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NLO BFKL equation, running coupling, and renormalization scales
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I examine the solution of the BFKL equation with NLO corrections relevant for deep inelastic scattering.
Particular emphasis is placed on the part played by the running of the coupling. It is shown that the solution
factorizes into a part describing the evolution inQ2, and a constant part describing the input distribution. The
latter is infrared dominated, being described by a coupling which grows asx decreases, and thus being
contaminated by infrared renormalons. Hence, for this part we agree with previous assertions that predictive
power breaks down for small enoughx at any Q2. However, the former is ultraviolet dominated, being
described by a coupling which falls like 1/„ln(Q2/L2)1A@ās(Q

2)ln(1/x)#1/2
… with decreasingx, and thus is

perturbatively calculable at allx. Therefore, although the BFKL equation is unable to predict the input for a
structure function for smallx, it is able to predict its evolution inQ2, as we would expect from the factorization
theory. The evolution at smallx has no true powerlike behavior due to the fall of the coupling, but does have
significant differences from that predicted from a standard NLO inas treatment. Application of the resummed
splitting functions with the appropriate coupling constant to an analysis of data, i.e., a global fit, is very
successful.@S0556-2821~99!07213-6#

PACS number~s!: 13.60.Hb, 12.38.Bx
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I. INTRODUCTION

There has recently been a great deal of interest in
solution to the Balitski�-Fadin-Kuraev-Lipatov ~BFKL!
equation@1#, triggered by the calculation of the next leadin
order ~NLO! correction to the kernel@2,3# and the apparen
result that this leads to a huge correction to the LO resul
number of subsequent papers have examined the solutio
this equation and/or its consequences@4–9# drawing a vari-
ety of conclusions~dominant negative NLO anomalous d
mensions, oscillatory behavior, non-Regge terms, instabi
breakdown of perturbation theory!, most being rather pess
mistic. This has prompted work on ways to at least estim
contributions to the kernel at even higher orders, and ob
perturbative stability via a summation@10,11#.

I will take the point of view that the most significan
result of the NLO kernel is that it indicates very strong
how the coupling constant should run in the BFKL equatio
i.e., that the scale in the coupling should be chosen to be
transverse momentum at the top of the gluon ladderk2. Mak-
ing this choice@12# I follow many previous authors in exam
ining how this choice affects the solution to the LO equat
@13–21#. I find that at leading twist the solution factorize
into a part dependent of the input to the equation, but in
pendent of the scalek2, and a part independent of the inp
which governs the evolution ink2 @14,15,21#. The former is
disastrously contaminated by the diffusion@22# into the in-
frared, and without a lowk2 regularization is indeterminat
due to the presence of infrared renormalons giving beha
;exp„2nb0@ ln(Q0

2/L2)#3/@A2 ln(1/x)#…, where Q0
2 is the

scale of the input to the equation,n is an integer, andA
;4. This is entirely consistent with Mueller’s result@23,7#
on the range of applicability of the BFKL equation. It re
ders the NLO correction to the kernel which is not associa
with running of the coupling rather unimportant since t
infrared contamination renders even the LO result untru
worthy.
0556-2821/99/60~5!/054031~27!/$15.00 60 0540
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However, the part of the solution governing the evoluti
in k2 is not only infrared safe but is influenced strongly b
diffusion into the ultraviolet. Hence the effective scale in t
problem is greater thank2, and this increase becomes mo
significant asx decreases. This leads to the effective coupl
constant decreasing as we go to smallerx, behaving like
1/„(ln k2/L2)1A@ln(1/x)/ ln(k2/L2)#1/2

… rather than
1/„ln(k2/L2)…. This result is quantified by using the BLM
scale fixing procedure@24# for both LO and NLO quantities,
obtaining precisely the same result ofA53.63 in both cases
It suggests that the effective splitting function governing t
evolution does not grow like a power ofx212l asx˜0, but
is softened to something of the form
(1/x)exp„@ ln(1/x)#1/2r(k2)…, though it seems difficult to ob-
tain the precise form. This result means that the NLO c
rections to the kernel not concerned with the running of
coupling are also relatively unimportant for the term gove
ing the evolution, simply because the coupling constant
sociated with them is so small. Therefore, it seems as tho
we have good predictive power for the evolution of the glu
at smallx, but that it is very different from the LO-BFKL
prediction with fixedas . Because the behavior of physic
structure functions at smallx is related to the gluon via the
convolution of ak2-dependent cross section at the top of t
gluon ladder@25,26#, all such effects are associated with th
ultraviolet diffusion. Hence, the evolution of physical qua
tities is governed by the same effective coupling consta
and is completely predictive, being somewhat different fro
both the LO-BFKL predictions with fixedas and the fixed
order in as(Q

2) Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
~DGLAP! descriptions.

In this paper I will demonstrate the results discuss
above. I will start with a brief discussion of the LO BFK
solution with fixed coupling, emphasising the role played
the infrared and ultraviolet regions of transverse momentu
I will then look at the same equation for running couplin
showing how the solutions change. This will facilitate a d
©1999 The American Physical Society31-1
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ROBERT S. THORNE PHYSICAL REVIEW D 60 054031
cussion of the real importance of the total NLO correction
the BFKL equation. Finally, I will examine the implication
of my results for physical quantities and give a brief outli
of phenomenological consequences, showing that my res
work very well when used to analyze experimental data
note that a very brief account of this work, which neverth
less contains many of the main ideas, appears in@27#.

II. BFKL EQUATION FOR FIXED as

The BFKL equation for zero momentum transfer is
integral equation for the 4-pointkT-dependent gluon Green’
function for forward scattering in the high energy lim
f (k1 ,k2 ,as /N) whereN is the Mellin conjugate variable to
energy. Throughout this paper I will consider the canoni
physical process of deep-inelastic scattering where the
tom leg is convoluted with a bare gluon density and the
leg with an off-shell hard scattering process. Hence,k2 is
taken to be some fixed scaleQ0

2 typical of soft physics,1

while k1
25k2, i.e., a variable scale typically@Q0

2. In this
caseN is the conjugate variable tox, i.e., we define the
moment space structure functions by the Mellin transform
tion,

F~N,Q2!5E
0

1

xN21F~x,Q2!dx, ~2.1!

and the moment space parton distributions as the Me
transformation of a rescaled parton density, i.e.,

f ~N,Q2!5E
0

1

xNf ~x,Q2!dx. ~2.2!

Using these definitions the BFKL equation becomes

f ~k2,Q0
2,ās /N!5 f 0~k2,Q0

2!1
ās

N E
0

` dq2

q2 K0~q2,k2! f ~q2!,

~2.3!

where

K0~q2,k2! f ~q2!5k2S f ~q2!2 f ~k2!

uk22q2u
1

f ~k2!

~4q41k4!1/2D ,

~2.4!

f 0(k2,Q0
2) is the zeroth order input, andās5(3/p)as . As a

simple choice I take

f 0~k2,Q0
2!5d~k22Q0

2!, ~2.5!

1Strictly speaking, within the leading twist collinear factorizatio
framework this lower leg should be on-shell, soQ0

2 is a regulariza-
tion scale.
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i.e., the incoming gluon has a fixed nonzero virtuality. W
this definition a moment space gluon structure function c
be defined as2

G~Q2,N!5E
0

Q2 dk2

k2 f ~N,k2,Q0
2!3gB~N,Q0

2!, ~2.6!

wheregB(N,Q0
2) is the bare gluon distribution as a functio

of the factorization scale Q0
2.3

In order to solve this equation it is convenient to take
further Mellin transformation with respect tok2, i.e., define

f̃ ~g,N!5E
0

`

dk2~k2!212g f ~k2,N!. ~2.7!

This leads to the BFKL equation written in the form

f̃ ~g,N!5 f̃ 0~g,Q0
2!1~ ās /N!x~g! f̃ ~g,N!, ~2.8!

where f̃ 0(g,Q0
2)5exp„2g ln(Q0

2)… andx~g! is the character-
istic function

x~g!52c~1!2c~g!2c~12g!. ~2.9!

Hence,

f̃ ~g,N!5
f̃ 0~g,N!

12~ ās /N!x~g!
. ~2.10!

For asymptotically smallx this can be accurately inverte
back tox and k2 space using the saddle point technique
give the celebrated result

f ~x,k2!}x2lS k2

ās ln~1/x! D
1/2

expS 2 ln2~k2/Q0
2!

56z~3!ās ln~1/x!
1¯ D ,

~2.11!

where l54 ln 2ās and ¯ denotes subleading terms asx
˜0. Hence, we see that the BFKL equation at LO predi
powerlike growth inx2l and ink2, as well as a diffusion in
k2. One can also be a little more systematic and solve for
coefficient functions and anomalous dimensions for
gluon, it is easy to generalize Eq.~2.10! to give the double
Mellin space expression for the gluon structure function

G̃~g,N!5
f̃ 0~g,N!gB~N,Q0

2!

g„12~ ās /N!x~g!…
, ~2.12!

and

2In this paper I will ignore the singlet quark distribution. This
purely for simplicity and does not change any of the conclusion
all. In most expressions the replacement ofgB(N,Q0

2) with
gB(N,Q0

2)1
4
9 SB(N,Q0

2), where SB(N,Q0
2) is the bare singlet

quark distribution, is all that is required to make them complet
correct.

3In making this definition of the gluon distribution we have d
fined a factorization scheme.
1-2
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NLO BFKL EQUATION, RUNNING COUPLING, AND . . . PHYSICAL REVIEW D60 054031
G~Q2,N!5
1

2p i E1/22 i`

1/21 i`

dg exp„g ln~Q2!…G̃~g,N!.

~2.13!

From Eq. ~2.12! we see that there are poles when
2(ās /N)x(g)50. Defining the rightmost solution of thi
equation by

x„g0~ ās /N!…
ās

N
51, ~2.14!

we obtain the leading twist solution for the gluon structu
function

G~Q2,N!5
1

2~ ās /N!g0x8~g0! S Q2

Q0
2D g0

gB~N,Q0
2!.

~2.15!

Hence,g0(ās /N) is the anomalous dimension governing t
Q2 evolution of the gluon@28#, and R(ās /N)[2„ās /
Ng0x8(g0)…21 is a type of coefficient function giving the
normalization@25#. Each of these may be expanded as pow
series in (ās /N), which then lead to power series i
ās ln(1/x) in x space. Both are only convergent forās /N
,4 ln 2, each developing a branch point showing that inx
space they grow likex2(1)2l. Using the saddle point tech
nique one may find the asymptotic form of thex-space split-
ting function and coefficient function finding that

P0~x!˜
ās

x
x2lS 1

„56pz~3!…1/2
„ās ln~1/x!…3/2D ,

~2.16!

and

R~x!54 ln 2āsx
2lS 1

14pz~3!ās ln~1/x! D
1/2

. ~2.17!

Therefore, both the anomalous dimension and the coeffic
function predict powerlike behavior for the gluon distrib
tion, although the true input for the distribution is real
R(x) convoluted withgB(x,Q0

2) of course, and this leads t
the exact form of R(x) being sensitive to the inpu
f 0(N,Q0

2).4 However, this powerlike behavior does not set
until very smallx, as may be seen by examining the terms
the expansion for each quantity in powers ofāsln(1/x).

It has long been suspected that the diffusion property
the solution to the BFKL equation may have serious con
quences when working beyond the strictly LO framewo
@13,22,29,20,23#. One may appreciate this by recognizin
that in the smallx limit, defining j5 ln(1/x), we may write

4In the language of the factorization theorem this translates
R(x) being regularization scheme dependent, e.g., if one use
mensional regularization rather than an off-shell gluon,R(x) has a
factor of „ās ln(1/x)…23/4 rather than„ās ln(1/x)…21/2.
05403
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f ~k2,Q0
2,j!5E dr2f ~k2,r 2,j8! f ~r 2,Q0

2,j2j8!.

~2.18!

For a givenj8 we can ask for the mean and the deviation
ln(r2). This is equivalent to asking for the typical ln(k2) at
some point along the ladder diagram representing the fu
tion f (k2,Q0

2,j), and also its spread, i.e., the range of impo
tant values ofq2 involved in finding the solution of the
BFKL equation. The result is well known:

^ ln„r 2/~kQ0!…&5
ln~k2/Q0

2!

2 S 122
j8

j D , ~2.19!

and the rms deviation is

s2528z~3!āsj8S 12
j8

j D . ~2.20!

So over much of the ladder̂ln(r2)&;1
2 ln(k2/Q0

2) and s
;„14z(3)ās ln(1/x)…1/2. Hence, for very lowx there will be
significant diffusion into both the infrared and the ultraviole
In the case of fixed coupling this does not cause any ser
problems. However, in the case of the running coupling
size of the coupling grows quickly in the infrared, and hen
this diffusion suggests that there will be serious contami
tion from nonperturbative physics.

Before looking at the BFKL equation for running cou
pling let us briefly examine the role played by the vario
regions ofq2 in the fixed coupling case. In order to dete
mine the role played by the region of low transverse mom
tum we consider a upper cutoff ofk0

2 in the integral in Eq.
~2.3!. The only restriction we place onk0

2 is thatk0
2!k2 for

whatever transverse momentum we ultimately wish to c
sider at the top of the ladder. With this restriction we see t
for all momenta over which we integrate we have the relat

K0~q2,k2! f ~q2!5 f ~q2!1OS k0
2

k2D , ~2.21!

and inserting into the cutoff version of Eq.~2.3! we obtain

ās

N E
0

k0
2 dq2

q2 K0~q2,k2! f ~q2!5
ās

N
h„k0

2, f ~k2,k0
2!…1OS k0

2

k2D .

~2.22!

The integral over the regionq2<k0
2!k2 contributes only a

constant to the right hand side of Eq.~2.3!, dependent on the
form of f (q2,N) at low momentum, but independent of th
value ofk2 we consider as long as it is large. Ifk2 is actually
smaller thank0

2 thenh„k0
2, f (k2,k0

2)… becomes a much mor
sensitive function ofk2, and in the limitk2

˜0 it is easy to
see that it becomes equal to the value of the integral in
~2.3! with no upper cutoff. Hence,h„k0

2, f (k2,k0
2)… has the

same structure fork2
˜0 as the full integral on the righ

hand side of Eq.~2.3!, but tends to a constant function ofk0
2

for k2@k0
2.

Thus, if we imagine imposing an infrared cutoff on E
~2.3! we can simply subtract the result of the integral up

to
di-
1-3
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k0
2 @now with a differentf (q2) for low q2, in particular the

infrared cutoff renders it infrared finite# from the right hand
side of Eq.~2.3!, obtaining~up to higher twist corrections!

f ~k2,Q0
2,ās /N!5 f 0~k2,Q0

2!2
ās

N
h~k2,k0

2!

1
ās

N E
0

` dq2

q2 K0~q2,k2! f ~q2!.

~2.23!

