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SYMMETRY, REGRESSION
DESIGN, AND SAMPLING
DISTRIBUTIONS
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AND
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University of Bristol

When values of regressors are symmetrically disposed, many M-estimators in
a wide class of models have a reflection property, namely, that as the signs of
the coefficients on regressors are reversed, their estimators’ sampling distribu-
tion is reflected about the origin. When the coefficients are zero, sign reversal
can have no effect. So in this case, the sampling distribution of regression co-
efficient estimators is symmetric about zero, the estimators are median unbiased
and, when moments exist, the estimators are exactly uncorrelated with estima-
tors of other parameters. The result is unusual in that it does not require re-
sponse variates to have symmetric conditional distributions. It demonstrates
the potential importance of covariate design in determining the distributions
of estimators, and it is useful in designing and interpreting Monte Carlo ex-
periments, The result is illustrated by a Monte Carlo experiment in which max-
imum likelihood and symmetrically censored least-squares estimators are
calculated for small samples from a censored normal linear regression, Tobit,
model.

1. INTRODUCTION

Since exact distributions of econometric estimators are often hard to derive,
Monte Carlo experiments are frequently used to study the behavior of esti-
mators and the quality of approximations to their sampling distributions.
Since most econometric models involve covariates, it is necessary to specify
covariate designs when a Monte Carlo experiment is conducted. This aspect
of Monte Carlo experimentation is rarely given prominence when experi-
ments are reported, perhaps because it is believed that covariate design has
a relatively minor influence on the relevant properties of estimators.

In fact, covariate design, in conjunction with parameter values, can have
a spectacular effect on the shapes of the exact distributions of estimators
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whose first-order asymptotic approximate distributions have shapes that are
invariant under changes in covariate design. Consequently, Monte Carlo ex-
periments should be designed so as to reveal the impact of covariate design.
Unfortunately, in the great majority of reported experiments, few designs are
studied and in many studies only one covariate design is used. This can se-
verely limit the applicability of the results of these experiments. The results
given here demonstrate the importance of covariate design and provide in-
formation concerning the nature of covariate design effects.

The main result of this paper is as follows. Suppose that a covariate de-
sign is symmetrically disposed around a central point. Let X be a vector of
covariates and let X = x° denote this central point, which in some cases may
not itself be a point in the design. In a symmetric design, each point in the
design with a nonzero value, X = x ~ x%, can be matched with another with
the value X = —(x — x°). When a covariate design is symmetric in this
sense, reversal of the signs of regression-type coefficients associated with X
causes the sampling distributions of a wide class of coefficient estimators to
be reflected about the origin. This reflection also occurs when there are other,
asymmetrically disposed covariates, Z, as long as each pair of points with
X = + (x — x°) is associated with a common value of Z.

In the special case in which regression coefficients are zero, reversing the
signs of regression coefficients can have no effect on the distributions of es-
timators. Consequently, when designs are symmetric and regression coeffi-
cients are zero, the sampling distributions of many estimators are symmetric
about zero and so the estimators are median unbiased. Cases in which regres-
sion coefficients are zero are of particular interest because they arise when
considering the null distributions of Wald and score test statistics to detect
omitted regressors.

Asymmetric designs do not necessarily result in asymmetric sampling dis-
tributions. For example, the distribution of the least-squares estimator is
symmetric whenever the conditional distribution of the response variate is
symmetric, regardless of the covariate design. However, there are commonly
used models and estimators for which an asymmetric design does cause sam-
pling distributions to be asymmetric and the effect can be dramatic, as the
example of Section 3 involving the maximum likelihood Tobit estimator
shows.

The symmetry condition on the covariate design is restrictive, but very
many Monte Carlo experiments reported in the literature use designs that sat-
isfy the condition. Examples are designs in which covariates’ values are cho-
sen to be spaced at equal intervals, or as expected order statistics from
symmetric distributions. The reflection property allows the results of exper-
iments using such covariate designs to be extended to new values of regres-
sion parameters. Further, it implies that where a Monte Carlo experiment
based on a symmetric covariate design generates skewed sampling distribu-
tions, the skewness can be eliminated by setting regression coefficients to
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zero, and reversed by reversing their signs. There are other incidental uses
of the result. For example, it provides a useful check on complicated calcu-
lations such as those involved in developing asymptotic expansions of cer-
tain econometric estimators (see, for example, Chesher, Peters, and Spady
[4D.

