolds converge in norm or not.
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Glossary
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4 Glossary

We present here the definitions of all those concepts used throughout the thesis, organised

into two sections, the first one dedicated to Functional Analysis and Dynamical Systems, and

the second one to Probability and Statistics. Within each section, they are presented in strict

alphabetical order.
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4.1 Functional Analysis and Dynamical Systems

� Adjoint Operator Given an operator A W H ! H , where H is a Hilbert space, the

linear operator A� is defined as the adjoint of A if

hAx; yi D hx;A�yi

for every x; y 2 H .

An operator A W H ! H , is self-adjoint if A� D A. As noted in [8-RUD-1987], page

349, the difference between a self-adjoint operator and a symmetric one, resides in the

domain of the equality. For a symmetric operator the requirement is that A�.x/ D A.x/

only for those elements x in the domain of A. For a self-adjoint operator the requirement

is that A�.x/ D A.x/ for all x 2 H .

� Asymptotic Completeness An Inertial Manifold M is said to be asymptotic com-

plete if for any point m 62 M there exists a point n 2 M such that the distance between the

flow starting at m and the flow starting at n decreases exponentially:

dist .S.t/m; S.t/n/ � e�˛t :

�Banach Fixed Point Theorem Let X be a closed subset of a Banach Space Y with

norm k�kY , and let h W X ! X a function satisfying

kh.x/ � h.y/kY � d kx � ykY

for all x; y 2 X for a constant d < 1. Then we say that h is a contraction and h has a unique

fixed point.

This is a very standard theorem and its proof can be found in section 2.1.1 of [37-ROB-2001].

� Banach Space It is a vector space endowed with a norm, and that is complete under

the metric induced by the norm.
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� Bounded Linear Operator A linear operator A from X ! Y , where X and Y are

two normed spaces, is said to be bounded if there exists a number c <1 such that

kAxkY � c kxkX

for all x 2 X .

The number c depends on A. If one defines kAk D inffcI kAxkY � c kxkXg, then this

is a norm on the collection B.X; Y / of such operators; if Y is Banach, so is B.X; Y /.

The norm of an operator can be also defined by the following equivalent definitions:

kAk D inf
n
cI kAxkY � c kxkX 8x 2 X

o
D sup

n
kAxkY I x 2 X; kxkX � 1

o
D sup

n
kAxkY I x 2 X; kxkX D 1

o
D sup

n
kAxkY = kxkX I x 2 X; x ¤ 0

o
:

See, for example, [8-RUD-1987] for a complete treatment of these operators.

� Cone Condition Also called the “Cone Invariance Property”. Given a dynamical

system Pu D F.u/, with u split into two orthogonal set of coordinates u D .p; q/, and two

solutions u1.t/ D .p1.t/; q1.t// and u2.t/ D .p2.t/; q2.t//, the Cone Condition holds if

jq1.0/ � q2.0/j � 
 jp1.0/ � p2.0/j

implies that for all t � 0

jq1.t/ � q2.t/j � 
 jp1.t/ � p2.t/j :

This property says that the cone of radius 
 centred at .0; 0/ is invariant under the flow;

that is if u2.0/ is within the cone centred at u1.0/, then u2.t/ will always remain inside

the cone centred at u1.t/ for all times. Note that u1 and u2 are interchangeable.

Note that it does not say anything about the behaviour of the solutions outside the cone.
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� C r.�/ It is the space of functions whose derivatives up to r are continuous.

C r � C rC1.

C 0.x�/ is complete with the sup norm.

The closure of C 0 with the Lp norm (p <1) is Lp .

C1 if the set of all those functions which are in C r for every r .

� Dual Space Given a Banach space X , its dual space X� is the space of linear func-

tionals from X to X .

If H is a Hilbert space, then H� is isometric to H .

.Lp/� is isometric to Lq for 1 < p <1, where 1
p
C

1
q
D 1.

L1 � .L1/�.

If f 2 Lp and g 2 Lq with 1
p
C

1
q
D 1, then fg 2 L1.

� Dynamical System A dynamical system is defined by a triplet .U; T ;S/ where U

is a state space, T a set of times, and S a rule for evolution, S W U � T ! U, that gives the

consequent(s) to a state u 2 U.

A dynamical system is a model describing the temporal evolution of a system: given a

u 2 U, the rule S tells us where u will be after a time t 2 T .

In our case the time T is the continuous time R and the phase space is always a Hilbert or

Banach space. Our rule will be the semigroup S.t/ associated to a differential equation:

S.u; t/ D S.t/u. This is often called the trajectory and when u is the solution of

a differential equation it is also indicated as u.t/; if one wants to make explicit the

dependency on the initial condition u0, then it may be indicated as S.t/u0 or as uu0.t/.

