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Abstract 
 

 
Experimental work into the molecular dynamics of excited state benzene and the 

development of a new ultraviolet pulse shaper are presented. 

 

The non adiabatic non radiative decay process of benzene in its first excited has been 

determined using pump probe time resolved photoelectron spectroscopy. An ultrafast 

oscillation has been found at the onset of the channel 3 region which is attributed to 

intersystem crossing. Our experimental findings contribute to theoretical observations 

of a higher than previously expected spin orbit coupling in organic polyatomic 

molecules. The concluding mechanism is mediated by a doorway state and is 

supported by quantum dynamics simulations.  

 

A pulse shaping capability has been developed to shape the output of a commercial 

optical parametric amplifier in the visible region using a reflective mode, folded, 

pulse shaping assembly employing a spatial light modulator. Second harmonic 

generation is used to frequency double the shaped visible pulse down to the deep 

ultraviolet energy region. A variety of pulse shapes have been synthesised and 

characterised using cross-correlation frequency resolved optical gating. The pulse 

shaping set-up benefits from wavelength tuneability allowing for its application to a 

range of coherent control schemes.   
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  Chapter 1 
 
 

Introduction  
 

This chapter provides an introduction to progress in improving our understanding and 

controlling photochemical and photophysical processes. It begins with a discussion of 

some of the core concepts of organic photochemistry and leads onto the historical 

development of following chemical reactions in real time. It then reviews some interesting 

and important developments in the field of time-resolved photoelectron spectroscopy. The 

focus is then shifted from observation of excited state processes to their control, with a 

brief discussion on the approaches to pulse shaping and a description of some examples 

of coherent control.  
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1.1 Organic photochemistry 

Photochemistry is concerned with the interaction of light with atoms or molecules to 

cause a chemical reaction. This area of science encapsulates some of the most 

important processes in nature like photosynthesis and vision. The study of the nature 

of light and light matter interaction brought about what is arguably one of the most 

important of all scientific developments in history - quantum mechanics. This theory 

revolutionised scientific knowledge propelling our understanding down to the atomic 

and molecular level from the shackles of Newtonian physics. 

1.1.1 Jablonski diagram 
 

The processes that are available to an atom or molecule when it absorbs light can be 

illustrated in a Jablonski diagram as shown in figure 1. The diagram shows the 

electronic states of an arbitrary molecule and the transitions which can occur between 

them. The states are arranged vertically by energy and grouped horizontally by spin 

multiplicity. Initially, a molecule will be in its lowest energy state, its ground state, 

assuming no prior excitation. From here the molecule can absorb a quantum of light 

and become excited resulting in an electron in the molecule moving from its highest 

occupied molecular orbital to its lowest unoccupied molecular orbital. The movement 

of the electron allows the molecule to absorb the energy of the photon by moving 

from its lowest energy position to a higher energy orbital and storing it as a potential. 

The nuclei feel a new set of attractions with a new charge distribution of the electronic 

orbitals and start to move to take up the lowest energy geometry. The new position of 

the electron and its new potential energy can bring about a change in the molecular 

structure, which is classified as a photochemical reaction. Unimolecular reactions of 

this type are in essence the simplest of all reactions. Reactions resulting in the excited 

state population moving back to the ground state are photophysical reactions and are 

also important mechanisms in the dissipation of energy, for example, from harmful 

ultraviolet radiation in DNA. Since the reactions are mediated by light it provides 

experimentalists with the opportunity to harness the properties of the light, for 

example the frequency composition, absorbed and emitted in these reactions to study 

them on a molecular level. This general field of spectroscopy has now a great range of 

techniques in its arsenal to observe and help elucidate many fundamental reactions, 

some of which shall be covered in this thesis.  
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From the singlet excited state (S1) the molecule can undertake a radiative decay route 

back to the ground state through the emission of a photon by fluorescence. These 

types of processes commonly occur on the nanosecond (ns) timescale and when in the 

liquid phase always from the lowest vibrational state of the excited state (Kashas 

rule). The singlet excited state population may also return to the ground state in a non 

radiative process through an internal conversion. Internal conversions occur through 

an adiabatic route in an avoided crossing or through a non adiabatic route in a surface 

crossing. A surface crossing is termed a conical intersection, and has been found to be 

responsible for excited state decay on ultrafast femtosecond timescales. They will be 

more thoroughly discussed in a following section. Movement of the excited state 

population to a triplet state is termed an intersystem crossing (ISC) and involves a 

change in spin multiplicity. This process involves a surface crossing and is dependant 

on the spin-orbit coupling between the two states.  Timescales for intersystem 

crossing are generally between nano- and milli- seconds, although ultrafast ISC has 

been recently observed1,20.  Generally, spin-orbit coupling can be increased by the 

presence of a heavy atom46. From the excited triplet state the population can decay to 

the ground singlet state in a radiative process of phosphorescence on a second 

timescale or in a non radiative process through a surface crossing between the triplet 

and singlet states. The timescale is long due to the transition being electronically 

forbidden. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Jablonski diagram illustrating the photophysical and photochemical processes available to a 
molecule after excitation. The diagram is plotted as a function of spin multiplicity and potential 
energy. Once a photon is absorbed exciting the ground state population to the first excited state the 
molecule can: Fluoresce on a nanosecond time scale by emission of a photon, returning the population 
to the ground state; undergo internal conversion back to the ground state which is generally an 
ultrafast process; undergo intersystem crossing to the triplet state in nano to milliseconds from here 
the molecule can phosphoresce in seconds back to the singlet ground state. 
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These processes account for all the mechanisms available to an isolated molecule 

moving from one electronic state or spin multiplicity to another. The molecule can 

also react to form a product. Within an electronic state the molecule can have its 

population in specific vibrationally excited states. This depends on the wavelength of 

light whether it is resonant with a transition to a vibrationally excited state. 

Specifically, if there is a good Franck-Condon overlap with that state. Vibrational 

states can also overlap and couple with one another which allows the energy be 

dissipated into other vibrational modes. 

1.1.2 Potential energy surface 

The Jablonski diagram only views the processes undertaken by the molecule in terms 

of energy with no indication of how the geometry is altered during this process. A 

potential energy surface for a molecule is the plot of how the energy varies with co-

ordinates. So for a system with N atoms the potential energy is a function of 3N-6 

internal or 3N Cartesian co-ordinates. This means for all but the simplest atoms the 

potential energy is a complicated multidimensional function of the co-ordinates.  

The Born Oppenheimer approximation, in which the electron can be thought of as 

moving instantaneously compared to the nuclei, is used to calculate the potential 

energies of the molecule to form the surface. This follows from the fact that the 

masses of the nuclei and electrons are very different. Theoretically this allows for the 

electronic and nuclear parts of the wave function to be separated. The Born 

Oppenheimer approximation does however break down in certain areas of the 

potential energy surface, for example, at a conical intersection.  

Each point on the surface corresponds to a different structure. For a molecule with 

more than two coordinates a surface cannot be plotted in 3D. To overcome this key 

coordinates need to be picked that are the most important in the process under 

investigation. Since it is impossible to plot all the coordinates at once, the axes for a 

potential energy surface will correspond to key changes to the molecules bond lengths 

or orientation. The third axis, the height corresponds to the energy, of whatever 

orientation the other two axes specify.  
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This representation can illustrate in a chemically intuitive fashion how the geometry 

of a molecule is altered over time, its molecular dynamics. The initial structure of a 

molecule will be an arbitrary configuration with standard bond lengths and angles on 

the ground state. The structure will be stable and so exist in a ‘well’ with a minimum 

associated with the lowest energy structure. From here excitation of the ground state 

population can be caused by an ultrashort pulse to create a wave packet on the excited 

state surface. The movement of a wave packet created on the potential can be thought 

of like a marble rolling over a surface. The trajectory of the wave packet will depend 

on the surface topology and the vibrational modes excited by the specific frequencies 

of the pulse. Features on the potential energy surface, termed critical points, can be 

calculated using quantum mechanical methods. These included minima, transition 

states and surface crossings. 

1.1.3 Conical intersections 

 

A conical intersection of two potential energy surfaces of the same spatial and spin 

symmetries is the set of molecular geometry points where the two potential energy 

surfaces are degenerate (intersect). Conical intersections (CI) are ubiquitous in 

chemical systems and provide a common mechanism for de-excitation from the 

lowest excited states in polyatomics. When a molecular excited state wave packet 

reaches a conical intersection large vibronic coupling induces a non-radiative 

transition between the two states allowing the population on the upper state to transfer 

to the lower state. In a polyatomic molecule, two electronic states of the same 

symmetry are allowed to cross at a CI (a real surface crossing). Radiationless decay 

from the upper to the lower intersecting state occurs within a vibrational period when 

the system “travels” in the vicinity of such intersection points. In the gas phase, i.e. an 

isolated system, movement of the molecular wave packet through a CI is described as 

a non adiabatic event, in which case the high electronic energy of the excited state is 

redistributed into other degrees of freedom, namely vibrational energy to obey the law 

of conservation of energy. 

 

In a system with n coordinates, degenerate points lie in what is called the intersection 

space, or seam, the dimensionality of which is N-2. For a conical intersection, the 

remaining two dimensions that lift the energetic degeneracy of the system form the 
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branching space. The two-degeneracy lifting coordinates are the gradient difference, 

x1, and the interstate coupling, x2. When the potential energy surface is plotted along 

these two coordinates it forms two cones, of which the upper is inverted, and where 

they cross is the conical intersection. The remaining N-2 coordinates in this 

representation form a hyperline, the intersecting space, which consists of an infinite 

number of crossing points. The shape of the conical intersection can vary, but 

generally occurs in two distinct forms, as either a sloped intersection or a peaked 

intersection. The shape of the intersection and the trajectory of the wave packet into it 

will dictate what area of the lower state the wave packet will access and therefore the 

molecular dynamics. A conical intersection in a polyatomic has been shown below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.1.4 From kinetics to dynamics 

 

In 1889, Arrhenius gave the seminal description of the change in rates of chemical 

reactions, the dependence of the rate constant k of chemical reactions on the 

temperature T, (in kelvin) and activation energy Ea , as: 

 

)/exp( RTEAk a−=                                                                                                  (1.1) 

 

Figure 2: Conical intersection. In a polyatomic molecule two potential energy surfaces are allowed to 
cross along a (3N − 8)-dimensional subspace of the (3N − 6)-dimensional nuclear coordinate space (the 
intersection space) even if they have the same spatial/spin symmetry. Each point of the intersection 
space corresponds to a conical intersection. If the energy is plotted against two special internal 
geometrical coordinates, x1 and x2, which define the so-called branching plane, the potential energy 
surface would have the form of a double cone in the region surrounding the degeneracy. In the 
remaining (3N − 8) directions, the energies of the ground and excited state remain degenerate; 
movement in the branching plane lifts the degeneracy. 
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where A is the pre-exponential factor, R is the gas constant. This description is 

remarkably accurate for values of T that are above 20 K but is limited to an average of 

all molecular reactions in the ensemble measured. When T is very low the quantised 

nature of the molecule under study becomes into play. Equation (1.1) gives no insight 

into how the molecules approach, collide, exchange energy, break or make bonds, or 

how they may separate into products. Molecular dynamics has the aim to answer these 

elementary questions. The first approach to answering some of these questions used a 

quantum mechanical theoretical method developed by Heitler and London41 to 

describe the potential energy surface of H3 in terms of the Coulombic and exchange 

energies of the diatomic pairs. Eyring and Polanyi33, in 1931, used this equation to 

obtain the first potential energy surface using a semiempirical calculation which 

described the reaction of H + H2. They were able to show how the reactants formed 

the products on a potential energy surface by illustrating the trajectory of the reactants 

and products on in it as a function of time. In 1935, Eyring, and, separately, Polanyi 

and Evans re-formulated the Arrhenius equation giving an expression of the pre-

exponential factor as part of their transition state theory (TST)42, 43. TST gave a 

structure to the intermediate step in a chemical reaction and also its first timescale. 

The transition state was viewed as any structure other than the reactant or product. 

The equation gave a lower limit to the time taken through the transition state which as 

a frequency came to ~ 12106× s-1 which corresponded 170 fs. 

 

1.1.5 A history of short timescales 

 

The observation of a fast event is dictated by the speed of the technique by which it is 

imaged. In 1877, Edweard Muybridge used a series of cameras to photograph a horse 

galloping in order to answer the question whether all four hooves left the ground at 

the same time. Unknowingly, it could be said that he was the first to conduct a pump-

probe experiment to answer a question on a process that was too fast for vision to 

discern. This technique was picked up in 1950, where the first pump-probe 

experiments involving chemical reaction kinetics were made44, 45. The time delay 

between the pump and probe is altered through the introduction of a change in path 

length between the pump and probe beams. Flash photolysis experiments were 

undertaken by Norrish and Porter in which an intense burst of light from a flash lamp 
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initiated a chemical reaction to produce radicals in the pump step34. The spectrum of 

the radicals was then recorded using a second pulse of light in the probe step. They 

were able to gain kinetic information on the reactions undertaken by short lived 

radicals down to the microsecond time scale. For example information was gained on 

ClO, I2 and formation of halogenated cyclopentadienyl radicals. For this contribution 

Norrish and Porter and separately Eigen, shared the 1967 Nobel Prize. This marked 

the onset of ever shortening timescales in which the time resolution of the dynamics 

they could view was dictated by the duration of the flashes of light which could be 

produced. The 1960’s saw the invention of the pulsed laser which gave the leap into 

the nanosecond and later picosecond regime. From here the focus moved to non 

radiative processes where timescales for internal conversion, intersystem crossing and 

orientation relaxations were obtained.  

 

The field of study concerned with understanding how molecules change as a function 

of time can be generally termed as molecular dynamics. Conventional spectroscopy, 

which occupies the frequency domain strictly, was being revolutionised with the 

development of lasers in the 1960’s, and allowed for the further understanding of 

molecular dynamics by rationalising the spectroscopy available to molecules. 

Nanosecond resolution enabled the observation of firstly intersystem crossing and 

later rotational motion but it was not until the femtosecond timescale was reached in 

the 1980’s that vibrational motion could be resolved. In 1999, Ahmed Zewail2 

received a Nobel Prize for his work in propelling the field of molecular dynamics into 

the femtosecond realm from its realisation in the 1980’s. In  his early work he was 

able to observe the process of intramolecular vibrational energy redistribution in 

anthracene3 using the recently developed molecular beam techniques. He and co-

workers observed the excited state population of NaI oscillating backwards and 

forwards with a defined period on a picosecond timescale. This brought about the 

evidence that the induced vibrations by a coherent pulsed laser source were 

themselves also coherent. The concept of quantum coherence was now experimentally 

verified and ideas about how the phase of the excitation pulse could be manipulated to 

alter the vibrational make up of a non stationary superposition of states were seeded. 

 

The year of 1987 saw the first observation of the change in molecular structure in a 

chemical reaction as a function of time, specifically the breaking of a bond, using 
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lasers with femtosecond resolution. The photodissociation reaction of NaI was 

observed and from this confirmed a range of concepts: that the wave packet was 

localised in space, that the wave packet remained localised and coherent over time, 

that the wave packet could be thought of as a marble rolling on a potential energy 

surface along a reaction co-ordinate from reactant to product passing through the 

TST3. This set the precedent for many molecular dynamics experiments and a variety 

of techniques were developed to this end, such as resonance enhanced fluorescence 

spectroscopy and ion – time of flight techniques.  

 

1.2 Time-resolved photoelectron spectroscopy 

 

1.2.1 Introduction 

 
The advent of femtosecond time-scale laser pulses has enabled the real time 

observation of chemical dynamics. Since then a flurry of research has been 

undertaken using a variety of techniques, such as photoionisation, laser-induced 

fluorescence and coherent anti-Stokes Raman spectroscopy. Gas-phase time resolved 

photoelectron spectroscopy (TRPES) emerged from the available techniques as a 

particularly versatile and sensitive technique. Its contributions to photochemistry and 

photophysics, and more recently photobiology have been summarised in a number of 

review articles4-8. TRPES utilises the pump-probe method where the dynamical 

process to be studied is initiated with a pump pulse which is then imaged via 

ionisation at certain times after its inception with a probe pulse.  

 

The excitation by the pump pulse creates a non stationary state, or wave packet (see 

section 1.2.3), which evolves over the excited potential energy surface. By detecting, 

or rather probing, the wave packet at different stages along its reaction coordinate, a 

picture can be built up of the excited state potential energy surface and the chemical 

dynamics unravelled. . The probe pulse ionises the species under investigation and the 

photoelectrons emitted are collected and analysed. A variety of techniques exist to 

collect photoelectrons, namely time-of-flight tubes, magnetic bottle spectrometers, 

and photoelectron imaging. The order in which they have been listed indicates the 

order of their introduction chronologically. At the heart of excited state chemical 

dynamics are non-adiabatic processes which dominate the ultrafast photochemistry of 
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molecules including organic polyatomics, these include internal conversion and 

intersystem crossing. TRPES has been successfully used to decipher which 

mechanisms are responsible for characteristic ultrafast photochemistry.  

 

A variety of probes have been used to detect wave packets. In the condensed phase, 

transient absorption and nonlinear wave-mixing techniques have been used; however, 

these are impractical in gas phase experiments due to low detection yields. Instead 

laser induced fluorescence and resonant multiphoton ionisation have been preferred. 

Multiphoton ionisation techniques suffer from low photoelectron yields when an 

intermediate state is not available for ionisation from, this is further hampered by the 

fact that increasing laser intensity can lead to unwanted strong field effects. Use of a 

resonant state also somewhat restricts viewing the excited state dynamics when a 

large change in energy is undertaken for example in a non adiabatic process. The 

resonance conditions will therefore change and could require re-tuning of the probe 

pulse to view the rest of the reaction coordinate. 

 

These techniques can suffer from a restricted final state in which the probe must be 

resonant with an electronic transition in the target molecule to yield its observable. In 

the case of laser induced fluorescence segments of the reaction coordinate can have a 

poor fluorescence yield causing dark areas. For resonant multiphoton ionisation the 

ionising photons may not be resonant on every part of the reaction coordinate and so 

must be tuned. This means at a particular probe wave length there are “dark” areas of 

the wave packets evolution over the potential energy surface. To improve on this a 

probe is required that is able to ionise along the entire reaction co-ordinate and that is 

not restricted to a specific final state. Time resolved photoelectron spectroscopy 

benefits from being able to ionise along the entire reaction coordinate as long as a 

good Franck Condon overlap exists with the ionisation continuum   

 

In the work presented in this thesis TRPES is used to study the excited state 

intramolecular dynamical processes in an isolated gas phase polyatomic molecule, 

specifically benzene. The probe in this case has a suitably high energy to cause 

ionization of the excited molecule with one photon, the ejected photoelectrons are 

collected and their kinetic energies are measured. This removes the resonance 

conditions potentially allowing the entire reaction coordinate to be accessed via the 
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probe. Ionisation has the advantages of: (1) charged particle detection is extremely 

sensitive; (2) Single photon ionisation is always an allowed process with relaxed 

selection rules, there are no ‘dark’ states; (3) Information can be gathered by 

analysing the outgoing electron in terms of their kinetic energy and angular 

distribution; (4) High order multi-photon processes which commonly plague 

femtosecond studies can be detected through fitting of the photoelectron image with 

the correct the Legendre polynomials if not saturated; (5) The final state in an 

ionization process is often a stable cation which can be characterized independently 

by high resolution photoelectron or infrared spectroscopy or by computational 

methods9 . 

 

In TRPES a fundamental concept is that of the Koopmans picture - that upon 

ionisation an outer valence electron is removed from the molecule with no 

simultaneous electronic re-arrangement of the ion core. This means TRPES is 

sensitive to both electronic configurations and vibrational dynamics of molecules 

making it an optimum technique for studying non-adiabatic processes. TRPES is, 

however, restricted from viewing the reaction coordinate on the ground state with 

high resolution. This is due in part to the requirement of high energy photons required 

to ionise the ground state which in the case of benzene is ~9 eV. To obtain this energy 

photon would require a vacuum ultraviolet (VUV) source which currently is not 

commercially available but can be built. As well as this the wave packet upon 

accessing the ground state would be very vibrationally hot requiring high resolution 

detection to resolve the high density of states that would be populated. For this reason 

the wave packet would also likely fragment, causing additional signals to be obtained 

from the fragments.  

 

The generality of the Koopmans picture - that the structure of the cation ionisation 

continuum of a molecule closely reflects that of the neutral molecule before ionisation 

- was consolidated theoretically by Domcke et al in 199110, 11. It was illustrated that if, 

upon removal of a single active outer electron, a probed electronic configuration 

correlates well with the ground electronic configuration of the continuum then the 

photoionisation probability is generally higher than if it does not. This implies that the 

electronic structure of the continuum can be used as an uninhibited probe of the 

evolving electronic configuration in the neutral state. 



 12

 

1.2.2 Theory of TRPES 

 

Wave packets are defined as coherent superpositions of molecular eigenstates    . 

Eigenstates themselves are stationary since they are solutions of the time-independent 

Schrödinger equation. The non stationary nature of a wave packet comes from the 

inclusion of the quantum mechanical energy phase factors          associated with the 

eigenstates in the superposition (refer to equation 1.2). TRPES experiments aim to 

create and detect these wave packets using the pump-probe method as described 

above.  

 

Pump-probe experiments consist of three parts: (i) preparation of the excited state 

wave packet; (ii) the dynamical evolution of the wave packet; (iii) the probing of the 

wave packet. This is illustrated in figure 3. The full range of excited eigenstates 

created by the broad bandwidth pump pulse are shown in this figure (dark arrows) but 

in the following description of the relationship between the three steps only two states 

shall be considered        and       for simplicity. Also to note is that the final state in 

this figure is reached by a broad bandwidth probe pulse (light arrows) which would 

overlap all excited eigenstates with a particular final state. What is not shown, for 

simplicity, is that other final states would also have an overlap with some or all of the 

excited and probed eigenstates. The following description focuses on one final state 

which includes the interference experienced between the coherent transitions ending 

in the same final state. 

N

h/tiENe−

MN
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From a frequency domain perspective, the final state reached in the pump probe 

experiment is caused by coherent two photon transitions from the pump (dark arrows) 

and probe (light arrows) photons. The signal measured is proportional to the 

population in the final state at the end of the two pulse sequence. The transition 

probability to the final state is calculated by squaring the sum of all these two photon 

transitions. The signal is affected by interferences between the two photon transitions 

which manifest themselves as modulations. The amplitudes and initial phases of the 

set of the initially prepared excited eigenstates are determined by the amplitudes and 

phases of the pump laser field frequencies and the transition dipole amplitudes 

between the initial state and the excited state of interest. The characteristic 

modulations in the signal are determined by the phase relationship between the 

eigenstates. The excited state wave packet created by the pump pulse is given by:      

 

∑ >>=Ψ −

N

tiE
N NeAt N |)(| / h                                                                                     (1.2) 

 

In (1.2), the phase and amplitude of the molecular eigenstates     are contained in the 

complex coefficients AN, and the EN are the excited state eigenenergies. After the 

pump pulse has created the excited state wave packet, it is free to evolve depending 

|Ψf>

|Ψi>

Ne tiEN h/−

Me tiEM h/−
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( )ttE probe Δ=,2ω

Figure 3: Preparation, evolution and projection 
onto a final state of the excited state wave 
packet. The pump pulse creates a non-stationary 
superposition of excited eigenstates, in this case 
two have been illustrated,       and        out of the 
initial state       . The difference in the quantum 
mechanical energy phase factors        between 
the eigenstates in the superposition determines 
the wave packets evolution over the potential 
energy surface. Once the pump pulse is over the 
probe pulse projects the wave packet onto a 
final state          . 
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on the relative energy phase factors in the superposition. The wave packet will move 

out from the Franck Condon region and into another area of the surface marking the 

onset of the chemical dynamics. After a time interval, Δt, from the wave packets 

inception, in which time it evolves, the probe pulse interacts with it and projects it 

onto the final state Ψf. The final state represents the viewing window used to observe 

the excited state wave packet. The difference between the signals at these time 

intervals builds up a picture of how the wave packet is evolving over the excited state 

potential energy surface. 

 

Each photoelectron spectrum obtained using photoelectron imaging is resolved in 

energy and is referred to as a differential signal. Where, conversely, for a detection 

technique such as ion yield or fluorescence spectroscopy, the total signal, S(Δt), 

corresponds to the sum of all energetically allowed final states ΣSf(Δt) and is referred 

to as a integral detection technique. The set of photoelectron spectra obtained by the 

pump-probe photoelectron imaging process thus gives the time dependence of the 

differential signal, Sf(Δt). The time dependence of the differential signal, Sf(Δt) 

obtained from TRPES, for projection onto the final state is: 

 
2

/2|)(|).(||)( ∑ −=>ΨΨ<=
N

tiE
Nprobeff

NeBtdEtS hω                                              (1.3) 

 

In (1.3) the complex coefficients BN contain the wavepacket amplitudes AN and the 

complex probe transition dipole matrix elements, d. The transition dipole matrix 

elements connect each eigenstate in the superposition      to the final state. The 

complex coefficients are shown below: 

 

>Ψ<= NdEAB probefNN |).(| ω .                                                                           (1.4) 

 

Equation (1.3) can be re-written, excluding the imaginary part, for a wave packet 

comprising two eigenstates      and         as: 
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The phase factor ΦNM contains the differences in phase of the molecular eigenstates 

and the phase difference of the probe transition dipole matrix elements connecting 

states 〉N|  and       to the final state. The differential signal, Sf(t), contains in it 

detailed information about the final state. It is determined by the coherent sum over all 

two photon transition amplitudes and contains the interferences between any 

degenerate two photon transitions. The modulations contained in the signal at 

frequencies                  relate to the set of level spacings in the superposition. When 

the time domain signal is Fourier transformed to the frequency domain, the 

frequencies obtained indicate what the set of levels spacings are in the excited state. 

This gives the relationship between the wave packet dynamics and the observed pump 

probe signal. The Fourier amplitudes for each frequency correspond to the overlap of 

each excited state eigenfunction with a specific final state. Each final state will give a 

specific signal, Sf from having unique transition dipole moment matrix elements with 

the eigenstates        and        that constitute the wave packet. So the choice of probe 

and in turn the choice of final state will determine what information is gleaned from 

the excited state wave packet. This also allows the experimentalist to select areas of 

dynamics of interest. 

 

1.2.3 Photoelectron energy relation to ion energy distribution    

 

An isolated molecule rests in the ground state, X~ , with a distribution of vibrational 

states, ν”, as represented by p(E) which possess energies EX(ν”). An example 

distribution is shown in the bottom left of figure 4. The ground state population is 

defined in this summary to be on a vibrational state with internal energy Ev0. A broad 

bandwidth femtosecond pulse excites the ground state population to a number of 

vibrational levels in B~ , to form a non stationary superposition of states with energy, 

EB(ν’). The energy width of EB(ν’) is characterised by the frequency width of the laser 

pulse.  

M

N M

( ) h/mn EE −
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The probability of a transition occurring between the ground and excited states from 

excitation by the pump photon, hνpr is determined by the corresponding Franck-

Condon factors. At time intervals after the pump pulse excitation, the molecule is 

ionised by absorbing a second probe photon, hνpr. The energy of the system at this 

point is calculated by Ev0 + hνpu + hνpr. If this energy is above the ionisation potential, 

IP, then ionisation can be caused. The distribution of states with internal energy 

E+(ν+) in the ionic state +X~  is dependent on the Franck-Condon factors of the 

ionisation process. These are the Franck-Condon factors between the vibrational 

levels ν+ in the ionic state, +X~ and the vibrational levels ν’ in the intermediate state, 

B~ . The energy of the emitted electrons, Eel, represents the surplus energy not retained 

by the ion. The energy balance is expressed in equation 1.6, with it re-written in 

equation 1.7 to give the photoelectron energies, Eel: 

 

)(0
++++=++ vEIPEhvhvE elprpuv                                                                       (1.6) 
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Figure 4: Energy level diagram illustrating the relation between photoelectron energy and the 
vibrational and electronic energy of the system. To the left of the figure are example energy 
distributions of the ground, intermediate and ionic states. 
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The energy of the ion is therefore determined from the energies of the photoelectron, 

Eel. Equation 1.7 can be rewritten once again in terms of the electronic energy EB and 

the vibrational energy, EB(ν”) of the excited state, so that Evo + hνpu = EB + EB(ν’), to 

give: 

 

prel
B

B hvIPEvEvEE −+=−+ ++ )()'(                                                                     (1.8) 

 

This shows that any change in photoelectron energy Eel is due to a change in the 

energy of the ion. This can be due to a change in vibrational energy of the 

intermediate state population, where the IP, hvpr and electronic energy will not change 

in the weak field limit. This can be accounted for by IVR or some molecular re-

arrangement. In the case of an IC, ISC, dissociation or a reaction, the electronic 

energy will change since the molecule will reside on a new potential energy surface 

and be reflected in a change in the energy of the photoelectrons, Eel. Decoupling the 

vibrational from electronic dynamics can be difficult but often is resolved through 

understanding of the spectroscopy of the molecule. Photoelectron spectroscopy for 

these reasons is able to follow excited non adiabatic processes. The interpretation of 

the photoelectron spectra rely on some assumptions: (i) the energy of the molecule is 

conserved, since it is an isolated system in the gas phase. This implies that the 

reduction in ionisation is due to redistribution of the energy of the molecule into 

different degrees of freedom in such a way that does not favour ionisation anymore. 

(ii) The Franck-Condon factors connecting the vibrational levels populated through 

movement of the wave packet to the ion states will change and can be quantitatively 

related to the change in the photoelectron spectrum. The loss of signal in the 

ionisation process can also be caused by decoherence of the wave packet. To help 

fully resolve photoelectron spectra in these cases modelling of the potential energy 

surfaces is required using, for example, ab initio calculations. 

 

1.2.4 TRPES applications 

 

TRPES has been reviewed extensively by a number of groups (e.g. Radloff12 and 

Stolow4, 6, 13 as well as in references8, 14-17). In this section some of the seminal studies 

will be covered as well as some of those which highlight the depth of information that 
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can be obtained from TRPES. The examples will include studies that have shone light 

on non adiabatic processes such as, internal conversion and intersystem crossing, and 

work on doorway states in IVR, photodissociation and photoisomerisation. TRPES is 

an extremely powerful technique in resolving molecular dynamics and is utilised to 

monitor coherent control processes.  

 

The first application of laser photoelectron spectroscopy was conducted on benzene 

by Reilly et al. using a broadband excimer laser18. This initial approach was improved 

on later19 by this group by using a 1+1’ photon scenario in the near ultraviolet region 

with narrow band lasers of ~1 cm-1 bandwidth to obtain high resolution spectra. The 

1+1’ scheme enabled relaxed selection rules that were previously hampering the one 

photon ionisation schemes. Knee et al. followed up on this work using picosecond 

resolution to study the nonradiative processes of S1 benzene20. The first study of 

intramolecular dynamics was conducted by Hayden et al. that shall be discussed in 

further detail in section 1.2.4.2.  

 

1.2.4.1 Observing vibrational motion 

 

Seel and Domcke in 1991, theoretically demonstrated in their seminal work10, 11 on the 

vibrational multimode dynamics of pyrazine that the nuclear dynamics are reflected in 

the temporal variations of their photoelectron spectra. This relationship between the 

time resolved photoelectron spectra and the time dependent probability in Na2 was 

demonstrated by Engel and Meier21 in 1993. They proposed a three photon scheme as 

depicted in figure 5 (a). A 620 nm pump laser creates wave packets in the          

state with a one photon absorption and subsequently a wave packet in the gΠ12          

state with a two photon transition, both at their inner turning points. The vibrational 

motion of the diatomic is tracked through the change in photoelectron energy, where 

the higher energy photons correspond to a longer bond length and shorter bond 

lengths to lower photoelectron energies. The time resolved photoelectron spectra as a 

function of energy, figure 5 (c), can thus be converted to a function of bond length as 

seen in figure 5 (d). By probing the wave packet at smaller time steps from t=0 than 

the period of vibration, and that the pulses were of a shorter duration than the 

vibrational period enabled it to be successfully resolved. In 1996, Baumert et al.22 

+Σ uA1
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verified this prediction experimentally and the time resolved photoelectron spectrum 

from this work is shown in figure 5 (d). With the experimental results so closely 

matching that of the theory left the community convinced of the power of 

photoelectron spectroscopy as an ideal tool for observation of vibrational wave 

packets and more generally molecular dynamics.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Vibrational dynamics of Na2. (a) shows the excitation scheme for the Na2 molecule. The 
pump laser at 620 nm creates wave packets in the A1Σu

+ and the 21Πg states at the inner turning points, 
these are monitored by a time-delayed probe. (b) is a plot of the absolute square of the vibrational 
wavepacket in the Π-state created by a two-photon transition from the ground state. (c) shows the 
photo electron spectrum from a one-photon ionization out of the Π-state. The periodic motion of the 
wavepacket can be seen here. (d) The same spectrum is plotted with energy against atomic distance and 
time delay.11 



 20

1.2.4.2 Internal conversion 

 

In 1996, the first study of non adiabatic intramolecular dynamics in a polyatomic 

molecule was conducted by Cyr and Hayden23. They utilised a combination of time 

resolved ion yield and photoelectron spectroscopy to observe a fast, 20 fs, internal 

conversion in 1,3,5-hexatriene from the excited S2 state to the S1 state. The excited 

wave packet on the S1 state was then seen to access the ground state in 300 fs. 

 

 In 1999, Stolow and co workers published findings using TRPES to resolve the non 

adiabatic intramolecular dynamics in a polyatomic molecule24. In their scheme, 

depicted in figure 6, a 287 nm pump pulse created an excited state wave packet on the 
1B1u state of all-trans decatetraene which corresponds to the S2 surface. From here the 

wave packet redistributed to S1 through a conical intersection. The moving wave 

packet was ionised sequentially, in by now the well established pump probe method, 

with a 235 nm probe pulse and the photoelectrons were analysed. Linear polyenes 

possess the interesting property that they photoiosmerise between cis and trans 

isomers. This mechanism is responsible for photosynthesis and vision. The TRPES 

show that the wave packet undergoes a rapid change in potential energy, over 400 fs, 

which was rationalised as internal conversion through a conical intersection. The 

energies of the prevalent photoelectrons change due to the Franck Condon overlaps 

being different in the new states. The photoelectrons ε1 correspond to a good overlap 

with the D0 state and the photoelectrons ε2 with D1. The excited electronic states of 

the molecule and radical were calculated theoretically to confirm the proposed 

excitation scheme. This experiment was an example of a Koopmans type I scenario, 

whereby, the ionisation of the two excited states studied correlate with two different 

ionisation continua. This situation is ideal for disentangling the electronic from 

vibrational dynamics. 
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Systems where the two excited states correlate with the same ionisation continua, 

Koopmans type II are more difficult to unravel. Phenthrene is a Koopmans type II 

molecule but owing to its rigidity its vibrational dynamics can still be clearly observed 

by TRPES25. Figure 7 illustrates the excitation scheme used to monitor an internal 

conversion between the S2 and S1 states in phenthrene. A 282 nm pump pulse created 

a wave packet on the excited state that was probed by a 250 nm probe pulse. The 

obtained time resolved photoelectron spectra are shown in figure 1.2.7, within them 

the bands ε1 and ε2 correlate to the S2 11B2 surface and S1 21A1 surface respectively. 

Both excited state surfaces have a Franck Condon overlap with the same ionisation 

continua D0, 12B1. The photoelectrons of ε1 and ε2 differ in energy because when the 

wave packet moves through the conical intersection it becomes vibrationally hot from 

the electronic energy being transformed into vibrational energy. The Franck Condon 

overlap is best with a Δν = 0 propensity, and so causing ionisation to a vibrationally 

hot cation state. This is seen in the transfer in energy from 1.5 eV in ε1 to 0.7 eV in ε2 

which happens at a decay rate of 522±16 fs. The excited state population has moved 

entirely to S1 after 1500 fs. The system has uncharacteristically well defined 

photoelectron peaks because of the rigidity of the structure which causes the 

geometries in the two excited states are very similar. The similarity means that most 

of the 0.74 eV of the molecule is transferred to vibrational energy since none is used 

Figure 6: Molecular dynamics of all-trans 
decatetraene. (Top) Energy level scheme for 
TRPES of all-trans decatetraene. The pump 
pulse populates the S2 state, the wave packet 
moves to the S1 state via a surface crossing that 
gives the wavepacket 0.7 eV of vibrational 
energy. (Bottom) TRPES spectra of all-trans 
decatetraene for wavelengths of the pump and 
probe pulses of 287 nm and 235 nm respectively. 
The time from which the population transfers 
from the S1 to the S2 state is around 400 fs and is 
calculated as the time between the band ε1 at 2.5 
eV and growth of the broad band of ε2. 
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in a change in geometry and so allows for a significant shift in photoelectron energy. 

The internal conversion is aided by the fact that the S1 state has a high density of 

vibronic levels which the wave packet on S2 can couple with. The wave packet once 

on the S1 state is unable to travel back to the S2 state. This causes a substantially long 

dephasing time.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

1.2.4.3 Intersystem crossing 

 

In 1999, Suzuki and co workers presented the first time resolved photoelectron 

imaging studies26 where a pair of ion optics create a field which maps the kinetic 

energy of the photoelectrons to radius on the detector surface. The move to this more 

efficient detection technique yields not only the kinetic energy of the photoelectrons 

but also their angular distributions. In this study they were able to experimentally 

obtain the photoelectron angular distribution of NO A1Σ+ from the photoelectron 

image. The dynamics of the S1 state of pyrazine was also studied. The S1 B3u state was 

excited by a single photon pump pulse at 320-350 nm and then probed by a two 

photon pulse centered at 393 nm. Previous work had already been conducted on this 

system and the biexponential decay indicating dephasing with a decay rate ~100 ps 

time scale had been attributed to intersyem crossing to T1. The photoelectron images 

obtained showed two distinct photoelectron rings of differing energy and anisotropies. 

Figure 7: Intramolecular dynamics of 
phenanthrene. (Top) Energy level 
scheme for TRPES of phenanthrene. 
The pump pulse populates the S2 state, 
the wavepacket moves to the S1 state 
via a surface crossing that gives the 
wavepacket 0.74 eV of vibrational 
energy. (Bottom) TRPES spectra of 
phenanthrene for wavelengths of the 
pump and probe pulses of 282 nm and 
250 nm respectively. The time from 
which the population transfers from the 
S1 to the S2 state is around 520 fs and 
is calculated as the time between the 
band 1 at 1.5 eV and growth of the 
band at 2 at 0.5 eV.  
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The photoelectrons in the energy range above 630 meV were seen to be lowering in 

energy and those below increasing in energy and were attributed to the singlet and 

triplet respectively. This was while the total photoionisation signal remained constant 

since the probe is able to ionise both the singlet and triplet. The T1 state lies lower in 

energy than S1 and so the wave packet has more vibrational energy after undergoing 

intersystem crossing. From this data they found the decay rate of the singlet to be 108 

ps and the rate of intersystem crossing to be 98 ps from a cross correlation of 450 fs.  

 

1.2.4.4 Intramolecular vibrational energy redistribution 

 

In 2004, the group of Yamada et al. studied intramolecular vibrational energy 

redistribution of the OH/OD stretch vibration of phenol27. Both the phenol-

d0(C6H5OH) and phenol d5(C6D50H) were compared. In this scheme an infrared (IR) 

pulse excites the OH/OD stretching vibration in phenol which is then probed by a 1+1 

resonance enhanced multiphoton ionisation via the S1 state using a UV pulse with a 

duration of 12 ps. Although ions were collected instead of photoelectrons this 

example serves to illustrate observation of doorway states which are of relevance in 

chapter 3. A picosecond infrared pump pulse was used to excite the OH stretch 

vibration in phenol-d0 and phenol-d5, which subsequently undertook IVR with 

lifetimes of 14 ps and 80 ps, respectively. The difference in decay rate is due to the 

heavy atom causing an increased “OH stretch-bath state” anharmonic coupling 

constant in phenol-d0 than in d5. The IVR process was seen to be mediated by a set of 

doorway states which selectively couple to the OH/OD vibration and in turn to a 

dense bath of states. The different energies of the doorway states in the phenol-d0 and 

phenol-d5 molecules were thought to be causing the difference in decay rates. Direct 

detection of the doorway states was hampered by the significantly increased decay 

rate between them and the OH/OD vibration than between it and the bath states. The 

TRPES shown in figure 8 (d) shows three distinct features, bands A and B, which, 

seem to be out of phase with that of the known OD 0
1  stretch. The bands A and B were 

concluded to be imaging the doorway state. The two-step tier model that represents 

the results is shown in the top of figure 8 (b) and its corresponding eigenstate picture 

at the bottom. The picosecond pulse coherently excites strongly coupled states in the 

OD stretch region to give the non-stationary states. The non stationary states oscillate 
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to the doorway states, and at each oscillation lose some intensity to the dense bath 

states. The eigenstate picture in figure 8 (b) shows the wave packet to be composed of 

three states, since band A was found to be composed of three oscillations. Their 

approximate energy level spacings are indicated on the figure. The bottom plot in 

figure 8 (a) shows band A after the bath state contribution has been removed. A 

similar quantum beat was also observed in the IVR of the OD stretch of phenol-d6 and 

is shown in figure 8 (c). It has only one frequency of oscillation and the two energy 

levels are indicated inset in the figure. By sampling the available vibrations in the 

energy region of pump pulse in phenol-d0, band A and B were assigned as 
1
1

1
1

0
1

0
1 181261 ba and 1

1
1
1

1
1

0
1 181261 ba  respectively.  

 

 
 

 

 

 

 

 

A simpler type of IVR was studied by Reid et al. using the prototypical Fermi 

resonance in toluene28. In this study the 6a1 + 10b116b1 Fermi resonance in S1 was 

excited at 457 cm-1 with a 1 ps pulse. Using photoelectron imaging they were able 

Figure 8: Molecular dynamics of phenol. (a) The time profiles of OD  and band A of phenol-d1 . 
Lower trace is that of band A with the subtraction of the rise function due to dense bath states. The 
solid curves are the calculated time evolution of the OD level and the doorway state. (b) The coupling 
scheme for IVR of the OD stretch of phenol-d1. Upper trace: The |OD> state is coupled with the 
doorway states, |l1> and |l2>, via Vanh and the later states are further coupled with the bath states, 
|bath>. Lower trace: The diagonalized picture forming three quasistationary states. (c) The time 
evolution of the OD   band ~33 817 cm-1 of phenol-d6, the solid curve is simulated based on the model 
shown in the right. (d) The transient UV spectra observed at several delay times after exciting the OD 
stretching vibration of phenol-d1, bands A and B are out of phase with the OD  band21. 

 (d) 

0
1

0
1

0
1
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observe an oscillation in the ratio of intensities between the ν = 0 peak associated with 

the 6a1 mode and the Δν=0 peak associated with the 10b116b1 mode. They resolved a 

phase difference of π/2 between the two states. The oscillation in intensities was 

measured to be 6 ps which corresponded well with the energy separation of the states 

measured with dispersed fluorescence.   

 

1.2.4.5 Photoisomerisation 

 

The study of photoisomerisation has attracted attention by the community due to its 

involvement in photonics and data storage as a molecular switch and as a trigger in 

protein folding. Azobenzene is a prototypical molecular switch undergoing 

photoisomerisation between the cis and trans isomers through excitation in the 280-

340 nm energy range. The group of Stolow et al. collected TRPES data of this process 

by ionising at 207 nm in a 1+1 photon REMPI scheme29. The group of Martinez et al. 

modelled the data and between them they were able to resolve previously collected 

seemingly contradictory aspects of the photochemistry. The proposed electronic 

pathways are shown in figure 9. It shows that two pathways exist to the ground state, 

one which leads exclusively to the trans isomer and another that travels through two 

consecutive conical intersections, the last one of which allows the excited state 

population to access the cis or trans ground state structures. The pathway from S3,4 

was found to have ring localised character and so suggests a pathway involving 

phenyl-ring dynamics which would indicate a torsion of the ring to give the trans 

isomer. The decay of the population from S2 was found to undertake an inversion 

about the central bond, to yield a planar geometry on S1. The planar geometry upon 

decay to the ground state can then either take the trajectory to the cis or trans isomers. 

These findings fitted with all the previous observations and highlights the power of 

TRPES to help identify the two near degenerate states S3,4 and S2 which had until then 

avoided detection.  
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1.2.4.6 Proton transfer 

 

Proton transfer is an important primary process in many chemical reactions and has 

been studied using TRPES by Stolow and co-workers30. They studied the proton 

transfer in o-Hydroxybenzaldehyde (OHBA), going from the enol to the keto 

structure. OHBA represents the simplest aromatic molecule to study. It was found that 

after excitation by a 326 nm pulse the excited state population moved to the keto form 

in under 50 fs. From there it decays to the ground state through a conical intersection 

in 1.6-6 ps over the range 286-346 nm of excitation. The monodeuterated isotope of 

OHBA, ODHA was also studied and revealed no isotope effect in the rate of proton 

transfer, which suggests the barrier in the OH stretch coordinate is non existent or 

very small.   

 

1.2.4.7 Photodissociation 

 

Radloff and co-workers have also made a variety of contributions to the field over the 

years, a number of which have used photoelectron – photoion coincidence 

spectroscopy. This technique uses two detection systems for one interaction region, so 

that the photoelectron emitted is collected at the same time as the photoion. 

Coincidence detection yields a further wealth of information since the dynamical 

information is from the molecular frame rather than the laboratory frame. In 1999, 

Figure 9: Molecular dynamics of in azobenzene. Proposed electronic relaxation pathways for S2 and 
S3,4: S2 to S1 internal conversion occurs with τ = 170 fs at planar geometry. Subsequent relaxation S1 
to S0 is expected to follow Kasha’s rule with a yield of isomerisation of 25%. The S3,4 state with a 
lifetime τ = 430 fs has a different but not fully characterized relaxation pathway to the trans isomer in 
S0, explaining the reduced the yield of isomerisation to 12% observed for the ππ* states.23 
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Radloff applied this technique to resolve the photodissociation dynamics of CF2I2 

which has a broad featureless absorption profile which had hindered any insight into 

the mechanism31. He found that the molecule dissociates into Cl2 + I + I in 100 fs after 

undergoing an ultrafast non adiabatic process with a decay rate of 30 fs. The results 

indicated three electronic states were involved in the process. In 2001, he also studied 

the photodissociation of ClO2 at 398 nm and was able to resolve the complex 

dissociation dynamics since each ion and consequently each associated photoelectron 

could be analysed. The A2A2-A2A1 transition was found to have a decay constant of 7 

ps. The A2A1 decayed to the 2B2 state through internal conversion and dissociation at 

a time constant of ~ 250 fs. The 2B2 state then decayed through and internal 

conversion at a time constant of ~750 fs. 

 

Hayden et al.47 in 2000 were able to utilise the difference in photoangular 

distributions (PADS) to resolve the mechanism of photodissociation of NO2. They 

were able to measure the PADS in the molecular frame in a form of coincidence 

imaging. The NO fragment was ionised and it was found that the PADS evolve from a 

forward-backward asymmetric with respect to the dissociation axis at short delays 

(<500 fs) to totally symmetric at long delays (>1ps).  

 

The cases so far have been concerned with neutrals but work has been completed on 

anions, super excited states and clusters. New techniques have developed like 

coincidence imaging and molecular alignment which are furthering the field of 

molecular dynamics as a whole 

 

The work presented in this thesis investigates the non radiative non adiabatic 

relaxation process in the first excited state of benzene. TRPES is used to observe an 

ultrafast intersystem crossing. It is found that ISC is facilitated by a doorway state, T2, 

which couples to S1 along the prefulvene coordinate. T2 subsequently couples to, T1 a 

dense bath state where the energy is quickly dissipated.   
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1.3 Coherent control in the weak field limit 

 

1.3.1 Introduction  

 

The ability to observe excited state processes was naturally followed by the desire to 

dictate the outcome of such processes. Coherent control is the field of study 

concerned with manipulating the quantum coherence effects of light to predispose a 

particular outcome of a photochemical event. The early part of the last century saw 

the culmination of scientific breakthroughs leading to the idea that energy and matter 

have wave like properties. The idea that the phases of excited non stationary states 

dictate the path taken by an excited state wave packet and the realisation that such 

phases could be controlled by shaping the phase of the exciting light field brought 

about the field of coherent control. Initial experiments aimed at using coherent light 

sources set at specific frequencies to break specifc bonds in polyatomic molecules. 

However these early endeavours were hampered by intramolecular vibrational 

redistribution of the energy deposited into the vibrational modes of the molecule, 

leading to unspecific bond breakage. It was realised that interference effects could in 

fact be used to manipulate chemical dynamics. Brumer and Shapiro demonstrated one 

of the first control schemes that selected a specific branching channel through the 

interference of excited state wave packets32. By manipulating the phase difference 

between two narrow bandwidth lasers, two separate excitation pathways interfere with 

each other to alter populations in different final states. In 1995 Gordon et al. achieved 

a clear demonstration of coherent control using DI molecules33. A molecular beam of 

DI was hit with three photons of 353.69 nm and one photon from the 3rd harmonic of 

this beam corresponding to 117.90 nm. These created two degenerate transitions, 

which interfered with each other to reach one of two final states, the final states 

depending on the phase difference between the excitation paths.  

 

The development of femtosecond light sources gave experimentalists the ability to 

deposit energy on the timescale comparable to vibrational motion. Tannor, Kosloff 

and Rice were the first to select a photoproduct through the implementation of the 

“pump dump” scheme34. In this control scheme a vibrational wave packet was created 

by the broad bandwidth of a femtosecond laser pulse on the excited state. The wave 

packet was allowed to evolve over the potential energy surface until it reached a 
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structure that correlated to the ground state of the desired product upon which point a 

second femtosecond laser pulse was fired into it to deposit it onto the ground state. 

The dumping to the ground state can cause a range of desired effects, in this case 

dissociation. This approach was core to the field, since it demonstrated that control 

schemes could be thought of intuitively in the time domain in terms of manipulating 

the evolution of wave packets on an excited state potential energy surface. The two 

approaches brought about the desire to manipulate phase effects as in the Brumer and 

Shapiro scheme but using an ultrashort pulse such as used in the Tanner, Kosloff and 

Rice scheme.  

 

1.3.2 Pulse shaping 

 

To have access to control over both the frequency domain interference effects but also 

to have these on a time scale comparable to molecular vibrations implied the need to 

shape the “pump” femtosecond light pulses. It was in 1988 that Shi, Woody and 

Rabitz suggested the excitation pulse shape could be tailored for each photochemical 

reaction in what was termed optimal control theory35. This is the idea of controlling 

the trajectory of the excited state wave packet by altering the phase and amplitude of 

the excitation light pulse so specific vibrational modes are excited. Shaping of pulses 

in electronics was already a developed field and was used to accelerate the progress in 

shaping of optical electrical fields. In this area they manipulated the frequency profile 

of electrical pulses in order to control the time domain shape36. This is the core idea in 

pulse shaping in the frequency domain when using spatial light modulators and 

acousto optic methods. Since femtosecond pulses are too short to gain access to the 

pulse mechanically (in the time domain) interference effects had to be used instead in 

the frequency domain to obtain shaped pulses in the time domain. 

 

The crossover between the fields of pulse shaping and TRPES was fuelled by the 

realisation that this would cause a ubiquitous tool for coherent control to be available 

that would allow experimentalists to create excited state wave packets with a 

superposition of eigenstates that they chose. Prior to this laser pulses generally had a 

uniform shape like a Gaussian, as these were delivered from femtosecond light 

sources. Manipulation of the pulse shape could be achieved in a confined manner with 

techniques such as a Michelson interferometer. Shaping of the frequency and 
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amplitude of femtosecond pulses enabled the field of coherent control to flourish and 

the most popular of techniques to this end was the use of a spatial light modulator 

within a 4f zero dispersion set-up. 

 

In 1992 Judson and Rabitz37 first applied optimal control theory to realise coherent 

control through the introduction of a learning algorithm as a means to find the optimal 

phase and amplitude of ultra-fast pulses with which to control a chemical reaction. It 

was suggested that by creating a feedback loop between a measurement device of the 

experiment and the shape of the spectral mask, a ‘fitness’ function could be 

calculated. This was used as the signal for a learning algorithm that creates arbitrary 

spectral profiles to be fed into a pulse shaping device. In this way the Schrödinger 

equation is solved exactly for the system in real time. 

 

1.3.3 Coherent control of chemical reactions 

 

Baumert et al38, first demonstrated coherent control over a chemical reaction using a 

learning algorithm. The branching ratio of a photodissociation reaction of an 

organometallic complex CpFe(CO)2Cl was controlled using a feed-back optimised 

pulse shaping set-up. Mass spectrometric analysis generated the ratio between the two 

mass differentiated products, which was used as the fitness function within an 

evolutionary algorithm. The ratio of CpFeCOCl+ / FeCl+ was minimised as well as 

maximised, while the other products were ignored. This system proved suitable since 

the parent molecule and the products all differed in mass aiding in their identification. 

 

A recent example of coherent control in a biological system shows the extensiveness 

and advancement of the field. The energy flow between two pathways within the light 

harvesting complex LH2 present in Rhodopseudomonas acidophila, a photosynthetic 

purple bacterium, were manipulated by coherent control in order to affect the 

branching ratio39. The phases of the light field mediated the ratio of energy flow 

between intra- and intermolecular channels in the complexes donor-acceptor system.  

 

Daniel et al. were able to use a collaborative study of the theoretical and experimental 

disciplines in order to follow the reaction dynamics of an organometallic molecule as 

a function of the optimal control laser field40. This study represents the direction in 



 31

which the field is likely to advance with the use of computational calculations to 

elucidate the vibrational dynamics of the wave packet and in so doing affording a 

complete explanation of why the shaped laser field is optimal for the experiment. In 

this work an evolutionary algorithm was used to find an optimal pulse shape 

consisting of two dominant sub pulses followed by a third smaller one, all separated 

by 85 fs. The first pulse excites the molecule in a 2 photon process, after molecular re-

arrangement the second pulse ionises the molecule in a 3 photon process. The 

molecular yield of CpMn(CO)3+ was maximised from CpMn(CO), whilst minimising 

CpMn(CO)+. 

 

1.4 Conclusion 

 

In the first half of this chapter, an overview of molecular dynamics has been presented 

specifically regarding work done using the time resolved photoelectron spectroscopy 

detection technique. This technique has enabled a range of nonadiabatic processes to be 

observed in real time. The work presented in chapter 3 uses this method to observe an 

ultrafast nonadiabatic process in the channel 3 region of benzene. A range of polyatomic 

molecules such as benzene undergo rapid non radiative energy dissipation (channel 3) 

which in the case of benzene has not been fully understood.  

 

The understanding of molecular dynamics is naturally followed by the desire to control 

those dynamics. The field of coherent control was discussed in the second half of this 

chapter with an overview of pulse shaping techniques utilising spatial light modulators. In 

chapter 4, the development of a UV pulse shaping capability is described and the shaped 

UV pulses obtained are characterised using an XFROG set-up. Chapter 5 discusses some 

of the potential applications of the pulse shaping apparatus to control the dynamics 

observed in benzene. 
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Chapter 2 
 

An experiment for time-resolved photoelectron imaging 
 
 

The experimental apparatus employed to monitor ultrafast non radiative decay processes 
of excited molecules in the gas phase using time resolved photoelectron spectroscopy is 
described. A new femtosecond laser system and photoelectron imaging apparatus were 
designed, built and optimised in order to utilise the pump-probe technique to monitor 
molecular dynamics. These and the principles and techniques are presented. Also the 
principles and techniques used to fully characterise ultrashort pulses in both time and 

frequency are described. 
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2.1 Laser system and vacuum set-up 

 

2.1.1 The laser system 

 

A commercial laser system was used to provide femtosecond laser pulses of variable 

wavelength laser light. The laser table layout of the laser system is shown in figure 1. The 

femtosecond laser pulses were created by a Ti:Sapphire oscillator. They were then 

amplified in pulse power by a regenerative amplifier. The amplifier seeds two optical 

parametric amplifiers (OPA) affording wavelength tuneability and the pulse diagnostics. 

In the following sections the physical principles of the femtosecond oscillator, 

regenerative amplifier and optical parametric amplifiers will be described.  

 

 
 
 
 

 

 

 

The Ti:Sapphire oscillator (Coherent Mira) is fundamentally a laser cavity. The cavity 

has a gain medium at its centre, here Ti:Sapphire (titanium-doped sapphire, Ti3+:Al2O3), 

amidst two laser cavity mirrors, one of which has a reflectivity <100% that is the output 

coupler. The cavity is pumped by a 5 W continuous wave (CW) laser (Coherent Verdi) at 

527 nm. The pump laser increases the population inversion maintaining maximum 

stimulated emission of photons from the gain medium. The length of the cavity, L, 

determines the frequencies, ν , that can be supported which are integer or half integer 

CW pump 
laser Ti:Sapphire 

oscillator 

Regenerative  
amplifier

Optical  
Parametric  
Amplifier 

Optical  
Parametric  
Amplifier Nanosecond 

pump laser 

Harmonic 
generation 

unit 

Harmonic 
generation 

unit 

Pulse diagnostics

UV / visible 
fs pulses

UV / visible 
fs pulses

Figure 1: Schematic of the laser system used to generate tuneable wavelength femtosecond pulses. A Ti: 
Sapphire oscillator is pumped by a continuous wave laser to generate a 30 fs pulse centred at 785 nm. The 
femtosecond pulses seed a regenerative amplifier which is pumped by a nanosecond Nd:YLF laser. The 
pulses are amplified to 2.5 μJ and have a repetition rate of 1 kHz. The beam is split into three parts, 1 μJ 
for each OPA and 0.5 μJ for use in pulse diagnostic apparatus. Each OPA uses two optical parametric 
generation processes to tune and amplify a signal beam. The signal beam from the OPA is directed to a 
harmonic unit where sum frequency generation affords pulses in the visible region. The visible pulse is 
used in a subsequent second harmonic generation process to afford pulses in the ultra violet region.  
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number, n, of wavelengths. They are related by Lnc 2=ν , where c, is the speed of light. 

The frequencies supported by the cavity are also determined by the gain bandwidth of the 

gain medium, for our laser cavity the optimum wavelength is centred at 785 nm and has a 

bandwidth of 32 nm with a pulse duration of 28 fs.  

 

Femtosecond pulse durations are achieved through modelocking of the pulse by 

manipulation of the optical Kerr effect and the introduction of noise into the laser cavity. 

Modelocking is the effect by which a continuous wave with random phases is reorganised 

so all the phases of the frequency components are aligned in time and a pulse is created. 

These pulses have a very similar time, frequency and spatial profile to a Gaussian and so 

in the rest of this work shall assume to be Gaussian unless otherwise stated. The width of 

the pulse in time and frequency is given in terms of its full width at half maximum 

(FWHM). From the uncertainty principle the time duration tΔ  and spectral width νΔ of 

these pulses, are related to each other by the time bandwidth product5. 

 

4410.≥ΔΔ tν                                                                                                                  (2.1) 

 

The optical Kerr effect is the change in the refractive index of a medium induced by an 

intense incident electric field. The refractive index of the medium is Innn 20 += , where 

0n  is the linear refractive index, 2n  is the nonlinear refractive index, and I is the laser 

intensity ( 2n  = 3.1×10-16 cm2 W-1 in Ti:Sapphire). The phase delay experienced by the 

propagating optical pulse is proportional to the refractive index5, 

 

cLn ωωωφ )()( = ,                                                                                                                    (2.2) 

 

where ω is the angular frequency, n(ω) is the frequency-dependent refractive index, L is 

the length of the material and c is the speed of light in a vacuum. The time-dependence of 

the intensity of the laser pulse, I(t), induces a time-dependence to the refractive index, 

)()( 20 tInntn += , which produces a time-dependent phase delay5, 
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cLtInt ωφ )()( 2=Δ                                                                                                                   (2.3) 

 

For a pulse propagating in an optical medium of length L, the accumulated phase results 

in an instantaneous frequency shift5,  

 

cL
dt

tdInt ωω )()( 2−=Δ ,                                                                                                      (2.4) 

 

which gives rise to new frequency components, broadening the spectrum and therefore 

reducing the pulse duration, Δt. This phenomenon is called self-phase modulation (SPM).  

The Kerr effect also causes a change in the spatial profile of the beam and is used to 

instigate modelocking. The laser pulse has a Gaussian spatial profile of intensity, which 

induces a positive lens effect in the gain medium from the change in refractive index with 

laser intensity. The positive lens causes self focusing, increasing the Kerr effect yet 

further. Within the cavity a slit is used to allow only the middle core of the Gaussian 

intensity profile to propagate and to remove the CW component. This selects a set 

number of longitudinal modes with which to make up the pulse spectral bandwidth which 

is increased through the gain medium. A device is used to introduce a change in path 

length to the cavity, which amounts to noise. This is achieved through the introduction of 

a pair of mirrors which increase the path length by around 10 mm without altering its 

direction periodically and rapidly. The noise causes an overlap of the phases of enough 

frequencies with which to cause the formation of a pulse through constructive 

interference. The femtosecond pulses are generated at a repetition rate of 80-100 MHz 

with a pulse energy of a 0.7 nJ and a beam diameter of 2.5 mm.   

 

2.1.2 Chirped pulse regenerative amplification 

 

The femtosecond pulses formed in the oscillator are amplified by chirped pulse 

regenerative amplification to afford enough energy for the nonlinear processes used in the 

OPAs and for use in pulse diagnostics. The amplification process uses a laser cavity with 

a Ti:Sapphire gain medium very much like the femtosecond oscillator. The population 
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inversion is seeded by the femtosecond pulses from the oscillator and pumped by a 

nanosecond laser. The nanosecond laser (Coherent Evolution-30) is a solid state 

Nd:LiYF4 (Nd:YLF) laser that is pumped by 12 AlGaAs laser diode arrays to afford a 

pulse centred at 1053 nm. An intra cavity high threshold (lithium triborate – LBO) 

frequency doubling crystal facilitates pulses centred at 527 nm. The cavity is acousto-

optically Q-switched to afford an output pulse with 1 kHz repetition rate, a pulse duration 

of 300 ns and a pulse energy of 20 mJ.  

 

The power of the pulse produced in the laser cavity of the amplifier without stretching 

would be sufficiently large to induce unwanted nonlinear processes within the gain 

medium and damage to the optical components. To avoid these effects the input seed 

pulse is stretched in time within a stretcher set-up consisting of a gold coated grating and 

collimation optics. The pulse is chirped to ~10 ps linearly reducing the peak power of 

each pulse. The introduction of the seed pulse into the cavity is carefully timed by a 

Pockels cell (an electro-optic switch) which opens for the duration of the pulse. The 

amplification gain is determined by the number of round trips the pulse takes in the laser 

cavity. Once the pulse has made enough round trips, commonly 14, to reach a significant 

power i.e. 2.5 W, a second Pockels cell releases the amplified pulse out of the cavity. 

Both Pockels cells are controlled externally by timing electronics. The selected output 

pulse is compressed into the shortest possible pulse length in a compressor set-up, a 

mirror version of the stretcher. The pulse energy at this point is 2.5 mJ at 800 nm, with a 

pulse duration of approximately 40 fs and beam diameter of 5 mm. The 2.5 mJ output of 

the amplifier is split using a beamsplitter into 0.6 mJ used in pulse diagnostics and 1.9 mJ 

used by the two OPAs. 

2.1.3 Nonlinear optics 

The effects that light itself induces as it propagates through a medium are described as 

nonlinear optical phenomena and are utilised in the laser system, frequency upconversion 

and pulse diagnostics. They are harnessed to convert between different frequencies of 

light as well as such effects as the Kerr effect and within the electro-optic switches. 

Crystals with no inversion symmetry and that are transparent to the incident radiation 
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undergo nonlinear effects. When the induced dipole moment of a material responds 

instantaneously to an applied electric field E, the dielectric polarisation P in a medium 

can be written as a power series in the electrical field5: 

( ) ( ) ( )[ ]L+++= 33221
0 EEEP χχχε                                                                               (2.5) 

where 0ε  is the permittivity of free space and the coefficients χ(n) are the nth order 

susceptibilities of the medium. For low light intensities, P is linear in the electric field E, 

whereas the higher order nonlinear contributions become important with increasing 

intensity. In the case of the χ(2) the electrical field can be expressed as5: 

..)( 21
21 cceEeEtE titi ++= ωω                                                                                      (2.6) 

where E1 and E2 are the two incident beams and c.c. denotes the complex conjugate. A 

medium that is pumped by the fields E1 and E2 will radiate a field E3 with an angular 

frequency ω3 = ω1 + ω2. 

The efficiency of the frequency conversion process is determined by the phase matching 

between the polarisations of the fields and the crystal axis complying with the condition 

isp kkk += , where k denotes the vector of the field. The nonlinear crystals are 

birefringent and commonly possess three axes, one that has a different refractive index, 

the extraordinary (e) axis, from the other two the ordinary axes (o). If the signal and idler 

have the same polarisation, it is called "Type-I phase-matching", and if their polarisations 

are perpendicular, it is called "Type-II phase-matching". 

2.1.7 Optical parametric amplifier 

 

Each OPA operates with around 0.9 μJ of the fundamental 800 nm beam. An OPA uses a 

series of nonlinear processes to generate a range of wavelengths whilst maintaining the 

ultrashort bandwidth of the input fundamental pulse. The processes involved do however 

create a chirp mainly from propagation through crystals, reflections of mirrors and from 

propagation through air. Optical parametric amplification, as shown in figure 2, is 
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obtained through focusing the fundamental pulse and a signal beam into a β−barium 

borate (BBO) crystal to generate a high electric field intensity to invoke a χ(2) 

nonlinearity. 

 
The OPA uses two optical parametric amplification processes, the first to create a 

tuneable wavelength signal and the second to amplify the tuneable wavelength signal. A 

small portion of the fundamental is tightly focused into a sapphire crystal to generate 

white light. This is collinearly focused with 10 % of the fundamental into a BBO crystal. 

The white light (WL) pulse is used as a variable wavelength seed to the optical 

parametric amplification process as the signal beam. By varying the temporal overlap 

between the incident pump pulse and WL pulse and crystal tuning angle, the phase 

matching conditions for different wavelengths of the WL pulse are satisfied affording 

wavelength tuneability. Optical parametric amplification is a three wave mixing process 

where the white light beam is used to seed the operation only. In the second optical 

parametric amplification process the signal beam from the first optical parametric 

amplification process is reflected back towards the nonlinear crystal as a seed pulse and is 

focused collinearly with a further portion of the fundamental pulse to amplify the seed 

beam to ~30 μJ depending on wavelength.  

  Wavelength Pulse Energy Polarisation 
Fundamental 795 nm 2.5 J P 

Idler 
1600-2630 
nm 

60 mJ at 2.1 
mm S 

Signal 
1150-1600 
nm 

120 mJ at 1.3 
mm P 

SFG idler 533-613 nm 22 mJ P 
SFG signal 472-533 nm 33 mJ P 
SHG-SFG idler 267-307 nm 5 mJ S 
SHG-SFG 
signal 235-267 nm 5 mJ S 

 

 

 

pump 
residual 
 pump 

signal 

idler 

ω1 

ω2 

ω3 

OPA 
WL 

Figure 2: Optical parametric amplification, a three wave mixing 
process. Optical parametric amplification splits the pump 
frequency (ω3) into two frequencies (ω1 and ω2) so that ω3 = ω1 + 
ω2 is obeyed.  The high intensity of the pump field invokes a 
dominance of the χ(2) nonlinearity. The white light generation 
pulse seeds the process and determines the frequency of the signal 
beam. 

Table 1: Laser beam characteristics.  Laser beam characteristics including wavelength, pulse energy and 
polarisation are shown for femtosecond beams in the OPAs.  It can be seen that wavelengths can be 
accessed from the IR through the visible down to the deep UV.
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Each OPA has a separate harmonic unit attached which employs further nonlinear 

processes to obtain shorter wavelengths using either the signal or idler pulses generated in 

the OPA as seeds. The obtainable wavelengths, pulse energies and polarisations are 

shown in table 1. A flip mirror is used to select either the signal or idler beam, the 

selected beam is directed collinearly with the residual pump light used in the 

amplification process into a second BBO crystal where sum frequency generation (SFG) 

is achieved. The SFG beam, which is now in the visible region, is frequency doubled in a 

second BBO crystal to achieve the wavelengths in the UV. A series of dichroic mirrors 

separate the UV, visible, residual pump and residual signal beams.  

 

2.1.8 Vacuum system 

 
The vacuum system comprises of two chambers, a source chamber where benzene is 

introduced into the vacuum apparatus, and a detection chamber housing the photoelectron 

imaging apparatus. Figure 3 shows a schematic of the set-up. 
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Figure 3: Schematic of the vacuum system.  The vacuum system is maintained at a pressure of 1x10-8 atm 
on the source side and 1x10-8 atm on the detector side by a 2200 ls-1 diffusion pump backed by a 25 m3/h 
rotary and a 1000 ls-1 diffusion pump backed by a 25 m3/h rotary respectively. A benzene reservoir (figure 
2.1.4) supplies gaseous benzene at a pressure of ~1 atm. The gas is emitted through a 50 μm nozzle, the 
inner core of which is selected by a skimmer that is 20 mm away. The skimmed molecular beam travels 
into the interaction region of the PEI set-up.  The PEI set-up is protected by a μ-metal shielding preventing 
interference form stray fields. A nitrogen trap suspended in the detector side reduces signal noise in the 
PEI set-up, which can be attributed to freezing of excess gas. Nozzle manipulators in all cartesian axes and 
rotation allow alignment of the molecular beam into the interaction region. 
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The source chamber is pumped by a turbo-molecular pump (Leybold Mag W2200) with 

pumping speed of 2200 L s-1 backed by a 25 m3/h rotary pump. It reaches pressures down 

to 8101 −× atm with no gas introduction, and below 5101 −× atm with a gas flow. The 

detector side is pumped by a turbo pump (Leybold Turbovac 1000 C) with a pumping 

speed of 1000 Ls-1 backed by a 40 m3/h rotary pump. It reaches pressures down to 
8101 −× atm with no gas introduction, and below 7101 −× atm with a gas flow. Benzene in 

the gas phase from the delivery system (see below) is introduced into the chamber 

through a 50 μm laser cut hole in the tip of the nozzle. The nozzle is aligned using 

external manipulators that have degrees of freedom in Cartesian co-ordinates as well as 

rotation. The nozzle was placed around 20 mm from the skimmer and aligned so the 

photoelectron image was round and maximum photoelectron counts obtained. 

 
The skimmer (Beam Dynamics Model-2) is shaped as an inwards-curved cone, 23.1 mm 

in height and 22.9 mm in diameter at the base and is made from nickel with a 1.0 ± 0.05 

mm hole in its end. It is set between the two chambers to select the middle core of the 

expanding benzene vapour beam where the molecules are at their coldest. The molecular 

beam then passes into the interaction region through a hole cut into the μ-metal shielding 

that houses the photoelectron imaging apparatus and reduces the effect of stray fields on 

the photoelectrons. It is crossed perpendicularly by the laser beam. A series of baffles 

placed inside the input and output laser windows were used to minimise scattered laser 

light generating photoelectrons within the vacuum chamber. The baffles were constructed 

from 5 black-anodised aluminium 4 mm diameter apertures that are separated by 10 mm 

and fixed in a co-axial arrangement. The liquid nitrogen trap was used to reduce long 

term signal fluctuations and noise by freezing excess benzene in the chamber, which 

would otherwise flow back in to the interaction region. It is formed by a cylinder 

suspended in the vacuum chamber by the tubes used to fill it. 

 
Benzene (Aldrich ACS Reagent, 99%, used without further purification) was stored in a 

vessel outside the vacuum chamber and delivered to the nozzle inside the vacuum 

chamber via a series of tubes and valves as depicted in figure 4.  The vessel had a 

stainless steel top allowing for a vacuum tight seal and a glass bottom so the contents 

could be monitored.  
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During an experiment valves C and B were open and valves D and A closed. The vapour 

pressure of benzene at room temperature was on average 120 mbar and sufficient to 

create a continuous beam expansion in the interaction region. Valves A, C and D were 

used for venting the delivery system of gas. Valve B, A and C were closed to isolate the 

apparatus when refilling with benzene. In the early stages of the experiment Valve E was 

used to attach a carrier gas but was found to be unnecessary. The benzene container was 

filled to about 1/5 of its volume to prevent any liquid entering the gas line. When venting 

the system of gas using the rotary pump the benzene container was vacated of any 

remaining gas. 

 

2.2 Photoelectron imaging 

 

In the photochemistry experiments presented in this thesis, pump-probe photoelectron 

spectroscopy was used to observe excited state dynamics in benzene. A femtosecond 

E 

D 

Reservoir 

Capacitive 
Manometer 

C A 

To rotary pump 

To nozzle

B 

Figure 4: Schematic of the benzene delivery system. The benzene reservoir, constructed from a glass 
bottom and metal flange top, is filled with 30 mL of benzene. The vapour pressure provides adequate 
throughput of benzene gas.  Valve E is used to flush the apparatus with a bath gas when changing between 
different molecular species. Valve A allows for either flushing of the gas line in the event of a blockage 
whilst isolating the benzene reservoir. Valve B provides access to measurement of the pressure of the 
apparatus. Valve C controls access to the chamber and valve D provides direct access to a rotary pump 
used in the flushing process. 
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pump pulse creates a wavepacket on the first excited state which is subsequently ionised 

at regular time steps after its inception with another femtosecond pulse. The 

photoelectrons emitted in this 1+1 photon process were collected and analysed using 

photoelectron imaging apparatus. A generalised 1+1 photon pump probe energy level 

scheme is illustrated in figure 5. 

 

 
 

 

2.2.1 Imaging apparatus 

 

The imaging apparatus is set up in a vacuum as described in section 2.1.8 and is based on 

the Eppink and Parker1 design. The interaction region is defined by where the collinear 

pump and probe laser beam (y axis) bisects the skimmed molecular beam (x axis). The 

interaction volume is defined as the area of the focused beam at this point. The resulting 

ionisation is in all three dimensions (x, y and z) but the ion optics direct the 

photoelectrons in to the z axis using ion optics. The ion optics comprises a set of three 

polished stainless steel discs, nominally 2 mm thick and 105 mm in diameter.  The discs 

are stacked vertically in the vacuum chamber and are separated by 15 mm by 

polyetheretherketone (PEEK) spacers.   
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Figure 5: Energy level scheme for photoelectron 
spectroscopy. The molecule undergoes photon ionisation to 
yield a photoelectron whose kinetic energy, eKE, and 
angular momentum can be measured. An excited state 
wavepacket is created from ionisation of the ground state 
population with one photon, λ1. The non-stationary state 
evolves and is ionised at regular time intervals, Δt, by a 
second probe photon, λ2. 
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The plate furthest from the detector and below the interaction region holds a negative 

voltage and acts as the ‘repeller’ to the emitted electrons, figure 2.2.2. Another plate on 

the other side of the interaction region, with a 15 mm hole in the middle acts as an 

‘extractor’ to the ionised electrons. The voltage applied to the repeller is greater than that 

of the extractor, to repel the electrons out of the interaction region and through the 

weaker repulsion imposed by the extractor. With sufficient velocity to pass through the 

extractor plate the electron feels a further repulsion from the extractor which propels it 

towards the final plate and the detector. 0 V is maintained on the ‘ground’ plate and is the 

final part in the configuration of an electrostatic lens. Eppink and Parker2 found that an 

electrostatic lens of this sort effectively maps out the charged particles travelling in 3D 

Laser 
Beam 
Y axis 

R 

E 

G 

CCD 
camera 

 

Photoelectrons 
z axis 

Image  
plane 

Molecular 
beam 
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MCP2 
MCP1 

 
Fibre  
Bundle 
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Figure 6: Schematic of a photoelectron 
imaging apparatus. The interaction 
region is defined as where the molecular 
beam (x axis) crosses with the laser 
beam (y axis) causing molecular 
ionisation. The photoelectrons emitted 
are projected towards the detector (z 
axis) by the voltage difference of the 
repeller and the extractor plates. The 
ratio of the extractor to repeller and 
ground creates an electrostatic lens 
effect to give resolution in the image 
plane on the detector. (inset) Schematic 
slice of the detector. Two multi channel 
plates back to back cause an electron 
cascade which when incident on the 
phosphor causes luminescence. The 
luminescence moves along the fibre 
bundle to be captured by the CCD 
camera and recorded as a photoelectron 
count. 
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from the interaction region to a 2D image in the detector plane, as if they all came from 

exactly the same place. The electrostatic lens allows photoelectron imaging to potentially 

detect all electrons ejected from around the full sphere surrounding the interaction region 

with a high resolution. 

 

The effect of the charges on the first plate is to repel all emitted electrons upwards 

through the lens. Electrons with the highest kinetic energy maintain some of their 

velocity in the direction they were first emitted (shown as the dot dashed line in figure 6). 

These are mapped out onto the outer rings of the detector, while electrons with lower 

kinetic energy (shown as dotted line in figure 6) are seen closer to the centre of the 

detector. The ratio of the voltages applied to the repeller and extractor plates depends on 

the distance between the two plates.  Eppink and Parker2 found this value to be 0.71. The 

ratio that gave the sharpest images for the apparatus in our experiment was 0.692.  

Biasing voltages for the repeller and extractor are applied by high voltage DC supplies 

(Stanford Research Systems PS325/2500V-25W). The ion optics are supported on four 

insulated stainless steel legs attached to the vacuum flange at the lower end of the 200 

mm diameter vertical tube.  Magnetic shielding is provided by a 1 mm thick μ-metal tube 

385 mm long and with a 110 mm inside diameter.  The shielding surrounds the ion optics 

and the electron flight path from approximately 35 mm below the repeller up to a few 

millimetres below the photoelectron detector. 

 

The imaging detector set-up is a commercial unit supplied by Photek. The 40 mm 

diameter double-layer chevron micro-channel plate (MCP) detector is mounted on the 

vacuum side of a 250 mm vacuum flange at the top of the electron flight tube.  The MCP 

is connected to a block of phosphor which is observed by a charge coupled device (CCD) 

camera (Basler A312f) mounted around 5 cm away, through a bundle of optical fibres. 

When a photoelectron hits the MCP an electron cascade is induced which is due to a 

voltage being held across the plates. The electron cascade crashes into the phosphor block 

causing luminescence. The bundle of optical fibres which the phosphor block is mounted 

on transports the luminescence towards the camera vertically without spreading outward 

horizontally. The CCD camera records the light emitted from the phosphor block on 
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pixels which are recorded and averaged by the imaging software. The cascade of 

electrons causes oversized phosphorescence, which is not representative of the one 

electron that first hit the MCP. This is corrected in the following way: an average of such 

a group of pixels is taken and recorded as just one count on the central pixel which allows 

for the ratio of one photoelectron incident on the MCP to be recorded as one electron 

count by the CCD camera. Photoelectron emission can thus be observed in real time, 

which is useful in alignment of the interaction region. The counts build up to show 

intensity, with each frame recorded separately. The CCD camera is triggered at a 1 kHz 

rate and with a viewing time of 100 ns. The CCD chip has 782 × 580 pixels and the 

camera was positioned so that the MCP diameter filled its width to give image size of 768 

× 576 pixels. Since electrons were collected, the MCP was operated with a continuous 

bias, with its front face (looking down the electron flight tube) held at 0 V and its rear 

face held at 2 kV. The phosphor screen was also biased at 4.5 kV.  The camera was gated 

to reduce noise for a period of 100 ns for each laser pulse. This was controlled by 

external timing electronics.  

 

2.2.2 Image inversion 

 

In the imaging apparatus as described in figure 6, an ionisation event is caused by the 

molecular beam being crossed by a suitable energy pump-probe laser pulse scheme. The 

ions created can be emitted in all 3 dimensions creating a sphere of ions known as a 

Newton sphere. The Newton sphere of electrons is projected upwards towards the 

detector by the electric field induced by the ion optics around the interaction region. The 

ion optics map the 3D photoelectron distribution onto a 2D position sensitive detector as 

shown in figure 7. The photoelectron energy is proportional to the radius from the centre 

of the detector in the image plane. From this relationship the electron kinetic energy is 

obtained. 

 

When using an excitation pulse polarised in the image plane, orbital angular momentum 

information of the emitted photoelectron can be obtained from the anisotropic distribution 

of the image An example of anisotropic distribution is shown in figure 9 for the ionisation 
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of xenon’s 2P1/2 and 2P3/2 orbitals. In the case for benzene, no orbital angular information 

was available since it is a highly symmetric molecule and is not aligned yielding no 

anisotropy. In order to gain the photoelectron spectrum of the ionisation event the 3D 

Newton sphere must be reconstructed from the 2D image that is projected onto the 

detector. 
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One of the fastest and most accurate approaches to the numerical solution is the use of the  

polar basis set expansion Abel transform (pBasex) method2. The introduction of using a 

basis set expansion to model the distribution to allow for easy transformation was first 

developed by Reisler et al. using a Cartesian coordinate system in the Basex method3. 

The inversion problem can be divided into 2 sections. These are the inverse Able 

transform that must be solved and the form chosen to represent the image to be 

transformed.  

 

The pBasex method tries to solve the inverse Abel transform integral using a set of 

forward basis functions with analytical inverse Abel transforms fitted to the image. The 

image is effectively modelled with these basis functions that are computationally easy to 

inverse Abel transform. It has been found that the use of polar coordinates has advantages 

over conventional Cartesian coordinates in this endeavour. Firstly it is a more intuitive 

Figure 7: Mapping 3D distributions onto a 2D image. (a) Newton sphere in 3 dimensions representing the 
photoelectrons given of by the ionisation event. Using polar co-ordinates the 3D sphere is mapped onto a 
2D image (b) by the ion optics. (b) A 2D image of the 3D Newton sphere expressed in polar co-ordinates.  
The 2D image is inverse Abel transformed to afford the photoelectron kinetic energy data which is 
proportional to the radius, with photoelectrons in the outer radii owning a high kinetic energy. 
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way to describe the cylindrically symmetrical ionisation event that is caused from the 

field applied to the image being much higher than the kinetic energy of the particle 

(figure 6). Secondly, polar coordinates allow for noise that is distributed in a Cartesian 

grid to be smoothed out prior to inversion. The inverse Abel transform expressed in polar 

coordinates for a system that is cylindrically symmetric is: 
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The original distribution P(R’, θ’) and projected distribution of the 3D Newton sphere, 

F(R, θ) are shown in figure 2.2.3, where R is the radius and θ, the angle from the axis of 

symmetry. To solve this integral directly for a raw image is numerically challenging due 

to the formation of singularities, for example when r = x, instead a basis set is used to fit 

to the data which does not suffer from this problem. An expansion in Legendre 

polynomials in spherical coordinates is used as the basis set to describe the angular 

distributions of the photoelectrons with respect to the polarisation vector of the light. The 

energy distribution of the particles is then modelled using a discrete number of Gaussian 

functions with a width, σ, which is set as the width of a pixel to give the expression: 
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Here, θ is measured with respect to the polarisation direction (linearly polarised) of the 

light, Pl is the Legendre polynomial of order l and Rn represents the centre of the nth 

Gaussian. R represents the ejection energy and is taken as related to the radius within the 
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image as explained earlier. The basis function used to model the detector, as shown 

below, is obtained by combining equations (2.8) and (2.9): 
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This integral of the inverse Able transform of the basis functions corresponding to the 

image can be expressed now as a linear expansion: 
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From this equation the coefficients ckl can be taken and substituted into equation (2.8) to 

reconstruct the original distribution. Equation (2.11) describes a case in which the 

distribution in the detector is continuous when for an image it is a discrete matrix of 

Cartesian pixels. For that reason the width of the Gaussian is set to be the width of a pixel 

and the linear expansion can be converted into terms relating to the pixels: 
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where i,j are the detector radial and angular pixels respectively, and Pij is obtained by 

converting the initial Cartesian coordinates of the detector to polar coordinates. Using 

Legendre polynomials has the benefit of allowing terms in the expansion to be eliminated 

depending on the distribution expected from the photoionisation event. When the light is 

linearly polarised as it is in the work described in this thesis the odd Legendre terms are 

eliminated. The more general rule for number of terms in the polynomial, lmax, is lmax = 

2n, where n is the number of photons. 

 

One of the benefits of the pBasex method is that the noise accumulates towards the centre 

of the detector where the resolution is lowest anyway rather than spread over all the data. 

The energy resolution, ΔE/E, of the photoelectron imaging apparatus is determined by the 
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energy range which the ion optics magnify over as well as the number of pixels in the 

range. More specifically this can be calculated as the FWHM of a peak divided by the 

electron kinetic energy of the peak. In the case of the 2+1 photoionisation scheme of 

xenon as described in the next section (2.2.3) the energy resolution comes to 0.0542. The 

energy resolution in our experiments however is limited to ~50 meV by the laser 

bandwidth. 

 

2.2.3   Calibration of the photoelectron imaging apparatus 

 

To calibrate the detector a photoionisation of a known transition was related to the value 

and ratio of the voltages on the plates of the electrostatic lens10. A pulse centred at 249 

nm (4.98 eV) was used in a 2+1 resonant photoionisation scheme in Xenon. A two 

photon absorbtion of the 249 nm pulse is resonant with the 6p[1/2]0 state at 9.96 eV. 

From this level a third photon is absorbed to give a total energy of 14.94 eV which causes 

ionisation over the ionisation potential at 12.12 eV. The kinetic energy of the 

photoelectrons, eKE, are calculated from the total of the absorbed photon energies in 

case, 3(hν), and the ionisation potential, IP, by the relationship 3(hν) – IP = eKE. The 

atom relaxes to either of the two doublet 2P1/2 or 2P3/2 states of the Xenon ion. The kinetic 

energies of the photoelectrons emitted were used to calibrate the detector. The energy 

level scheme for this is shown in figure 2.2.4. The image shows the outer and inner ring 

electrons inhabiting the top and bottom of the image but not the edges indicating 

anisotropy. As explained earlier the anisotropy is caused by the linear polarisation of the 

ionising laser field. 

                                                                                   



 52

 
 

The ion optic voltages were set so both of the outer electrons would be captured within 

the detector radius. The voltages of 2500 V on the repeller and 1745 V on the extractor 

were used to give the maximum resolution from the outer most ring being as close to the 

detector edge as possible. Figure 9 (a) shows the raw image obtained. 

 

 
 

 

 

 

The CCD camera is controlled by imaging software which records the photoelectron 

counts that are incident on the detector every second and stores them as a matrix of 

integers called a frame. The software sums every image continuously. An image collected 

for an hour is made up of 36006060 =×  frames. The matrix was reshaped from a 

rectangle to a square and delivered into the pBasex software. The inversion software 
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Figure 8: Energy level scheme for the 
photoionisation of xenon from a 2+1 photon 
absorption. The 6p[1/2]0 state is resonant 
with two photons of 249 nm. The excited 
state then absorbs another photon to access 
the ionisation continuum. The emitted 
photoelectrons have well known kinetic 
energies of 1.46 eV for the 2P1/2 and 2.77 eV 
for the 2P3/2 and are used to calibrate the 
detector  

Figure 9: Image inversion. (a) Raw photoelectron image. The two rings from the 2P1/2 and 2P3/2 can be seen 
on the inner and outer area of the image, respectively. (b) Symmetrised image. The image is cut in the 
vertical and horizontal planes and reflected onto itself to give and average of the four quarters. This helps 
to reduce noise and strengthens predominant features. (c) Inverted image. The matrix arrived at from 
symmetrisation is inverse Abel transformed using the pBasex method.
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centres a circle around the target area to be inverted using the centre of mass of the 

image. This spherical section was symmetrised across the horizontal and vertical 

directions so that all the information is contained in a single quarter of the image, figure 9 

(b). This technique helps remove spurious counts and further embolden faint spectra. The 

image was then inverted by the pBasex method to give an image as shown in figure 9 (c). 

The pBasex software delivers a photoelectron spectrum of pixel number against 

normalised intensity as shown below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

The pixel number, P was converted to photoelectron energy, eKE by  
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where Epeak is the energy in eV of the peak and Ppeak is the position in pixel number of the 

peak. Using the energies of 2P1/2,3/2 transitions giving rise to the peaks observed in the 

spectrum of 1.46 eV and 2.77 eV from a 2+1 ionisation by 249 nm photons (4.98 eV) the 

pixel numbers were converted to electron volts (eV) to give a complete photoelectron 

spectrum: 

 

Figure 10: Photoelectron spectrum of normalised intensity as a function of pixel number. The inverse Abel 
transform integral is solved using the pBasex method. The smaller peak corresponds to the 2P1/2 and the 
larger peak corresponds to the 2P3/2. 
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The voltages were then reduced to include the inner ring of xenon as close to the detector 

edge as possible to enable as high resolution for the lower energy photoelectrons emitted 

from benzene whilst maintaining the ability of accurate calibration. A repeller voltage of 

968 V and extractor voltage of 1400 V gave the best distribution of photoelectrons within 

the image for benzene and used throughout all experiments described. 

 

The proposed excitation scheme that is detailed in chapter 3 uses two UV pulses enabling 

a 1+1 excitation scheme. Signals other than this occur and must to the best of efforts be 

removed from the 1+1 signal. The power of the beam was attenuated to achieve 1+1 

ionisation but must be kept at a reasonable level to give a sufficient signal. Measurements 

of power dependence will be discussed in chapter 3. Remotely controlled shutters were 

used to block the pump and probe beams. Images from pump only, probe only and a 

pump and probe were collected. This was achieved by blocking the probe beam and 

collecting an image then blocking the pump beam and collecting an image then allowing 

both open to collect a pump and probe signal. The pump only and probe only images 

were then subtracted from the final pump and probe beam image to obtain a pump probe 

image. This means a pump probe image was obtained with minimal contributions from 

pump only and probe only ionisations. An example of the image subtraction is shown in 

Figure 11: Photoelectron spectrum of normalised intensity as a function of energy (eV). The energies of the 
2P1/2 and   2P3/2 at 1.46 eV (small peak) and 2.77eV (large peak) as well as the radial nature of the image are 
used to convert pixel number to energy (eV) of the spectrum.  
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figure 12. Two shutters (electro-optical products model SH-10-B) were used which 

operate at 24 V and were interfaced into the Photek IFS32 imaging software, these have 

been shown in figure 2.1.14. A macro written within the Photek IFS32 imaging software 

controlled the shutters opening and closing and the collection and storage of the imaging 

data. Typically for time resolved photoelectron imaging data collection, each image 

collected photoelectron counts for a period of 20 seconds. The image subtraction was 

undertaken and the resultant pump probe image stored. The collection loop was 

continuously run for an hour and the final image composed by addition of all the pump 

probe images collected for that period.   

 

 
 

 

 

The delay between the pump and the probe was controlled by a motorised stage (Physik 

Instrumente M-510.12) placed in the pump beam path (figure 13).  To increase the pump-

probe delay the pump path length was decreased. In the case of a decay scan the total 

photoelectron count over the detector was recorded per second. The stage was run at a 

speed of 0.0001 mm/s. 

 

The pump and probe beams were aligned through two irises, one either side of the 

vacuum chamber. These were aligned so the image was cylindrically symmetrical on the 

detector and bisecting the molecular beam perpendicularly. Once aligned a 250 mm 

focusing lens was used to weakly focus the beam into the interaction region. A power 

Pump Only Probe Only Pump probe and  
pump and probe 

Pump probe 

= - -

Figure 12: Image subtraction. The pump only image and probe only image were subtracted from the pump 
probe and pump and probe images to arrive at the image from the pump and probe pulse contributions only. 
Each of the first three images are recorded for a period of 20 s. Imaging software subtracts the images to 
give the 1+1 pump and probe image.   
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density of            W/cm-2 was achieved assuming a mildly focused beam in the interaction 

region with a volume of               m3. 

 

 

 
2.3    Pulse diagnostics 

 

2.3.1 Pulse characterisation  

 

To fully characterise the electric field of an ultrashort pulse, its phase and intensity in 

both the time and frequency domain must be known4. Frequency, ω, and time, t, are 

Fourier transform pairs of each other, in the case of the description of an electric field: 

∫
∞

∞−

−= dttit )exp()()(~ ωεωε                                                                                            (2.14) 

 

∫
∞

∞−

= ωωωεε dtit )exp()(~)(                                                                                             (2.15) 

 

Figure 13: Experimental layout of the laser system and the 
imaging apparatus. The laser system provides femtosecond   
pulses in the UV region used in the pump probe scheme of 
benzene. S1 and S2 are shutters used to obtain pump only and 
probe only signals to be used to subtract from the pump probe and 
pump and probe image. The delay stage provides the time delay 
Δt between the pump and probe pulses. The lens weakly focuses 
the co-linear pump probe beams into the interaction region. The 
laser beam bisects the molecular beam in the vacuum chamber 
and is in between the repeller and extractor plates of the ion 
optics. The photoelectrons are imaged by a CCD camera and 
recorded.  

9104×
10106 −×
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The pulse electric field in the frequency domain, )(~ ωε , is the inverse Fourier transform 

the pulse electric field in the time domain )(tε . The pulse electric field in the frequency 

domain can be described in intensity and phase as: 

 

)](exp[)()(~ ωϕωωε iS −=                                                                                          (2.16) 

 

Where S(ω) is the spectrum and )(ωϕ  is the spectral phase. The spectrum contains both 

positive and negative regions. Since we are concerned with observables only the real 

electric field of the negative component is omitted. This reduces the spectral intensity to: 

 

2|)(~|)( ωεω =S                                                                                                              (2.17) 

 

While the spectral phase is given as: 

 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−=
)](~Re[

)](~Im[arctan)(
ωε

ωεωϕ                                                                                         (2.18) 

 

Here Im refers to the imaginary and Re to the real components. Equation (2.18) can be 

simplified to: 

 

)]}(~Im{ln[)( ωεωϕ −=                                                                                                 (2.19) 

 

When describing the ultrashort pulse in the time domain the pulse envelope is used to 

describe the pulse instead of the rapidly varying carrier wave )exp( 0tiω . This assumption 

is valid for pulses whose features are longer than the carrier wave frequency and accounts 

for our time scale where pulses are not achieved below 30 fs. The complex conjugate 

term is removed in the analytical signal approximation, since we are concerned with the 
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real term only. The pulse electric field in the time domain, E(t) can be written in terms of 

intensity, I(t), and phase, φ(t), as:  

 

)](exp[)()( titItE φ−=                                                                                               (2.20) 

 

The measured temporal intensity is related to the electric field by: 

 
2|)(|)( tEtI =                                                                                                                 (2.21) 

 

The temporal phase can be described as: 
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ε

εφ                                                                                            (2.22) 

 

And can be simplified to: 

 

)]}(~Im{ln[)( tt εφ −=                                                                                                    (2.23) 

 

2.3.2 Spectral analyser 

 

A spectrometer (Ocean Optics HR 4000) was used to measure the spectral intensity, S(ω). 

The spectral analyser diffracts the beam with a grating and records the intensity of each 

frequency component. The spectrometer was used in all measurements of the beams 

spectrum and example spectra of the three UV pulses used in chapter 3 are shown in 

figure 14.  



 59

240 260

 

  

230 240

 

 

240 250 260

  

 

250

1

0

0.5

In
te

ns
ity

 (a
.u

)
1

0

0.5

Intensity (a.u)

(a) (b) (c)

 
 

 

 

2.3.3 Autocorrelator 

 

An intensity autocorrelator can be used to measure the time profile of an ultrashort pulse. 

This provides the amplitude in the time domain of the electric field. The pulse is split into 

two parts using a beam splitter, where one beam is scanned through the other within a 

nonlinear crystal by varying the path length of one of the beams. The intensity of the 

second harmonic generation is measured as a function of delay, τ, to give an 

autocorrelation function, A(τ): 

 

∫
+∞

∞−

−= dttEtEA )(*)()( ττ                                                                                             (2.24) 

 

The FWHM of the pulse in the temporal domain, Δτ, is related to the width of the 

autocorrelation function, ΔτAC, by: 

 

2ττ Δ=Δ AC                                                                                                               (2.25) 

 

An example of an autocorrelation of the residual 800 nm light is shown in figure 16 (a) 

and (b). A single shot autocorrelator was used to monitor the pulse length of the 

Figure 14: Spectra taken of the UV pulses used in the experiment described in chapter 3. (a) 254 nm. (b) 
235 nm. (c) 243 nm.. All spectra have a bandwidth ~ 1 nm. 



 60

regenerative amplifier and an intensity autocorrelator was used to measure the pulse 

duration of the beams in the visible region.  

 

 
 
 
 
 

 

 

2.3.4 Cross correlation 

 

To measure the temporal length of the pulses in the UV region a cross-correlation is used. 

A reference pulse at 800 nm is mixed with a UV pulse to create a difference frequency 

generation (SFG) signal. The same apparatus as shown in figure 15 is used except X is 

replaced with a SFG crystal. The two pulses must be within 5 ps of each other 

temporally. The UV and 800 nm beams are directed into the apparatus collinearly. The 

autocorrelation signal A(t) is related to the intensity of the reference pulse and intensity of 

the UV pulse I(t-τ) by:  

 

∫
+∞

∞−

−= dttEtEA ref )(*)()( ττ                                                                                         (2.26) 

 

E(t) 

E(t-τ)

Esig(t,τ) 
Variable 
Delay, τ 

Pulse to be 
measured 

Beam 
splitter 

X 
Detector 

Figure 15: Schematic of autocorrelator / cross-correlator apparatus. In the case of autocorrelation the pulse 
to be measured is split using a beam splitter to yield two replica pulses E(t-τ) and E(t). A variable path 
length is used to apply a variable time delay, τ, between the two pulses. The beams are focused into a SHG 
crystal, X. The intensity of the signal, Esig(t,τ) is recorded by a detector to yield the autocorrelation 
function. For cross-correlation a collinear beam of the UV and fundamental pulses are incident onto the 
beam splitter. The path is the same and X is now a sum frequency generation crystal. The resulting signal 
has contributions from the auto-correlation function for the fundamental and two cross-correlation signals. 
These come from the overlap of the UV on the upper path and fundamental on the lower path and vice 
versa. The three signals are separated by time gaps and easily identifiable. 
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The autocorrelation of the reference 800 nm pulse in the collinear beam is measured prior 

to taking the cross correlation with an autocorrelator. The temporal width of the reference 

pulse, Δτref is used to deconvolute the SFG signal temporal width, ΔτXC: 

 

refXC
22 τττ Δ+Δ=Δ                                                                                             (2.27) 

 

Figure 16 shows two cross correlation measurements for the 243nm and 235 nm beams 

used in chapter 3.   
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Figure 16: Plot of auto and cross correlations. (a) Autocorrelation of the residual 800 nm light in the 235 
nm beam with a τ = 131 fs. (b) Autocorrelation of the residual 800 nm light in the 235 nm beam with a τ = 
205 fs. (c) Cross correlation of the residual 800 nm in the 243 nm beam with a τ = 270 fs. (d) Cross 
correlation of both the residual 800 nm and the 243 nm beam with a τ = 200 fs. These measurements 
afforded a FWHM of the pulse duration of τ = 104 fs and τ = 133 fs respectively. 
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Autocorrelators provide an accurate measurement of the time duration of a pulse 

assuming a Gaussian profile. They do not however give any indication of the relative 

phases of the frequency components of the pulse. The time domain and spectral profiles 

give no indication of relative phase so are not capable of providing enough information 

for the determination of the electric field. 

 

2.3.4 XFROG and inversion algorithm 

 

The most important pulse diagnostics come from a frequency resolved optical gating 

(FROG) set-up, this provides both temporal and frequency information simultaneously. A 

conceptual view of this process is that a spectrum of the autocorrelation function is taken 

for several time intervals. A commercial FROG was used to characterise an 800 nm pulse 

which is used to frequency mix with segments of the shaped and doubled 254 nm pulse in 

the time domain. A home-built cross correlation frequency-resolved optical-gating                       

(XFROG) configuration was used to fully characterise the unknown UV pulse. This 

process provides a series of spectra that can be plotted versus delay, t, on a 2D plot of 

intensity against frequency and delay. Phase and amplitude of the pulse were obtained 

using a 2D phase retrieval algorithm (Swamp Optics). 

 

2.3.5 GRENOUILLE 

 
GRENOUILLE (Swamp Optics UPM 8-20) is the acronym for GRating-Eliminated 

Nononsense Observation of Ultrafast Incident Laser Light E-fields4. It performs the same 

operations on the light pulse as a conventional FROG but benefits from minimal 

alignment through its ingenious use of Fourier optics. This instrument was used to fully 

characterise the 800 nm reference beam. The nonlinear process utilised is SHG which 

cannot be used to characterise pulses in the UV. The Fresnel bi-prism performs the task 

of the beam splitter, delay-line and re-collimation optic. The beam is split into two 

beamlets that are directed into the thick SHG crystal so they overlap spatially and 

temporally in the crystal (figure 17 Top View). The two wide beamlets crossing each 

other at an angle has an effect of mapping relative beam delay onto horizontal position 
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within the crystal as shown in figure 17. For long pulse durations the width of bandwidth 

that overlaps increases giving a wider SHG signal, conversely for shorter pulse durations 

a smaller width overlaps. 
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Figure 17: Schematic of the GRENOUILLE apparatus and principal of operation. Top figure: Side view 
shows the frequency resolving dimension. A cylindrical lens focuses the beam into a thick SHG crystal. 
The frequency components phase match at different depths in the crystal. The thickness of the crystal 
effectively diffracts the beam since different frequencies travel through varying amounts of material . The 
sharp angle of incidence further exaggerates this effect. The signal diverges until reaching a cylindrical 
lens which focuses the individual frequency components onto a detector. Middle figure: Top view shows 
time resolving dimension. The beam passes through the cylindrical lens unaffected. A Fresnel bi-prism 
focuses the beam into the thick. As illustrated in the bottom figure, the pulse duration is proportional to the 
signal width in the x dimension. The longer the pulse is the greater the overlap area within the thick SHG 
crystal and so the wider the generated signal (bottom left figure). The contrary holds, that the shorter the 
pulse duration the less overlap in time of the two pulses in the SHG crystal and over a smaller area hence a 
small width signal (bottom right figure). 
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A cylindrical lens placed before the Fresnel bi-prism focuses the beam into the SHG 

crystal in the y axis so that a variety of incidence angles are obtained. A thick SHG 

crystal is used due to its relatively small phase-matching bandwidth, so the phase-

matched wavelength of the SHG signal varies with angle. The range of angles must be 

large enough and the crystal thick enough for the different wavelength components to exit 

the crystal at different angles. The generated second harmonic wavelengths are diffracted 

out spatially. The SHG wavelength components leaving the crystal at different vertical 

positions are focused into the camera with a final lens and their position mapped to 

wavelength. The map of wavelength against time, a spectrogram of the SHG pulse, was 

deconvoluted using pulse characterisation software (Mesaphotonics VideoFrog version 

6.0) to give a spectrogram of the reference pulse.  

 

The IR pulse was characterised completely using a commercial GRENOUILLE (Swamp 

Optics UPM 8-20) and pulse characterisation software (Mesaphotonics VideoFrog 

version 6.0), and thus acts as a reference pulse. The DFG spectrogram and the measured 

electric field of the reference pulse were used as input for an XFROG inversion algorithm 

(FROG3 program from Femtosoft Technologies) to retrieve the electric field of the UV 

shaped pulses. 

 

The GRENOUILLE trace used within the pulse characterisation software is shown below 

in figure 18. The raw trace is shown in panel (c) and the retrieved spectral intensity (black 

line) and phase (red line) is shown in panel (a). Panel (b) shows the time intensity 

intensity (black line) and phase (red line). The phase in both the time and frequency 

domains shows a small quadratic chirp. This most likely caused from the long beam path 

length and from passing through beam splitters. The pulse duration is 71.21 fs as 

calculated by the pulse characterisation software. 
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Figure 18: GRENOUILLE trace of the fundamental 800 nm pulse used in the XFROG measurement.  (a) 
Spectral intensity (black line) and phase (red line) (b) Temporal intensity (black line) and phase (red line. 
Pulse width: 71.21 fs, Bandwidth: 11.98 THz, Bandwidth: 25.26 nm, Autocorrelation width: 119.11 fs, 
Time bandwidth product: 0.85. (c) Raw GRENOUILLE trace. 
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2.3.6 XFROG 

 
The XFROG pulse characterisation technique can be thought of as a spectrally resolved 

cross correlation4. A reference pulse is first characterised in a GRENOUILLE so its 

amplitude and phase profile (spectrogram) was known. A spectrogram of the DFG signal 

from mixing the reference pulse and the unknown pulse in a nonlinear crystal was 

recorded. The reference spectrogram and DFG signal spectrogram were deconvoluted to 

obtain a spectrogram of the UV electric field using an XFROG inversion algorithm 

(FROG3 program from Femtosoft Technologies). The electric field for the XFROG 

signal is: 

 

)()(),( * ττ −= tEtEtE ref
DFG
Sig                                                                                          (2.28) 

 

Here ),( τtE DFG
Sig  is the electric field of the DFG signal, )(* τ−tEref  is the electric field of 

the reference pulse and )(tE  is the electric field of the unknown pulse. The spectrogram 

of the unknown pulse is deconvoluted using the relationship: 

 
2

*
Re )()(),( ∫

∞

∞−

−−= dtetEtEI ti
f

DFG
XFROG

ωττω                                                                     (2.29) 

 

Where the DFG spectrogram ),( τωDFG
XFROGI is yielded from the squared magnitude of the 

spectrum of the cross correlation signal recorded as a function of delay τ between the two 

pulses. An experimental benefit of the XFROG is that the magnitude of the signal 

recorded is proportional to the reference beam as well as the unknown pulse. So pulse 

energies on the nano joule scale were easily recorded. The central wavelength recorded 

by the spectrometer of the DFG signal was ~373 nm, which can be calculated from the 

relationship: 

 

f
DFG

Re0 ωωω −=                                                                                                           (2.30) 
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An example XFROG trace of an unshaped UV pulse centred at 254 nm is shown in figure 

19. The reconstructed spectral intensity (black line) and phase (red line) are shown in (a) 

and the temporal intensity (black line) and phase (red line) are shown in (b). The raw 

XFROG trace is shown in (c).  

  
   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 19: XFROG trace of the unshaped 254 nm pulse used from the pulse shaping apparatus (described 
in chapter 4).  (a) Reconstructed spectral intensity (black line) and phase (red line) (b) Reconstructed 
temporal intensity (black line) and phase (red line).  
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The pulse shaping apparatus and XFROG set-up are shown in figure 20. To obtain a DFG 

signal the reference 800 nm pulse and the unknown UV pulse must be overlapped in time 

and space in the DFG crystal. Both pulses originate from the amplifier where are 

subsequently they are split. The pulse used to generate the shaped UV pulse first travels 

through an OPA and then the pulse shaper. This amounts to a significantly long path 

length that must be matched by the reference pulse in order to overlap the two pulses in 

time. To do this the reference pulse was reflected 8 times between a pair of wide mirrors 

coated for 0° angle of incidence. The final adjustment of time was made using a 

motorised delay stage. The beams were focused into a 10 μm DFG crystal mounted on 

fused silica using 75 mm focal length spherical mirrors. The 800 nm pulse was weakly 

focused into the crystal and the power attenuated so there was no white light generation. 

The UV pulse was focused into the crystal with a 75 mm focal length spherical mirror.  

The weakly focused beam gave a wider spot size than the focused UV beam which aided 

in beam alignment. Both beams were overlapped spatially onto the face of the DFG 

crystal. The two beams were at an angle of 30° to each other. This gave a DFG signal that 

was spatially separate from the two incident beams allowing for its simple separation. 

The DFG signal beam was directed onto a final spherical mirror by a small mirror, where 

it was focused into the optical fibre of a spectrometer. The signal from a photodiode was 

used to get the two pulses to within a nanosecond of each other and as close to a time 

delay of zero (τ  = 0) as possible. The imaging apparatus was then used to find a coherent 

spike caused by the overlap in time of both beams. This method was very accurate and it 

was found that τ  = 0 always lay around 500 fs from the coherent spike position. With 

this initial position the delay stage was scanned until a DFG signal was seen by eye as 

fluorescence on paper. The crystal angle, in all Cartesian coordinates, was optimised 

along with the input beam angle to obtain the brightest visible DFG signal at the focal 

spot. The beam was directed into the spectrometer, to achieve maximum signal. Care was 

taken to align the spectrometer along the same axis as the beam. The reference pulse was 

generally attenuated using neutral density filters once good alignment had been achieved 

to reduce saturation in the spectrometer. The reference beam generally had a Gaussian 

beam profile in time and frequency leading to optimum XFROG spectrograms and ideal 
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for use in the phase retrieval algorithm. The collection of spectra and stage movement 

were automated using a Labview program. 
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Figure 20:  Experimental setup for the generation and characterisation of shaped UV pulses at 254 nm. 
The optical path length is described in detail in the text. All thick black rectangles represent mirrors, open 
rectangles spherical mirrors and dark blue rectangles non linear crystals.  SLM; liquid crystal spatial light 
modulator, G; grating, M; mirror, CM; cylindrical mirror. 
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Chapter 3 
 
 

Ultrafast intersystem crossing in benzene 
 

The ultrafast intramolecular dynamics of electronically and vibrationally excited benzene 

are investigated using time-resolved photoelectron spectroscopy. In addition to an 

ultrafast initial decay we observe an oscillation between two states. The most plausible 

explanation of the data is that the photophysical pathway involves an ultrafast 

intersystem crossing from the initially populated singlet state to an optically dark triplet 

state. Our experimental findings have been supported by quantum dynamics simulations. 

Our results challenge the currently accepted view that the initial ultrafast decay from the 

excited state is dominated by internal conversion through a singlet-singlet conical 

intersection taking the population directly back to the ground state. 
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3.1 Introduction 

 

The dynamics of intramolecular energy transfer has attracted widespread attention. Much 

effort has been concerned with determining the time scale for energy redistribution and/or 

the channels through which energy flows among various degrees of freedom in isolated 

molecules. Such unimolecular reactions, in which the reactants and products differ only 

in the distribution of energy in the rotational, vibrational and electronic degrees of 

freedom, represent the simplest and most fundamental of all chemical reactions. 

 

In this chapter, the non radiative ultrafast decay route from benzenes first excited state, at 

around ~3000 cm-1 above the origin that is referred to as channel 3 is investigated. The 

decay mechanism is rationalised to be a previously unexpected process. Our 

interpretation challenges preconceptions on the nature of ultrafast intersystem crossing in 

organic polyatomic molecules.  

 

In this introductory section, the molecular properties of benzene will be discussed from 

early spectroscopic studies employing low resolution spectroscopy techniques; including 

the symmetry effects of the first excited state and how the Herzberg-Teller mechanism 

gives rise to the bulk of the absorption spectrum. The focus will then fall more 

specifically on a time domain perspective and onto some of the many investigations into 

the channel 3 process.   

 

3.1.1 Spectroscopy of benzene  

 

Benzene is an aromatic planar molecule in the form of a regular hexagon. It possesses a 

conjugated π-electron system which determines its electronic properties. Hückel theory 

can be used to calculate the orbital energies of the molecule. This method ignores sigma 

bonds (sigma-π separability) and uses a method of linear combination of atomic orbitals 

to build up the π−molecular orbitals. For benzene, using Hückel theory the six orbitals on 

the carbon atoms and perpendicular to the plane of the molecule are shown below: 
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Figure 3.1.1 illustrates the MO wave functions and gives the symmetry species, according 

to the D6h point group. The π-type MOs in planar benzene are antisymmetric to reflection 

in the plane of the molecule. The wavefunctions above the plane of the molecule are 

shown and those below are opposite in sign but identical in shape. The energy increases 

with the number of the nodal planes. The ground electron configuration of benzene is 

obtained by feeding the six electrons into the lower energy MOs, giving 
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2 )1()1( gu ea                                                                                                             (3.1) 

 

and the ground state is labelled gAX 1
1~ . 

The first excited configuration is 
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The states arising from this configuration can be considered the same as those from 
1

2
1

1 )1()1( ug ee since the single vacancy can be treated like a single electron. Group theory 

can be used to find the symmetry species of the allowed electronic states. This is carried 

Figure 1: Hückel MOs in the benzene molecule. The states increase in energy with greater number of nodal 
planes. The symmetry species has been indicated in each case33. 
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out by finding the components of the direct product of the two occupied degenerate 

levels: 

 

uuuuge EBBee 12121
0 )( ++=×=Γ ψ                                                                                 (3.3) 

 

where       represents the electronic wavefunction. The spins of the electrons in the e1g and 

e1u orbitals can be either parallel (triplet) or antiparallel (singlet) which results in six 

possible states          ,          and          . The triplets can be neglected since the ground state 

is a singlet i.e. not optically accessible according to ΔS = 0. The singlet states are, in 

order of increasing energy,           ,            and           .  

 

In benzene, the XA ~~
−  and XB ~~ − systems are electronically forbidden since neither uB2  

nor     ( or      ) is a translational symmetry species but the transitions do still occur 

through vibronic interaction. They are seen in the 227-267 nm (S1) and 185-205 nm (S2) 

regions of the spectrum, respectively. The transitions occur because the molecular 

framework of the benzene molecule is not rigid. The molecular vibrations distort the D6h 

molecular symmetry to a lower type resulting in a relaxation of the symmetry selection 

rules. This, in effect is due to a breakdown of the Born-Oppenheimer separation of 

electronic and vibrational motions. They gain their intensity by mixing with the …….       

state which is an electronically allowed transition and shall be discussed in more detail in 

section 3.1.4. 

 

3.1.2 A vibronically allowed transition 

 

The transition moment       for an electric dipole transition between an upper and lower 

vibronic state, with vibronic wave functions evψ ′  and evψ ′′  respectively, is given by 

 

evevevev dR τψμψ ′′′= ∫ ∗                                                                                                         (3.4) 
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where μ  is the electric dipole moment operator and the integration is over electronic and 

vibrational coordinates. For      to be non-zero, and for the transition to be allowed, the 

product of the symmetry species for the quantities inside the integral must be totally 

symmetric. The integral in equation 3.4 can be written as: 

 

vvveev dRR τψψ ′′′= ∫                                                                                                         (3.5) 

 

Here, the product of the electronic transition moment is assumed to be independent of 

nuclear motion, and the vibrational overlap integral (Born Oppenheimer approximation). 

If the electronic transition moment integral is totally symmetric, then so are all vibronic 

transition moment integrals. All vibronic transitions associated with allowed electronic 

transitions are allowed by symmetry but, their intensities are governed by the Franck-

Condon principle. The intensities of bands in progressions are proportional to the square 

of the vibronic transition moment of equation 3.5.  

 

The general symmetry requirement for a vibronic transition to be allowed by electric 

dipole selection rules is that the integral equation 3.4 contains the totally symmetric 

species. Since the symmetry species of μ is that of a translation it follows that: 

 

)()()( αψψ Tevev Γ⊃′′Γ×′Γ                                                                                                 (3.6) 

 

where                        . The symmetry species for a vibronic state is always given by: 

 

)()()( veev ψψψ Γ×Γ=Γ                                                                                                  (3.7) 

 

Irrespective of whether the Born-Oppenheimer approximation holds so that equation 3.6 

becomes: 

 

veve T )()()()()( αψψψψ Γ⊃′′Γ×′′Γ×′Γ×′Γ                                                                       (3.8) 
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Fulfilment of these additional symmetry rules allow for a band system that is 

electronically either forbidden or allowed to show vibrationally induced bands involving 

non-totally symmetric vibrations. A vibronic transition may be allowed but that does not 

mean it possesses intensity.  

 

3.1.3 Herzberg-Teller intensity stealing 

 

Herzberg-Teller intensity stealing35 is the phenomenon of obtaining intensity by vibronic 

transitions. Herzberg and Teller explained that, when the vibrational overlap integral of 

equation 3.4 is non-totally symmetric, the electronic transition moment eR  is no longer 

independent of vibrational motion. The effect of vibrational motion is taken account of by 

expanding eR as a Taylor series, in the normal coordinates Qk,Ql….of the vibrations 

involved, as follows: 
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Where eq refers to the equilibrium geometry of the molecule and the order of each term 

with respect to normal coordinates is indicated. This Taylor expansion implies that, the 

calculated electronic transition moment,      for one particular geometry will be different 

to another. The first order term in the expansion is responsible for the majority of the 

intensity and so is more important than higher order terms.  For a vibrational symmetry 

that is a result of a quanta of two different vibrational modes then the second order term 

would be involved in the equation. For two different vibrational modes then the third 

order term would come into play. In the                    system of benzene, second- and gu AXBA 1
1

2
1 ~~

−

eR
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third-order terms cause the very weak but observable, vibronic transitions. By removing 

everything but the first order term the series can be shown as:  

 

vv
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The vibrations can now be separated into those which are totally symmetric (s) and those 

which are non totally symmetric (a). Then equation 3.10 becomes: 
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For the electronically forbidden transitions in benzene, 0)( =eqeR  and 0)/( =∂∂ eqse QR  

and the first two terms on the right hand side of equation 3.11 are zero;  however, the 

third term is non-zero and the transition is electronically forbidden but vibronically 

allowed. 

 

3.1.4 Normal mode vibrations of benzene 

 

Benzene possesses 30 vibrational modes: 10 degenerate modes and 10 non degenerate 

modes. The vibrational modes and their symmetries have been reproduced1 below in 

figure 2 for reference throughout this chapter.  

 

 

 

 

 

 

 

 
Figure 2: Benzenes vibrational modes. There are ten degenerate modes and ten non degenerate modes1. 
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3.1.5  Low resolution absorption spectrum 

 

The gu AXBA 1
1

2
1 ~~

− 260 nm band of the absorption spectrum of benzene can be accounted 

for by the intensity stealing mechanism just described in section 3.1.4. Figure 3 shows a 

reproduced portion of the absorption spectrum at low resolution from Callomons early 

work3. The frequency at which a pure electronic transition would be expected to occur 

has been indicated by 0
00 , it is not present due to it being symmetry forbidden as 

discussed earlier.  

 

 

 

 

 

 

 

 

 

 

 

To the high wavenumber of the 0
00  position is an intense band 1

06  (using the vibrational 

numbering scheme introduced by Wilson5 which should be noted is different from the 

Mulliken scheme), where 6v  is an ge2 vibration. Note: that we use the notation '
''

ν
νν  where 

n is the vibration labelled using Wilson notation and ν’’ is the vibration quanta in the 

lower electronic state and ν’ is the vibration in the upper state.  

Since 

 

ugu EeB 122 =×                                                                                                              (3.12) 
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Figure 3: Low resolution                      absorption spectrum of benzene. The major peaks have been 
labelled. The spectrum is dominated by an intense      band due to Herzberg-Intensity stealing. The 
progression is due to mixing in with the totally symmetric      breathing mode. The false origin of where 
the electronically allowed vibrationless transition would be has been indicated4. 
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and ),(1 yxu TTE Γ= , in the D6h point group the 1
06  transition is symmetry allowed. This 

represents a vibronic transition that is allowed, even though the pure electronic transition 

is forbidden. The intensity of the transition derives from Herzberg-Teller intensity 

stealing from the gu AXEC 1
1

1
~~

−  electronic transition caused by coupling of the 16 ,       ,              

vibronic state with the         electronic state. The hot band 0
16  also derives intensity from 

the           transition but is weakened, in absorption, by the Boltzmann factor ( v ′′~  = 608 

cm-1). In the           system in emission (fluorescence) the 0
16  band is intense and the 1

06  

band weakened, if there is equilibrium population among vibrational levels by the 

Boltzmann factor ( 6
~v ′  = 521 cm-1). Benzene has four      vibrations all of which could, 

like   , be involved in Herzberg-Teller intensity stealing. In fact the other three,    ,     and,     

…lead to false origins at least an order of magnitude weaker than those due to    . This is 

because eqke QR )/( ∂∂  is much smaller for the other three vibrational modes. Note that 

the 1
07  transition can be observed in figure 3. 

 

The progression structure in the remainder of the plot is the result of the totally 

symmetric 1v  breathing mode. The progression is caused by an increase in the r(CC) 

bond length on excitation from the ground to the first excited state, the breathing mode 

which has ga1  symmetry and involves very little stretching of the r(CH) bonds.   

 

3.1.6  Intramolecular dynamics: Channel 3 

 

Although such a common component of the chemical structure of large polyatomic 

organic molecules, the intramolecular dynamics of benzene following excitation to the 

first excited state is still not fully understood. Its photochemistry has been studied now 

for 5 decades by many eminent scientists and has stood as a benchmark for spectroscopic 

studies of large polyatomics. From these studies it has been found that large aromatic 

molecules have a common ultrafast non radiative decay mechanism within the first few 

hundred femtoseconds when excited with above a threshold in the first excited state. The 

rates of decay are energy dependent. A variety of processes attributed to this ultrafast 
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decay mechanism over the years have included internal conversion5, intramolecular 

vibrational redistribution (IVR)2, 6 and isomerisation14,15,35.  

 

Calloman in 1972 eloquently summarised the problem, using fluorescence spectra and 

line width measurements of isolated gas phase benzene3. Firstly, upon excitation from the 

zeroth order ground state  (      ) to just into the first excited state (       ) the excited state 

molecule decays back to the ground state through fluorescence (channel 1) with a 

quantum yield7 of ~0.2, the remaining population undergoes non radiative redistribution 

that is slow and attributed to intersystem crossing (ISC) (channel 2)8-12. The states just 

below the channel 3 region exhibit long lifetimes, for example the states 61, 6111 and 6112 

leading up to an excess energy of 2367 cm-1 have a 108 ns lifetime13. This mechanism 

dominates up to ~3000 cm-1 of excess energy above the zeroth order first excited state 

region. At this point the fluorescence diminishes and significant line broadening occurs 

indicating an ultrafast non radiative process. This process comes about over a short 

energy range of 400 cm-1 which marks the onset of a new decay channel. The new decay 

channel has been termed “channel 3” since the mechanisms responsible for channel 1 and 

2 are too slow to account for this ultrafast event where the linewidth measurements from 

this work placed the rate constant at 12101× s-1.  

 

The figure below summarises the situation in the first excited state of benzene. The 

observations can be all represented in terms of knr, the non radiative first order rate 

constant. The x axis of the figure indicates the energy above the S1 origin expressed in 

wavenumbers (cm-1). At the bottom of the figure the fluorescence spectra, measured as 

the log of the non radiative first order rate constant, knr, is shown as a function of energy 

above the S1 origin in wavenumbers. Up to just below 3000 cm-1 above the S1 origin the 

log knr = 7.5, and above this energy the log of the non radiative first order rate constant 

begins to abruptly rise. The increase in the log knr value occurs due to the reduction in 

fluorescence. The top of the figure shows the linewidths Δν (cm-1) of the fluorescence 

peaks as a function of energy above the S1 origin. Just above ~3000 cm-1 the linewidths 

can be seen to abruptly increase. The area around 3000 cm -1 where the fluorescence 

gA2
1

uB1
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diminishes and the remaining fluorescence peaks broaden indicates a change in channel 

from that of fluorescence to an ultrafast non radiative process (channel 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The difference in fluorescence above and below channel 3 can also be seen clearly in the 

Doppler free fluorescence spectra shown in figure 5. Riedle et al., in 1983, compared the 

states 2
0

1
0114  and 1

0
1
0114 , with the former being below channel 3 and the latter above2. 

They found that in the           spectra only the K = 0 lines remain in the spectrum while all 

others become diffuse (i.e. K≠0). This brought about the conclusion that Coriolis 

coupling, the coupling of vibrational states due to rotation around a z-axis or x,y axes of 

the molecule, was causing the line broadening. This mechanism, a form of IVR, does not 

however explain the disappearance of fluorescence which would require a subsequent 

non radiative process after Coriolis coupling. It was thought that Coriolis coupling2 

redistributed vibrational modes into those known to be necessary for a internal 

conversion to the ground state namely out of plane modes,       and     .2  

 

 

 

Figure 4: Summary of experimental data on rates of non-radiative decay in 260 nm system in benzene. 
Abscissa: energy cm-1 above zero-point of the Ã 1B2u state, and kcal/mole above the ground state of 
benzene. Ordinates: non-radiative rate constant knr on a logarithmic scale, and the equivalent 
spectroscopic linewidths. Taken from reference 3.
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Hellman and Marcus in 1993 modelled the observation of the rotationally selective line 

broadening with a combination of Coriolis and anharmonic coupling to vibrational 

background states within S1. Around the same time it was proposed by Sobolewski et al. 
14, 15, using CASSCF and MRCI techniques, that the energy barrier from the Franck 

Condon region to that of a prefulvenoid structure has the same absolute energy value as 

that of the “channel 3” threshold. From the prefulvenoid structure isomerisation could 

continue with the excited state population reaching the ground state through a conical 

intersection in the region and eventually resting in the ground state minimum of a 

structural isomer of benzene. This idea was further studied by Robb and co workers13. 

 

Investigations into the nature of the fast decay rate mechanism have up to now been 

postulated theoretically as an internal conversion (IC) through a S0/S1 conical intersection 

with a prefulvene like structure5, 14. Although not experimentally verified, it fits the long 

held understanding as introduced by Jortner16 that IC is the only ultrafast non radiative 

intramolecular process available for molecules with low spin-orbit coupling such as 

benzene. ISC in cases of organic molecules in the gas phase remains a relatively slow 

process with timescales between picoseconds and nanoseconds. A variety of other 

explanations have been competently rebuked through the evidence obtained over the 

various studies conducted on benzene. These include notably isomerisation, 

Figure 5: Doppler-free two-photon fluorescence excitation spectra of benzene. (a) part of the Q branch of 
the 1

0
1
0114 : band at an excess energy of 2492 cm-'; (b) corresponding part of the 2

0
1
0114 : band at 3412 cm-

1. 2 
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predissociation and intramolecular vibrational redistribution (IVR), all which could occur 

on a femtosecond (fs) timescale through movement over the potential energy surface.   

 

It was first seen by Rice et al.17 (1971), and later investigated again by Johnson8, 9 (1983) 

that differences in decay dynamics in benzene occur depending on which modes are 

excited, with lifetimes ranging between 60 to 120 ns. This was later studied by Smith et 

al.18 (1995) who concluded that there is a difference in dynamic behaviour between the 

711n and 611n series both which are e2g vibrations. Smith et al. 18  also confirmed this 

using picosecond photoionisation and photoelectron spectroscopy measurements of the 

electronic state lifetimes made by Sumitani19-21 who used picosecond fluorescence 

techniques (10 ps pulse duration), and lifetimes inferred by quantum yield measurements. 

Although limited to picosecond resolution they were able to confirm the relationship that 

generally as vibrational energy is increased so is the electronic non radiative decay rate. 

Technological restraints occluded the true nature of many of the decay dynamics, 

whereby decays were often seen to be exponential with a few exceptions of biexponential 

decay2 which was then attributed to excitation of a hot molecule and so causing IVR 

rather than an indication of the actual photochemistry. With the access to femtosecond 

time scales, in 2000, Neusser and coworkers13 conducted the first ultrafast investigation 

of S1 benzene using two photon time resolved photoelectron spectroscopy. They found 

that bi-exponential decays on the first four states in channel 3, 6131 ,71 ,61114 and 7111 

with the fastest of the decay constants found to be <300 fs.   

 

In the most recent theoretical work, Zilberg22 has found that the conical intersection 

responsible for decay to the ground state, has a spin orbit coupling to the triplet state 

higher than previously calculated. Investigations conducted previously15 calculated the 

closest triplet state to the Franck Condon geometry and was found to be      . The spin 

orbit couplings between this triplet state and S1 were found to be 0.3-0.6 cm-1 implying 

little or no intersystem crossing. Zilberg instead searched for the closest triplet state from 

the S1/S0 conical intersection geometry which is Cs symmetry. He found the triplet state      

,      to be degenerate with the S1 state and calculated a spin orbit coupling matrix element 

of 6.23 cm-1. The rate of intersystem crossing is proportional to the square of the spin 
uB2

3
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orbit coupling matrix element this implies the rate of intersystem crossing could be up to 

100 times faster than previously suspected. In this investigation of intersystem crossing at 

S1/S0 conical intersections he found a range of molecules exhibiting similar general 

behaviour22.   

 

3.2 Our investigation into the channel 3 mechanism using TRPES 

 

In this section our experiments employing femtosecond time resolved photoelectron 

spectroscopy (TRPES) to unravel the photophysics at the onset of “channel 3” will be 

explained. Time-resolved photoelectron spectra were recorded using a photoelectron 

imaging apparatus that was described in the experimental chapter (section 2.1). The total 

integrated photoelectron signal provides a measure of the ionization probability as a 

function of time, and the photoelectron spectrum provides a map of time-dependent 

overlap integrals between the excited state and the accessible cation states, revealing 

detailed information about the evolution of the electronic and vibrational character of the 

wave packet on the excited state (section 2.1). A femtosecond pump pulse at 243 nm 

prepares benzene in the excited S1 (     ) state with 3,070 cm-1 of excess vibrational 

energy. The subsequent evolution of the resulting wave packet is monitored by projecting 

its complete wave function onto all accessible cation states using a delayed femtosecond 

probe pulse (254 nm and 235 nm) to afford a two colour 1+1’ photon ionisation scenario. 

 

3.2.1 Energy level scheme 

 

The energy level scheme relevant to the experiment is shown in figure 6. The zero-point 

energy levels of the singlet and triplet electronic states of neutral benzene and its cation 

are well known from experimental data23 and the energy of the fulvene and prefulvene 

ions are calculated at the CASPT2 (perturbation theory corrected complete active space) 

level 24.  

uB2
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The 243 nm pump pulse excites the ground state population to the first excited state onto 

a region where a good Franck Condon overlap exists with the ground state. Energetically, 

from this position the wave packet can access any area of the potential energy surface 

(PES) indicated by the dotted line. Although there are a variety of options available to the 

excited state wave packet some will be preferred depending on how facile the path to be 

taken is. The probability of where the wave packet goes and hence which mechanism is 

undertaken is determined by the topology of the PES and the trajectory of the wave 

packet initiated by the pump pulse. This is in turn determined partly by which vibrational 

modes are excited by the pump pulse and also by which hot bands may already be 

excited. Although the energies of the critical points are calculated theoretically and 

obtained experimentally (high resolution spectroscopy) they give little indication of how 

Figure 6: Energy level diagram depicting the electronic state energies of benzene and some energetically 
accessible features on the potential energy surface. Energies are relative to the zero point energy of 
benzene. A 243 nm pump pulse creates a wave packet on the first excited state of benzene in the Franck 
Condon region. A number of mechanisms to dissipate the absorbed energy are available to the wave 
packet these could be movement of the wave packet: through a conical intersection to the ground state 
which would involve adoption of a prefulvene like structure, to another isomeric form of benzene the 
closest being fulvene, through a singlet triplet surface crossing and then decay through phosphorescence. 
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they are related to each other. It is the topology of the PES between the critical points 

which is of most interest to us and which least is known about. This is because the path 

that the wave packet can take over the PES is determined by its topology and therefore 

determines the ultimate outcome of the photochemical or photophysical processes. The 

PES topology in this context refers to not only to the convolution of vibrational modes 

and so a change in structure but also the non-adiabatic regions responsible for surface 

crossing such as IC and ISC. From the Franck Condon region on S1 the excited state 

wave packet can undertake a number of non radiative process; isomerisation to fulvene, 

IVR, IC to the ground state or ISC to the triplet state. Our aim is to understand which 

mechanism is responsible for the dissipation of the absorbed energy in the isolated 

molecule which undertakes an ultrafast non radiative decay process 

 

3.2.2 Pulse intensity investigation 

 

A 1+1 photon scheme (243 nm pump and 235 nm and 254 nm probe pulses) was adopted 

to conduct this experiment and these boundaries are essential to the correct conclusion 

being drawn. Importantly, the pump and probe intensities were kept well below 1011 W 

cm-2 to avoid multiphoton ionisation. The observed photoelectron count, nFI ∝ , where 

F is the laser fluence and n is the number of non-resonant photons involved in the 

ionisation process. In our experiments 1≈n  as shown in figure 7. It should be noted that 

great care was taken to ensure intensity was kept to approximately the same value 

throughout all measurements.  
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3.2.3 Time resolved total integrated photoelectron spectra 

 

After absorption of a photon the excited state wave packet formed in the Franck Condon 

region will begin to move over the potential energy surface marking the start of its 

molecular dynamics. The wave packet will change energy as a function of time which can 

be observed by the probe pulse through ionisation and followed in a decay scan. A decay 

scan involves increasing the time delay between the pump and probe pulses continuously 

whilst measuring the photoelectron count rate recorded by the photoelectron imaging set-

up. The photoelectron count rate is not energy resolved but is the total integrated 

photoelectron signal for the energy range as set-up by the ion optics as described in 

section 2.19 and the pulse energy. The total integrated photoelectron signal was measured 

over a period of 2 ps for two probes of 254 nm and 235 nm. The pump pulse was kept at 

243 nm throughout all experiments in this chapter. Figure 8 shows the decay plots for the 

235 nm (red) and 254 nm (blue) probe pulses. 

Figure 7: Intensity dependence of the photoelectron count rate. A pump of 243 nm and probes of 235 nm 
(a) and 254 nm (b) are investigated. Both curves show a gradient of approximately one and are measured at 
intensities well above those used in the imaging experiments as the power meters available in the lab are 
unreliable at such low pulse energies. 
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Every 10th point has been plotted in both graphs to show the points and error bars more 

clearly. At -0.5 ps, before the coherent τ = 0 spike the count rate was collected for the 

pump only and probe only components for a period of 20 seconds each. The sums of the 

averaged signals were subtracted from the total count rate of the signal to give a count 

rate for the pump and probe only signal. The plots were normalised by dividing the 

number of counts by the peak value of the coherent τ = 0 spike. Both decay curves were 

fitted to biexponential functions, as observed in previous femtosecond pump-probe 

ionisation measurements13. The error bars were calculated as twice the standard deviation 

from the fitted biexponential function. 

 

Figure 8: Variation of the normalised total integrated photoelectron signal from t=0 as a function of pump-
probe delay for two different probe wavelengths. Experimental integrated photoelectron yield as a 
function of delay for probe wavelengths of 254 nm (lower curve/blue points) and 235 nm probe (upper 
curve/red points). The solid lines represent least squares fits to the observed data with a biexponential 
function. The recovered lifetimes are τ1 = 220 ± 10 fs (blue) and 230 ± 10 fs (red) for the fast component 
and τ2 = 11.5 ± 1.0 ps (254 nm probe) and 1.7 ± 0.3 ns (235 nm probe) for the slow component. The 
absolute value of the exponential tells us very little about the dynamics, only how quickly population 
leaves the observation window. 
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The 254 nm and 235 nm probe pulses both exhibit a fast initial decay component of 220 ± 

10 fs and 230 ± 10 fs respectively. It should be noted that this decay rate is within the 

cross correlation limit of the pump and probe pulses (175 ± 20 fs) from the bandwidth of 

135 cm-1, as shown in figure 14, chapter 2. The fast decay constant recorded is the 

shortest decay rate measured in this energy region of the spectrum. Decay rates on such a 

short timescale are commonly considered to be due to internal conversion. This had been 

considered the dominant ultrafast non radiative mechanism5 causing “channel 3”. The 

decay constants for the long decay component are 11 ± 1 ps for the 254 nm probe and 1.7 

± 0.3 ns for the 235 nm probe. The most interesting feature about these decay plots is 

their severe difference due to probe energy rather than pump energy. Both plots have the 

same pump pulse and so the difference is caused by what the probe can “see”. With the 

increase in probe energy a 20 % increase in photoelectron count rate is obtained. It is 

expected to rise slightly due to the higher energy pulse giving better Franck-Condon 

overlaps with the ion. The 235 nm probe pulse (red) is only 0.4 eV greater in energy than 

that of the 254 nm probe pulse (blue) but is showing that only a possible 30 % of the 

population is leaving the probe viewing window at the ultrafast decay rate associated with 

internal conversion. The remaining 70% of the population must be due to something else. 

This implies only viewing the low energy 254 nm pulse decay scans could cause a misled 

conclusion about the length and scale of the initial decay; this could have affected the 

conclusions of recent work on benzene by Neusser13.  

 

The higher energy probe (red) is showing that a large portion of the excited state 

population is still able to be ionised by a probe of 5.27 eV. The low energy probe (blue) 

is limited in which area of the potential energy surface it can ionise. The area of the PES 

which the low energy probe is probing is evidently only around the initial geometry 

where the Franck Condon overlap is still good enough to reach the ionisation continuum. 

As the wave packet moves from the Franck Condon region to other areas of the potential 

energy surface, the 254 nm probe does not have enough energy to ionise the more 

vibrationally energetic wave packet. The high energy probe conversely does possess 

enough energy to ionise more of the wave packet evidently over a greater area of the 

PES. Therefore, the photoelectrons responsible for the 30 % difference in the 
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photoelectron intensity hold in them the information about the dynamics of the wave 

packet that remains on the excited state. To re-emphasise, incorporating the Δν = 0 

propensity of benzene, the probe photon has only enough energy to cause ionisation from 

the excited state surface, since this experiment is a 1+1 photon process (section 3.2.3). 

Other possible schemes such as excitation to a Rydberg state to account for our signal 

would include a two photon process at some point which is not what we are seeing here. 

This consideration is discussed in more detail later in section 3.2.8. 

The low energy probe is still ionising population on the excited state but not all of it. If 

there was no population on the excited state then the signal would be zero as all the 

population would not be able to be ionised on the ground excited state due to a poor 

Franck Condon overlap. Energetically, a two photon process at these wavelengths would 

be required to ionise the ground state population. This leads to the conclusion that around 

70 % of the population is still on the excited state and the main mechanism is therefore 

not due to internal conversion to the ground state. 

 

In summary, the higher energy probe (235 nm) is able to ionise 20% more of the excited 

state wave packet. Its relative photoelectron intensity of 0.7 compared with Δt=0 

indicates at least 70% of the wave packet is still on the excited state ruling out internal 

conversion as the predominant decay process. With an increase in probe energy it may 

well be possible to view more of the excited state. The steep decay seen in the low energy 

probe (254 nm) indicates movement of the wave packet to another area of the PES. The 

initial ultrafast decay (20% of population) as viewed by the 235 nm probe cannot be seen 

by either probe and can be attributed to undergoing internal conversion as postulated 

previously5.  

 

3.2.4 Varying probe energy 

 

A series of decay scans at a range of probe wavelengths were conducted to investigate the 

difference in the ionised excited state population seen in the decay plots, as shown in 
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figure 9 (a). All decay scans were kept at the pulse power that is responsible for 1+1 

photon processes. The decays can be seen to be split into two groups, those above 250 nm 

(a)(i)-(v) which exhibit the decay profile as seen in the 235 nm probe and those below 

250 nm (a)(vi)-(viii) which exhibit the same decay profile as that of the 254 nm probe. 

This cut-off region can be seen more clearly in figure 9 (b) where the amplitude of the 

slow component of the biexponentials fitted to the data (red line) have been plotted as a 

function of probe wavelength. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Diagram of the effects of varying 
probe wavelength. (a) Variation of the total 
integrated photoelectron signal as a function 
of pump-probe delay and probe wavelength. 
To elucidate where the threshold was between 
the two ionisation pathways a scan of probe 
wavelength was conducted shown in (a) panel: 
(i) 235 nm (ii) 236 nm (iii) 240 nm (iv) 245 
nm (v) 250 nm (vi) 251 nm (vii) 252.5 nm 
(viii) 254 nm (b) Plot of the slow decay 
components fitted to each graph (i)-(viii) 
against wavelength. A threshold lays around 
250 nm and is the signature of a new 
ionisation pathway opening up. 
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The distinct change in decay rate occurs at around 250 nm and is shown by the step 

function fitted to the data in figure 9(b). Such a distinct threshold is a signature of a new 

ionisation pathway opening up which suggests that there is a change in the electronic 

character along the adiabatic potential surface. This can be interpreted in two ways: 

Either the change is associated with an enhanced overlap of the wave packet on the 

excited adiabatic potential surface with an isomer of the benzene cation, or it is associated 

with an enhanced overlap with higher lying vibrational states of the benzene cation.  

 

To re-iterate, from Franck-Condon arguments, to ionise any highly vibrationally excited 

levels of S0 populated by internal conversion (IC) would require the energy of the probe 

to be of the order of 9 eV according to the Δν=0 propensity of benzene. In our 

experiments the probe energy is ~5 eV which is not high enough to ionise the products of 

IC in a single photon process, and the intensity is not high enough for two-photon 

ionisation of these levels. Thus, at this excitation energy, the fast decay observed is not 

associated predominantly with a direct transition through the S1/S0 conical intersection 

(CI)5. If IC did occur the decay plots would go to zero since the probe would not possess 

enough energy to reach the Δν=0 in the ion. As stated above, the decay of the total ion 

count in the first 600 fs observed using this higher probe energy can be attributed to 

population returning to the ground-state by ultrafast internal conversion. Having removed 

this contribution, changes in the photoelectron spectrum must be due to changes in the 

composition of the excited state wave packet.   

 

In summary, what has been learnt from the decay scans and the step function is that the 

wave packet created on the excited state has three dynamical features. Firstly there is the 

initial ultrafast decay, which at most is 30% of the signal and that is happening at a rate 

commonly associated with internal conversion. Secondly, there is a 20 % portion of the 

excited state population that is residing on the potential energy surface which can be 

observed through ionisation by the 235 nm. Thirdly, there is the remainder of the excited 

state population that can be observed through ionisation by the 254 nm probe. 
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3.2.5  Oscillation in low energy probe signal  

 

To investigate what the excited state population is doing the decay scan was further 

scrutinised. Since the initial fast decay has a plausible explanation of internal conversion 

(IC) its component was subtracted from the decay plot for both probes. As well as this the 

long decay was removed so any changes could be seen more clearly. This yielded no 

further insight for the 235 nm probe but did for the 254 nm probe. Figure 10 shows a plot 

where the biexponential decay has been removed from the decay scan. The long decay 

component was removed to see more clearly any features. The biexponential subtracted 

was that fitted to the decay plot as shown in figure 8.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 exhibits an oscillation over the scan range. The data has been fitted with a 

sinusoidal function which has a period of oscillation of 1.2 ± 0.1 ps. The data obtained in 

this decay scan shows the total integrated photoelectron count rate using the 254 nm 

probe. The period of 1.2 ps is too long to be associated with any type of vibrational mode 

(but not IVR) so must be accounted for by movement of the excited state wave packet 

over the potential energy surface. The data resembles a perfect sinusoid over the 2 ps 

range. The probe in this case is viewing an excited state wave packet that at τ = 0 has a 

Figure 10: Total integrated photoelectron count rate as a function of pump probe delay for a 254 nm 
probe with the biexponential decay subtracted. An oscillation in count rate can be clearly seen oscillating 
with a period of 1.2 ps. This time scale is too long to be a signature of a pure vibration so must be 
accounted for be a movement of the wave packet over the potential energy surface. The biexponential as 
plotted as the solid line in figure 3.2.3 was subtracted from the data to yield this plot. The oscillation has 
been fitted with a sinusoid to obtain the period.
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good Franck Condon overlap with the continuum and 600 fs later has a weaker overlap. 

The wave packet appears to be bound and between two states. The probe has a reduced 

Franck Condon overlap with the outer turning point. The outer turning point must 

therefore require a different wavelength probe pulse to ionise it. The probe energy must 

need to be higher than 250 nm. In summary, a sinusoidal oscillation of 1.2 ps is observed 

in the total integrated photoelectron signal for the 254 nm probe which indicates 

movement of the excited state wave packet on a bound trajectory.  

 

3.2.6 Energy differentiated time resolved photoelectron spectra 

 

So far the true power of the photoelectron imaging apparatus has not been revealed. The 

most important aspect of the photoelectron imaging set-up is that it yields a differential 

signal with respect to energy. TRPES require hour long photoelectron spectra to be 

collected in order to gain adequate energy resolution and so limit the time over which 

data can be collected; these have been described in section 2.1.10. TRPES were collected 

for both the 235 nm and 254 nm probes. Due to the long collection times of each 

spectrum they were collected every 100 fs over a range of 2 ps to give sufficient time 

resolution. Each photoelectron spectrum recorded was normalised by the inversion 

algorithm. They subsequently had to be multiplied by the value of the bi exponential 

fitted of the decay scans (figure 8) for their respective times i.e. t=0 was multiplied by 1. 

Each spectrum had two 3 point rolling averages run through them to smooth out the 

noise. The data recorded for 254 nm is shown below: 

 

 

 

 

 

 

 

Figure 11: Energy and time resolved 
ionisation spectra for the 243 nm pump 
pulse and the 254 nm probe pulse. A 
spectrum was collected every 100 fs The 
biexponential decay can be clearly seen 
dominating this plot. There are no 
discernible features elucidating the decay 
mechanism visible in this plot. 
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Figure 11 shows the TRPES for every 200 fs to distinguish between spectra more easily. 

Apart from the biexponential decay there is nothing notable, that is to say there are no 

features appearing or disappearing as a function of time. The biexponential can be seen to 

be affecting the whole spectrum but no distinct features like that which has been seen in 

previous TRPES experiments for other systems25 is seen here. This suggests a single 

cation electronic state is involved. The long period oscillation as seen superimposed on 

the 254 nm data could be evidence of isomerisation; however, an isomerisation would 

cause a change in internal energy distribution of the molecule leading to a change in the 

profile of the photoelectron energy distribution. The only isomer of the benzene cation 

that is accessible energetically by one-photon absorption from S1 is the fulvene cation 

since the fulvene S1 energy is 4.95 eV which is accessible by the pump pulse. CASPT2 

calculations show that the ionisation limits of benzvalene, prefulvene, dewar benzene and 

prismane lie at 6.96 eV, 6.98 eV, 7.97 eV and 8.88 eV above benzene S1 which are 

energetically inaccessible to the excited state wave packet. While ionisation to the 

fulvene cation cannot be ruled out, dynamics calculations24 indicate that geometries 

where this will happen are not reached on the time-scale of the experiment.  

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Plot of energy and time resolved ionisation spectra for all data collected using the 254 nm 
probe pulse. A spectrum was collected every 100 fs. As well as the rolling averages, each point on the 
energy scale was averaged over 20 points to provide a smoother energy profile in this plot. There are no 
discernible features elucidating the decay mechanism are visible in this plot. 
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Figure 12 shows all the spectra collected, those for each 100 fs over 2 ps for the 254 nm 

probe. As well as the rolling averages, each point on the energy scale was averaged over 

20 points to provide a smoother energy profile in this plot.  

 

 

 

 

 

 

 

 

 

 

 

 

The TRPES from the 235 nm probe is shown above in figure 13. The spectra have been 

processed in the same way as for the 254 nm data. Since this plot is noisier than the 254 

nm probe spectra, the spectra have been plotted every 300 fs so their relationship can be 

more clearly seen. In the same way as for the 254 nm data no discernible features can be 

seen emerging or disappearing. This reinforces the notion that there is no significant 

movement of the wave packet to an area of the potential energy surface which has a 

Franck Condon overlap with a different cation state assuming the probe could access 

another cation state. In summary, the featureless forms of both TRPES suggest no 

isomerisation is evident and that the wave packet is ionising to the same cation state.  

 

Figure 13: Energy and time resolved ionisation spectra for the 243 nm pump pulse and the 235 nm probe 
pulse. A spectra was collected every 100 fs but one has been plotted every 300 fs for clarity. The 
biexponential decay can be clearly seen dominating this plot. There are no discernible features indicating 
the decay mechanism visible in this plot. 
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Figure 14 shows all the spectra collected, those for each 100 fs over 2 ps for the 235 nm 

probe. As well as the rolling averages, each point on the energy scale was averaged over 

20 points to provide a smoother energy profile in this plot. The biexponential again can 

be seen clearly here. The analysis conducted that is described in the subsequent sections 

of this chapter uses every spectra but without the 20 point average. 

 

3.2.7 Oscillation elements within the TRPES spectrum 

 

The decay scan for the 254 nm data has already given an indication of excited state 

dynamics where a wave packet is oscillating on a bound state with a period of 1.2 ps. As 

discussed earlier, the increased number of photoelectrons obtained, relative to t=0, in the 

Figure 14: Plot of energy and time resolved ionisation spectra for all data collected using the 235 nm probe 
pulse. A spectrum was collected every 100 fs. As well as the rolling averages, each point on the energy 
scale was averaged over 20 points to provide a smoother energy profile in this plot. The biexponential 
decay can be clearly seen dominating this plot. There are no discernible features indicating the decay 
mechanism visible in this plot. 
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235 nm TRPES data must contain within it information about the excited state dynamics. 

To search for photoelectrons exhibiting an oscillation of 1.2 ps a “box car” analysis was 

conducted on the 235 nm TRPES data. Firstly, the spectra were composed into a matrix 

then the biexponential decay fitted to the 235 nm data was removed. The matrix of 

electron kinetic energy as a function of time was scanned for any oscillations. For this 

analysis sinusoidal functions were fitted to plots of discrete energy ranges over time. 

Three energy regions were found to exhibit the most pronounced oscillatory structure. 

The energy ranges have been indicated in the figure 3.2.7, as      = 35.125.1 −  eV,       = 

23.113.1 −  eV and      = 95.075.0 −  eV. The observed trends are clearly different from 

one another and can not be fitted by the exponential decay observed in the overall 

photoelectron count (Figure 8). Figure 15(a) shows plots of the     +     and     as found by 

the oscillation analysis. The biexponential has been removed from (a) to give the plot in 

(b) where the oscillations can be seen with sinusoidal profiles and equal and opposite 

amplitudes. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Oscillation analysis. (a) Plot of integrated photoelectron count over energy ranges with 
predominant oscillatory structure as a function of pump probe delay. The energy range       = 0.75-0.95 eV 
is shown as filled circles and the energy range      = 1.25-1.35 eV plus       = 1.13-1.23 eV are shown by 
empty circles. The biexponential decay fitted to the data is shown as the solid line. (b) Plot of integrated 
photoelectron count over energy ranges with predominant oscillatory structure as a function of pump probe 
delay with the biexponential decay subtracted. Both oscillations have the same but opposite amplitude. The 
oscillatory structure is indicative of a bound state. The in phase oscillatory components      and     are 
separated by 0.11 eV which is a signature of the ν1 symmetric stretch in benzene.  
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Oscillations in the difference photoelectron counts are observed for photoelectron kinetic 

energies a1ε , b1ε  and 2ε . The oscillations have a period 1.02.1osc ±=τ  ps, which is much 

longer than any fundamental vibration period of S1 (1B2u) benzene. The three oscillations 

are clearly related to each other. Several interesting features come from figure 15: (1) the 

in phase oscillations are separated by 0.11 eV. (2) There are two oscillations that are in 

phase with each other but out of phase with the third oscillation. (3) The two in phase 

oscillations are seen in the high energy photoelectrons and the out of phase oscillation is 

seen in the low energy photoelectrons. (4) The in phase oscillations have the same 

oscillation profile as previously seen in the 254 nm data. (5) Finally, the sum of the 

amplitudes of the oscillations at      and      is equal to the amplitude of the out of phase 

oscillation at     .  

 

The separation of the two in phase oscillations by 0.11 eV corresponds very well with the 

1v  breathing mode of benzene. This is taken as a signature that the wave packet contains 

a component associated with the     breathing mode of benzene which is known to show a 

long vibrational progression upon ionisation. The in phase oscillations (      and      ) show 

a high photoelectron count at τ = 0 indicating they are observing the wave packet while it 

is in its ground state structure in the Franck Condon region on the excited state. At this 

geometry the higher energy photoelectrons of the out of phase component     are at a 

minimum. After 600 fs, the photoelectrons of the lower energy in phase energy range 

( ba 11 εε + ) have lowered in energy indicating the wave packet is in a higher energy 

potential which is harder to ionise and so termed a dark state. This is the outer turning 

point of the wave packets motion on the excited state surface. After a further 600 fs the 

bound wave packet moves back to a geometry similar to that of the ground state 

minimum and a full oscillation is complete. Since the magnitudes of the in phase 

components and the out of phase component are the same, the observed dynamics must 

account for the entire wave packet motion. The in phase oscillation which is attributed to 

the benzene ground state geometry is that which is observed in the decay scan of the 254 

nm probe, figure 10. Energetically the 254 nm probe pulse is only able to ionise the wave 

packet in this region. These observations imply that we are ionising a bound wave packet 
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a1ε b1ε
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at two extremes of an oscillatory motion on the adiabatic potential energy surface. The 

bound oscillation can be summarised in a model two state system as shown below in 

figure 16: 

 

 

 

 

 

 

 

 

 

The inner turning point in this case is a bright state which we are able to identify as the 

benzene ground state geometry and the outer turning point is the dark state which we will 

try to rationalise. We observe a 1.2 ps oscillation between components of the 

photoelectron spectrum separated by 5000 cm-1. 

 

One possible explanation considered for the observed signal is intramolecular vibrational 

energy redistribution (IVR). The effects of IVR on the photoelectron spectrum of toluene 

have been studied by Reid and coworkers26. In their experiment they observed 6 ps 

oscillations between components of a photoelectron spectrum separated by 500 cm-1 

(arising from changes in Franck-Condon overlap between different rovibrational states of 

S1 toluene and the ionisation continuum), which they attributed to a Fermi resonance 

between bright and dark vibrational states. Our observations are quite different. We 

observe a 1.2 ps oscillation between components of the photoelectron spectrum separated 

by 5000 cm-1. The strong 0=Δυ  propensity in the ionisation of benzene12 suggests that 

this should not be interpreted in terms of a change in the Franck-Condon factors for 

different vibrational modes associated with the same electronic state, but by a change in 

Figure 16: A two state system. A simple diagram to show a two state wave packet illustrates the basic 
picture so far of the oscillatory behaviour of the excited state process. The downwards pointing red arrow 
indicates the photoelectrons ejected by the low energy 254 nm probe pulse which can only view the bright 
state. The blue arrow indicates the photoelectrons ejected by the high energy probe which can view both 
bright and dark states of the wave packet. The oscillation period is 1.2 ps which manifests itself as a state 
separation of 0.4 eV. 
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Franck-Condon factors for different vibrational modes associated with different 

electronic states.  

 

 

 

 

 

 

 

 

 

 

The high energy probe used in our experiments is of sufficient energy to ionise S1 by 

absorption of a single probe photon, Eprobe. From our laser fluence study, it is clear that 

our ionization step either involves a single photon, or a saturated resonant two-photon 

ionization. The two-photon resonance could be a saturated superexcited state (SES) 

which then undergoes rapid internal conversion to vibrationally excited states of a 

Rydberg state converging to the lowest ionization threshold (D0) – based on work 

reported by Weber and coworkers27. The figure above illustrates such a situation for 

benzene. It is clear that the electron kinetic energy (eKE) following two-photon 

ionization is 2/ vREeKE probe −= , where 2/ vRERyd = is the binding energy of the 

Rydberg state and ν is the effective principal quantum number. A 235 nm probe (5.28 

eV) and eKE ~1 eV (corresponding to our observations) would require the Rydberg state 

to have an effective principal quantum number < 2. In benzene, this is not possible and  

would lead to a Rydberg orbit less than the diameter of the benzene ring. If we were 

accessing a Rydberg state with effective principal quantum number 3≥ (plausible and in 

line with Weber’s observations) then the eKE would be ~4 eV. This is far larger than our 

Figure 17: Energy level scheme 
illustrating formation of a 
saturated superexcited state 
(SES) in benzene. Recently a 
growing body of evidence in 
experiments of this kind, in 
aromatic molecules, suggests 
that it is easy to create doubly 
excited states that decay rapidly 
to Rydberg states which are 
vibrationally highly excited. 
When ionized the vibrational 
energy is conserved in the cation 
leading to a photoelectron 
spectrum that is independent of 
the probe wavelength. However, 
the SES would not be in the 
energy range of our detection 
system for this scenario. 
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observation window (2 eV maximum). Consequently, the SES scenario is not a plausible 

explanation for the data.  

 

3.2.8  Doorway state 

 

Within the TRPES data another interesting feature is observed for photoelectron energies 

between 0.35-0.45 eV as labelled     in figure 15. Figure 18 (a) shows the box car 

integrated energy profile as a function of time with the biexponential fitted to the data. In 

this figure the count rate can be seen clearly rising above the biexponential fit. In figure 

18 (b) the biexponential has been removed and there can be seen two levels to the 

intensity.  

 

 

 

 

 

 

 

 

 

 

 

 

The photoelectron count increases to a maximum at 600 fs (the time it takes for the bound 

wave packet to reach its outer turning point), suggesting that a portion of the excited state 

population is being transferred from the Franck-Condon region (monitored at      and      ) 

Figure 18: Plot of the energy range 3ε . (a) After 600 fs the excited state population can be seen to ride 
above the fitted exponential. (b) The biexponential decay has been removed to show the rise in excited state 
population more clearly. 
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to a dark state (monitored at     ) via a doorway state (monitored at      ).  The fact that the 

population of    does not decrease as     rises, indicates that there is a strong coupling 

between     and      that transfers population to      immediately and that it is never detected 

in     .  

 

3.2.9  Contour plot 

 

All the features observed in the TRPES spectra can be better visualised in a contour plot 

of 235 nm data as shown in figure 19. The contour plot was made by subtracting the τ = 0 

normalised photoelectron spectrum from the rest of the normalised spectra. The spectra 

that compose the TRPES all have a similar profile as seen in figure 13.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19: Contour plot of the 235 nm probe TRPES with the signal from that of the τ = 0 spectrum 
subtracted to illustrate the difference in photoelectron signal. The three energy bands have been marked:   
the increase in signal after 600 fs,     the out of phase oscillation and      and      the in phase oscillation. A 
black line has been plotted illustrating the movement of the wave packet over the potential energy surface. 
Cold colours indicate a lower than average signal and hot colours indicate a higher than average signal. 
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The contour plot has been plotted with hot colours indicting the higher number of 

photoelectron counts than the τ = 0 energy profile and cold colours indicating lower 

number of photoelectron counts. Drawn on the contour plot are the three main bands of 

the 235 nm TRPES: The 600 fs rise     , the out of phase component      and the in phase 

component      and       (composed of two components). Superposed onto the contour plot 

are black lines to help guide the eye over the main features of the wave packets trajectory. 

Firstly, the wave packet decays on an ultrafast timescale attributed to internal conversion. 

This accounts for the first 600 fs.  The wave packet is then split by an energy barrier into 

two components separated into those above the region corresponding to photoelectrons of 

0.6 eV and those below. The component of the wave packet     with enough energy to 

overcome the barrier moves to a new area of the PES which no longer interacts with the 

remaining excited state population. The lower energy component of the wave packet is 

trapped on the excited state surface and oscillates back and forth between the bright state 

monitored by   (      and      ) and dark state monitored by (     ).  

 

3.2.10 Intersystem crossing 

 

From the analysis so far the routes that have been eliminated as possible mechanisms 

undertaken by the wave packet have been internal conversion to the ground state, 

isomerisation to fulvene and IVR. The remaining contending mechanism is ultrafast 

intersystem crossing. This, however, has been always regarded as occurring on too long 

timescale as stated by Jortner et al16. The observations can be explained in terms of ISC 

involving the S1, T1 and T2 states of benzene – the energies of the measured 

photoelectrons correspond with those expected for ionisation of the S1, T1 and T2 states 

based on simple Franck-Condon arguments and taking into account the excess vibrational 

energy in all of the states involved. The proposed dynamics is: that the excited state wave 

packet which starts in S1 monitored by     and     , traverses after 600 fs to T2 monitored 

by    which acts as a doorway state, at the same time part of the excited state population 

couples to T1 allowing for fast dispersion of the wave packet into its dense bath of states. 

The strong vibronic coupling between T2 and T1 facilitates rapid population transfer to 
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the dense bath of states which are energetically accessible in T1, resulting in the step in 

the photoelectron counts observed at low photoelectron energies    (Figure 18). The small 

population of states in T2 which do not couple well to T1, are then free to oscillate back to 

the S1 state.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This “doorway” picture is common to many examples of intramolecular vibrational 

energy redistribution, albeit on a much longer timescale, where a sparse state facilitates 

the coupling between an initially populated bright state and its associated bath28. 

However, such rapid intersystem crossing challenges currently accepted models for 

ultrafast non-adiabatic processes in which ISC is assumed to be too slow to be important, 

unless certain conditions are fulfilled to increase the spin-orbit coupling (SOC) such as 

the presence of a heavy atom or nitro group29-33.  

 

In context, this picture of ISC fits into work conducted by Zilberg22 as detailed in the last 

paragraph of the introduction. They found an increase in SOC in the prefulvene region 

where a conical intersection exists to the ground state. In terms of movement over the 

PES, the entire wave packet moves towards the prefulvene region of the PES. This 

Figure 20: Illustration of the intersystem crossing mechanism. A wave packet is created by a 243 nm 
pump pulse which moves from S1 (      and     ) to a doorway state, T2 (     ). The majority of the wave 
packet moves on from T2 to T1 (      ) through a strong coupling and is dissipated into the dense bath of 
states. The remainder of the wave packet does not overcome the energy barrier and oscillates back to S1.  
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movement has been anticipated by Robb et al5. and others (Sobelewski)14. They found 

that easily excited symmetric modes, acceptor modes like the 1v  breathing mode feed into 

out of plane modes like 4v . The out of plane modes in turn are well known to move the 

excited state wave packet to the prefulvene area of the PES. From here theoreticians5 

(Robb) state the wave packet would decay through a conical intersection that occurs 

locally, down to the ground state. This agrees in part with our observations. Their models 

however did not represent the SOC between S1 and T1 effectively as argued by Zilberg. 

Although our picture differs from Zilberg in that we predict a doorway state T2 to be 

involved it fits the theoretical prediction that the wave packet moves to the prefulvene 

region. The calculations Zilberg conducted may be misleading since the surface crossing 

region is hard to predict due to its reduced symmetry. This, for example, is caused by the 

non-Born Oppenheimer nature of this region of the PES. In the prefulvene region we see 

approximately 30% of the wave packet decay through the conical intersection to the 

ground state. The decay could take the population back to benzene or to other isomers 

such as fulvene. These isomers have been found in photolysis experiments but in no more 

than 1% yields34. The remaining population then moves as stated to T2 through a CI to the 

triplet state where part flows to T1 and is dissipated in the dense bath of states and part 

that does not and flows back to S1 causing the observed oscillation. The assignments of 

these states have been aided by theoretical calculations which will be discussed in section 

3.3.1. 

 

3.2.11 260 nm probe 

 

The contour plot in figure 19 illustrates the movement of the excited state population and 

helps in visualising the wave packets trajectory. The mechanism of an ultrafast 

intersystem crossing as being responsible for the long period oscillation in the signal can 

be further tested by varying the probe energy once again. The oscillation observed in the 

254 nm probe (figure 10) can be seen in the contour plot (figure 19) to be between 0.7 - 

1.0 eV of photoelectron kinetic energy. The photoelectrons ejected by the 254 nm probe 

have energies centred at 4.88 eV which means the observed oscillation is reduced by the 

overlap into channels other than that of the in phase oscillation. So to observe a more 
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pronounced oscillation with a greater amplitude the probe energy was reduced to 260 nm 

so the in phase oscillation was the predominant signal observed. Figure 21 shows the 

results from a decay scan conducted in the same fashion as in figure 3. The 260 nm data 

can be clearly seen to have an increase in oscillation amplitude with the electrons centred 

at 4.76 eV. This consolidates the energy ranges found in the TRPES data of the 235 nm 

probe. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3 Supporting theory: MCTDH 

 

The interpretation of the data has been supported by theoretical calculations conducted by 

our collaborators36. The coupled manifold of benzene singlet states S0 (A1g), S1, (B2u), S2 

(B1u) and S3 (E1u) have been characterised previously by setting up a vibronic coupling 

model Hamiltonian to second order at the CASSCF level24. At this level of theory, 

however, the S2 and S3 states are poorly described and so this work has been repeated to 

greater accuracy to provide potential surfaces calculated at the CASPT2 level. The 

resulting model is able to reproduce quantitatively the lowest three bands of the 

Figure 21: Variation of the total integrated photoelectron signal as a function of pump-probe delay. 
Experimental integrated photoelectron yield as a function of delay for a 260 nm probe (lower curve/black 
line). The biexponential fits, from figure 3.2.3, to the 235 nm (upper curve/red line) and 254 nm (middle 
curve/blue line) are shown for comparison. A large amplitude oscillation can be seen with the 
characteristic 1.2 ps period. 
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absorption spectrum of benzene. Important for the discussion of the initial dynamics is 

the cut along the “prefulvene” mode that takes benzene to the low lying S1/S0 conical 

intersection5. This is shown in figure 22. The (approximately 3000 cm-1 high) barrier on 

S1 along this coordinate is clear. To the left of this barrier the S1 state has 1B2u character 

and on the right of the barrier it has 1E1u character (and correlates diabatically to the S3 

state).  

 

Quantum dynamics calculations were performed for 13 vibrational modes in the coupled 

four-state singlet manifold using the Heidelberg MCTDH package32, including effects in 

the potential relevant for the first few hundred femtoseconds. In Wilson numbering the 

modes correspond to the breathing mode v1 , the e2g modes v6, v9 which provide coupling 

between S1 and S3, the b2u modes (including the kekulé mode) v14, v15, the boat and twists 

modes v3, v4 and the e2u and e1u in-plane stretches v16 and v19. The initial wavepacket was 

a vertical excitation from the S0 vibrational ground-state taking into account the strong 

Herzberg-Teller excitation in v6. The results show that after excitation to the S1 state, 

almost 40% of the population crosses through the intersection to S0 by 500 fs; it should 

be noted that this is approximately double the experimental value and extra pathways 

keeping density in the excited states must be present. ISC into the triplet states not 

included in these calculations could account for the discrepancy. Finally, we note that if 

the S1 population is divided into its component 1B2u and 1E1u diabatic states, the latter 

attains a population of approximately 10%. Due to the highly distorted geometries in the 
1E1u vibronic states, these will ionize at a higher energy than the 1B2u state. 
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To examine the importance of ISC, the triplet states need to be included. This work is in 

progress, but the potential curves in figure 22 include the triplet states along the 

prefulvene mode. The T2 (3E1u) and T1 (3B1u) states lie just below S1 at FC and the states 

cross. In fact they seem to meet at the barrier. At the FC point SOC is small between S1 

and T1  (less than 1 cm-1), and zero by symmetry between the 1B2u component of S1 and 

T2. However, recent calculations have found a value of 6.2 cm-1 for the SOC in the 

vicinity of the prefulvene conical intersection, and preliminary calculations indicate that 

the coupling is even higher at the barrier due to SOC between T2 and the 1E1u  component 

of S1. By symmetry, the crossing point is also a singlet-triplet conical intersection, which 

is a more efficient pathway for population transfer than would be expected from this 

weak coupling. Thus the wave packet motion along the prefulvene mode will provide a 

route into T2 and the near-degeneracy of these states explains the observed beating. The 

T2 and T1 states are then strongly coupled by pseudo-Jahn-Teller coupling involving 

modes with e2g symmetry, providing a fast pathway between them, and resulting in the 

step-wise transfer observed to these low-energy vibronic states. 

 

 

Figure 22: Cut through the potential energy 
surfaces of benzene along the “prefulvene” mode. 
A vector from the Franck-Condon point to the S1 / 
S0 conical intersection – calculated using the 
MOLPRO program at the CASPT2 level with a 
(6,6) CAS space and a Roos ANO basis set 
truncated to 6-31G* quality: S1 (black), S0 (red), T1 
(green) and T2 (blue).  
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3.4 Wave packet composition and density of states 

 

A wave packet composition analysis has been conducted as shown in figure 24. The 

fluorescence absorption spectrum has been shown in its entirety in figure 24 (a) taken 

from reference 6. The pump pulse has been superimposed onto the spectrum and 

represented by a pink Gaussian. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24 (b) shows a close up of the pump pulse and the major states within the 

bandwidth of the pulse. The composition of the excited state wave packet is thought to 

possess some hot bands from the ground state which is not represented in this analysis. 

 

Figure 24: Wave packet mode analysis: (a) Spectrum of benzene (black) with pump pulse superimposed 
(pink). (b) Close-up of the vibrational states within the wave packet. The spectroscopic data have been 
taken from reference 6. 
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excess energy 
eV 

no. lines per cm-1 

S1 0.35 4.25
T2 0.49 27
T1 1.44 94010

 

Table 2 shows the density of vibrational states calculated using the direct count method37 

for S1, T2 and T1. The excess energy from the excitation from the ground state with the 

243 nm (5.10 eV) pump pulse has been included in the table. The density of states can be 

seen to increase from S1 to T2 as the excess vibrational energy increases. The density of 

states dramatically increase in T1 which matches the notion that T1 acts as a bath state 

dissipating the wave packet vibrational motion into many different vibrational states.   

 

3.5 Conclusion 

 

In conclusion, we have observed ultrafast intersystem crossing in a hydrocarbon, which 

contradicts the currently accepted view that singlet-triplet coupling in hydrocarbons is 

weak and that ISC is assumed to take place on a much longer timescale than IC. The 

states involved are low lying singlet and triplet states that are close in energy, as is the 

case in many polyatomic molecules. Based on our calculations, the coupling strengths 

and density of states required for ultrafast ISC are far from extraordinary. Therefore, we 

expect ultrafast ISC to be widespread.  

 

Finally, we note that although time-resolved photoelectron spectroscopy using ultrafast 

laser pulses has become a popular tool for monitoring ultrafast processes, care must be 

taken in the choice of probe photon energy since information can be lost if the probe laser 

cannot ionise the system across the entire reaction coordinate. Ideally, the photon energy 

of the probe should be able to project the complete excited state wave function onto the 

manifold of cation states with unit efficiency. We anticipate that the additional insight 

gained from observations with higher energy probe pulses that access the complete 

reaction coordinate, combined with accurate quantum dynamics simulations, will provide 

Table 2: Density of vibrational states in S1, 
T2 and T1. The density of states has been 
calculated for the excess energy in S1, T2 
and T1 using the direct count method with 
vibrational frequencies from the S1 state 
found in reference 37.    
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more detailed insight into the photophysics that underpins our understanding of many 

important photochemical and photobiological processes. 
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Chapter 4 

 

Frequency doubling and Fourier domain shaping the 

output of a femtosecond optical parametric amplifier: 

Easy access to tuneable femtosecond pulse shapes in the 

deep ultraviolet 

 
Tuneable, shaped, ultraviolet (UV) femtosecond laser pulses are produced by shaping 

and frequency doubling the output of a commercial optical parametric amplifier (OPA). 

A reflective mode, folded, pulse shaping assembly employing a spatial light modulator 

(SLM) has been designed and built to shape femtosecond pulses in the visible region of 

the spectrum. The shaped visible light pulses are frequency doubled to generate phase- 

and amplitude-shaped, ultrashort light pulses in the deep ultraviolet.  This approach 

benefits from a simple experimental setup and the potential for tuning the central 

frequency of the shaped ultraviolet waveform. A number of pulse shapes have been 

synthesised and characterised using cross-correlation frequency resolved optical gating 

(XFROG). This pulse shaping method is robust and can be employed for coherent control 

experiments in the ultraviolet region of the spectrum where many organic molecules have 

strong absorption bands. 
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4.1 Introduction 

 

Pulse shaping techniques in the frequency domain for femtosecond pulses have enabled 

huge advances in the field of molecular coherent control. Shaped pulses have proved to 

be an effective tool for exercising control over the branching ratios in dissociation 

reactions1, 2. Such control mechanisms have tended to rely on multiphoton excitations to 

access excited molecular states, together with simultaneous perturbations and re-

arrangements of molecular bonds that occur via the Stark effect due to the intense electric 

field of the excitation laser. Weak field coherent control is an important complementary 

tool because under such conditions, insights into the nuclear dynamics on the 

unperturbed, field-free potential energy surfaces, during the process of a photochemical 

reaction, may be obtained. Many organic molecules require shorter wavelength photons 

in the ultraviolet region of the spectrum to access the excited electronic states in a single 

photon process. The possibility of steering excited state molecular dynamics of such 

species using tailored ultraviolet (UV) pulses is very exciting; however, at present there is 

a divergence between the capabilities of commercially available pulse shaping 

technology and the requirements of such weak field coherent control. The most common 

pulse shaping technologies are constrained to a wavelength range from the near infrared 

(IR) to the visible. With this in mind, we set out to design and build a simple setup to 

create shaped UV femtosecond pulses for the control of organic photochemistry.  

 

The ability to shape directly in the UV is possible with micro-mechanical mirrors3; 

however, this technique is still under development and is currently limited to smooth and 

low-amplitude phase shapes. The two predominant methods of producing shaped pulses 

both use programmable mask technologies: acousto-optic mask (AOM) devices and 

liquid crystal modulators, both shape in the Fourier domain within a 4f zero-dispersion 

compressor set-up. Very recently, direct pulse shaping in the UV at 262 nm has been 

achieved using a fused-silica acousto-optic modulator (FS-AOM)4. Acousto-optic 

programmable dispersive filters (AOPDFs) are a more recent development of AOM 

technology, and operate directly on the beam, cutting out the difficulties of alignment but 

also losing the higher resolution possible within a 4f setup5, 6.  



 116

 

Commercial spatial light modulators (SLMs) have very high resolution and may be 

employed to create highly complex pulse shapes. They do not usually operate effectively 

at UV wavelengths, however, Hazu and coworkers have recently developed a novel UV-

transparent liquid crystal SLM7. In an attempt to manipulate the phase and amplitude of 

UV light using commercially available SLMs, non-linear techniques such as sum 

frequency generation (SFG)8 and second harmonic generation (SHG)9 have been used to 

shift a shaped waveform to a higher carrier frequency in the UV – so called indirect UV 

pulse shaping.  

 

Indirect pulse shaping has been demonstrated experimentally by several groups8-12 and 

studied theoretically by Wang et al.13. Most of these studies have focussed on UV shaped 

pulse generation by sum frequency mixing or type II second harmonic generation (SHG). 

In type II SHG and SFG, the polarisations of the two light beams are mutually 

perpendicular, and one of the beams may be shaped and the other unshaped (figure 1 (b)).  

 
 

 

 

 

Gerber and co-workers produced shaped UV pulses at the third harmonic of the output of 

a Ti-sapphire laser by using sum-frequency generation of shaped 800 nm pulses with a 

temporally stretched 400 nm pulse8. The 400 nm pulse had to be stretched (chirped) to 

ensure complete temporal overlap with all parts of the shaped light. Schriever et al. 

reported a similar indirect UV pulse shaping capability using the output of a non-collinear 

optical parametric amplifier (NOPA) in a pulse shaper followed by SFG with a 775 nm 

beam to produce shaped light in the near UV at 344 nm, with some very short sub-pulse 

ε 

ε 

ε 

ε 

ε 
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Figure 1: A diagram showing the type I SHG and type II SHG and SFG. The blue rectangle represents the 
second harmonic crystal, the two arrows pointing towards it represent the two photons incident on the 
crystal, with their respective polarisations illustrated. (a) Type I SHG where the incident polarisations are 
the same but perpendicular to the output. (b) Type II SHG or SFG where the incident polarisations are 
perpendicular to each other. The output polarisation is dependent on the crystal angle.  
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structures (19 fs)11. Their method has the advantage of tuneability – the NOPA may be 

tuned so that pulses at a wide range of UV wavelengths may be generated. These SFG 

indirect shaping techniques have proved capable of producing highly structured pulses in 

the UV. The disadvantage of the method, and for indirect UV pulse shaping by type II 

SHG, is that it is complicated by the necessity of mixing in a temporally stretched pulse 

to cover the time window of the shaped pulse: the result is a shaped UV pulse with an 

inherent chirp for which some compensation must be made. Although many successful 

coherent control experiments have been achieved using non-linear mixing of the 

harmonics of the 800 nm Ti:Sapphire fundamental, there exists a need for a fully tuneable 

deep UV pulse shaping capability for quantum molecular dynamics and control.  

 

Type I SHG, in which two photons of the same frequency and polarisation are converted 

into a single photon of double the frequency, offers the simplest experimental 

arrangement for indirect pulse shaping (figure 1(a)). A pulse may be shaped in the 

infrared or visible region of the spectrum and then frequency doubled, simply by placing 

a correctly cut doubling crystal in the beam path, to reach the wavelength of interest. To 

the best of our knowledge, only one implementation of this indirect shaping method has 

been reported in the literature: Hacker et al. were able to measure the spectra of shaped 

pulses at 400 nm that had been generated by SHG of a sinusoidal phase modulated 800 

nm pulse9. The authors highlighted some key aspects of this conversion technique, 

namely that the preservation of the phase of the field in the SHG upconversion process is 

dependent on the type of function on the phase of the input electric field. They also 

speculated that the phase profile of a sinusoidal phase shape is not preserved in the up-

conversion process but were unable to measure the phase of the upconverted light. Owing 

to the simplicity and versatility of the experimental setup, we chose to generate shaped 

ultrafast pulses in the deep UV using a standard SLM setup to shape the visible output of 

an OPA followed by type I SHG. In this chapter the effectiveness of a pulse shaping and 

type I SHG setup, as pioneered by Hacker et al., by fully characterising the shaped UV 

pulse is demonstrated. We present both XFROG traces (spectrograms) of the upconverted 

pulses, and the analytic descriptions of the electric fields of the shaped UV laser pulses, 

which were obtained from electric field reconstructions.  
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4.1.1 Pulse shaping using a 4f zero dispersion compressor configuration 

 

A 4f zero dispersion compressor configuration refers to an arrangement of optics that 

disperses the frequency components of a broad bandwidth femtosecond pulse out linearly 

in space without causing any change in the phase or amplitude profile of the original 

pulse14. Having the pulse drawn out in space enables access to the individual frequencies. 

The experimentalist is able to alter the frequency domain profile of the pulse in terms of 

phase and amplitude. This type of arrangement has a variety of applications in photonics 

such as within regenerative amplifiers, stretchers, compressors and fixed mask pulse 

shaping15.  

 
 

 

 

 

 

Figure 2 shows one of the earliest geometries used16. The principles behind its use are 

that a broad bandwidth transform limited femtosecond pulse is directed onto a diffraction 

grating by a mirror, where the individual frequency components are diffracted out at 

different angles spreading the pulse out linearly as a function of wavelength. A lens at the 

point where the pulse has been spread out by the desired amount, f, collimates the pulse. 

The lens also focuses the individual frequency components to their smallest beam waist at 

the Fourier plane.  

 

Fourier plane

Grating 

Lens

MirrorMirror

Lens

Grating 

f f f f 

Shaped PulseTransform Limited  
Pulse 

Figure 2: A schematic diagram of the 4f zero dispersion configuration for shaping coherent light. The 
incident transform limited pulse is dispersed by a grating into its constituent frequency components where 
the angle of dispersion is dependent on wavelength, this has been represented in the figure by fast colours 
(blue) being diffracted less than slow colours (yellow). A lens focuses the individual frequency 
components to their smallest beam waist in the Fourier plane so that the pulse is spread out linearly as a 
function of frequency. A modulation device is placed in the Fourier plane, modulating either or both 
amplitude and phase of the frequency components. The second lens focuses the beam on the grating which 
diffracts it back to its original shape with any modulation imparted due to the modulation device and not 
the 4f line.  
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The line between the lenses where the individual frequency components are focused and 

overlap the least is called the Fourier plane. This is the most appropriate position for a 

modulation device to afford the highest resolution14. Once the pulse has been modulated 

it passes through the same procedure in reverse. The collimated beam is focused onto the 

diffraction grating by a second lens at a distance f from the Fourier plane back to its 

original beam diameter. The diffraction grating is again at a distance f from the lens 

which constitutes the final f of the 4f set-up. Zero dispersion of the pulse is achieved by 

keeping all distances equal to f. Compressors and stretchers work by making small 

adjustments to one of the focal lengths, f, to introduce a linear chirp which results in a 

change in the temporal profile.  

 
4.1.2 Fourier domain pulse shaping and linear masking 
 

If we assume the modulation device has no inherent dispersion, we can assume the input 

electric field )(ωinE  of the pulse is the same as that of the output pulse electric field 

)(ωoutE , and the change introduced by the modulation device can be represented by a 

mask function, )(ωM : 

 

)()()( ωωω inout EME =                                                                                                   (4.1) 

 

The aim of the pulse shaper is to achieve complex pulse shapes in both the time and the 

spectral domain. Many control experiments have at the centre of their control schemes a 

series of sub pulses in a pulse train scenario17. Unfortunately it is impossible to create 

electronics that can operate on this time scale. To overcome this problem the interference 

effects of coherent light in the frequency domain are used to modulate the pulse in the 

time domain. The frequency domain modulation is converted to time domain modulation 

via a Fourier transformation: 

 

)()()( tEtMtE inout =                                                                                                        (4.2) 
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Where the electric field in the time domain of the input and output pulses are Eout(t) and 

Ein(t) respectively. 

 

4.2  Pulse shaper design 
 

4.2.1 Pulse shaper geometries 

 

There are several geometries that can be used incorporating a dual array SLM18 which 

will now be discussed. The SLM can be used in either a transmissive mode, with the 

pulse passing through the SLM once, or in a reflective mode where a mirror is placed 

directly behind the liquid crystal array to send the pulse back along the same path. The 

transmissive mode has the advantage of higher throughput energy but has the 

disadvantage of twice the number of optics that needs aligning. All geometries shown in 

figure 3 adhere to the 4f zero dispersion compressor set-up19.   

 
 

 

 

 

Figure 3 illustrates the classic geometry using a pair of lenses to collimate the beam. 

Chromatic aberrations are introduced by the lenses causing temporal and spatial 

reconstruction errors. While this set-up benefits from all the components being on an 

optical axis aiding alignment it has the disadvantage of only being suitable for shaping 

pulses of durations over 100 fs. Geometries in figure 3 (a) – (c) make use of cylindrical 

mirrors to overcome the error introduced by using lenses. In figure 3 (a), the cylindrical 

mirror reflects with an angle in the horizontal plane which causes optical aberrations. 

Although kept as small as possible this angle is unavoidable. To eliminate this severe 

(a) (b) (c) G 

G 

CM 

CM 

FP CM 
FP 

G G 

CM 

FM FM 

FP 
G G 

CM CM 

FM FM 

Figure 3: Pulse shaper designs. (a) Cylindrical mirrors are used instead of lenses. Termed the z 
configuration, this set-up has off axis errors from the mirrors. (b) Folding mirrors are used in this design 
to eliminate off axis errors. (c) Similar in principle to (b) but in a more compact formation. CM; 
cylindrical mirror, G; grating, FP; Fourier plane, FM; Folding mirror. 
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angle, the beam can be reflected from the cylindrical mirror in the vertical plane as in 

figure 3 (b) and (c). Both designs (b) and (c) make use of a folding mirror to reduce the 

overall size of the geometry and to steer the beam so that the optical components 

assemblies have enough room to be easily accessed.   

 

 

 

 

 

 

 

 

 

 

 

 

The angle between the incident and the diffracted beam from the grating normal imposes 

important design considerations. It dictates the power efficiency, and the amount of 

angular dispersion. The quasi-Littrow angle of incidence affords the best efficiency. This 

refers to the central wavelength diffracting along the same angle to the normal as that of 

the incident beam so that α = β as shown in figure 4. A slight difference in height in the 

plane parallel to the grating lines is imparted to enable the beams to be separated out 

spatially. Although often small this causes conical diffraction which hinders alignment 

and causes the pixels not to see equal amounts of the frequency components. It is of no 

consequence to the re-collimation of the beam since it is exactly matched upon leaving 

the SLM. Both designs (b) and (c) utilise this design feature.  

 

The design in figure 5 was adopted for the work presented in this thesis. It has the 

advantage that the components lie upon an optical axis enabling ease of alignment20. The 

incident beam is not quite in quasi-Littrow configuration but only 6° away from it 

causing a approximately 5 % decrease in efficiency as calculated from power 

Figure 4: Diffraction by a plane grating. A beam of monochromatic light of wavelength l is incident on a 
grating and diffracted along several discrete paths. The triangular grooves come out of the page; the rays 
lie in the plane of the page. The sign convention for the angles α and β is shown by the + and - signs on 
either side of the grating normal.  
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measurements. The diffracted beam is in the same plane as the incident beam eliminating 

any spherical diffraction. A folding mirror was used to reflect the diffracting beam over 

the grating which helped reduce the space taken up on the laser table. All the optics used 

lie on an optical line which aids the alignment significantly. The alignment procedure 

will be described in section 4.3. A cylindrical mirror collimates the diffracted beam so 

that the FWHM is incident on the central quarter of the SLM array which corresponds to 

a length of 16 mm. Diffracting the FWHM of the pulse over only a quarter of the SLM 

allows for information in the wings of the pulse to be shaped. The foot print of the pulse 

shaper including optical component assemblies is 820 x 320 mm. 
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2.2.5 Grating and cylindrical mirror design  
 

 

 

 

Input 508nm pulse

Shaped 508nm 
output pulse 

Pick 
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End mirror
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Cylindrical mirror
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Directional 
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Optical axis (a) 

End 
mirror 

Grating
Folding 
mirror

Cylindrical 
mirror 

Directional 
mirror

Pick off 
mirrorShaped 508nm 

output pulse 

Input 508nm 
pulse 

SLM
(b) 

Figure 5: View of the pulse shaper from the top (a) and the side (b). The incident beam is reflected off the 
directional mirror to give an angle of incidence into the grating of 44º. The diffracted beam is folded into 
the cylindrical mirror without major off axis errors. The cylindrical mirror reflects and collimates the 
beam over the grating and mirror into the SLM and onto the retro reflecting mirror which reflects the 
beam back along the same path with a slight angle in such a way that the beam propagates under the 
input beam. The pick off mirror picks the beam off and directs it to the frequency doubling set-up. The 
optical axis marks the path of the 508 nm component of the pulse and is used in the alignment, section 
4.3. (b) Side view of the pulse shaper lay out. The input beam is plotted with the full line and the output 
with the dotted line. 
 



 124

4.2.2 Grating  

 

The length, f, is determined by how far the beam needs to propagate to diffract the 

FWHM of the spectrum over a quarter of the SLM (i.e. 16 mm). The amount by which 

the beam is diffracted is determined by the number of grooves/mm on the grating. The 

length, f, corresponding to the focal length must not be too long since there is limited 

room on the laser table. Also it can not be too small since the angles between the 

component assemblies will be too large and therefore cause aberrations.  

 

)sin(sin βαλ += dm                                                                                                     (4.3) 

                                                                                                                                                                  

The grating equation40 (equation 4.3) delivers the angle of diffraction β for a particular 

wavelength, λ, depending on the angle of incidence, α,  and groove spacing of the 

diffraction grating, d. The groove spacing corresponds to the distance between thin 

lengths of the same reflective material on the grating surface. When the geometrical path 

length of the light between the grooves is equivalent to the wavelength of light, 

constructive interference occurs yielding a wavefront of surfaces of constant phase. The 

angle of incidence is the angle to the normal of the grating. m relates to the order of 

diffraction, the zeroth order (m = 0) being a direct reflection; generally m = 1 is the most 

efficient and is used in our set-up.  

 

 

 

 

 

 

 

 

 

 

 
Figure 6: Spectrum of the input pulse centred at 508 nm. A FWHM of ~9.5 nm is measured indicating 
the bandwidth of a 40 fs pulse.   
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The grating equation was used to calculate the number of grooves needed on the grating 

and the length required to diffract the FWHM of the beam over 16 mm (central 25% of 

the SLM). The bandwidth of the transform limited pulse was calculated assuming a 40 fs 

pulse – this is an upper limit on the bandwidth. With centering at 508 nm the FWHM of 

the pulse runs from 503.3 nm to 512.8 nm yielding a bandwidth of 9.5 nm. This was 

confirmed by a spectrometer reading as illustrated in figure 6. Calculations were 

performed assuming that the two wavelengths of the FWHM were input into two grating 

equations to yield a distance f. The groove density, G, was taken as from commercially 

available values, where G = 1 / d. α was fed into the equations to give two angles of β. 

The trigonometric relationship between tan of half the angular difference between the two 

values of β and the opposite length of half of 16 mm was used to give the required value 

of f. The cylindrical mirror was made with the angle of curvature equal to the focal 

distance f as illustrated in figure 7.   

 

 

 

 

 

 

 

 

 

 

 

 

 

With an angle of incidence of 44º and a value of G set to be 2400 it was found that f 

needed to be 560 mm in order to spread the wavelengths of the FWHM of the pulse by 16 

mm. The linearly dispersed pulse has 0.06 nm of wavelength difference between each 

pixel (pixel width of 102 μm) with 488.631 nm incident on pixel 0 and 527.369 nm 

incident on pixel 639 (total 640 pixels). With approximately a 6π phase shift applied by 

Grating 
G = 2400 lines/mm 
High Modulation 
 Diffracted 

Beam 
β = 32.41 º 

λ = 512.8 nm 

Diffracted 
Beam 

β = 30.8º 
λ = 503.3 nm 

Incident 
Beam 

α = 44º 

Cylindrical 
Mirror 

f = 560 mm 

Figure 7: Schematic of the grating showing 
the angles of incidence and diffraction for 
the wavelengths corresponding to the edges 
of the FWHM. The incident beam is at an 
angle of α = 44º, for a wavelength of 503.3 
nm which gives β = 30.8º and for a 
wavelength of 512.8 nm gives an angle of 
diffraction, β = 32.41º. The focal length of 
the cylindrical mirror was determined to be 
the length needed for the distance between 
the two wavelengths to be 16mm, 
approximately one quarter of the SLM. The 
focal length of the cylindrical mirror was 
determined to be 560 mm. 
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each pixel this set-up affords a maximum shaping time window of approximately 5 ps as 

calculated by 1/Δν. 

 

4.2.3 Optical components and alignment assemblies 

 

The 4f zero dispersion compressor set-up consists of 5 optical components each of which 

requires different forms of precision alignment. The directional mirror used to direct 

beams into and out of the 4f line was a 1” anti-reflection coated optic (CVI AR2) whose 

centre of reflection lay at 500 nm, and was housed in a standard mirror mount with x and 

y axis alignment using micrometer screws. Since the grating required a high groove 

density 2400 lines/mm a holographic grating was used. Holographic gratings are made 

using the interference fringe pattern between two laser beams to etch into a polished 

photo resist coated substrate. This technique has the advantage over ruled gratings that 

there are very few ghosts or imperfections in the grating lines. However since the groove 

profile is sinousoidal there is no blazing angle, reducing over all efficiency. The grating 

does perform as well as a ruled grating at the quasi-Littrow angle. The grating was glued 

onto a custom made aluminium back plate with feet enabling it to be fixed to the top of a 

2D tilt mount. The tilt mount was designed similarly to a standard mirror mount but 

bigger, 100 x 100 mm, and in this case laid flat enabling front and back tilt and side to 

side tilt. The tilt mount was fixed to a 40 mm high aluminium block used to raise the 

grating to the appropriate height and mounted upon a 360˚ rotation stage. The whole 

assembly was bolted to the laser table so the optical line was traversing through its centre 

and the centre of rotation of the rotation stage as illustrated in figure 8 (a). 

 

The folding mirror had visible high energy 0° angle of incidence coating (CVI AR2) and 

was 50 mm wide, 20 mm high and 10 mm deep. The optic was gripped in a custom made 

aluminium bracket with 7 PTFE screws to hold the optic tightly in place. The bracket was 

fixed on top of a 1D tilt stage enabling forward and backward tilt, so the pivot of tilt was 

below the mirror face. The tilt stage was connected to a rotation mount so the axis of 

rotation was around the centre of the mirror. The rotation stage was in turn mounted onto 

a mechanical translation stage enabling a movement of 50 mm. The translation stage was 
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mounted on a custom made base plate which in turn was fixed to the laser table so that it 

ran with its centre on the optical line as illustrated in figure 8 (b).  

 

The cylindrical mirror was held in a similar bracket to the folding mirror with its back 

face mounted onto a 2D tilt stage. The tilt stage was fixed vertically onto a 1” diameter 

optics post held by a post holder mounted on a translation stage enabling 1D movement 

of 50 mm. The translation stage was fixed to a base plate and placed with the optical line 

running through its centre as illustrated in figure 8 (c). 

 

The SLM had two base plates attached to the bottom, with care taken not to block the 

ventilation holes; it was bolted to the table using optics clamps. The end mirror was held 

in a bracket and was 100 mm wide and 20 mm high with a thickness of 10 mm and 0° 

incidence visible high energy coating (CVI AR2). Similarly to the cylindrical mirror it 

was attached to a 2D tilt stage in the vertical position held on a 1” optics post which in 

turn was held by an optics post holder attached to a translation stage. The translation 

stage allowed a movement of 50 mm and was attached to the laser table with the optical 

line traversing through its centre as illustrated in figure 8 (d). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Optical 
component assemblies in 
order of use. (a) Grating 
assembly has a rotation 
stage and 2D tilt stage. 
(b) Folding mirror 
assembly has a 1D tilt 
stage, rotation and 
translation stage. (c) 
Cylindrical mirror 
assembly uses a 2D tilt 
stage upon a 1D 
translation stage. (d) Back 
mirror assemble uses 2D 
tilt stage and a translation 
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4.3 Alignment procedure 
 

Precise alignment of the pulse shaping set-up is crucial to its effectiveness. The pulse 

shaping apparatus was built on a flat vibration damped optics table surrounded by 

perspex that allowed it to be sealed off from any disruptive air currents in the laboratory. 

Below the alignment procedure used is described: 

 

4.3.1 Initial component placement and frequency domain adjustment  

 

(1) The OPA output of 508 nm ‘P’ polarised light was reflected by 45º onto a mirror 

directing the beam on to the grating centre at an angle of approx 30º. The beam 

was kept parallel to the table by using a movable, just before the mirror and just 

before the grating.  

(2) The zeroth order reflection of the grating was checked to see if the grating face 

was perpendicular to the laser table. The same movable iris was used and any 

angle changes were made using the 2D tilt stage that the grating was fixed on.  

(3) The beam was aimed at the centre of the grating where the axis of rotation was 

located. An iris was then fixed in front of the grating. 

(4) To check the grating lines were perpendicular to the table, the line of diffraction 

was allowed to propagate ~1 m and was checked to be parallel to the laser table. 

The tilt stage controls on the grating mount were used for any adjustments. 

(5) The grating assembly was rotated so that the 508 nm frequency component 

travelled along the central line of the set-up. A line was drawn onto the laser table 

and the optical component assemblies were fixed in place so that their centres 

were in line with it, referred to as the optical line. A custom made beam block 

with a slit 1 mm wide in its face running from top to bottom was placed on top of 

the optical line so that the wavelength of the diffracted beam propagated through 

it. The spectrometer was used to observe the wavelength running along the optical 

line and the grating rotated until 508 nm was found.  

(6) The folding mirror was now placed into the correct position. The slit was used on 

the optical line to obtain the central wavelength of 508 nm in the same fashion as 
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described above. The height of the reflected beam was measured at the point 

where the cylindrical mirror was to be placed. 

(7) The cylindrical mirror was placed onto its adjustment assembly and again the slit 

used to obtain the central wavelength on the optical line. The height of the beam 

was measured to ensure that it ran parallel with the table.   

(8) The end mirror was placed into its position and adjusted so that the reflected beam 

can be seen reflecting of the grating. The spot was placed so that it is around 8 

mm below the incoming beam allowing for it to be easily picked of down stream.  

(9) A pick off mirror was placed in the beam line. Its height was adjusted for the 

incoming beam to pass over it while capturing the outgoing beam. The tilt of the 

back mirror and the height of this mirror were altered to achieve the least 

difference in height from the incoming and outgoing beams while capturing the 

entire outgoing beam.  

(10) The spectrum of the outgoing beam was checked against that of the incoming 

beam. 

 

4.3.2 Time domain adjustment 

 

(1) The output of the OPA before the pulse shaper was directed into an 

autocorrelator. The beam was reflected off a glass slide to attenuate the beam to 7 

% of its initial power which stopped any damage to the nonlinear crystal. The 

FWHM was recorded and adjustments to the OPA were undertaken to reduce it. 

(2) The glass slide was removed to allow the beam to propagate through the SLM. A 

mirror was placed into the output path to direct the beam into the autocorrelator 

where the FWHM could be monitored.  

(3) The pulse length was optimised by adjusting the two lengths of f in the set-up. 

The folding mirror translation stage was adjusted first, then the cylindrical mirror 

translation stage. The FWHM could be seen changing with these adjustments, a 

value most similar to the beam prior to the SLM was aimed for. The distances 

between the components were recorded and the end mirrors position adjusted so 

that it was equivalent to the focal length of the cylindrical mirror. 
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(4) By adjusting, f, the direction of the beam path could have changed. This 

manifested itself as a FWHM of the output pulse being longer than the input 

pulse. In which case the alignment procedure would need to be re-done starting 

from point (5) in the frequency domain alignment, assuming the input beam had 

been successfully aligned on the grating. If the FWHM of the input and output 

pulses are matched then correct alignment can be assumed. 

 

The autocorrelation measurement before the pulse shaper is shown in figure 9 (a), with a 

FWHM of 144 fs corresponding to a pulse duration of ~100 fs. Figure 9 (b) illustrates an 

autocorrelation of a temporally stretched pulse before the time domain adjustment 

procedure in red. The output pulse after a full alignment is shown by the plot in black 

with an autocorrelation similar to that of the input pulse. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Typical autocorrelation 
traces. (a) Autocorrelation of the 508 
nm input pulse before the pulse 
shaping apparatus. (b) 
Autocorrelation of a temporally 
stretched pulse before applying the 
time domain adjustment (red) and 
after (black). 

(a) 

(b) 
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4.4 Spatial light modulator calibration 

 

4.4.1 Liquid crystal array 

 

The liquid crystal spatial light modulator (CRI-640-VN-D) is made up of 2 arrays of 640 

individually addressable pixels that are fixed directly opposite each other and separated 

by 102 μm, figure 4.5. Each pixel has a width of 100 μm and is spaced by 2 μm, each 

pixel is 5 mm tall and the whole array spans 64 mm. The dual array liquid crystal has a 

~94% transmission at 508 nm and the surfaces have an anti reflection coating for the 

visible wavelength range with an 8% loss. Therefore, at 508 nm the total maximum 

efficiency if the SLM on double-passing is ~50 % as calculated from power 

measurements. The glass plates sandwiching the liquid crystal between them are made 

from indium tin oxide (ITO) which is electrically conductive as well as optically 

transparent. Each plate acts as an electrode through which a potential difference can be 

achieved across the liquid crystal of each pixel. 

 
 
 
 
 
 
 

The liquid crystal (LC) used in spatial light modulators falls in the category of a twisted 

nematic crystal21. The molecules each have a charge at either end and when a voltage is 

applied across the pixel the molecules become twisted by electrostatic forces into a 

helical structure. The LC molecules lie parallel to each other and the y axis, all facing the 
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ITO Electrodes 
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Figure 10: Schematic of the dual liquid crystal array. Showing interpixel spacing, pixel width, pixel height 
and pixel orientation relative to the axes. Array height and width are shown. ITO electrodes, which are 
transmissive sandwich a nematic liquid crystal. Each electrode addresses a liquid crystal crystal. The liquid 
crystal is aligned along the y axis with no voltage applied and re-aligns along the c axis with applied 
voltage, the re-alignment causes the alteration of the polarisation into the axes of the liquid crystals.  
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Figure 11: Diagram of polarisations in 
pulse shaping. (a) Polarisations of a 
phase only pulse shaper. The polarisation 
of the laser field is represented by the 
double headed arrow. The input pulse Ein 
passes through the modulation device 
represented by the square. The imparted 
polarisation by the device is shown by C 
which yields the output pulse Eout. (b) 
Polarisations of a phase and amplitude 
pulse shaper. The input pulse Ein has 
horizontal polarisation, the modulation 
devices C1 and C2 induce cross 
polarisations in the transmitted electric 
field so that phase modulation can be 
applied. The phase shift is calculated as 
the sum of the polarisation vectors. The 
difference in the polarisation vectors 
which amounts to a non horizontal 
polarisation component is cut out by the 
polariser P. 

same direction as illustrated in figure 10. When a voltage is applied across the pixel the 

molecules rotate so they are aligned along the c axis, this causes an increase in refractive 

index along this axis but not any other. The change in refractive index imparts a phase 

shift Δφ onto the light passing through it. With a broad bandwidth pulse dispersed over 

many pixels a phase can be imparted onto the pulse. Depending on the orientation of the y 

axis the twisted liquid crystal has the property of rotating the polarisation of light passing 

through it. With more voltage, more twist is developed, and so a greater index of 

refraction as well as a rotation of the polarisation.  

 

4.4.2 Shaping with spatial light modulator  

 

In the case of a single array LC-SLM, phase only pulse shaping is achieved as shown in 

figure 11 (a). The tilt axis is aligned parallel to the polarisation of the input light field. 

Amplitude modulation pulse shaping with one array is achieved by having the c axis at 

45° to the input electric field polarisation; however, a phase modulation coupled to the 

amplitude modulation is always imparted onto the pulse. For pulse shaping 

simultaneously of the amplitude and phase the two liquid crystal arrays can be used in 

concert. They are aligned at +45º and -45º to the polarisation of the input light field, as 

shown in figure 11 (b). 
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Mathematically, the modulation of the vectors of the input light field by the LC arrays 

can be described using Jones matrices28. In the following description of phase and 

amplitude shaping the shift of the absolute phase due to the interpixel spacing of the SLM 

is not taken into account. The input light field vector, Ein, modulation device, M(Δφ), 

polariser, Px, and rotation matrices, R(θ) are given by: 
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The matrix M(Δφ) is written in its own coordinate system relative to its c axis. A rotation 

matrix R(θ) is used to transform between the x-y and the LC coordinate systems. In the 

case of the phase only pulse shaper: 
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In this case the polarisation of the output field is not affected by the change in refractive 

index imparted by the modulation device since they have the same vector. In the case of 

the dual array system: 

 

inxout ERMRMRPE )4/()()2/()()4/( 12 πϕπϕπ Δ−Δ=                                                 (4.6) 

 

Substituting in the matrices as shown in equation 4.4, gives: 
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What can be seen here is that the amplitude imparted onto the electric light field is due to 

the difference between Δφ1 and Δφ2. This can be thought of as one vector, C1, as 

becoming dominant and so turning the overall vector out of the horizontal direction. The 

portion of light with its polarisation altered in the C1 axis direction is filtered out by the 

polariser. The phase modulation of the electric light field is due to the sum of Δφ1 and 

Δφ2. Here the polarisation vector imparted by C1 and C2 are equal and opposite, so there 

is no overall change, however, there is in the case of its refractive index which gives the 

phase shift. 

 

4.4.3 SLM electronics architecture 

 

The SLM arrays 640 pixels each have a gray-level range of 4096 drive levels41. The drive 

levels are communicated to the pixels in the SLM by a voltage, Vi, where i is the pixel 

element. 

 

4096
i

refi
DVV =

                                                                                                                 (4.8)    

   

Where, Vref is the reference voltage of 10.000 V and Di is the digital level corresponding 

to that element. To prevent electromigration effects, the transport of materials under the 

influence of a field, in the liquid crystal the voltage supplied is ac rather than dc, since the 

rotation of the liquid crystal depends on the amplitude not the sign of the voltage. Each 

drive signal consists of a variable amplitude bipolar square wave typically operating at a 

few hundred hertz.  
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4.4.4 Calibration of phase and transmission modulation 

 

The procedure for calibration of a dual array system of liquid crystals aligned with 

opposing polarisation rotations is non trivial. The SLM was set-up as illustrated in figure 

11 (b), but with an extra polariser in front of the SLM to ensure the purest horizontal 

polarisation possible of the input light field. A helium-neon (HeNe) laser with a central 

wavelength of 633 nm was set to propagate through the pulse shaping apparatus and a 

power meter positioned to measure the power of the output beam. The retardance of both 

arrays is given by: 

 

21 RRRnet −=                                                                                                                  (4.9) 

 

The overall retardance, Rnet, experienced by the light is the difference between the first 

and second arrays, R1 and R2 respectively. The normalised transmission, T, of the SLM 

using a polariser as described in figure 4.4.2 (b) is: 
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The transmission is measured with the power meter as intensity, I, over the maximum 

intensity, Imax. The overall retardance of the system is related to the transmission by 

including the wavelength, λ. The phase modulation is determined by the average value of 

the retardances: 
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This can be simplified to: 
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The second array is driven to maximal voltage and the first array is incremented through 

the entire range of its 4096 voltage steps, the resulting power is measured at each level. 

This process was automated using a Labview program. The resulting power data was 

normalised to obtain the transmission as a function of the voltage, T(V1). Using the above 

equation for T, R1(V) is calculated except for an unknown constant corresponding to 

R2(V=Vmax). The same procedure is followed for the second array, with its voltage 

incremented as the first array is kept at maximum voltage to obtain T(V2). From this data 

R2(V) is calculated except for the unknown constant corresponding to R1(V=Vmax). The 

phase, φ , of the modulated beam depends on R1 + R2 , equation 4.12, while the 

transmission depends on  R1 – R2, as shown in equation 4.10. A fixed optical offset of φ  

is realised due to R1 – R2 term but this is of no consequence to the control of the relative 

phase of the frequency components. This entails that one of the unknown terms can be set 

to equal 0,  R2(V=Vmax) = 0. The unknown constants directly effect the transmission term 

R1 – R2. To eliminate this problem, the constants are amalgamated into one constant. 

 

)()( max2max1 VVRVVRdR =−==                                                                                (4.13) 

 

The two arrays exhibit an inherent overall retardance which is made of the contributions 

from each array that corresponds to the two unknown constants. dR is the apparent 

retardance of the combined system when both SLM arrays are driven to maximum 

voltage. This value is simply added to the R1 (V) table already obtained and a complete 

calibration is made. Figure 12 illustrates the functions R1 (V) and R2 (V) as obtained from 

the calibration procedure. They are plotted as transmission against drive count: 
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The transmission data was converted to two functions of retardance against drive count 

using equation 4.10. The retardance was calculated as a phase shift (nm) which the light 

experiences by a set of drive counts. In this case the phase shift is related to 633 nm light. 

The retardance against drive count is subsequently unwrapped to give the functions 

shown in figure 13. The calibration was performed in a single pass configuration. In order 

to use the same calibration in the double pass geometry a factor of two must be applied. 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Figure 12: Plot of wrapped phase shift against drive count for mask A (black) and B (dotted red). (c) Plot 
of unwrapped phase shift against drive count for mask A (black) and B (dotted red). 

Figure 13: Plot of unwrapped phase shift against drive count for mask A (black) and B (red). 
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4.4.5 Scaling by wavelength 
 

Once the calibration had been completed, equations 4.10 and 4.11 were used within a 

Labview program to obtain the retardance values R1(V) and R2(V) for a desired 

modulation function. The retardance values were scaled for the correct wavelength. The 

retardance against drive count function obtained in the calibration was for 633 nm, to use 

this data at another wavelength it must be scaled appropriately. 

 
 
Figure 14 shows the wavelength calibration function that was supplied by the 

manufacturers. It is possible to create your own wavelength calibration but has not been 

done here since the difference is known to be negligible29.From this graph the set of 

wavelength calibration factors for the wavelength corresponding to each of the pixels 

were obtained. To scale the wavelength accordingly the calculated retardance is simply 

divided by the set of wavelength factors. The arrays of scaled retardances were used to 

find the relevant drive counts from the 633 nm calibration graph of retardance against 

drive count.  

 

4.4.6 Spectral dispersion 

 

The calibration of phase and transmission against drive count of each pixel is dependent 

on the wavelength, λ, propagating through it. So in order to accurately program the phase 

and transmission of a pixel, the exact wavelength incident on it must be known. Once the 

Figure 14: Plot of the modulation 
factor against wavelength (nm). 
Calibration is performed at 633 nm, 
the output of a HeNe, the calibration 
can be converted to other 
wavelengths using the appropriate 
modulation factor. The modulation 
factor for 633 nm is therefore 1.    
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4f alignment was complete the SLM itself was used to calculate spectral dispersion. First, 

a mask was applied to the SLM with a maximum transmission on half the array and no 

transmission over the other half. The spectrum of the output beam was observed and the 

SLM placed into the appropriate position so that the cut off in the spectrum lay at 

approximately 508 nm. This gave an approximate wavelength of 508 nm for the 320th 

pixel. A second mask was applied with a phase shift of π on every other 10 pixels to the 

SLM to give a “comb” shape in phase. This creates a comb in intensity of the spectrum 

due to the destructive interference of the out of phase components at each junction of π 

and 0 phase shift. The spectral analyser was used to record the wavelength at each peak 

of the spectrum. Around 13 wavelength points were enough to create an accurate linear 

equation which was used to interpolate around the recorded data and calculate the 

wavelength at each pixel. The wavelength at each pixel was theoretically calculated using 

equation (4.3) to program the initial masks in the spectral dispersion calibration.  

 

4.4.7 The effects of a pixellated modulator 

 

Generally when shaping in the frequency domain a smooth function in the phase and 

amplitude is desired. Unfortunately SLM’s create a pixelated analog to the smooth 

functions due to the array of finite width rectangular pixels used to mimic the desired 

mathematical function in the Fourier plane. This is best shown in the figure 15.  

 

 
 
In the following discussion, the properties of an output waveform from a pixelated 

amplitude and phase modulation device are analysed. A square function, squ(x) is used to 

describe each pixel and is defined as: 

ω 

Figure 15: Arbitrary 
waveform plotted as a 
function of frequency 
with pixels 
superimposed. The 
finite size of the pixels 
within a SLM means 
the actual analog 
waveform can not be 
completely replicated 
causing pulse replicas.
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squ(x) = 1  |x| ≤ ½ 

            = 0  |x| > ½                                                                                                      (4.14) 

 

Interpixel spacing has not been taken into account here. The modulation applied by the 

SLM as a function of position can be described by28: 
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Where M(x) is the sum of the modulation functions for each pixel, which are, An 

amplitude modulation and nφ  phase modulation each over the distance Δx and centred at 

the position xn. N is the number of sharply defined pixels. Since the beam has a finite 

width at the focus of the lens, equation (4.15) needs to be modified to account for this. 

Assuming a Gaussian spatial beam profile with a 1/e width D, then at the focal plane the 

beam profile is δx = 4πF/λD. By convolving the focal plane spatial profile with the 

modulation function and assuming a Gaussian spatial profile with width δx, the 

modulation function becomes28:    
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The spatial modulation function above can be converted to a spectral modulation function 

after assuming the spectral components are diffracted linearly with respect to frequency 

by the 4f set-up28. This assumption aids in the analysis in this case but is not ubiquitous. 
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Here δx in the spectral plane is converted to, δv, a spectral width. If we further assume a 

transform limited pulse, giving a flat spectral phase, the pulse can be represented by a 

sum of spectral amplitudes Bn:  
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Substituting equation (4.18) into equation (4.17) gives the output pulse in terms of square 

segments of defined frequencies28: 
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By inverse Fourier transforming the above equation the temporal response for a pixelated 

pulse shaping apparatus (without interpixel spacing) is obtained28: 
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                            (4.20) 

 
The Gaussian term on the right comes from the finite spot size of the input beam on the 

grating and is inversely proportional to it. The sinc term arises from the Fourier transform 

of the square function from the pixels rectangular shape where the width of the sinc 

function is inversely proportional to the pixel separation Δv. The summation is a Fourier 

series of the amplitudes and phases of the frequency components vn and describes the 

basic properties of the pulse. 

 

4.4.8 Pulse replicas 

 

The effect of having a Fourier series in the time domain with evenly spaced frequency 

samples is that the pulse shape repeats itself with a period of the reciprocal of the 

frequency increment, 1/Δν. The Gaussian-sinc term suppresses replicas far from time 
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zero and at or near the nodes of the sinc function. Sampling replicas degrade the overall 

signal quality and there is little that can be done by the SLM alone to diminish them. In 

this study we use nonlinear effects (second harmonic generation) after the shaped pulse to 

up convert it to the UV domain. Nonlinear effects act as a squared on the amplitude 

resulting in small amplitudes being reduced and becoming negligible compared to the 

overall signal. 

 

4.4.9 Complexity, time window and spot size 

 

The output electric field is a convolution of both the mask function, M(t) and the electric 

field of the light pulse, equation (4.2). The time window with which the SLM can operate 

is specified by the frequency range over each pixel, ω, whereas the time window in which 

the SLM can operate is determined by the 4f set-up. The time window in this case is 

proportional to the number of grating lines illuminated by the input beam multiplied by 

the period of an optical cycle28:  
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Where ωin is the input beam radius before the grating, c is the speed of light, d is the 

grating period, λ is the central wavelength and θin is the input angle of the beam onto the 

grating. In the set-up described a beam radius of 3 mm is used in conjunction with an 

input angle of 44º, which allows a time window of 25 ps for a 40 fs pulse. This 

relationship also gives a limit of complexity which is defined by28: 
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Where, Δλ is the bandwidth (in units of wavelength). This affords a complexity of 644. 

With shorter pulse lengths and, or, larger input beam diameters, higher complexities are 

possible. The spectral resolution is also determined by the input beam diameter. The spot 
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size of individual spectral components should be the same size or smaller than the size of 

a pixel in the LC array. For the central wavelength, assuming near Littrow diffraction, the 

spot size is28: 

 

Spot size = 4 ln (2)
w

f
π
λ0                                                                                                 (4.23) 

 

Where w is the width of the input beam and f is the focal length. The spectral plane spot 

width will be, at best 84 μm, which is less than 100 μm pixel width.  

 

4.4.10 Second harmonic generation 

 

Once the ultra-short pulse centred in the visible has been shaped its electric field is up 

converted to the ultra violet (UV) region using a non-linear process. In the case of SHG 

type I and assuming a thin crystal, and hence also phase matching over the complete 

bandwidth and a non-depleted fundamental electric field, Ef, the second harmonic field, 

ESHG, is expressed as, 

 

)()( 2
fSHG tEtE ∝                                                                                                           (4.24) 

 

In the frequency domain the electric field is convoluted with itself to give the 

upconverted field: 

 

∫ −∝ ffSHGfffSHGSHG d)()()( ωωωωω EEE                                                                     (4.25) 

 

Where ωSHG refers to the frequency of the second harmonic generation and ωf refers to 

the frequency of the fundamental.  
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Figure 16 depicts the optical layout used in SHG from a visible laser beam. The non 

linear crystal is made from beta-BaB2O4 (BBO) and is 100 μm in thickness. A spherical 

mirror (SM1) with a focal length of 15 cm was used to focus the beam into the SHG 

crystal. A second optically matched spherical mirror (SM2) was used to collimate the 

output beam. The use of small mirrors, M1 and M2, allow for a small difference as 

possible between the incident and reflected beam angle from the spherical mirrors which 

helped reduces optical aberrations. The SHG type I crystal, is rotated in all Cartesian 

coordinates to optimise phase matching in the pulse which is monitored by maximising 

the power of the SHG signal. Since the non linear process occurs in this set-up collinearly 

the fundamental and SHG beams have to be separated. Optics SM2 and M2 were coated 

for the UV wavelength range which is transparent in the visible region. After reflections 

from a further 4 such optics used for beam steering the residual visible light in the beam 

was negligible. Conversion efficiency is dependent on the pulse shape with maximum 

energy for an unshaped pulse of 2 μJ in the UV, which exceeds the demands of weak-

field gas phase multiphoton excitation experiments in most organic molecules. Some 

bandwidth is lost in the SHG process, due to the non-negligible crystal thickness: the 

measured bandwidth of an unshaped pulse is reduced by a factor of 0.6 compared to the 

bandwidth calculated for SHG of the same pulse in a very thin crystal. The unshaped UV 

pulse centred at 254 nm is shown in figure 17. 

 

 

SM2

SM1 

M1 M2

SHG 
crystal 

Figure 16: Schematic of SHG optical layout. A visible 
pulse (shaped)  propagates to the spherical focusing optic 
SM1 which focuses the beam onto the SHG crystal by 
being folding the beam using mirror M1. The path of the 
UV generation is mirrored using optics suitable for UV 
reflection to afford a collimated UV laser beam. No 
filtering of the visible is required since the UV optics have 
a very low reflectivity in the visible.  
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4.5 Results 

 

4.5.1 Computer controlled feedback optimisation 

 

Coherent control schemes predominantly rely on a shaped pump waveform in order to 

dictate the ensuing excited state dynamics. The shape of the waveform can be created in 

two ways, either intuitively with prior knowledge of frequency resolved and time 

resolved spectroscopic information and ab initio calculations or through a feedback loop 

optimisation process using a genetic algorithm. The former technique requires detailed 

information about the potential energy surface under study. With this information there is 

also uncertainty about how much excess energy the molecule possesses in the ground 

state, and so upon ionisation where in the Franck Condon region the excited state wave 

packet is initiated. For polyatomic molecules with many degrees of freedom these small 

uncertainties can accumulate to a significant effect. To eliminate these uncertainties, 

Rabitz et al22, proposed to use a genetic algorithm to generate the correct waveform for 

the desired final state of interest. This approach worked well for many systems23-27; 

however the approach has limitations. These are that although the final state was reached 

in the majority of cases and the photoproduct achieved, the waveform generated could 

give little or no information about the route taken over the potential energy surface. This 

was due to the complexity of the pulse shape generated by the genetic algorithm. The 

genetic algorithms were increasingly finding multiple solutions to the same problem. 

Figure 17: Spectrum of the unshaped pulse after second harmonic generation. This shows a bandwidth of 
~1 nm, this is 0.6 of the expected bandwidth using the thin crystal limit.  
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Often the phase and amplitude profiles when Fourier transformed gave little information 

about which vibrational modes were responsible for the generated dynamics. At the onset 

of this experiment our aim was to incorporate both approaches to coherent control. Our 

aim was to use prior knowledge of the system gained from ab initio and dynamics 

calculations, pump probe experiments and high resolution spectroscopy to create a 

control scheme and then to use a genetic algorithm to optimise the process within a 

boundary. Although the restricted control scheme was not implemented in this work, the 

frame work for it to do so in the future exists and shall be described below. 

 

4.5.2 Evolutionary Strategy 

 

An elitist evolutionary strategy (ES) with adaptive mutation, (μ + λ) - ES was used as the 

optimisation algorithm, the code was written by Burbidge and follows procedures as set 

out in reference 23. This type of evolutionary strategy mimics Darwinian evolution hence 

the name and is global in its search, similarly to genetic algorithms. Firstly, a random 

initial population, λ, of 16 individuals, each with 1280 values, 640 for each liquid crystal 

array, is generated as a seed to the algorithm, which could also be a good guess pulse 

shape in later usage. The population is evaluated; in this case the values from the SHG 

measurement are used to generate the fitness for each individual as described above. 

From the initial population, λ, the best 4 parents, μ, are selected from which the mutants 

will be generated. Each mutant is generated by mutation from two parents, ρ, selected 

uniformly at random from the best μ pulses. The mutation adds an independent Gaussian 

perturbation to each dimension. This is done until a new population of 16 individuals is 

generated. Every 320 mutations, the ES counts how many were successful if more than 1 

were successful, then the mutation strength is divided by 0.707 (i.e. increased). If less 

than 1 were successful, then the mutation strength is multiplied by 1 (i.e. decreased). In 

this experiment, ρ is set to 2, so it is not possible to determine whether or not mutations 

are successful hence, η is set to 1.0 and the mutation strength is multiplied by 0.707 every 

320 mutations. Since there are 16 mutations every generation, the mutation strength will 

be decreased every 20 generations. The 4 parents and 16 mutants compile the next 

generation. This results in an over-valuation of the parent in noisy environments, but also 
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guarantees convergence. The evolutionary strategy then starts the cycle again and is run 

for 600 generations or until stopped externally. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.5.3 Optimisation of SHG 

 

An optimisation algorithm was used to shape a pulse to increase second harmonic 

generation in a BBO crystal. This type of optimisation is a popular starting point for 

optimisation algorithms owing to it being a well known phenomenon1. The experimental 

set-up utilised two power meters to determine the fitness function. A power meter 

measured the power of the zero order diffraction from the grating which gave a reading 

for the unmodulated laser pulse and was used to monitor shot to shot variations in the 

power. The pulse shaper output, centred at 508 nm was focused into the BBO crystal as 

in the set-up described in section 4.4.10. The UV beam generated was measured with the 

final power meter. Within a Labview program the power of the fundamental beam was 

divided by the square of the SHG beam to provide the fitness. If the fitness was below 

zero a random number was generated. The program fed an external optimisation 

algorithm with the fitness which in turn generated a pair of 640 value drive counts 

between 0 and 4095. These were sent to the SLM directly resulting in both phase and 

Selection 

Fittest 
Individuals 

crossover 

mutation 

New generation 

+ 

+ 

Computer 

LC-SLM SHG 
detection 

Figure 18: Schematic of feedback 
controlled SHG maximisation using 
an evolutionary strategy. A random 
seed pulse initiates the cycle, where 
by the power of SHG is measured of 
the shaped pulse. The fitness function 
is generated determines its survival 
out of a population. A new 
population is generated with 
characteristics of the fitness pulse 
shapes. The cycle carries on selecting 
and refining the best pulse shapes.
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amplitude modulation. The algorithm was run as a blind optimisation to give a fixed 

hypothesis search space of [0, 4095]1280. The fitness function obtained after 390 

generation is shown below in figure 19. The function shows a characteristic steep ascent 

in fitness as it optimises an initial random pulse shape. The algorithm then levels of to a 

constant fitness.  

 

 

 

 

 

 

 

 

 

 

 

 

 

4.5.4 Phase comb 

 

To illustrate the capability of our pulse shaping setup we chose several useful phase 

modulations to generate pulse trains at varying times and wavelengths. For weak field 

coherent control experiments, the types of pulse shapes that are likely to be necessary are 

trains of pulses with the same wavelength but carefully timed to cause optimal 

constructive or destructive interference, or trains of different wavelengths to excite 

different modes at well-defined time-intervals.   

 

Pulse replicas in the time domain can be produced by applying a π phase ‘comb’ to the 

pulse in the frequency domain, this is achieved by producing alternating groups of pixels 

with 0 and π phase respectively. Figure 20 shows four such pulse replicas with pulse 

separations, τ, of (a) 530 fs,  (b) 760 fs, (c) 1600 fs, and (d) 2230 fs produced by comb 

Figure 19: Blind optimisation of SHG in a BBO crystal. Both arrays of 640 pixels each with 4096 values 
were used by an evolutionary strategy to optimise a pulse shape. The second harmonic generation of the 
visible from the pulse shaping set-up was optimised by the algorithm by measuring the power generated.   
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spoke widths of 21, 15, 7 and 5 pixels respectively. The raw XFROG traces can be seen 

in the bottom row of fig. 20, above them is the time domain electric field intensity (black) 

and phase (red) and at the top of the figure, the spectral electric field intensity (black) and 

phase (red).  

 

The comb phase function causes holes, due to interference, in the spectrum at the points 

where the phase changes abruptly, and the overall result is a squared-comb spectrum. In 

the frequency domain this corresponds to a set of pulse replicas, composed of two main 

central peaks and outer satellite peaks, all equally spaced. 

 

The spectral square-comb is smoothed by the doubling process (equation 4.25) and thus 

the set of pulse replicas becomes a pulse pair, with the smaller outer pulses reduced to 

less than 5 % of the intensity of the main pulses. In our data we are able to observe the 

outer small satellite peaks in some of the data, for example, in figure 20 (a) (ii) a sub 

pulse at 1.1 ps is clearly visible. The measured pulse separation times, τ, allow us to 

calibrate the wavelengths on the SLM pixels using the uncertainty principle relationship, 

P1=τ , where P is the width of the programmed comb spoke on the SLM, P, in units of 

frequency, so that the comb widths on the SLM are 1.62, 1.13, 0.54 and 0.39 nm across 

the comb spokes for figure 20 (a)-(d) respectively. This provides an accurate 

measurement of the angular dispersion in the pulse shaper. The other points to note are 

that the temporal phase is flat, and the temporal duration of each of the replicas is similar. 

The spectral phase is linear over each of the “teeth” in the spectral comb. This is 

predicted by equation 4.25, from which it can be seen that the convolution of the spectral 

electric field produces a new field with a phase that is independent of the SLM 

modulation, because the modulation factor eiπ is a real number.  
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4.5.5 Triangular phase 

 

In another scheme (figure 21), we created a pair of pulses with different central 

frequencies by applying a triangular phase mask to the SLM (figure 21 (a)). The results 

are shown in figure 21 (b)-(d). The raw XFROG traces can be seen in figure 21 (d), the 

time domain electric field intensity (black) and phase (red) are in 21 (b), and the spectral 

electric field intensity (black) and phase (red) are in 21 (c). The temporal separation of 

the pulses is determined by the difference in the group delays, τg, of the two pulses, 

which is defined by the difference in slopes of the two applied linear spectral 

phases: ωωφτ dd )(g −= . The two peaks are separated by 650 fs in the time domain (b). 

The pulse at 650 fs has a central wavelength 253.6 nm and is separated from the larger 

peak at 254.6 nm by 1 nm (c). The retrieved electric field of these two pulses are also 

shown in fig. 21. The retrieved spectral phase shows a clear change in slope at the central 

frequency of the spectrum, 254 nm, as programmed on the pulse shaper at the 

fundamental frequency, 508 nm. The frequency doubling process was most efficient at a 

slightly off-centred wavelength, around 254.6 nm, and thus the retrieved temporal 

intensity profile shows a bias towards the sub-pulse at this wavelength.  This means that 

the upconverted spectrum is centred at 254.6 nm, and the retrieval algorithm has centred 

the retrieved electric field at the central wavelength and time of the stronger sub-pulse in 

the trace. Hence the slope of one of the spectral phases in the retrieved electric field is 

flat, corresponding to zero time delay, and one of the temporal phases of the two sub-

pulses is flat, corresponding to zero wavelength shift from the new centre wavelength, 

254.6 nm; thus, the spectral and temporal phases of the other sub-pulse show increases in 

the magnitude of the slope (larger group delay and spectral shifts, respectively), as would 

be expected. The time separation of the two pulses is predicted by the SLM phase mask 

function and the measured spectral dispersion as 665 fs. This is 15 fs greater than the 

observed experimental value, a discrepancy that is well within the error of the 

experiment. 
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4.5.6 Sinusoidal phase 

 

In the final scheme, shown in figure 22, a sine wave phase function is applied to the 

SLM, of amplitude 4, and 34 oscillations across the 640 pixels. The number of 

oscillations of the sine wave defines the temporal separation of the peaks in the pulse 

Figure 21: Pairs of pulses with different central wavelengths generated from a triangular phase mask. (a) 
Triangular phase mask applied by the SLM in the visible. (b) Spectral intensity (black) and phase (red) 
showing the central wavelengths of the UV pulses. (c) Time domain electric field intensity (black) and 
phase (red) of the UV pulse, showing two distinct subpulses. (d) Raw XFROG trace.  
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train produced. The amplitude of the phase modulation determines the relative heights of 

the pulse train peaks. Here five pulses at -610 fs, 0 fs, 610 fs (very faint), 1220 fs and 

1830 fs are produced, as shown in fig. 22. The raw XFROG traces are shown in 22 (c), 

above them is the time domain electric field intensity (black) and phase (red) and at the 

top of the figure, in (22 (a)), the spectral electric field intensity (black) and phase (red), in  

(22 (b)). In the time domain each peak has a Gaussian profile with a flat phase over each 

peak. The spectral phase shows a regular oscillatory structure, with several large jumps 

most likely due to the non-zero spectral intensity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22: Pulse trains in the time domain generated from a sinusoidal phase mask. (a) The spectral phase 
(red) and intensity (black) of UV pulse. (b) Temporal electric field intensity (black) and phase (red) of the 
UV pulse. (c) Raw XFROG trace. 
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4.6 Conclusion 

 

These results demonstrate that shaped light in the deep UV may be generated effectively 

by frequency doubling the output of a folded 4f SLM setup. Shaping the output of an 

OPA allows for the central frequency of the shaped UV pulse to be tuned, which is 

particularly beneficial to coherent control experiments, where the photon energies are of 

significance as well as their relative phases and amplitudes. The details of the pulse 

shapes required are not always a priori knowledge, but often require feedback from an 

experiment, and hence the utility of flexible SLM pulse shaping.  

 

Changing the wavelength of the shaped UV pulses to 243 nm from 254 nm can be 

achieved easily by tuning the central wavelength from the OPA to 486 nm. With a change 

in wavelength, the only alterations to the shaping setup that are required are a slight 

adjustment to the grating angle to match the cylindrical mirrors and changing the BBO 

crystal angle to maximise the output signal.  

 

Our results show several pulse shapes produced in the UV with varying pulse separations 

and central frequencies. Interestingly, the full characterisations and retrieved XFROG 

traces highlight that phase information is being transferred in all the pulse shapes 

presented through the type I SHG process. To investigate this effect further XFROG 

traces of the beam in the visible, before the SHG process, as well as afterwards would 

directly record the effect of upconversion on the spectral phase within a type I SHG 

process. Although we have not shown it here, our experimental setup could easily be 

adapted by adding a genetic algorithm with feedback from the spectrogram to achieve the 

exact pulse shape desired, irrespective of phase distortions in the input pulse or 

alignment. The closely spaced sequences of pulses centred at different central 

wavelengths should prove a valuable tool for controlling the nuclear dynamics of the 

excited electronic states of photochemical species.  
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Chapter 5 
 
 

Summary and outlook 
 
 

The molecular dynamics undertaken by benzene at the onset of channel 3 have been 
found to involve a movement of the wave packet to the triplet state on ultrafast time 

scales. A brief summary of this experiment is made as well as that of the development 
of the pulse shaping capability in which arbitrarily shaped pulses in phase and 

amplitude were obtained in the UV and fully characterised. We then move onto the 
outlook available from these experiments, which naturally sees the use of the pulse 

shaper in controlling excited state benzene.  
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5.1 Summary 

 

5.1.1 Ultrafast intersystem crossing in benzenes channel 3 region 

 

The ultrafast energy dissipation in benzene above 3000 cm-1 in the first excited state 

has been assigned to a multitude of decay mechanisms none of which have been 

satisfactorily confirmed. By using time resolved photoelectron spectroscopy in the gas 

phase we have been able to monitor decay dynamics of the excited state wave packet 

in this region of the spectrum. A simple decay scan of the total photoelectron signal as 

a function of time with two different wavelength probes yielded biexponential decays 

with differing total photoelectron counts. By scanning the probe wavelength between 

these regions a step function at 250 nm was found which illustrated a new ionization 

channel opening up with the higher energy probes. The difference in photoelectron 

counts between the high and low energy probe was concluded to hold information 

about the excited state processes that the low energy probe was not sensitive to. 

Further investigation of the total photoelectron signal due to the low energy probe 

found that by removing the biexponential decay component an oscillation with a 

period of 1.2 ps became visible.  

 

Energy dispersed photoelectron spectra at 100 fs intervals were collected with both 

the high and low energy probes. Both TRPES plots showed no distinct features 

appearing or disappearing, which ruled out the possibility of photoisomerisation in 

that region. The TRPES of the high energy probe was analysed in box cars of 

photoelectron energy and 4 distinct features were observed. At high photoelectron 

energies two oscillations with a period of 1.2 ps were found which were in phase with 

that observed on the decay scan of the low energy probe. The oscillations were 

separated by 0.11 eV which corresponds to the breathing mode of benzene. In the 

middle energy region an oscillation was found with the same 1.2 ps period but out of 

phase. The two oscillations indicated that an excited state wave packet was being 

observed at either turning point of its oscillation. A fourth feature was found in the 

low energy photoelectrons, which showed a rise in photoelectron count after 600 fs.  

 

The results fit the picture that the excited state wave packet moves to the triplet state,  

in 600 fs, most likely through an intersystem crossing in the prefulvene region of the 
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potential energy surface. An increased coupling constant between S1 and T2 (      ) has 

been found in this area by ab initio calculations. The T2 (      ) state acts as a doorway 

state and couples strongly to T1, which acts as a dense bath state, dissipating out the 

energy to a  high number of vibrational states in that energy region. Part of the wave 

packet, however, does not couple well to the T1 state and oscillates back and forth 

between the doorway state, T2, and the excited state, S1. The portion of the excited 

state wave packet that does couple to T1 is monitored by the photoelectrons with low 

energy. It shows an increase in signal after 600 fs, the time it takes for the wave 

packet to access T1. The remaining wave packet that does couple well with T1 is 

monitored at its outer turning point of its oscillation in the photoelectrons with middle 

energy, and at the inner turning point of its oscillation by the two bands with high 

photoelectron energies. The initial 30 % of the photoelectron total decay was 

rationalised to be as a result of internal conversion, since the higher energy probe 

could not see this population after its decay, which energetically implies movement to 

the ground state. 

 

The decay time is 240 fs which is on the time scale consistent with a conical 

intersection1. Calculations have found that a conical intersection exists in the 

prefulvene region of the potential energy surface in the same region as the proposed 

triplet singlet crossing. The internal conversion cannot however be counted as the 

dominant mechanism since 70 % of the wave packet is found to still be on the excited 

state surface which does decay but at much slower decay times of 1.7 ns. The 

mechanism was confirmed by calculations using the CASPT2 method by our 

collaborators. The observed ultrafast intersystem crossing in a hydrocarbon challenges 

the established rules of thumb that intersystem crossings do not exist with strong 

enough coupling to allow fast population transfer. Ultrafast intersystem crossing is 

therefore expected to exist in hydrocarbons more abundantly than previously believed. 

  

5.1.2 Frequency doubling shaped visible femtosecond pulses to access the UV 

 

Most coherent control schemes in the weak field one photon limit require photons 

with energy corresponding to the ultraviolet region. Unfortunately, existing pulse 

shaping technology cannot shape UV pulses because high energy photons damage the 

modulation device. To overcome this barrier a number of techniques have been 

uE1
3

uE1
3
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developed to convert the shaped frequencies from where they are efficiently shaped in 

the infrared to the ultraviolet region.2, 3  

 

Our approach to the generation of UV shaped pulses involved shaping the output of a 

wavelength tuneable OPA system in the visible region and then frequency doubling it 

in a second harmonic generation crystal. This represents the simplest frequency 

conversion technique, far simpler to realise experimentally than sum frequency 

generation. Shaping the output of an OPA system allows for simple tuning of the 

wavelength which provides the versatility to tune the energy of the shaped pulse for 

use in different coherent control experiments. The wavelength could be shifted from 

254 nm down to 243 nm with minimal alignment of the pulse shaping device. 

 

The pulse shaping device used was a 640 pixel dual array liquid crystal spatial light 

modulator, set–up in a folded geometry and operated in reflective mode. The 

geometry chosen offered the most efficient alignment procedure, utilising the central 

optical line which the optical component assemblies rested on and a slit for dispersion 

alignment. The reflective mode, although of less resolution offered the easiest 

alignment procedure due to only half the optics used over conventional single pass 

mode. The pulse shaper was calibrated and Labview programs written for its 

operation.  

 

To test the apparatus a cross correlation frequency resolved optical gating (XFROG) 

technique was used to make measurements of the pulses simultaneously in time and 

frequency. This technique provides a full characterisation yielding both phase and 

amplitude information in both domains. A variety of pulse shapes were applied and 

observed: (i) a comb in phase affording pulse pairs, (ii) a sinusoidal phase shape 

affording a pulse train, and (iii) a triangular phase shape giving two sub pulses 

separated in time and frequency. All pulse shapes were modelled and fitted well. It 

was found that the phase comb was an effective way of measuring the angular 

dispersion of the pulse over the liquid crystal array, which is often a difficult 

measurement to make with any degree of accuracy. The triangular phase function 

represents the most interesting of the shapes applied to the pulse shaper. In a time 

domain perspective, the excited state wave packet could be thought of as being given 

kicks over the potential energy surface by sub pulses with different central 
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frequencies. This allows for an intuitive wave packet view of the excited state 

dynamics. With access to the deep UV and the prospect of easy wavelength 

tuneability as well as full characterisation techniques make this apparatus ideal for a 

range of coherent control applications. 

 

5.2 Outlook 

 

5.2.1 Molecular dynamics 

 

The dynamics of benzene in the channel 3 region as described in chapter 3 could be 

further investigated. The same pump pulse and therefore same dynamics could be 

further scrutinised by using an even higher energy probe. Currently the laser system 

can produce pulses down to 235 nm, this range could be increased by using a series of 

non linear processes such as second harmonic generation to reach down to 200 nm. 

The higher energy probe would increase the viewing window of the reaction 

coordinate and it may give an indication of the fate of the ultrafast decay in the first 

few hundred femtoseconds that has been attributed to internal conversion. 

 

A vacuum ultraviolet source is currently being developed in this group and would 

provide a tool to observe dynamics on the ground state. Energy resolution may be an 

issue due to the wave packet being vibrationally hot when the ground state is accessed 

from the excited state. It does posses the energy to ionise the ground state population 

in a 1 photon process. 

 

The potential energy surface around the channel 3 region could be explored more 

extensively by changing the pump wave length in small increments and conducting 

the same experiments to see how the dynamics change. With reference to high 

resolution data on the states in the energy region, the modes which are important in 

the intersystem crossing and the internal conversion could be found. Although 

increasing the pump energy generally increases the decay rate it is known that the 

ultrafast decay is mode dependent and is thought to depend on out of plane modes.4-8 
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5.2.2 Coherent control of benzene  

 

The investigation into the dynamics of benzene in the channel 3 region as described in 

chapter 3 have brought about a number of possible coherent control schemes. These 

can be designed to achieve a new or optimise an existing photochemical outcome or 

can be used to further study the dynamics observed. 

 

A pump dump scheme could be implemented in which the wave packet would be 

dumped to the ground state at its outer turning point. The corresponding ground state 

geometry may either correspond to a benzene geometry or to that of an isomer of 

benzene. To experimentally verify the ground state structure either a multiphoton 

ionisation or a VUV source could be used to ionise the ground state population after 

the outer turning point is reached. 

 

The excitation pump pulse could be scanned with a gap in it in order to find which 

modes specifically are responsible for movement of the wave packet to the triplet state 

or which are responsible for decay to the ground state via the S1/S0 conical 

intersection. This would be achieved by blocking out certain frequencies of the 

excitation pulse. The success of the pump pulse shape could be determined by 

measuring the decay profile, specifically the ultrafast decay constant for the internal 

conversion or oscillation amplitude probe with the 260 nm probe for the intersystem 

crossing. The dynamics observed in this fashion could also be altered using other 

pulse shapes. A triangular phase profile could be used to give ‘kicks’ to the wave 

packet over the potential energy surface to access either a internal conversion or 

intersystem crossing in a more intuitive time domain scheme. 

 

Our theoretical collaborators have investigated increasing the yield of fulvene a 

photoproduct seen in photolysis experiments6. Figure 5.1 shows a control scheme 

based on their findings. They were able to identify the modes that were advantageous 

and disadvantageous to moving the excited state wave packet into the conical 

intersection in the prefulvene region with a specific trajectory to access the fulvene 

ground state minimum. The proposed mechanism which yields fulvene is shown at the 

top of the figure. It was found that the vibrational modes exist in a region of the 

spectrum accessible by our pulse shaping apparatus and only separated by 0.6 nm 
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which is within the bandwidth of the pump pulse. The figure illustrates the pulse 

bandwidths for an unshaped pulse and for a shaped pulse. The phase relationship 

between the two modes dictates the quantum yield of fulvene.  

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2.3 Investigation of pulse shape transfer in second harmonic generation 

 

Although second harmonic generation is a widely used technique in many areas of 

science the phase transfer process for a shaped pulse is not yet fully understood. 

Currently there exist well made theoretical models that rely on convolution, which 

have been covered in chapter 2. These work well for documenting the spectral 

amplitude of the pulses with linear or quadratic phase profiles, where the phase shape 

can be seen to be transferred to the pulse in the new wavelength range9. With more 

complex pulse shapes such as cubic or sinusoidal phase profiles the spectral phase 

shape is seen to transfer to the spectral amplitude shape of the pulse9.  

 

Using the current pulse shaping and XFROG apparatus the phase transfer from the 

visible to the UV could be quantitatively investigated. This would be achieved by 

obtaining complete characterisations of the UV and visible pulses and comparing the 

phase profiles. Experimentally this can be realised by the addition of a flip mirror to 

direct the visible beam away from the UV pulse characterisation apparatus to that of a 

visible pulse characterisation apparatus. The path length of the visible would again 

need to be matched and directed into a nonlinear crystal cut to give an appropriate 

Figure 1: Diagram illustrating a control scheme proposed by our collaborators. The phase relationship 
between two frequencies could be manipulated in order to optimise the photochemical mechanism shown in 
the top of the figure. By altering the phase between the two modes shown the excited state wave packet will 
access the conical intersection with a specific trajectory to access the fulvene ground state minimum. 
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signal from mixing of the visible pulse and the characterised infra red pulse. 

Knowledge of the phase effects of second harmonic generation in terms of spectral 

phase would complement the current knowledge of phase effects on spectral intensity. 

 

5.3 References 

 

1 S. Cogan, Y. Haas and S. Zilberg, Journal of Photochemistry and 
Photobiology a-Chemistry, 2007, 190, 200-206. 
2 C. Schriever, S. Lochbrunner, M. Optiz and E. Riedle, Optics Letters, 2006, 
31, 543-545. 
3 P. Nuernberger, G. Vogt, R. Selle, S. Fechner, T. Brixner and G. Gerber, 
Applied Physics B-Lasers and Optics, 2007, 88, 519-526. 
4 D. Oconnor, M. Sumitani, Y. Takagi, N. Nakashima, K. Kamogawa, Y. 
Udagawa and K. Yoshihara, Journal of Physical Chemistry, 1983, 87, 4848-4854. 
5 M. Sumitani, D. V. Oconnor, Y. Takagi, N. Nakashima, K. Kamogawa, Y. 
Udagawa and K. Yoshihara, Chemical Physics, 1985, 93, 359-371. 
6 M. Sumitani, D. V. Oconnor, Y. Takagi and K. Yoshihara, Chemical Physics 
Letters, 1984, 108, 11-13. 
7 E. Riedle, H. J. Neusser and E. W. Schlag, Faraday Discussions, 1983, 387-
394. 
8 J. M. Smith, X. Zhang and J. L. Knee, Journal of Physical Chemistry, 1995, 
99, 1768-1775. 
9 M. Hacker, R. Netz, M. Roth, G. Stobrawa, T. Feurer and R. Sauerbrey, 
Applied Physics B-Lasers and Optics, 2001, 73, 273-277. 
 
 


	Title+contents+figures
	Chapter_1_introduction_v5f
	Chapter_2_experimental_v3f
	Chapter_3_benzene_v3f
	Chapter_4_shaping_v2f
	Chapter_5_outlook_vf