The reflection result is stated and proved in Section 2. The result is unusual
because unlike the result concerning the symmetry of the sampling distribu-
tion of the seemingly unrelated regression equation estimator described in
Kakwani [8], the many related results described by Andrews [1] and the re-
flection results given by Cryer, Nankervis, and Savin [6], there is no assump-
tion of symmetry in the distribution of the response variates.

Section 3 illustrates the results of this paper and shows the potential mag-
nitude of design effects. Monte Carlo estimates of the sampling distributions
of maximum likelihood and symmetrically censored least-squares estimators
in a left censored linear regression (Tobit) model are presented. These dem-
onstrate the substantial skewness in finite sample distributions that can be
induced solely by moving from a symmetric to an asymmetric covariate de-
sign. They also show that substantial skewness can be induced even when the
covariate design is symmetric merely by moving regression coefficients away
from zero.

The results of this paper concern sampling distributions of estimators con-
ditional on covariate values. They are especially relevant to the design and
analysis of Monte Carlo experiments where it is common to find fixed co-
variate designs and frequently the symmetric designs studied here. In applied
econometric work, covariate designs are usually not chosen purposively and
symmetric designs are rare. However, even though many researchers will
never work with symmetric designs, the results of this paper are relevant to
them because they show how sensitive the exact finite sample distributions
of commonly used econometric estimators can be to covariate design and pa-
rameter values.

There are cases in applied work when covariate values are sampled from
symmetric or nearly symmetric distributions, for example, when an additive
central limit theorem applies to the process generating the covariates. Then
a result analogous to the one given here can be useful (see Chesher [3]),
namely, that reversal of the sign of regression coefficients causes sampling
distributions of their estimators marginal with respect to the covariates to be
reflected around the origin. This result is also relevant to the interpretation
of Monte Carlo experiments in which covariate values are sampled anew at
each replication.

2. THE REFLECTION PROPERTY

First, a class of covariate designs is defined. Then a class of models for the
conditional distribution of a response variate given values of covariates is in-



SYMMETRY AND REGRESSION DESIGNS 119

troduced and a class of estimators is described. Finally, the reflection prop-
erty is stated and proved.

2.1. Covariate Designs

Two types of covariate vectors are distinguished. One type, X, has a sym-
metric design, reflected about a central point, X = x°, The other, Z, has a
replicated design, taking identical values as the X covariates are reflected.
This means that the n covariate values can be labeled in such a way that

iiz _er-l—i’ Z2i = Zn+1-is i= 1;---:[”]/2’

where ¥, =x; —x° and [n] =n+ 1if nis odd and [n] = nif nis even. In
some applications, the covariates Z will be absent, or constant and equal to 1.

Two types of parameters are distinguished: those attached to the symmet-
rically disposed covariates, elements of a matrix, 8, conformable with X; and
the remaining parameters, elements of a matrix, 8, which may be associated
with other covariates or appear as “nuisance parameters,” perhaps indexing
scale or distributional shape.

2.2. The Distribution of Response Variates

The response variates associated with the n points in the covariate design are
denoted by Y,..., Y,. They may be vector valued. They are assumed to be
mutually independently distributed given the vectors of values of covariates
X1,--.3Xn, and zy,...,2,, with proper conditional distribution functions:
Fi(yi| %, 2:,%8,8), i = 1,...,n. As before, X; = x; — x° is the ith design
point expressed as a deviation from the center point for the design. The dis-
tribution functions may depend upon the center point of the design, x°, but
this is not made explicit in the notation.

It is essential that 8 appear only in the distribution functions through the
matrix product (x — x°)3 = %3. The symmetrically disposed covariates X
may influence the distribution function in other ways, but if they do then the
distribution functions must be even functions of x in the sense that

Fi(y|%z¢,8) = F(y|—%2.c3) for all i, y, x, z, ¢, and 8,

where c is a potential value of 3.
In many cases, the distribution functions will not vary with i, but if they
do, then for all values of their arguments, they must satisfy

E(y|i';z’iﬁ’5) =Fn+l—i(y'iyzai6’6)r i= 1: .. "[n]/z'

The assumptions set out above encompass a very wide class of models.
The response variates, Y;, can be discrete, continuous, or mixed, so models
for censored and grouped data are included. Since the Y;’s can be vector
valued, multivariate models such as econometric simultaneous equations
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models are included. There are no restrictions on the way in which a subset
of the covariates, Z, affects the response variate. The covariates X have to
affect the response variate through (X — x%)83, but they can also have other
effects. For example, censored heteroskedastic regression models with Y* =
XB + u, Y =max(Y*,0), var(u| X = x) = g(x,8), are included as long as
g(x,8) is an even function of x — x°. Many models involving covariates that
appear in the econometric and statistical literature are contained in the class
of models defined by the assumptions set out above.

2.3. A Class of Estimators

We consider M-estimators (Huber [7]), 8 and 5, which are unique solutions
to the estimating equations:

n
S (X XB,8) =0,  j=1,...,1,
i={
where J is the total number of parameters. The estimating equations may also
depend on x?, but this is not made explicit in the notation.

In many cases, the functions ; ; will not vary with i, but if they do, then
for all values of their arguments, they must satisfy

‘l/j,i(yvi’z,iﬁ’a) = ¢j,n+l—i(yy2,z,k616)y = 1: L] ,[n]/2.

In many cases, the estimating equations will depend on the symmetrically dis-
posed covariates only through X;3. If the covariates have other influences,
then for some set of fixed nonzero constants, A\,...,\;, and for all j, y, x,
Z, ¢, and 8, where c is a potential value of X3, the following condition must
hold.

¢j,i(y)f’z9c’6) = )\j¢j,i(yy—21ZyC,5)’ i= 1’ e 7[”]/2'

If in the conditional distribution functions, 8 does appear only in conjunc-
tion with x, as required above, then for many estimators —maximum likeli-
hood estimators, for example — 3 will necessarily appear in the estimating
equations only in conjunction with x.

A very wide class of estimators is encompassed by these assumptions. It
contains many M-estimators in well- and misspecified models, including max-
imum likelihood estimators, linear and nonlinear two- and three-stage least-
squares estimators, and least absolute deviation estimators, and it includes
semiparametric estimators like Cox’s [5] estimator for proportional hazard
models and Powell’s [10] symmetrically trimmed and symmetrically censored
least-squares estimators.

The reflection property is given in the following theorem.
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THEOREM. Under the assumptions set out above, the sampling distribu-
tion of the estimator 8 when 3 = —b is a reflection around the origin of the
sampling distribution of 3 when 8 = +b and the sampling distribution of
§ is invariant under sign changes in 3, in the sense that for all values of 8 and
6 and sets of matrix pairs, A, conditional on the values of the covariates:

P{B.6)€A|B=+b6=d]=P[(-B,6)€A|B=-b 6=d].

A proof of the theorem follows. Throughout, probabilities are conditional
on the values taken by the covariates.

Proof. Let s denote a realization of Y;,..., Y, and let B(s) and 5(3) de-
note the solution to the estimating equations at s. Define the operator C(s)
which changes a realization, s, by interchanging the ith and (n + 1 — i)th
valuesof y, i = 1,...,[n1/2. When the operator C(-) is applied to a set of
realizations, it acts as just described on each member of the set. We first show
that 3(s) = —B(C(s)) and 8(s) = 8(C(s)).

Write the estimating equations at the realization s in the following man-
ner, which embodies the symmetry property of the covariate design.
[n—1}/2 . R

V,i( Vi, X 26, %:8(5),6(s))

i=]

+ Linodd} \f/j,[n)/z()’{n]/z,f[n]/zyZ[n]/z,f[ny/zé(s)ﬁ(s))
[n—1]/2 R

+ X Vi %,2i,=%B(5),8(8)) =0, j=1,...,J. (D
i=1

The second term appears only if the sample size is odd.
At the associated realization C(s), the estimating equations are
[n—1]/2

2 Vi V- %, 2 5B (C(5),6(C(5)))
i=1
+ llnodd}‘l/j,[n]/z(y[n]/Z)f[n]/Z:Z[n]/z,j[n]/zé(c(s))ag(C(s)))

[n—1]/2

+ 2 ¥i(y—%,z,—%B(C(s),8(C(s)) =0, j=1,...,J.
i=1
Q)

The assumptions concerning the estimating equations ensure that (2) is solved
at B(C(s)) = —B(s) and §(C(s)) = 5(s) because if these values are substi-
tuted in (2) then it resembles (1) except that the order of the two summations
is reversed and there will be innocuous scale factors present if there are fac-
tors A; which are not equal to one.

Let A, and A_ be the sets of realizations of Y,,...,Y,, for which, re-
spectively, {8,8} and { —3,8} fall in the set of matrix pairs, A. The argument
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above implies that A_ = C(A4,). The assumption concerning the condi-
tional distribution function of the response variates ensures that for any set
of realizations, say Z,

P(Z|B=+b,86=d] =P[C(2)|8=~b,6=d],

since interchanging y; and y,,_; leaves the values taken by the distribution
functions F; unchanged once X’b is replaced by %¥'(—#&). In particular,

P[A,|8=+b,6=d] = P[C(4,)|B=~b,6=d],
which expressed in terms of 3 and § is

P[(8,8) € A|B=+b,5=d] = P[{-B,6) € A|8 = —b, 5 = d]. n

3. DISCUSSION AND ILLUSTRATION

The theorem has some interesting implications. For example, it implies that
when 8 = 0, P[3 € B] = P[—-8 & B] for all sets of matrices, B, so that
in symmetric designs, § is symmetrically distributed around zero when 3 is
in fact zero. Another implication is that when 8 = 0, P[(B)fé <al]l =
P[(—B)’8 < a], so that for odd values of j, the distribution of 576 is sym-
metric about zero. Setting j equal to 1 it follows that when 8 = 0, the covari-
ance of 3 and 8 is zero if it exists.

The implications of the theorem are well illustrated using a Monte Carlo
experiment described by Powell [10] who considers a censored regression
model with covariates x; and x,, in which

Y* =80+ Bix1 + B2x2 + €
Y = max(Y*,0).

In the experiment, 3y = 0, 8, = 1, B, = 0, the values of x, are equally spaced
in an interval [ —q, q] chosen so that the variance of x, over the design is 1,
and values of x;, alternate between —1 and 1 as x, increases. Powell [10] per-
forms 201 Monte Carlo replications, in each one simulating 200 realizations
of Y using pseudorandom i.i.d. N(0, 1) errors and computes maximum like-
lihood (ML) and symmetrically censored least-squares (SCLS) estimates.
With this number of replications, it is not possible to measure with accuracy
the departure of sampling distributions from symmetry. So two larger, 5000-
replication, Monte Carlo experiments were conducted. In one, ML estimates
for samples of size 20 were computed. In the other, SCLS estimates in sam-
ples of size 200 were computed. The sampie size was reduced to 20 for ex-
periments involving the ML estimator so that departures from symmetry
would not be masked by the operation of the central limit theorem. This was
not necessary in the case of the SCLS estimator, which is difficult to com-
pute in samples this small. In all other respects, the experiments followed
Powell’s [10] design. The results are summarized in Table 1.!
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TasLE 1. Summary statistics, 5000 Monte Carlo replications, two
covariate censored normal regression model with 50% censoring

ML Estimators SCLS Estimators

(Sample Size 20) {Sample Size 200)
Estimators of:: Bo B, B, Bo By B
Coefficient values 0 1 0 0 1 0
Median .0072 9969 —.0036 —.0391 1.0368 .0017
Mean (m,) —.0354 1.0322 -.0069 —.1707 1.1234 -.0005
Std deviation (m}'?) 3606 .3471 .2724 5162 13979 1316
Asy std deviation 3145 .3130 .2624

Skewness (m;/m3’?)  —1.27 0.89 ~0.05 -3.61 2.64 0.00
(.128)  (.066) (.069) (.355)  (.252) (.101)

Kurtosis (m,/m? —3)  4.18 1.89 0.77 23.75  13.86 1.94
(1.03)  (.256) (.295) (5.01) (2.82)  (.410)

Correlations: S —.55 .01 —.96 .02
I ~.55 —.06 —.96 -.03
B, .01 —.06 02 -.03
62 —.40 .26 —-.02

m; is the ith central moment across 5000 replications. “Asy std deviations” are n ~'/2 times the asymptotic
standard deviations of n'/2 (E,- — B;) developed from the information matrix under the assumption that the
covariate design is replicated as the sample size, n, increases. &2 is the ML estimator of the error variance.
Figures in parentheses are jackknife estimates of the standard errors of the skewness and kurtosis measures.

The model and estimators satisfy the assumptions of the theorem and the
covariate design is symmetric about x; = 0, x, = 0. Let the estimators, ML
or SCLS, be denoted by 3, and Bz- From the theorem, it follows that if 3,
were —1, then the joint sampling distributions of 3, and 8, would be reflec-
tions around zero of those studied by Powell for which 8, = +1 and 3, =
0, while the sampling distributions of the intercept estimators, 3y, which can
be thought of as being associated with a replicated “covariate” always equal
to 1, would be unchanged. If 8, were zero, then the joint sampling distribu-
tions of 3, and 8, would be symmetric. So the extent to which these distri-
butions deviate from symmetry shows the amount of skewness that is caused
solely by B, deviating from zero.

Even though B, is nonzero, the Monte Carlo experiment also illustrates
the symmetry result given at the beginning of this section. This is because suc-
cessive alternating values of the symmetrically disposed covariate x, are as-
sociated with almost identical values of x, so that values associated with
x, = +1 are close to those associated with x, = —1. Consequently, the co-
variate x, is almost in the category of replicated covariates, Z, defined ear-
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lier, and the theorem leads one to expect that the sampling distributions of
estimators of 8, will be close to symmetric.

The skewness coefficients and the relative magnitudes of means and me-
dians shown in Table 12 indicate that the distributions of estimators of 8,
and (3, are, respectively, negatively and positively skewed while the distribu-
tions of estimators of 8, show negligible skewness. Figures in parentheses
are jackknife estimates of the standard errors of the estimates of the stan-
dardized cumulants. The cumulant estimates are quite variabie despite the
large scale of this experiment, but it is quite clear that the variations in the
values of the skewness measures do reflect real differences in the shapes of
the sampling distributions of the alternative estimators. The correlations be-
tween estimators of (8, and estimators of the other parameters are very
small.

Figure 1 shows quantile-quantile (QQ) plots of the ML and SCLS estimates
of 8, and 3,, relocated and scaled so that over the 5000 replications, the lin-
early transformed values of each estimator have zero mean and unit variance.
The graphs are constructed by plotting quantiles of the Monte Carlo repli-
cates against corresponding quantiles from the standard normal distribution,
which is the first-order asymptotic approximation to these estimators’ sam-
pling distributions.

The asymmetry in the sampling distributions of the estimators of 8, is
very obvious. It would not be present were the true value of 3, to be zero.
The finite sample distributions of the estimators of 8, deviate very little
from symmetry. The distribution of the ML estimator of 3, is slightly long
tailed but it is remarkably close to a normal distribution given that the sam-
ple size is only 20 and that on average, 50% of the realizations are cen-
sored.’ Even with a sample size of 200, the normal approximation to the
distribution of the SCLS estimator is extremely poor. The estimator is very
long tailed. The skewness induced by 3, being nonzero is much greater for
this estimator than for the ML estimator in much smaller samples.

Departures from symmetry can be isolated from other aspects of distribu-
tional shape and are very clearly revealed in the “symmetry plots” shown in
Figures 2(a) and 2(b). These show quantiles of, respectively, ML and SCLS
estimators of 3, and 3, expressed in standard deviation units as absolute de-
viations from medians, values associated with quantiles above the median
plotted against values associated with corresponding quantiles below the me-
dian. Let 5,-” ) j=1,...,N be the values of B,» obtained in N Monte Carlo
replications, expressed in standard deviation units and arranged in ascend-
ing order, and let BM be the median value obtained. The symmetry plot is
generated by plotting points with coordinates

(—(BY = BMy, (BN ~ gMy),  j=1,...,[N-1].

A trail of points close to the 45° line indicates an almost symmetric distri-
bution. Paths, respectively, above or below the 45° line indicate, respectively,
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FIGURE 1. (a) ML estimator of 3,. (b) ML estimator of 38,. (¢) SCLS estimator of
B:. (d) SCLS estimator of §,.

positively or negatively skewed distributions. The positive skewness in the dis-
tributions of the estimators of 8, is very obvious in Figure 2(a). A tiny
amount of skewness is detectable in the distributions of the estimators of 3,
shown in Figure 2(b). It arises because the design for x; is not exactly rep-
licated across the +1 and —1 points in the x, design.

So far only a symmetric design has been studied. All asymmetry in sam-
pling distributions has arisen because parameter values deviate from zero.
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What is the effect of altering the design so that it is asymmetric? To answer
this question, the Monte Carlo experiment involving the ML estimator was
performed again with just one change, namely, that the design for the binary
covariate x, was altered by moving a single point so that the design became
asymmetric. Specifically, the value of x, corresponding to the lowest value
of x; was changed from —1 to —10. Even though the true value of 8, is
zero, this has a dramatic effect, clearly revealed in the symmetry plot shown
in Figure 3. The trail of points labeled “Asymmetric X2” arises when this
asymmetric design is used. There is clearly very substantial positive skewness.

The design for x, can be brought back to symmetry by pushing the x,
value corresponding to the second lowest value of x; to +10. The result is
the trail of points in Figure 3 labeled “Symmetric X 2.” Restoring symme-
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try to the design for x, restores approximate symmetry to the sampling dis-
tribution of the ML estimator of 38,. Again, some slight skewness remains
because the x; design is not exactly replicated across the positive and nega-
tive points in the x, design.

4. CONCLUDING REMARKS

It is very common to find symmetric covariate designs in published Monte
Carlo studies. For example, Moolgavkar and Venzon [9] report the results
of Monte Carlo experiments examining Cox’s [5] estimator for proportion-
ate hazard models with linear relative risk, 1 + 8z, depending on a single co-
variate z. In one set of experiments, the values of the covariate are expected
uniform order statistics; in another, expected normal order statistics —in each
case rescaled to span the interval [0,1]. The model, estimators, and designs
satisfy the assumptions of the theorem, so the reflection result applies, and
when 8 = 0 so that the covariate is ineffective, the sampling distribution of
the Cox estimator of 8 must be symmetric. Moolgavkar and Venzon’s results
with 8 = 0 do suggest a symmetric sampling distribution. They report a mean
of 0.04, a median of —0.02, and a standard deviation of 0.38 over 1000 rep-
lications with a sample size of 100 at each replication. They remark that “dis-
tributional properties appear to be worse with increasing true value of the
parameter 3” (Moolgavkar and Venzon [9], p. 47). It is evident from their
graphs that increasing skewness is the problem, as we would expect, given
the results of this paper.

It is clear that values taken by covariates can have a major influence on
finite sample properties of estimators. The point has been made before by,
for example, Box and Watson [2] and Weisberg [12], yet it is rare to find
Monte Carlo experiments that pay adequate attention to covariate design.
Many reported Monte Carlo studies that give the impression that first-order
asymptotic approximations perform well can in fact only be regarded as
showing that there are covariate designs (namely, those studied) in which the
approximations are adequate. Unfortunately, covariate design is an unwieldy
factor to vary in a Monte Carlo experiment, and a view concerning the range
and types of designs that are relevant is essential when designing a Monte
Carlo study. The results of this paper can aid the choice of appropriate de-
signs to examine.

NOTES

1. Normal pseudorandom numbers were obtained by applying Press et al.’s [11] version of
Marsaglia’s polar method to uniform pseudorandom numbers obtained with Wichman and Hill’s
{13] portable generator. Maximum likelihood estimates were calculated using the method
of scoring with, as starting points, least-squares estimates obtained from uncensored data.
Calculations were performed in double precision arithmetic on a Sun SPARCstation 2 running
SUN-OS 4.1.2.
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2. It is possible for censoring to create configurations of realizations for which the ML or
the SCLS estimators of one or both coefficients are unbounded or indeterminate. For exam-
ple, if all realizations associated with x, = —1 are censored but there are sufficient uncensored
realizations at x, = +1, then the Tobit likelihood function is maximized at 52 = 4oco. In Pow-
ell’s design with a sample size of 20, such configurations are quite rare. In 5000 Monte Carlo
replications with a sample size of 20, the probability of finding no configurations of realiza-
tions leading to unbounded or indeterminate ML estimators is around 0.5. The corresponding
probability for samples of size 200 is very close to 1. In fact, no configurations leading to in-
determinate or unbounded estimators arose in the two experiments reported in Table 1. How-
ever, the figures reported there should be interpreted as applying to the sampling distributions
of estimators conditional on their values being determinate and finite.

3. Symmetry is not the only feature of covariate design that influences the quality of first-
order asymptotic approximations. The covariate x; is almost uncorrelated with x; and has a bal-
anced design. If leverage points are introduced into the design, then the ML estimator of 8, can
exhibit very substantial supernormal kurtosis though if the design is symmetric, it remains al-
most symmetrically distributed.
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