This definition is taken from [35-MEI-2007].

� Evolution Operator A two parameter family U.t; s/, 0 � s � t � T of bounded
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linear operators on a space X is called an evolution operator if

U.s; s/ D I ;

U.t; r/U.r; s/ D U.t; s/ for 0 � s � r � t � T;

.t; s/! U.t; s/ is continuous for 0 � s � t � T:

I is the identity operator fromX toX . In [20-PAZ-1983] it is called an evolution systems.

This is the generalisation of a semigroup and we treat it in more detail in section 2.3.

� Exponential Tracking Property This is the same as asymptotic completeness.

� Faà di Bruno’s formula Given two smooth real valued functions f .t/ and g.t/ the

nth derivative of the composite function f .g.t// is given by

@nf .g.t//

@tn
D

i
�2‡n

@j�jf .g.t//

@t j�j

Y
B2�

@jBjg.t/

@t jBj
;

where ‡n are all the partitions of the set f1; : : : ; ng, � is such a partition, B 2 � means the

variable B runs through the list of all of the “blocks” of the partition � , and jAj denotes the

cardinality of the set A.

A partition of a set X D f1; 2; : : : ; ng is the a set of nonempty subsets of X such that

every element x 2 X is in exactly one of these subsets. The union of all these subsets is

equal to X and the intersection of any two of these subsets is empty. These subsets are

sometimes called “blocks”. The cardinality of a partition is the number of blocks of that

partition.

References and explanation of the formula can be found in [5-JON-2002].

� Fréchet derivative Let V and W be two Banach spaces, and let f be a function

from U � V to W . f is said to be Fréchet differentiable at the point x 2 U if there exists a

bounded linear operator A W V ! W such that

lim
h!0

kf .x C h/ � f .x/ � AhkW
khkV

D 0:
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� Gap Condition Given a dynamical system like Pu D �Au C V.u/, where A is a

positive operator, a gap condition is said to hold if the difference between two consecutive

eigenvalues is big enough compared to the Lipschitz constant of V .

In the literature there are a number of formulations of the gap condition. A review is

contained in [58-ROB-1993].

The condition of our main theorem T.2.3 (page 75) is similar to a Gap Condition, but

not the same, as explained in section 2.4.5.

The Gap Condition implies the Strong Squeezing Property.

�Gerschgorin Theorem All eigenvalues of a matrix A D .aij / must lie in the union

of circles
SM
iD1Wi where

Wi D

(
z 2 C W jz � ai i j �

X
j¤i

ˇ̌
aij
ˇ̌ )
:

� Gronwall’s Inequality Let I denote an interval of the real line of the form Œx;1/.

Let a and b be real-valued continuous, integrable functions defined on I and let c be a

constant. Then if

a.t/ � c C

Z t

x

b.s/a.s/ds;

then

a.t/ � c exp
�Z t

x

b.s/ds
�
:

This is also sometimes called Gronwall’s lemma.

Refer to [37-ROB-2001] for a proof of this Lemma.

�Global Attractor Given a semigroup S.t/, a global attractor A is the maximal com-

pact invariant set

S.t/A D A 8t � 0

and the minimal set that attracts all bounded sets:

dist.S.t/X;A/! 0 as t !1
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for all bounded sets X 2 U .

In proposition 10.14 at page 276 of [37-ROB-2001], the author proves that given a

trajectory u.t/ D S.t/u0, � > 0 and T > 0, then there exists a time � D �.�; T / and a

point v0 2 A such that

ju.� C t / � S.t/v0j � � 8 0 � t � T: E:4:1

In this sense, one can think of the attractor as describing the whole dynamics: though a

trajectory may never actually be in the attractor itself, there is always a point close to it in

the sense of E.4.1.

�Hilbert Space It is a vector space endowed with a scalar product, and that is complete

under the metric induced by the scalar product.

All Hilbert spaces are Banach Spaces.

� Inertial Form Given a Hilbert or Banach space V , u 2 V and a dynamical system

Pu D F.u/, which admits an Inertial Manifold expressed as a graph of a function h W Rn !

V � Rn, and denoting by P the projection from V to Rn and by p an element of Rn, the

inertial form is

Pp D PF.p C h.p//:

The above equation is actually anODE, and, h being an Inertial Manifold it describes with

an exponentially small error the dynamics of the whole, potentially infinite dimensional,

system.

� Inertial Manifold In a Dynamical System .U; T ;S/ an Inertial Manifold is a finite

dimensional, Lipschitz manifold that is also invariant and exponentially globally attracting

for the dynamics of S .

