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Abstract

This paper argues for the thesis that ideas originating in the philosophy of mathematics
have proved very helpful for the development of computer science. In particular,
logicism, the view that mathematics can be reduced to logic, was developed by Frege and
Russell, long before computers were invented, and yet many of the ideas of logicism have
been central to computer science. The paper attempts to explain how this serendipity
came about. It also applies Wittgenstein’s later theory of meaning to human-computer
interaction, and draws the conclusion that computers do understand the meaning of the
symbols they process. The formal language of logic is suitable for humans trying to
communicate with computers.
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1. Introduction

Philosophy is often thought of as an activity, which may have considerable theoretical
interest, but which is of little practical importance. Such a view of philosophy is, in my
opinion, profoundly mistaken. On the contrary, I would claim that philosophical ideas
and some kind of philosophical orientation are necessary for many quite practical
activities. Bob Kowalski’s researches are an excellent example of this thesis, since they
have been characterised by an explicit and productive use of philosophical ideas. His
work, therefore, naturally suggests looking at the general question of how far philosophy
has influenced the development of computer science. My own view is that the influence
of philosophy on computer science has been very great. In the first three or four decades
of the computer, this influence came mainly from earlier work in the philosophy of
mathematics. In the last two decades, however, there has been an increasing influence of
ideas from the philosophy of science, particularly ideas connected with probability,
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induction, and causality. In this paper, however, I will focus on the philosophy of
mathematics. In section 2 I will give a brief sketch of the development of philosophy of
mathematics during the so-called ‘foundational’ period (c. 1879 – 1939). This period saw
the emergence of three main schools: logicism, formalism, and intuitionism. As a matter
of fact, all three subsequently influenced the development of computer science, but in this
paper I will concentrate on logicism, partly for reasons of space, and partly because it is
the philosophical position most relevant to Kowalski’s work. Section 3 therefore is
devoted to logicism and computer science, and I try to show two things. First of all that
the ideas of logicism were developed (particularly by Frege and Russell) for purely
philosophical reasons, and second that these ideas proved very fruitful in computer
science. This naturally raises a problem. Why did concepts and theories developed for
philosophical motives before computers were even invented, prove so useful in the
practice of computing? I will attempt to sketch the beginnings of a possible answer to
this question. In section 4, however, I will turn to an influence in the opposite direction.
The logic invented by the logicists proved to be useful in computer science, but the
application of logic in computer science changed logic in many ways. In section 4,
therefore, I will examine some of the ways in which applications in computing have
changed the nature of logic. Section 5 closes the paper by considering some ideas of
Wittgenstein. During his later (‘ordinary language’) period, which began around 1930,
Wittgenstein developed a criticism of logicism. I am very far from accepting this
criticism in its entirety, but it does raise some interesting points. In particular, in
conjunction with some of Wittgenstein’s later ideas on meaning, it suggests some further
reasons why formal logic has proved so fruitful in computer science.

2. Philosophy of Mathematics in the Foundational Period

The foundational period in the philosophy of mathematics (c. 1879 – 1939) is
characterised by the emergence and development of three different schools, each of
which aimed to give a satisfactory foundation for mathematics. These schools were:-

(i) logicism (the view that mathematics is reducible to logic),
(ii) formalism (mathematics as the study of formal systems), &
(iii) intuitionism (mathematics based on the intuitions of the creative

mathematician).

Logicism was started by Frege. Strictly speaking his aim was not to show that the whole
of mathematics was reducible to logic, but only that arithmetic was reducible to logic.
Frege adopted a non-logicist, Kantian view of geometry. To accomplish his goal, Frege
devised a way of defining number in terms of purely logical notions. The existing
Aristotelian logic was not adequate for his purpose. So he devised a new kind of formal
logic which he published in his Begriffsschrift (literally concept writing) of 1879. This is
essentially the same as the formal logic taught today, except that Frege used a curious
two dimensional notation, which has been abandoned in favour of the more usual one
dimensional manner of writing. Frege then went on to set up a complicated formal
system with what were intended to be purely logical axioms, and tried to show that the
whole of arithmetic could be logically deduced within this system using his definition of
number. The first volume of this formal system took Frege 9 years to complete and it
appeared in 1893. By the summer of 1902 , Frege had worked for another 9 years on
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the second volume, which was nearing completion, and it must have seemed to him that
he had successfully completed the project to which he had devoted almost his whole adult
life. At this moment, however, disaster struck. Frege received a letter dated 16 June
1902 from a young logician named Bertrand Russell who showed that it was possible to
derive a contradiction from what Frege had taken as the basic axioms of logic. This is
what is now known as Russell’s paradox. Here is an extract from Frege’s reply to Russell
dated 22 June 1902 (Frege, 1902, pp. 127-8):

