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1. Introduction

Popper devotes the first chapter of his 1972 book: Objective Knowledge to an extended
treatment of the problem of induction. He begins this chapter, and indeed the book as a
whole, with his famous claim (1972, p. 1):

“I think that I have solved a major philosophical problem: the problem of induction.”

Later in the book Popper proposes a general schema of problem-solving.1 In fact there
are discussions of this in Ch.3, p. 119; Ch. 4, pp. 164-5; Ch.6, p. 243; and Ch. 8, p. 297.
The formulations of the schema differ slightly in these different discussions. I will use a
formulation from Ch. 6, which seems to me the best. The idea of this paper is to apply
this general schema of problem-solving to Popper’s treatment of the problem of
induction, and to see what results.

2. Popper’s general schema of problem-solving

Popper writes (1972, p. 243):

“Using ‘P’ for problem, ‘TS’ for tentative solutions, ‘EE’ for error-elimination, we can
describe the fundamental evolutionary sequence of events as follows:

P  TS  EE  P.
But this sequence is not a cycle: the second problem is, in general, different from the
first: it is the result of the new situation which has arisen, in part, because of the tentative
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solutions which have been tried out, and the error-elimination which controls them. In
order to indicate this, the above schema should be rewritten:

P1  TS  EE  P2.”

Earlier Popper describes EE (error-elimination) as (1972, p. 164) “a severe critical
examination of our conjecture.” He also describes the change from P1 to P2 as a
‘problem-shift’, observing (1972, p. 165):

“This leads to the … relation called ‘problem shift’ by I. Lakatos, who distinguishes
between progressive and degenerating problem shifts.”

Later I will consider whether, in the case of the problem of induction, my suggested
change from P1 to P2 is a progressive or a degenerating problem-shift.

3. The initial problem (P1) and Popper’s tentative solution (TS)

I will now begin applying Popper’s general schema of problem-solving to Popper’s
treatment of the problem of induction. Obviously we have to start by identifying P1 .
This is clearly what Popper calls (1972, p. 2): “the traditional philosophical problem of
induction”. Popper actually gives two formulations of this traditional problem. For
simplicity, I will consider only the second, and this gives us:

P1 = What is the justification for inductive inferences?

So what then is Popper’s solution of P1 ? The gist of it is contained in the following
passage (1972, p. 2):

“The second formulation assumes that there are inductive inferences, and rules for
drawing inductive inferences, and this, again, is an assumption which should not be made
uncritically, and one which I also regard as mistaken.”

So Popper thinks that there no inductive inferences. He goes on to describe the idea that
there are such things as (1972, pp. 6-7): “a kind of optical illusion”. Now if there really
are no such things as inductive inferences, then we do not have to justify them, and this
solves P1 . Popper holds that science progresses through conjectures and refutations, and
this is a process which does not involve any inductive inferences – only deductive ones.
Perhaps Popper’s most emphatic denial of induction comes in the following passage
which I will refer to as ‘the 1963 induction is a myth quotation’.2 It runs as follows
(1963, p. 53):

“Induction, i.e. inference based on many observations, is a myth. It is neither a
psychological fact, nor a fact of ordinary life, nor one of scientific procedure.”
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It should be noted that Popper here speaks of induction in connection with psychology,
ordinary life, and scientific procedure. In the present paper, however, I will confine
myself to considering induction in the context of scientific procedure.

Returning to our main theme, we can sum up Popper’s tentative solution (TS) to P1 as
follows:

TS = There are no inductive inferences and so there is no need to justify them. Science
progresses by conjectures and refutations, and this procedure does not use inductive
inferences.

4. The EE phase: (i) computer induction

I now pass to the EE phase of the general schema of problem-solving. This consists of a
severe critical examination of Popper’s tentative solution (TS) of P1 . Here I will no
longer continue quoting from Popper, but rather give the criticisms of other philosophers
including myself. The first criticism I wish to present of Popper’s TS came from
discovering that researchers in artificial intelligence (AI) have developed a form of
computer induction. I have given a detailed account of this criticism in my book (1996)
Artificial Intelligence and Scientific Method, Chs. 1-3, pp. 1-71. Here I will summarise
briefly the results.