Notice that there is no requirement for an Inertial Manifold to be the graph of a function.
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� Infinitesimal Generator of a Semigroup Given T .t/ a semigroup on the space

X , the linear operator A defined by

Domain .A/ D

(
x 2 X W lim

t!0C

T .t/x � x

t
exists

)
and

Ax D lim
t!0C

T .t/x � x

t

is called the infinitesimal generator of the semigroup T .t/.

� L’Hôpital’s Rule Given two continuous C 1 functions f and g from R! R, when

determining the limit of a quotient f .x/=g.x/ when both f and g approach 0 as x ! c,

l’Hôpital’s rule states that if f 0.x/=g0.x/ converges, then f .x/=g.x/ converges, and to the

same limit.

lim
x!c

f .x/

g.x/
D lim
x!c

f 0.x/

g0.x/
:

References can be found in [10-SPI-1994].

� Lip It is the space of Lipschitz functions with the norm

kf kLip D kf k1 C sup
x;y2�

jf .x/ � f .y/j

jx � yj

It is a complete space.

� Lp for 1 � p <1 Given a space X and a measure �, Lp is the space of functions

such that Z
X

jf .x/jp d� <1

Note that if we associate the measure that counts the points to the space N , then the

integral is equal to
P
n2N jf .n/j

p . These spaces are called lp . One can think of l2 as

R1.

Lp is a Banach space, L2 is a Hilbert space.

Two functions will be identified when they are equal a.e. This means that Lp is a space

of classes of functions.
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� L1 It is the space of functions which are bounded a.e.

This is also called the sup norm.

� Phase Space A phase space U is a space of possible values that a variable u can

assume in time.

This means that for every time t , u.t/ 2 U.

� Picard-Lindelöf Theorem Given a function f .x; t/ W Rn �R! Rn, Lipschitz in

a neighbourhood of .x0; t0/ 2 � � Rn �R, then the initial value problem

Px Df .x; t/

x.t0/ Dx0

has a unique solution x.t/ in an interval of t0.

Notice that a function f that is globally Lipschitz and bounded on the whole of Rn � R

implies a global existence for all times.

Refer to [37-ROB-2001] for a proof of this Lemma.

� Positive Definite Operator A bounded linear operator A 2 B.H/ defined in a

Hilbert space H is said to be positive if

hAx; xi � x

for all x 2 H .

We use positive definite operator, or just positive operator.

According to theorem 12.32 at page 330 of [8-RUD-1987], a bounded operator is positive

if and only if it is self-adjoint and all its eigenvalues are positive.

� Resolvent The resolvent set of a linear operator A on a space X is the set of all

complex numbers � for which �I � A is invertible, where I is the identity operator from
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X to X , that is for which .�I � A/�1 is a bounded linear operator. The family of operators

R.�/ D .�I � A/�1 is called the resolvent of A.

The resolvent of A satisfies for all x 2 X

R.�/x D

Z 1
0

e��tT .t/;

where T .t/ is the semigroup associated to A.

The complement of the resolvent set is the spectrum.

� Semigroup A one parameter family T .t/, 0 � t � 1 of bounded linear operator

from X to X is a semigroup if

T .0/ D I

T .t C s/ D T .t/T .s/ 8t; s � 0

where I is the identity operator on X .

See [20-PAZ-1983] or [18-AHM-1991] for good references on semigroups.

� Squeezing Property Give a dynamical system Pu D F.u/, with u split into two

orthogonal set of coordinates u D .p; q/, and two solutions u1.t/ D .p1.t/; q1.t// and

u2.t/ D .p2.t/; q2.t//, the squeezing property holds if, whenever

jq1.0/ � q2.0/j � 
 jp1.0/ � p2.0/j

then for all t > 0 either q2.t/ belongs to the cone centred at q1.t/ for all t � t0 or

jq1.t/ � q2.t/j � jq1.0/ � q2.0/j e
�kt

for some k � 0.

The property says that if q2.t/ is at some time outside the cone centred at q1.t/ and radius


 , then the q2.t/ is drawn exponentially close to the boundary of the cone.

Note that this property does not state anything about the behaviour inside the cone.
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� Stirling Numbers of Second Kind The Stirling number of second kind Sn; k is

defined for k D 1; : : : ; n as the number of ways of partitioning the set f1; : : : ; ng into k

disjoint non-empty subsets.

Notice that a partition of the set f1; : : : ; ng with cardinality k has exactly k disjoint

non-empty subsets, and thus the Stirling number is the number of partitions of the set

f1; : : : ; ng with cardinality k.

References can be found in [16-LOV-2007].

� Strong Squeezing Property The strong squeezing property is said to hold for a

dynamical system if both the cone condition and the squeezing property are verified for such

dynamical system.

It is when the two properties come together that one can prove the existence of an Inertial

Manifold.