‘Your discovery of the contradiction caused me the greatest surprise and, I would
almost say, consternation, since it has shaken the basis on which I intended to
build arithmetic. It seems, then, … that my Rule V … is false … . I must reflect
further on the matter. It is all the more serious since, with the loss of my Rule V,
not only the foundations of my arithmetic, but also the sole possible foundations
of arithmetic seem to vanish. … In any case your discovery is very remarkable
and will perhaps result in a great advance in logic, unwelcome as it may seem at
first glance.’ 1

Russell’s discovery of the paradox did not cause Russell to give up logicism. On
the contrary, Russell tried to provide logicism with new foundations. He derived what is
known as the theory of types to resolve his paradox, and, using this theory, he constructed
with A.N.Whitehead a new massive system of formal logic in which it was hoped that the
whole of mathematics could be derived. When the three huge volumes of this system,
known as Principia Mathematica, were published in 1913, it looked as if the logicist
programme had been brought to a successful conclusion. However, once again, this
apparent success proved short-lived. In 1931 Kurt Gödel, a logician and member of the
Vienna Circle, published his two incompleteness theorems. The first of these, in its
modern form, shows that if Principia Mathematica is consistent, then there is an
arithmetical statement which cannot be proved within the system, but which can be
shown to be true by an informal argument outside the system. In effect not all the truths
of arithmetic can be derived in Principia Mathematica which thus fails in its logicist goal
of reducing arithmetic to logic. If Principia Mathematica were inconsistent, the situation
would be no better – indeed it would be worse. In that event any statement whatever
could be proved in the system which would therefore be useless. Gödel showed that the
results of his paper applied not just to Principia Mathematica but to any similar logicist
system. He had thus demonstrated that it was impossible to carry out the logicist
programme of Frege and Russell.

Let us now turn to formalism. The formalist philosophy of mathematics was
developed by the German mathematician David Hilbert. Hilbert took over the concept of
formal system from the logicists. The logicists tried to construct a single formal system
based on the axioms of logic within which the whole of mathematics (or in Frege’s case
the whole of arithmetic) could be derived. Hilbert, however, suggested that a different
axiomatic formal system could be constructed for each branch of mathematics, e.g.
arithmetic, geometry, algebra, set theory, probability theory, etc. Frege’s work had
shown that there was a danger of a contradiction appearing in a formal system. To avoid
this difficulty, Hilbert sugested that the formal systems of mathematics should be proved
to be consistent using only the simple informal methods of finitistic arithmetic.
Unfortunately Gödel’s second incompleteness theorem showed that such consistency
proofs could not be given for nearly all the significant branches of mathematics. Thus
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Gödel had shown in a single paper published in 1931 that two of the three major positions
in the philosophy of mathematics were untenable.

This leaves us wit the last of the three major schools – intuitionism. This was not
in fact refuted by Gödel’s incompleteness theorems, but it had other difficulties which
made it unacceptable to most mathematicians. A systematic working out of the idea that
mathematics was the intuitive construction of creative mathematicians seemed to indicate
that some of the logical laws assumed in standard mathematics, notably the law of the
excluded middle, had no proper justification. The intuitionists therefore created a new
kind of mathematics not involving the law of the excluded middle and other suspect laws.
Unfortunately this new mathematics turned out to be more involved and intricate than
standard mathematics, and, as a result, it was rejected by most mathematicians as just too
complicated to be acceptable.

The Wall Street crash of 1929 ushered in the depression of the 1930’s. One could
say that the Gödel crash of 1931 initiated a period of depression in the philosophy of
mathematics. The three main schools all appeared to have failed. Not one had carried
out its promise of providing a satisfactory foundation for mathematics. Yet fate was
preparing an odd turn of events. In the post-War period the ideas of these philosophical
programmes turned out, surprisingly, to be of the greatest possible use in the new and
rapidly expanding field of computer science. In the next section I will examine how this
came about in the case of the logicist programme. For reasons of space I cannot analyse
the contributions of all three programmes, and I have chosen to concentrate on logicism,
as it is the programme most closely connected to Bob Kowalski’s work.

3. Logicism and Computer Science

Let us begin with the predicate calculus introduced by Frege in his Begriffsschrift
of 1879 which opened the foundational period in the philosophy of mathematics. This
has become one of the most commonly used theoretical tools of computer science. One
particular area of application is in automated theorem proving. In his 1965 paper, Alan
Robinson developed a form of the predicate calculus (the clausal form) which was
specifically designed for use in computer theorem proving, and which has also proved
useful in other applications of logic to computing. At the beginning of his paper,
Robinson has an interesting section in which he discusses how a logic designed for use by
a computer may differ from one suitable for human use. I will now expound his ideas on
this point as they will be very helpful in dealing with the issues raised in the present
paper.

Robinson begins by pointing out that in a logic designed for humans, the rules of
inference have usually been made very simple. As he says (1965, p. 23):

‘Traditionally, a single step in a deduction has been required, for pragmatic and
psychological reasons, to be simple enough, broadly speaking, to be apprehended
as correct by a human being in a single intellectual act. No doubt this custom
originates in the desire that each single step of a deduction should be indubitable,
even though the deduction as a whole may consist of a long chain of such steps.
The ultimate conclusion of a deduction, if the deduction is correct, follows
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logically from the premisses used in the deduction; but the human mind may well
find the unmediated transition from the premisses to the conclusion surprising,
hence (psychologically) dubitable. Part of the point, then, of the logical analysis
of deductive reasoning has been to reduce complex inferences, which are beyond
the capacity of the human mind to grasp as single steps, to chains of simpler
inferences, each of which is within the capacity of the human mind to grasp as a
single transaction.’

If the logic is to be used by a computer, then the requirement that the rules of inference be
simple no longer applies. A rule of inference which requires a great deal of computation
for its application poses no problem for a computer, as it would for a human. On the
other hand, for computer applications, it might well be desirable to reduce the number of
rules of inference as much as possible. If a system has a large number of simple rules of
inference, a human endowed with some intuitive skill could see which of these rules
would be the appropriate one to employ in a particular situation. A computer, lacking
this intuitive skill, might have to try each of the rules of the list in turn before hitting on
the appropriate one. So we could say, that a logic for humans could have a large number
of simple rules of inference, while a logic for computers would be better with fewer but
more complicated rules. In fact Robinson introduced a system with a single rule of
inference – the resolution principle. As he says (1965, p. 24):

‘When the agent carrying out the application of an inference principle is a modern
computing machine, the traditional limitation on the complexity of inference
principles is no longer very appropriate. More powerful principles, involving
perhaps a much greater amount of combinatorial information-processing for a
single application, become a possibility.

In the system described in this paper, one such inference principle is used.
It is called the resolution principle, and it is machine-oriented, rather than human-
oriented, in the sense of the preceding remarks. The resolution principle is quite
powerful, both in the psychological sense that it condones single inferences which
are often beyond the ability of the human to grasp (other than discursively), and in
the theoretical sense that it alone, as sole inference principle, forms a complete
system of first-order logic. …

The main advantage of the resolution principle lies in the ability to allow
us to avoid one of the major combinatorial obstacles to efficiency which have
plagued earlier theorem-proving procedures.’

The important point to note here, and to which we shall return later in the paper, is that,
as regards logico-linguistic systems, the requirements of a computer may be very
different from those of a human.

Alan Robinson’s version of the predicate calculus has indeed been used with
great success in automated theorem proving. It also led through the work of Kowalski,
and of Colmerauer and his team, to the logic programming language PROLOG (for
historical details, see Gillies, 1996, 4.1, pp. 72-5). Muggleton’s concept of inductive
logic programming, originated from the idea of inverting Robinson’s deductive logic to
produce an inductive logic. PROLOG has been an essential tool in the development of
Muggleton’s approach, which has resulted in some very successful machine learning
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programs (for some further details see Muggleton, 1992, and Gillies, 1996, 2.4, pp. 41-
44).

The examples just given, and some further examples which will be mentioned
below, show that Frege’s invention of the predicate calculus provided a useful, perhaps
indeed essential, tool for computer science. Yet Frege’s motivation was to establish a
particular position in the philosophy of mathematics, namely that arithmetic could be
reduced to logic. Indeed in the entire body of his published and unpublished writings,
Frege makes only one reference to questions of computation. His predecessor Boole had
also introduced a system of formal logic, and Jevons, influenced by Babbage, had
actually constructed a machine to carry out logical inferences in his own version of
Boolean logic. Jevons had the machine constructed by a clockmaker in 1869, and
describes it in his paper of 1870. Frege made a number of comments on these
developments in a paper written in 1880-1, although only published after his death. He
wrote (1880-1, pp. 34-5):

‘I believe almost all errors made in inference to have their roots in the
imperfection of concepts. Boole presupposes logically perfect concepts as ready to hand,
and hence the most difficult part of the task as having been already discharged; he can
then draw his inferences from the given assumptions by a mechanical process of
computation. Stanley Jevons has in fact invented a machine to do this.’

Frege, however, made clear in a passage occurring a little later that he did not greatly
approve of these developments. He wrote (1880-1, p. 35):

‘Boolean formula-language only represents a part of our thinking; our thinking as a whole
can never be coped with by a machine or replaced by purely mechanical activity.’

On the whole it seems that Jevons’ attempts to mechanise logical inference had only a
slight influence on Frege’s thinking. So we can say that considerations of computing had
almost no influence on Frege’s development of the predicate calculus, and yet the
predicate calculus has proved a very useful tool for computer science.

Let us now move on from Frege to Russell. Bertrand Russell devised the theory
of types in order to produce a new version of the logicist programme (the programme for
reducing mathematics to logic) when Frege’s earlier version of the programme had been
shown to be inconsistent by Russell’s discovery of his paradox. Thus Russell’s
motivation, like Frege’s, was to establish a particular position in the philosophy of
mathematics (logicism), and there is no evidence that he even considered the possibility
of his new theory being applied in computing. Indeed Russell’s autobiographical
writings show that he was worried about devoting his time to logicism rather than to
useful applied mathematics. Thus in his 1959 My Philosophical Development, he writes
of the years immediately following the completion of his first degree (p. 39):

‘I was, however, persuaded that applied mathematics is a worthier study than pure
mathematics, because applied mathematics - so, in my Victorian optimism, I supposed -
was more likely to further human welfare. I read Clerk Maxwell’s Electricity and
Magnetism carefully, I studied Hertz’s Principles of Mechanics, and I was delighted
when Hertz succeeded in manufacturing electro-magnetic waves.’
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Moreover in his autobiography, Russell gives a letter which he wrote to Gilbert Murray in
1902 which contains the following passage (1967, p. 163):

‘Although I denied it when Leonard Hobhouse said so, philosophy seems to me on the
whole a rather hopeless business. I do not know how to state the value that at moments I
am inclined to give it. If only one had lived in the days of Spinoza, when systems were
still possible ...’

In view of Russell’s doubts and guilt feelings, it is quite ironical that his work has turned
out to be so useful in computer science.

Russell’s theory of types failed in its original purpose of providing a foundation
for mathematics. The mathematical community preferred to use the axiomatic set theory
developed by Zermelo and others. Indeed type theory is not taught at all in most
mathematics departments. The situation is quite different in computer science
departments where courses on type theory are a standard part of the syllabus. This is
because the theory of types is now a standard tool of computer science.

Let us now examine how Russell’s ideas about types came in to computer science. A
key link in the chain was Church who worked for some of his time on Russell’s
programme. Indeed Church’s invention of the -calculus arose out of his attempts to
develop the logicist position of Russell and Whitehead (1910-13). Russell and
Whitehead had written the class of all a’s such that f(a) as â f(a). Church wished to
develop a calculus which focused on functions rather than classes, and he referred to the
function by moving the symbol down to the left of a to produce ^ a f(a). For typographic
reasons it was easier to write this as x f(x), and so the standard notation of the -
calculus came into being. (cf. Rosser, 1984, p. 338)

Church had intended his first version of the -calculus (1932) to provide a new
foundation for logic in the style of Russell and Whitehead. However it turned out to be
inconsistent. This was first proved by Kleene and Rosser in 1935 using a variation of the
Richard paradox, while Curry in 1942 provided a simpler proof based on Russell’s
paradox. Despite this set-back the -calculus could be modified to make it consistent,
and turned out to be very useful in computer science. It became the basis of
programming languages such as LISP, Miranda, and ML, and indeed is used as a basic
tool for the analysis of other programming languages. Functional programming languages
such as Miranda and ML are usually typed, and indeed some form of typing is
incorporated into most programming languages. It is desirable when specifying a
function e.g. f(x,y) to specify also the types of its variables x, y, otherwise errors can be
produced by substituting something of the wrong type for one of the variables which will
often produce a nonsensical answer. Of course the type theories used in contemporary
computer science are not the same as Russell’s original type theory, but they are
descendants nonetheless of Russell’s original system. An important link in the chain was
Church’s 1940 version of the theory of types which was developed from Russell’s theory,
and which influenced workers in computer science. Davis sums up the situation very
well as follows (1988b, p. 322):
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‘Although the role of a hierarchy of types has remained important in the foundations of
set theory, strong typing has not. It has turned out that one can function quite well with
variables that range over sets of whatever type. So, Russell’s ultimate contribution was
to programming languages!’

Robinson’s ideas about the different requirements of humans and computers
regarding logico-linguistic systems help to explain what happened here. A system whose
variables may be of a variety of different types is awkward and inconvenient for humans
to handle, nor does it really confer any advantages. Humans can easily in most cases
avoid making type errors in formulae, since their intuitive grasp of the meaning which the
formula is supposed to convey will prevent them from writing down nonsense. The
situation is almost exactly the opposite as regards computers. Computers have no
problem at all about handling variables belonging to many different types. On the other
hand, without the guidance provided by a strictly typed syntax, a computer can easily
produce nonsensical formulae, since it lacks any intuitive grasp of the intended meaning
of the formula. One again different systems are suitable for human and computers, so
that it is not so in appropriate after all that set theory but not type theory is taught in
mathematics departments, and type theory in computer science departments.

I have mentioned so far quite a number of uses of logic in computer science, but
in fact there are several more. Logic is a fundamental tool for both program and
hardware verification. As regards programming, the influence of logic is not restricted to
the specifically logical programming languages such as PROLOG and LISP mentioned
above. In fact logic has provided the syntactic core for ordinary programming
languages.2 At an even more fundamental level, the Begriffsschrift is the first example of
a fully formalised language, and so, in a sense, the precursor of all programming
languages.3

We must now try to tackle the problem which has arisen from the preceding
discussion. The research of Frege and Russell was motivated by philosophical
considerations, and they were influenced either not at all, or to a negligible extent, by
considerations to do with computing. Why then did their work later on prove so useful in
computer science?

Before the work of Frege and Russell, mathematics might be described as semi-
formal. Of course symbolism was used, but the symbols were embedded in ordinary
language. In a typical proof, one line would not in general follow from the previous ones
using some simple logical rule of inference. On the contrary, it would often require a
skilled mathematician to ‘see’ that a line followed from the previous ones. Moreover
even skilled mathematicians would sometimes ‘see’ that a line in a proof followed from
earlier lines when it did not in fact follow. As a result mistaken proofs were often
published, even by eminent mathematicians. Moreover the use of informal language
often resulted in ambiguities in the concepts employed, which could create confusions
and errors.

Of course mathematics is still done today in this semi-formal style, but Frege, in
his quest for certainty, thought that he could improve things by a process of
formalisation. Concepts would have to be precisely defined to avoid ambiguities and
confusions. The steps in a proof would have to be broken down, so that each individual
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step involved the application of a simple and obviously correct logical rule. By this
process, which Frege thought of as the elimination of anything intuitive, he hoped to
eliminate the possibility of error creeping in. As he put it (1884, 2): ‘The aim of proof is
... to place the truth of a proposition beyond all doubt ...’ It was this approach led him to
develop a formal system of logic, his Begriffsschrift (or concept writing) which is
equivalent to present day predicate calculus.

It is now easier to see how the methods which Frege used in his search for
certainty in mathematics created a system suitable for use in computer science. What
Frege is doing is in effect mechanising the process of checking the validity of a proof. If
a proof is written out in the characteristic human semi-formal style, then its validity
cannot be checked mechanically. One needs a skilled human mathematician to apply his
or her intuition to ‘see’ whether a particular line follows from the previous ones. Once a
proof has been formalised, however, it is a purely mechanically matter to check whether
the proof is valid using the prescribed set of rules of inference. Thus Frege’s work can be

seen as replacing the craft skills of a human mathematician with a mechanical process.4

The process of mechanisation in general takes place in something like the
following manner. The starting point is handicraft production by skilled artisans. The
next step is the division of labour in the workshop in which the production process is
broken down into smaller and simpler steps, and an individual worker carries out only
one such step instead of the process as a whole. Since the individual steps are now quite
simple and straightforward, it becomes possible to get them carried out by machine, and
so production is mechanised.

Frege and his successors in the logicist tradition were carrying out an analogous
process for mathematics. Mathematical proofs were broken down into simple steps
which at a later stage could be carried out by a machine. From a general philosophical
point of view, Frege and Russell were engaged in the project of mechanising thought.
Since they lived in a society in which material production had been so successful
mechanised and in which there was an ever increasing amount of mental (white collar)
labour, this project for mechanising thought was a natural one. Moreover it was equally
natural that mathematics should be the area chosen to begin the mechanisation process,
since mathematics was already partially formalised, unlike other areas of thought.

These considerations perhaps explain why the philosophy of mathematics has
assumed such importance within the philosophy of our time. Naturally as well as the
thinkers who have pressed forward with the mechanisation of mathematics, there have
been those who have objected to this mechanisation, and stressed the human and intuitive
aspects of mathematics. Poincaré, Brouwer, Gödel, the later Wittgenstein, and, more
recently, Penrose all belong to this trend. Although this line of thought is in many ways
reactionary and of course has not halted the advances of mechanisation, there is
nonetheless some truth in it, for, as long as mathematics continues to be done by humans
at all, it will evidently retain some intuitive characteristics. This is another reason why
the logicists although they thought they were building a secure foundation for
mathematics and rendering its results certain, were in fact creating a form of mathematics
suitable for computer science.
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4. How Computer Science has affected Logic

So far we have examined how logical ideas, originating in the logicist programme
for the philosophy of mathematics, proved useful in computer science. However the
application of these logical concepts to computer science resulted in changes in the
concepts themselves. We will next examine some of these changes. The earlier
theoretical work of Robinson, Kowalski and others had been concerned with the problem
of adapting ordinary classical 1st-order logic for the computer. In the course of actually
implementing PROLOG it turned out that use had to made not of classical negation, but
of a different type of negation called negation as failure. This issue was clarified by
Clark in his 1978, which contains a study of this new type of negation. A logic with
negation as failure is just one example of a new type of logic known as non-monotonic
logic. Non-monotonic logic has been developed by computer scientists since the early
1980’s, and is an example of an entirely new kind of logic which was introduced as the
result of applying logic to computer science.

PROLOG, because of its negation as failure, turned out to be a non-monotonic
logic. We must next examine what is a much more profound change – namely
PROLOG’s introduction of control into deductive logic. As we shall see, negation as
failure is really just one consequence of PROLOG’s control elements. We can perhaps
most easily introduce the topic of logic and control by comparing a passage from Frege
with one from Kowalski. In the conclusion of his 1884 book on The Foundations of
Arithmetic, Frege claims to have made it probable that his logicist programme can be
carried out. He goes on to describe what this means as follows (1884, §87, p. 99):

‘Arithmetic thus becomes simply a development of logic, and every proposition
of arithmetic a law of logic, albeit a derivative one. … calculation becomes
deduction.’

Let us compare Frege’s statement: ‘calculation becomes deduction’ with the following
statement from Kowalski’s (1979) Logic for Problem Solving, p. 129: ‘computation =
controlled deduction’. It is clear that Kowalski has added control to Frege’s deduction.
Let us now try to see what this means.

Suppose we have a PROLOG database (including programs). If the user inputs a
query e.g. ?- p(a). (i.e. is p(a) true?), PROLOG will automatically try to construct a
proof of p(a) from the database. If it succeeds in proving p(a), the answer will be: ‘yes’,
while, if it fails to prove p(a), the answer will be: ‘no’ (negation as failure). In order to
construct these proofs, PROLOG contains a set of instructions (often called the PROLOG
interpreter) for searching systematically through various possibilities. The instructions
for carrying out such searches are clearly part of a control system which has been added
to the inference procedures of the logic.

One symptom of the addition of control is that logic programs often contain
symbols relating to control which would not occur in ordinary classical logic. An
example of this is the cut facility, written !. The PROLOG interpreter when conducting
its searches automatically backtracks in many situations. In some problems, however, we
may not wish the program to carry out so much backtracking which could result in a
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waste of time, the provision of unnecessary solutions etc. The facility ! controls, in a
precise though somewhat complicated way, the amount of backtracking which occurs.

Negation as failure can be defined in terms of !, and another of PROLOG’s
control elements: fail, a primitive which simply causes the interpreter to fail. A logic
program which defines negation as failure is the following:

not X :- X, !, fail.
not X.

The program works like this. Given the task of trying to prove not p, it matches to the
leftmost part of the first sentence by setting X = p. It then moves on to trying to prove
the first part of right side of the conditional, which with the substitution X = p is simply
p. If PROLOG succeeds in proving p, it carries out ! which controls backtracking, and
then reaches fail which causes the whole sentence to fail. Because of the operation of !,
the interpreter is not allowed to consider the next sentence i.e. not X. Thus PROLOG has
failed to prove not p. To sum up: if PROLOG can prove p, it fails to prove not p. If,
however, PROLOG fails to prove p, then the first sentence fails before ! is reached.
Backtracking is not therefore prevented, and so the PROLOG interpreter goes on to
consider the second sentence not X. By substituting X = p, this sentence enables it to
prove not p. Thus if PROLOG fails to prove p, it succeeds in proving not p. So the logic
program does indeed define negation as failure. The interesting point here is that
negation as failure is defined using the control elements !, and fail. Thus PROLOG’s
non-classical negation arises out of its control elements, and the difference between
PROLOG and classical logic regarding negation can be seen as a symptom of the more
profound difference that PROLOG introduces control into deductive logic.

I will now argue that these developments in PROLOG are a natural extension of
the mechanisation process which gave rise to modern logic in the first place. In the
previous section I claimed that the work of Frege and Russell can be seen as a
mechanisation of the process of checking the validity of a proof. Still their classical logic
leaves the construction of the proof entirely in the hands of the human mathematician
who has to use his or her craft skills to carry out the task. PROLOG carries the
mechanisation process one stage further by mechanising the construction of proofs. In
this respect, then, it goes beyond classical logic, and this is also why PROLOG has to
introduce control into logic.

A major theme of this paper has been the different conceptual requirements of a
computer and of a human mathematician. Further light will be cast on this issue by
considering an argument against logicism which Wittgenstein formulated in his later
period. This will be the subject of the fifth and final section of the paper.

4. A Criticism of Logicism by Wittgenstein and its Significance

Wittgenstein began his career in philosophy as a student of Russell’s, and his first
published book, the Tractatus of 1921, is full of enthusiasm for Russell’s logic. Indeed
Wittgenstein claims that the new logic reveals the underlying structure of language.
After finishing the Tractatus, Wittgenstein gave up philosophy for about a decade, and
engaged in a variety of other activities. He was a village schoolmaster for several
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years, and also helped with the construction of his sister’s mansion in Vienna. Perhaps
partly because of these experiences, when he returned to philosophy he developed new
views about language which were very different from those of the Tractatus. These were
eventually published in 1953, after his death, in the Philosophical Investigations.
Wittgenstein’s later theory is that the meaning of a word is given by its use in a language-
game. By a ‘language-game’ he means some kind of rule-guided social activity in which
the use of language plays an essential part. He himself introduces the concept as follows:
‘I shall also call the whole, consisting of language and the actions into which it is woven,
the “language-game.”’ (1953, §7, p. 5). And again: ‘Here the term “language-game” is
meant to bring into prominence the fact that the speaking of language is part of an
activity, or of a form of life.’ (1953, §23, p. 11)

Wittgenstein illustrates his concept of language-game by his famous example
involving a boss and a worker on a building site. The boss shouts ‘slab’, for example,
and the worker has to fetch a slab. Wittgenstein’s point is that the meaning of the word
‘slab’ is given by its use in the activity carried out by boss and worker.

Wittgenstein also devoted a great deal of thought to the philosophy of
mathematics during his later period. His reflections on this subject were eventually
published as Remarks on the Foundations of Mathematics in 1956, though they were
written much earlier. In these remarks, Wittgenstein displays great hostility both to
logicism and the use of logic in mathematics. He speaks of ‘”The disastrous invasion” of
mathematics by logic.’ (1956, V-24, p. 281), and of ‘The curse of the invasion of
mathematics by mathematical logic …’ (1956, V-46, p. 299)

These harsh words about logic are of course connected with his new views of
language and meaning. Wittgenstein now thought that it was absurd to claim that the
whole of mathematics could be reduced to a single system such as Principia
Mathematica. On the contrary mathematics consists of a whole variety (or motley) of
techniques carried out in different language-games; as he says: ‘ … what we call
mathematics is a family of activities with a family of purposes …’ (1956, V-15, p. 273).
These mathematical language-games are also connected with the language-games of
everyday life, as, for example, arithmetic may be used on the building site.

From this point of view, Russell’s Principia Mathematica does not provide a
foundation for mathematics, but is simply a new piece of mathematics, a new
mathematical language-game. As Wittgenstein says (1956, III-4, p. 146):

‘But still for small numbers Russell does teach us to add; for then we take the
groups of signs in the brackets in at a glance and we can take them as numerals; for
example ‘xy’, ‘xyz’, ‘xyzuv’.

Thus Russell teaches us a new calculus for reaching 5 from 2 and 3; and that is
true even if we say that a logical calculus is only – frills tacked on to the arithmetical
calculus.’

In my view this is partly right and partly wrong. I agree with Wittgenstein that
mathematical logic is a new mathematical calculus but does not provide a foundation for
the rest of mathematics as the logicists thought it would. On the other hand Wittgenstein
clearly thought that this new mathematical calculus was useless, and that ‘a logical
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calculus is only – frills tacked on to the arithmetical calculus.’ The passages I have
quoted from Wittgenstein were written in the period 1939-44, and it was not
unreasonable at that time to think that the formal systems produced by the logicists would
be useless. Contrary, however, to Wittgenstein’s expectations, these same logicist
systems turned out to be very useful for computer science. I next want to argue that
Wittgenstein’s later theory of meaning, with which I largely agree, helps to explain why
formal logic has proved valuable in computer science.

Let us return to the example of the boss and the worker on the building site. If
the boss shouts ‘slab’, and the worker fetches a slab, then we can surely say that the
worker has understood the meaning of the word ‘slab’, because he has acted
appropriately, or, in Wittgenstein’s terminology, has made the right move in the
language-game. It is interesting in this context to consider the historical example of the
Norman conquest of England. The Normans spoke French and the serfs on the estates
which they had conquered spoke English. This must have created difficulties for the
Norman overlords in giving orders to their serfs. Thus the lord might have said:
‘Donnez-moi un de vos moutons’, while the serf would only have understood: ‘Give me
one of your sheep’. Now the serfs would have lacked the educational facilities to learn
French, and it might indeed have been in their interest to pretend to understand less
French than they really did. Thus the Norman overlords must have been forced to learn
English to be able to give orders to their serfs. This may perhaps explain why the
speaking of French disappeared in England over the centuries, though not before it had
modified the English language in many ways. Let us now see how all this might be
applied to computers.

Several philosophers have denied that computers can understand language, but, if
we adopt Wittgenstein’s later theory of meaning, it looks as if they were wrong to do so.
In Wittgenstein’s example, we have only to replace the worker by a computer. I can
certainly give orders to my computer, by, for example, typing in a program. If the
computer carries out my instructions, surely it is sensible to say, just as in the human
case, that it has understood those instructions. The computer and I are playing a
language-game. Both of us are using the symbols involved correctly, and so, by
Wittgenstein’s criterion, we both understand the meaning of those symbols. In a similar
fashion, we can say that dogs understand at least a few words of human language. Thus
if my dog performs the appropriate actions when I say: ‘sit’, ‘beg’ and ‘fetch’, we can
say that he understands the meaning of these three words. There is, however, a very
significant difference between dogs and computers as regards language. Dogs can only
understand commands consisting of essentially of one symbol (which may in practice be
composed of a few words, e.g. sit down). Grammar is quite beyond them. Computers by
contrast are much more finicky about grammar than humans. Humans often speak
ungrammatically, and their utterances can usually be understood nonetheless. This
applies even to the greatest of writers. Thus Shakespeare in describing the wound which
Brutus gave Caesar wrote: ‘This was the most unkindest cut of all’ (Julius Caesar, act III,
scene ii, line 188). Shakespeare’s line is surely ungrammatical, and yet it is perfectly
comprehensible to us. By contrast my computer has, all too frequently, failed to
understand one of my instructions merely because that instruction has contained some
trivial syntactical error!
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This brings us back to the central theme of the different linguistic requirements of
computers and humans. Computers find it easiest to understand very precise formal
languages which are difficult for humans. The language which is easiest for computers is
machine code which is quite opaque to all but a few highly trained humans. Conversely
humans find loose informal natural (for humans) languages very easy to understand, and
these cannot be understood at all by computers. This is the point of the analogy with the
French-speaking Norman lords, and their English-speaking serfs. We humans are in the
position of the Norman lords with regard to our computer serfs. These computers will do
wonderful things for us, but we have to give them their orders in a language they can
understand. This is a difficult task since computers cannot cope with languages which
are easy and natural for us. This is where the language of formal logic has proved to be
helpful. This language is intermediate between the machine code which is natural for
computers, and an everyday language such as English which is natural for humans.
Formal logic has the precise syntax which makes its sentences accessible to computers,
while it has sufficient resemblance to ordinary language to be comprehensible to humans
after a little training. Even within logic itself, there are, as Robinson pointed out in the
passages quoted above in section 3, some formulations which are more suitable for
computers and others that are more suitable for humans. Thus the clausal form of logic
with its single, but complicated, rule of inference is more suitable for computers, whereas
other systems of logic with several, but much simpler, rules of inference are more
suitable for humans. In general terms, however, formal logic is a language system
somewhat intermediate between those which are most suitable for computers, and those
which are most suitable for humans. It is thus very helpful in facilitating human-
computer interaction, and this I would see as the fundamental reason why it has proved so
useful in computer science.

Frege in the Begriffsschrift where he introduces a formal system for logic for the
first time explains the differences between his system and ordinary language by means of
a striking analogy (1879, p. 6):

‘I believe that I can best make the relation of my ideography to ordinary language
clear if I compare it to that which the microscope has to the eye. Because of the
range of its possible uses and the versatility with which it can adapt to the most
diverse circumstances, the eye is far superior to the microscope. Considered as an
optical instrument, to be sure, it exhibits many imperfections, which ordinarily
remain unnoticed only on account of its intimate connection with our mental life.
But, as soon as scientific goals demand greater sharpness of resolution, the eye
proves to be insufficient. The microscope, on the other hand, is perfectly suited to
precisely such goals, but that is just why it is useless for all others.’

Similarly the language of formal logic is suited to the scientific goal of communicating
with computers, since this task demands great precision of expression. It is less suited,
however, to the task of communicating with other human beings.

The idea that different languages are suited to different purposes is already to be
found in a reputed saying of the multi-lingual emperor Charles V. He is supposed to have
said that he found French the most suitable language for talking to men, Italian for
women, Spanish for God, and German for horses. If he had lived today, he could have
added that the language of formal logic was the most suitable for talking to computers.
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Notes

* I have been researching into the connections between philosophy and computer
science for several years now. The specific focus on philosophy of mathematics
arose out of discussions with Yuxin Zheng during his visit to King’s College
London from April to September 1997. This visit was made possible by Yuxin
Zheng’s receipt of a British Academy K.C.Wong Fellowship, and a travel grant
from the Open Society Institute. I would like to thank the British Academy and
the Open Society Institute for the support, which made this collaborative research
possible, as well as Yuxin Zheng for many helpful suggestions.

Earlier versions of some of the ideas in this paper were presented at the
Annual Conference of the British Society for the Philosophy of Science in
September 1998, at the Logic Club, Department of Philosophy, University of
California, Berkeley in November 1998, at a conference on Philosophy and
Computing at King’s College London in February 1999, and at the Applied Logic
Colloquium at Queen Mary College London in November 1999. I am very
grateful for the comments received on these occasions, and particularly for some
points made by Martin Davis at Berkeley, one of which is mentioned in footnote 3
below.

I would also like to thank a number of computer scientists with whom I
discussed this problem and who made many helpful suggestions, which have been
incorporated in the paper. These include James Cussens, Mark Gillies, Stephen
Muggleton, David Page, and Ashwin Srinivasan.

1. For further details of Frege’s logicism, and the impact on it of Russell’s paradox,
see Gillies (1982).

2. I owe this point to Mark Priestley who is researching into this topic at the
moment.

3. I owe this point to Martin Davis. See his 1988b, 316.

4. It should be stressed that this is my way of viewing Frege’s work, and that Frege
himself would not have seen things in this light. (I owe this point to Carlo
Cellucci.)
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