There is a branch of AI known as ‘machine learning’ whose aim is to generate
hypotheses automatically from data, in other words to carry out mechanical induction. In
my 1996 book, some examples are given of successful machine learning programs
(particularly Quinlan’s ID3 and Muggleton’s GOLEM), and it is argued that these show
the existence of inductive rules of inference (or IRIs). It is worth noting the form which
these IRIs take. Let e be the data and h the hypothesis inferred from the data. We might
think that an IRI would take the form: ‘From e, infer h’. However it turns out that it
always has the form: ‘From e & K infer h’, where K is background knowledge (cf. my
1996, p. 18).

Developments in machine learning since 1996 have only reinforced the claim that
inductive rules of inference exist. Hence it can be argued (cf. my 1996, p. 56) that
Popper’s 1963 induction is a myth quotation can no longer be regarded as correct. In fact
programs such as Quinlan’s ID3 or Muggleton’s GOLEM (and more recently developed
machine learning programs) do make inductive inferences based on many observations
and have become a part of scientific procedure.

This criticism of Popper’s TS to P1 must be tempered by the following observations (cf.
my 1996, p. 66). Popper’s 1963 induction is a myth quotation, as applied to scientific
procedure, contained a good deal of truth at the time when it was published. The first
machine learning programs to be used successfully in science were Buchanan and
Feigenbaum’s Meta-DENDRAL, and Michalski’s INDUCE. These appeared in the late
1970s and early 1980s, i.e. more than fifteen years after Popper’s induction is a myth
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quotation. Moreover, I can find hardly any genuine and significant uses of Baconian or
mechanical induction in science before the machine learning programs just mentioned.
Thus my conclusion is that Popper’s 1963 induction is a myth quotation has become
incorrect because science itself is changing. This change is of course brought about by
the introduction of computers and is some ways analogous to the changes brought about
at any earlier phase of science’s development by the introduction of instruments of
observation such as telescopes and microscopes (cf. my 1996, p. 69). In effect, the
current development of computers and AI is likely to change science in such a way that
Baconian or mechanical induction becomes a standard part of scientific procedure.

The view that computer induction exists is now generally held, but it has been challenged
in an interesting paper by Tamburini (2006).3 Tamburini only considers one of the two
main examples of computer induction which I give in my 1996. This is ID3. He remarks
quite correctly (2006, p. 273): “Popper’s anti-inductivism was questioned on the basis of
ID3 performances (Gillies 1996); …” ID3 is a system which infers decision trees from
data. Like any machine learning system, it assumes some background knowledge (K)
which, in this case, is that the domain of objects under consideration is appropriately
described by a specified set of attributes. Given K, decision trees are automatically
generated from data e using built-in algorithms. As the correctness of the decision tree
(D say) by no means follows deductively from e & K, it seems almost inescapable that
we have here an inductive rule of inference (IRI) of the form: From e & K, infer D. As I
show in my 1996 (pp. 36-38), this IRI can be considered as generated by the iteration of
more basic IRIs. It should also be observed that the decision trees generated, which were
not previously known, turn out in many cases to contain substantial knowledge and to be
very successful in practice. An example, given in my 1996, p. 46, comes from the work
of Bratko. He used a developed form of ID3, known as ASSISTANT, to induce decision
trees for medical diagnosis. These decision trees performed better than human specialists
in all cases in which an objective statistical comparison was possible.

ID3 seems to be such a clear example of mechanical induction that it is difficult to see
how Tamburini can hold the following opinion (2006, p. 268): “ … I maintain here that
AI investigations on learning systems do not compel one to relinquish Popper’s radical
scepticism towards induction.” The core of Tamburini’s defence of this position, in the
case of ID3, seems to lie in the following passage (2006, p. 276):

“If the presuppositions of the first kind (ID3 biases) can be suitably stated in declarative
form, then a concept learning algorithm such as ID3 can be redescribed as a theorem
prover.”

The line of thought here seems to be the following. The algorithms in ID3 involve some
presuppositions (or, as one might say, heuristics). Suppose we were able to state these
explicitly as say P. ID3 involves an inductive rule of inference of the form: From e & K,
infer D. However, if we added P to e & K, we might be able to turn this inductive rule
into a deductive rule of the form: From e & K & P, infer D, where now D follows from
e & K & P by deductive logic. In this way an inductive machine learning system would
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become like an automated theorem prover which involves only deductive rules of
inference.