� Strongly Continuous Semigroup A semigroup T .t/ on the Banach space X is

strongly continuous if

lim
t!0C

T .t/x D x; 8x 2 X:

� Symmetric Operator An operator A W H ! H , where H is a Hilbert space, is

symmetric if

hAx; yi D hx;Ayi

for all x; y in the domain of A.

�Uniformly Continuous Semigroup A semigroup on X is uniformly continuous if

lim
t!0C

kT .t/ � Ik D 0:
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I is the identity operator from X to X . A uniformly continuous semigroup is always a

strongly continuous semigroup.

An operator A is the infinitesimal generator of a uniformly continuous semigroup T .t/ if

and only if it is a bounded linear operator. Furthermore T .t/ D eAt .
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4.2 Probability and Statistics

�Central Moment The central moment of order k is the kth moment around the mean,

and is given by �k D E..X � �/k/ .

The first central moment is always 0. the second central moment is called the variance and

is equal to�2 D �2 D E.X2/�.EX/2 D E..X�m1/2/ D EX2�2m1EXCm21E1 D

m2 �m
2
1, where m1 is the first moment, that is the mean, and m2 the second moment.

� Cumulant Given the function g.t/ D ln.E.etX //, the cumulant of order n is the nth

derivative of g.t/ evaluated at zero:

�n D

�
dng.t/

d tn

�
tD0

E.etX / is the expectation of the function etX .

The cumulants are related to the moments mn by the polynomial function

�n D mn �

n�1X
kD1

 
n � 1

k � 1

!
�kmn�k :

The first three cumulants �1, �2 and �3 of a distribution are equal to the expected value,

the variance, and the centred third moment, respectively.

� Cumulant Generating Function It is the logarithm of the moment generating

function: g.t/ D lnM.t/ D lnE.etX / .

The cumulant generating function can be expressed as

g.t/ D

C1X
jD0

�j
tj

j Š

where �j is called the � th cumulant and

�j D
djg.t/

dtj

ˇ̌̌̌
ˇ
tD0

:
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�Density Function f .s/ is a function that denotes the probability or mass function at

a point x.

� Deterministic approximation The deterministic approximation is a Moment Clo-

sure method obtained by setting the variance equal to 0.

It can be expressed as �2 D 0; in terms of moments as m2 � m21 D 0; in terms of

cumulants as �2 D 0 and in terms of factorial cumulants as �1 C �2 D 0.

�Distribution Function F.x/ denotes the probability of the random variableX being

less than or equal to x:

F.x/ D P.X � x/:

The distribution function is non-decreasing, continuous on the right, F.�1/ D 0,

F.C1/ D 1, P.X 2 Œa; b�/ D F.b/ � F.a/ and in terms of the density function:

F.x/ D

Z 0

�1

f .x/dx:

�Expectation The expectation of a function g.X/ gives us an idea of the average value

of the function, and it is given by

E.g.X// D

Z C1
�1

g.X/dF D

Z C1
�1

g.X/f .X/dx:

The expectation is linear, that is E.�X C Y / D �E.X/ C E.Y /, and non-decreasing,

that is if X � Y , then E.X/ � E.Y /.

� Factorial Cumulant The factorial cumulant �n of order n is the nth derivative of the

function g.t/ D ln.E.tX // evaluated at t D 1.
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� Factorial Cumulant Generating Function The factorial cumulant generating

function is given by g.t/ D log.E.tX // .

It is the natural logarithm of the probability generating function.

� Factorial Moment The factorial moment of order k is given by �k D E.X.X �

1/ : : : .X � k C 1// .

� Factorial Moment Generating Function The factorial moment generating func-

tion is defined as M.t/ D E.tX / .

The factorial moment of order n is then the nth derivative of M.t/ evaluated at 1.

�Moment The moment of order k is given by mk D E.Xk/.

The moment m1 is also known as the mean or simply as the expected value.

� Moment Closure A moment closure is a function that expresses the moment of

order nC 1 as a function of the moments of order 1; : : : ; n.

It is used to reduce the study of an infinite set of differential equations, one for each

moment, to the study of the first n equations.

� Moment Generating Function The moment generating function is the expected

value of the function exp.tX/:

M.t/ D E.etX / D

C1X
kD0

mk
tk

kŠ
:

By differentiating k times with respect to t and evaluating at t D 0 (if the derivative

exists), we have that

mk D E.X
k/ D

dkM.t/
dtk

ˇ̌̌̌
ˇ
tD0

:
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� Normal approximation The normal approximation is a Moment Closure method

obtained by setting the third cumulant equal to 0.

It can be expressed as �23 D 0; in terms of moments asm3�3m2m1C2m31 D 0; in terms

of factorial cumulants as �3 C 3�2 C �1 D 0.