Taking the Mellin transform of this equation we get

f̃ ~g,N!5 f̃ 0~g,Q0
2!2~ ās /N!h̃~g,k0

2!1~ ās /N!x~g! f̃ ~g,N!,
~2.24!

where h̃(g,k0
2) is analytic for g.0 @h(k2,k0

2) tends to a
constant at highk2#. This second term on the right may sim
ply be absorbed into the definition of the input and our e
pression forf̃ (g,N) is exactly the same as in Eq.~2.10! up to
this transformed input, i.e.,

f̃ ~g,N!5
f̃ 0~g,N!2~ ās /N!h̃~g,k0

2!

12~ ās /N!x~g!
. ~2.25!

Performing the inverse Mellin transformation, then for t
leading twist solution the pole is in exactly the same pla
and we obtain exactly the samek2 dependence as previousl
but a potentially very differentN-dependent normalization
Hence we see that the region of transverse momentum!k2

contributes very significantly to the overall normalization
our leading twist solution, but negligibly to the evolutio
essentially because the contribution from the infrared reg
coming from the convolution in the BFKL equation is th
same for all highk2. We also notice that the other, high
twist poles found in Eq.~2.10! are now eliminated by the
presence of2(ās /N)h(g,k0

2).
This above argument is hardly new, and much more

tailed analysis can be found in@30,31# who consider the
Mellin space solution carefully, showing that the infrar
cutoff does indeed change only the residue of the rightm
pole in g ~and removes all poles in the left half plane!. It is
also noted that infrared cutoffs influence only the normali
tion of the gluon distribution, leaving the shape inx as well
asQ2 largely unchanged@29#. This is because the effect is t
change the type of singularity inN-space, but not the actua
position, i.e.,N54 ln 2ās. However, this is not usually dis
cussed together with the phenomenon of diffusion. In
case of fixed coupling the effect of diffusion is less importa
than for running coupling for the obvious reason that
coupling is the same at all scales. Nevertheless, the ab
arguments imply that in the case of running coupling dif
sion into the infrared, i.e., strong coupling, should again o
influence the normalization of the gluon, while diffusion in
the ultraviolet, i.e., weak coupling, should only influence t
evolution inQ2. We will now investigate this in more detai
05403
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III. BFKL EQUATION FOR RUNNING COUPLING

It was expected in@12# that the way to incorporate th
running coupling into the BFKL equation was to modify E
~2.3! to

f „k2,Q0
2,ās~k2!/N…5 f 0~k2,Q0

2!

1
ās~k2!

N E
0

` dq2

q2 K0~q2,k2! f ~q2!,

~3.1!

where

as51/„b0 ln~k2/L2!…, ~3.2!

b05(1122Nf /3)/(4p), andNf is the number of active fla-
vors. One of the main results of the NLO corrections to t
BFKL kernel is to show that this is indeed an effective w
to account for the running coupling~this will be discussed
more later!. One can solve this equation in the same type
way as for the fixed coupling case, i.e., take the Mellin tra
formation with respect to (k2/L2). It is most convenient to
first multiply through by ln(k2/L2), and then obtain

d f̃~g,N!

dg
5

d f̃0~g,Q0
2!

dg
2

1

b̄0N
x~g! f̃ ~g,N!, ~3.3!

whereb̄05(pb0/3). The inclusion of the running coupling
has thus completely changed the form of our double Me
space equation, turning it from a simple equality into a fi
order differential equation. However, this may be eas
solved to give

f̃ ~g,N!5exp„2X~g,N!/~ b̄0N!…E
g

` d f̃0~ g̃,N,Q0
2!

dg̃

3exp„X~ g̃ !/~ b̄0N!…dg̃, ~3.4!

where

X~g!5E
1/2

g

x~ĝ !dĝ[X2c~1!~g2 1
2 !2 lnS G~g!

G~12g! D C.
~3.5!

The leading singularity in theg plane for exp„2X(g)/
(b̄0N)…, is cancelled by an integral from 0̃g of the inte-
grand depending ong̃ @15#, and so up to higher twist correc
tions we may simplify~3.4! to

f̃ ~g,N!5exp„2X~g!/~ b̄0N!…E
0

` d f̃0~ g̃,N,Q0
2!

dg̃

3exp„X~ g̃ !/~ b̄0N!…dg̃. ~3.6!

Using our previous choice of input, i.e., fixed virtuality, w
obtain the moment space gluon structure function
1-4
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G~Q2,N!5
1

2p i E1/22 i`

1/21 i` 1

g
exp„g ln~Q2/L2!

2X~g!/~ b̄0N!…dgE
0

`

exp„2g̃ ln~Q0
2/L2!

1X~ g̃ !/~ b̄0N!…dg̃gB~Q0
2,N!

5a~Q2,N!b~Q0
2,N!gB~Q0

2,N!. ~3.7!

Hence, as in the case of fixed coupling constant, at le
ing twist the solution has factorized into aQ2-dependent par
a(Q2,N) which determines the evolution, and an input d
pendent partb(Q0

2,N) which can be combined with the bar
input gluon distribution to provide the input for the gluo
distribution @14,15,21#. This time the different parts are no
so easy to calculate though. Clearly the behavior of b
functions is determined by the form of exp„X(g)/(b̄0N)…,
since this determines the singularity structure.

Consideringb(Q0
2,N) we find that exp„X(g)/(b̄0N)… has

poles at all positive integers, and zeroes at 0 and all nega
integers. Hence,b(Q0

2,N) is not properly defined, since th
integrand has an infinite number of poles lying along the l
of integration. These are due to the divergence of the c
pling at low k2 and can only be removed by some infrar
regularization. Hence, the diffusion into the infrared has
stroyed the apparent~limited! predictive power for the input
Imposing some regularization scalek0

2 and repeating the
same arguments as the previous section it is clear that u
higher twist corrections the effect of the regularization
simply to leave the factora(Q2,N) unchanged, and chang
b(Q0

2,N) to

c~Q0
2,k0

2,N!5E
0

`S d f̃0~ g̃,N,Q0
2!

dg̃
1h̃~ g̃,k0

2! D
3exp„X~ g̃ !/~ b̄0N!…dg̃, ~3.8!

where the factor„d f̃0(g̃Q0
2,N)/dg̃1h̃(g̃,k0

2)… removes the

singularities in exp„X(g̃)/(b̄0N)…. Thus, we have

G~Q2,N!5a~Q2,N!c~Q0
2,k0

2,N!gB~Q0
2,k0

2,N!, ~3.9!

as a well-defined solution.5 For a given regularization on
can solve forc(Q0

2,k0
2,N), as has been done numerically6

generally obtaining some powerlike growth inx space, but
which is totally dependent on the type and scale of regu
ization @16,17,20,32#. No real predictive power remains~this
will be discussed more in Sec. V!.

5That the solution at leading twist is of this general form w
shown in@21# by putting the BFKL equation with running couplin
in the form of an infinite order differential equation with effectiv
potential depending on the lowk2 regularization of the coupling.

6The numerical solutions are always for the whole of the glu
structure function, not justc(Q0

2,k0
2,N).
05403
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Even without regularization there is no obstruction
solving for theQ2 dependent part of the gluon distribution
and this is unchanged by this regularization, i.e., is un
fected, up toO(k0

2/Q2) corrections, by the diffusion into the
infrared. The functiona(Q2,N) is, of course, determined b
the singularities of exp„2X(g)/(b̄0N)… in the g plane. Here
we notice a fundamental difference between the cases o
fixed and running couplings. Whereas previously the lead
singularity was a pole at (ãs /N)x(g)51, i.e., atg˜ 1

2 as
N˜4 ln 2ās, now the leading singularity is an essential si
gularity atg50: there is no powerlike behavior inQ2. Simi-
larly, the branch point in theN plane at 4 ln 2ās has become
an essential singularity atN50: there is no powerlike be
havior in x. The introduction of the running of the couplin
has therefore also had an extreme effect upon the evolu
changing its character completely. This point has been
ticed before@15,20#, but not emphasized or studied in deta
Hence I stress the fundamental results of introducing a r
ning coupling: theQ2-independent part of the solution i
formally divergent, and hence is totally regularizatio
scheme dependent: theQ2-dependent part has no powerlik
growth in x.

In fact we can obtain some information about thex be-
havior by noting that we can find the inverse Laplace tra
formation of exp„2X(g)/(b̄0N)… precisely @20,8#. It is a
standard result that

1

2p i E2 i`

i`

exp~Nj1K/N!dN5~A/j!1/2I 1„2~Aj!…1/2,

~3.10!

whereI 1(z) is the modified Bessel function, which for larg
values of its argument̃ exp(z)/(2pz)1/2. Hence for largej

a~j,g!;„2X~g!/b̄0j…3/4exp„2@2jX~g!/b̄0#…1/2.
~3.11!

It is difficult to perform the inverse Mellin transformation t
get theQ2 dependence, but the leading singularity is atg
50. Thus, for anyQ2 the leading twist solution fora(j,Q2)
must have smallx behavior going like exp(j1/2) rather than
the exp(lj) for the fixed coupling case. This is easy to u
derstand in terms of the diffusion picture. Since the funct
a(j,Q2) is insensitive to the diffusion towards the infrare
but sensitive to that into the ultraviolet, we expect the typi
scale in the process to be determined by this latter diffus
Thus the typical scale for the process will be approximat
set by ln(k̃2);ln(k2)1s;ln(k2)14„ās(k

2)j…1/2. Hence, the
effective strength of the running coupling will be set byk̃2,
rather thank2, and asx˜0 we will haveās

eff;1/(j)1/2. This
type of effective coupling has precisely the effect of turni
the low x behavior of the fixed coupling solution to tha
which we find for the running coupling. Hence, the diffusio
into the ultraviolet has a major impact on theQ2 dependent
part of our gluon distribution, but in a well controlled, and
principle calculable way, unlike the effect of the infrare
diffusion on theQ0

2 dependent input.
n

1-5
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ROBERT S. THORNE PHYSICAL REVIEW D 60 054031
Of course, this is just a qualitative argument giving on
the general form of the results. It is also for the functi
a(x,Q2), which must be convoluted with an unknown,
Q2-independent input function in order to obtain physic
results. It would be nice to be more quantitative, and also
calculate some physical quantity unambiguously. For
ample, staying in moment space we can exam
@dG(N,Q2)/d ln(Q2)#, which is an entirely perturbatively
calculable quantity, and its transformation intox space. This
will be considered in the next section.

IV. SOLVING THE BFKL SOLUTION
FOR RUNNING COUPLING: EVOLUTION

The usual approaches taken to finding the solution
a(Q2,N) ~or the full solution! are to assume that for smallx
one can expandX(g) aboutg5 1

2 to some finite order ing,7

usually toO(g3), or to use the saddle point method. Neith
of these are at all accurate unlessQ2 is very large indeed.
This is because along a line parallel to the imaginary a

7This is equivalent to writing thek2-space BFKL equation as a
infinite order differential equation and truncating at a low order
derivatives, or iterating the LO solution in the truncated form~2.12!
in the NLO equation.

FIG. 1. Comparison of the full function exp„g ln(Q2 /L2)

2X(g)/(b̄0N)… to the case where the exponent is truncated atO(g3)

along the lineR(g)5
1
2 . I choose ln(Q2/L2)56 and 1/(b̄0N)52.
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X(g) is not at all well represented by the first few terms in
power series ing about eitherg5 1

2 or about the saddle
point. The former can be seen in Fig. 1, where we comp
the the full function exp„g ln(Q2 /L2)2X(g)/(b̄0N)… to the
case where the exponent is truncated atO(g3) along the line
R(g)5 1

2 .8 Clearly the integral over the two contours ne
bear little similarity.

When using the saddle point technique one finds the m
mum of the exponent of the integrand in the definition
a(Q2,N) and expands in a Taylor series about this poi
This minimum occurs when

d

dg
„g ln~Q2/L2!2X~g!/~ b̄0N!…50, ~4.1!

which using the definition~3.5! leads to

1

b̄0 ln~Q2/L2!N
x~ḡ ![

ās~Q2!

N
x~ḡ !51, ~4.2!

i.e., at ḡ5g0
„ās(Q

2)/N…, the anomalous dimension for th
fixed coupling case, but with the running coupling evalua
at scaleQ2. The integrand defininga(Q2,N) is thus evalu-
ated along the axisR(g)5g0

„ās(Q
2)/N…, i.e.,

a~Q2,N!5
1

2p i
expS EQ2

g0
„ās~q2!/N…d ln q2D

3E
2 i`

i` 1

g01g
exp„g ln~Q2/L2!

1@X~g0!2X~g01g!#/~ b̄0N!…dg. ~4.3!

Letting, g˜2 ig and expanding aboutg0(ās /N) this be-
comes

a~Q2,N!5
1

2p
expS EQ2

g0
„ās~q2!/N…Dd ln q2

3E
2`

` S 1

g0 1¯ Dexp„g2x8~g0!/~2b̄0N!

1¯…dg. ~4.4!

This is then normally evaluated by ignoring all those pa
not explicitly included above, and performing the Gauss
integral @33# obtaining9

aSP~Q2,N!5
1

g0
„ās~Q2!/N…†2x8„g0@ās~Q2!/N#…‡1/2

3expS EQ2

g0
„ās~q2!/N…d ln q2D . ~4.5!

8Actually I plot the real part of the functions. The imaginary pa
is odd and integrates to zero.

9A factor of (b̄0N/2p)1/2 is absorbed intob(Q0
2,N).
1-6
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NLO BFKL EQUATION, RUNNING COUPLING, AND . . . PHYSICAL REVIEW D60 054031
This is of the same form as Eq.~2.15!, i.e., an evolution term
governed by the previous anomalous dimension and a c
ficient function which is a power series inās /N, except that
now as runs withQ2 rather than being fixed. This could b
taken to imply that one can simply extract anomalous dim
sions and coefficient functions from this solution and that
appropriate scale to use for the coupling isQ2.

The invalidity of this assumption is related to the fact th
Eq. ~4.5! is in fact a very poor approximation to the fu
solution fora(Q2,N). This is clear because inx-space both
the perceived anomalous dimension and coefficient func
above grow likex(21)24 ln 2ās(Q

2) asx˜0, whereas we know
that the complete solution fora(Q2,x) has no real powerlike
behavior inx. We can see how we have obtained such a p
approximation by using the saddle point technique if we
amine the form of the complete integrand along our cont
of integration compared with the function we have actua
integrated making the approximation in Eq.~4.4!. This is
seen in Fig. 2,10 and it is glaringly obvious that the sadd
point estimate is not at all reliable in this case. Formally
corrections ignored in evaluating Eq.~4.4! are of higher or-

10Again I plot only the real part.

FIG. 2. Comparison of the full function exp„g ln(Q2/L2)

2X(g)/(b̄0N)… to the function appearing in the saddle point estim
along the line R(g)5g0(ās /N). I choose ln(Q2/L2)56 and

1/(b̄0N)52, sog0(ās /N)50.384.
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der in b0as(Q
2) than the terms calculated, but their coef

cients grow quickly, i.e., like factorials, and to be preci
they are powers ofb0as(Q

2)„ās(Q
2)j…r higher than the pre-

sented results, wherer is a positive number, and are thu
dominant for low enoughx. Hence a resummation is reall
necessary for a true understanding.

