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Abstract 
The spectrum of an axial graph is proposed as a means for comparison between spaces, 
particularly for measuring between very large and complex graphs. A number of methods have 
been used in recent years for comparative analysis within large sets of urban areas, both to 
investigate properties of specific known types of street network or to propose a taxonomy of urban 
morphology based on an analytical technique. In many cases, a single or small range of pre-
defined, scalar measures such as metric distance, integration, control or clustering coefficient have 
been used to compare the graphs. While these measures are well understood theoretically, their 
low dimensionality determines the range of observations that can ultimately be drawn from the data. 
Spectral analysis consists of a high dimensional vector representing each space, between which 
metric distance may be measured to indicate the overall difference between two spaces, or 
subspaces may be extracted to correspond to certain features. It is used for comparison of entire 
urban graphs, to determine similarities (and differences) in their overall structure.  
 
Results are shown of a comparison of 152 cities distributed around the world. The clustering of 
cities of similar properties in a high dimensional space is discussed. Principal and nonlinear 
components of the data set indicate significant correlations in the graph similarities between cities 
and their proximity to one another, suggesting that cultural features based on location are evident in 
the city form and that these can be quantified by the proposed method. Results of classification 
tests show that a cityâ€™s location can be estimated based purely on its form.  
 
The high dimensionality of the spectra is beneficial for its utility in data-mining applications that can 
draw correlations with other data sets such as land use information. It is shown how further 
processing by supervised learning allows the extraction of relevant features. A methodological 
comparison is also drawn with statistical studies that use a strong correlation between human 
genetic markers and geographical location of populations to derive detailed reconstructions of 
prehistoric migration. Thus, it is suggested that the method may be utilised for mapping the transfer 
of cultural memes by measuring comparison between cities.  
 

1. Introduction 
Quantifiable links have been suggested between comparative spatial differences as expressed by 
graph representations and the cultural or geographic differences in which the space is situated, 
particularly for smaller buildings such as houses (Hillier et al. 1987; Conroy-Dalton and Kirsan 
2008). A number of methods have also been used in recent years for comparative analysis within 
much larger data sets of urban areas, both to investigate properties of specific known types of 
street network (Peponis et al. 2007) or to propose a taxonomy of urban morphology based on an 
analytical technique (Figueiredo and Amorim 2007). In many cases, a single or small range of pre-
defined, scalar measures such as metric distance, integration, control (Hillier and Hanson, 1984) 
or clustering coefficients (Watts and Strogatz 1998) have been used to compare the graphs of 
these spaces, but while these measures are well understood theoretically, their low dimensionality 
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determines the range of observations that can ultimately be drawn from the data. Comparison of 
spaces is limited to the scales determined by the chosen measures, and if an indication of cultural 
or other specific traits is sought these scales may not be the most relevant - the traits in question 
may be more complex.  
 
Analysis of cities is a specific instance of the wider premise that cultural traits in general are 
expressed in the artefacts produced and that these traits have a local influence that can be seen to 
vary over distance. In the fields of genetic and linguistic prehistory, for example, statistical studies 
by Cavalli-Sforza, Menozzi and Piazza (1994) use a strong correlation between human genetic 
markers and geographical location of populations to derive detailed reconstructions of prehistoric 
migration. The measurement of similar comparisons between cities invites comparison with these 
linguistic and genetic measures, and thus offers a similar mapping for the transfer of cultural 
memes. Genetic measurements, however, are highly multivariate and are also accessible directly 
by DNA sampling, whereas evaluation of memes is always based on an interpretation of their 
effects.  
 
Graph spectra have been used to effectively index, classify and retrieve complex, high dimensional 
data in pattern recognition and image classification applications (Luo et al. 2003; Robles-Kelly and 
Hancock 2003), and are suggested here as a means to analyse spaces due to their ability to 
represent graphs in many dimensions simultaneously, and their derivation directly from the graph. 
They have been shown as applicable to the representation of axial and similar graphs of fewer 
than 100 nodes in (Hanna 2007), but are suited to comparative measurement between much 
larger graphs. To demonstrate and test the method, a very large data set of 152 entire urban 
graphs will be used, each of a mean size of approximately 6,500 nodes. Similarities (and 
differences) between the overall structures of the cities they represent will be determined from the 
graph spectra alone.  
 