� Probability Function Let � be a space of outcomes, A be the � -field of events

associated with an experiment, then P a real valued function such that

P.A/ � 0 8A 2 A;

P.�/ D 1;

if A D
1X
iD1

Ai ) P.A/ D

1X
iD1

P.Ai /;

is called a probability function.

� Probability Generating Function It is the same of the factorial moment generat-

ing function, that isM.t/ D E.tX / .

� Random Variable A random variable on a probability space .�;F ; P / is a Borel

measurable function from �! R. F is the � -field, and P is the probability measure.

� � -field Given a space �, a � -field A is collection of subsets of � which is closed

under complementation and under countable union (intersection) of its members.

� Standard Normal Distribution It is the distribution with density function

f .x/ D
1
p
2�
e�x

2=2:

By the central limit theorem, it is the distribution that best approximate a set of independent

identically distributed random variables such that their sum has a finite variance.
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The mean of the standard normal distribution is 0.

m1 D

Z C1
�1

x
1
p
2�
e�x

2=2dx D
1
p
2�

Z C1
�1

d
dx
.�e�x

2=2/dx

D
1
p
2�

h
�e�x

2=2
iC1
�1
D 0:

The variance of the standard normal distribution is 1.

�2 D

Z C1
�1

x2
1
p
2�
e�x

2=2dx

D
1
p
2�

Z C1
�1

d
dx
.�xe�x

2=2/dx C
1
p
2�

Z C1
�1

e�x
2=2dx

D 0C 1;

where we have used the Gaussian Integral
R C1
�1

e�x
2
D
p
� .

The moment generating function of the standard distribution is M.t/ D et
2=2.

The first cumulant of the normal distribution is equal to its mean, thus for the standard

normal distribution �1 D 0. The second cumulant �2 D �2. For all other cumulants,

�i D 0 8i � 3.
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5 Bibliography

An important feature of this thesis is that it draws from different fields of science and

mathematics to explore the concept of reduction of a system to one of lower dimensions.

Therefore it appeared to us an interesting idea to reflect this in the bibliography as well.

Rather than following a strict, arid alphabetical order, we decided to present the bibliography

in different sections according to the particular field the article or book belongs to.

The references are presented according to the subdivision that follows. One can easily

recognise a pattern, that is somehow the pattern we followed to reach the final result: from

the biological problem we went on to study the equations in their formal setting, then

recognise their properties as a dynamical system and finally discover the existence of an

Inertial Manifold.

� Biology: in this section we refer to the works of this Natural Science that originated

the Mathematical investigation;

� Functional Analysis: here we give an account of the basic text books that we used

to build a background in Functional Analysis, and that have been the basis to create

a correct setting where our equations make sense;
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� Probability: in this section we present those reference text books that present

the theory of Probability; as in this thesis we present the definition of probability

based on the definition of the Lebesgue measure, this section follows the one on

Functional Analysis;

� Semigroups: we present those basic references that present the theory of semi-

groups applied to evolution equations;

� Non-linear dynamics: here we give an account of those texts that deal with

nonlinear evolution equations; the difference from the previous section is the

emphasis: while on the previous one the main focus of attention was semigroups,

here it is the understanding of evolution equations, and when semigroups are used

they are seen as a tool;

� Inertial manifolds: this is a bibliography of all those works within the real of

non-linear dynamics that are directly related to the study of Inertial Manifold;

� Moment closure: here we present those papers and books that deal with various

examples on the use of Moment Closure techniques in statistics.
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5.1 Biology
The object of this thesis being to present original mathematical results, we do not attempt

to reproduce a complete reference for the biological problems we studied; rather we present

just the initial source of the mathematical problems and we refer to their bibliography for

further biological references.

[1-BAI-1997] S. BAIGENT, J. STARK, A. WARNER; Modelling the effect of the gap

junction nonlinearities in systems of coupled cells; J. Theor. Biol.; 186;

pag. 223-239; 1997.

[2-HAR-2001] K. HARDY, S. SPANOS, D. BECKER, P. IANNELLI, R.M.L. WIN-

STON, J. STARK; From cell death to embryo arrest: Mathematical mod-

els of human preimplantation embryo development; Proceedings of the

National Academy of Sciences (PNAS); 98 no. 4; pag. 1655-1660; 2001.

[3-SLA-1975] C. SLACK, A.E. WARNER; Properties of surface and junctional mem-

brane of embryonic cells isolated from blastula stages of Xenopus Lae-

vis; J. Physiol.; 248; pag. 97-120; 1975.
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5.2.2 - Probability

5.2 Functional settings
Books on the fundamentals.

5.2.1 Functional analysis

Apart from the very specific paper by Rosenbloom, these are very well know text books

in Functional Analysis and do not need any presentation.