However, an alternative view of the result in Eq.~4.5!
may lead us towards the correct physics. It is not really u
ful to interpret the prefactor in this equation as a coefficie
function which tells us something about the normalization
the gluon structure function sincea(N,Q2) must be multi-
plied by an unknownN-dependent function in order to obtai
this distribution. Rather, it is better to acknowledge that
only real information contained ina(N,Q2) is on the evolu-
tion of the structure function, i.e.,

d ln G~N,Q2!

d ln~Q2!
5

d ln a~N,Q2!

d ln~Q2!
[G~N,Q2!. ~4.6!

Thus, usinga(N,Q2) in Eq. ~4.6! gives us an entirely per
turbative effective anomalous dimension governing the e
lution of the gluon distribution. Using Eq.~4.5! we obtain

G~N,Q2!5g0
„ās~Q2!/N…2b0as~Q2!

3X dg0

d ln~as!
S 2x9~g0!

2x8~g0!
2

1

g0D C
1O„@b0as~Q2!#2

…r „ās~Q2!/N…. ~4.7!

So within the framework of the LO BFKL equation wit
running coupling our unambiguous effective anomalous
mension is the naive leading order result with coupling
scaleQ2 plus a series of corrections going like powers
b0as(Q

2).
It is tempting to interpret the whole solution fo

G„as(Q
2),N… as simply telling us the appropriate scale

use in the coupling constant for the normal LO result.
deed, this is the philosophy in the BLM scheme@24# for
scale fixing which uses the NLOb0-dependent correction
for any process to determine the scale to use for the coup
in the LO expression. However, in this case of an anomal
dimension for a structure function we have to decide whet
it is appropriate to do this inN-space orx space, i.e., should
we write

dG~N,Q2!

d ln Q2 'G„N,ās@s~N!Q2#…G~N,Q2!, ~4.8!

or

dG~x,Q2!

d ln~Q2!
'E

x

1

P„z,ās@s~z!,Q2#…G~x/z,Q2!dz.

~4.9!

Since the moment space expressions are less physical, b
defined only by analytic continuations over much of t

e

1-7
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ROBERT S. THORNE PHYSICAL REVIEW D 60 054031
N-plane we choose the latter.11 As we will see later, this
decision is backed up by higher order calculations. Note
bothG(N,Q2) andP(x,Q2) are entirely independent of fac
torization scale, and are functions only of renormalizat
scale. Indeed, if there were a direct probe of the gluon,
G(x,Q2) were directly measurable, then bothG(N,Q2) and
P(x,Q2) would be physically defined quantities. As such t
choice of the renormalization scale is entirely open.

The simplest thing we can do is to choose the scale for
coupling constant in the leading order expression so that
NLO term in thex-space version of Eq.~4.7! is exactly pro-
duced by the expansion aboutas(Q

2). Thus, writing this
x-space expression as

„x/ās~Q2!…P~x,Q2!5p0
„ās~Q2!j…

2b0as~Q2! p̂1
„ās~Q2!j…

1O„@b0as~Q2!#2
…r „ās~Q2!j…,

~4.10!

is the same as

†x/ās„Q
2s@jās~Q2!#…‡P~x,Q2!5p0

†ās„Q
2s@jās~Q2!#…‡

1O„@b0as~Q2!#2
…r̂ „ās~Q2!j…, ~4.11!

if we choose

exp„s@jās~Q2!#…5
p̂1
„ās~Q2!j…

„dp0@ās~Q2!j#/d ln as~Q2!…
.

~4.12!

This is the usual Brodsky-Lepage-Mackenzie~BLM ! scale
fixing, but here we have extra information since, in princip
at least, we know higher order terms and we would exp
r̂ „ās(Q

2)j… to be small if the scale fixing is correct.
Equation~4.12! can be solved for arbitraryx, but it is first

useful to examine the limit ofx˜0 in order to see if our
previous expectations based on qualitative arguments
confirmed. Hence we need each of the terms in Eq.~4.12! in
this limit. As x˜0,

p0
„ās~Q2!j…˜

1

„56pz~3!…1/2exp„l~Q2!j…„ās~Q2!j…23/2,

~4.13!

and therefore

dp0
„ās~Q2!j…

d ln„as~Q2!…
˜

4 ln 2

„56pz~3!…1/2exp~lj!„ās~Q2!j…21/2.

~4.14!

11Fixing the scale inN-space would lead to a scale which w
singular atN5l(Q2), which does not seem a sensible propositio
while in x space it is a smooth function ofx as we will see.
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In order to calculate thex˜0 limit of p̂1
„ās(Q

2)j… it is
easiest to first consider its moment space analogue, i.e.
second term on the right of Eq.~4.7!. First we note that using
Eq. ~2.14!,

dg0
„ās~Q2!/N…

d ln„as~Q2!…
52

x„g0@ās~Q2!/N#…

x8„g0@ās~Q2!/N#…
. ~4.15!

In the limit x˜0, x(g0)˜4 ln 2 andg0
˜

1
2 , but to be more

precise,

x~g0!˜4 ln 2214z~3!~ 1
2 2g0!21¯ . ~4.16!

Therefore,

x8~g0!˜228z~3!~ 1
2 2g0![228z~3!dg0. ~4.17!

Hence,

dg0

d ln~as!
52

x~g0!

x8~g0!
˜

ln 2

7z~3!dg0 . ~4.18!

Sincedg0 is vanishingly small asx˜0 we see that the 1/g0

term in Eq.~4.7! becomes subleading to thex(g0)/x8(g0)
term. The N-space version of p̂1

„ās(Q
2)j… is thus

x(g0)x9(g0)/2„x8(g0)2
…. To progress further we needdg0

as a function ofN. This can be obtained by solving Eq
~2.14! using Eq.~4.16!. This gives

dg0
„ās~Q2!/N…5S 2 ln 2

7z~3! D
1/2S N

l~Q2!
21D 1/2

. ~4.19!

This can be substituted into the moment space analogu
p̂1
„ās(Q

2)j… and the inverse transformation performed
give

p̂1
„ās~Q2!j…˜ ln 2 exp„l~Q2!j…. ~4.20!

This now makes it trivial to solve Eq.~4.12!, and we find that
in the coupling in our LO splitting function

ln~Q2/L2!˜ ln~Q̃2/L2!5 ln~Q2/L2!

1
„56z~3!p…

1/2

4
„ās~Q2!j…1/2. ~4.21!

This is exactly the sort of scale change we would exp
from the diffusion into the ultraviolet. It also leads t
xP„ās(Q

2),x…;exp„1.14@j/ās(Q
2)#1/2

… as x˜0, precisely
the sort of behavior we would expect from the qualitati
discussions in the last section.

We can also solve Eq.~4.12! exactly rather than relying
on asymptotic limits using the power series expansions
dp0

„ās(Q
2)j…/d ln„as(Q

2)… and p̂1
„ās(Q

2)j… in ās(Q
2)j.

The results of such solutions are shown in Fig. 3, wher
plot the effective coupling constant forNf54 derived as a
function ofx compared to its constant value takingQ2 as the
scale. The qualitative result is entirely consistent with E
~4.21! though the effective scale is a little smaller than th

,
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NLO BFKL EQUATION, RUNNING COUPLING, AND . . . PHYSICAL REVIEW D60 054031
asymptotic result at slightly highx values due to
p0
„as(Q

2)j… and p̂1
„as(Q

2)j… not yet having reached the
asymptotic expressions.

Hence, this BLM scale fixing procedure leads to a cho
of scale which fits in well with our naive expectations, a
must be at least broadly qualitatively correct since it do
destroy the powerlike behavior we get from fixed order c
culations inas(Q

2). Ignoring for the moment the fact tha
we have assumed the manner in which to take accoun
running coupling effects in the BFKL equation~we will dis-
cuss possible corrections later!, we would still like to know
whether our prescription is a true representation of the
effect of the running coupling, i.e., whetherr̂ „ās(Q

2)j… in
Eq. ~4.11! is really small. At each order inb0as(Q

2) it is
possible to calculate the leading behavior in the limitx˜0.
By power counting one can see that these leading te
come from keeping only the next term not explicitly show
in the exponential in Eq.~4.4!, i.e., the leading behavior i
given by

a~Q2,N!5
1

2pg0 expS EQ2

g0
„ās~q2!/N…Dd ln q2

3E
2`

`

exp„~ b̄0N!21@ 1
2 g2x8~g0!

1~ i /3!g3x9~g0!#…dg. ~4.22!

FIG. 3. The effective coupling constant forNF54 for the gluon
structure function as a function ofx compared to the constant value
at the relevant values of ln(Q2/L2).
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Expanding the exponential inig3 and performing each rel
evant integral gives the most singular behavior in„N
2l(Q2)… at each order inb0as(Q

2). This is a series of the
form

aSP~Q2,N! (
n50

`

~21!nLn„b0as~Q2!…n

3„l~Q2!/@N2l~Q2!#…3n/2, ~4.23!

where asymptoticallyLn;(1.84)nn!. Inserting this into Eq.
~4.6! and performing the transformation intox space leads to
a power series of the form

p0
„x,ās~Q2!…(

n50

`

~21!nAn„b0as~Q2!…n

3„l~Q2!as
1/2~Q2!j3/2

…

n, ~4.24!

where the An are all positive. If An were equal to
3.63n/n! the above series would simply b
exp„2l(Q2)3.63b0as

3/2(Q2)j3/2
…, which would be precisely

the leading correction in the exponent ofp0
„x,ās(Q

2)… ex-
pected using my choice of scale, i.e.,

exp„l~Q2!j…˜exp„l~Q2!j2l~Q2!

3j@3.63b0as
3/2~Q2!j1/2#1¯….

~4.25!

In practice this works reasonably well.A153.63 of course,
since this set our scale.A257.08 rather than 6.59, and th
terms then slowly increase above (3.63)n/n!. As n˜`,
An11 /An˜1.67/n1/2, and therefore Eq.~4.24! cannot be pre-
cisely of the suggested form. Nevertheless, it defines a c
vergent series in„b0as(Q

2)…n„l(Q2)ās
1/2(Q2)j3/2

… which
for a wide range of values mimics the desired exponen
exp„2l(Q2)j@3.63b0as

3/2(Q2)j1/2#… well.
This above check is not really terribly useful since t

right hand side of Eq.~4.25! hardly matches exp„l(Q̃2)j…
well for very largej, and many other terms are important
all j. Including our scale choice in the LO expression for t
splitting function also leads to terms not explicitly shown
Eq. ~4.25! @and in the expansion of the unexponentiat
terms in p0

„x,ās(Q
2)…# which are subleading inj at each

power ofb0as(Q
2) to those discussed above. There are a

terms of this type generated by the subasymptotic correct
to Eq. ~4.21!. In principle one could compare with term
generated form a more careful solution of Eq.~4.4!, includ-
ing also the nonleading parts coming from Eq.~4.22!. This
rapidly becomes extremely complicated indeed. It appear
though the logarithm of the splitting function is indeed
oscillating power series inb0as(Q

2)„as(Q
2)j…1/2, but it is

difficult to prove this rigorously.@We do know that the serie
will converge, or at least be unambiguously summable, si
the integral defininga(Q2,N) is well defined.# The best
check to be done at the moment is to calculate the whole
1-9
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ROBERT S. THORNE PHYSICAL REVIEW D 60 054031
the O„@b0as(Q
2)#2

… contribution to the splitting function
exactly, and compare this to that expected if the scale ch
is correct, i.e.,

1
2 „b0as~Q2!…2S ]2p0

„x,ās~Q2!…

]„ln as~Q2!…2
12

]p0
„x,ās~Q2!…

]„ln as~Q2!… D
3S p̂1

„x,ās~Q2!…

]p0
„x,ās~Q2!…/]„ln as~Q2!…D

2

. ~4.26!

The relevant terms ina(N,Q2) can be found by considerin
the terms in Eq.~4.4! multiplying the Gaussian which go like
g6/(b̄0N)2 and g4/(b̄0N), performing the Gaussian inte
grals and using the equalityN5ās(Q

2)g0. This gives

a~Q2,N!5aSP~Q2,N!X12b0as~Q2!F5„x9~g0!…2x~g0!

24„2x8~g0!…3

2S x9~g0!

2g0 2
x-~g0!

8 D x~g0!

„2x8~g0!…2G1¯C.
~4.27!

FIG. 4. Comparison of the exact NNLO splitting functio
p̂2
„ās(Q

2)j… with the value predicted from the choice of scale
the LO expression. Both terms are weighted by„exp@l(Q2)j#…21.
05403
ce

Inserting into Eq.~4.6! and making the transformation tox
space we obtain the requiredO„@b0as(Q

2)#2
… splitting func-

tion p̂2
„ās(Q

2)j…. This is compared to Eq.~4.26! in Fig. 4,
where each term is weighted by„exp@l(Q2)j#…21, and the
upper limit of ās(Q

2)j54 is chosen since the first 20 term
in the series expansions of each expression give a very
curate representation up to this value and it easily covers
range relevant for comparison to HERA data. As one c
see, aboveās(Q

2)j51 the ansatz for theO„@b0as(Q
2)#2

…

contribution of the splitting function matches extremely w
to the explicitly calculated value. Belowās(Q

2)j51 the
matching is not so good, but this is relatively unimporta
since in this region this contribution to the total splittin
function is small compared to the more leading contrib
tions, i.e., the scale change is quite small andp0

„ās(Q
2)j…

@b0as(Q
2) p̂1

„ās(Q
2)j…@„b0as(Q

2)…2p̂2
„ās(Q

2)j…. In
this region the scale choice is also sensitive to the inter
ence with the finitex effects at fixed order inas(Q

2) which
are ignored using this expansion scheme. Hence, it se
reasonable to conclude that explicit checks strongly sup
the assumption that all the running coupling effects in
evolution can be accurately described by the use of the
fective scale obtained by solving Eq.~4.12! in the LO effec-
tive splitting function.

V. SOLVING THE BFKL EQUATION
FOR RUNNING COUPLING: INPUT

We could also attempt to evaluateb(Q0
2,N) in the same

manner, i.e., expanding aboutg0
„ās(Q0

2)/N… and calculating
an order by order series inb0as(Q0

2). Of course, without an
infrared regulator we know thatb(Q0

2,N) must be divergent
because the integrand has singularities along the contou
integration, i.e., at integer values ofg̃, which lead to ambi-
guities of order (L2/Q0

2)n, i.e., higher twist. These singulari
ties do indeed show up in this power series solution. Expa
ing aboutg0

„as(Q0
2)/N… and only keeping the lowest orde

terms one obtains a sensible solution, i.e.,

bSP~Q0
2,N!5

1

„ās~Q0
2!/N…†2x8„g0@ās~Q0

2!/N#…‡1/2

3expS E2Q0
2

g0
„ās~q2!/N…d ln q2D .

~5.1!

Going beyond this approximation one obtains the same
of series as fora(N,Q2), except that because the contour
now along the real axis, rather than parallel to the imagin
axis, the terms in the series are all of the same sign ra
than oscillating. This leads to at least one power series
havior of the form

(
n50

`

Bnn! „b0as~Q0
2!…n„as~Q0

2!/@N2l~Q0
2!#…n/2, ~5.2!
1-10
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whereBn is roughly Bn, andB;3.6. One can take the in
verse transformation of this series term by term, obtainin
power series inx space which sums to approximately th
form

exp„l~Q0
2!j…(

n50

`

„Bb0as
3/2~Q0

2!j1/2
…

n. ~5.3!

Hence, in this case the power series is suggestive of the
that due to the diffusion into the infrared the appropria
coupling forb(Q0

2,N) depends not simply on ln(Q0
2/L2) but

on ln(Q0
2/L2)23.63b0„as(Q0

2)j…1/2, the exact opposite of the
case fora(Q2,N).

Of course, the infrared diffusion is a rather complicat
problem, and the series in Eq.~5.3! is only convergent for
„Bb0as

3/2(Q0
2)j1/2

…<1. This indicates that I have been to
simplistic in transforming Eq.~5.2! to x space term by term
The series in Eq.~5.2! is not defined for anyN, and before
going tox space we must solve this problem. The series~5.2!
may be summed using standard Borel transformation te
niques. This leads to a well-defined series up to an ambig
of the form exp„2@N2l(Q0

2)#1/2/@Bb0as
3/2(Q0

2)#…. Now
performing the transformation tox space we obtain a well
behaved series in„Bb0as

3/2(Q0
2)j1/2

… as well as an ambiguity
of order exp„l(Q0

2)j…exp„21/@B2b0
2as

3(Q0
2)j#…, where B2

'13. This latter ambiguity is due to the presence of an
frared renormalon@34# in the expression forb(Q0

2,N), and
will be cancelled by similar ambiguities in higher twi
corrections.12 Such terms are therefore taken to estimate
size of higher twist effects. In this case we see that due
diffusion becoming enhanced at smallx, this infrared in-
duced uncertainty quickly becomes large at smallx, and in-
deed the calculation of the normalization of the glu
Green’s function is only at all reliable in the limit

13b0
2as

3~Q0
2!j!1. ~5.4!

Hence, we find that even if we had a reliable model for
bare gluon distributiongB(Q0

2,N)13 we cannot calculate the
input for the gluon distribution at smallx within perturbation
theory, and previous conclusions on the infrared diffus
physics ruining perturbative predictability@23,7# are con-
firmed. In particular we note that the requirement in Eq.~5.4!
is basically identical to that found in@23,7#, and indeed, if
the series in Eq.~45! of the latter is summed it has an amb
guity of exactly the same type as discussed above~though in
@7# the series inx space was found directly!. However, here I
stress that this ambiguity is unique to the normalization fu
tion, and does not affect the evolution, which is calculable
perturbation theory.

12The ambiguity is seen as the nonperturbative contribution to
solution in @9#.

13Given that the functionb(Q0
2,N) is dependent on the type o

collinear regularization as well as the ambiguity discussed ab
this actually seems rather unlikely.
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Before finishing this section it is interesting to discuss t
relationship between the solutions obtained via the te
niques in this paper and solutions obtained by other auth
It has been noted by several authors@7–9# that the
asymptotic solution for the BFKL equation with runnin
coupling has the general form

f ~Q2,Q0
2,j!;

1

~asj!1/2expS l~QQ0!j1Kb0
2as

5j3

2
ln2~Q2/Q0

2!

56z~3!āsj
1¯ D , ~5.5!

where unless explicitly statedas is at some fixed scalem,
andK5(7/6)z(3)(3/p)3(4 ln 2)2. This seems rather at odd
with the results discussed above. However, it is not diffic
to see how this solution appears. Ignoring the term in
exponent going likeas

5j3 one achieves a solution of thi
form simply by taking the transformation tox space of the
productaSP(Q2,N)bSP(Q0

2,N) in the limit x˜0, and only
keeping the most dominant terms in the series expansion
the couplings about scalem.

It is not too much extra work to see where theas
5j3 terms

come from. Consider if rather than taking the saddle po
approximations fora(Q2,N) andb(Q0

2,N) one takes the so
lution of Eq. ~4.22! for a(Q2,N) and the equivalent expan
sion forb(Q0

2,N). The solution forb(Q0
2,N) in this approxi-

mation is of precisely the same form as Eq.~4.23! once we
replaceaSP(Q2,N) with bSP(Q0

2,N) and remove the factors
of (21)n ~theLn are identical!. If we multiply the two series
in these expressions together then since at large orderLn
;ann!, the resulting series is to good accuracy proportio
to

(
n50

`

L2n„~b0as!
2@l/~N2l!#3

…

n, ~5.6!

where as[as(m
2), i.e., we expandas„Q

2(Q0
2)… about

as(m
2), and asymptotically L2n12 /L2n˜„63z(3)/

(8 ln 2)…n2. Multiplying this by the two saddle point solu
tions, and performing the transformation tox space this sum
introduces precisely exp(Kb0

2as
5j3) with the correct value of

K. Hence, this non-Regge term comes about due to inter
ence between the input termb(Q0

2,N) and the evolution term
a(Q2,N).

Hence, these previous results do appear by taking
transformation tox space of the product of truncated sol
tions for a(Q2,N) and b(Q0

2,N). However, I would argue
that these solutions are not representative of any real phy
since neither of these truncations is at all accurate excep
quite highx. For givenQ0

2 Eq. ~5.5! is only applicable forx
satisfying Eq.~5.4!, in which case thex˜0 approximations
used to derive Eq.~5.5! are generally rather inaccurate
When Eq. ~5.4! is not satisfied the transformation o
b(Q0

2,N) is indeterminate, and that ofa(Q2,N) requires re-
summation. The only sensible option seems to be to fa
out b(Q0

2,N) and simply usea(Q2,N) to determine the evo-
lution as accurately as possible, rather than trying to fi

e

e
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ROBERT S. THORNE PHYSICAL REVIEW D 60 054031
f (Q2,Q0
2,j). Then we know from the general arguments

ready discussed that the Regge term exp(lj) is nothing to do
with the true result, let alone the non-Regge te
exp(Kb0

2as
5j3).

VI. NLO CORRECTIONS TO THE BFKL EQUATION

So far I have simply assumed that an accurate way
account for the running of the coupling in the LO BFK
equation is to use Eq.~3.1!. This is an assumption which
involves the resummation of an infinite number of terms, i
it assumes that at all orders inas(m

2) the dominant contri-
bution to the BFKL equation due to the running coupling

ās

N
~21!n

„b0as~m2!ln~k2/m2!…nE
0

` dq2

q2 K0~q2,k2! f ~q2!.

~6.1!

Until recently this has been an assumption for alln>1 al-
though the above terms must be present. However, the re
calculation of the NLO correction to the BFKL equation h
given us some insight into this question. Formally the NL
BFKL equation may be written as

f „k2,Q0
2,ās~m2!/N…5 f 0~k2,Q0

2!

1S ās~m2!

N D E
0

` dq2

q2 „K0~q2,k2!

2b0as~m2!ln~k2/m2!K0~q2,k2!

2as~m2!K1~q2,k2!…f ~q2!, ~6.2!

where K1(q2,k2) can be found in@2#. This is the strictly
NLO equation with no resummation at all. The separation
the NLO part into the running coupling part and the p
depending onK1(q2,k2) is arbitrary. The former is the firs
term in the infinite series we have already considered, but
latter also contains some pieces which may be associ
with the running of the coupling, i.e., going likeb0 .

This equation can be solved using the same meth
which were applied in Sec. IV. Taking the Mellin transfo
mation, this time with respect to (k2/m2) we obtain

f̃ ~g,N!5 f̃ 0~g,Q0
2!1S ās~m2!

N D
3S „x0~g!2as~m2!x1~g!… f̃ ~g,N!

1b0as~m2!
d„x0~g! f̃ ~g!…

dg
D , ~6.3!

wherex1(g) can also be found in@2#. As in Sec. III, this is
a first order differential equation ing, and it can be solved in
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the same manner. In fact it is rather easier to alter Eq.~6.2! to
the slightly different form

f ~k2,Q0
2,m2!5 f 0~k2,Q0

2!1S ās~k2!

N D E
0

` dq2

q2 „K0~q2,k2!

2as~m2!K1~q2,k2!…f ~q2!. ~6.4!

This is identical to Eq.~6.2! up to NNLO inas(m
2) and is a

common way for the NLO BFKL equation to be writte
since it makes the solution easier. One must simply rem
ber that the solution obtained is only uniquely defined up
NLO in as(m

2) when the couplingas(k
2) is expanded abou

as(m
2). If we take the Mellin transformation of Eq.~6.4!

with respect to (k2/L2) we obtain

d f̃~g,N!

dg
5

d f̃0~g,Q0
2!

dg
2

1

b̃0N
„x0~g!

2as~m2!x1~g!… f̃ ~g,N!, ~6.5!

which is identical to Eq.~3.3! except for the NLO inas(m
2)

correction to the kernel. It can therefore be solved in exac
the same manner as this previous equation@this would also
be true for Eq.~6.3!#, again obtaining a solution factorizin
into a Q2-dependent part and aQ0

2 dependent part. Each o
these is a contour integral and analogously to the previ
treatment expanding about the saddle point when perform
the inverse Mellin transformation toQ2 or Q0

2 space pro-
duces an ordered series inas(m

2), as long as we also expan
as„Q

2(Q0
2)… aboutas(m

2). This time the saddle point is a
@35#

gNLO,SP~ ās /N!5g0~ ās /N!

2b0as ln„Q2~Q0
2!/m2

…

]g0~ ās /N!

]„ln~as!…

2as

x1„g
0~ ās /N!…

2x08„g
0~ ās /N!…

1¯ , ~6.6!

where

as

x1„g
0~ ās /N!…

2x08„g
0~ ās /N!…

[asg
1~ ās /N!, ~6.7!

is often called the NLO-BFKL anomalous dimension, and
other corrections are beyond NLO inas .14

Using the previous choice of input we can evaluate
two inverse transformations about the saddle point@we only
need go further than the strict saddle point approximat
when considering the~1/g! factor in theQ2-dependent inte-
grand to obtain all results up to NLO accuracy—i.e., we u
1/(g01g)2151/g02g/(g0)2#. This gives a solution for the
gluon structure function of the form

14For the remainder of this section unless the argument is exp
itly statedas[as(m

2).
1-12
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G~Q2,N!

gB~Q0
2,N!

5
1

~ ās /N!g0
„2x08~g0!…

X12asS 2
g1

g0 1g1
x09~g0!

2x08~g0!
1

x18~g0!

2x08~g0!
2b0

x09~g0!x0~g0!

2g0
„2x08~g0!…2

D
2b0as ln~Q2/m2!

]ḡ0

] ln~as!
S 2

1

g0 1 1
2

x09~g0!

2x08~g0!
D 2b0as ln~Q0

2/m2!S 211 1
2

]g0

] ln~as!

x09~g0!

2x08~g0!
D C

3expXE
Q0

2

Q2S g02b0as ln~q2/m2!
]g0

]„ln~as!…
2asg

1Dd ln q2C. ~6.8!

This allows us to determine the gluon coefficient function and gluon anomalous dimension up to NLO inas(m
2), where the

former may be defined as the value of Eq.~6.8! whenQ0
25Q2, and the latter is then determined by the evolution of Eq.~6.8!

with respect toQ2 once the coefficient function has been subtracted out, i.e.,

RNLO~ ās /N,Q2/m2!5
1

~ ās /N!g0
„2x08~g0!…

F12asS 2
g1

g0 1g1
x09~g0!

2x08~g0!
1

x18~g0!

2x08~g0!
D

1asb0X x09~g0!x0~g0!

2g0
„2x08~g0!…2

2 ln~Q2/m2!F211
]g0

] ln~as!
S 2

1

g0 1
x09~g0!

2x08~g0!
D GCG ~6.9!

and

gNLO~ ās /N,Q2/m2!5g02b0as ln~Q2/m2!
]g0

]„ln~as!…
2asg

11S 211 1
2

]g0

] ln~as!

x09~g0!

2x08~g0!
D . ~6.10!
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It is gratifying, though necessary, that in both cases the
results from Eq. ~2.15! are reproduced, and the term
;b0as ln(Q2/m2) are consistent with the renormalizatio
group.@Note that2asg

1(ās /N) is not really the NLO cor-
rection to the anomalous dimension in this scheme—i
actually quite similar to the modified minimal subtractio
(MS) factorization scheme anomalous dimension.# Never-
theless, both of these quantities are dependent on our ch
of input and factorization scheme, and do not contain a
real physics.

The only physically unambiguous quantity which may
extracted is the effective anomalous dimension defined
Eq. ~4.6!:

G~N,Q2/m2!5g02b0asX ]g0

] ln~as!
ln~Q2/m2!

1
]g0

] ln~as!
S 2x9~g0!

2x8~g0!
2

1

g0D C2asg
1.

~6.11!

The second term on the right corresponds to the NLO inas
contributions previously accounted for when considering
running coupling, while the third gives the additional NL
corrections. By examining the part ofg1 which depends on
b0 we can check whether at NLO at least the previous
sumption about the manner in which to treat running c
pling effects was correct, i.e., can see whether these do
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the dominant contribution at NLO, or whether the conform
parts ofg1 are more important.

One can study the terms in Eq.~6.11! by finding the ex-
plicit form of each as a power series inās /N. However, in
the smallx limit we can examine the form of the singularitie
in the N plane, i.e., the limit of each of the terms asg0

˜

1
2

and N˜l. Using the well publicized fact thatx1( 1
2 )

54 ln 236.3 for 4 flavors and in theMS renormalization
scheme, and taking the inverse transformation back tx
space of Eq.~6.11!, we obtain

xP~x,Q2!5ās exp~lj!X 0.068

~ āsj!3/2

2b0asF S 0.188

~ āsj!1/2D ln~Q2/m2!10.69G
2asS 1.18

~ āsj!1/2D C. ~6.12!

Hence, the last term, although numerically large, is suble
ing to the effects due to the running of the coupling we ha
previously considered, being a power of (āsj)1/2 smaller.
However, now we can be a little more systematic. Examin
the full NLO correctionx1(g), presented in Eq.~14! in @2#,
we see that there are contributions which may be interpre
as being due to the running of the coupling. These
1
2 b0„x

2(g)1x8(g)… and 2(5/3)b0x(g), coming from the
1-13
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NLO correction to the Reggeon-Reggeon-gluon vertex
the purely virtual terms, respectively.15 We imagine that
these should be moved out ofg1 in Eq. ~6.11! and put into
the b0-dependent part of the NLO correction. Doing th
changes Eq.~6.12! to

xP~x,Q2!5ās exp~lj!X 0.068

~ āsj!3/2

2b0asF S 0.188 ln~Q2/m2!20.05

~ āsj!1/2 D10.69G
2asS 1.23

~ āsj!1/2D C. ~6.13!

Therefore, not only is this additional NLO correction due
the running of the coupling numerically very small, but it
also subleading at smallx to the terms we have alread
considered.16 Choosing the renormalization scalem by set-
ting theb0 dependent term to zero,17 we obtain a very minor
correction to our previous choice of scale for the limitx
˜0, i.e.,

ln~Q2/L2!˜ ln~Q2/L2!20.261
„56z~3!p…

1/2

4
„ās~Q2!j…1/2,

~6.14!

where in fact there should really be an additional constan
the right in the above equation due to subleading correct
in Eq. ~4.21! that I have ignored. The constant on the right
Eq. ~6.14! is also renormalization scheme dependent, tho
the dominant 3.63„ās(Q

2)j…1/2 term is not.
We can also solve the equation for the scale exactly ra

than in the smallx limit. Putting our additional terms into the
definition of the running coupling dependent NLO splittin
function, we compare with the previousp̂1

„ās(Q
2)j… in Fig.

5. We see that indeed the correctedp̂1
„ās(Q

2)j… is slightly
smaller than the original forās(Q

2)j>1 but is different at
higherx, implying a different scale choice here to that in Se
IV. Of course, at these higher values ofx the differences are
not too important since, as already mentioned, the s
changes are small here, and there will be interference w
other effects from the order by order inas expansion.

Hence, we find that at NLO our previous assumpti
about the 2b0as(m

2)ln(k2/m2) term ~which had to be
present! being the dominant contribution associated with t

15It does not seem certain whether or not the second of these t
should be included as a running coupling effect or not. As w
become clear below this is only relevant for the scale choice at h
x where other considerations from largex terms come into play
also.

16Not including the2(5/3)b0x(g) term would simply lead to
20.05 becoming 0.26 and 1.23 subsequently becoming 0.92.

17I chooseas to beas(Q
2) rather thanas(m

2) when doing this.
The two are of course equivalent up to higher order corrections,
the results of previous sections suggest that this is the approp
choice.
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running coupling is very well justified. This gives us con
dence, if not a proof, that the approach taken in the previ
sections, i.e., that the@2b0as(m

2)ln(k2/m2)#n terms are the
dominant contribution from the running of the coupling at
orders is roughly correct. Consequently, this full NLO res
also supports the hypothesis that the LO running coup
effects can be taken account of simply by using t
x-dependent scale choice, determined by the BLM presc
tion, in the LO expression for the effective splitting functio

Before considering the details of the NLO corrections
the kernel which are not associated with the running of
coupling let us reconsider the NLO BFKL equation. Give
the above results it seems very unlikely that the NLO BFK
equation as written in Eq.~6.4! is will be a good representa
tion of the real physics since the overall power of the co
pling is allowed to run withk2 while that associated with the
NLO kernel is fixed atm2. Bearing in mind that letting the
coupling run in the LO equation leads to such dramatic
fects, and that at higher orders there will definitely be t
logs in (k2/m2) associated with the running of this addition
factor of as(m

2) ~with what now seem likely to be sma
corrections! it seems most appropriate to write the NL
BFKL equation with running coupling as

ms
l
h

ut
te

FIG. 5. Comparison of the exact NLOb0-dependent splitting
function p̂1

„ās(Q
2)j… including the corrections fromg1 with the

value of p̂1
„ās(Q

2)j… obtained using the assumption in Sec. I
Both terms are weighted by„exp@2as(Q

2)j#…21 for ease of compari-
son.
1-14
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f ~k2,Q0
2,m2!5 f 0~k2,Q0

2!1S ās~k2!

N D E
0

` dq2

q2 „K0~q2,k2!

2as~k2!K1~q2,k2!…f ~q2!, ~6.15!

if attempting to find a complete solution, as proposed in@11#.
Strictly speakingas(k

2) should then be the two-loop runnin
coupling, but this will make the equation very complicated
will just use the one-loop coupling which leads to a 2
order differential equation ing space

d2 f̃ ~g,N!

dg2
5

d2 f̃ 0~g,Q0
2!

dg2
2

1

b̄0N

d„x0~g! f̃ ~g,N!…

dg

2
p

3b̄0
2N

x1~g! f̃ ~g,N!. ~6.16!

This can be solved in a very similar way to the approa
in Sec. IV; i.e., at leading twist it factorizes into the sam
form as Eq.~3.7!:

GNLO~N,Q2!5aNLO~Q2,N!bNLO~Q0
2,N!gB~Q0

2,N!,
~6.17!

where

aNLO~Q2,N!5
1

2p i E1/22 i`

1/21 i` 1

g
exp„g ln~Q2/L2!

2XNLO~g,N!/~ b̄0N!…dg. ~6.18!

However,XNLO(g,N) is rather more complicated than th
previousX(g). It can be expressed in the form

XNLO~g,N!5E
1/2

g

xNLO~ ĝ,N!dĝ, ~6.19!
05403
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where xNLO(g,N) can be written as a power series inN
beginning at zeroth order withx0(g). As seen in@11#,
though here ignoring any resummations inN, the explicit
form is

xNLO~g,N!5x0~g!2N
x1~g!

x0~g!
1

N2

x0
X2S x1~g!

x0~g! D
2

2b0S x1~g!

x0~g! D 8C1¯ , ~6.20!

wherex2(g) would also appear at orderN2 if I had included
it.

It is now possible to obtain some general and rather s
cific results using Eq.~6.16!. Putting Eq. ~6.20! into Eq.
~6.18! we note that the leading singularities ing and N are
still both at 0, and thus there is still no true powerlik
growth. Furthermore, the singularity atN50 is not affected
by any of the additional terms in Eq.~6.20! beyondx0(g)
since in the exponent in Eq.~6.18! theO(N) term leads to a
constant asN˜0 and all higher order terms vanish in th
limit. Hence, none of these terms should affect the soluti
in the limit x˜0, except that theO(N) term should affect
the overall normalization, and we still expect smallx solu-
tions ;exp„(j)1/2

… with the exponent the same as in the L
case. Hence, higher order corrections to the BFKL equa
should be very subleading when calculating physical qua
ties. This implies that the scale for the coupling in high
order corrections should be of the same type as at LO,
falling with x.

It is also possible to be more quantitative. Equation~6.18!
can be solved using the same techniques as in Sec. I
expanding about the saddle point leads to an ordered ex
sion in as(Q

2). Using Eq.~6.20! it is easy to find that the
saddle point is now at
ion—the
ction.
ing
f

BLM
larly
gSPNLO
„ās~Q2!/N…5g0

„ās~Q2!/N…2as~Q2!
x1„g

0@ās~Q2!/N#…

x08„g
0@ās~Q2!/N#…

1O„as
2~Q2!…. ~6.21!

Expanding as in Eq.~4.4! one finds the saddle point solution

aNLOSP~Q2,N!5
1

gSPNLO
„ās~Q2!/N,N…$2†xNLO8 „gSPNLO@ās~Q2!/N#,N…‡%1/2expS EQ2

gSPNLO
„ās~q2!/N…d ln q2D .

~6.22!

Further corrections can be calculated as in Sec. IV. However, this expression contains some interesting informat
dominant contribution to the running coupling corrections to the conformal part of the NLO effective splitting fun
CalculatingG(N,Q2) as a power series inas(Q

2) and transforming tox space one recovers all the contributions to the splitt
functions in Sec. IV. One also obtains the term2as(Q

2)p1,con f
„ās(Q

2)j… which is the transformation o
2as(Q

2)g1
„as(Q

2)/N… ~with the b0-dependent terms extracted!, and contributions to theb0as
2(Q2)p„ās(Q

2)j… splitting
function. This latter term provides the scale appropriate to use in the NLO conformal splitting function using the
prescription at NLO@36#. This usually gives different choices for the LO and NLO scales, which could be particu
important in this case where the scale choice is so important.

CalculatingG(N,Q2) from Eq. ~6.22! the NLO conformal contribution
1-15
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2as~Q2!g1
„as~Q2!/N…[2as~Q2!

x1„g
0@ās~Q2!/N#…

2x08„g
0@ās~Q2!/N#…

~6.23!

comes from the argument of the exponential term. The leading contribution to theb0-dependent correction to this comes fro
the expansion of

X2x08S g0
„ās~Q2!/N…2as~Q2!

x1„g
0@ās~Q2!/N#…

2x08„g
0@ās~Q2!/N#…D C21/2

, ~6.24!

to orderas(Q
2) which in G(N,Q2) leads to the term

b0as
2~Q2!

dg0
„ās~Q2!/N…

d ln„as~Q2!… S †x09„g
0@ās~Q2!/N#…‡2x1„g

0@ās~Q2!/N#…

†2x08„g
0@ās~Q2!/N#…‡3

D . ~6.25!
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It is easy to check that all other terms ofO„b0as
2(Q2)… are

less divergent asN˜l(Q2) than this one, including the con
tributions due to theb0-dependent term appearing explicit
in Eq. ~6.20!, which are very subleading. Similarly, the co
tributions from the unknownx2(g) will be very subleading
unlessx2(g) is rather singular atg5 1

2 . Taking the ln(Q2)
derivative of Eq.~6.23! and transforming this and Eq.~6.25!
to x space one may find the scale for the NLO splitting fun
tion in the same way that the scale for the LO splitting fun
tion was found in Sec. IV. However, comparing Eqs.~6.23!
and~6.25! with the terms in Eq.~4.7! one notices some simi
larities. These are not accidental, and a careful analysis
lowing the lines of Eqs.~4.13! to ~4.20! leads to exactly the
same result as at LO—the scale appropriate to the NLO c
formal splitting function is given by

ln~Q2/L2!˜ ln~Q̃2/L2!5 ln~Q2/L2!

1
„56z~3!p…

1/2

4
„ās~Q2!j…1/2. ~6.26!

This exact equality was not at all guaranteed and is a rem
able result, implying the universality of this scale choice
all orders. It is also renormalization scheme independ
like the asymptotic form of the LO scale choice. It is u
doubtedly true that the LO scale and the NLO scale w
differ for finite x, this depending on the unknown NNLO
kernel, but it shows that the asymptotic results are v
simple and perturbation theory ought to be particularly c
vergent at smallx. The NLO scale also matches well with th
qualitative predictions obtained from consideration of t
singularity structure of the full solution, as we will see b
low.

Using this scale at NLO we can investigate the prec
effects of the NLO corrections not associated with the r
ning coupling, the so-called conformal contributions. To b
gin with I simply remove theb0-dependent terms from Eq
~6.13! obtaining

xP~x,Q2!5as exp~lj!X 0.068

~ āsj!3/22asS 1.23

~ āsj!1/2D C.
~6.27!
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Therefore, consideringas as a constant for the moment, w
see that the NLO correction is both numerically large, a
enhanced by a power ofās

2j compared to the LO. This latte
point is really expected. Consider a leading order result
the form exp(Aāsj). When we go to NLO the coupling con
stantas becomes a renormalization scheme dependent q
tity, uncertain byO(as

2). In order to be consistent with th
renormalization group and produce a result which is in
pendent of renormalization scheme up to higher orders
form of the full solution must be exp„(Aās1Bās

21¯)j…,
whereB is scheme dependent. Expanding this about the
solution we get exp(Aāsj)(11Bās

2j1¯), i.e., the NLO cor-
rection is indeed a power ofās

2j times the LO result, exactly
what we see in Eq.~6.27!. From this argument it is clear tha
the NLO correction should be exponentiated, and we ob

xP~x,Q2!5ās

0.068

~ āsj!3/2exp„lj~126.5ās!…, ~6.28!

i.e., we obtain~slightly altered due to the removal of th
b0-dependent term! the publicized correction to the powe
like behavior.

However, we know thatas is not a constant, but run
according to our scale choice at both LO and NLO. Inde
the renormalization group argument above shows that
NLO terms in Eq. ~6.12! which behave like
20.69āsb0as exp(lj) are not of the form we would natu
rally expect for the NLO corrections, i.e., are not just
power ofas higher, do not represent the order of renorm
ization scheme uncertainty, and are not really sublead
Resumming by absorbing them into the definition ofas
seems the only sensible thing to do. Doing this and using
scale choice~4.21! in the small x limit in the expression
~6.28! in both the LO and NLO parts gives

xP~x,Q2!}
1

„as~Q2!j…1/2
„j/as~Q2!…3/4

3exp„1.14@j/as~Q2!#1/223.0/as~Q2!….

~6.29!
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Therefore, it is only the LO part which gives thex depen-
dence in this limit. The NLO part gives aQ2-dependent nor-
malization change, which can admittedly be large@though
using thex˜0 limit of Eq. ~4.21! tends to exaggerate th
size of this at finitex#, as expected from the singularity stru
ture of the solution of the full NLO BFKL equation. Henc
using this scale choice the log ofxP(x,Q2) is very insensi-
tive to NLO corrections at smallx, and we would expect the
NNLO corrections tõ 0 asx˜0.18

Therefore, I conclude that the remaining NLO corre
tions, after running coupling effects have been absorbed
the LO expression, are made far less significant by the ef
tive scale used, which has been shown to be the same fo
and NLO. However, they are still potentially important
small x. As far as comparison with experiment is concern
the interesting question is whether these NLO corrections
significant within the current range of data available. In ord
to answer this question it is probably better to adopt a m
sophisticated procedure, and look at the evolution not
some hypothetical gluon structure function, but of the tr
physical structure functions.

VII. SMALL x STRUCTURE FUNCTIONS

The previous sections have all considered the calcula
of the gluon structure function obtained by integrating t
solution of the BFKL equation up to the virtualityQ2. Of
course, this gluon structure function is not a real physi
quantity, though it does, as we shall see, contain most of
essential information for physical quantities for asympto
cally smallx. However, we would like to see precisely ho
the results in the previous sections apply to real phys
quantities, and how universal they are.

The generalization of the previous results to real phys
scattering processes is quite straightforward. Instead of i
grating the upper leg of the gluon Green’s function from ze
up toQ2 we perform the convolution of the Green’s functio
with the scattering cross section for a probe of virtualityQ2

with a gluon of virtualityk2 @25#, i.e., Eq.~2.6! is replaced
by

Fi~Q2,N!5E
0

` dk2

k2 s i ,g„k
2/Q2,as~m2!…

3 f ~N,k2,Q0
2!gB~N,Q0

2!. ~7.1!

18This result for the splitting functions asx˜0 is xP(x,Q2)
;exp„ALO@j/as(Q

2)#1/22BNLO /as(Q
2)… where ALO is renormal-

ization scheme independent,BNLO is scheme dependent, and high
order corrections are claimed to be negligible. The apparent sch
dependence can be eliminated by noting that the leading order r

assumed ln(Q̃2/L2)53.63„ās(Q
2)j…1/2 as x˜0. Including the full

ln(Q̃2/L2)5ln(Q2/L2)1BLO13.63„ās(Q
2)j…1/2, whereBLO is renor-

malization scheme dependent, leads toxP(x,Q2)
;exp„ALO@j/as(Q

2)#1/21CLO /@as
2(Q2)#1(BLO2BNLO)/as(Q

2)…
whereCLO andBLO2BNLO are scheme-independent.
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Currently the relevants i ,g„k
2/Q2,as(m

2)… are known at
lowest nontrivial order for a number of quantities. This
order as for FL(x,Q2) for both massive@37# and massless
quarks @37#, F2(x,Q2) for massive quarks@25# and
@]F2(x,Q2)/] ln Q2# for massless quarks@38#. For massless
quarks the lowest order result forF2(x,Q2) is zeroth order in
as and is infrared divergent, representing the unknown n
perturbative quark distribution function. None of the cro
sections are known beyond leading order, but all diagra
accounting for the running coupling corrections at NLO f
the structure functions are contained within the NLO BFK
equation.

Taking the Mellin transformation of Eq.~7.1! with respect
to (Q2/L2) leads to the simple expression

F̃i~g,N!5ashi ,g~g!G̃~g,N!, ~7.2!

where as beforeG̃(g,N)5 f̃ (g,N,Q0
2)gB(N,Q0

2)/g, and
hi ,g(g) is a function of g which is finite at g50 and g

51/2. Using the appropriate expression forG̃(g,N) the in-
verse Mellin transformation may be performed in the sa
manner as before in order to give the moment space struc
functions—considering the running coupling constant BFK
equation, either LO or NLO, expanding about the sa
saddle points leads to an ordered solution inas . Let us ex-
amine the simple case ofFL(N,Q2) with massless quarks
only. As with the gluon structure function it is impossible
actually predict this function due to the unknowngB(N,Q0

2)
and due to the need to regularize the BFKL equation wh
using the running coupling. However, the previous lead
twist factorization into an incalculableQ0

2-dependent func-
tion and a calculableQ2-dependent function also applies
the same way. The functionhL,g(g) is entirely associated
with the latter and does not alter the previous properties
the case of the gluon—theQ2-dependent function is a finite
unambiguous quantity with a Mellin transformation havin
leading singularities atg50 andN50.

Hence, as in the case of the gluon structure function
entirely perturbative calculable quantity to consider is

GLL~Q2,N!5
] ln„FL~N,Q2!…

] ln Q2 . ~7.3!

This can be calculated for the case of the running coup
and the LO BFKL equation as in Sec. IV, with all gener
results being the same as in this previous case, i.e., one
tains an oscillating series inb0as(Q

2) and a very similar
apparent scale choice, as we will see below. The chan
brought about by using the NLO BFKL equation with ru
ning coupling are also much the same as when conside
the gluon. As stated, to get a full solution one should use
NLO BFKL equation in the form~6.15!. Being instead en-
tirely systematic one may use Eq.~6.4!, and examine the
results only up to NLO inas(m

2). Doing this one calculates
the analogues of Eqs.~6.10! and ~6.9!. The latter is un-
changed while the former is altered by the presence
hL,g(g) into a different coefficient functionCL

NLO(ās /
N,Q2/m2). The evaluation of this complete NLO coefficien

me
ult
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ROBERT S. THORNE PHYSICAL REVIEW D 60 054031
function is not yet possible due to the absence of the N
correction tosL,g„k

2/Q2,as(m
2)…. However, in order to cal-

culate the NLO physical anomalous dimensi
GLL

NLO(N,Q2/m2), the analogue of Eq.~6.11!, one needs only
the NLO part ofCL

NLO(ās /N,Q2/m2) containing ln(Q2/m2),
which is really provided by the LO expression via the ren
malization group.19 Explicitly one obtains

GLL~N,Q2/m2!5g02b0asX ]g0

] ln~as!
ln~Q2/m2!

1
]g0

] ln~as!
S 2x9~g0!

2x8~g0!
2

1

g0 1hL,g8 ~g0! D C
2asg

1. ~7.4!

Hence, the conformal part ofGLL(N,Q2/m2) is identical to
that of G(N,Q2/m2), but there is a modification to the term
determining the scale. In fact, the additional term,hL,g8 (g0),
is a constant atg05 1

2 , and as such it only contributes insig
nificantly as x˜0: the asymptotic scale is dominated b
@]g0/] ln(as)#@2x9(g0)/2x8(g0)# and is identical to the
choice already presented for the gluon structure funct
hL,g8 (g0) is important at moderatex, however.

Taking the transformation of Eq.~7.4! back tox space and
eliminating theb0-dependent part~including the terms in
g1) by setting the scale leads to a precise definition of
effective coupling constant to be used for the evolution
FL(x,Q2) within this expansion scheme. This is presented
a function ofx for two choices ofQ2 in Fig. 6, and can be
compared with the effective coupling for the gluon structu
function ~without theb0-dependent terms ing1) in Fig. 3.
Clearly in both cases the effect of the change in scale i
reduce the smallx coupling, and the effect becomes mo
important asQ2 decreases and the size ofp̂1

„ās(Q
2)j… be-

comes larger relative top0
„ās(Q

2)j…. However, for
FL(x,Q2) the effective coupling atx50 is larger than
as(Q

2). This is mainly due to the2(5/3)b0x(g) term in
g1, but is also influenced by the first nontrivial term in th
series expansion ofhL,g(g0) in powers of (ās /N) which is
negative. Asx decreases the effective coupling quickly d
creases also, and soon falls below that in Fig. 3. This la
point is due to the1

2 b0„x
2(g)1x8(g)… term in g1 and the

remainder ofhL,g(g) which both act to increasep̂LL
1 (āsj),

and hence increase the scale for the coupling. Atx51025

the effective coupling forFL(x,Q2) is noticeably lower than
that for the gluon, but asx decreases even further the effe
of the additional terms becomes less and less important,
the couplings converge.

One can now be rather quantitative about the phenome
logical effects of the NLO BFKL equation and the choice

19Equivalently one can use the formulas for the physical ano
lous dimensions describing the evolution of structure functions
terms of themselves, rather than unphysical partons and coeffi
functions, given in@37#.
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scale. Let us first make the simple scale choicem25Q2. In
this case we may write the physical splitting function as

„x/ās~Q2!…PLL„ās~Q2!j…5pLL
0
„ās~Q2!j…

2b0as~Q2!pLL
1,b

„ās~Q2!j…

2as~Q2!pLL
1,con f

„ās~Q2!j…

[pLL
0
„ās~Q2!j…

2as~Q2!pLL
1,tot

„ās~Q2!j…,

~7.5!

where each of thepLL
i
„ās(Q

2)j… may be written as a powe
series of the form20

pLL
i
„ās~Q2!j…5(

0

`

an

„ās~Q2!j…n

n!
. ~7.6!

The coefficients for the power series of the various terms
Eq. ~7.5! are shown in Table I. As one can see the coe
cients for all thepLL

1 (ās(Q
2)j) are generally much large

than those forpLL
0 (ās(Q

2)j).

-
n
nt20Actually pLL

1,con f has an additional term}d(12x)/„as(Q
2)…

which appears in the normal one-loop physical structure functio

FIG. 6. The effective coupling constant for the physical splitti
function PLL(x,Q2) for NF54 as a function ofx compared to the
constant values at the relevant values of ln(Q2/L2).
1-18
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Using the conventional choice of scale then at lead
order one would obtain the value of@]FL(x,Q2)/] ln Q2# by
convoluting the first term on the right of Eq.~7.5! with
FL(x,Q2) itself. As an appropriate choice ofFL(x,Q2) at a
value of (Q2/L2)58(Q2;40 GeV2) I choose FL(x,Q2)
5(x/0.1)20.3Q(0.12x). This is a function with the approxi
mate shape ofF2(x,Q2) at this Q2 and theQ function is
chosen as a crude model for the approximate (12x)6 fall-off
at largex. The result for the evolution ofFL(x,Q2) is shown
in the upper of Fig. 7. It increases very quickly at smallx due
to both the shape ofFL(x,Q2) and the large splitting func
tion at small x. Using the conventional scale choice o
would then find the NLO evolution by using the whole
Eq. ~7.5!. The effect of adding in this very large negativ
contribution to the physical splitting function is also show
in the upper of Fig. 7. As one can see the effects are
matic, largely killing the evolution forx.0.0001 and turning
it sharply negative below this.21 Indeed, the NLO correction
is nearly as large as the LO result forx;0.001, and become
dominant asx decreases below this: the perturbative so
tion is not at all stable. Also, although we do not have m
surements ofFL(x,Q2) in this range ofx and Q2, similar
behavior would feed through toF2(x,Q2), and the NLO
prediction is dramatically at odds with the experimental da
This is therefore a real physical example of the proble
induced by the NLO BFKL equation, and is completely i
dependent of factorization schemes and hence totally un
biguous~which is not the case for discussions of behavior
the gluon distribution in a given factorization scheme!. As

21Similar behavior was found for the gluon in a particular facto
ization scheme (MS) using an incomplete calculation of the NL
anomalous dimension@39#. Using the complete anomalous dime
sion does not alter the qualitative results.

TABLE I. The coefficients in the power seriespLL
i
„ās(Q

2)j…
5(0

`an„ās(Q
2)j…n/n! for the various LO and NLO contributions

to the physical splitting functionPLL(x,Q2).

n pLL
0 pLL

1,tot pLL
1,b pLL

1,con f

0 1.00 0.23 22.00 1.57
1 0.00 4.38 4.15 1.60
2 0.00 15.87 11.32 8.29
3 2.40 13.41 216.18 24.25
4 0.00 86.26 76.03 35.31
5 2.07 252.92 167.34 140.81
6 17.34 323.08 281.51 377.69
7 2.01 1699.65 1472.42 713.25
8 39.89 4338.69 2665.07 2553.16
9 168.75 7592.65 1674.16 6470.97

10 69.99 33409.13 28319.16 14435.29
11 661.25 79427.26 47284.56 47746.6
12 1945.31 173361.43 81792.97 118560.1
13 1717.68 657395.79 543255.72 293414.4
14 10643.26 1527235.16 927749.64 905642.9
15 25266.78 3833618.50 23539999.61 2256438.
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we go to lowerQ2 the coupling becomes stronger and t
expected shape of the structure function becomes fla
Both lead to the NLO corrections becoming even more i
portant relative to the LO, and atQ2;10 GeV2 the NLO
correction is larger than the LO for essentially allx. So we
see that the conventional choice for the scale leads to di
trous results.

Let us consider instead the BLM scale choice f
PLL(x,Q2). AbsorbingpLL

1,b
„ās(Q

2)j… into the definition of
the scale changes Eq.~7.5! to

„x/ās~Q̃2!…PLL„ās~Q̃2!j…5pLL
0
„ās~Q̃2!j…

2as~Q̃2!pLL
1,con f

„ās~Q̃2!j…,

~7.7!

where, as I have already noted, the LO scale is only gua
teed to be exactly the same as that to use at NLO asx˜0.
@Using Eq. ~6.15! it is easy to show that this is true fo
FL(x,Q2) in the same way as for the gluon—hL,g(g) only
introduces subleading effects as in Eq.~7.4!.# The result of
the evolution using the LO splitting function is shown in th

FIG. 7. The values of„]FL(x,Q2)/ln(Q2)… using the resummed
physical splitting functions for an input of FL(x,Q2)
5(x/0.1)20.3Q(0.12x) at ln(Q2/L2)58 as a function ofx. The
upper figure shows the LO and LO1NLO results for the conven-
tional scale choiceQ25m2. The lower figure shows the LO
LO1NLO, and LO1exponentiated NLO results for thex dependent
scale choice in this paper.
1-19
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ROBERT S. THORNE PHYSICAL REVIEW D 60 054031
lower of Fig. 7. It is a little smaller at the lowest values ofx
than for Q25m2, but only by;15%. This is because unt
we get to extremely smallx the LO evolution is largely

driven by the first term in the power series ofpLL
0
„ās(Q̃

2)j…
due to the vanishing of the second, third and fifth terms,
relatively small fourth and sixth terms. Hence, the decre
of the coupling is only felt as a single power~and indeed
there is an increase of the coupling for the highest value
x!. The discrepancy between the LO results will increase
lower values ofx. It will also increase asQ2 gets smaller
and/or as the structure function becomes less steep.
when we include the NLO corrections that the more dram
result is seen. The size of these now decreases for two
sons: much of the NLO correction has vanished, having b
absorbed into the definition of the scale,22 and the effective
coupling is now much smaller at smallx. The result of in-
cluding the NLO corrections is seen in the lower of Fig. 7
is now a significant, but by no means overwhelming effe
As argued in the previous section renormalization sche
consistency implies that these NLO effects should really
exponentiated. The result of such an exponentiation is
shown in the lower of Fig. 7. It is clearly not dramatic, b
does help the convergence of the perturbative calculat
The exponentiation will become more important asx˜0.
Now that I use the BLM scale choice the coupling at smax
is far less sensitive toQ2 than form25Q2 and the relative
importance of the NLO corrections increases far less quic
as Q2 decreases. As shown for the case of the gluon
asymptotically smallx the effective splitting function will
behave like exp„1.14@j/as(Q

2)#1/2
… and the exponentiate

NLO corrections will lead to anx-independent multiplicative
factor. This factor is potentially quite large, however, and
NLO effects must ultimately be treated to obtain the corr
quantitative results. Nevertheless, it appears as though
LO calculation with the correct scale setting may be qu
accurate in the current range ofx andQ2 probed by experi-
ment.

These results regardingFL(x,Q2) seem very pleasing
However, phenomenologicallyF2(x,Q2) is far more impor-
tant since this is the quantity for which we have a great d
of data @40,41#. One can calculate@]F2(x,Q2)/] ln Q2# in
exactly the same way asFL(x,Q2) simply by using the rel-
evants2,g„k

2/Q2,as(m
2)… which leads toh2,g(g) in Mellin

space. Hence, in this case one obtains a direct expressio
the evolution of the structure function with respect toQ2,
rather than for the structure function itself. However, inve
ing the Mellin transformation it is easy to see that the e
pression for @]F2(N,Q2)/] ln Q2# is identical to that for
FL(N,Q2) up to thehi ,g(g)-dependent effective coefficien
function ~or in this case anomalous dimension!. Whereas
FL(N,Q2) has a factor ofCL

NLO(ās /N,Q2/m2) up to NLO,

22For lowish order in the power series the coefficients

pLL
1,b

„ās(Q̃
2)j… andpLL

1,con f
„ās(Q̃

2)j… are similar, but the former be
gin to dominate at higher orders, i.e., lowerx, and become totally
dominant asn˜` (x˜0) as demonstrated by the asymptotic r
sults in the last section.
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@]F2(N,Q2)/] ln Q2# has a factor ofg2
NLO(ās /N,Q2/m2).

Hence, we can write the physical evolution equation

]F2~N,Q2!

] ln Q2 5G2L~Q2,N!FL~N,Q2!, ~7.8!

where

G2L~N,Q2!5g2
NLO~ ās /N,Q2/m2!/CL

NLO~ ās /N,Q2/m2!.23

In this expression all the unknown nonperturbative phys
associated with@]F2(N,Q2)/] ln Q2# andFL(N,Q2) cancel
out to leave us an entirely perturbatively calculable physi
anomalous dimension depending only onQ2,N and at finite
order our choice ofm.

As with CL
NLO(ās /N,Q2/m2) we do not know the NLO

off-shell cross section and hence cannot fully calcul
g2

NLO(ās /N,Q2/m2). Hence, we cannot calculat
G2L

NLO(N,Q2) fully. However, we do know all the the effect
at NLO due to the running of the coupling for bot
CL

NLO(ās /N,Q2/m2) andg2
NLO(ās /N,Q2/m2) and can calcu-

late the NLO contribution toG2L
NLO(N,Q2) due to the running

of the coupling and hence find the appropriate scale to us
the LO expression. This is a straightforward, though rat
lengthy calculation using the NLO BFKL equation in th
form ~6.4!, and expanding the Mellin-space solutions abo
the saddle point for both @]F2(N,Q2)/] ln Q2# and
FL(N,Q2) in order to find the relevant parts o
CL

NLO(ās /N,Q2/m2) and g2
NLO(ās /N,Q2/m2). It results in

the relatively simple expression24

G2L~N,Q2/m2!

5
h2,g~g0!

hL,g~g0!
2b0as

]g0

] ln~as!
S ]„h2,g~g!/hL,g~g!…

]g D
g0

3 ln~Q2/m2!2b0as

]g0

] ln~as!
XS 2x9~g0!

2x8~g0!
2

1

g0D
3S ]„h2,g~g!/hL,g~g!…

]g D
g0

1
1

2 S h2,g9 ~g0!

hL,g~g0!

2
hL,g9 ~g0!h2,g~g0!

hL,g
2 ~g0!

D 1S ]„h2,g~g!/hL,g~g!…

]g D
g0

3F1

2 S x~g0!1
x8~g0!

x~g0! D2
5

3GC, ~7.9!

where h2,g(g) and hL,g(g) can be found in@38#, and
@h2,g(g)/hL,g(g)#5G2L(g)5(3/2)g1(12g)21. As usual
we can take the transformation back tox space. Using the
naive scaleQ25m2 we obtain

r 23Again one can use the rules for finding physical anomalous
mensions in@37#.

24For reasons of simplicity I have previously define
G2L(N,Q2/m2) with an additional factor ofas @42#. This leads to no
differences when calculating physical quantities.
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„x/ās~Q2!…P2L„ās~Q2!,x…5d~12x!/ās~Q2!

1p2L
0
„ās~Q2!j…

2b0as~Q2!p2L
1,b

„ās~Q2!j…,

~7.10!

where thep2L
i
„ās(Q

2)j… are power series of the form~7.6!,
and the LO physical splitting function has a zeroth ord
term proportional to ad function. As is now standard we ca
find the correct scale by eliminating allb0-dependent NLO
terms. This is a little more involved than the previous cas
but in the asymptotic limit reduces to exactly the same res
As g0

˜

1
2 if we keep only the most divergent part in th

third term on the right in Eq.~7.9! then we have the condi
tion that thex-space version of

]g0

] ln~as!
S ]„h2,g~g!/hL,g~g!…

]g D
g0

ln~Q2/Q̃2!

1
]g0

] ln~as!
S 2x9~g0!

2x8~g0! D S ]„h2,g~g!/hL,g~g!…

]g D
g0

,

~7.11!

must vanish. Since in this limit†„]@h2,g(g)/hL,g(g)#…/
]g‡g0˜5/2 this is precisely the same condition as we fou
for the gluon and forFL(N,Q2), and we obtain exactly
the same asymptotic scale~4.21!. Indeed, if we attach any
physical process to the top of the gluon ladder we w
always obtain solutions for physical quantities in the sa
manner: the physical anomalous dimension or coeffic
function will be determined from the part of the solutio
which has factorized, isQ2 dependent, and is influenced b

TABLE II. The coefficients in the power seriesp2L
i
„ās(Q

2)j…
5(0

`an„ās(Q
2)j…n/n! for the LO andb0-dependent NLO contri-

butions to the physical splitting functionP2L(x,Q2).

n p2L
0 p2L

1,b

0 2.50 24.00
1 1.00 9.39
2 1.00 36.60
3 7.01 6.27
4 5.81 239.73
5 13.40 687.03
6 58.11 771.35
7 64.74 5281.50
8 196.83 13213.51
9 649.89 24043.80

10 930.65 111578.92
11 3034.70 265509.09
12 8527.87 613964.05
13 15046.02 2311855.03
14 48434.53 5521425.31
15 124600.51 14458201.96
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the diffusion into the ultraviolet. Hence, we would alwa
expect physical quantities to be controlled by the sa
asymptotic scale.

Being more precise we may find thex-space version of
Eq. ~7.9! as a power series inās(Q

2)j. The coefficient func-
tions for the knownp2L

i (āsj) are shown in Table II. Using
these series we can solve exactly for the scale down to s
finite value of x. The effective coupling to be used whe
calculating the smallx evolution of F2(x,Q2) in terms of
FL(x,Q2) is actually very similar to that for the evolution o
FL(x,Q2) over the whole range ofx. They become identica
asx˜0, but are only slightly different even asx˜1.

If we examine the value of@]F2(x,Q2)/] ln Q2# for the
given input forFL(x,Q2) using the LO physical anomalou
dimension we find that the decrease in going from the cho
Q25m2 to the effective scale is a little larger than whe
examining@]FL(x,Q2)/] ln Q2#. This is simply because the
terms in the power series forp2L

0 (āsj) are not as small as
those forpLL

0 (āsj), and so higher terms in the series, whe
powers of the coupling are used, are proportionally m
important. Since we do not actually know the value
p2L

1,con f(āsj) it is impossible to evaluate the NLO effect
with or without the scale setting, but I imagine they are
similar importance to the those forFL(x,Q2). They will cer-
tainly lead to the same general result, i.e., the LO expres
;exp„1.14(j)/as(Q

2)…1/2 as x˜0 with the exponentiated
NLO corrections leading to anx-independent multiplicative
factor.

I note that within this picture there is no way of predictin
inputs for structure functions~or partons! at some fixedQI

2.
However, since the evolution generates no true power
behavior there may well be no growth atx˜0 stronger than
the soft Pomeron. I see no reason to believe the values
the intercepts calculated by putting some infrared cutoff
the BFKL equation for running coupling, which are bo
cutoff method and scale dependent. However, at the sor
values of x we consider in practice,x51022

˜1025, the
perturbative evolution can generate a rise at smallx which
appears to be like an effective power over this restric
range inx. In broad terms this will not be dissimilar to tha
generated by the NLO inas(Q

2) evolution, but will be dif-
ferent in detail. Perhaps the best method for attempting
predict the shape of a structure function at a given input sc
is to demand that the general form of the structure functi
are as insensitive to changes in starting scale as pos
@42#. In this way the inputs are determined largely by t
form of the evolution, and hence the effective physical sp
ting functions. Since the smallx evolutions ofF2(x,Q2) and
FL(x,Q2) are related in a calculable manner this impose
precise consistency requirement on the smallx inputs of the
two. A more detailed study of study of this would be inte
esting, though an obvious conclusion is that the shape
F2(x,Q2) andFL(x,Q2) with x should be roughly the sam
at all Q2 and hence atQI

2 ~see below!.

VIII. PHENOMENOLOGICAL CONSEQUENCES

Armed with the smallx scale choices for the physica
structure functions, it is now possible to do a phenome
1-21
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ROBERT S. THORNE PHYSICAL REVIEW D 60 054031
logical analysis. The inclusion of the input singlet quark d
tribution, or equivalently the inclusion ofGL2(N,Q2) and
G22(N,Q2) is easy since at LO these are related in a sim
manner toGLL(N,Q2) and G2L(N,Q2), respectively@37#.
Furthermore, they have only a small effect. Much more i
portant is the treatment of the LO terms in the physical sp
ting functions which are less singular than 1/x asx˜0. As
shown in @42# a full LO analysis should include all suc
terms at lowest order inas as well as all terms in the LO
smallx expansions considered so far in this paper. A corr
extension of@42#, which used the simple scale choiceQ2

5m2, would involve the full LO, inas as well as ln(1/x),
physical splitting functions with the scale choice determin
not only by the NLO running coupling effects considered
this paper, but also by thex-finite NLO in as running cou-
pling effects.

Consideration of the NLO inas running coupling effects
leads to additional important scale changes away fromQ2

5m2 at high x. The evolution of the nonsinglet structur
function F2

NS(x,Q2) was considered in@43# where it was
found that the appropriate scale to use is

Q̃25Q2
~12x!

x2 k~x!, ~8.1!

wherek(x) is a relatively smooth function ofx from 0˜1,
k(x)'0.15. Careful consideration shows that such a sc
change~with some regularization asx˜1) must be imple-
mented at highx for quark driven processes, leading to
larger coupling and quicker evolution. There are also n
trivial high x effects in the gluon driven processes due to
NLO in as running coupling terms. This changes the detai
form of the effective coupling already presented in Fig. 6
values ofx above approximatelyx50.05. For values ofx
below this the finitex effects on the scale fall away quickly

One particular consequence of including the fullO(as)
effective splitting functions is that like Pgg(z,Q2),
PLL(z,Q2) actually leads to a fall withQ2 for high values of
z, the rise only setting in when the smallx terms become
dominant. Hence, the fact that the effective coupling
PLL(z,Q2) is actually large at highz increases this negativ
contribution, whereas the smaller coupling at smallz de-
creases the positive contribution, as we already know. T
means that, looking at the complete convolution leading
the evolution ofFL(x,Q2), the increased negative contribu
tion at highz leads to the full scale-fixed LO evolution bein
reduced compared to the fullQ25m2 LO evolution more
than the consideration of smallx effects only in Fig. 7 sug-
gests. Inclusion of the highx terms at NLO has precisely th
opposite effect: this time the positive contribution to the ev
lution from high z due to theO(as

2) terms is enhanced, a
well as the known effect of the negative contribution fro
small z being much reduced in size. Hence, the nega
NLO correction at smallx is significantly reduced compare
to that seen in Fig. 7. Details will be shown in a future pap
@44#, but the apparent convergence of the perturbative exp
sion is considerably better even than that implied in the p
vious section.
05403
-

e

-
-

ct

d

e

-
e
d
r

r

is
o

-

e

r
n-
-

I leave a full discussion of the implementation of a fu
LO in as and ln(1/x) ~denoted by LORSC! global fit using
scale setting in physical anomalous dimensions to a fu
paper.25 Details of such a~slightly approximate! fit have al-
ready been briefly reported in@27#, and here I report the mos
important consequences.

~1! Compared to the most recent NLO inas(Q
2) global

fit @47# the quality of thex2 is improved from 1511 to 1339
for 1330 structure function data points.~Constraints from
nonstructure function data, e.g., prompt-photon, Drell-Y
etc. at highx are imposed in the same manner for both.! A
breakdown of thex2 for each experiment is shown in Tab
III. This extremely statistically significant improvement
achieved in all regions ofx and Q2—the scale choice~8.1!
helping at highx and the resummation ofāsj terms coupled
with the scale choice helping at smallx. The value of the LO
coupling is set atas(MZ

2)50.116, where this LO value is
unambiguous, contrary to the normal case at LO, because
scale choice has been determined unambiguously. The
fects of varying the coupling remain to be investigated.
standard NLO inas fit with BLM inspired scale fixing has
also recently been performed@48# with less impressive re-
sults, particularly at smallx.

~2! Since the procedure for calculating the evolution
very different from the NLO inas(Q

2) approach, predic-
tions resulting from the best fit are significantly altered. F
example, the additional terms in powers ofāsj in p2L

0 (āsj)
compared to the NLO inas(Q

2) approach more than com
pensates for the decrease in the effective coupling at mo
atex andQ2, leading to a smallerFL(x,Q2) ~very similar to

25It is also necessary to treat the heavy partons in a consis
manner. The way to do this in the context of the full LO physic
anomalous dimensions withQ25m2 was presented briefly in@45#,
and will be presented in more detail in a future paper@46#.

TABLE III. Comparison of quality of fits using full leading
order @including ln(1/x) terms# renormalization scheme consiste
expression, with BLM scale setting and the NLO inas(Q

2) fit @47#.
The references to the data can be found in@47#.

Experiment
Data

points

x2

LO(x) MRST

H1 F2
ep 221 149 164

ZEUS F2
ep 204 246 270

BCDMS F2
up 174 241 249

NMC F2
mp 130 118 141

NMC F2
md 130 81 101

NMC F2
mn/F2

mp 163 176 187
SLAC F2

mp 70 87 119
E665F2

mp 53 59 58
E665F2

md 53 61 61
CCFRF2

nN 66 57 93
CCFRF3

nN 66 65 68
Total 1330 1339 1511
1-22
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NLO BFKL EQUATION, RUNNING COUPLING, AND . . . PHYSICAL REVIEW D60 054031
that predicted in@42# if Q2>15 GeV2) being required to ob-
tain a similar rate of evolution forF2(x,Q2). Predictions for
other processes, e.g., Drell-Yan production, are potenti
very different in the two approaches.

~3! There is a failure of the NLO inas(Q
2) approach at

smallx for Q2<2 – 3 GeV2. This can be seen in two ways.
the gluon@and henceFL(x,Q2)# is required to be positive
definite down to Q2,1 GeV2 then the value of
@]F2(x,Q2)/] ln Q2# becomes too large forQ2<2 – 3 GeV2

@49# ~a plot can be found in@50#!, as can be seen by com
paring the data with the prediction from a GRV type para
eterization @51#. Alternatively, the value of
@]F2(x,Q2)/] ln Q2# can be made correct down to;1 GeV2,
at the expense of having a valencelike gluon distribution,
hence odd shapedFL(x,Q2) ~see below!, at Q251 GeV2,
and hence negative gluon andFL(x,Q2) below this@47,50#.
Each case demonstrates that the NLO inas(Q

2) approach is
breaking down atQ2;2 – 3 GeV2 at small x.26 While this
might not seem surprising since there are many poten
reasons for this failure@higher twist, higher orders and o
course ln(1/x) resummations#, it is a problem not shared b
the full LORSC fit with the correct scale~even though it is a
considerably better fit at smallx than in @47#!. Because the
small x effective coupling becomes proportionally small
compared toas(Q

2) as we tend to lowerQ2, and because, a
seen in Table I, the coefficients in the expansion ofpLL

0 (āsj)
are small, the evolution ofFL(x,Q2) is slowed down at very
small x andQ2 compared to the NLO inas(Q

2) approach.
Hence, theFL(x,Q2) predicted by the global fit does no
evolve backwards into a pathological form atQ251 GeV2.
This is shown in Fig. 8 where I compare the predict
FL(x,Q2) with that obtained from the MRST analysis
Q251.2 GeV2. Clearly the shape of the LORSCFL(x,Q2) is
not dissimilar to that ofF2(x,Q2) at the sameQ2, while the
MRST FL(x,Q2) is rather odd, though it looks sensible b
about 2 GeV2. ~The rise at very smallx in the MRST curve is
due to the small quark contribution becoming dominant o
the large but valencelike gluon contribution.! Evolving
downwards the MRSTFL(x,Q2) dips down to negative val
ues at about 1 GeV2 while the LORSCFL(x,Q2) will clearly
be sensible to much lower values~this will be investigated in
detail in @44#!. Since the effective coupling at smallx is so
small it seems reasonable to believe that the full LOR
calculation should really represent the physics down to
Q2, as it does, whereas even if the NLO inas(Q

2) approach

26I note that despite reports to the contrary an analysis of d
using the leading ln(1/x) terms withas(Q

2) does not fail in any
more dramatic a manner than this. As shown in@45#, using the LO
physical anomalous dimensions to perform the analysis, rather
some factorization scheme which leads to extremely ambiguou
sults at smallx, a fit of even better quality than the NLO inas(Q

2)
fit can be achieved. The only failings are that the pathological
havior in the predictedFL(x,Q2) sets in at very slightly higherQ2,
and of course the NLO corrections using this approach appear t
huge.
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had worked we would not have known why.27

Hence, all details of the phenomenology of the scale fix
LORSC analysis seem very satisfactory, being a distinct
provement on the standard approach and the LORSC an
sis with Q25m2. As a word of caution, the analysis pre
sented is still a little approximate, and all quantitative resu
are likewise approximate. A more careful detailed analy
will appear soon, though it would be very surprising if th
same quality fit were not achieved simply by a slight alt
ation of input parameters and hence very slightly differe
predictions.

IX. CONCLUSIONS

I have presented a full discussion of the effect of the NL
corrections to the BFKL equation. I have shown that if o
resums the ln(k2/m2) terms into a running coupling constan
as must be roughly correct, this alters the whole structure
the solution to the BFKL equation. As previously pointed o
@15,21#, at leading twist it leads to the solution factorizin
into a input dependent part which requires regularizati
i.e., is infrared renormalon contaminated, and ak2-dependent

ta

an
e-

-

be

27A recent discussion of the ‘‘Caldwell plot’’ using the LO BFKL
equation with running coupling, though with very different tec
niques from those used in this paper, appears in@52#.

FIG. 8. Comparison of the predictions forFL(x,Q2) at Q2

51.2 GeV2 from the global fit performed in this paper and the NL
in as(Q

2) fit in @45#.
1-23
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ROBERT S. THORNE PHYSICAL REVIEW D 60 054031
part which is well defined. The degree of uncertainty asso
ated with the input part is shown to have exactly the beha
predicted by Mueller@23,7#. However, this ambiguity affects
the input part only, not the whole solution. I note that t
evolution part as a function ofg andN no longer has singu
larities to the right of zero for eitherg or N, a result which
has previously been noted@15,20#, but seems to have bee
universally ignored. Hence, this calculablek2-dependent so-
lution has no true powerlike behavior in eitherk2 or x—the
hard Pomeron intercept is zero. These results require no
sumptions at all. If one takes the running of the coupling
the BFKL equation seriously, the input term is indetermin
unless 13b0

2as
3(Q0

2)j!1, and the evolution term is well de
fined and calculable, and has no true powerlike behav
This is not difficult to understand in a qualitative manner.
has long been known that the typical virtuality of a gluon
the ladder representing the BFKL Green’s function ha
mean of orderk2, but a deviation of order (āsj)1/2 @22#. I
have shown that the diffusion ofk2 into the infrared influ-
ences only the input dependent solution, the strong coup
then leading to infrared renormalons, while thek2-dependent
part is influenced only by the ultraviolet diffusion. Th
means that as one goes to smaller and smallerx the appro-
priate scale becomes larger and larger, the coupling we
and weaker~like j21/2), and the growth from the ln(1/x)
terms is sufficiently weakened by the coupling to destroy
powerlike behavior.

Using the LO BFKL solution with running coupling
have argued that in order to investigate perturbatively ca
lable physics one must investigate physical anomalous
mensions@37#, or splitting functions, which tell one how
unambiguous physical quantities evolve in terms of e
other, and hence are themselves unambiguous, i.e., inde
dent of factorization schemes or scales. This is import
when using a smallx expansion even at low orders due
large factorization scheme uncertainties, but is now vita
order to obtain well-defined, perturbatively calculable
sults. While, of course, it is ultimately necessary to use r
structure functionsF2(x,Q2) and FL(x,Q2), one may for
simplicity work with an unphysical, but unambiguously d
fined gluon structure functionG(x,Q2). By calculating the
solutions for theQ2-dependent factors of the structure fun
tions about the saddle points, one obtains ordered powe
ries in b0as(Q

2) for the physical anomalous dimension
While these series appear to be very badly convergent,
coefficients oscillate in sign, rendering them summable
hypothesize that one can approximate the whole resul
using the BLM scale fixing procedure@24# absorbing the
NLO b0-dependent term into the definition of the scale us
in the LO expression. This results in an effective coupling
the form 1/„b0†ln(Q2 /L2)13.63@ās(Q

2)j#1/2
‡… asx˜0. For

different physical variables the moderatex couplings are
slightly different but the asymptotic form is universal. It
not guaranteed that this choice of coupling is really corre
However, the explicit NNLO calculation supports the proc
dure strongly, and it is also consistent with the qualitat
features one knows must be associated with the full sum
tion, i.e., it smooths out the powerlike growth inx in pre-
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cisely the correct manner, as well as the picture of ultravio
diffusion.

Examining the full NLO BFKL equation I find that as fa
as running coupling is concerned by far the dominant eff
is produced solely by the ln(k2 /m2) term. All additional NLO
b0-dependent corrections lead to modifications to the ph
cal splitting functions which are not only numerically sma
but are reduced by a factor of„ās(Q

2)j…21/2. This indicates
that it is likely that at all orders the ln(k2 /m2) terms will lead
to the dominant smallx effects due to running of the cou
pling. Indeed, at NLO the contribution to the physical spl
ting function from this term is also dominant to the confo
mal corrections by„ās(Q

2)j…1/2. The latter are of the form
expected from a renormalization group argument, i.e., a
tor of as(āsj) up on the LO expression, while the runnin
coupling effect is of an unexpected, more leading form, a
essentially demands to be resummed. I also proved th
one assumes the dominance of the ln(k2 /m2) terms the appro-
priate scale to use at NLO is precisely the same as the
scale asx˜02a result which was by no means guarante
to be true and seems strongly suggestive of the correctne
the approach. It also implies that perturbation theory at sm
x should be particularly convergent. Using this effecti
scale choice in the coupling I find that the remaining, co
formal NLO corrections to the physical anomalous dime
sions are much more under control than for the scale ch
Q25m2 due to the smallness of the effective coupling asx
˜0. At all x andQ2 they are subdominant to the LO resu
although they can be significant, and in the region ofx and
Q2 probed at the DESY ep collider HERA they are nume
cally quite small.

An analysis of data using the full LO physical splittin
functions containing both leading in ln(1/x) terms and all
O(as) terms, with scale fixing appropriate to this combin
expansion scheme, is very successful. It produces a far b
fit to data than conventional approaches, and also predict
FL(x,Q2) of the same shape asF2(x,Q2) down to Q2

51 GeV2, and possibly below. In fact, it seems to wo
perfectly over the whole range of parameter space one m
hope. The fit toF2(x,Q2) also leads to predictions for othe
quantities such asFL(x,Q2) ~difficult to measure!, F2

c(x,Q2)
~not much different from the standard approach! and Drell-
Yan production~if the necessary BFKL coefficient function
were calculated!.

Since the coupling at smallx is weak, seemingly at al
orders, one may be optimistic that it is possible to use e
LO perturbation theory down to very lowQ2 at small x.
Indeed, the prediction is that the corrections at NNLO a
beyond will be insignificant due to the fall of the couplin
overwhelming all possible enhancement due to smalx
terms. However, there are still potentially important high
twist (L2/Q2) contributions. Nevertheless, the weakness
the coupling may make one hope that the smallx higher twist
effects are strongly suppressed, for example a weaker
pling would certainly delay the onset of such effects as sh
owing @12# rather significantly. Also, I note that within th
small x expansion there are no infrared renormalons in
calculation of the physical anomalous dimensions. Sin
renormalons lead to ambiguities which must be cancelled
1-24
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higher twist ambiguities they are normally taken to be e
mates of the size of these higher twist contributions—inde
the scale fixing for nonsinglet evolution at highx @43# does
imply renormalons of the type already calculated@53#. The
absence of the renormalons at smallx makes the author a
least optimistic about the smallness of higher twist effec
Some smallx higher twist calculations have already be
performed@54#. However, since the full physical picture a
leading twist only appears when performing a full resumm
ln(1/x) calculation including running coupling effects, a tru
picture of the higher twist contributions may sadly requ
similar sophistication~if this is possible!. I certainly feel that
any renormalon calculations performed at fixed order inas

may not be representative of the true smallx higher twist
contributions. If the full LO, with resummed terms and sca
fixing, analysis is indeed successful to very lowQ2 I would
regard this as empirical evidence, if by no means a proof
the smallness of higher twist corrections at smallx.

I have commented on other approaches to the NLO BF
equation throughout this paper. There have also rece
been alternative attempts to improve the apparent bad
vergence of the perturbative series which are somewha
thogonal to the line taken in this paper. In@10# and @11#
progress is made by finding resummations which impro
the convergence of the expansion of the kernel, thus im
ing a sensible, stable pomeron intercept. I have no argum
with this approach and believe that for single scale proce
it is vital for obtaining a stable expansion for general valu
of x. However, I also believe that for structure functions
leads to effects that are completely subdominant to th
induced by the running of the coupling. If my assumpti
about the running coupling in the kernel being accounted
by the effectivex-dependent coupling in physical quantitie
has any truth in it, it makes resummations of the conform
part of the kernel unimportant since the higher orders are
greatly weakened by the reduction in the coupling. Hen
while the work in@10,11# is certainly interesting, I believe i
may be unimportant for the real physical results, at leas
far as structure functions are concerned.

Also, there has very recently been a proposal to adopt
BLM scale fixing procedure at the level of theeigenvaluesof
the kernel@55#. This is similar, though not identical to th
proposal for the change in coupling proposed in@56# when
the Nf-dependent corrections to the NLO kernel we
known. It avoids all the running coupling effects I consid
in Sec. IV, picking up only those ing1 in Sec. VI, i.e., the
1
2b0„x

2(g)1x8(g)… and2(5/3)b0x(g) terms. This leads to
a scale change ln(Q2/L2)˜ln(Q2/L2)1A, where A is very
small ~and negative!. However, the NLO contribution to the
kernel is renormalization scheme dependent, and this re
is in MS scheme. By transferring to schemes that the auth
reasonably argue are more suited to gluon dominated
cesses, i.e., the MOM@57# or Y˜ggg @24# schemes, the
scale change atg5 1

2 becomesQ̃2;120Q2, and the intercept
becomes;l(Q̃2)„124as(Q̃

2)…. Hence, the large increas
in scale and significant reduction in the NLO coefficie
leads to a sensible NLO intercept of;0.15 which is not too
sensitive toQ2. I believe theeigenvalueof the kernel is an
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inappropriate place to make the scale choice since, as soo
one introduces the running coupling into the BFKL equatio
the whole structure changes. TheQ2-dependenteigenvalueis
no longer a real eigenvalue, as it is at strictly LO, and it
longer has a direct physical interpretation. This is identica
the statement that the argument of the exponent in Eq.~6.8!
does not in fact truly represent the full evolution of an
physical quantity, is by no means a true anomalous dim
sion, and should not be used for setting the scale. In ess
the choice in@55# misses the most important results gen
ated by solving the BFKL equation with running couplin
and looking at physical quantities. This is easily seen by
fact that in any renormalization scheme the change in s

using the method in@55# is always of the form ln(Q̃2/L2)
5ln(Q2/L2)1Ars , whereArs is a constant depending on th
scheme. Using the BLM method for physical quantities, as

this paper, always results in ln(Q̃2/L2)5ln(Q2/L2)1Brs,i

13.63„ās(Q
2)j…1/2, whereBrs,i depends on renormalizatio

scheme and process. Clearly thej-dependent term is the
dominant one at small enoughx and contains the most im
portant physics contributing to the scale fixing. Note that t
contribution is also scheme-independent and the sam
NLO as at LO, and that the choice of renormalizati
scheme only leads to subleading contributions to the sca
small x. Nevertheless, the type of renormalization sche
considered in@55# leads to a value ofBrs,i that is rather
large. This implies that the details of calculations of structu
functions in the current experimental range may be sensi
to the renormalization scheme chosen. However, when do
a full analysis one should use the same scheme for all ph
cal splitting functions, which will be influenced by bot
gluon and quark dominated processes. There are also fu
changes to the scale due to the running coupling effect
O(as

2), which will be scheme dependent, and potentially
similar importance to the differences inBrs,i at the relatively
high x values where it is relevant. A full understanding of th
relevance of renormalization scheme changes needs to
these into account carefully.

Hence, to summarize, I believe that the method of solv
for physical quantities using the BFKL equation with ru
ning coupling and full NLO contributions presented in th
paper is the best way to proceed for the analysis of d
inelastic scattering at smallx. Certainly, the conclusion tha
the running coupling serious alters our picture of BFK
physics, destroying predictivity for the input and maintaini
it, but smoothing out the powerlike behavior for the calc
lable evolution, seems to be incontrovertible. More cont
versial is the proposal that the true physics may be w
described by a coupling which falls asx falls like
ln(1/x)21/2. This is strongly supported by current finite ord
expansions, the universality between deep inelastic scatte
~DIS! processes and different orders, the diffusion pictu
and the general features that the full solution must exhi
However, it may well be possible to validate this mo
strongly, or invalidate it. Also, the discussion in this pap
has very firmly used the assumption that the lower end of
gluon ladder is fixed at some low scale, as is appropriate
deep inelastic scattering. Further investigation is required
1-25
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order to consider different types of process, although I im
ine that the qualitative results will be the same. Overall n
malization will be infrared renormalon contaminated, sin
even if there are no small scales in the problem the diffus
into the infrared will eventually be important for sma
enoughx, while evolution will be calculable but not truly
powerlike. If the general results of this paper are corre
perturbative calculations at smallx will be very reliable and
convergent. They would also explain why perturbati
theory appears, at least qualitatively, to be working at v
low scales at smallx, but also implies that the standard NL
in as(Q

2) approach is not really quantitatively correct
smallx. More phenomenological work, including calculatio
.
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,

.

tt
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of currently unknown coefficient functions as power series
as ln(1/x), would then be important in order to produce tru
precise calculations for smallx physics.
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