VoLuME 52, NUMBER 1

PHYSICAL REVIEW LETTERS

2 JANUARY 1984

Spin-Orbit Effects in Non-Central-Force Systems: Host-Lattice Effects in F Centers
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Two new trends associated with spin-orbit effects in a non-central-force field are evi-
dent in recent data for Fcenters: (1) an inverse power-law dependence of spin-orbit
splitting on the lattice parameter of the host crystal and (2) a direct dependence of the
splitting on the size of the host-lattice ions. These features may be summarized by a
simple semiempirical formula closely related to the Mollwo-Ivey relation for the absorp-

tion energy.

PACS numbers: 71.70.Ej, 31.10.+z

An electron trapped at an anion vacancy or
vacancy complex in an ionic solid is an exemplar
of spin-orbit effects in non-central-force fields.
While the spin-orbit fine structure in such sys-
tems was first identified! and the inverted energy-
level ordering explained®® some years ago, only
within the past two years have accurate meas-
urements*~® become available to establish corre-
lations between the fine structure of the F center
—an electron trapped at a single anion vacancy—
and the properties of the host crystal.

In the present note we call attention to the
strong correlation of the F-center spin-orbit
splitting with both the lattice parameter of the
host crystal and the size of the host-lattice ions
which is evident in these new data. We show that,
despite the complications of a multicenter sys-
tem, the splittings may be systematized in a sur-
prisingly simple semiempirical formula which
has a geometric interpretation and which is close-
ly related to the Mollwo-Ivey law” for the F-band
energy.

The observed spin-orbit splittings,*™%#~17 A,
of the first excited I'," state of F centers in
alkali halides with the rock-salt structure are
given as a function of composition by the circles
in Fig. 1. For a given alkali metal, the magni-
tude of the spin-orbit splitting increases mono-
tonically with the atomic number of the halide.
This trend.is strongest for the light alkali metals
and is weakest for the heavy alkali metals. In
contrast, the variation of A, with the atomic
number of the alkali metal shows two qualitatively
different patterns. For the fluorides, and per-
haps the chlorides, Ay increases with alkali-
metal atomic number, but in the bromides and

iodides, A first decreases and then increases
with the atomic number of the alkali metal.

The first trend is intuitively reasonable. One
expects larger values of Ay for hosts with high-
atomic-number ions, since the only substantial
contribution to the spin-orbit interaction arises
near the nuclei of the neighboring host-lattice
ions where the Coulomb field is large. However,
the second trend runs counter to this argument.

The starting point for a theory of the effect is
a wave function ¢; for the defect electron, which
is accurate near the host-lattice ions. Thus,
the usual theory? of spin-orbit effects for vacancy-
trapped electrons starts from a vacancy-cen-
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FIG. 1. The F-center spin-orbit splitting as a func-
tion of host-crystal composition. Experimental data
are-indicated by filled circles (Refs. 4—6 and 8-17),
and theoretical results by the surface (Ref, 18).
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tered model wave function, u;, Schmidt orthog-
onalized to the ion-core states, ¢4:

¢y =(1 = 0Sa, & V2, =Y 655, 08,

where S, ; is the overlap integral {¢,|u;) and
the sums range over all occupied ion-core states
of the host.

The expectation value of the spin-orbit interac-
tion, %, , contains direct and cross terms in u;
and ¢,. Since the model wave function «; is gen-
erally small relative to the ionic functions ¢,
near the nuclei,? the only significant terms are
bilinear in overlap. For the p-like excited states
of the F center and for p-like core states, sum-
mation over the ions in the neighboring shells
yields?

($ilhs.ol0)

gNiz Z ":}'n E Sp'lT,OL(Sp‘lT,B +25p0, B)’\aﬁ' (1)
shells a,B

N, is the normalization (1 —Z}asa,iz)"/z, n is the
number of ions in a shell, and « and 3 are '
summed over the p-like core states of a single
ion. S,; and S,; are the 7 and ¢ integral for the
overlap of the F center’s excited p-state model
wave function with the ion-core states. Multicen-
ter terms have been neglected because % is
highly localized near the nuclei, and A,z denotes
<‘palhs.o. I (pB>-

A linear dependence of the F-center spin-orbit
splitting on the ionic spin-orbit interactions is
explicit in Eq. (1). There is, further, an implicit
dependence on the F-center and ionic wave func-
tions through the overlaps. The surface in Fig,

1 is the result of Harker’s'® evaluation of Eq. (1)
using F-center wave functions calculated in the
ion-size approximation,'® The calculations pre-
dict the magnitude of A, and the observed trends.
Here we examine the source of these host-lattice
dependences,

The principal experimental trend evident in
Fig. 1 is that larger values of A, are associated
with host lattices having high-atomic-number
ions. This follows from the increase of A, with
atomic number and is particularly apparent for
the lithium halides and the alkali fluorides. An
analysis®® of these series confirms the linear
dependence on the spin-orbit interaction and
shows that the sum over matrix elements for
core states may be approximated by a single lin-
ear dependence on the spin-orbit coupling con-
stant,®' a;, for the outermost p-like core state
of the Zth ionic species.
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The second experimental trend, the initial de-
crease in A, with increasing alkali-metal atomic
number in the bromides and iodides, must be
associated with a decrease in the overlap inte-
grals, A consistent interpretation of these data
is that, for the light alkali metals, A, is dom-
inated by the large bromide- or iodide-ion spin-
orbit interaction. The light alkali-metal ions
make a negligible contribution to A, but serve
primarily as inert “spacers” between the F cen-
ter and the near-neighbor halides. Larger
“spacers” imply smaller overlaps and hence
smaller splittings.

This suggests a correlation between the Ag
and the nearest-neighbor distance, d, which is
quantified in Fig. 2, The presentation suggests
a power-law dependence Ap~d ". An almost
equally good fit is given by an exponential, A,
~exp(—p’d). However, a nonlinear multiple-
regression analysis slightly favors the power law.

In addition to the dependence of A, on d, one
anticipates that A, depends on the ionic wave
functions through the overlap integrals. This
dependence can be isolated for the lithium halides
(since lithium ions make no significant contribu-
tion to Ap) by forming the quantity Apd" /X, de.
This function is found to correlate strongly with
the Goldschmidt or Pauling ionic radius of the
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FIG. 2. The F-center spin-orbit splitting for the
bromides and iodides of the light alkali metals vs
nearest-neighbor distance.
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halide ion, as shown at the lower right of Fig. 3.
A similar plot may be constructed for the alkali-
ion contribution, provided that the halide con-
tribution to Ay is subtracted. This is shown for
the alkali fluorides on the left of Fig, 3. In both
cases a power-law dependence on ion size is ap-
parent.

Combining the three correlations suggests that
the contribution of the ith species to Az may be
described by C»;"d""x;, where C, m, and n are
constants to be determined by fitting Az. To
determine the minimum number of parameters
needed to characterize the theory, nonlinear
multiple-regression fits were made to calculated
values of Ay It was found® that excellent fits
(~5% rms error) could be obtained and that the
standard estimate of error®® was minimized with
the three-parameter fit
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FIG. 3. Dependence of A on ion size. The function
(= Apd™ Lihatide Mpatide (right-hand curve) shows the
variation of A ; in the lithium salts with the radius of
the halide ion. A similar function may be constructed
to show the dependence on alkali-ion size in a given
halide sequence by subtracting the contribution of the
halide ion, as illustrated for the fluorides by the left-
hand curve.

in which the spatial factors occur only as the
dimensionless ratio r;/d. This semiempirical
formula was then fitted to the experimental da-
ta*~%8-17 with use of the Goldschmidt radii with
the result

p=2.74, C,=-0.205, C_=-0.226.

The rms relative error here was 15%, which is
well within the uncertainty of the measurements;
however, note that the lithium halides and the
alkali fluorides are underrepresented in the ex-
perimental data.

The simplicity of this result, particularly that
p =3, suggests that the dependence on d and r»;
may be largely geometric. The role of geometry
is clearest for the F center since the size and
depth of its potential well scale with lattice pa-
rameter. This scaling is explicit in the varia-
tional hydrogenic wave functions commonly used
in approximate treatments® of the first excited
state,

Uy, (T) =(2/VB)(&' /d)™?r exp(=£'7/d)
X Ylm(ev <P) ’ (3)

where £’ is a variational parameter and Y,™(6, ¢)
are the spherical harmonics for p states. Ata
neighboring lattice point »=ad (a=1,v2, V3, ...),
the amplitude is proportional to ad 8/2grs/2
xexp(~£’a). Since £'~2 and is a slowly varying
function of d, 2 the F-center wave function ampli-
tude varies as d3/2 at the immediate neighbors.

The correlation with ion size is less well de-
fined, because the concept of ionic radius is it-
self imprecise. However, the ionic radius is a
rough measure of the spatial extent of the ionic
core states, so that one expects the amplitude of
the outer core wave functions to scale as ri'g/z.
To estimate the spatial dependence of the overlap
integrals, observe that the F-center excited
state is diffuse and almost completely overlaps
the more compact ion-core states (see Fig. 2 of
Ref. 3). Hence the volume over which there is
overlap between the F-center wave function and
the core states is proportional to ;3. The over-
lap integrals in Eq. (1) thus scale as d'3/2><af,»'3/2
X7,*=(r/d)*?. Then Ay, which is bilinear in
overlap, should vary as (r/d)® in qualitative
agreement with our fitting of the experimental
data.

Appealing as this argument is, it cannot be
pressed very far. The dependence of £/ on d is
not negligible beyond the first few neighbors
since the term exp(-¢’#/d) of Eq. (3) becomes
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important. The argument also glosses over
specifics of the wave functions, neglects sums
over deep core levels, etc.

As a final observation, note that an approxi-
mate d~® dependence of A, on nearest-neighbor
distance is consistent with the Mollwo-Ivey law’
(the F-band energy is approximately proportional
to d7%). The simplest model for the Mollwo-Ivey
relation is an electron trapped in a spherical po-
“tential “box” of radius d. The average electron
density for such a trapped electron scales as d™3,
just the dependence required of the F-center elec-
tron density at ions neighboring the vacancy to
give Ap~d™3,

This work was supported in part by the U, S.
Department of Energy.

IFor a review of early studies, see J. Margerie, J.
Phys. (Paris), Collog. 28, C4-103 (1967).

’D, Y. Smith, Phys. Rev. 137, A574 (1965).

’D. Y. Smith, Phys. Rev. B 6, 565 (1972).

4F, Martin-Brunetidre and M. Thuau, J, Phys. (Paris)
43, 431 (1982).

M. Thuau, Thése de Doctorat d’Etat, Université de
Caen, 1981 (unpublished).

®M. Ghomi, S. Lefrant, J. P. Buisson, L. Taurel,
and M. Billardon, Solid State Commun. 33, 1111 (1980).

76

See W. B. Fowler, in Physics of Colov Centers,
edited by W, B, Fowler (Academic, New York, 1968).

M. Thuau and J. Margerie, J. Phys. (Parls) 38,
1313 (1977).

3. P. Buisson, S. Lefrant, A, Sadoc, L. Taurel,
and M, Blllardon Phys. Status Solidi (b 78, 779 (1976)

G, A. Osborne and P. J, Stephens, J. Chem Phys.
56, 609 (1972).

"M, Thuau and J. Margerie, C. R. Acad. Sci., Ser.
B 268, 1586 (1969).

2F, C. Brown, private communication.

8F, C. Brown and G, Laramore, Appl. Opt. 6, 669
(1967). ‘

43, Margerie, Publ. Sci. Tech. Minist. 1’Air, Note
Tech. No, 155, 1966 (unpublished).

Y, Merle-d’Aubigne and J. Gareyte, C. R. Acad. Sci.
261, 689 (1965).

R, Romestain, Thése de 3¢ Cycle, Université Paris-
Orsay, 1965 (unpublished).

TR, Romestain and J. Margerie, C. R. Acad. Sci.
258, 2525 (1964).

A, H. Harker, J. Phys. C 9, 2273 (1976).

R, H. Bartram, A. M. Stoneham and P, W, Gash,
Phys. Rev. 176, 1014 (1968).

0p, v, Smith : and A, H. Harker, to be published.
2o, E, Moore, Atomic Enevrgy Levels (U. S. GPO,
Washington, D,C., 1949 and 1958).

22F, Whittaker and G. Robinson, The Calculus of
Observations (Dover, New York, 1967), 4th ed., Sec.
124.

%8B, S. Gourary and F. J. Adrain, Phys. Rev. 105,
1180 (1957).