[4-BRE-2005] HAÏM BREZIS; Analyse fonctionnelle (French edition); Dunod; 2005.

[5-JON-2002] W. JONHSON; The Curious History of Faa di Bruno’s Formula; The

American Mathematical Monthly; 109; pag. 217-234; 2002.

[6-ROS-1955] P. ROSENBLOOM; Perturbation of linear operators in Banach spaces;

Arch. Math.; 6; pag. 89-101; 1955.

[7-RUD-1991] W. RUDIN; Functional analysis; McGraw-Hill Higher Education; 1991.

[8-RUD-1987] W. RUDIN; Real and complex analysis; McGraw-Hill Higher Education;

1987.

[9-SHO-1994] R.E. SHOWALTER; Hilbert Spaces Methods for Partial Differential Equa-

tions; Electron. J. Diff. Eqns., Monograph 01; 1994.

[10-SPI-1994] M. SPIVAK; Calculus; Publish or Perish; 1994.

5.2.2 Probability

The books by Bailey and Parzen are classical. Those by Ash and Bath are more modern

and present the theory of provability within the framework of Lebesgue measure theory.

Bath’s book is more detailed in the proofs, while I find Ash’s book more readable.

[11-ASH-2000] R. ASH; Probability & measure theory; Elsevier; 2000.

[12-BEA-1997] N.G. BEAN, L. BRIGHT, G. LATOUCHE, C. E. M. PEARCE, P. K.

POLLETT AND P. G. TAYLOR; The quasi-stationary behavior of quasi-

birth-and-death processes; Ann. Appl. Probab.; 7; pag. 134-155; 1997.
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5.2.2 - Probability

[13-BAT-1999] B. BATH; Modern probability theory; New Age International; 1999.

[14-BAI-1964] N. BAILEY; The elements of stochastic processes; John Wiley & Sons;

1964.

[15-ITO-1993] KIYOSI ITO; Encyclopedic Dictionary of Mathematics (2nd Ed.) -

CORPORATE Mathematical Society of Japan; MIT Press; 1993.

[16-LOV-2007] L. LOVÁSZ; Combinatorial problems and exercises ; AMS Chelsea Pub-

lishing; 2007.

[17-PAR-1960] E. PARZEN; Modern Probability Theory and Its Applications; John Wi-

ley & Sons, Inc; 1960.
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5.3.2 - Dynamical Systems

5.3 Evolution Equations

Papers and books on evolution equations, Nonlinear Dynamics, invariant manifolds,

finally Inertial Manifolds and finally Moment Closure.

5.3.1 Semigroups

These are all classical references on the theory of semigroups, both on the theory itself

and on the application to the study of evolution differential equations.

[18-AHM-1991] N.V. AHMED; Semigroup theory with applications to systems and con-

trol; Longman Scientific & Technical (Pitman Research Notes in Math-

ematics Series); 1991.

[19-HIL-1957] E. HILLE, R. PHILLIPS; Functional analysis and semi-groups; Ameri-

can Mathematical Society; 1957.

[20-PAZ-1983] A. PAZY; Semigroups of linear operators and applications to partial dif-

ferential equations; Springer Verlag; 1983.

5.3.2 Dynamical Systems

Here we give an account on those books and papers that are directly concerned with

the study of evolution equations, nonlinear dynamical systems. Some focus generally on

perturbation theory; others are centred around centre or invariant manifolds, like the classical

book by Carr. Finally Robinson’s and Temam’s books are very general and at the same time

very complete introductions to Nonlinear Dynamics; both include large chapters on Inertial

Manifolds. I especially like Robinson’s book, which is written with the usual, unique style

that characterises this author: at the same time pedagogical and rigourous, it is one of the

very few books in Mathematics that one reads as a novel.

[21-BER-2001] N. BERGLUND; Geometrical Theory of Dynamical Systems; Lecture

Notes, Department of Mathematics, ETH Zurich; 2001.

[22-BER-2001] N. BERGLUND; Perturbation Theory of Dynamical Systems; Lecture

Notes, Department of Mathematics, ETH Zurich; 2001.
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5.3.2 - Dynamical Systems

[23-CAR-1981] J. CARR; Applications of Centre Manifold Theory; Springer Verlag,

Applied Mathematical Sciences; 1981.

[24-CHI-1997] C. CHICONE, Y. LATUSHKIN; Center Manifolds for Infinite Dimen-

sional Nonautonomous Differential Equations; J. Diff. Eq.; 141; pag.

356-399; 1997.

[25-CON-1989] P. CONSTANTIN, C. FOIAS, B. NICOLAENKO, R. TEMAN; Inte-

gral Manifolds and Inertial Manifolds for Dissipative Partial Diferential

Equations; Springer Verlag, Applied Mathematical Sciences; 1989.

[26-CON-1985] P. CONSTANTIN, C. FOIAS, R. TEMAN; Attractor representing turbu-

lent flows; Memoires of the America Mathematical Society; 53; pag. 1;

1985.

[27-FEN-1971] N. FENICHEL; Persistence and smoothness of invariant manifolds for

flows; Indiana Univ. Math. J.; 21; pag. 193-226; 1971.

[28-FEN-1979] N. FENICHEL; Geometric singular perturbation theory for ordinary dif-

ferential equations; J. Diff. Eq.; 31; pag. 53-89; 1979.

[29-GLE-1994] P. GLENDINNING; Stability, instability and chaos; Cambridge Univer-

sity Press; 1994.

[30-GOR-2005] A.N. GORBAN; Invariant manifolds for physical and chemical kinetics;

Springer Verlag; 2005.

[31-GUT-1998] M. GUTZWILLER; Moon-Earth-Sun: The oldest three-body problem;

Reviews of Modern Physics; vol. 70; pag. 589-639 ; 1998.

[32-HEN-1981] D. HENRY; Geometric Theory of Semi-linear Parabolic Equations; Lec-

ture Notes in Mathematics, Springer Verlag; 1981.

[33-LAS-1989] J. LASKAR; A numerical experiment on the chaotic behaviour of the

Solar System; Nature; 338; pag. 237; 1989.
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5.3.3 - Inertial Manifolds

[34-LYA-1947] A. LYAPUNOV; Problème gènèral de la stabilité de mouvement (trans-

lation of the original Russian edition published in 1892 by the Mathe-

matics Society of Kharkov); Ann. Of Math. Stud, Princeton University

Press; 1947.

[35-MEI-2007] J. MEISS; Differential Dynamical Systems ; SIAM, Mathematical Mod-

elling and Computation; 2007.

[36-PER-1929] O. PERRON; Über Stabilität und asymptotisches Verhalten der Integrale

von Differentialgleichungssytemen; Math. Z.; 29; pag. 129-160; 1929.

[37-ROB-2001] J. ROBINSON; Infinite dimensional dynamical systems; Cambridge texts

in applied mathematics; 2001.

[38-SAK-1990] K. SAKAMOTO; Invariant Manifolds in singular perturbation problems

for ordinary differential equations; Proc. Royal Soc. Edinburgh A; 116;

pag. 45-78; 1990.

[39-TEM-1998] R. TEMAM; Infinite dimensional dynamical system in Mechanics and

Physics, second edition; Springer Verlag, Applied Mathematical Sci-

ences; 1998.

[40-WIG-1994] S. WIGGINS; Normally Hyperbolic Invariant Manifolds; Springer Ver-

lag, Applied Mathematical Sciences; 1994.

5.3.3 Inertial Manifolds

Finally, here are all those papers dealing directly with Inertial Manifolds. We notice that

most of the papers we refer to were published before year 2000. This is not because no work

was done after that year; rather, the explanation is that the focus of the research on Inertial

Manifolds has slightly shifted, from existence theorems to more computational aspects, as

Approximated Inertial Manifolds, which are not the theme of this thesis.

[41-CHO-1992] S. CHOW, K. LU, G.R. SELL; Smoothness of inertial manifolds; J. Math.

Anal. Appl.; 169; pag. 283-312; 1992.

[42-FAB-1991] E. FABES, M. LUSKIN, G.R. SELL; Construction of Inertial Manifolds

by Elliptic Regularization; J. Diff. Eq.; 89; pag. 355-387; 1991.
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5.3.3 - Inertial Manifolds

[43-FOI-1985] C. FOIAS, B. NICOLAENKO, G.R. SELL, R. TEMAN; Variete iner-

tielle pour l’equations de Kuramoto-Sivashinsky; C.R. Acad. Sci. Paris,

Series 1; 301; pag. 285-288; 1985.

[44-FOI-1988] C. FOIAS, B. NICOLAENKO, G.R. SELL, R. TEMAN; Inertial Mani-

folds for the Kuramoto-Sivashinsky Equation; J. Math. Pures Appl.; 67;

pag. 197-226; 1988.

[45-FOI-1985] C. FOIAS, G.R. SELL, R. TEMAN; Variete inertielle des equations dif-

ferentielle dissipatives; C.R. Acad. Sci. Paris, Series 1; 301; pag.

131-141; 1985.

[46-FOI-1988] C. FOIAS, G.R. SELL, R. TEMAN; Inertial Manifolds for nonlinear

evolution equations; J. Diff. Eq.; 73; pag. 309-353; 1988.

[47-IAN-1998] P. IANNELLI, S. BAIGENT, J. STARK; Inertial Manifolds for dynamics

of cells coupled by gap junction; Dynamics and Stability of Systems; Vol

13, No 2; pag. 187-213; 1998.

[48-STA-2001] J. STARK, P., IANNELLI, , S. BAIGENT; A Nonlinear Dynamics per-

spective of moment closure for stochastic processes; Nonlinear Analysis;

Vol 47; pag. 753-764; 2001.

[49-JON-1996] D.A. JONES, E.S. TITI; Approximations of Inertial Manifolds; J. Diff.

Eq.; 127; pag. 54; 1996.

[50-KOK-2002] N. KOKSCH, S. SIEGMUND; Pullback attracting inertial manifolds for

nonautonomous dynamical systems; J. Dynam. Diff. Eq.; 14; pag.

889-941; 2002.

[51-KOK-2003] N. KOKSCH, S. SIEGMUND; Cone invariance and squeezing property

for Inertial Manifolds for nonautonomous evolution equations; Banach

Center Publications; 60; pag. 27-48; 2003.

[52-LAN-1999] A. LANGA, J. ROBINSON; Determining Asymptotic Behaviour from

the Dynamics on Attracting Sets; J. Dynam. Diff. Eq.; Vol 11, No 2;

pag. 319-331; 1999.
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[53-MAL-1988] J. MALLET-PARET , G.R. SELL; Inertial Manifolds for Reaction Dif-

fusion Equations in higher Space Dimensions; J. Amer. Math. Soc.; 1;

pag. 805-866; 1988.

[54-MAL-1992] J. MALLET-PARET , G.R. SELL; Counterexamples to the existence of

inertial manifolds; World Congress of Nonlinear Analysts; 1; pag. 477-

485; 1992.

[55-NIN-1992] H. NINOMIYA; Some remark on inertial manifolds; J. Math. Kyoto

Univ.; 32; pag. 678; 1992.

[56-REG-2005] G. REGA, H. TROGER; Dimension Reduction of Dynamical Systems:

Methods, Models, Applications; Nonlinear Dynamics; 1-15; pag. pg 41;

2005.

[57-ROB-1995] J.C. ROBINSON; Concise proof of the geometric construction of inertial

manifolds; Physics Letters A; 200; pag. pg 415; 1995.

[58-ROB-1993] J.C. ROBINSON; Inertial manifolds and the cone Condition; Dynamic

Systems and Applications; 2; pag. 311-330; 1993.

[59-ROB-1994] J.C. ROBINSON; Inertial Manifolds and the Strong Squeezing Property;

In Non-linear evolution equations and dynamical systems, World Scien-

tific, edit by V.G. Makhanov, A.R. Bishop, D.D. Holm; 1994.

[60-ROB-1996] J.C. ROBINSON; The asymptotic completeness of inertial manifolds;

Nonlinearity; 9; pag. 1325-1340; 1996.

[61-ROD-2007] A. RODRÍGUEZ, R. WILLIE; Nesting inertial manifolds for reaction

and diffusion equations with large diffusivity; Nonlinear Analysis; 67;

pag. 7093; 2007.

[62-ROM-2000] A.V. ROMANOV; Three Counterexamples in the Theory of Inertial Man-

ifolds; Mathematical Notes; 3; pag. 379-385; 2000.

[63-SAC-1965] R. J. SACKER; A new approach to the perturbation theory of invariant

surfaces; Comm. Pure Appl. Math.; 18; pag. 717-732; 1965.
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[64-SEL-1992] G. SELL, Y. YOU; Inertial Manifolds: The Non-Self-Adjoint Case; J.

Diff. Eq.; 96; pag. 203-225; 1992.
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Diffusion Systems in Higher Space Dimensions; J. Diff. Eq.; 144; pag.

1-43; 1998.

[66-STE-2001] A. STEINDL, H. TROGER; Methods for dimension reduction and their

application in Nonlinear Dynamics; International Journal of Solids and

Structures; 38; pag. 2131-2147; 2001.
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5.3.4 Moment closure

These are the papers that present the examples from population biology modelled with

statistical methods, and especially using Moment Closure techniques. Most of them are

focused on interpreting the results and studying how well they fit the observed data. Most

papers refer back to the 1957 classical paper by Whittle for an explanation of why this

technique works, whilst Lloyd and Isham, in her paper in honour of Sir David Cox, refer also

to our paper published in 2001.

[68-AUG-2000] P. AUGER, S. CHARLES, M. VIALA, J. POGGIALE ; Aggregation

and emergence in ecological modelling: integration of ecological levels;

Ecological Modelling; 127; pag. 11-20; 2000.
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