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Abstract

Since their discovery Neanderthal s were described as having a marked degree of anteroposterior
curvature of the femoral shaft. Although initially believed to be pathological, subsequent
discoveries of Neanderthal remains made femoral curvature as well asthe lateral curvature of the
radius to be considered derived Neanderthal features. Femoral curvature has previously been
used in racial identification in modern humans but its functiona significanceis poorly
understood. A recent study on Neanderthals and early modern humans found no differencesin
femoral curvature, but did not consider size-corrected curvature. Therefore, the objectives of this
study wereto 1) use 3D morphometric landmark and semi-landmark analysis to quantify bone
curvature (femur, ulna, radius) in Neanderthal's, Upper Palaeolithic and recent modern humans,
2) compare adult bone curvature between these populations, and 3) test hypotheses on the effects

of climate, body size, and activity patterns on curvature.

Comparisons between and within popul ations were made using geometric morphometrics (3D
landmarks) and standard multivariate methods. Comparative material involved all available
Neanderthal and Upper Palaeolithic modern human femora, ulnae and radii, archaeologica
(Mesolithic, Neolithic, Medieval) and recent human populations representing awide
geographical and lifestyle range. The study found that there are significant differencesin the
anatomy of the femur, ulna and radius between Neanderthal s and modern humans. Neanderthal s
have more curved femora and radii than modern humans. Early modern humans are most similar
to recent modern humansin their anatomy. Recent modern human analyses indicate that femoral
curvature and forearm curvature are responses to disparate influences. Femoral curvatureisa
good indicator of activity level and habitual loading of the lower limb. Curvature of the forearm
is aconsequence of cold adaptation and its purpose is to maintain biomechanical function of the

forearm despite its foreshortening.
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CHAPTER 1. INTRODUCTION

1.1. Pur pose of the study

When in the 19" Century the Feldhofer Neanderthal remains were discovered, researchers noted
amarked degree of anterior curvature of the femoral shaft and ascribed it to pathology (Klaatsch,
1901; Boule, 1908; Trinkaus and Shipman, 1993). With the subsequent discoveries of other
Neanderthal remains, femoral curvature was considered to be a derived feature of Neanderthals
as were the shortened and curved ulna and radius (Klaatsch, 1901; Trinkaus and Shipman, 1993;
Churchill, 1998; Golovanova et al., 1999; Czarnetzki, 2000; Weaver, 2003; Y amanaka et al .,
2005).

Relatively little work has been done to quantify diaphyseal curvature in Neanderthals, but a
recent study analysed patterns of femoral curvature in Neanderthals, recent humans and Late
Pleistocene early modern humans (Shackelford and Trinkaus, 2002). Shackelford and Trinkaus
(2002) suggested that Neanderthal s were indistinguishable from Middle Palaeolithic and early
Upper Palaeolithic early modern humansin their degree of absolute anterior curvature.
Additionally, most of theindividuals in these Palaeolithic populations were found to exhibit a
more distal apex of curvature (point of maximum curvature) compared to more recent
populations (Shackelford and Trinkaus, 2002). They suggested that this could be correlated with
measures of bone hypertrophy or an overall decrease in lower-limb robusticity during the Middle
to Upper Palaeolithic. The five regional groups from which their samples originated were
significantly different in femoral curvature and Shackelford and Trinkaus (2002) suggested that
the overall decreasein femoral curvature in modern humans was due to a decreasein long-

distance mobility.

Research from forensic anthropol ogy also suggests that significant differences exist in femoral
curvature between modern human populations (Stewart, 1962; Walensky, 1962, 1965; Gilbert,
1975, 1976; Trudell, 1999). Initial studies demonstrated the diagnostic value of femoral
curvature in distinguishing between Native American, African-American and Caucasoid
American populations (Stewart, 1962; Walensky, 1962, 1965; Gilbert, 1975, 1976; Trudell,



1999). When the research was expanded by increasing the number of populations, no
relationship was found between femoral curvature, habitual behavioura patterns and latitudinal
position of those populations (Stewart, 1962; Walensky, 1962, 1965; Gilbert, 1975, 1976;
Trudell, 1999). Trudell (1999) refined the measurement techniques by taking measurements at
three points along the curve and found an 87.12% average accurate race determination for
African-Americans and Caucasoids (see Chapter 2 for more details). The more detailed
characterisation of curvature possible with 3D morphometrics has the potential to refine the

differences between modern human groups.

The Neandertha radius has also been described as being more laterally curved than that of
humans and to fall beyond the higher limits of modern human variation (Fischer, 1906; Botez,
1926 in Patte, 1955; Vandermeersch and Trinkaus, 1995; Carretero et al., 1999; Czarnetzki,
2000). Fischer (1906) described Neanderthals to have alarge posterior subtense in the ulna but

more recent work has not investigated this.

In the research presented here, | consider the differences and similaritiesin long bone curvature
and position of the apex of curvature of the femur, ulna and radius. This study has three main
objectives: 1) to determine the influence of climatic, body size and behavioura correlates on the
observed differences in bone curvature in Holocene modern humans, 2) to describe differences
in long bone curvature between Neanderthal s and modern humans, and 3) to determine how the
factors that influence modern human bone curvature can be applied to inform our understanding

of Neanderthals and early modern humans.

Thefirst objective involves an analysis of patterns of curvature and anthropometric
measurements of modern humans and their relationship to population-specific information such
as body size, activity level, time period and climate. Thiswill be done in order to identify the
biomechanical and adaptive advantages of different degrees of curvature within modern humans,
in order to form predictions for the degree of curvature observed in Neanderthals and early

modern humans.

The second objective requires an analysis to test whether there are any significant differences
between Neanderthals and modern humans in femoral and lower arm curvature. The long
claimed distinction in degree of femoral curvature in Neanderthals was challenged by

Shackelford and Trinkaus (2002) who found no difference between Neanderthal s and modern



humans. This hypothesis will be tested again here on the curvature of both the femur and the

lower arm.

Thethird objective integrates results for the two main sets of analyses to determine the effect of

habitual behaviour, climate and body size on Neanderthal long bone curvature.



1.2. L ong bone curvature

Fundamental to the study of skeletal characteristics, such aslong bone curvature, isthe
hypothesis that the traits under investigation are functionally relevant and optimise morphol ogy
(Churchill, 2005). The study of postcranial morphology over the past decades has demonstrated
that skeletal morphology is under variable environmental and genetic influences. Therefore,
some features give more information about the biomechanical environment (Pearson and
Lieberman, 2004) while others may yield more information about the evolutionary history of a
specific population (Ruff et al., 1991; Pearson, 2000a, 2000b; Lieberman et al., 2001; Pearson
and Lieberman, 2004). The observed variation in long bone curvature within and between

species needs to be investigated using an approach that considers its possi ble adaptive benefits.

Long bone curvature is a complex feature to quantify, and its biomechanical environment is
difficult to model, asit is subject to different strains during different stages of the gait cycle
(Lanyon, 1980; Les et al., 1997; Main and Biewener, 2004). In humans, not all “curved” bones
are active during the gait cycle (e.g. radius and ulna) and may be subject to other strains and
stresses than when the same skeletal element isinvolved in locomotion in mammals that are not
bipedal. Because of this complexity, it has been difficult to assess the biomechanical role and
functional significance of diaphyseal curvature and the functional differences between bones and

between species.

Hominoids have alower degree of curvature than other quadrupedal mammals because their
relatively longer limb bones would endure very high bending stress were they as curved as those
of other mammals (Biewener, 1983; Swartz, 1990; Bertram and Biewener, 1992; Richmond and
Whalen, 2001). The evolutionary significance of long bone curvature in hominins has, to date,
not been investigated. Within humans, however, a range of variation in femoral curvature has
been reported (Ried, 1924; Genna, 1930; Stewart, 1962; Walensky, 1965; Gilbert, 1975, 1976;
Trudell, 1999; Bruns et al., 2002) and, therefore, it is very likely that varying degrees of
curvature in humans serve to reduce individual habitual strain levels and to optimise function
during habitual behaviour in a specific environment. It is unclear if the habitual strain levelsin

the lower arm and femur are related and that curvature is therefore a systemic feature.



1.3. Neanderthals and modern humans

Early modern humans differ from recent modern humans in both cranial and postcranial features
but Neanderthals differ from recent modern humans much more. Neanderthals have a suite of
characteristic cranial traits such as arounded cranial vault; large browridges, lambdoidal
flattening and an occipital bun; alow and long cranium; ajuxtamastoid process; suprainiac
fossa; aretromolar gap; achinless mandible; alarge nose; and mid-facial prognathism (Boule
and Valloais, 1952; Trinkaus, 1983a; Hublin, 1989; Stringer, 1992; Hublin et al., 1998). In
contrast to the numerous differences in the cranio-mandibular anatomy of Neanderthals and
modern humans, there are only a number of postcrania differences that have been identified as
species defining. Most of these postcranial characters have been interpreted as the result of the
Neanderthal hyper-polar body shape and muscular hypertrophy (Patte, 1955; Vlcek, 1961b; Rak
and Arensburg, 1987; Tompkins and Trinkaus, 1987; Holliday and Trinkaus, 1991; Ruff and
Walker, 1993; Ruff et al., 1993; Walker and Leakey, 1993; Ruff et al., 1994; Trinkaus et al.,
1994; V andermeersch and Trinkaus, 1995; Pearson and Grine, 1997; Churchill, 1998; Trinkaus
et al., 1998a; Trinkaus et al., 1998b; Trinkaus and Ruff, 1999b; Pearson, 2000b; Holliday and
Ruff, 2001; Shackelford and Trinkaus, 2002; Mg ¢ et al., 2003; Weaver, 2003; Thompson and
Nelson, 2005; Shackelford, 2007). Some of these postcranial anatomical specialisations include:
along pubic ramus; an anteriorly placed sacrum; short distal limb segments; along glenoid fossa
and adorsal sulcus on the scapula; large round apical tufts on the fingers; athick femoral and
tibia shaft; and large knees (Patte, 1955; VIcek, 1961a; Rak and Arensburg, 1987; Tompkins
and Trinkaus, 1987; Holliday and Trinkaus, 1991; Ruff and Walker, 1993; Ruff et al., 1993;
Walker and Leakey, 1993; Ruff, 1994b; Trinkaus et al., 1994; Vandermeersch and Trinkaus,
1995; Pearson and Grine, 1997; Churchill, 1998; Trinkaus et al., 1998b; Trinkaus and Ruff,
1999a; Pearson, 2000b; Holliday and Ruff, 2001; Shackelford and Trinkaus, 2002; Mgj¢ et al .,
2003; Weaver, 2003; Thompson and Nelson, 2005; Shackelford, 2007). Other characteristic
Neanderthal postcrania featuresinclude along distal phalanx in the thumb; flat carpometacarpal
joint of the thumb; low femoral neck-shaft angle; absence of afemoral pilaster/linea aspera; and
acurved femur and radius (Aiello and Dean, 1990; Churchill, 1998; Fleagle, 1999; Trinkaus,
2006).



Some of these features may be primitive retentions in Neanderthals (Trinkaus, 1981, 1983a),
whereas others may be autapomorphic traits (Howell, 1957; Trinkaus, 2006). The taxonomic
value of some of these postcranial features, such as curvature of the femur and radius, has not
been established, although it has been suggested that some postcrania features, such as a greater
level of robusticity, the absence of a pilaster and low neck-shaft angles, are primitive retentions
(Trinkaus, 1983a; Ruff et al., 1993; Pearson, 2000b, 2000a).

Postcranially, compared to Neanderthals, early modern humans are characterised by high stature,
high brachia and crura indices (Boule and Vallois, 1952; Trinkaus, 2007) and reduced levels of
robusticity which may reflect their African ancestry (Mellars and Stringer, 1989; Aiello, 1993;
Stringer, 2000; Stringer, 2002; Trinkaus, 2005). At the same time early modern Europeans
exhibit some characteristics which have been considered to be distinctive Neanderthal traits
(Boule and Vdllois, 1952; Trinkaus, 2007). These characteristics include aspects of the
neurocranium, basicranial external morphology, mandibular ramus and symphyseal form, dental
morphology and size and aspects of the clavicle, scapula, metacarpals and appendicular
proportions (Trinkaus, 2007). To some, the presence of these Neanderthal features and the
association of Neanderthals with Upper Palaeolithic style tools (d'Errico et al., 1998; d'Errico,
2003; Ahern et al., 2004; Méellars, 2004; Méellars et al., 2007) supports the idea that when
modern humans migrated out of Africaand into Europe there was hybridisation between
Neanderthals and early modern humans. The extent to which this hybridisation took place and
whether or not it is still apparent in human morphology and genetics is a highly debated topic
(Boule and Vallois, 1952; Smith et al., 1989; Frayer et al., 1993, 1994; Wolpoff, 1996; Wol poff
and Caspari, 1997; Wolpoff et al., 2000, Deacon, 1992; Krings et al., 1997; Ovchinnikov et al.,
2000; Hawks and Wolpoff, 2001; Caramelli et al., 2003; Carroll, 2003; Hagelberg, 2003; Klein,
2003; Ovchinnikov and Goodwin, 2003; Green et al., 2006; Noonan et al., 2006).

The magjority of the literature on modern human originsis focused on cranial, mandibular and
dentdl traits. Postcranial anatomy has received less attention, although there are some excellent
descriptions of relevant postcranial material (Boule and Vdlois, 1952; Patte, 1955; Heim, 1983;
Rak and Arensburg, 1987; Walker and Leakey, 1993; Vandermeersch and Trinkaus, 1995;
Holliday, 1997; Pearson, 2000a, 2000b; Shackelford and Trinkaus, 2002; Weaver, 2003;
Steudel -Numbers and Tilkens, 2004; Churchill, 2005; Thompson and Nelson, 2005;
Shackelford, 2007; Aidlo et al., 1999). What is evident is that Neanderthal s have a suite of



characteristics which, considered independently, may occur in modern human populations, but

which, as a suite, set apart the Neanderthal s as a group that is distinct from modern humans.

The focus of most of the earlier work has been on the particularities of Neanderthal features
rather than a means of understanding the evolutionary and adaptive processes that led to their
distinctiveness or what led to the diversity within modern humans and their distinctiveness from
earlier hominins. Using a comparative method to distinguish Neanderthal morphology from that
of recent modern humans is useful but only when seen in the context of evolutionary biology and
adaptive history. There are three main external influences that need to be considered when
interpreting the functional meaning of curvature, which is known to show a wide range of
intraspecific variation in modern humans. The first isthe effect of body size on curvature,
because mammals show positive allometry with curvature. Ruff et a.l (1997) proposed that
Neanderthals are on average 30% larger than recent humans and that early modern humans are
about 10% larger than recent modern humans (Ruff et al., 1997). If curvatureis related to body
mass, it is predicted that Neanderthals will have higher degrees of curvature than both early and
recent modern humans. Within modern humans, populations with the highest body mass are

predicted to be more curved than those with lower body mass.

The second influence that needs to be investigated is the effect of habitual behaviour on
curvature. Modern humans and Neanderthals most likely did not differ in their subsistence
strategies and were probably both hunting and scavenging (Lieberman, 1989; Bar-Y osef, 2004;
Pearson et al., 2006). Although there may have been differencesin their hunting practices
(Marean and Assefa, 1999; Marean and Assefa, 2005; Speth and Tchernov, 1998), their resource
acquisition and overall workload involved high activity levels, and thisis apparent in the
similaritiesin their post-crania (Lieberman, 1989; Trinkaus et al., 1989) If curvatureisa
response to activity levels in human populations, it is predicted that Neanderthal s, having high
activity levels, will display similar levels of degree of curvature to early modern humans and
other hunter-gatherers. Within modern humans, it is predicted that individuals and populations

with lower activity levels will exhibit lower degrees of curvature.

Thirdly, it is necessary to consider the effect of climate on curvature. Many of the distinctive
Neanderthal postcrania features are the consequence of a hyperpolar body form (Hublin, 1989;
Ruff, 1991; Weaver, 2003; Weaver and Steudel-Numbers, 2005). If the reported high degree of

curvature in Neanderthals is one of those cold-adapted characteristics, recent human populations



from higher latitudes would be predicted to possess higher levels of curvature than those from
lower latitudes. Neanderthals, being reported as “ hyper-polar” (Weaver, 2003), would be
predicted to have a higher degree of curvature than any modern human population. Climatic
adaptations in humans are known to become genetic adaptations over time. In Neanderthal s and
modern humans alike, it is expected that if there were a strong effect of climate on curvature that
this would have been established in the population genetically rather than only through
individual ontogeny. Through the process of genetic drift and isolation, over time the

digtribution of the variation in curvature may have become a feature that has taxonomic value.

By identifying the taxonomic value of curvature it may be possible to hypothesize about the
relationship between early modern humans and Neanderthals. If Neanderthals are distinct in
their long bone curvature from early modern humans, and early modern humans resembl e recent
modern humans more than they do Neanderthas, (Trinkaus and Shipman, 1993; Churchill,
1998; Golovanova et al., 1999; Weaver, 2003; Y amanaka et al., 2005 but see Shackelford and
Trinkaus, 2002). This would support the hypothesis that Neanderthal s were excluded from the

evolutionary past of modern humans.



1.4. L ayout of thethesis

The second chapter provides an overview of human and Neanderthal variation in femur and
lower arm anatomy and their biomechanical properties. The chapter continues with a discussion
of the possible factors influencing curvature and concludes by outlining the specific hypotheses

and associated predictions in order to address the first objective described above.

Chapter 3 describes the materials, methods and statistical approaches used in this research and
ends with the order of analysis. Chapter 4 contains the results of the analyses of long bone
curvature in recent modern humans. The results of the femur are presented first, followed by the
results for the lower arm. The chapter concludes with a discussion of the variation in long bone
curvature in modern humans and summarises the predictions for the analyses on Neanderthals
and early modern humans. The results for fossil populations are presented in Chapter 5. Finally,

Chapter 6 discusses the results and conclusions from this study.



CHAPTER 2. HISTORY OF RESEARCH ON LONG BONE
CURVATURE

2.1. Femur

2.1.1.  Comparative anatomy of the femur

Hominins like Homo habilis, Homo erectus, Homo heidelbergensis and Homo neanderthalensis
are remarkable in the similarity of their femoral morphology (Kennedy, 1983b, 1983a, 1984).
This morphology includes antero-posterior flattening of the shaft reflected in the virtual absence
of apilaster, low neck-shaft angle, medial convexity of the shaft, avery low minimal shaft
breadth (waisting) and a medially expanded cortex at the mid-shaft level (compared to
anatomically modern humans where the cortex is thickest on the lateral side of the shaft). This
resultsin amore distal crossover of the biomechanical axis with the shaft axis (Kennedy, 1983z,
Aiello and Dean, 1990).

Both Trinkaus (1993) and Kennedy (19833, b) have suggested that the medial convexity of the
diaphysis and low neck-shaft angles are aresult of higher activity levels (Kennedy, 1983b,
1983a; Trinkaus, 1993 but see Czarnetzki, 2000). They suggest that this high activity level
causes the femur to be more medially convex proximally and to develop alarger transverse
diameter at mid-shaft (Kennedy, 1983b, 1983a; Trinkaus and Ruff, 1999b). More recently,
however, researchers have argued that these features in Neanderthals might be a secondary
consequence of a cold-induced body form, related to wider hips and more robust extremities
caused by the interaction between genetically determined body proportions and the magnitude of
mechanical stress during ontogeny or the direct conseguence of variation in relative body sizein
individuals with cold-adapted bodies (Ruff, 1995; Weaver, 2003).

A cold-adapted body form and wider pelvis may also explain the greater degree of femoral

curvature observed in Neanderthals. The wider pelvis may result in different angles of hip joint

reaction force relative to the femur and affect the neck-shaft angle and torsion as the head of the
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femur would be articulating in amore lateral position than in anatomically modern humans
(Ruff, 1995). If theiliac blades are oriented differently, this may lead to amore anterior or
posterior orientation of the acetabulae. Alternatively, the wider pelvis may simply cause an
increased distance between the acetabulae. Both these cases may lead to higher degree of

curvaturein order to attain a hominin valgus angle.

2.1.2. Intraspecific variation in femoral curvature.

In addition to the literature on Neanderthal femoral curvature (see Chapter 1: Introduction)
several studies have investigated differencesin femoral curvature among and between human

populationsin the light of biomechanical adaptation and forensic science.

Forensic anthropol ogists studied femoral curvature asit was suggested to be a valuable tool to
distinguish race in human remains (Stewart, 1962; Walensky, 1962, 1965; Gilbert, 1975, 1976;
Trudell, 1999). Stewart (1962) demonstrated that there was a difference in the expression of
anteroposterior curvature of the femur between Caucasians, African-Americans and Native
Americans (Dakota). Femoral curvature was measured as subtense by placing the distal condyles
on aflat surface (Figure 2-1) and raising the proximal end so that the maximum concavity
(deepest point on the anterior surface) on both distal and proximal ends are a the same level (the
levelling point). Then the distance was taken from the tabl e to the most anterior side of the
femur. The analyses showed that shaft curvature was most pronounced in the Native Americans
and least pronounced in African-Americans and that Caucasians occupied an intermediate

position.
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Figure 2-1 Subtense method employed by Walensky (1962).

Native Americans also showed a greater amount of torsion compared to African-Americans and
Caucasians, with African-Americans showing the least amount. Individuals with higher degree

of torsion aso displayed alower apex of curvature.

The positive correlation between curvature and torsion (Stewart, 1962) was not investigated
further in subseguent studies on femoral curvature. Stewart concluded that athough femoral
curvature does not, as arule, distinguish between races, afemur with amarked degree of
femoral curvature combined with alow degree of torsion distinguished a large proportion of the
Native Americans from the Caucasians and African-Americans who have alower degree of

curvature with ahigh torsion angle (Stewart, 1962).

Walensky (1965) confirmed Stewart’ s separation of Caucasians, Native Americans and African-
Americans when he included the Inuit (Figure 2-2). He concluded that curvature increased with

age and population-related functional activity and that differences in postural habits contributed

to theseracial differencesin femoral curvature (Walensky, 1962, 1965).
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Figure 2-2 An African-American, Inuit and a Native American femur (from Walensky, 1965)

showing increasing amounts of curvature and lowering apices of curvature.

In 1976, Gilbert conducted an investigation into the possible causal factors of femoral curvature
in Caucasians, Native Americans and African-Americans (Gilbert, 1976). He expanded Stewart
(1962) and Walensky's (1965) sample with seven additional Native American groups
representing both pre- and post-colonial samples and looked at their postural habitsin relation to
their curvature. When only the North American Native Americans were taken into account,
together with the African-Americans and Caucasians, Stewart’ s techniques distinguished Native
Americans from African-Americans or Caucasians. However, when he included Native South
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American samples, the two groups combined showed only slightly more pronounced femoral
curvature than African-Americans. The South American femora were less curved than those of
Caucasians and North American Natives. Gilbert (1976) concluded that femoral curvature was
not such a useful tool in race assessment and set forth to look into possible causal factors of the
trait (Gilbert, 1975).

One of the hypotheses Gilbert (1976) tested was the effect of the equestrian foraging lifestyle of
the North Americans of the South Dakota area (Arikara: two sites dating between 1730 — 1830
AD) on femoral curvature, but he noted that the non-equestrian communities had the same
degree of curvature as the equestrian ones. The possibility that the Peruvian Natives were less
bowed because they were from an earlier sample was refuted because a more recent sample fell

within the same range of variation as the ancient sample (Gilbert, 1976).

As mentioned in the previous section, variation due to climate was refuted when Gilbert noted
that two groups, living in the same region, showed two different ranges of curvature and that the
Inuit, expected to have the most curved femora, wereidentical to those Nativesliving in the
South. Gilbert (1976) argued that there was little variation in postural habits between the groups
and therefore could not support Walensky’ s hypothesis that femoral curvature depended on
postural habits. Instead, he argued that femoral curvature was genetically based but remained
plastic and was influenced by gross body weight rather than by temporal, climatic, postural or
eguestrian influences. He suggested that obese individuals have a more anterior centre of gravity
which resulted in greater curvature. He did not follow up on the relation between torsion and
femoral curvature (Gilbert, 1976).

Primate long bones are less curved than the long bones of other mammals. Although in most
anthropoids bones there is an increase in curvature with body size (Swartz, 1990), experimental
work has shown that the ontogenetic development of bone curvature in mammals depends on
normal muscle activity and weight-bearing (Lanyon, 1980) and is not influenced by individual

variation in body weight. Whether thisis the case in humans needs to be determined.

Trudell (1999) revisited race assessment through measurement of anterior femoral curvature and
concluded that by increasing the number of measurements taken on the bones, it is possible to
discriminate African-Americans and Caucasians (Trudell, 1999). Maximal, bicondylar and

obligue length were measured as were the midshaft and subtrochanteric diameters. The curve
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was measured along three points as the distance from aflat surface when the femur is positioned

in horizontal position and balanced on two blocks with the distal condyles both touching a
surface (Figure 2-3) (Trudell, 1999).

Figure 2-3 Trudell’s method of measuring curvature by placing the femur on two blocks
(Trudell, 1999).

A discriminant analysis with cross-validation on a series of standard femoral measurements and
the three curvature distances of individuals of known sex and age category (below or above 30
years) provided an average accuracy of race determination of 87.12% for both left and right
femur. This study was restricted to African-Americans and Caucasians but illustrates the
advantage of taking more detailed measurements (Trudell, 1999) and the need to study wider
ranges of human populations.

Thelack of concordance among the research results presented above demonstrates that there isa
need to investigate the variability of femoral curvature among a geographically and
behaviourally varied range of populations.

2.1.3.  Biomechanics acting on femoral curvature

To push the body upwards, i.e. when walking uphill, muscle forces extend the hip and the knee.
Three of the hamstring muscles (semi-tendinosus, semi-membranosus, long head of the biceps
femoris) extend the hip but do not create a significant bending moment in the bone and load it in

uniaxial compression (Figure 2-4) (Frost, 1967). The fourth hamstring muscle (short head of the
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biceps femoris) adds a posterior bending force to the femur. The gluteus maximus and the two
gastrocnemii apply bending stress that bend the femur so it is convex posteriorly (Frost, 1967;
Cristofolini et al., 1995; Duda et al., 1996; Lengsfeld et al., 1996; Duda et al., 1997; Duda et al.,
1998; Trinkaus et al., 1999b; Shackelford and Trinkaus, 2002; Hall, 2004).

Figure 2-4 M uscles acting on the femur.

Pl: pelvis. F: femur. P :patella. T : tibia. SM : three muscles; semitendinosus,
semimembranosus, long head of the biceps femoris. GM: gluteus maximus. GN: gastronemius.
QF: quadriceps femoris. A: The femur of aman walking up astep. Thereisabending force
acting on the femur making it posteriorly convex. B: SM are three of the four hamstring muscles.
They extend the hip and do not create bending moments but compression. The short head of the
biceps femoris (BF) adds posterior bending. C: The gluteus maxi mus bends the femur so that is
posteriorly convex. The gastrocnemii add to this bending force. D: The quadriceps bends the
femur in the opposite way. This dynamic interacting muscle system minimises bending forcesin
the femur (after Frost, 1967).
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The quadriceps muscles exert stress on the femoral shaft in the opposite direction than the
gastrocnemius, short head of the biceps femoris and the gluteus muscle so that the shaft is
anteriorly convex, creating a balance in the muscle forces acting on the diaphysis. This balance
minimises the bending stresses on the femur (Frost, 1967). In most quadrupeds, this balanceis
close to perfect and femora show little or no anteroposterior curvature in the diaphysis. In

humans there is aresidual antero-posterior bending visible (Frost, 1967).
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2.2. Radius and ulna

2.2.1. Comparative anatomy of lower arm anatomy

From the well pronounced muscle articulations on all upper limb bones, it is suggested that
Neanderthals had very powerful forearms (Trinkaus and Churchill, 1988). There are featuresin
the ulna and radius that distinguish Neanderthals from modern humans (Fischer, 1906; Patte,
1955; Trinkaus and Churchill, 1988; Aiello and Dean, 1990; V andermeersch and Trinkaus,
1995; Pearson and Grine, 1997).

The proximal ulnais different in that the trochlear notch is oriented more anteriorly in
Neanderthals than it is in modern humans. Trinkaus and Churchill (1988) propose that this
would not have limited the range of movement but was rather an expression of different habitual
behaviour such as the increased use of forearms with the elbow flexed. The pronator quadratus
crest is very pronounced and al so suggests a more muscular forearm, although the interosseous
crest is poorly devel oped and the shaft isrelatively narrow (Trinkaus and Churchill, 1988; Aiello
and Dean, 1990).

The supinator crest is strongly developed and the shaft shows a greater degree of lateral
curvature than that found in modern humans. This may indicate that Neanderthal s closely
resemble earlier homininsin the morphology and strength of the radius and that the Neanderthal
forearm and elbow was especially strong during pronation and supination (Trinkaus and
Churchill, 1988).

The position of the radial tuberosity isameasure of lever advantage of the biceps brachii. In the
apes, it is positioned more medially. This gives apes a greater mechanical advantage of the
biceps brachii in supination. The tendons wrap themselves around the radial shaft and the medial
position of the insertion and increases the distance between the proximal and distal insertion of
the muscle and resultsin alarger medial rotation axis of the forearm. If the radial tuberosity is

placed more antero-laterally, asit isin modern humans, then power advantage islost during the
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final phases of supination (Trinkaus and Churchill, 1988; Aiello and Dean, 1990; Pearson and
Grine, 1997).

The radius curves mainly in amedio-lateral plane while the ulnatends to curve in adorso-
ventral plane. A greater distance between them increases the distance between the insertions of
the pronator quadratus and the pronator teres. African apes are less curved than other mammals.
Swartz (1990) suggests thisis due to long bones of primates being longer than those of other
mammals and will therefore produce larger bending stresses during normal locomotion. Higher
degrees of radial curvature in anthropoids have been explained to be the result of an increasein
size and functional importance of the supinator musculature, but in gibbons was not affected by
differential muscle mass (Swartz, 1990). Compared to humans however, apes have a higher
degree of lateral curvature. The higher degree of curvature in African apes (Martin and Saller,
1959; Knussman 1967 in Swartz, 1990) and a more lateral insertion of the pronator teres
increases the lever advantage (Aiello and Dean, 1990).

A B C D E F G

Figure 2-5 Hominoid radii.
Right radii of A=Gorilla, B=Pan, C=Pongo, D= La Chapelle-aux-Saints, E= LaFerrassiel, F=
LaFerrassiell, G=recent European (After Czarnetzki, 2000).
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Thelateral subtense of the radius of the Neanderthals is remarkable and falls on or beyond the
higher limits of the modern human variation (Fischer, 1906; Botez, 1926 in Patte, 1955;
Vandermeersch and Trinkaus, 1995; Carretero et al., 1999; Czarnetzki, 2000) (Figure 2-5).
Although some confusion exists about which technique yields the most accurate measurement of
curvature of the lateral side of the radius (See Martin and Saller, 1959 for four different methods
to measure curvature), only Fischer (1906) reports a size corrected measure or an index of
curvature (subtense/maximum length* 100). Quantification of the posterior curvature of the ulna
using a subtense technique (Fischer, 1906; Martin, 4a) is not as straightforward asit isfor the
more evenly shaped bones such as the femur and the radius, but Neanderthals have been

described as having alarge posterior subtense in the ulna (Fischer, 1906).

The head/length ratio of the radius (head diameter/length* 100) is larger in the Neanderthals than
it isfor any other human population, but there is alarge range of variation within modern
humans (Patte, 1955). Fischer (1906) and Patte (1955) also report an enlarged distal condyle for
the Neanderthal s and comment on the presence of this enlargement in Japanese, Africans,
Australians and other human populations. The enlargement of the condyles may be caused by
the rotation of the radius (Fischer, 1906), but Patte (1955) warns that this may not be as
straightforward in hominins as in mammals where there is a rel ation between rotation and size of
the condyles. He also warns biomechanicsis not always the cause of large condyles but that they
have al so been associated with rickets (Marfan, 1912 and Decugis, 1941 in Patte, 1955;
Steinbock, 1976; Ivanhoe and Trinkaus, 1983).

Investigations of the ulna and radius have shown that early anatomically modern humans have
relatively thick cortical bone compared to recent modern humans (Churchill et al., 1996; Pearson
and Grine, 1997; Grine et al., 1998; Pearson et al., 1998) and that early modern humans have a
ticker and shorter radial neck than Neanderthals (Churchill et al., 1996; Pearson and Grine,
1997).

2.2.2. Intraspecific variation in the radius and ulna

There are very few studies on variation in longitudinal curvature of the radius and ulna within
modern humans. A summary of the morphological variation in modern humansin the ulnaand
radius is described below.
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Within recent human populations, the distal limb segments (tibia and radius) tend to exhibit
more rel ative variability (size independent) than the proximal segments, especially in the lower
limb (Holliday and Ruff, 2001). Males and femal es appear to be dightly different in this pattern.
Females vary to an equal degreein both upper and lower distal segments, whereas males show
most variability in the lower limb (Holliday and Ruff, 2001). These differences are believed to
be allometric since males are larger than females and this alometry can also be found when
looking at between-group differences in, for example, cold- and warm-adapted populations
(Holliday and Ruff, 2001).

Research on recent human variation of the ulnaand radiusis limited and most of it dates back to
the early 20™ Century. In 1906, Fischer made an in-depth study of the variation of the radius and
ulna and included both Neanderthal casts and recent modern human populations from different
geographic origins. His sample of modern humans consisted of Europeans, Africans,

Australians, Polynesians, Melanesians, Birmese, Tierro del Fuegans, Ainu, Japanese, Philippinos
and prehistoric Egyptians. Patte (1955) included this study and othersin his book on
Neanderthals and summarised some of the main differences between modern humans and
Neanderthals.

Lapps, Japanese and Medieval Europeans have more robust radii than do Neanderthals. The
Africans have the smallest robusticity index but there is alarge amount of variation. Also, the
Neanderthal ulnais robust for its size (Fischer, 1906; Patte, 1955).

Fischer (1906) reports a mean index for humansin lateral subtense of the radius ranging from
2.5for the Tierra del Fuegansto 3.2 for the Europeans compared to a mean of 7.4 (S.D.=2.5,
n=5, summary data from Carretero et al., 1999) for the Neanderthals. Klaatsch (1901) suggests
that radial curvatureis ahereditary trait. However, because humans are generally born with
straight ulnae and radii, Rouviere (1939, in Patte, 1955) argues that radial lateral curvatureisa
biomechanical adaptation to the strong devel opment of the flexor muscles of the fingers and
thumb.

The mediolateral curvature of the anterior surface of the ulnais difficult to describe because of

the sinusoidal shape of the diaphysis. Fischer (1906) used diaphyseal angles for each curvein the
anterior ulnaand found that Europeans are the least curved, and that Australians and Tierradel
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Fuegans possess the highest degree of curvature. Patte (1955) does not repeat this method and

does not comment on the curvature of the ulnain Neanderthals.