An underlying working hypothesis will be required to test the spectral representation. Typically an 
alternative and established means of measurement is used as a datum in applications of graph 
comparison; previous experiments on graph spectral distance use either an existing database of 
samples such as images that can be evaluated by simple visual similarity (Robles-Kelly and 
Hancock 2003), or generate new samples with an expected variation in distance by parametric or 
random means (Zhu and Wilson 2005). Conroy-Dalton and Kirsan (2008) use cultural difference to 
label samples from two local but separate communities in testing the implicit assumption that this 
correlates to graph distance. A similar method will be used here, in which cultural difference is 
equated with geographical distance, but with two caveats. First, it is acknowledged that this is a 
simplification in that a number of important cultural variables are ignored - not least of which is the 
age of the city, or even distinct neighbourhoods within a city. Unfortunately, data was unavailable 
for these variables, but this means that results will be necessarily limited and would only be 
improved by the availability of better data. Second, due to natural geographic avenues of 
communication, colonisation, political division and other factors it is almost certain that some 
cultural similarities exist across great distances while some differences exist more locally. In fact it 
is this sort of cultural pattern, if viewed as a departure from a uniform rate of geographical change, 
that this method may help illuminate. The experiments here therefore test the hypothesis that there 
is a correlation between a city's form - as represented by its spectrum - and its geographical 
location.  

 
2. Spectra of axial graphs 
The spectrum of a graph is the ordered set of eigenvalues of its connectivity matrix, and can be 
used to representing the graph as a single feature vector. This can be recommended for several 
reasons. First, it remains invariant under all permutations of the original matrix, and is therefore 
identical for all isomorphic graphs. Additionally, it has been suggested that almost all graphs of a 
substantial size may be uniquely determined by their spectrum (Van Dam and Haemers 2002). Zhu 
and Wilson (2005) have exhaustively tested all graphs up to a node count of 20 and determined 
that the number of cospectral graphs increases up to a node count of between 10 and 15, then 
declines. This indicates for the node counts of even small axial line graphs, and especially for the 
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city graphs examined here (up to 79740 nodes), spectra may be considered nearly unique to their 
graphs. Most importantly, the Euclidian distance between graphs has been shown to correlate 
highly with differences between graphs generated by random edge changes (Zhu and Wilson 
2005) and parametric changes to plans generating the graphs (Hanna 2007).  
 
2.1 Defining the Spectrum for Plan Representation 
An unlabeled graph with a set of nodes V and a set of edges E can be represented in matrix form 
by an adjacency matrix A, a |V| × |V| matrix defined by:  
 

   ⎧  1 if (i,j) ∈ E 
(1) A(i,j) = ⎨ or 

⎩  0 otherwise.  
     

The spectrum of the graph is found by taking the eigendecomposition of this matrix - eigenvalues 
λ and eigenvectors φ for A are given by solving for 
 

(2)                   A = ΦΛΦT    
    

Φ = ( φ1 | φ2 | … | φ|V| ) 
 

Λ = diag( λ 1, λ 2, … , λ |V| ) 
 
 

(3)                 { λ1, λ2, … , λ|V| }.   
  

|λ1| > | λ2| > … > |λ|V|| 
 
 
2.2 Assembling the Feature Vector 
Graphs to be compared may vary considerably in size (46 to 79740 nodes in the set examined 
here) but their spectra must be of identical dimensionality to permit measurement of Euclidian 
distance. In most applications (e.g. Luo et al. 2003; Robles-Kelly and Hancock 2003), values are 
sorted by absolute magnitude such that |λ1| > | λ2| > ... > |λ|V||, and the vector is composed of 
the first n values:  
 

(4)      S = ( λ1, λ2, … , λn )T.  
 
Graphs produced by plan adjacencies (axial or segment graphs of street networks or minimal axial 
maps of any plan space) are naturally sparse, as connections between nodes can only occur 
where lines intersect locally. This is beneficial, as Arnoldi iteration may be used to estimate only the 
largest n eigenvalues required, rather than the whole set for large graphs. In this paper, ARPACK, 
accessed by Matlab function eigs(), was used to perform the estimate of the largest 100 
eigenvalues.  
 
It is essential that the spectral eigenvalues be ordered consistently for all graphs. Sorting by 
magnitude as mentioned above can be problematic when S contains several values that are of the 
same magnitude, either positive or negative, and the resulting sort yields a different order for 
identical graphs. Sorting by actual value, including the sign such that λ1 > λ2 > ... > λ|V|, avoids 
this problem and is the method used here.  

 
3. Comparison of cities by their spectra 
Axial graphs were obtained for all 152 cities in the data set. The spectra were produced from these 
based on adjacency matrices in which each axial line is represented by a graph node, and vertices 
indicate intersections with other axial lines. To enable measurement in a uniform space, all feature 
vectors used a dimension of n=100 (as in equation 4.)  
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3.1 Comparison of subgroups 
The measurement of distance between graphs facilitates the analysis of assumed cultural subgroups 
within the data set, to determine both their internal homogeneity and their relative distinction from 
other groups. This approach is similar to that adopted by Conroy-Dalton and Kirsan (2008) on small 
graphs and by Cavalli-Sforza, Menozzi and Piazza (1994) on genetic and linguistic data. The basic 
underlying assumption is that if local cultural traits do manifest themselves in the artefacts studied, 
samples within a given cultural group will be more homogeneous than those across groups. 
 
A number of criteria may be used to subdivide the set-linguistic, national, topological, etc. As data 
originally supplied was already labelled by regions roughly corresponding to topological and 
linguistic divisions, these were used to provide five classes: NOR (English speaking North America: 
USA only in the data), LAT (Latin America, including Mexico, central and South America), EUR 
(Europe), ARA (presumably labelled to indicate Arabic speaking countries: actually extending from 
Arabic speaking Africa through Western Asia including Iran), and ASP (Asia-Pacific, also including 
New Zealand). The homogeneity or variance of a single group was calculated as the mean difference 
between all possible pairs of spectra within that group, and its difference from other groups as the 
mean difference between all spectra in one group and all spectra of the other. In general:  
 

(5)      dA, B = ∑i=1:n ∑j=1:m ( dAi, Bj / (n × m) )   
 
where d is measured distance. Because dimensions in the spectra are considered independent of 
one another, L1 (Manhattan) distance was used instead of L2 (Euclidian).  
 
Table 1 shows this difference between all subgroups in the set. Columns are normalised so that 
values are relative to the internal variance within each group-i.e. the first column (NOR) indicates 
that the mean difference between a city in LAT and a city in NOR is 1.41 times that of two cities in 
NOR; the mean difference between a city in EUR and a city in NOR is 1.45 times that of two cities 
in NOR; etc. The fact that for the table as a whole, most values off the diagonal are greater than 
one indicates that the groups are typically more homogeneous internally than their resemblance to 
other groups. In the most extreme case, a city in ARA is, on average, 4.65 times more similar to 
another city in ARA than it is to a city in NOR. With the groups listed by rough geographical 
location from west to east, it is also noticeable that the distinction between groups tends in general 
to increase with geographic distance. Cities in ARA, for example, are most similar to EUR then 
ASP, with which they share a land mass, more distinct from LAT and finally the most distant NOR.  
 
 

 NOR LAT EUR ARA ASP 
NOR 1 1.47 2.94 4.65 2.13 
LAT 1.41 1 1.58 2.39 1.18 
EUR 1.45 0.81 1 1.53 0.87 
ARA 1.21 0.65 0.81 1 0.70 
ASP 1.66 0.96 1.37 2.07 1 

  
External mean: 1.50 1.07 0.97 1.39 1.05 

 

Table 1 
Relative spectral distinction d between groups 
 

 
 
 
 
 

Table 2 
Spectral and location variance within groups 

 NOR LAT EUR ARA ASP 
Spectral variance (dA, A) 1136 1085 559 296 882 
Location variance (km) 1931 1742 1358 1202 2931 
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The relative distinction between groups is not entirely consistent however, as several of the values 
for d fall below 1.0. It is only somewhat surprising that Latin American cities appear more distinct 
from North American cities than from those in Europe or Asia, but it seems rather more 
questionable that they are more distinct from one another than they are from foreign cities. The 
external means in Table 1 represent the relative distinction of each group with respect to all other 
cities in the set, and while North American cities are on average 1.5 times more distinct from any 
others, cities in Europe are slightly more similar to cities around the world. Considering the initially 
somewhat arbitrary group divisions, this is explained by the internal homogeneity or heterogeneity 
of the groups themselves. Table 2 lists the actual spectral variance dA, A within each group; these 
are the actual values by which the columns in Table 1 are normalised. It can be seen that the 
group that shows the greatest values of relative distinction from other groups - ARA - is also the 
most internally homogeneous, with a variance of only 296. Similarly LAT, with apparently more 
distinction internally than with respect to several other groups, can be seen to have this because 
its own internal variance of 1085 is so high. These variances are themselves what would be 
expected if the geographical spread of each sample is taken into account. The variance of 
geographical location, expressed as mean distance in km between cities within the group, is given 
in the lower row of the table and corresponds very highly with spectral variance. The most 
homogeneous group of cities - ARA - is also the most highly clustered geographically, while as 
heterogeneity increases, so does the geographic spread of the group. Excluding ASP, which is the 
only group to span large (but easily navigable) expanses of ocean, the spectral and location 
variances correlate almost exactly, with a correlation coefficient of 0.98.  
 
As might be expected, the comparison of groups overall shows the closest resemblances between 
Eurasian groups, particularly between ARA and EUR. LAT shows almost as high a degree of 
similarity with ARA and EUR, while NOR is both the most heterogeneous and distinct from other 
groups. A good degree of correlation between city spectra and geographical location, both within 
and among groups, can thus be seen at this level of detail.  
 
3.2 Individual cities and their geographic location 
The relationship between geographic location and spectral similarity can be examined further by 
examining the data not as subgroups but as individual cities. Although each city is initially 
represented by a vector in a 100 dimensional space, a number of methods exist to reduce this 
either to a lower-dimensional space for visualisation or a single scale for analysis. Principal 
components analysis (PCA) is a linear transformation and is the most commonly recognised, but a 
number of linear and nonlinear methods were also tested, including factor analysis, kernel PCA, 
isomap and landmark isomap. All were found to perform similarly, with PCA representing close to 
the mean, and it is therefore the method described here.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 
First two principal components of city spectra. Colour indicates longitude. 
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All cities in the data set are plotted by their first and second principal components in Figure 1; 
point colour represents the longitude, from yellow (west) through blue to red (east). Most of the 
identities of the geographical subgroups in the previous section can be made out by their colour: 
NOR are the yellow and light green points mainly toward the right of the diagram; LAT are the 
green points to the left; EUR are cyan and blue; ARA are indigo; and ASP are magenta and red. 
Although considerable overlap is evident, all groups except ASP can be identified with an 
approximate region in the projected two-dimensional space.  
 
 

 
 

Figure 2  
First principal component of city spectra (vertical) against longitude (horizontal). Correlation is low 
for the entire data set (left), moderate for the northern hemisphere only (right). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 
First principal component of city spectra (vertical) against latitude (horizontal). There is a moderate 
degree of correlation (coefficient 0.44). 
 
Although some information is lost in the remaining 99 dimensions, the first principal component 
appears to describe a good deal of the variation in longitude and can be used to estimate a lower 
bound on the degree to which individual city spectra are determined by geographic location. This 
is measured in Figure 2, which plots the first principal component of all city spectra (vertical) 
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against their longitude (horizontal). The data set as a whole exhibits a low but not insignificant 
degree of correlation (0.32) between longitude and spectral component. The low value might be 
expected for two reasons: as can be seen in Figure 1, the LAT cluster is distinct from EUR and 
ARA only in the second component; and while longitude provides a reasonable indication of 
geographic location for most of the set within the northern hemisphere it is useless at indicating 
the north-south variation of the Americas. Figure 2 (right) plots the same points for the northern 
hemisphere only. More significant, moderate levels of correlation are evident, with a coefficient of 
0.46 to a linear regression, increasing to 0.55 if a quadratic function is used. Japan appears to be 
a notable outlier in this plot (the upper two red points are Tokyo and Kyoto) - if it too is removed 
from the set the linear correlation jumps to 0.57.  
 
Latitude is more significant than longitude in the location of cities in North and South America. 
Figure 3 plots the first component for LAT and NOR against their latitudinal location, also showing 
a moderate correlation of 0.44.  
 
 

 
 

Figure 4  
First (top) and second (bottom) principal components of city spectra indicated on the world map. 
Radius of circles is proportional to the log of the graph size.  
 
Diversity of geographical relationships is clearly more complicated than any single measure of 
latitude or longitude can provide, and plotting the principal components of spectra against a two 
dimensional world map gives a better indication of the variance of cities by their location. In Figure 
4 a surface is fitted to the distribution of points as an approximation of how the city spectra vary 
continuously across the world. The method is that used by Cavalli-Sforza, Menozzi and Piazza 
(1994) to plot gene frequency distributions, the principal components of which have been used to 
infer patterns of prehistoric settlement and migration. The value of each point on the surface is 
calculated as a weighted average of the data, with the weight based on relative distance to 
observed data points as in Shepard (1968). This results in a true interpolation rather than an 
approximation of points. As with genetic data, the local variance of city samples is rarely 
completely smooth, so the surface is fit not to actual values but to 'expected' values calculated 
from neighbours again by Shepard's (1968) formula (Cavalli-Sforza, Menozzi and Piazza 1994, p. 
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45). This gives a clearer picture of the locally dominant values in the regions with the highest 
density of samples.  
 
The expected value also provides a means by which a map discrepancy can be calculated for 
each city individually from the difference between its expected and observed value. Discrepancies 
were found to approximate a normal distribution with a standard deviation of 18.5. Outliers were 
determined as cities with a discrepancy greater than 2.5 times the standard deviation 
(corresponding to the 98.75 normal percentile); seven were found and omitted from the calculation 
of the surface. Calculation of the gradient was on an orthogonal latitude-longitude grid, and 
coastlines were ignored as though this gradient were to continue between continents. The primary 
overall observation is that there is now a marked correlation between map expected values and 
non-outlier spectra. The first principal component is plotted in Figure 4, and correlates with a 
coefficient of 0.61 across all regions of the globe, nearly doubling from the linear longitudinal 
correlation of 0.32. Some of the large regional similarities noted in comparing large regions above 
(e.g. the similarity between Western Europe and the east coast of South America) as well as finer 
such details (e.g. the similarity of Mediterranean and Iranian cities) can be seen in the values of the 
interpolated surface. At the scale of individual cities, trends of resemblance can be seen along 
isogenic lines across land masses, and a city's similarity or difference from its immediate 
neighbours. The cities with the greatest discrepancy from their surroundings - the outliers in the set 
- will be discussed in the following section.  

 
4. Classification and feature extraction 
The above analyses assume no prior knowledge of city location or cultural context; they are based 
purely on spectral relationships alone - first pair-wise distances, then with PCA the maximum 
dimensions of variance of the set as a whole. However, there is no reason to believe that the 
dimensions measured necessarily correspond to the most meaningful features for differentiating 
cities from one another on a geographical or cultural basis. One of the advantages of the high 
dimensionality of the spectral feature vectors is that any number of arbitrary linear or non-linear 
subspaces may be taken through this space, separating clusters which would otherwise appear to 
overlap. Supervised machine learning is used in this section to derive these subspaces.  
 
While the subgroups of the data set were seen to overlap considerably by metric distance alone in 
Table 1 and by principal components in Figure 2, a support vector machine (SVM, Vapnik 1995) 
was used to learn the mapping in which a classification between these subgroups can be made. It 
is thus a test of the possibility of learning the relevant dimensions in which the cultural or 
geographic classes can be distinguished purely by their city spectra. For each test the SVM was 
trained on subgroups arranged into two classes (labelled [- 1, 1]). The SVM kernel was a radial 
basis function with some preliminary optimisation of the parameters (Υ and σ2 a Gaussian) to the 
portion of the data set used, yielding the range of settings as noted in Table 3. Training was 
validated using leave-one-out cross validation - the SVM was trained on the set without the city in 
question, then that city's class determined by the trained SVM. This is the least biased method of 
validation (Reich and Barai 1999) as each classification by the algorithm is thus made purely on 
the basis of other cities that are similar in the relevant dimensions.  
 
4.1 Classifying by subgroup divisions 
The first test attempted to distinguish European cities from those in the Americas (North and 
South), drawing the classification on the geographical separation of the Atlantic Ocean and leaving 
aside for the moment the ARA and ASP portions of the data set. As noted in the discussion of 
mean distance measures and of principal components, the apparent similarity between the LAT 
and EUR groups indicate this division may not be the most relevant to the city spectra, but most 
cities were correctly classified nevertheless, with a validation rate of 83.0% (17% misclassified).  
 
The size of the data (117 cities) used for this run is reasonably comfortable but not conclusive, and 
access to more city spectra would be desirable. Results were seen to improve by adding the ARA 
subgroup to EUR such that all cities except for Pacific Asia are classified classifying for the same  
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 (EUR) 
(NOR+LAT) 

(EUR+ARA) 
(NOR+LAT) 

(EUR+ARA+ASP)
(NOR+LAT) 

(EUR+ARA)
(NOR+LAT+ASP) PCA1 Outliers 

γ=1.3  σ2=677 γ=7.8  σ2=307 γ=52.5  σ2=459 γ=812  σ2=4718  
Error: 17.0% Error: 15.8% Error: 23.7% Error: 19.7%  
ARA    
 Gurgan Gurgan Gurgan  
 Kerman Kerman Kerman  
ASP    
   Ahmedabad  
   Auckland  
   Dhaka  
   Hong Kong  
   Phuket  
   Shanghai  
  Chengkan   
  Hongcun   
  Johor Bahru   
  Kyoto   
  Pequim   
  Xidi   
  Yuliang   
  Zhanqi   
EUR    
Athens   Athens Athens 
Barcelona Barcelona Barcelona Barcelona Barcelona 
Gassin Gassin Gassin Gassin  
   Konya  
  Lisbon Lisbon  
 London London   
Manchester     
Mytilini Mytilini Mytilini Mytilini  
Nafplion Nafplion Nafplion Nafplion Nafplion 
   Nicosia  
Prague   Prague  
LAT    
Aracaju Aracaju Aracaju Aracaju  
  Brasilia   
    Fortaleza 
Maceio Maceio Maceio Maceio  
Porto Alegre Porto Alegre Porto Alegre Porto Alegre  
Rio de Janeiro Rio de Janeiro Rio de Janeiro Rio de Janeiro  
Salvador Salvador Salvador Salvador  
 Sao Luis Sao Luis Sao Luis  
    Sao Paulo 
Florianopolis Florianopolis Florianopolis Florianopolis  
Vitoria Vitoria Vitoria   
  Alcantara   
Cidade de Goias Cidade de Goias Cidade de Goias Cidade de Goias  
  Diamantina   
  Mucuge   
Ouro Preto Ouro Preto Ouro Preto Ouro Preto  
Penedo Penedo Penedo   
Petropolis Petropolis Petropolis Petropolis  
  Pirenopolis   
NOR    
Ann Arbor Ann Arbor Ann Arbor Ann Arbor Ann Arbor 
Atlanta Atlanta Atlanta Atlanta  
    Chicago 
  Washington Washington  

 

Table 3  
Errors in classification by SVM, and outliers from the first principal component map. 
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Atlantic division. With a combined set of 133 cities, correct validations rose slightly to 84.2%. A 
further classification was made of the entire data set, again using the oceans as a natural boun-
dary and grouping together the landmasses - Americas in one class, Afro-Eurasia in the other. 
Although the overall number of samples is greater (by 19), in taking a geographically and culturally 
diverse group including EUR, ARA and ASP to be a unity it should not be expected that 
classification will improve. The validation error did increase, primarily in misclassifying cities in 
ASP, but classification is still reasonably successful with 76.3% correct. An alternative placement of 
ASP may be made in linking it to the Americas via the Pacific Ocean. In classifying the entire data 
set as two groups of (EUR + ARA) and (NOR + LAT + ASP) validation showed an improvement to 
80.3% correctly classified.  
 
4.2 Individual cities and classification errors 
More detail about the relationship of individual cities to their allotted class can be gained from the 
list of those misclassified over the various runs of the SVM. Table 3 lists the classification errors for 
the four divisions described above. As mentioned, between columns one and two the classification 
error decreased with the addition of ARA to the EUR set. While two of the newly added cities were 
misclassified in the second run, the improvement is exclusively in the correct classification of two 
cities - Athens and Prague. As being classed with a given group suggests a similarity with that 
group, this indicates that these bear a meaningful resemblance to the ARA group. It is possibly 
significant that these are two relatively eastern cities in Europe, as they are later misclassified 
again (column 4) with the far eastern cities when ASP is added to the Americas class. London, by 
contrast, shows precisely the opposite pattern - it is correctly classified in the two cases when its 
class is most clearly biased toward western cities (columns 1 and 4) but grouped with the 
Americas when the Afro-Eurasian class is more predominantly eastern.  
 
The entire set of errors within ASP when the Asia-Pacific cities are added to the data set are 
mutually exclusive - not one city is misclassified in both instances. As with the EUR city errors 
above, this is also likely an indication of the resemblance of these to other subgroups - the eight 
cities in column 3 are more like the Americas, the six in column 4 more like Eurasia.  
 
Where the fluctuation of a classification error as classes are recomposed indicates a resemblance to 
the geographic subgroup of cities relabelled, a persistent misclassification suggests a city is unlike 
others within its own group. Other than the cities mentioned, most errors are repeated in all runs of 
the SVM, indicating that these cities are outliers, at least with respect to the Atlantic boundary used in 
these divisions. This is corroborated to some degree in column 5, which lists the seven cities 
previously labelled as outliers in mapping the first principal component to geography, as 4 of these 
correspond with cities repeatedly misclassified by SVM. The three European outliers (Athens, 
Barcelona and Nafplion) are confirmed as consistently atypical of their subgroup. By contrast, the 
fact that the two Brazilian outliers in LAT are never misclassified would suggest that these differ from 
their neighbours only in ways that resemble the cities of North America where much of the LAT set 
does not. This is in agreement with the previously noted evidence of metric distance and PCA that 
suggests the (NOR + LAT) grouping is not as evident as longitude and landmass would suggest.  

 
5. Conclusions 
The comparison of world cities has been used as a demonstration and test of the method of graph 
representation. This was based on the premise that a city's form is partially dependent on cultural 
factors that are transmitted locally, and therefore tested the graph spectral representation by 
measuring the correlation between city's geographical location and its spectrum. Although this 
premise is a risky simplification in that many factors other than location are certainly significant in 
influencing spatial morphology, the spectra were nevertheless able to demonstrate a relationship. 
Metric distance between groups of spectra provided a means by which internal homogeneity 
within - or distinction between - groups of cities were measured, and this appears to correspond 
with relative physical distance and geographic spread. Principal and nonlinear components of the 
data set indicate a correlation between graph structure as revealed by spectra and geographical 
location - first longitude, then the global surface - suggesting that cultural similarities due to 
proximity are well captured by the technique.  
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The high dimensionality of the resulting vector allows more detailed comparison than any single, 
scalar dimension. Further processing by SVM or a similar supervised learning algorithm allows the 
extraction of a number of arbitrary features, thus knowledge of context can be used to refine the 
subspace so that particular features may be sought in the data. If data is available, factors such as 
the age of a city would be easily used, just as geographical location has been, to refine 
classifications or to better understand their statistical effect on spatial form. By the same token, the 
high dimensionality is potentially beneficial for its utility in data-mining applications that can draw 
correlations with other data sets such as land use information.  
 
The method of characterising graphs by their spectra is easily automated. Spectra are invariant to 
the ordering of nodes and the process from map to spectrum, as well as subsequent analyses, is 
mathematically well defined. As no human effort is required there is no risk of human error and the 
size of the data set may be very large. It is also applicable to large graphs. In this paper a 
maximum size of nearly 80,000 nodes was used with a computation time of 85 seconds to 
calculate the spectral vector, but spectra of segment maps of up to 263,215 nodes have easily 
been produced by the same method with modest computational expense.  
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