The first point to note here is that Tamburini’s claim is only hypothetical (2006, p. 276):
“If the presuppositions of the first kind (ID3 biases) can be suitably stated in declarative
form …” Of course it would be very difficult indeed, if not downright impossible, to
suitably state these presuppositions in declarative form, and Tamburini doesn’t attempt to
do so. Thus his suggested reduction of ID3 induction to deduction is purely hypothetical
and most unlikely ever to be accomplished.

Let us, however, suppose, as our second point, that this reduction could really be carried
out. There is no doubt that ID3, redescribed as a theorem prover, would be much more
complicated that the original ID3 presented as an inductive learning system. Why should
we introduce all this unnecessary complication which would never be adopted in
practice? The question before us is whether to allow the introduction of inductive rules
of inference (IRIs), or to allow only deductive rules of inference (DRIs). If we adopt the
former position, we get simple computer induction systems which are successful in
practice. If we adopt the second position, we are forced to try to transform these systems
into equivalent theorem provers which involve only DRIs. This is a difficult, probably
hopeless, task which adds complexity with no practical gain. The case therefore for
allowing the introduction of IRIs is overwhelming.

I will come back briefly to computer induction later on, but, as I have already presented
this particular criticism of Popper’s tentative solution (TS) to P1 in some detail in an
earlier publication, I will devote most of the rest of this paper to another criticism.

5. The EE phase: (ii) is corroboration in some sense inductive?

In the course of his discussion of the problem of induction, Popper introduces the notion
of degree of corroboration which he characterises as follows (1972, p. 18):

“By the degree of corroboration of a theory I mean a concise report evaluating the
state (at a certain time t) of the critical discussion of a theory, with respect to the way it
solves its problems; its degree of testability; the severity of tests it has undergone; and the
way it has stood up to these tests.”

The degree of corroboration of a hypothesis h given evidence e is written C(h, e), or
perhaps better C(h, e&K) where K stands for the background knowledge. Popper’s term
‘corroboration’ was introduced to contrast his theory of corroboration with Carnap’s
theory of confirmation (cf. Carnap, 1950). Indeed the two theories differ in important
ways. For example, Carnap is a Bayesian which means that he thinks that C(h,e) satisfies
the axioms of probability, whereas Popper is a non-Bayesian and denies that C(h,e)
satisfies the axioms of probability. In symbols, Popper’s claim here is that C(h,e) 
P(h|e). Despite these differences I prefer to use the terms ‘corroboration’ and
‘confirmation’ as synonyms, and to abbreviate them both by C. The difference between
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Popper’s theory and Carnap’s is expressed by saying that they characterise the C-function
differently.

Returning now to Popper’s 1972 discussion of induction, one might ask whether he really
needed to introduce corroboration at all. Suppose there are, in a particular area of
investigation, n theories between which scientists have to decide. Could they not devise
tests which refute n-1 of these theories, leaving only one unrefuted which will then
become the preferred theory? No notion of corroboration is needed to carry out such a
procedure. However, Popper does point out a possible difficulty here (1972, p. 15):

“On the other hand, among the theories actually proposed there may be more than
one which is not refuted at a time t, so that we may not know which of these we ought to
prefer.”

Suppose, however, we have a measure of corroboration, we can then prefer the best
corroborated theory among those which are unrefuted.

Corroboration is also involved in what Popper calls the pragmatic problem of induction.
Popper gives two formulations of this problem. I will focus on the second of these which
he states as follows (1972, p. 21):

“Pr2 Which theory should we prefer for practical action, from a rational point of
view?”

He goes on to say (1972, p. 22):

“My answer to Pr2 is: … we should prefer as basis for action the best -tested
theory.”

Given Popper’s characterisation of corroboration quoted earlier, we can roughly identify
“the best-tested theory” with “the best-corroborated theory”. This leads to the following
pragmatic principle, which, it should be stressed, is a modification of what Popper writes:

(1) Use, as the basis for action, the best corroborated theory

This principle (1) does not quite correspond to what happens in practice as we can see by
considering the following example. Suppose a pharmaceutical firm has developed a new
drug X to treat some illness. Before X is put on the market, it is important to make sure
that it does not have any harmful side effects. Let us therefore formulate the following
hypothesis:

HX: X, when taken in the appropriate dosage, does not have any harmful side effects

Now before X can be put on the market HX must, by law, be subjected to a series of
severe tests – first with animals, and then in the form of clinical tests on humans. Only if
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HX passes all these tests can it be marketed.4 To put it another way, X can only be put on
the market if HX has a sufficiently high degree of corroboration.

This leads to the following pragmatic principle (2):

(2) Use, as the basis for action, theories which have a sufficiently high degree of
corroboration

What is meant by ‘sufficiently high degree of corroboration’ is specified in the case of
drugs by the government regulations on what tests a new drug must pass before it can be
put on the market. In general it would be understood contextually as part of the practice
of the area in question.

Now we come to the problem. It seems that pragmatic principles such as (2) are indeed
accepted as guides to action. But in accepting such a principle, are we not implicitly
giving an inductive significance to corroboration? Suppose a theory has a high degree of
corroboration. This means that it has explained correctly the results of past observations,
and perhaps also given the correct predictions in a number of tests. Let us say in these
circumstances that the theory has so far performed well. However, if we adopt the theory
as the basis for actions, are we not assuming that it will continue to perform well in the
future? In other words accepting a pragmatic principle such as (2) seems to be implicitly
adopting an inductive assumption.

The criticism of Popper involving computer induction could not have been formulated
before the late 1970s and early 1980s, because it was only then that successful systems
for computer induction were created. However, the criticism involving corroboration and
the pragmatic problem of induction is much older. In his 1994 (pp. 20-23), Miller gives a
list of no less that 11 philosophers who have made criticisms along these lines, and goes
on (1994, pp. 38-45) to try to answer all these objections. One formulation of such a
criticism is to be found in Salmon (1968). Salmon considers whether we are acting
rationally if we prefer a prediction based on a well-corroborated scientific theory to a
prediction based on some theory which has low or even negative corroboration. He
writes (1968, p. 97):

“Either corroboration has an inductive aspect or there is no logic of prediction. If there is
no logic of prediction, it is hard to see how any choice would be ‘rational’.”

Salmon thinks that we can make rational choices here, so that the conclusion of his
argument is that corroboration has an inductive aspect. Salmon further elaborates this
criticism of Popper in his 1981.

O’Hear also gives an elegantly formulated criticism of this kind in his 1980, where he
writes (pp. 40-41):

“ … it is unclear how Popper is in a position to tell us that it is more rational to act on a
well-corroborated theory than to adopt any other policy when it comes to action. … High
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corroboration shows only that a theory has done well up to now. Hume’s point is that our
world might suddenly change to being one where chance might be a good method or
where previously falsified theories might be the best to act on or where we might be
better off having no method at all. I cannot see how Popper is justified in claiming that
these methods are, in the light of his acceptance of Hume’s point, worse methods for
basing practical actions on.”

But what does Popper himself say about the relation between corroboration and
induction? There is in fact one passage in which he seems to come close to giving an
inductive significance to his measure of corroboration (1959, New Appendix *ix, p. 418):

“It might well be asked at the end of all this whether I have not, inadvertently,
changed my creed. For it may seem that there is nothing to prevent us from calling
C(h, e) ‘the inductive probability of h, given e’ or – if this is felt to be misleading, in view
of the fact that C does not obey the laws of the probability calculus – ‘the degree of the
rationality of our belief in h, given e’. A benevolent inductivist critic might even
congratulate me on having solved, with my C function, the age-old problem of induction
in a positive sense – on having finally established, with my C function, the validity of
inductive reasoning.”

However, it should be noted that the view given here is that of ‘a benevolent inductivist
critic’. It is not Popper’s own as the following passage from Objective Knowledge
clearly shows (1972, p. 18):

“Corroboration (or degree of corroboration) is thus an evaluating report of past
performance. … Being a report of past performance only, … it says nothing whatever
about future performance …”

But if degree of corroboration really said nothing whatever about future performance,
why should we use it to guide our actions? In using it in this way, we are surely
implicitly assuming that degree of corroboration does say something about future
performance. In other words we are giving degree of corroboration an inductive
significance.

That concludes the EE phase of the general schema of problem-solving, and I will next
consider what new problem arises from all this.

6. The new problem (P2): choosing a C-function

The new problem which arises is, so I claim, that of choosing a C-function. I will first
explain what I mean by this, and then explain why it arises from the EE part of the
preceding discussion.

Choosing a C-function sounds like giving the full specification of a mathematical
function which for any values of h and of e&K gives a real number C(h, e&K). Perhaps
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Carnap dreamed of constructing such a fully specified mathematical function, but it is not
a very realistic aspiration as far as current practice is concerned. In some AI cases, a
C-function is precisely specified in the mathematical sense, and this function is coded
into the machine learning program. However, the language used to specify the function,
the nature of the background knowledge K, and the precise details of the function would
all depend on the specific application, and would be different in a different application
(even if the C-functions used in different applications have some features in common).
In ordinary human science, the specification of the function is also highly context-
dependent, but here it is qualitative as well. This is clearly shown in the drug case
described above, in which what is meant by ‘a sufficiently high degree of corroboration’
is specified by listing the tests which must be performed and passed to achieve this grade.
This listing of the necessary tests is one way of choosing a C-function for a problem.

Then again there are debates concerning general features of the C-function. For example,
as already mentioned, the Bayesians hold that C(h, e&K) should satisfy the standard
axioms of probability while some non-Bayesians such as Popper deny this. Of course
this suggests that the C-function might be Bayesian in some contexts and non-Bayesian
in others (for a suggestion along these lines, see my 1998, section 4, pp. 155-6).

So, to sum up, what we are here referring to as ‘choosing a C-function’ is actually quite a
complex and context-dependent process. It may involve, in a particular AI context,
choosing a specific mathematical function. However, in more general contexts, it may be
no more than a specification of certain general features of the C-function, and of the
circumstances in which the C-function attains some key value.

Let us next analyse how the problem of choosing a C-function arises out of the EE
discussion given earlier. I argued that Popper’s own treatment of the problem of
induction involves introducing corroboration, and so gives rise to the problem of
choosing a C-function. My first criticism of Popper’s approach was that his claim that
induction is a myth is wrong because inductive rules of inference are used in successful
AI machine learning programs. Now we can connect this criticism with the subsequent
discussion of corroboration, because, once a C-function is chosen, we can use it to justify
an inductive rule of inference (see my 1996, p. 105). An inductive rule of inference takes
the form: ‘From e & K, infer h’, where K is the background knowledge, e is the
evidence, and h is a hypothesis which explains the evidence. The justification of such a
rule given a C-function is simple. The rule is justified, if C(h, e&K) is sufficiently high.

So the suggestion is to change our original problem (P1): ‘What is the justification of
inductive inferences?’ into the new problem (P2) of choosing a C-function. But is this
problem-shift progressive or degenerating? Naturally I would like to argue that it is
progressive, and will now explain my reasons for thinking that it is.

I argued earlier that there are some exceptions to Popper’s claim that rules of inductive
inference do not exist. However, these exceptions are relatively rare. They occur for
example in the machine learning programs of AI. For the vast bulk of human science
both in the past and present, rules of inductive inference do not exist. For such science,
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Popper’s model of conjectures which are freely invented and then tested out seems to me
more accurate than any model based on inductive inferences. Admittedly, there is talk
nowadays in the context of science carried out by humans of ‘inference to the best
explanation’ or ‘abductive inference’, but such so-called inferences are not at all
inferences based on precisely formulated rules like the deductive rules of inference.
Those who talk of ‘inference to the best explanation’or ‘abductive inference’, for
example, never formulate any precise rules according to which these so-called inferences
takes place. In reality the ‘inferences’ which they describe in their examples involve
conjectures thought up by human ingenuity and creativity, and by no means inferred in
any mechanical fashion, or according to any precisely specified rules. Now the
advantage of the new problem (P2) of choosing a C-function is that it solves the original
problem (P1), as we have seen, but it also deals with the case of hypotheses generated not
by any inductive inference but by a process of conjecture and testing. Such conjecture-
generated hypotheses are justified if, as a result of testing, they become well
corroborated. So, if we have agreed on the choice of a C-function, we can provide
justification whether a hypothesis is generated by some inductive inference, or whether it
is obtained by conjecture and testing. Thus the new problem is more general than the old.

Another advantage of the new problem over the old one is that the traditional problem of
induction (P1) suggested a series of approaches which proved to be very unsatisfactory
(for some details about these, see my 1993, pp. 8-11 & 34). Formulating the problem of
induction in the form: ‘What is the justification for inductive inferences?’ suggested to
many thinkers, particularly those of the Cambridge school such as Keynes and Russell,
that inductive inferences needed to be justified in terms of general principles such as the
uniformity of nature or the principle of induction. However, two problems emerged with
this approach. First of all it proved almost impossible to formulate these alleged
principles in any clear fashion. For example, Russell’s formulation of the principle of
induction contains an error which vitiates it (see my 1993, p. 10). Secondly it seemed to
be impossible to give any convincing justification of such principles. One great merit of
the shift from P1 to P2 is that it enables us to dispense with such obscure and
unsatisfactory principles.

These then are the merits of the shift from P1 to P2 , and they seem to me to justify the
claim that this shift is a progressive one. However, it should be stressed that Popper’s
general schema for problem-solving is a never-ending process. As Popper himself says
(1972, p. 164):

“P2 is the problem situation as it emerges from our first critical attempt to solve our
problems. It leads up to our second attempt (and so on).”

So we should now look more closely at the new problem P2 , and see if we can propose a
preliminary tentative solution. This I will do in the next (and final) section.
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7. A tentative solution (TS) to the new problem: an extension of Neurath’s
principle

So far I have formulated the new problem P2 rather loosely, as being that of choosing a
C-function. We can, however, split this into two questions. The first question is: ‘how
do we set about choosing a particular C-function in a specific situation?’ The best way of
approaching this question is to examine the practice of good scientists, and see if we can
formulate general principles which underlie this practice. This could be described as
codifying practice in the choice of C-functions. It is normally studied in philosophy of
science under the heading ‘confirmation theory’. But now suppose we have chosen a
particular C-function. Then a second question arises, namely:

What is the justification for particular choices of C-function?

Because this question is analogous to the traditional philosophical problem of induction
(P1 ) with which we started, I will from now on take this second question as our P2 . So
the problem shift is from

P1 = What is the justification for inductive inferences?

to

P2 = What is the justification for particular choices of C-function?

Our tentative solution (TS) to P2 is based on some ideas of Neurath’s. These are
expressed by Neurath in the following famous passage (1932/3, p. 201):

“We are like sailors who must rebuild their ship on the open sea, never able to dismantle
it in dry-dock and to reconstruct it there out of the best materials.”

Here Neurath gives his view as an analogy. However, in a previous work (1993, p. 138),
I have tried to formulate his position in a more explicit fashion as what could be called
Neurath’s principle. This is a conjunction of two parts, (A) and (B) which may be stated
as follows:

(A) In order to test any scientific statement, we have to assume for the time being some
other scientific statements. (This corresponds in the analogy to the fact that we can
remove a plank of the ship only if we leave some others in place, since otherwise the ship
would sink.)

(B) There is, however, no scientific statement which cannot be subjected to testing, and
perhaps abandoned as a result of tests. (This corresponds in the analogy to the fact that
any plank of the ship can be removed and checked to see if it is rotten.)
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The first application we can make of Neurath’s principle is to the body of scientific
theories. Here we cannot question, and demand justification for, all our scientific
theories at the same time. To test out one scientific theory, we have, for the time being,
to assume others – in particular the theories used to interpret the relevant observations
and experimental results. Similarly, I now argue, we cannot question, and demand
justification for, all our choices of C-function at the same time. What we can do, and
what has actually been done in the course of scientific and technological development, is
to test out, and perhaps reject or modify, particular choices of C-function, while
assuming, for the time being, other such choices. There is a circle here, just as there is in
the case of testing out scientific theories, but it is no more vicious in the one case than in
the other. Although we cannot criticize our choices of C-function all together, there is no
particular such choice which cannot be criticized, tested out, and evaluated.

My suggestion then is to extend Neurath’s principle from scientific theories to C-
functions. We test out our choices of C-functions by experience just as we test out our
scientific theories by experience. The only rule in both cases is that we cannot question
all our assumptions at the same time. In order to question one thing, other things must,
for the time being at least, be assumed. I will conclude by illustrating this with an
example.

Let us return to our consideration of testing new drugs to make sure that they have no
harmful side effects before they are put on the market. Earlier we formulated this
problem by considering the following hypothesis:

HX: X, when taken in the appropriate dosage, does not have any harmful side effects

where X is a new drug developed by a pharmaceutical firm to treat some illness. In this
case the C-function for HX is chosen informally as follows. A series of tests t1, … , tn is
specified. Some of these will be on animals and some will be clinical tests on humans.
Suppose our evidence (en say) is that all these tests have been carried out, and HX has
passed them all. Then the value of C(HX , en) is judged to be sufficiently high to allow
the drug to be put on the market.

Suppose this choice of C-function is well-established, and has been used successfully for
a number of years. Then a new drug T is devised.5 The standard tests are performed on
T and it passes them all successfully. So T is put on the market. However, tragedy
ensues. T is actually very successful at curing the illnesses for which it is prescribed, but
a quite unexpected side-effect occurs. When it is prescribed to pregnant women, they
give birth to babies with very severe defects. This disaster leads to a modification of the
choice of C-function which has been used hitherto by the pharmaceutical industry. A
new test (tn+1 say) is introduced which consists in giving the drug to experimental animals
which are pregnant, and then checking whether the resultant offspring have any defects.
The drug only passes this test successfully if no birth defects are discovered.6 Let en be
as before, and en+1 be the evidence that the tests t1, … , tn, tn+1 have been carried out, and
HX has passed them all. Then the value of C(HX , en+1) is judged to be sufficiently high to
allow the drug to be put on the market. However, the value of C(HX , en) is no longer
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judged to be sufficiently high to allow the drug to be put on the market. The choice of
C-function in this particular context has been changed.

Suppose further that the new choice of C-function works well, and there are no further
disasters occasioned by its use. We can then conclude – of course implicitly assuming
other choices of C-function which have not been changed – that the new choice of
C-function in this particular context is an improvement and was justified. This shows
how Neurath’s principle allows us to justify changes in our choice of C-function. It
shows indeed that choices of C-function can be steadily improved along with the rest of
science.
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Notes

* This paper incorporates modifications to earlier drafts suggested by David Corfield,
David Miller, and David Teira. I am very grateful to them for their comments.

1. On the origins of this schema of Popper’s, see ter Hark (2004), particularly pp. 128 &
175.

2. I heard Popper himself utter the fateful words: “Induction is a myth” when I attended
his lectures as a graduate student in the academic year 1966-7. As far as I can remember,
Popper continued: “… and those who use the term ‘induction’, do not know what they
are talking about.”

3. I would like to thank David Miller for drawing this paper to my attention.

4. I have simplified somewhat here since, in practice, drugs are allowed to have harmful
side effects in some classes of patients, provided these classes can be specified clearly in
advance so that it is known that patients in one of these classes should not be prescribed
the drug. For example, drugs for some heart conditions may have no harmful side effects
for the normal patient, but might have harmful side effects for patients suffering from
diabetes. I have ignored these complications since they do not affect the points about
corroboration being made here.

5. As the letter T indicates, this hypothetical example is based on the real case of
thalidomide. However, my example is a considerable simplification of what actually
happened in that case. Some details about the actual thalidomide case are to be found in
Timmermans and Leiter (2000). One interesting thing to which they draw attention is
that thalidomide has been partially rehabilitated as a drug. It is in fact very effective as a
treatment for some very severe conditions such as a tissue inflammatory syndrome which
occurs in leprosy and AIDS wasting syndrome. It is now prescribed for these conditions,
while taking precautions to prevent it ever being used by pregnant women.

6. Timmermans and Leiter say (2000, p. 45): “After the thalidomide disaster, studies in
which pregnant rabbits were given thalidomide produced phocomelia birth defects.”
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