Fischer (1906) measured the angle the radial tuberosity makes with the perpendicular plane
through the styloid process and the ulnar notch. This measurement will give the angle that the
radial tuberosity deviates from the axis through the interosseous crest. Modern humans range
from 0° to 85° (Fischer, 1906) with the majority ranging between 45° and 60° (Boule and
Vdlois, 1952). Thereis alarge range of variation within single populations with angles. For
example, Europeans range from 22° - 67° (mean=50.2°) and Africans from 39° -85°
(mean=63.3). Although a very high angle (from 81° Spy 1 — 88° Neanderthal) was considered a
derived Neanderthal feature, in more recent papers, the angle of the radial tuberosity is
approximated qualitatively, and it was concluded that although Neanderthals have avery high
angle and therefore a more medially oriented radial tuberosity, they do not fall outside of the
range of variation of modern humans (Trinkaus and Churchill, 1988; Vandermeersch and
Trinkaus, 1995).

Fischer (1906) suggests a correlation between the length of the biceps bracchii muscle tendon
and the position of the radial tuberosity. When the arm is part flexed in pronation, with the hand
in supination or semisupination, there is a strain on the biceps and therefore the tendon and the
tuberosity moves. Habitual use of the armin that position can cause the individual differences
observed in the orientation of the radial tuberosity (Fischer, 1906; Trinkaus and Churchill, 1988;
Aiello and Dean, 1990).

When radia neck length is corrected for size by the radial length, the Neanderthals have a
relatively long radial neck for radial length and fall with the Africans and Chinese rather than
with the Europeans (V andermeersch and Trinkaus, 1995). A longer radial neck makes the biceps
brachii more effective asit has more lever advantage and therefore greater power. Thereisa
large range of variation in radial neck-shaft angle within modern human populations but the
Europeans have been suggested to have the largest when compared to other populations (Fischer,
1906).

Thejoint-axis angle (or neck-shaft) of the ulnaisthe angle the trochlear notch makes with the

shaft axis and is measured by finding the angle between the sagittal axis of the trochlear notch

and the shaft axis. In humans, it varies between 0° and 28° and Australians, Phillipinos and
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Tierradel Fuegans have dightly higher angles, but there is no trend among popul ations and no

correlation between angle and curvature was observed (Fischer, 1906).

Very few studies have explored the behavioural and environmental factors on lower arm
morphology. Robusticity of the upper limb, however, has been investigated in relation to climate
and habitual behaviour (Stock, 2002; Stock and Pfeiffer, 2004; Stock, 2006). Although climate
has a significant influence on patterns of diaphyseal robusticity, patterns of robusticity of the
upper limb correspond best to marine mobility especially in the distal [imb elements. This
suggests that there may be greater diaphyseal plasticity further away from the trunk and that
differences in bone massin the lower arm are more relevant for functional interpretation of
archaeological and fossil samples without being constrained by the energetics of bipedal
locomotion (Stock, 2002; Stock and Pfeiffer, 2004; Stock, 2006).

2.2.3.  Biomechanics acting on lower arm curvature

The elbow joint acts as alever and is composed of the humero-ulnar, humero-radial and
proximal radio-ulnar joints. All are encapsulated by collateral ligaments. The humero-ulnar joint
is composed of the trochleathat articulates with the trochlear fossa of the ulna. Thisjoint serves
in flexion and extension. The humero-radial joint islateral to the humero-ulnar joint. It isformed
between the distal part of the humerus and the head of the radius. Thisjoint isnot fixed but is
restricted in its movement by the humero-ulnar joint. It is used during flexion, extension,
supination and pronation. In the proximal radio-ulnar joint, the head of the radius articulates with
the radial notch of the ulna. Thisjoint pivots during pronation and supination making the radius
roll over the ulnain amedial and then lateral fashion (Frost, 1967; Hall, 2004).

The large number of muscles producing the range of motion of the elbow and forearms
complicates aforce-analysis for this complex of joints. It is assumed, however, that the strongest
flexor muscle of the elbow isthe brachialis. Distally, brachialis inserts below the coronoid
process. Another elbow flexor, the biceps brachii, insertsin the radia tuberosity and is strongest
during supination. The brachio-radialis also aids in flexion and is most effective in the neutra
position (between pronation and supination). Its distal insertion isin the base of the styloid
process on the lateral aspect of the radius. The strongest extensor muscleis the triceps. The three

heads of the triceps insert on the olecranon process of the ulna with a common tendon. The
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anconeus muscle attaches to the lateroposterior aspect of the ulnaand is only aminor extensor of
the elbow (Frost, 1967; Hall, 2004).

The pronator teres muscle, the supinator and the pronator quadratus are involved in pronation
and supination. These are inserted in the proximal and distal radio-ulnar joints. The interosseous
space between ulna and radius determines the degree of pronation and supination an individual
can achieve (Y asutomi et al., 2002). Y asutomi (2002) used three dimensional models to
reconstruct different sizes of interosseous space and found that when the axis of rotation in
pronation and supination passed through the interosseous region the rotation was more than 40%
radially, ulnarly, anteriorly and posteriorly. However, when the axis of rotation was deviated
from this region, there was significant oss of supination and pronation (14% radially, 7%
ulnarly, 5% anteriorly and 4% posteriorly) and restriction by the elastic interconnecting
membrane (Y asutomi et al., 2002).

The pronator quadratus is the major pronator muscle and is assisted by the pronator teres. The
pronator quadrutus attachments are on the lower anterior ulna and the lower anterior radius. The
pronator teres inserts laterally in the middle of the shaft of the radius and has a minor rolein
flexion. The supinator muscle is the mgjor supinator and is assisted by the biceps when the
elbow isflexed to 90° or less. The supinator muscle inserts on the lateral proximal part of the
ulnaand the lateral proximal part of the radius (Hall, 2004).

The elbow is not a weight-bearing bone but sustains large loads throughout its activity cycle.
Most of the compressive loading is at the elbow and greater forces are generated when the hands
are rotated in pronation. Larger forces are also generated during certain activities. Asthe
attachment of the triceps muscle on the ulnais closer to the elbow than are the brachialis and the
biceps, the moment arm is smaller and because of this lever advantage, the flexor muscles have
to generate less force than the extensors to create the same amount of joint torque (Frost, 1967;
Hall, 2004).
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2.3. Possible causes for variation in long bone curvature

2.3.1. Neanderthals and rickets

Some scholars have suggested that Neandertha curvature in the ulna and radius is the result of
rickets (Ivanhoe, 1970; Ivanhoe and Trinkaus, 1983; Czarnetzki, 2000) or osteomalacia
(Czarnetzki, 2000). Ricketsisamedical condition whereby the osteoid (the organic material in
bone) fails to calcify in agrowing animal or human. Individuals with rickets have a deficient
vitamin D metabolism. Other dietary deficiencies in the calcium or phosphorus metabolism may
produce rickets. Thisresultsin skeletal deformity and short stature.

Figure 2-6 X-ray image of an infant with severerickets.
Note the medio-lateral curve as opposed to the the antero-posterior curve observed in
Neanderthals. From www.dwb.unl.edu (last accessed 19/06/2008)
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Natural vitamin D isformed in the skin under the stimulus of ultraviolet light and is present in
fish liver oil (Stuart-Macadam and Iscan, 1989; Wood et al., 1992). Because thereis no
widespread evidence of Neanderthals eating fish (with the exception of shell fish consumption at
Gibraltar) (Hockett and Haws, 2005) and their inhabitation of the Northern regions of Europe,
Ivanhoe suggests Neanderthal s experienced an insufficient amount of vitamin D in their diet and
as a consequence of rickets show skeletal deformities such as abnormal long bone curvature
(Ivanhoe, 1970; lvanhoe and Trinkaus, 1983; Czarnetzki, 2000). However, the curvature
observed in Neanderthalsis an accentuation of normal anteroposterior curvature of the diaphysis
(Steinbock, 1976) and never assumes the irregular mediolateral curvature associated with rickets
(Figure 2-6) (Ivanhoe and Trinkaus, 1983). Neither does rickets explain the observed variationin

anterior curvature between modern human populations.

2.3.2.  Biomechanics and bone remodelling

Wolff’s Law states that bones grow and remodel throughout an individual’ s life in order to adapt
to their mechanical environment. The bone senses, transduces, and responds to loads by
molecular and physiological mechanisms (Pearson and Lieberman, 2004; Ruff et al., 2006).

Long bones of other terrestrial mammals also display some longitudinal 1ong-bone curvature and
the magnitude of this may vary across bones, species and even between individual s (Lanyon and
Baggott, 1976; Lanyon, 1980; Biewener, 1983; Lanyon, 1987; Swartz, 1990). Several mammals
have been used in experimenta studiesto investigate the functional meaning and devel opment
of longitudinal curvature and how this may affect strain and stress distributions in the shaft
(Frost, 1967; Lanyon and Bourn, 1979; Lanyon, 1980; Biewener, 1983; Lanyon, 1987; Bertram
and Biewener, 1988; Pead and Lanyon, 1990; Swartz, 1990; Les et al., 1997; Main and
Biewener, 2004; Yamanaka et al., 2005). Several studies (Lanyon, 1980; Biewener, 1983;
Bertram and Biewener, 1988; Bertram and Biewener, 1992; Biewener and Bertram, 1994; Main
and Biewener, 2004) have established that if there is an absence of loading from muscle activity
and weight-bearing during ontogeny, long bonesfail to develop their appropriate bone mass or
longitudinal curvature, despite achieving their normal length. Lanyon (1980) concluded that
there are certain aspects of bonesthat are genetically determined but that other features require a

normal mechanical environment to devel op.
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Lieberman and Pearson (2001) performed an experimenta study testing the hypothesis whether
cortical bone growth (modelling) and repair (Haversian remodelling) are responses to exercise-
induced mechanical loading and whether the remodelling varied with loading and the position in
the skeleton. Exercised juvenile sheep had higher periosteal modelling than Haversion
remodelling rates than non-exercised controls (Lieberman and Pearson, 2001). Mid-shaft
periosteal growth was higher proximally and mid-shaft Haversian remodel ling was higher
digtally. Growing animals thus modulate modelling versus remodelling ,respectively ,to loading
at different skeletal locations. Thisis to optimize cross-sectional strength relative to the kinetic
energy cost of accelerating added mass (Lieberman and Pearson, 2001). Ruff et al. (2006)
suggest that rates of remodelling and rates of bone turnover vary greatly at different skeletal sites
and that there is no simple relation between the orientation of loads, such as strains and stresses,
and the cross-sectional geometry of long bones (Lieberman and Pearson, 2001; Ruff et al .,
2006).

If, however, curvature only develops under a normal developmental activity regime, it can be
assumed that it has afunctional advantage to either the bone itself or to the anatomical structures
around it. The relationship between forces and modelling and remodelling of long bonesis
complex. If one considers the long bone as along and slender beam, it is assumed that the
optimal function of this bone to resist applied stresses and minimise strain is through axial
compression (Frost, 1967; Bertram and Biewener, 1988; Hall, 2004). Thisloading configuration
digtributes most material in the plane of deformation, and cortical bone is stronger under
compression than under tension (Frost, 1967; Lanyon and Baggott, 1976; Lanyon, 1980;
Bertram and Biewener, 1988; Pead and Lanyon, 1990; Hall, 2004). Applying axial loading to a
bone that islongitudinally curved, resultsin a bending moment that is proportional to the
displacement of the diaphysis perpendicular to the longitudinal interarticular axis (Frost, 1967
Swartz, 1990; Hall, 2004). Because of this bending, tensile and compressive stresses are
unevenly distributed through the bone and even small external loads can create large strains
within the bone (Lanyon, 1980). Reducing curvature while axially loading long bones should

result in the lowest strain levels.
However, the long bones of mammals are not loaded purely axially and long bones can

experience significant bending moments due to curvature and muscle and joint reaction forces

that are not perfectly aligned with the axis of the bone (Bertram and Biewener, 1988). Also, in
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the human femur, the positions of the articulation and muscle attachments, such as the media
displacement of the femoral head (Trinkaus, 1993; Anderson and Trinkaus, 1998), and the
contraction of the adducter and gluteal abductor muscles, cause the femur to be subjected to
some degree of mediolateral bending (Ruff, 1995). In one legged stance, most of that bending
stress may be reduced through associated tension in theiliotibial tract and muscul ature
(Lengsfeld et al., 1996; Taylor et al., 1996; Les et al., 1997; Simdes et al., 2000). Ruff (2000)
suggests that anteroposterior bending could be the cause of anteroposterior expansion of the
femoral midshaft in response to high activity and mobility levels (Ruff, 2000b).

Taylor and colleagues (1996) investigated |oading through the femur in one-legged stancein
humans by measuring the dominant mode of loading in the femur in afinite element analysis. In
afinite dement analysis the materia properties and loading of the skeletal elements or joints are
modelled and analysed to better understand the biomechanics and orthopedics (Richmond et al.,
2005). The results showed that the human femur is loaded primarily through compression rather
than through torsion or bending (Taylor et al., 1996). They aso found that the anterior and
posterior stresses on the femur are negligible and that thisis probably due to the reduction of
overall bending stresses in the femur due to the application of muscle forces. If aboneisloaded
in bending, this would increase the biological and locomotor cost of bone production because the
bone would need to resist these stresses and consequently be thicker (Taylor et al., 1996; Skerry,
2008).

When the femur is loaded through bending stress, one would expect deflection of the femoral
head and an uneven load transfer through the distal condyles but evidence shows uniform
pressure distribution in both condyles (Taylor et al., 1996). The major limitation of this study
was that it was done during one phase of gait and therefore is not necessarily applicable to the
whole gait cycle. It may be that the loading stresses differ throughout the cycle but anatomical

features of the femur suggest thisis not so.

Duda et al. (1996) found that differences in muscle attachments result in different biomechanical
properties of individuals. Not only is bone remodelled when applying different stresses, but so
are the soft tissues such as muscles and tendons. Duda et al. also recognise that when one
neglects the major muscles, compression, bending and torsion may be overestimated and not
play as significant arole asfirst assumed and return the diaphyseal bending stresses to ones of
axial compression (Duda et al., 1997; Duda et al., 1998).

28



Modélling the system of interacting muscles and bone in stance is important for understanding
the functional significance of curvature but does not explain differencesin femoral curvature
between individuals as it remains difficult to measure the in vivo levels and distributions of
diaphyseal strains in individuals (Pedersen et al., 1997). Also the complex ways in which
muscles or parts of muscles contract and of joint reaction forces during gait with varying burden-
carrying levelsin anatural setting, make it impossible to fully understand the resulting strainsin
the femur, especially asthere is evidence for variation in the human femoral muscles that would
certainly affect the muscle forces applied to the femur (Duda et al., 1996). Nonetheless, it
remains possible that curvature serves to lower bending stresses rel ative to straight bones by
reducing bending moments placed on the diaphysis and in that way returning the bone to an
environment of axial compression (Frost, 1967; Hall, 2004).

Most experimental work though, has demonstrated that curvature increases bending strains and
that the direction of the curve does not necessarily correspond with the tension surface of abone
when it isloaded (Lanyon and Baggott, 1976; Lanyon and Bourn, 1979; Lanyon et al., 1979;
Lanyon, 1980; Biewener, 1983; Lanyon and Rubin, 1986; Lanyon, 1987; Swartz, 1990; Simdes
et al., 2000). For aweight-bearing bone, longitudinal curvature may be crucial because it
reduces the ability to withstand high levels of loading and be a compromise between bone
strength and predicting bending strains and material failure (Lanyon, 1980, 1987; Bertram and
Biewener, 1988). Bertram and Biewener (1988) argue that axial compressive loading is unstable
as a catastrophic shift from compressive stress to bending stress in a straight column is equally
likely to bend in arandom direction. A curved bone, however, is more likely to bend in the
direction of itslongitudinal curvature regardless of the orientation of the bending moment
applied to the bone and is therefore predictable. Alexander (1981) demonstrated that structures
that are likely to be subjected to unpredictable loads would need to build in a safety factor for
maintaining the biological structure, even if that safety factor would be more metabolically
costly to maintain and transport (Alexander, 1981). The final anatomy of the bone will thus be a
compromise between the demands of load carrying (curvature negatively affects strength) and
predictability (Bertram and Biewener, 1988).

Lanyon and Bourn (1979) a so suggest that femoral bending may facilitate larger muscle

packing and/or place the muscle vector more paralel to the diaphyseal axis. Curvature allows for

the positioning of large muscle bellies while allowing the slender muscle attachments to be close
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to the joints. Having muscles adjacent to the bone exerts pressure on the periosteum, increases
bone resorption, and may cause curvature. This hypothesisis supported by the concavity of the
radius and tibia of many mammals with respect to the flexor musculature, allowing for greater

volume (Lanyon et al., 1979; Lanyon, 1980).

The presence of intermediate strains from curvature-induced bending stress may also be
advantageous for bone to maintain a minimum bone mass. Reduction of loading resultsin a
decrease in bone mass (Lanyon and Baggott, 1976; Lanyon and Bourn, 1979; Lanyon et al.,
1979; Lanyon, 1980; Ruff et al., 1991; van Der Meulen et al., 1993; Carter et al., 1996;
Lieberman et al., 2001; Lieberman and Pearson, 2001; Pearson and Lieberman, 2004; Ruff et al .,
2006). Therefore, if the bone was loaded in purely axial compression, there may not be enough
strain for the bone to benefit physiologically. Strain levels can be increased by augmenting the
degree of bone curvature or by reducing bone cross-sectional area and/or second moment of area
until an optimum between physiological benefit and risk of failure has been achieved (Lanyon,
1980).

To summarise, there are four main biomechanical hypotheses explaining longitudinal curvature
of the long bones:. 1) curvature lowers bending stress by trandating bending stressto axial
compression (Frost, 1967; Hall, 2004), 2) curvature facilitates muscle expansion and packing
(Lanyon et al., 1979; Lanyon, 1980), 3) curvature is a compromise between bone strength and
predictability of bending strains and material failure (Lanyon, 1980, 1987; Bertram and
Biewener, 1988), or 4) generates strains necessary for optimal strength (Lanyon, 1980).
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2.3.3. Bodysize

It is understood that loading of the long bone diaphysisis proportional to body mass (Ruff,
2000b). Robusticity, which is aresponse to loading, has an alometric relationship with body
size (van Der Meulen et al., 1993; Ruff, 2000a; Stock, 2002; Stock and Pfeiffer, 2004).
Anthropoids show and overall positive allometry in their curvature (Swartz, 1990) so larger
anthropoids have a higher degree of curvature. This alometric relationship is similar to that of a
broader group of mammals (Swartz, 1990 but see Biewener, 1983; Bertram and Biewener, 1992)
but primates are much less curved than mammals at any given size in order to allow for

relatively longer limbs but retaining low levels of bending stress (Swartz, 1990).

2.34. Activity levels

Variation in robusticity levelsis often suggested to be an adaptation to activity levels and
habitual behaviour, and a substantial amount of research has focused on the changes in skeletal
robusticity throughout human evolution and the evidence for overall gracilisation (Ruff et al.,
1993; Ruff et al., 1994; Trinkaus et al., 1994; Trinkaus et al., 1999a; Pearson, 2000a, 2000b;
Ruff and Trinkaus, 2000; Shackelford and Trinkaus, 2002; Shackelford, 2007). Several recent
studies have also been conducted to understand patterns of skeletal robusticity in modern
humans (Larsen, 1995; Ruff and Trinkaus, 2000; Stock and Pfeiffer, 2004; Stock, 2006; Carlson
et al., 2007). Understanding patterns in robusticity may aid in understanding long bone curvature

if both are remodelling responses to similar strains and stresses.

The relationship between skeletd robusticity and habitual behaviour, and more specifically
terrestrial mobility, has been investigated primarily using mid-shaft femoral cross-sectional
geometry. This research is based on the prediction that repetitive anteroposterior loading on the
lower limb during subsistence strategy-related terrestrial mobility will result in thickening of the
cross-sectional geometry in the anteroposterior plane (Ruff, 1987, 1994a; Larsen et al., 1995;
Holt, 2003; Stock and Pfeiffer, 2004), and thisis supported by the strength circularity indices (I
ly) at the femoral midshaft and its strong correspondence with terrestrial robusticity (Stock,
2006). If thereis acorrelation between robusticity and curvature, the anteroposterior bending

that is observed may be aresponse to the increased curvature of the diaphyseal shaft.
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Holt (2003) demonstrates there is a rel ationship between femoral anteroposterior bending
strength, lower limb robusticity and declining terrestriad mobility from the Upper Palaeolithic
through Mesolithic in Europe. Changesin postcrania robusticity with a shift away from hunting
and gathering and the adoption of agriculture also suggest that increased sedentismisvisiblein
the externa (Ruff et al., 1984; Larsen, 1995 but see Bridges, 1989a; Bridges et al., 2000) and
internal dimensions of long bones (Ruff, 1987; Brock and Ruff, 1988). Thisis supported by the
higher prevalence and severity of osteoarthritis in hunter-gatherers compared to agriculturalists
(Ortner, 1968; Larsen, 1983; Bridges, 1989b; Larsen, 1995). Although this pattern of decreasing
robusticity is present in human popul ations, generally, males appear to be more pronounced in
their reduction than females. This may reflect the changes in types of activity that were greater
in males than they were in females (Ruff, 1987). This comparison of cross-sectional geometry
and the anterior-posterior bending stress (1) and medial-lateral bending stress (1) is
accompanied by areduction in sexual dimorphism with the transition from hunting to gathering
to agriculture (Ruff, 1994a). Sexua dimorphism in hunter-gatherersis the result of the role of
males to travel long distances and hunting compared to the more sedentary role of femalesin
gathering and childcare (Ruff, 1987).

Recently, robusticity has been investigated throughout the skeleton and there is a growing body
of evidence that aquatic foraging and the habitual use of watercraft for subsistence has an
influence on upper limb robusticity (Stock and Pfeiffer, 2001; Weiss, 2003; Stock and Pfeiffer,
2004; Stock, 2006; Shackelford, 2007). Thereisatrend for distal elementsto show a stronger
relationship between hypertrophy and behaviour but robusticity at femoral midshaft (measured
as strength circularity index — shape index) shows the greatest correspondence to terrestrial
mohility.

Recently, it has become increasingly clear that the relationships between postcranial robusticity,
mobility and activity patterns are not as straightforward as initially believed and that levels of
robusticity may vary at different sites of the bone (Stock, 2006). In the limbs, correlation
between robusticity and terrestrial or marine mobility increases from proximal to distal.
Therefore, stronger rel ationships would be expected between bone modelling and remodelling in
response to strain in the distal elements compared to proximal elements (Stock and Pfeiffer,
2001; Stock, 2006).

32



Diaphyseal robusticity in the upper limb bones have often been used as evidence for differences
in habitual behaviour throughout human evolution (Trinkaus et al., 1994; Vandermeersch and
Trinkaus, 1995; Pearson et al., 1998; Trinkaus et al., 1999a; Pearson, 2000a, 2000b; Ruff and
Trinkaus, 2000) and Stock (2006) suggests that thereis greater variability in the robusticity of
the distal limb segments that is associated with habitual behaviour, especialy in the mid-shaft of

the ulna

If long bone curvature is aresponse to activity levels and habitual loading, it is predicted to be
highest in populations with high activity levels (Ruff et al., 1984; Larsen, 1995; Ruff, 1999) and
to vary between males and females (particularly in hunter-gatherers) (Brock and Ruff, 1988;
Ruff, 1994a; Larsen, 1995). Also, with increasing sedentism through time, a decreasing degree
of curvature would be predicted.

The complexity of the relationship between loading and robusticity is subject to additional
factors, the main ones being the susceptibility of bone to strain during ontogeny (Ruff et al.,
1994; Lieberman et al., 2001; Pearson and Lieberman, 2004) and the effect of climate (Pearson,
2000b; Weaver, 2003).

2.3.5. Climate

Climate affects body size and proportions and it has been suggested that greater robusticity in
individuals from colder climates may be an indirect effect of alarger body size (Trinkaus and
Ruff, 1999b; Trinkaus and Ruff, 1999a; Stock, 2006). Other studies have found a direct effect of
climate on cross-sectiona geometry (Stock, 2006) and external robusticity (Ruff, 1995; Pearson,
2000b; Weaver, 2003; Stock, 2006).

Bergmann and Allen’s rules apply to body size and proportions in mammals and their relation to
thermo-regulation. There is a positive relationship between body size (weight) (Bergmann,
1847) and a negative relationship between limb length rel ative to body mass with increasing
distance from the equator (Allen, 1877). Considerable studies on arange of human populations
have confirmed these principles also apply to humans. Body breadth is correlated most strongly

with temperature, and differencesin limb proportions and body size are established through
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genetic adaptation and not through individual ontogeny (Y'Edynak, 1976; Eveleth and Tanner,
1990; Ruff et al., 1994; Pearson, 2000b; Van Andel, 2003; Weaver, 2003; Ruff et al., 2005).
There have been recent changes in the compliance of modern humans to these ecol ogical
principles due to dietary improvements of many hunter-gatherers and the adoption of amore
urban trading subsistence strategy (Katzmarzyk and Leonard, 1998). Therefore, care must be
taken when analysing differences within modern humans and especially when drawing

conclusions for palaeoanthropological studies (Stock, 2002).

In an evolutionary context, body size and limb proportions have been used to interpret
environmental adaptation and migration, especially when explanations are sought for the
differences in Neandertha and early modern human body build. Weaver (2003) argued that the
relationship between robust femora and cold climate in Neanderthals can be explained as a
secondary consequence of the wide cold-adapted Neanderthal bodies and that the shape of the
Neanderthal femur can be explained as a secondary consequence of the cold-adapted bodies vs.
the warm adapted bodies of modern humans (Weaver, 2003).. Because the breadth of the pelvis
is much wider in Neanderthals, the femur responds to this with larger articulations, thicker and
more rounded shafts, alower neck-shaft angle and a broader proximal shaft than in modern
humans (Ruff and Walker, 1993; Ruff et al., 1993; Weaver, 2002, 2003).

From the publications on race assessment discussed above, a clear relationship has not been
demonstrated between femoral curvature and climate (Bookstein et al., 2003) but it isworth
considering this again in light of the current research, through investigating the possible
relationship between overall skeletal morphology and long bone curvature. Long term climatic
adaptation may have an important effect on the size and shape of long bone diaphysis (Pearson,
2000b).
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24. Hypotheses and predictions

The background provided by the two preceding Chapters (1 and 2) on bone curvaturein
Neanderthals and modern humans suggests three main hypotheses to explain variation in long
bone curvature in recent modern humans. These hypotheses and the associated predictions will

be the basis for the analysis and are listed below.
Hypothesis 1: A high degree of curvatureisrelated to body size.

Body size affects the mechanical |oadings of weight-bearing skeletal elements and cross-
sectional diaphyseal properties. Biewener (1983) suggested curvature is a mechanism by which
large animal's reduce bone stresses because body mass increases more rapidly than the cross-
sectional area of bones. Although thisrelationship is clear for weight-bearing bones such as the
femur, Swartz (1990) demonstrated that curvature of the radius in anthropoids was also
alometrically related to body size, and could not find a relationship between curvature and

differences (tension or compression) in loading regime between brachiators and non-brachiators.

Associated predictions:
- Body sizeis positively correlated with degree of femoral and radia curvature.

- Males have higher degrees of curvature than femal es, because males are, on average, larger.
Hypothesis 2: Curvatureisaresponseto increased activity levels

Several predictions follow from the expected relationship of habitual behaviour of long bone
curvature. Males have higher activity levels than females, especialy in hunter-gatherer societies
where division of labour is most pronounced, and this may result in sexual dimorphismin
curvature (Larsen, 1995). Activity levelsin adults decrease with age (Caspersen et al., 2000;

Norman et al., 2002), so curvature may also decrease with increasing age.
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Habitual use of the forearm in a part-flexed position during pronation, with the hand in
supination or semi-supination, resultsin amore medialy placed radial tuberosity, increased
strain in the forearm and may result in arelatively longer radia neck (Trinkaus, 1988). This

increased strain is expected to result in more curvature.

Associated predictions:

- Males, having higher activity levels than females, also have higher degrees of curvature.

- There will be a positive correlation between curvature and robusticity.

- Populations with higher levels of aquatic mobility will have the most laterally curved radii and
most posteriorly curved ulnae.

- With increasing individual age and decreasing activity levels, there will be adecreasein
curvature.

- With increasing sedentism through time in Europe, there will be a decrease in curvature.

- Position of the radial tuberosity and radial neck length will be correlated with curvature.

- A higher degree of femoral curvature will be associated with a more distal apex of curvature

Hypothesis 3: Curvatureisa consequence of adaptation to cold climate.

Individualsin high latitudes have relatively shorter distal limbs and relatively larger articulations
than those living in warm climates (Ruff, 1994b). The shape of the femur has been suggested to
be a consequence of long term climatic adaptations in the pelvis. The wide pelvisin cold-
adapted populations resultsin relatively larger articulations, greater shaft robusticity and low
neck-shaft angles, as well as longer relative neck length and increased torsion (Weaver, 2003).
Little is known about how cold adaptation affects the lower arm.

Associated predictions:

- There will be a positive correlation between curvature and latitude (used as a quantitative
measure for average temperature).

- There will be a positive correlation between curvature and robusticity of the epiphyses and
shaft.

- There will be a positive correlation between femoral curvature, relative neck-length and torsion

and neck-shaft angle.
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CHAPTER3. MATERIALSAND METHODS

3.1. Materials

The materials included in this study can be divided into two groups: 1) Neanderthals and early
anatomically modern humans, and 2) the comparative recent modern human sample. The recent
modern human sampleis a geographically and behaviourally diverse sample that was chosen to

investigate the influence of climatic, body size/body proportions and activity levels on curvature.

3.1.1. Neandertha and early anatomically modern human fossils

Neanderthals and early anatomically modern human remains are rel atively abundant compared
to other hominin fossils but the sample is smaller than would be ideal for a comprehensive
comparative analysis. All available femora, ulnae and radii were studied, and where the original
was missing or damaged, casts were used. The sample is comprised of complete or nearly

complete bones.

3.1.1.1. Neanderthals

The sample of Neanderthals represents Middle Palaeolithic Western European (so-called
“classic” Neanderthals) and western Asian Neanderthal sites (Table 3-1) dating from 65K a-35Ka
BP. A short description and some key references for each site isincluded below with the most

recent first.
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Table 3-1 Summary of the Neanderthal sample, by region.

NEANDERTHAL
complete specimens
Adult Femur Ulna Radius
Europe
Spy 1° X
Spy 2° X
LaFerrasse1® X X
LaFerrassie2” X X X
LaQuinaH5" X X
La Chapelle aux Saints " X X X
Le Régourdou © X X
Levant
Kebara® X X
N 3 7 8
Adult cast Femur Ulna Radius
Europe
Le Moustier © X X X
Neanderthal | X X * X
western Asia
Shanidar 1 ¢ X X
Shanidar 59 X
Shanidar 6 9 X
N 2 4 4

¥ Royal Belgian Intitute for Natural Sciences, Brussels ° Musee de I’ Homme,
Paris ¢ Musee du Perigord, Périgeux, @ Tel Aviv University € Museum fir Vor-
und Friihgeschichte in Berlin" Rheinisches Museum in Bonn ¢ Smithsonian

Institute Washington, * pathological



Spy

Two partia skeletons and some juvenile fragments were discovered in Spy, 15 km west of
Namur, Belgium, in 1886 by M. Lohest and M. De Puydt (Fraipont and Lohest, 1887). The
fossils were associated with Mousterian tools (Bordes, 1959), but because of the early date of the
excavation and poor excavation techniques, dating is problematic. The fossils are tentatively
dated to 40-35 Ka BP based on associated faunal remains (Cordy, 1988).

Spy 1isbelieved to be an adult male of approximately 35 years old. The calotte, a partia
maxillaand partial postcranial remains are preserved. Spy 2, also a partial male skeleton,
consists of a calotte and some isolated teeth and postcranial remains. There is some confusion
about the postcranial elements and their association with either Spy 1 or Spy 2. Only Spy 1 hasa
completely preserved radius and was included in the analyses. The other specimens are too
fragmentary to be included. Both specimens are undoubtedly Neanderthal s (Fraipont and L ohest,
1887; Boule and Vallois, 1952).

The Spy remains reside in the Royal Belgian Institute of Natural Sciencesin Brussels, by
courtesy of the family of Professor Max Lohest (1857-1926).

LaFerrasse

The site of La Ferrassie, France, was discovered in 1909 by D. Peyrony and L. Capitan and
yielded the remains of two adults (La Ferrassie 1 and 2) and possibly 6 or 7 juveniles (La
Ferrassie 4a, 4b, 5: neonates or fetuses; La Ferrassie 3 and 7, possibly same individual: +/- 10
yearsold; LaFerrassie 6: +/- 3 yearsold; La Ferassie 8: +/- 2 years old) (Heim, 1968). The
remains were found in arock shelter 3.5 km from Bugue, France, and were associated with
Mousterian tools and a cold-climate fauna. The site dates to approximately 40 KaBP (Heim,
1968; Puech, 1981) and the skeletal material could have possibly been intentially buried
(Peyrony, 1934 in Schwartz and Tattersall, 2002).
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LaFerrassie lisapartia skeleton of an adult male (+/- 45 years old) and La Ferrassie 2 isan
adult female (25-30 years old) (Heim, 1968). La Ferassie 1 is the best preserved but the femora
were too incomplete to be included in the sample. The ulha and radius from both the left and the
right side were included. For La Ferrassie 2 the femora, and radius and ulna from the right side

areincluded in the sample.

Le Moustier

The site of Le Moustier comes from the village of Le Moustier, France, which islocated about
10 km from Les Eyzies de Tayac. The hominin remains were discovered by O. Hauser in 1908
who later sold them to the Museum fir Vor- und Frilhgeschichte in Berlin. The rock shelter
contained artefacts of the Mousterian tradition and is dated to 40.3 +/-2.6 KaBP using TL dating
on burnt flint (Bordes, 1959; Valladas et al., 1986) and ESR dating on associated mammal bones
(Mdlarsand Grun, 1991).

Cut-marks and bone modifications indicate that Le Moustier 1 was killed intentionally by peri-
mortal impacts, the head was decapitated, the mandible forcibly di<articulated and the corpse

(obviously completely dismembered) defleshed. (Ullrich, 2005 p. 304). The adolescent skull is
certain to belong to a Neanderthal. It has alow forehead, double arched browridge, alow vaullt,

lambdoidal flattening, a suprainiac depression and an occipital bun.

During WWII most of Le Moustier 1 was destroyed and only the skull and some of the
postcrania elements remain (Day, 1986; Schwartz and Tattersall, 2002). Due to awartime fire
the original fossils are heavily distorted. Reliable measurements can only be taken on casts made
from the originals (Thompson and Nelson, 2000). Only a plaster cast of the reconstruction of the
left femur, right ulna and right radius are compl ete enough to be included in the sample.
Thomson and Nelson (2005) remarked on the exaggerated length of the cast of the radius and the
reconstruction of both extremities. They describe the radial shaft as strongly laterally curved and
having amedially oriented radial tuberosity. The original radius was missing most of the
epiphyses but they have been reconstructed on the cast. The ulnais mostly preserved. The
trochlear notch faces anteriorly. There isno clear radia notch on the cast. The femur is partly
reconstructed. The lesser trochanter, greater trochanter, 1/3 of the femoral head and most of the
distal epiphyses are reconstructed.

40



Neanderthal (also Feldhofer)

The Feldhofer Neanderthal is the type specimens for Homo neanderthalensis and was found in
1856 by workmen from a quarry in the Neanderthal Valley, about 11 km east of Diisseldorf,
Germany. Neither artifacts nor mammalian bones were recovered from the site, athough re-
excavation of the old mining deposits since 1998 (Schmitz et al., 2002; Schmitz, 2006) revealed
stonetools and faunal remains along with more Neanderthal remains (Day, 1986; Schmitz et al.,
2002). There are now threeindividuals represented from the site. On the basis of mMtDNA
analysis of the original Feldhofer remains Krings and colleagues (1997) demonstrated that the
Neanderthal genome was different from that of modern humans. Further mtDNA analyses of the
more recently discovered Feldhofer remains yield sequences similar to those of other
Neanderthals and are different from those of modern humans (Schmitz, 2006). Carbon-14
dating of the newly discovered remains indicates an age of approximately 40 Ka BP.

The Feldhofer 1 skull has a clear Neanderthal anatomy, and suture fusion suggests an age of
approximately 50 years at death (Day, 1986; Schwartz and Tattersall, 2002). The postcranium
includes two femora, two ulnae and the right radius. Although thereis evidence of dlight
deformation on the femora and the radius, the left ulnais too pathological to beincluded in the
study. The long bones are thick and show pronounced muscular attachments. The humeri are
straight but theradiusis curved and has alarge radial tuberosity. The fracture related pathology
on the left elbow would have limited the movement of the joint. The femur is cylindrical and
shows signs of athird trochanter (Heim, 1981, 1982, 1983).

LaQuinaH5

The site of La Quina, 25 km south of Angouleme, France, was found in 1872, but it was not until
1908 that Henri-Martin discovered the first hominid remains (Martin, 1921). A total of 27
individuals are preserved; however, only one individual, H5, isincluded here (left ulnaand
radius). H5 isa partial adult skeleton that was found associated with Mousterian of the La Quina
tradition (Debénath et al., 1998). Although the hominin remains come from different layers, H5
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comes from the earlier levels belonging to OIS 4 and dating to approximately 65 Ka BP
(Mdllars, 1996). A more recent date of 40-42 Ka BP based on chronometric data has also been
reported (Zilhao, 2006).

Shanidar

In 1951 R. Solecki discovered the site of Shanidar in the Zagros Mountainsin Iraq,
approximately 400 km north of Baghdad. The remains of at least nine partial skeletons were
found in alarge cave (Solecki, 1957, 1961, 1975). Although modern human burials were
discovered in the upper layers of the site, the Shanidar Neanderthals were found in asingle layer
associated with Mousterian tools, hearths and local fauna (Solecki, 1957, 1961). The Mousterian
Neanderthal layer was *C dated to approximately 50.6 Ka BP (Bar-Y osef, 1989).

Six adults, one young adult and two infants were found at the site and were described by Stewart
(Stewart, 1962, 1963, 1977) and Trinkaus (Trinkaus, 1978, 19823, 1982c, 1982b, 1983b). The
skulls show along low cranial vault, alarge supraorbital torus, mid-facial prognathism, a
transverse occipita torus and a rounded vault in occipital view. The mandible lacks a chin and
the anterior teeth are heavily worn. Because of these features, their classification as Neanderthals
has never been questioned (Solecki and Solecki, 1974; Solecki, 1975; Stewart, 1977; Trinkaus,
1978; Trinkaus and Zimmerman, 1979; Stringer and Trinkaus, 1980; Trinkaus, 1982a, 1982c,
1982b; Trinkaus and Zimmerman, 1982; Ivanhoe and Trinkaus, 1983; Trinkaus, 1983a).

The post-crania from the site show a high degree of robusticity and display signs of powerful
musculature. The sample used here includes the left ulna and radius of Shanidar 1, the right ulna
of Shanidar 5, and the left radius of Shanidar 6. Because of the current relocation of the material

from the Baghdad Museum, casts of this material were measured at the Smithsonian Institution.

La Chapelle-aux-Saints

This partial Neanderthal skeleton was discovered in 1908 by A. and J. Bouyssonieand L.
Bardon near the village of La Chapelle-aux-Saints, 40 km from Brive, France. It was found
buried in acave (Bardon et al., 1908 in Schwartz and Tattersall, 2002) and associated with an
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advanced Mousterian industry and mammals representative of atemperate climate (Boule,
1908). The layer from which the specimen came has an absol ute date of 47-56 Ka BP using ESR
dating on mammal teeth (Griin and Stringer, 1991).

The skeleton isfairly complete and belonged to an aged adult male. The specimen has typical
Neanderthal features such as an occipital bun, supra-iniac fossa, small mastoid processes and
mid-facial projection (Boule, 1908; Trinkaus, 1985). The right side of the postcranial skeleton is
well preserved, and the right femur, ulna and radius are included in the sample. There are signs
of degenerative joint disease in the skeleton consistent with itsinferred old age (Trinkaus, 1985).
In general, the long bones are short and thick with strong muscle markings and short distal limb
segments compared to its proximal limb segments. The humeri are straight but the femur and
radius are bowed (Trinkaus, 1985).

Kebara

The Mugharet el-Kebarais approximately 13 km south of Wadi el-Mughara on the western slope
of Mount Carmel in Isragl. The excavation of the site began in 1927. During the early stages of
the excavation the fragmentary remains of an infant were discovered (Kebara 1). In 1983, an
adult Neanderthal burial was recovered (Kebara 2 — commonly referred to as ssimply Kebara)
(Goldberg and Bar-Y osef, 1998).

Although the skull and most of the lower limbs are missing the skeleton iswell preserved. The
skeleton is estimated to be that of a 25-35 year old male individual. The pelvis indicates that
Neanderthal pelves are fundamentally different from modern human ones, even when compared
to modern humans from the same time period. They have along superior pubic ramus which
probably stems from a more externally rotated innominate bone and may be attributed to
differences in locomotion and posture related biomechanics (Rak and Arensburg, 1987; Rak,
1990). The layer from which the adult burial originates dates to approximately 60-48 Ka BP
(Goldberg and Bar-Y osef, 1998). The occupation layer also contained Mousterian tool
technology (Bar-Y osef et al., 1986).

The radius and ulna from both sides are included in the sample. The partially preserved femur

lacksits distal epiphysesand istoo fragmentary to be used.



L e Régourdou

In 1957, R. Constant discovered a collapsed limestone cave 2 km north of Montignac, France,
containing Mousterian tools, and the remains of two individuals: one partial skeleton of ayoung
adult (Régourdou 1) and some pedal elements (Régourdou 2) (Piveteau, 1959). The site was re-
excavated by Bonifay from 1957 onwards and based on the sedimentology, faunaand Middle
Pal aealithic technology he assigned the specimen to OIS 4 (roughly 65Ka BP) (Bonifay and
Vandermeersch, 1962; Bonifay, 1964).

Theindividual is probably a young adult in its mid-twenties. It is not possible to determine its
sex as the cranium and the pelvis are poorly preserved. The right ulna and radius are complete
enough to include in the sample. The cranial morphology shows a clear Neanderthal affinity as
does the morphology of the postcranial skeleton (Piveteau, 1959; Vandermeersch and Trinkaus,
1995).



3.1.1.2. Early modern humans

The sample represents early anatomically modern humans from Europe and western Asia (Table
3-2). A short description and some key references for each site isincluded below in

chronological order from most recent to ol dest.

Table 3-2 Summary of Early M odern Human sample, by region.

complete specimens

Adult Femur Ulna Radius
Europe
Abri Pataud ° X X
Chancelade” X X
Combe Capelle b X X X
Western Asia
Sungir © X X X
Paviov ° X
Dolni Vestonice 13 ¢ X X X
Dolni Vestonice 14 ¢ X X
Dolni Vestonice 15 ¢ X* X* X*
Dolni Vestonice 16 ¢ X X X
Levant
Ein Gev © X X
Ein Gev Nahal X
Ohao Il € X X X
Qafzeh 9 € X X X
Skhul 1V X X
N 9 10 10
Adult cast Femur Ulna Radius
Europe
St. Germain 9 X X X
Western Asia
Kostienki 14 " X X X
N 2 2 2

2 Musee de I’'Homme, ° Musee du Perigeux, ¢ Laboratory for reconstruction,
Moscow ¢ Dolni Vestonice, € Tel Aviv University, "Harvard Peabody Museum,
Boston, USA, 9 Musée National du Prehistoire, ! Kunstcamera St Petersburg

* pathol ogi cal
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Ein Gev

The site of Ein Gev is 1 km east of the Sea of Galilee in northern Israel. The site was excavated
originally by Stekelis and Bar Y osef in 1965. The archaeology at the site is Epipal aeolithic
Kebaran, and **C dating on charred bone indicates an age of 15700 BP +/-415 (; Davis, 1974).

The human remains at the site come from a burial and probably belonged to an adult female (30-
40 years old) (Stekelis and Bar-Y osef, 1965). The bones were quite fragmentary at the time of
discovery, but most parts could be restored. Despite the restoration it was only possible to
include the ulnain the analyses (Arensburg and Bar-Y osef, 1973).

Chancelade

In 1888 M. Hardy discovered a Magdalenian skeleton at the site of Raymunden in the village
Chancelade, near Périgeux, France (Sollas, 1927; Billy, 1969). The deposits are believed to be a
burial and the skeleton is reported to have been covered with ochre. The aimost complete
skeleton isthat of a 40-46 year old man who was approximately 1.6m tall. The cranium was
once mistakenly believed to be that of an Eskimo and the Eskimo-like features were interpreted
in light of the cold environment during the “Magdalenian Age” (Testut, 1925 in Keith, 1925;
Sollas, 1927). The skull is clearly that of a modern human and is associated with an
archaeological deposit of Magdalenian 111 or IV, dating most probably between 17-12 Ka BP
(Ruff and Walker, 1993; Trinkaus et al., 1999a). The associated fauna are indicative of cold
conditions but an absolute date for the site has not yet been established.

The postcranial remains were described by Billy (1969). Subsequent publications by other
authors have demonstrated some of the highest values for robusticity found in any early modern
human (e.g. Ruff and Walker, 1993; Trinkaus et al., 1999a). The left femur was poorly
reconstructed and extremely fragile but the right femur isincluded in the sample as well asthe
right ulna, although there was some reconstruction of the femoral head and distal condyles but

none of the landmarks were affected.
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Saint-Germain-la-Riviere

The site of Saint-Germain-la-Riviére, France, is an early Magdalenien rock shelter and dated to
between 17-14 Ka BP using “C dating (Costamagno, 2002; Drucker and Henry-Gambier, 2005).
It was excavated on and off between 1929 and 1996. A complete adult human skeleton of was
discovered in 1934 (Blanchard, 1935; Vaufrey, 1935). The skeleton was discovered in aburia
structure made out of rocks and was adorned with marine shells and teeth of red deer and
reindeer. The skeleton is believed to be that of ayoung adult female (Vaufrey, 1935; Henry-
Gambier et al., 2002). Carbon and nitrogen isotope ratios in the bone collagen of the young
woman indicate that the main source of protein was large herbivores. She did not consume
significant amount of fish and her subsistence pattern reflects aless opportunistic diet that

generally attributed to humans from the early Magdalenian (Drucker and Henry-Gambier, 2005).

Theoriginal fossils were not available for study, so acast was measured. The left ulna, right
radius and right femur were included in the sample. The patella of the right femur is fused to

condyles but did not affect the landmark collection.

Ein Gev Nahal

Nahal Ein Gev is an Upper Palaeolithic burial of an amost complete skeleton in the north of
Israel. The associated archaeology is Levantine Aurignacian, which places the individual in the
Upper Palaeolithic rather than Epi-Palaealithic. Direct dating of the remains has not been
successful but sites with similar deposits, such as Ohalo 11, have been dated to 19Ka BP
(Arensburg, 1977).

The skeleton is believed to be that of a 30-35 year old female. She had gracile cranial features
and short stature (approx. 157 cm). The skull is different from other Upper Palaeolithic craniain
its size and shape. Morphologically, it is most similar to Cro-Magnon Il and Predmosti IV,
which has been suggested to be an indication of common ancestry (Arensburg, 1977; Belfer-
Cohen et al., 2004). The remains are badly damaged and most of the long bone epiphyses were
crushed. Because of this extensive damage, only the right radius was sufficiently reconstructed

to beincluded in the sample.
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Abri Pataud 6

Therock shelter of Abri Pataud was found in the town of Les Eyzies de Tayac in 1958 by H.
Movius (Movius, 1966, 1975). Thirteen individuals were recovered, however, most of these are
incomplete. The best preserved specimens are afemale cranium, Pataud 1, and an adult skeleton,
Pataud 6. The most recent estimated date for the site is between 20-30 Ka BP (Movius, 1966,
1975; Méellars et al., 1987; Pettitt et al., 2003). The human remains most probably come from the
upper levels of the site and, if thisis correct, would date to approximately 22 KaBP (Méellars et
al., 1987; Pettitt et al., 2003).

The remains were associated with a Proto-Magdel enian industry (Movius, 1966). In the current
study only the left ulna and radius of Pataud 6 were used.

Ohalo 1

Ohalo is an Upper Palaealithic site in the Levant near the Sea of Galilee that dates to 23,500-
22,500 BP base on radiocarbon dating (Nadel and Hershkovitz, 1991). Excavations revealed
brush huts, hearths and a human grave. Ohallo || H2 is arelatively complete adult male skeleton
estimated to have been between 35 and 40 years at death. The left radius and ulna were damaged
and only the right side isincluded in the sample (Hershkovitz et al., 1995).

Sungir (also Sounghir)

The Sungir site has been excavated since 1957 and is located approximately 200 km northeast of
Moscow. It has yielded both a single and a double burial. The single burial isthat of an adult
male (Sungir 1). The double buria isthat of an adolescent male and female (Sungir 2 and Sungir
3, respectively). All three burias burials were in extended, supine position. Sungir 2 and 3 were
lying head to head and were covered in red ochre.

The burias have been directly dated using radiocarbon dating. Sungir 1is 22.5-23.4 Kaold,

whereas the Sungir 2 and 3 double buria is 23.5-24.5 Ka old and thus dightly older than Sungir
1 (Pettitt and Bader, 2000; Ovchinnikov and Goodwin, 2003 but see Kuzmin et al., 2004). The
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Sungir 3 girl has a pathology that is remarkably similar to the observed chondrodysplasia
calcificans punctata of Dolni Vestonice 15 (personal observation , Trinkaus et al., 2001). The
pathology presentsitself with severe skeletal deformaties of the long bones. The right femur,

ulnaand radius of Sungir 1, the adult male, isincluded in the sample.

Pavlov |

The site of Pavlov, containing two skeletons (Paviov | and Pavlov 1), islocated close to Dolni
V estonice and approximately 35 km South of Brno, Czech Republic. The site was found and
excavated in 1952 by B. Klima. The tool industry at the siteis known as Eastern Gravettian
(Vlcek, 19614, 1961b, 1991; Svoboda, 1994; Adovasio et al., 1996).

The Palov | skeleton is an adult, most likely male, and includes a partia cranium, maxilla,
mandible, isolated teeth and a partial skeleton. The buria datesto 27 -25 Ka BP based on
radiocarbon dating (Klima, 1987). The remains are believed to be those of an early modern
human. Because it isafairly robust skeleton and cranial features, such as overall robusticity and
a swollen sub-lambdoidal areareminiscent of an occipital bun, the Pavlov skeleton has been
suggested to be alink between archaic Europeans (Neanderthal s) and modern humans (Smith et
al., 1982; Wolpoff, 1996). Only the right radius of Pavlov | was sufficiently well preserved to be

included in the sample.

Dolni Vestonice (also Dolni Véstonice)

Dolni Vestonice is acomplex of sitesin and around the village of Dolni Vestonice, 35 km South
of Brno in the Czech Replublic. The sites were discovered by Absolon in 1925 and later
excavated by Klimafrom 1949-1987. There are 16 individuals represented at the cluster of
settlements and they probably all date to approximately 26.5 Ka BP (Svoboda and Vicek, 1991,
Formicola et al., 2001).

There are two areas at the site: one containing most of the occupational information and one with

the human remains. The associated industry is Gravettian, which is accompanied by engraved

bone tools and clay figurines. Most of the human remains are burials. The “triple burial” of
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individuals X111, X1V and XV is that of three young, possibly genetically related, adults who
were buried together with grave goods. The central skeleton, which is probably afemale, has
pathol ogies causing severe bone deformation of the femora and forearm (chondrodysplasia
calcificans punctata, Trinkaus et al., 2001). The other individuals are males (Klima, 1987; Bahn,
1988; Alt et al., 1997; Trinkaus et al., 2000; Formicola et al., 2001). Although the human
remains are considered to be modern humans and are relatively gracile, some authors have
suggested that they retain primitive and Neanderthal -like features and are indicative of
continuity in the region (Smith et al., 1982)

All three individuals from the triple burial are relatively well preserved and have at least one
well preserved femur, ulnaand radius. Because of its severe pathology, Dolni Vestonice XV was
excluded from the analyses. The left femur, ulna and radius of Dolni Vestonice XV, both
femora, ulnae and radii of Dolni Vestonice XI11, and both femora and ulnae and the left radius of
Dolni Vestonice XIV were included in the sample. The separate femoral head of Dolni
Vestonice X1V was held in place during data collection.

Combe Capelle

Therock shelter of Combe Capelle, 20 km Southeast of Bergerac, France, was discovered in
1909. It has yielded a partia hominin skeleton dated to approximately 28-25 Ka years (Valladas
et al., 2003). The skeleton was associated with Gravettian tools and its morphological affinities
are clearly modern (Lenoir and Dibble, 1995).

The skeleton was lost during the same fire that destroyed the Le Moustier adolescent
Neanderthal remains, but in 2002 the skull was rediscovered in the museum. Regretfully, the
postcrania skeleton is still missing (Hoffmann and Wegner, 2002). However, there are well
preserved original plaster casts of the left and right femora and ulnae that were included in these
analyses. There are minor areas of the original bone that are damaged, such as some abrasion of
the distal femoral condyles and the lack of the styloid process, but this should not seriously

affect the results. The right radius was also complete enough to be included.

50



Kostenki 14 (also Markina Gora)

The site of Kostenki (Markina Gora) isin the Voronezh region in Russia. The siteis part of a
complex of sitesthat provides an important stratigraphic sequence for the region between the
Carpathian and Ural Mountains (Sinitsyn and Hoffecker, 2006). It has yielded a number of
skeletal remains: a’5-6 year old child (Kostenki 15), an elderly man (Kostenki 2), a 9-10 year old
child (Kostenki 12) and awell preserved skeleton of ayoung adult male (Kostenki 14). K ostenki
14 was discovered in a grave and covered with yellow and red ochre (Jelinek et al., 1969).

The skeleton came from the lowermost cultural layers at Markina Gora and is radiocarbon dated
to at least 36-37 Ka BP (Sinitsyn, 2003). It is ayoung male that was probably around 160 cm
tall. The supraorbital torusis modern-human-like. Jelinek (1969) also describes Kostenki 14 as

being similar to the remains from Grimaldi and Cro-Magnon.

Although the remains are not currently available for research because a monographisin
preparation, the curator at the Kunstkamera in Saint-Petersburg, Russia, allowed the inclusion of
the casts in the analyses. The right femur and ulna and the left radius are sufficiently preserved
to be analysed.

Qafzeh (also Jebel Qafzeh)

The site of Qafzeh in Israel was discovered in 1933 by R. Neuville (Vandermeersch, 1981). The
siteis 2.5 km south of Nazareth and islocated on Mount Carmel. Up to 12 individuals have been
discovered in the cave. The tool industry is Levall oiso-M ousterian with some backed knives and
burins of Upper Palaeolithic character (Vandermeersch, 1981). There is athermoluminescence
date of 100 KaBP +/- 10 Ka (Griin and Stringer, 1991).

The human remains belong to eight adults (Qafzeh 1,2,3,5,6,7,8,9), three infants (Qafzeh 4, 44,
10) and one ten-year old child (Qafzeh 11). A detailed description of the human remains can be
found in Vandermeersch (1981). In general, the postcranial features are modern and do not show
distinct Neanderthal or other archaic features (Vandermeersch, 1981). Trinkaus suggests,
however, that both Qafzeh and Skhul (see below) have a mosaic of features and argues that
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morphological and archaeological evidence can best be explained by continuity between archaic

and modern humans (Trinkaus, 1981).

The postcranial remains of Qafzeh 9, an adult male, were complete enough for the right femur

and ulna, and left radius to be included in the analyses.

Skhul (also es-Skhul)

At least 10 individuals were found at the site of Mugharet es-Skhul (usualy referred to in the
literature as “ Skhul”) on Mount Carmel, in southeastern Israel. The site was discovered in 1929
during an excavation directed by D. A. E. Garrod (Garrod and Bate, 1937). Most of the bones
were associated and showed little disturbance, indicating that they were probably buried
intentionally (Garrod and Bate, 1937)

The remains are associated with the Levalloiso-Mousterian and the faunais similar to that at the
adjacent site of Tabun. Mean ESR age estimates place the site between 81 and 101 Ka BP (Grin
and Stringer, 1991) and TL dating datesthe site to an average of 119 KaBP (Valadas et al.,
1998).

At the site, seven adults and three juvenile individuals are represented. Most of these are partial
skeletons and are considered to be anatomically modern. The skeletons are long and slender
compared to Neanderthals. There are some primitive features present, though, such as the stout
foot and finger bones and well-developed thumbs (Vandermeersch, 1981; Trinkaus, 1993;
Niewoehner, 2001). One theory attributes the apparent persistence of these to inbreeding
between early moderns moving into the region from Africa, and Neanderthals coming in from
Europe (Kramer et al., 2001). Alternative views see the Skhul and Qafzeh people as members of
an early modern population that evolved in the Levant (Vandermeersch, 1981; Rightmire, 1998).

The radius and ulna of Skhul 1V are included in the sample.
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3.1.2. Maodern populations

The modern human comparative sample was chosen specifically to test hypotheses of factors
that explain long bone curvature (see Chapter 2 for details). The sample consists of adult femora,
ulnae and radii. All theindividualsin this sample are skeletally adult based on closure of the
epiphyses and pathological individuals were excluded. For 93 individuals the age at death was
known. Sex of the individuals was recorded from the museum catalogues or, if pelvis and
cranium were available, sex was determined by observation. Individual s where sex
determination was impossible and where the museum had no information were labelled as

unknown.

Therdatively small number of individuals per population is due to the availability of postcranial
material in museum collections. In order to capture the range of variation in modern humans
throughout the world, some small samples were included as part of groups created for further
analyses (See section 3.2 in this Chapter). Where possible the femur, ulna and radius from the
same side of the skeleton were included in the sample. When this was not possible bones from
opposite sides of the skeleton were included. Table 3-3 below reflects the total number of
individuals represented in the sampl e rather than the number of bones. Sample numbers of

particular bones are specified in the results chapters.
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Table 3-3 Summary of recent modern human sample, alphabetically.

Population N Collection L ocation
African-American 12 African-Americans Terry Smithsonian,
Collection Washington
Alaskan Aleut 15 Aleutian Islands Collection Peabody, Harvard
Andaman Islands 17 College of Surgeons Collection NHM, London
Arizona Native 20 Canyon del Muertos NHM, New Y ork
Australian 13 College of Surgeons Collection NHM, London
Aboriginals
Belgian Medieval 29 Spy and Gutschoven RBINS, Brussels
Belgian Neodlithic 72 Furfooz, Maurenne, Hastiére, RBINS, Brussels
Dinant
British Neolithic 2 Coldrum NHM, London
Chinese 9 Chinese Cemetary, Karluk Quad Smithsonian,
Alaska Washington
Colorado Native 4 Montezuma County, Colorado Peabody, Harvard
Czech Medieva 39 Moravian Empire Collection NHM, Prague
Danish Medieval 15 Sankt Bendtskirke, Ringsted University, Copenhagen
Danish Neolithic 49 Korshoj Adby, Guldhoj, Borreby University Copenhagen
Egyptian 5 Egyptian Dynasty NHM, Paris
English Medieval 21 Scarborough NHM, London
English Urban 21 Spitalfields 18th-19thC NHM, London
French Medievd 16 Villebourg, St. Gabriel NHM, Paris
French Neolithic 24 Vadéedu Petit Morin NHM, Paris
Greenland Inuit 31 Tuqutut, lutalik, Uunartoq, llorsuit  University, Copenhagen
Khoi or KhoiKhoi 10 Oxford Collection NHM, London
Kazach 7 Southern Volga Region St. Petersburg
Lapland 17 Russian Saami Moscow State Univ.
Natufian 16 Mallaha University, Td Aviv
New Mexico 9 Aztec Ruins NHM, New Y ork
Ohio Native 18 Madissonville, Ohio Peabody, Harvard
Peruvian 13 Ancon (Lima) NHM, Paris
Point Hope Alaska 15 Alaskan Inuit NHM, New Y ork
Pygmy 4 Lituri Central Africa RBINS, Brussels
Russian Eskimo 15 Siberian Peninsula, Ekveni Moscow State
University
Russian Mesalithic 22 Vasilievski St.-Petersburg
Siberia 16 Sibstey, Salehard Siberia Moscow State
University
South Dakota 13 Campbell County, Ohae Reservoir ~ Smithsonian,
Native Washington
Tasmanian 2 Tasmania NHM, London, Brussels
Tierradel Fuego 2 Tierrade Fuego, Argentina NHM, Vienna
TOTAL 593 individuals

NHM = Natural History Museum; RBINS= Royal Belgian Institute of Natural Sciences



African-American

The African-American sampleis from the Terry collection. It was collected by Robert J. Terry
(1871-1966) from alocal St. Louis hospital and institutional morgues. The material in the
collection consists primarily of urban living individuals whose bodies became property of the
state when they were not claimed, or whose relatives signed over the bodies to the state. The
Terry collection consists of 1728 individuals of known age, sex, ethnic origin, cause of death and

pathological conditions and twelve individual s were randomly sampled.

Alaskan Aleut and Point Hope Alaskan

The Alaskan Aleut and the Point Hope Alaskan are archaeological samples. The Alaskan Aleut
are members of the Inupiak, a subdivision of the Inuit. They traditionaly lived in groups of 20-
200 in the northern arctic region and relied mainly on large sea mammal hunting for subsistence.
They hunted these animals with stone, bone, ivory and wooden tools such as harpoons, arrows
and knives. Their diet isalmost entirely carnivorous, as there is very little plant material
available in the area. Some popul ations have been found to eat sea weeds and grasses or the
stomach contents of the animals hunted (Burch and Burch Jr., 2006).

Andaman Islands

The Andaman Islands are located in the Indian Territorial part of the Bay of Bengal. The
Andamanese are hunter-gatherers, who rely on eating indigenous mammals, plants and fish

acquired with stone, bone, wooden tools and nets (Radcliffe-Brown, 1948).

Arizona Native Americans

The Native Amerindians from Arizona come from a site called Canyon del Muertos, Tempe. The
Los Muertos site was occupied by the Hohokom cultures and dates to approximately 500AD —
1500AD (Haury, 1945). Analysis of the palaeo-environment of central Arizona suggests that as
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early as 750 AD the climate was arid and the irrigation canals dating back to 1150AD indicate
that horticulture farming may have been practiced at the site (Haury, 1945).

Australian Aboriginals

The Australian Aboriginal remains are curated at the Natural History Museum in London. The
individuals come from avariety of placesin Australiaand are pre- and post-contact. Although
the individuals may have had different cultural backgrounds, most tribes were terrestria foragers
and will be treated in the analyses as such. They used spears and throwing sticks to acquire their
foods and lived in semi-nomadic villages (Jupp, 2001).

Belgian M edieval

The Belgian Medieval sampleis curated at the Royal Belgian Institute of Natural Sciencesin
Brussels. The sample comes from two very small rural villages in Belgium: Spy Bastin (13" C
AD) and Gutschoven (Carolingian Empire 751-986 AD). They were al farmers or craftsmen
(persona communication, Semal).

Belgian Neolithic

The Belgian Neolithic sampleis curated at the Royal Belgian Institute of Natural Sciencesin
Brussels. The Belgian Neolithic sample comprises individuals from the Middle and Late
Neolithic period (+/- 5000 BP to +/- 2900 BP cal. in the Seine-Oise-Marne district). The
specimens come from four different sites with Dinant being the oldest (4230-4040 BP) and
Furfooz being the youngest (3300-2930 BF) (Cauwe et al., 2001). Although the sample comes
from gravesin rock shelters or in the open air and from settlements organised around flint mines,
itisbelieved that all the individuals had similar agricultural lifestyles (Toussaint et al., 2001).
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British Nealithic

The British Neolithic sample was extremely fragmentary. The sample was collected from a mass
gravein Coldrum, Kent, and its fragmentary nature is due to the removal and reburia of the
remains during ceremonies. The sample skeletal morphology suggests that during this period in
England there was a shift to agriculture from mixed foraging but precise information on this
population is not available (Clinch, 1904; Wysocki and Whittle, 2000). The sample dates back to
approximately 3900-4000 BC (Whittle et al., 2007).

Chinese

This 20™ century Chinese sample was curated at the Smithsonian Institution, Washington D. C..
The remains were collected from the Kurlak Cemetery in Alaska and consists only of males.
This Chinese cemetery was used to bury the remains of the Chinese labourers that worked at a
local fish cannery. These Chinese are assumed to be short-term immigrants there as thereis no
sign of females or children in the cemetery. Most of the settlers came from Cantonese Southern
China (Hdrlicka, 1944).

Colorado Native

This sample was curated at the Peabody Museum, Harvard University, Boston. The Native
Amerindians from Colorado come from a site approximately 15km from Cortez in Montezuma
County, south-western Colorado. Although ethnic affiliation was not certain, most of the county
was inhabited by the Anasazi and the site dates back to Basketmaker 111 (600-700AD). They
were mainly terestrial hunter-gatherers (Crum, 1996). Due to poor preservation few individuals

from this population could be included in the sample.

Czech Medieval

The sample of Czech Medieval is curated at the Natural History Museum in Prague. The
individuals come from the time of the Great Moravian Empire (9" C AD - end 10" C. AD)
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(Dekan, 1981) and are believed to come from a farming population that lived on the lands

surrounding one of the burghs (personal communication, P. Veliminsk, curator).

Danish Medieval

This sample comes from a cemetery in Denmark (Sankt Bendts Kirke in Ringsted) and is curated
at the Medical University of Copenhagen. The material was excavated in 2000 and dates back to
1080 AD — early 1100s AD. At the time, farming was the main source of subsistence, although it
was frequently supplemented by the consumption of fish. The materia has not been published
(but see Panum Baastrup, 2002).

Danish Neolithic

The Danish Neolithic (approximately 3000 BC) sample isacollection from different sites
throughout Denmark. The remains included in this project are from Korshoj Adby, Uggerslev,
Guldhoj and Borreby Island. The individuals lived in small settlements. Although fish was most
important during the Mesolithic, thereis evidence for a dietary shift, and the Neolithic diet
consisted mainly of terrestrial food which was hunted, farmed and bred (cattle) (Pia Bennike,
personal communication; Broste et al., 1956; Tauber, 1981; Richards et al., 2003).

Egyptian

The Egyptian sample date to the Old Kingdom and are curated at the Musée de|’Hommein
Paris. The catalogue indicated that the individuals were low status mummies from the Old
Kingdom (3000 BC). The Old Kingdom Egyptians were intensive agriculturalists growing crops
aong the Nile Valley using irrigation systems (Kamil, 1996).
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English Medieval

The Medieval British sample comes from Scarborough Castle Hill. It isaMedieval lay cemetery
sample dating to the middle to late Medieval period (11"-16™ Centuries AD). The lay
individuals buried at the site practiced farming and some fishing (Little, 1943; Mays, 1997).

English Urban

Thisisasample of late 18" —early 19" century Huguenots from the crypt of Spitalfields church
in London, England (Molleson and Cox, 1993). The individuals included in this sample are all
named adults with known ages at death. Individuals of both sexes and from different ages were

randomly selected. The population was an urban population of craftsmen and merchants.

French Medieval

The sample comes from two sites, Villebourg in Central France and St. Gabriel in the South of
France and is dated to both the Merovingian (511-751) and Carolingian period (751-986 AD).
Both samples are assumed to have been farmers although little is known about them (personal

communication, P. Mennecier, curator). The sample has not been sexed or aged.

French Neolithic

The French Nealithic material comes from multiple burial sitesin the Valée du Petit Morin,
northern France. The area has along agricultural history and these individuals are believed to
have practiced intensive agriculture. The sample was collected during the 19" Century and
relocated after the Second World War from the Musée des Antiquitésin St. Germain des Prés,
France. The collection is substantial, but none of the postcranial bones are individually
catalogued nor is there any information available other than the time-period (persona

communication Mennecier, Bails). Therefore, each boneis considered as a separate individual .
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Greenland | nuit

The Greenland Inuit sample comes from several coastal sitesin Greenland: Tuqutut, lutalik,
Uunartoqg and Ilorsuit. Populations from these sites are al prehistoric and had traditional Inuit
lifestyles, relying mainly on fish and sea mammals for their subsistence (Bennike, 2006 personal
communication). The postcranial remains are not stored individually, and little or no information
is known on age or sex. Each bone is considered a separate individual unless taphonomy and

size made it possible to identify certain sets of bones to belong to asingleindividual.

Hottentot (also Khoi or Khoikhoi)

This sampleis curated at the Natural History Museum in London. The Khoi or Khoikhoi have
been historically referred to as ‘ Hottentots'. They are ahistorical division of the Khoi-San group
from southwestern Africa. The Khoi were pastoralists and practiced animal husbandry of sheep,
goats and cattle. This made it possible for them to live in larger groups than surrounding hunter-
gatherer populations. They grazed their animals on the large open plains until they were forced

into more arid land by the expansion of the Bantu into Southern Africa (Boonzaier et al., 1996).

Kazach

The Kazach sample comes from a prehistoric site in the Southern Volga river region in present-
day Kazachstan. Little is known about the collection other than that the individuals most
probably led atraditional lifestyle of nomadic pastoralism (personal communication, J. Chistov).

Lapland Saami (Also Sami or Lapps)

This sampleisfrom the Kola Peninsula and is believed to be pre-historic (personal
communication, 2007, D. Pezhémsky). The Sami, also referred to as Lapps, are indigenous
people of the North of Europe, and live in an area covering the north of Sweden, Norway,
Finland an the Kola Peninsulain Russia. They were traditionally nomadic and relied on arange

of subsistences: fishing, trapping, sheep and reindeer herding, etc.
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(http://virtua .finland.fi/netcomm/news/showarticle.asp?ZintNWSAI1D=26473 last accessed
18/01/2008). They are agenetically distinct group and were probably the first to inhabit this
northern area shortly after the glacial ice retreated (Ingman and Gyllensten, 2007).

Natufian

The postcranial specimens from the sites of Hayonim and Ein Mallaha are extremely

fragmentary so only a small sample could be collected.

The Natufian is aMesolithic culture that existed in the Levant between 14.5-11.5 Ka BP. They
are thought to have built permanent settlements before the onset of agriculture. Thisisevident at
sites such as Hayonim and Ein Mallaha, where living stuctures form villages were alongside
burial structures. The Natufian were terrestrial hunter-gatherers and harvested wild cereals and
grasses and tended to live close to permanent water sources. This harvesting of wild cerealsis
thought to reflect the onset of agriculture Munro (2004). The Natufian used stone tools that were
predominantly microlith but also made sickle blades, grinding stones and bone tools such as
harpoons and fish-hooks (Bar-Y osef, 1998; Munro, 2004).

New Mexico Native American

The sample of pre-contact Native Americans from New Mexico is a collection of an unidentified
population, but the remains were mistakingly associated with the Aztec Ruins (an Anasazi
village misnamed “Aztec” see http://www.nps.gov/azru/) and have not yet been studied (Lister
and Lister, 1990). The association to the Anasazi and the knowledge that Pueblo aso lived in the

region make it difficult to establish which cultura group these individuals came from. In any

case, there are similaritiesin lifestyles between these groups: most peoples of thisregion lived in
permanent or semi-permanent settlements and were agriculturalists (G. Sawyer, 2005, personal

communication; Lister and Lister, 1990).
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Ohio Native Americans

The sample from Ohio comes from a village and cemetery near Madisonville and was described
in abook by Hooten and Willoughby (1920). The anatomical analysis suggested a close
morphological similarity to the Iroquois but Hooten (1920) concluded that more research on
nearby groups would be necessary in order to assign population affinity. This population most
probably practiced horticulture (Willoughby and Hooten, 1920).

Peruvian

Thisisacollection of ten Peruvian prehistoric mummies from the coastal Ancon region in the
Lima provincein central Peru. The coastal Peruvian populations are believed to have practiced
an intensive agricultural lifestyle (Moseley, 2001). There are two individuals from Chorrillos,
which is south of Limaand also a coastal areawhere asimilar agricultural lifestyle was practiced
(Mosdley, 2001).

Pygmy

Four twentieth-century Pygmy individuals (probably Aka) from Central African Republic are
included in the sample. The term Pygmy as used here is a derogatory term that refersto a short
statured group of populations from central Africa, but no better nameis available to describe
these different tribes of forest living groups. The Pygmy have hunter-gatherer lifestyles and
mainly live in the African rainforest. The modern Aka, compared to some other Pygmy groups,
spend most of their time in the forest and build semi-permanent camps where most of the family
resides. Foraging makes up most of the subsistence of this group, although some meat is
acquired through collective net hunting (Bahuchet, 1990; Hewlett, 1996).

Russian Eskimo

The sample of Siberian Peninsula Eskimo isfrom asitein Ekveni. It is believed that the
individuals lived atraditional life on the northern ice caps and along the coast of the Siberian
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Peninsula, relying mainly on fish and seamammals for their subsistence (D. Pezhemsky, curator,

2007 personal communication).

Russian M esolithic

This Russian Mesolithic sampleis curated isfrom asite in Vasilievsky. Vasilievsky is an island
in the Baltic Seaandisadistrict of Saint Petersburg, Russia. An excavation yielded a Mesolithic
sample of which 15 specimens were digitised. The individuals were unsexed and not sorted per
individual. The indigenous people of the area were hunter-gatherers and may have been
seasonally nomadic (personal communication, J. Chistov). The close proximity to the sea might
have made it possible for the inhabitants to settle in the region year-round and include a

significant amount of fish in their diet.

Siberia

The Siberian sampleis curated at two museums. the Royal Institute for Natural Sciences,
Brussels and the Museum of Anthropology at the State University of Moscow. The Belgium
sample comprises two individuals, which were excavated in Sibestey and were found in close
proximity of each other. The Russian sample comes from Evenki in Northern Transbaikalia,
Siberia, and are dated to 1000BC-1000AD. Modern inhabitants of Evenki still practice a
traditional lifestyle, and there is no reason to believe that this lifestyle was not also characteristic
of the archaeological peoples. Abe (2005) describes small semi-permanent, family group
settlements subsisting on small scale year round mammal hunting. They preferred large game
such as mutton and reindeer but hunted other animals opportunistically for the rest of the year
(Abe, 2005).

South Dakota Native Americans

The South Dakota Native American sample was found on the Oahe Reservation and is from after
1750 AD. They are most likely Arikara, although the sample is not assigned to a specific

population. The post-contact Arikara had some sedentary settlements and were mainly
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eguestrian hunter-gatherers. They were not practicing agriculture or horticulture at these sites
(Owsley and Jantz, 1994).

Tasmanian

Two Tasmanians are included in the sample. One specimen is curated at the Royal Institute for
Natural Sciencesin Brussels, the other, until recently, was curated at the Natural History
Museum in London. The Tasmanians are the extinct aboriginal population of Tasmania, an
island 275 km south of Australia, and were a physically distinct population from the Australian
Aborigines because of the separation of Tasmania from greater Australia between 12000 and
6000 BP (Wunderly, 1938; Henrich, 2004).

They had no clothing or control of fire and the archaeological record shows that they stopped
eating deep sea fish around 4000 years ago but still ate crayfish and shellfish. They were mainly
hunter-gatherers who hunted birds, kangaroo, wallaby and opossum (Wunderly, 1938; Henrich,
2004).

Tierradel Fuego

Tierradel Fuego is an archipelago south of the southernmost tip of mainland Argentina. The
southernmost point of the Islandsis Cape Horn. A right femur, ulnaand radius of asingle
individual that was described as having syphilisin the left side of the body was included along
with an isolated femur belonging to adifferent individual. It is unclear to which of the Feugian
groups this material belongs. However, the relatively small stature of the individua with the
femur, ulna and radius would seem to preclude an Ona affinity while the stature of the isolated

femur is consistent with Ona affinity.

The Fuegians are not a homogenous group but rather three distinct groups, living on different
islands with different languages, different appearances and different cultures. Thefirst group are
the Aliculufs (also Halakwulup or Alacaluf), the second the Y ahgans (also Y agan or Y aganes).
These two groups are the most closely related in appearance. They are stocky and short statured,

wore very little or no clothes, despite the cold weather conditions, lived in canoes and fed off
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mussels, snails, crabs, and fish. The third group is distinctly different. They are the Onaand are
very tall and have been described as “giant Indians’. They used no canoes and were hunter-
gatherers (Gusinde, 1939; Bollen, 2000). The Fuegians were described as being morphologically
close to Neanderthals (Gusinge, 1939; Martin, 1959; Genna, 1930).
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3.2. M ethods

This project employs a comparative approach to assess the patterns of morphological variation in
homininsin relation to aspects of body size, environmental and behavioura variability. The
primary features under consideration here are curvature and apex of curvature of the femur, ulna
and radius. However, the collection and analysis of univariate measurements and other shape
variables were collected and analysed for two purposes: 1) to aid in the interpretation of
curvature as part of the rest of the morphology, and 2) to investigate the overall morphology of
each of these bones for the individuals and groups.

The functional significance of long bone curvature in humansis not well understood, and a
variety of hypotheses have been suggested to explain curvature in modern humans and
Neanderthals (Chapter 2). Each of the hypotheses under consideration will be considered
independently. Data for each individual is combined with environmental, geographic and
behavioural information for the population.

3.2.1. Population data and categories

3.2.11. Timeperiod

The European sample is divided into four categories based on time period of the sample, and is
regardless of activity pattern. These categories are: Mesolithic, Neolithic, Medieval and 18"™-19"

century.

3.2.1.2. Environmenta data

A number of environmental variables were collected for each of the modern human population

samples: latitude, temperature, rainfall, and altitude.

Latitude: Mean latitude of the site at which the remains were discovered. Latitude is a good
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proxy for climate as it shows a strong rel ationship with both mean annual and effective
temperature (Rose and Vinicius, 2008). Absolute latitude is used for investigating the
relationship between climate and skeletal variables.

Temperature: Average annual temperature at the place of origin is used to create a distance
(difference) matrix (datafrom Hijmans et al., 2005) in order to determine if average annual

temperature and curvature are correlated.

Rainfall: A matrix similar to that for annua temperature was created for average annual rainfall
(datafrom Hijmans et al., 2005) in order to determine if there is a correl ation between average

annual rainfall and curvature.

Altitude: Average atitude at the place of origin of the population. A dissimilarity matrix for this
variable is used to test for a relationship between differencesin elevation and curvature of the
femur because high atitude areas are typically hilly or mountainous with complex topography.
Possible caveats are high altitude plains where little elevation differences are found (datafrom
Hijmans et al., 2005. See aso http://www.worldclim.org/).

3.2.1.3. Activity levels and subsistence strategy

Although there is a variety of ways to quantify the activity levelsinvolved in subsistence activity
or habitual behaviour (see Stock, 2002), osteol ogical museum collections are often limited to
making broad cultural generalizations about habitual behaviour. Therefore, the confidence that
can be had in numerical estimates of number of moves a year, distance used over the course of
the year and length of the average movement is very low. Bearing thisin mind, the populations
were first classified into three broad categories related to habitual activity levels.

The“low activity” group are those who lived in urban areas and traded for their food in an urban
setting: mobility levels and activity levels are low. The “ moderate activity” group are individuals
who lived in permanent settlements and relied on intensive agriculture for subsistence: mobility
levels arelow but activity levels are generally high. The “high activity” group are foragers
(hunter-gatherers) but also horticulturalists and pastoralists: mohility levels and activity levels

are high in all of these populations. Pastoralist communities, such as the Saami, have been
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included into the group of hunter-gatherers in some previous studies because their herding
lifestyle involves long seasonal migrations and thus entail s a higher level of mobility than the

more sedentary agricultural populations (Pearson, 2000b).

Within these three broad activity categories, the “high activity” group was divided into five more
narrow subsistence categories: pedestrian, equestrian and aquatic foragers, horticulturalists and
pastoralists. These categories are used to test for differences in curvature associated with specific
habitual subsistence behaviours. It isimportant to consider these generalisations, and bear in

mind that they may not apply to every individual in the population.

3.2.2.  Individua data

In addition to the categorical data for populations, individual data and univariate measurements

were collected for each specimen. Table 3-4 isalist of data collected for each individual .

Table 3-4 Summary of individual data collected during this project.

Category Description

Place of origin Place where the remains were found or collected
Population Popul ation name

Age Absolute age for those known or mean of the

estimated age range

Age category Y oung adult: epiphyseal suturesvisible

Adult: no visible epiphyseal sutures or age-related
pathologies

Old adult: mild signs of old age such as

osteoporosity, arthritis present (severe cases

excluded)
Sex mal e or female or unknown
Side left or right
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3.2.3. Univariate measurements

Standard univariate measurements used in osteometric research were collected using the
landmarks (see Appendix 1-Appendix 7). Most of these were described in Martin and Saller
(1959). The distances or angles were calculated from the 3D coordinates (see below 3.3.4.)
using geometric methods or vector agebra. Some of these measurements may not directly

feature in the analyses because they were used to calculate indices and ratios.

3.24. Boneshape

In order to capture shape of the long bones, geometrical morphometricsis employed here
(Bookstein, 1991; Adams et al., 2004). The relevant analytical approaches have been
developed by a number of authors and are summarised in O'Higgins (2000) and Gunz et al.
(2005).

Geometric morphometrics offer considerable advantages over linear measurements because
results can be visualised as configurations of landmarks in the original space of the
specimens rather than only as secondary plots and diagrams. This study also includes the use
of semi-landmarks, allowing for the incorporation of outline and surface information. Semi-
landmarks make it possible to include point and outline information in asingle analysis and

to consider the curves separately or as part of the whole bone morphology.

The data for each individual are configurations of homologous landmarks and semi-
landmarks. Each configuration is partitioned into its size and its shape. Sizeisrepresented in
the analysis by centroid size, which is the square root of the sum of sguared Euclidean
distances from each landmark to the mean of the landmark coordinates. Shape is represented
by the differencein coordinates of corresponding landmarks between specimens. These
shape coordinates are the curves along the surface of the diaphysis and the epiphyses.
Differences between the configurations can then be used in multivariate analysis
incorporating other environmental and behavioural variables or correlated with centroid size
to explore the relationship between shape and size (Bookstein, 1991; Runestad et al., 1993;
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Bookstein, 1996; O'Higgins and Jones, 1998; O'Higgins, 2000; Delson et al., 2001;
Lockwood €t al., 2002; Adams et al., 2004; Gunz et al., 2004; Marcus et al., 2004; Gunz et
al., 2005).

3.24.1. Equipment and software

For the callection of the landmarks and semi-landmarks a Microscribe 3DX digitiser (Immersion
Corporation), alaptop computer, Microsoft Excel and Microscribe Utility Software v.4.0 (MUS
v. 4.0) were used. The digitiser includes a fine-tipped or ball-tipped stylus attached to a set of
mechanical arms. The tips cannot be used during the same session as they have different lengths.
The digitiser measures with an accuracy of 0.23mm (intra-observer error is discussed below) and

is not sensitive to temperature, humidity, atmospheric pressure, or magnetic field.

Landmarks are discrete points that were recorded individually each time the tip of the stylusis
activated . The initial semi-landmarks were recorded by placing the tip of the stylus on the start
point and recording data continuously (every 5 mm for adult) along the length of the desired

curve using the auto-plot function in the Microscribe Utility Software v.4.0.

Mathematica 5.1 for Windows (Wolfram Research) isa mathematical software program used for
pre-treatment of the semi-landmarks. The methods used to do this are described below (3.2.4.3).
After treatment of the semi-landmarks the landmark configurations were imported into
Morphologika 2 (O'Higgins and Jones, 1998).

3.2.4.2. Dataacquisition and specimen set-up

All bones wereinitially placed on an osteometric board where the 25%, 50% and 80% levels
were taken and marked with small round stickers. The bone was then placed in the upright
position in a support with clamps. Both clamps were covered with rubber material to ensure grip
and minimal damage to the bone. The distal articulation was placed on the lowest clamp,
ensuring the edges of the articular surface could still be accessed with the digitizer. For the ulna
and radius an elastic band was used to keep the bone from moving throughout the digitising
process. The proximal end was positioned so that it rested between the fingers of the upper
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clamp. This secured the bone without obstructing any measurements. The upper clamp was then
closed ensuring that the bone was not damaged but well secure (Figure 3-1). For the femur some
extra points were marked before mounting it into the clamps. These were the most superior point
on the head of the femur and the most inferior point on the distal condyles.

Figure 3-1 Specimen set up for the femur, radius and ulha using clamps and a test tube
stand.

3.24.3. Landmarks and semi-landmarks

Landmark points should be homol ogous across specimens. Geometric homology in
morphometrics is not the same as biological homology (similarity due to common descent). In
its present use homology refers to corresponding discrete geometric structuresin different
individuals, species or throughout developmental stages. Landmarks and semi-landmarks are the

representations of such structures (Gunz et al., 2005).

Landmarks have been categorised by Bookstein (Bookstein, 1991). Type | landmarks are precise
juxtapositions of tissues such as triple points of sutureintersections. Type Il landmarks are
associated with, for example, the maximum of a curvature on local structures with a
biomechanical implication. Type I11 landmarks are extremal points or mathematically
constructed points like the endpoints of length, breadth, and proportional levels on abone (e.g.
80%, 50%, 25%) (Bookstein, 1991). Many structures, like the long bone diaphysis, lack precise
landmark positions. Points on curves, for example, cannot be said to correspond with the same
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points across the sample, except in so far the curve itself isthe same. Semi-landmarks allow for
surfaces and curvesin between typel, |1 or 111 landmarks to be included in the analysis by

representing parts of biological structures that correspond across specimens.

Thirty-seven landmarks and four curves comprised of semi-landmarks were collected on the
femur; twenty-nine landmarks and two curves were collected on the radius; and thirty-six
landmarks and one curve was collected on the ulna. A list of landmarks and landmark diagrams

can be found in the Appendix 1 to Appendix 6.

3.25. Anaytica methods

3.25.1. Sizeadjustment for the linear measurements

Some univariate measurements were size adjusted by the calculation of ratios or indices
(Appendix 1 to Appendix 6) multiplied by 100 to facilitate comparisons. Using indices
eliminates the effect of scale on the measurement, although allometric effects are not estimated.

3.2.5.2.  Procrustes methods

Superimposition methods were used to register landmarks and eliminate variation due to overall
size. Genera Procrustes analysis (GPA; aso referred to as GLS: Generalised Least Squares)
superimposes landmarks using least-squared estimates for rotation and translation. First, the
centroid (sguare root of sum of squared Euclidean distances from each landmark to the mean of
the landmark coordinates) of each landmark configuration was fitted to the origin (1% specimen),

and configurations were scaled to a common unit size (Adams et al ., 2004; Bookstein, 1991).

Thelandmark configurations were then rotated and translated to obtain an optimal or closest fit
between al points of the configuration and the origin (Adams et al., 2004; Bookstein, 1991;
Bookstein, 1996; O'Higgins, 2000). This process was subsequently repeated for al other

configurations in order to compute the mean shape. The sguared root of the sum of the square

72



coordinate differences after superimposition is a measure of the differences in shape between

landmark configurations and is called the procrustes distance (Bookstein, 1996).
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3.25.3. Treatment of semi-landmarks

Before General Procrustes Analysis semi-landmarks must be registered so that they are

homol ogous for comparison between individuals (following Gunz et al., 2005). First, acubic
splineisfitted through the recorded landmarks, and this cubic spineisresampled every 1mm.
Then adesired number of equidistant points are selected along each of the curves. To test if the
number of semi-landmarks impacts repeatability, 10 or 20 semi-landmarks on the femur were
chosen. A small number of semi-landmarks (compared to the infinitely large number of points
on the curve) eases computational demand and is sufficient to describe femoral curvature. An
aternative to equidistant pointsisto slide the desired number of landmarks along the tangents to

the curve, but thisis unnecessary for simple curves (Gunz et al., 2005; Bookstein, 1996).

After this registration procedure the configurations were exported into Morphologika 2
(O'Higgins and Jones, 1998) for further analysis, together with the other landmarks recorded
during data collection.

3.2.5.4. Principal component analysis

Principal component analysis (PCA) employs two or more observations for each individual,
which are then combined to produce uncorrelated indices that explain different dimensionsin the
data with fewer variables than the original observations. These indices (called Principa
Components) are ordered so that the first explains the largest amount of variation and the second
explains the second largest amount of variation, and so on. In geometric morphometrics
Principal Components Analysisis based on relative warps. Relative warps are linear

combinations of partial warps and their scores (Dytham, 1999).

The whole range of “warps’ in geometric morphometrics are derived from thin-plate spine
analysis (Slice, 2005). Thisisthe projection of the points after GPA on a space that is tangent to
Kendall’ s shape space. The shape space is a generalized curved space with more than three
dimensions that can be compared to the surface of the earth and the set of possible shapes for

any given landmark configurations with the same number of landmarks and dimensions
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(Monteiro et al., 2000). Here, the distances between the points between two sets of landmarks
(referred to as the distances between pairs of points) approximate the Procrustes distances. The
first landmark configuration is usualy the reference, the group mean, and the second
configuration isthe target. The differences between single pairs of points are calculated as the
displacements of right angles out of the plane of the reference. Those equations are recombined
to express the totality of differences between the two (Adams et a., 2004; Bookstein, 1991;
Mitteroecker et a., 2005; Slice, 2005).

The graphica representation of landmark configurations makes it easy to visualise shape
differences (Lockwood et ., 2002; Slice, 2005). These differences are computed during PCA
and represent the total shape variability into un-correlated variance-maximising variables (also
called principal components). The percentage variance explained by each of the principal
components is used to determine which components to examine (based on a scree plot of
eigenvalues). These scores (PC scores) can then be used as datain multivariate analyses and
combined with other variables (Adams et d., 2004; Bookstein, 1991; Mitteroecker et al., 2005;
Slice, 2005).

There is another benefit to the use of the 3D morphometric techniques and thisis the possibility
to use only partia landmark configurations in the PCA. Therefore, in order to analyse different
anatomical features separately, subsets of landmarks and semi-landmarks can be selected and
Principal Component Scores can be used to represent a certain trait, rather than the total bone
shape. Visualisations using vector plots of the shape changes along the Principal Components
can then be used to interpret the changes in morphology (Slice, 2005). Subsets of dataused in
the analysis here are described in the results chapters (Chapter 4 and 5).

3.25.5. Intra-observer error

To test the repeatability of the 3D landmarks themselves, data were recorded on three human
skeletons at University College London. Each specimen was measured three times in one
week.The Procrustes distances from GPA superimpositions of the landmark and semi-landmark
configurations were used as a measure of observer error (Lockwood et a., 2002). This value
increases with increasing shape difference between two specimens. Also, when repeat

measurements from the same individual are superimposed using GPA, it is possible to identify
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the landmarks with the greatest error. Floating landmarks such as the middle of a surface or the

individual curves were expected to vary most.

Error results for the geometric morphometric analysis varied depending on how many semi-
landmarks were chosen. Using 20 semi-landmarks, error differences between the three repeats
(mean difference 0.017, n=9 comparisons) were nearly as great as variation between different
specimens (mean difference 0.018, n=27 comparisons). Using the 10 semi-landmarks, the mean
difference between specimens was 0.034 for 27 comparisons, and the mean difference between
repeats was 0.015 for nine comparisons. Using 10 semi-landmarks along with fixed landmarks,
the difference between specimens (mean difference 0.045, n=27 comparisons) was greater than
variation between repeats (mean difference 0.017, n=9 comparisons). These positive resultsfor a
introduced number of semi-landmarks imply that the curve itself was sufficiently described by
ten semi-landmarks, and additional landmarks reflected error such as dight horizontal movement
of the hand when recording a curve down the smooth and featurel ess anterior surface of the

femur. For this reason, ten semi-landmarks were used in al analyses.

3.2.5.6. Discriminant function analyses

Using SPSS v.15 discriminant functions were cal culated using the principal component scores
for groups of individuals. This technique maximizes differences between known groups and
makes predictions about individual s for which the group is hot known (Dytham, 1999). In the
analyses, groups were Neanderthals, early modern humans and recent modern humans. Only
principal components that were found to explain a substantial amount of variation (see Chapter
5) are considered for inclusion (Dytham, 1999; Weaver, 2002).

3.25.7. Anaysisof Variance (ANOVA)

ANOVA was used to determine the effect of factors influencing curvature. Post-hoc tests were
performed to identify differences between the samples. The samples were grouped in categories
(see section 3.2.1). Both aHochberg's GT2 (for very different sample sizes, Field, 2000, p. 341)
and a Games-Howell procedure (for small and uneven sampl e sizes where homogeneity of
variance is not assumed for all samples, Field, 2000 p. 341) were used in SPSSv.15.
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3.25.8. Mante test

Mantel tests were used to investigate rel ationships between morphol ogical and environmental
distances between pairs of populations using Passage v1 (Rosenberg, 2001). A distance matrix is
away of describing the difference (dissimilarity) between pairs of populations. A Mantel test
tests the null hypothesisthat distancesin the first matrix are independent of distancesin the
second matrix. The statistic used for the measure of the correlation between the two matricesis
the Pearson correlation coefficient. In order to test the null hypothesis, a randomization
procedure is used which compares the original value of the correlation coefficient to that found

by randomly reallocating the order of the elementsin one of the matrices (Manly, 1997).

For each Mantel test morphological distance matrices of PC scoresfor curvature, apex of
curvature and the whole bone are correlated to the distance matrices of the environmental
factors: temperature, rainfall, atitude. Although a number of authors have used Mahalanobis
distances (Ackermann, 2002; Harvati, 2003a; Harvati, 2003b; Gonzélez-Jos€ et al., 2004;
Harvati and Weaver, 2006) this project uses Procrustes distances only as they are not affected by
uneven sample sizes and do not assume similar covariance structures for all groups (Smith et al.,
2007).

3.25.9. Other univariate analyses

Depending on the hypothesis being tested, a variety of univariate statistical analyses were used,
including Student’ s t-test and Pearson’s correlation analyses. For correlations with ontogenic
age, anon-parametric Kendall’s Tau b was used as not all ages were represented and the age of

some individual s was determined from skeletal markers.

For the ulna and radius the effect of asymmetry was investigated using Student’s t-test. The
sample was collected using the best preserved side of the skeleton. In samples where
preservation is good, this resulted in a 50/50 split. In some cases, however, one of the sides was
unavailable for research. The effect of side wastested using a Pearson’s Chi-Square test on the

recent modern human sample. Despite the results being affected by small sample sizes or
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samples with only one side represented (N<5), in about 50% of casesthetest is highly
significant (p<0.001) indicating that the sampling of left and right was not independent. For this
reason, al analyses on the radius and ulnathat were performed on the pooled sample were
conducted also for the right side only. If the significance values were affected, those results will

a so be reported.
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3.3. Order of analysis for Chapter 4

The purpose of the results in Chapter 4 isto test the series of hypotheses and predictions set out
in Chapter 2. The results will be presented first for the femur and then for the lower arm. The

order and protocol of the analysesin both sectionsis described here.

Although multiple tests are conducted that test for statistical significance, the Bonferroni
correction was not applied. Thisis part of ageneral concern that overuse of the Bonferroni
method may result in overly conservative results (see Moran, 2003; Nakagawa, 2004). Also, in
thiswork most of the tests are performed to address specific predictions and hypotheses, and the
chance of spurious significanceis reduced. For the more exploratory parts of the analysis,
caution is applied when results do not fit any a priori expectation, but at the same time these
results are highlighted given the genera lack of detailed previous work on these skel etal

elements.

3.3.1. Shapedata

Initially, Procrustes coordinates for al individuals were analysed using Principa Components
Analysis to partition the total shape variability into un-correlated variance-maximising variables.
The percentage variance explained by each of the principal components was used to determine
which components to examine, based on where eigenvalues level off on a scree plot. Graphical
representations of landmark configurations are used to visualise shape differences and to match

each principal component to components of curvature or other aspect of shape variation.

3.3.2.  Correlations between shaft shape and univariate measurements.

In order to identify the covariates with curvature and understand curvature as part of the rest of
the anatomy, Pearson’ s correl ations were performed to look for covariates between 1) the
univariate measurements, 2) the univariate measurements and curvature and 3) the univariate

measurements and other aspects of bone shape. These analyses were performed on the whole
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recent human sample and on the high-activity category because expression of skeletal
differences is more pronounced in the latter group. Some predictions were made (see Chapter 2:
Hypotheses and predictions) about the relationship of curvature to these univariate

measurements, but most of these correlations were exploratory.

The following Pearson’s correlations were performed:

- Femora shape with neck-shaft angle, torsion angle, femur length, neck length, shaft
shape ratios (at subtrochanteric, midshaft and subpilastric level), robusticity (distal
condyles, midshaft and head).

- Radius shape with robusticity (head, midshaft and distal articulation), radius length,
neck-shaft angle, position of the radial tubercle, dorsal and lateral subtense, neck length,
head shape and midshaft shape.

- Ulna shape with maximum length, olecranon size, midshaft shape, radial notch size,
trochlear notch orientation, olecranon orientation, coronoid-olecranon ratio, length of the

pronator crest, position of the brachialis insertion and robusticity.

3.3.3. Bodysize

Research on the use of skeletals element in body size estimation has argued for the use of lower
limb bone dimensions to predict body size for modern humans and fossil hominins (see review
in Ruff, 2000a; Auerbach and Ruff, 2004; Ruff et al., 2005). As articular dimensions are
relatively insensitive to variations in the mechanical environment compared to diaphyseal
breadth (which can over- or underestimate body size in populations with different activity
levels), the femoral head diameter has often been used (Ruff, 1991; McHenry, 1992; Grine et al.,
1995) as has bi-iliac breadth (McHenry, 1992; Ruff et al., 1994). Because it was unknown
whether specimens would have the pelvis preserved and less estimation is involved for femoral
head diameter than for bi-iliac breadth, femoral head-diameter is used as an indicator for body

sizeinthis study.

Absolute femoral head diameter was used here to investigate the relationship of body size with
curvature. It is known that robusticity scales with body size (van Der Meulen et al., 1993; Ruff,
2000a; Stock, 2002; Stock and Pfeiffer, 2004), and this pattern was first confirmed for this
sample. Subsequently, the correlation between curvature and body size will be investigated using
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population means for principal components related to curvature. For the lower arm, this part of

the analysisis possible only when femoral head diameter of the individual was known.

3.34. Sex

In order to assess sexua dimorphismin curvature, al individuas of known sex were compared
using a Student’ s t-test for robusticity and curvature, aswell asfor the other bone shape PCs and
the univariate femur measurements. If there is a significant relationship between body size and
curvature, it is expected that sexual dimorphism in curvatureis at least partly related to
differences in body size between males and females. Sex differences may also berelated to
different bone modelling and remodelling rates in males and females or differencesin activity
levels due to sexual division of labour. Similar predictions have been made for robusticity, and
the present sample will therefore be analysed for external robusticity (at midshaft, distal and
proximal condyles) in order to determine whether the sample follows patterns established
previoudly for humans. Because sexual division of labour is more pronounced as general activity
levelsincrease, the tests are repeated for the “high activity” category (foragers, horticulturalists
and pastoralists), “moderate activity” (intensive agriculturalists) and “low activity” (urban

trader) category samples separately.

3.35. Age

In order to investigate whether curvature decreases with decreasing activity levels through
adulthood, a Spearman’ s rank correlation was performed on individuals of known age or
estimated age. Spearman’ s rank correlations were also used to investigate the effect of increasing
age on other aspects of shaft and epiphyseal shape and other univariate measurementsto see if
they aid the interpretation of trends observed in curvature. Because age is not known or
estimated for the mgjority of the sample, age categories (See section 3.2.2 for details) were used
to test the predicted relationship for the sample as a whole.
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3.3.6. Activity patterns

The purpose of these analysesis to investigate if curvature is higher in populations with high
activity levels. The samples were divided into three main categories based as described in
section 3.2.1.3. For each of these analyses, the high activity category was divided into five
subsistence categories to investigate if there are differences between specific foraging strategies
in curvature of the lower arm and the femur. Other shaft shape variables and univariate
measurements were also analysed in order to test the effect of activity levels on the other aspects
of morphology.

3.3.7. Climate and latitude

Although no direct benefit of having a higher degree of curvature in colder climates has been
suggested, curvature may be a consequence of a cold-adapted body shape. In this analysis,
climate and specifically temperature is quantified using the latitudinal position of the population
(Ruff, 1994b; Rose and Vinicius, 2008). After Pearson’s correlations are performed between
latitude and curvature, the other shaft shape variables and univariate measurements are a so
investigated to determine the suite of morphological features which vary in response to climatic
conditions. The analyses will be repeated for the high activity category because these
populations may be more exposed to temperature extremes than are populations in the moderate

and low activity categories.

3.3.8. Evolution over time

In order to test for changesin curvature with increasing sedentism, the European sampleis
divided into four categories: Mesolithic, Neolithic, Medieval and 18™-19" Century. Differences
in curvature are analysed by means of an ANOV A for principal components representing

curvature and apex of curvature.
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3.39. Mantel test

A Mantel test is used to test for correlations between environmental factors (temperature,
rainfall, and altitude) and curvature (degree of curvature and apex of curvature) and whole bone

shape. Five thousand permutations were performed for each of the tests.

3.3.10. Systemic influences

To investigate whether curvature is systemic, the sample for which all three bones are
represented was used. A Pearson’s correlation analysis was performed on the population means
for the degree of curvature related PCs for al three bones.
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CHAPTER 4. INTRASPECIFIC DIFFERENCESIN LONG
BONE CURVATURE IN MODERN HUMANS

4.1. Objective

Chapter 2 illustrated the effects of bone remodelling in response to use. Distinctive anatomical
features of the long bones are modified during development in ways that optimise strength and
adaptability in response to different activity levels. Here, the behavioural and environmental
effects on long bone morphology among modern humans are expl ored with the aim of providing

a context to understand the fossil populations.

In the results described below the abbreviations of the principal components (PCs) names are
made up of three parts. The first designates the landmark set included in the study (i.e. “acurve
“stands for anterior curve). The second designates the sample included (i.e. “AMH” stands for

al recent modern humans). The third is the PC number (i.e. “PC2" stands for the second PC).

4.2. The femur

4.2.1.  Femur shape principa components explained

The following analyses are based on the entire sample of modern humans and the analyses were
carried out using the methodology described in Chapter 3. The magnitude and pattern of
variation for the femoral anterior, posterior, medial and lateral curves are visualised using
Morphologika®. Variation in the femoral proximal and distal epiphyses are analysed in asimilar
fashion. The curves are semi-landmarks on the diaphyseal surface only, whereas the epiphysis
analysis uses fixed landmarks (for details see Chapter 3: Materials and Methods). In figures,
viewing angles were chosen to best illustrate similarities and differences. For the curves, thisis

in lateral view, unless otherwise stated. Arrows indicate areas of change.
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4.2.1.1. Anterior surface (acurve)

Thefirst four PCs of the anterior curve analysis explain 61.9%, 8.49%, 7.06% and 6.33%,
respectively, of the variation (total 73.9%). Subsequent PCs explain minimal amounts of the
variation and are not considered further. The distribution of populationsin Figure 4-1 shows the
wide range of variation for PC1 compared to PC2.

PC1 clearly reflects differences in degree of anteroposterior curvature or subtense (Figure 4-1
and Figure 4-2a). PC2 reflects the position of the apex of curvature (Figure 4-1 and Figure 4-2b).
PC3 isthe medial or lateral deviation of the distal end of the curve in anterior view (Figure 4-2

¢). PC4 isthe degree to which the curve is mediolaterally sinusoidal from anterior view (Figure
4-2d).
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Figure4-1 Thefirst and second PCsfor the anterior curve of the femur. All recent modern

human samples.
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PC1 acurve pos.| | PC2 acurve pos|| PC3 acurve pos| | PC4 acurve pos

—_—

PC1 acurve neg. |PC2 acurve neg.||PC3 acurve neg.| | PC4 acurve neg.

Figure 4-2 Morphological trendsfor the anterior curve of the femur for all recent modern
humans.

a: Principal componentl: lateral view. Negative values are less curved, positive values are more
curved. b: Principal component 2: latera view. Individuals with negative values have a more
proximal apex of curvature, whereas those with positive values have a more distal apex of
curvature. ¢: Principal component 3; anterior view. Negative values have adistal curve with
medial projection, whereas positive values have alatera projection of the distal curve. d:
Principal component 4: anterior view. Negative values are the straightest, whereas positive
values indicate a sinusoidal shape. