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IMPROVING THE EFFICIENCY OF PROBIT ESTIMATORS 

Andrew Chesher * 

Abstract- The efficiency with which coefficients in probit mod- 
els are estimated is improved by exploiting data on continuous 
ancillary variates. In this paper the resulting gains in efficiency 
are examined and illustrative calculations are provided. Extra 
precision is achieved at the cost of making an extra assumption 
but this assumption can be tested. It is shown that fully 
efficient maximum likelihood estimation of the probit model 
with a continuous ancillary variate can be achieved by a simple 
two step procedure involving an ordinary least squares and a 
probit estimation. 

I. Introduction 

Probit analysis of binary data is now widely practised 
by social scientists. Sometimes data are available on 
endogenous continuous variates which, given exogenous 
variables, are correlated with the binary variate on 
which probit analysis is performed. For example, when 
estimating models for housing tenure choice, household 
income or expenditure on some nondurable goods may 
be available. And when estimating a model for the 
return to work of an unemployed worker in some time 
interval, tenure of or wage in the previous job may be 
available. This paper provides a simple computational 
procedure for using ancillary data of this sort efficiently 
and a method for obtaining estimates of the asymptotic 
variances of the resulting estimators. Finally the gain in 
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efficiency obtained by using the ancillary data is in- 
vestigated. 

Suppose that, given a vector x, two variates Yj and Y2 
are bivariate normally distributed: 

[Yi X - 
N2 I I Ia/ I] (1) 

Y2 ~ ~ [X'"TT ][ PUri 1JJ 
Realisations of Yi are observed but Y2 is not observ- 
able. Instead realisations of a binary variate D are 
obtained' where D = if y2 > 0, D = 0 if Y2 < 0. This 
model provides a framework for the analysis of binary 
data when jointly dependent continuous variates are 
available and it can be regarded as the reduced form of 
a simultaneous equations model in binary and continu- 
ous variates (see Heckman (1978)). The model also finds 
application in the sample selection bias area if we attach 
to it a vanate Y3 only observed when D = 1. Heckman's 
(1979) two-step procedure uses an estimate of 7T2 to 
calculate the normal hazard function included as an 
extra "regressor" in the y3 equation. In all these con- 
texts more efficient estimation of 7T2 is of interest. 

With Y2 observed (1) can be written as a pair of 
seemingly unrelated regression equations with identical 
regressors and separate ordinary least squares (OLS) 
estimation of the two equations is efficient. Data on Yi 
are not informative about 7T2 when Y2 is observed (see 
Conniffe (1982)). The coarse grouping of Y2 into the 
two classes indicated by D destroys information but the 
ordinary least squares (OLS) estimators of 7T, and all 
can still be calculated and are therefore still efficient. 
Since the data are informative about the conditional 
correlation of Yi and Y2 given x, the magnitude of Yi is 
generally informative about the location of Y2 within 
the two classes (Y2 ? 0, Y2 < 0) into which it is coded. 
Consequently, with D observed in place of Y2, the 
"single equation" probit estimator of 7T2 which ignores 
the Yi data, using Just D and x data, is generally 
inefficient. 

It is shown in section II that the fully efficient maxi- 
mum likelihood (ML) estimator of 7T2 is obtained by a 
probit analysis of D on x and Yi so that ML estimation 
of (1) can be achieved using standard OLS and probit 
analysis software with negligible increase in computa- 
tional cost over separate analysis of the Yi and D data. 
In section III the magnitude of the (asymptotic) 
efficiency gain, which is nonzero for p * 0, is consid- 
ered. 

II. Marginal and Joint Maximum Likelihood 
Estimators 

From the marginal distributions of Yi and D the log 
likelihood functions (2) and (3) are obtained, assuming 

n independent realisations of Yi and D given x. 

LM,,( X71, Cl I1) =-2log 2 7T- 210 log Il 

11 
- 2a1 (l-x,X>) (2) 

= 0logi((1-2Di)x,7T2). (3) 

Here 5 is the complement of the standard normal 
distribution function. All summations here and later are 
over i = 1 to n. 

The maximum likelihood estimators from (2) and (3) 
are sTl, the OLS estimator given by regressing Yi on x, 
a'l the mean squared OLS residuals from this regres- 
sion and sT2' the probit estimator obtained from probit 
analysis of D using x as explanatory variables. These 
estimators, which are called marginal maximum likeli- 
hood (MML) estimators, have the usual optimality 
properties under the assumption that Yi given x and Y2 
given x are marginally normally distributed. 

If Yi and Y2 are assumed to be jointly normally 
distributed given x then the joint log-likelihood is 

LJ ( Y1 , 015 Y2 , 02) 

= Elogi((1 - 2D)(x,T2 + 2YlI)) 

- log27T-- nlog - 20 (YI- X,Y1)2 

(4) 

The log likelihood (4) is written using the decomposi- 
tion P(y, n Dlx) = P(Djy1 n x)P(yllx) and the 
parameterisation: 

Yl = I1 

01 = al 

Y2 = (1- ) (X-pal,1) 

02 = pa 11/2(1 - p2) 1/2 (5) 

Setting the first derivatives of (4) equal to zero it can 
be seen that the joint maximum likelihood (JML) esti- 
mators of yl (= 7TI) and 01 (= all) are identical to the 
MML estimators2 of 7r and a, I and that the JML 
estimators of Y2 and 02 are obtained by a simple probit 
analysis of the D data using x and yi as explanatory 
variables. 

The inverse of the transformation (5) is 

71 = Yi 

all = 01 

T2 =(1 + 12) 
- 

1/2( 2 o,ffl2( + 02 YI) 

p = 01/202(1 + 010 2 / (6) 

which enables unique estimates of 7T, 12' 311 and p to 
be obtained from estimates of -y1, Y2' 01 and 02. The 
invariance properties of maximum likelihood estimators 

1 Since y2 is not observable the normalisation var( y21x) = 1 

is innocuous. 

2 This is also true when elements of ,71 are constrained to be 
zero. 
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ensure that the resulting estimators (ih T2' a ) 

possess the usual optimality properties. 
The preceding argument demonstrates that full maxi- 

mum likelihood estimation of the parameters of (1) can 
be achieved via a simple two-step procedure comprising 
OLS estimation of 7TI and all using the Yi and x data 
and probit analysis of the D, x and y, data. If M 
continuous variates YI are available then the probit 
analysis uses x and the vector Yi as explanatory vari- 
ables. This two-step procedure is essentially the reverse 
of that suggested by Heckman (1979) to correct for 
sample selection bias, as is expected given the decom- 
posi tion of P (v q n D I x) used in writing down the joint 
log likelihood (4). 

So, joint maximum likelihood estimation is computa- 
tionally straightforward. But what gains in efficiency 
can be expected from exploiting ancillary continuous 
data? This question is investigated in the next section. 

III. Asymptotic Variances and Relative Efficiency 

First consider the marginal maximum likelihood 
estimator, 1T2. The asymptotic variance matrix of /7 ( T2 

- 172),var(2)) is: 

n -- 1 

var(19'2) = {plimn 1 h h( x 7T)h(x,7T2)xi x, 
1=1 

(7) 

where h( ) is the standard normal hazard function. It 
is assumed that probability limits exist and where ap- 
propriate are non-singular. 

If 4 (w) and (I(w) are the standard normal density 
and distribuition functions then h (w ) h ( - w) = 
( W ) 2/0 ( W ) ? (-W) which attains its maximum of 2/,r 
= 0.637 when w = 0. With Y2 observed, the asymptotic 

I,p, ? __ 

1/2 " 2a1 
all11 

0 (1-p2) 

I [inlXj4o] say. 

LA eB _ 

variance of the ML estimator of -72 (the OLS estimator 
from regressing Y2 on x) is (7) with h (x,2 ) h ( -i 

replaced by var(Y2lXi)-1 = 1.0. So the grouping of Y2 
into two classes coded by D results in an increase in the 
asymptotic variance of iT2 of at least 100 ((.637)- - 

1)% = 57%. Assuming joint normality of Yl and Y2 
given x and utilising the Yi data as described in the 
previous section allows some of this lost efficiency to be 
regained but the Yi data cannot be used to reduce the 
variance of vT2 below that attained when Y2 is observed. 

Now consider the asymptotic variance matrix of the 
JML estimator. Since the log likelihood (4) is an addi- 
tively separable function of (-y1, 01) and (-Y2 02 ) the 
asymptotic covariance matrix of the JML estimator of 

(Yl 01, 2 02) is block diagonal given by 

I Yi OQ- I OQ 1 0 O 

var0 =V= 0 202 0 ( var v~~ (8) ~~2 
0 0' 

02 ~ I 0 0' V 

where 

= plimn-'EEh(wj)h(-w) 

expectation is with respect to wi given x, which is 

N1[x' WI xi+01). 72 01) 

To obtain the asymptotic variance matrix of the JML 
estimators of (n,1, ?a, 1r2, p), consider the Jacobian, A, 
of the transformation (5): 

0 0 
0 0 

2 )l 12 I (i - 
p2 ) 12( 7r. 

- 

l pT 

0 [XJ2 (1 -- 02 )3/- 

(9) 

A standard argument exploiting the local linearity of 
the transformation (5) gives, for the asymptotic variance 
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matnx of (,JT a1 iT-2' .), AlVS, which is 

allQ-~~~ op0112Q- 
I 

0 

1 0 2a2 -2al al Var 7 7p21 = P p1172 I11p(1 - p2) 

varL 12Qp11Q1 pU1IT P)72 
~~~T2 112Qp 

- +p4-7T I31 (0 
pull p2l 1 V IPQ + 2 T2 2 2 

0 ~ p(I _ p2) [ PI (I _ p2 ) 2 p2( P~2)2 1 B2B 
22 

Some tedious algebra shows that var( ,2) exceeds var( 2) 

by a positive semidefinite matrix which converges to 
zero as p passes to zero.3 

The gain in efficiency from using the Yv data is 
obtained at the cost of making an extra assumption, 
namely, that Yi and Y2 given x are jointly as well as 
marginally normally distributed. When this additional 
assumption is incorrect the JMLE 7-2 may be incon- 
sistent but while the marginal normality assumption is 
correct s2, the MMLE, is consistent. When the joint 
normality assumption is correct the JMLE is efficient 
relative to the MMLE. So sT2 - 'r2 provides the basis for 
a Hausman (1978) test of the additional assumption. 

The variance matrix (10) can be estimated in the 
two-step procedure outlined earlier. Q- 1 is consistently 
estimated by (n--1Yxjx<)` and 7rT, 72,aI1,p by their 
JML estimators. The matrix V2 is consistently estimated 
by the inverse of n--' times the Hessian of the "log 
likelihood" used in the probit analysis of D on Yi and 
x. Thus all the required elements of var(T2) are readily 
available as normal outputs of the OLS and probit 
programmes used in the two-step procedure. 

Now consider the magnitude of the efficiency gain 
obtained by using the ancillary continuous data. When 
there is no regression, so that x is scalar and equal to 
one, it is possible to calculate this gain for most inter- 
esting values of 7g2 and p. The results are shown in table 
1 where two variances var( q2 I p) and var( s2) are given, 
since in this model the asymptotic variance of f2 de- 
pends on whether p is known or estimated. The column 
headed p2 = 0 gives var( T2). The three variances are 
invariant under changes in the signs of 7r2 and p and 
are smallest when r, = 0, i.e., when P[D = 1] = 0.5. In 
this "no regression" case, 7T2 = -4i- '(nj/n) where n1 
is the number of observations with D = 1. Though 
var( n1/n) is at a maximum when T, = 0, the increasing 
flatness of the i-- 1 function results in var( T2) being at 
a minimum when 7r2 = 0. For all p2 < 1, var(1T2) 
? var('iT2) ? var(, 2 Jp) > var( T2Iy2 observed) = 1, with 
equalities holding when p = 0. The greatest gains in 

efficiency are obtained for large J21, when the event 
D = 1 is either relatively rare or relatively common, and 
for large p2. 

Now suppose there is regression and write x'T2 = 72( 
+ 721x1 X -+ 22x2 where xl and x2 are N(O, 1), 
cor(xl, x2) = r and realisations of (xIx2) are indepen- 
dent. Taking expectations over x gives expressions for 
var(Si2j) and var(772,Jp) which are evaluated (with 1T1 = 

722 denoted by 7T2.) to produce table 2. Only one vari- 
ance is reported since under these conditions variances 
of the estimators of 7T21 and 7J22 are equal. Asymptotic 
covariances, which are not reported, are reduced in 
magnitude on introducing the Yi data by approximately 
the same amount as is the asymptotic variance. 

The asymptotic variance of the MML estimator T2i 

(see the columns headed p2 = 0) increases with 7J20 and 
,r2. With 172 = 0 minimum asymptotic variance is ob- 
tained when xl and x2 are uncorrelated but as 7T2 
increases through positive values the value of r for 
which the asymptotic variance is at a minimum declines. 
Comparing the entries in table 2 with the last column of 
table 2, which gives var(,r2jjy2 observed) = (1 - r2) 

- 
l, 

it can be seen that the loss in efficiency due to the 
grouping of Y2 into the two classes indicated by D 
increases with r2o and with 12 and for non-zero 72 
varies with r, generally increasing as the magnitude of r 
increases. 

TABLE 1. -ASYMPTOTIC VARIANCES OF qT2, p KNOWN 
(UPPER ENTRIES), p ESTIMATED (LOWER ENTRIES) 

p2 

7 0.0a 0.4 0.8 0.95 

0 1.57 1.55 1.43 1.26 
1.57 1.55 1.43 1.26 

1.0 2.29 2.17 1.82 1.46 
2.29 2.27 2.15 1.91 

2.0 7.62 7.00 5.10 3.21 
7.62 7.52 6.48 5.03 

2.5 20.09 18.58 13.46 7.81 
20.09 19.71 15.89 10.71 

aWhen p2 = 0, entries give var(X2) = var("2). 

3When p2 = 1 and p is known, v2 can be "reconstructed" 
from y1 and x and all the lost efficiency due to grouping v, 
can be regained. It seems plausible that this is also true, 
asymptotically, when p is unknown and in fact p2 = 1. 
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TABLE 2.-ASYMPTOTIC VARIANCES OF 1T2, p KNOWN, WHERE X '17T2 = 120 + 7T2.X + 7T2 X2, r = cor(xl, x2) 

1T20 =OO 1T20= 2. 0 
var(e2.1 

1T2. r p2 oa 0.4 0.8 0.95 Oa 0.4 0.8 0.95 Y2 observed) 

- .9 8.27 8.18 7.55 6.64 40.1 36.8 26.8 16.9 5.26 
-.6 2.45 2.43 2.24 1.97 11.9 10.9 8.0 5.0 1.56 
-.3 1.73 1.71 1.58 1.39 8.4 7.7 5.6 3.5 1.10 

0 0.0 1.57 1.55 1.43 1.26 7.6 7.0 5.1 3.2 1.00 
.3 1.73 1.71 1.58 1.39 8.4 7.7 5.6 3.5 1.10 
.6 2.45 2.43 2.24 1.97 11.9 10.9 8.0 5.0 1.56 
.9 8.27 8.18 7.55 6.64 40.1 36.8 26.8 16.9 5.26 

-.9 10.11 9.74 8.52 7.13 40.8 36.2 25.7 16.1 5.26 
-.6 4.65 4.26 3.37 2.55 12.8 10.9 7.5 4.7 1.56 
- .3 4.25 3.81 2.87 2.05 9.3 7.9 5.4 3.3 1.10 
0.0 4.48 3.97 2.92 2.02 8.4 7.2 4.9 3.0 1.00 

.3 5.16 4.54 3.31 2.28 8.8 7.5 5.1 3.2 1.10 

.6 6.91 6.08 4.47 3.11 10.9 9.3 6.4 4.1 1.56 

.9 18.89 16.77 12.71 9.26 28.1 24.1 17.1 11.4 5.26 
-.9 16.62 15.18 11.87 8.85 45.9 39.3 26.9 16.6 5.26 
-.6 13.93 11.96 8.14 5.00 22.1 18.7 12.3 7.1 1.56 
-.3 15.71 13.31 8.76 5.08 21.2 17.8 11.5 6.5 1.10 

2 0.0 17.89 15.08 9.81 5.56 22.3 18.7 12.0 6.7 1.00 
.3 20.58 17.30 11.22 6.34 24.5 20.5 13.2 7.4 1.10 
.6 25.03 21.03 13.70 7.84 28.9 24.2 15.6 8.8 1.56 
.9 47.92 40.28 26.95 16.52 54.1 45.3 29.9 18.0 5.26 

aWith p2 = 0 entries give var( 2.) 

The gain in efficiency on introducing the Yi data 
increases with p2, 7720 and 772 and varies with r= 

cor(x,,x2). For models in which the exogenous vari- 
ables are highly correlated and for which the event 
D = 1 is relatively rare or relatively common, consid- 
erable gains in efficiency can be achieved by using the 
joint maximum likelihood estimator which, as noted 
earlier, is simple to calculate. 

REFERENCES 

Conniffe, Denis, "Testing the Assumptions of Seemingly Unre- 
lated Regressions," this REVIEW 64 (Feb. 1982), 172-174. 

Hausman, Jerry A., " Specification Tests in Econometrics," 
Econometrica 46 (Nov. 1978), 1251-1271. 

Heckman, James, "Dummy Endogenous Variables in a Simul- 
taneous Equation System," Econometrica 46 (July 1978), 
931-959. 

"Sample Selection Bias as Specification Error," 
Econometrica 47 (Jan. 1979), 153-161. 


	Article Contents
	p. 523
	p. 524
	p. 525
	p. 526
	p. 527

	Issue Table of Contents
	The Review of Economics and Statistics, Vol. 66, No. 3 (Aug., 1984), pp. 363-528
	Front Matter
	Piece Rate Vs. Time Rate: The Effect of Incentives on Earnings [pp. 363-376]
	Employment and Occupational Advance Under Affirmative Action [pp. 377-385]
	Data Revision, Reconstruction, and Prediction: An Application to Inventory Investment [pp. 386-393]
	Estimating the Demand for the Characteristics of Housing [pp. 394-404]
	Housing Tenure, Uncertainty, and Taxation [pp. 405-416]
	A New Hedonic Technique for Estimating Attribute Demand: An Application to the Demand for Automobile Fuel Efficiency [pp. 417-426]
	The Hedonic Travel Cost Method [pp. 427-433]
	The Use of Linear Logit Models for Dynamic Input Demand Systems [pp. 434-443]
	Wealth Inequality in the United States in 1798 and 1860 [pp. 444-451]
	The Pattern of Protection in the Industralized World [pp. 452-458]
	Electricity Demand in a Developing Country [pp. 459-467]
	Notes
	Anticipated Fiscal Policy and Real Output [pp. 468-471]
	Causal Ordering Across Inflation and Productivity Growth in The Post-War United States [pp. 472-477]
	Evidence on the Varying Effect of Expected Inflation On Interest Rates [pp. 477-481]
	The Dispersion Hypothesis in Macroeconomics [pp. 482-485]
	The Productivity of Hours in U.S. Manufacturing Industries [pp. 486-490]
	The Labor Supply Response of Twenty-Year Families in the Denver Income Maintenance Experiment [pp. 491-495]
	The Demand for International Reserves and Monetary Equilibrium: Some Evidence From Developing Countries [pp. 495-500]
	The Direct Measurement of Welfare Levels: How Much Does it Cost to Make Ends Meet? [pp. 500-505]
	Competitive Bidding Under Asymmetrical Information: Behavior and Performance in Gulf of Mexico Drainage Lease Sales, 1959-1969 [pp. 505-508]
	The Spillover Effect of Public-Sector Wage Contracts in Canada [pp. 509-512]
	Selection and Survival in the Teacher Labor Market [pp. 513-518]
	Cross-Price Elasticities of U.S. Import Demand [pp. 518-523]
	Improving the Efficiency of Probit Estimators [pp. 523-527]
	Confidence Interval for Predictions from a Logarithmic Model [pp. 527-528]

	Back Matter



	Cit r467_c584: 


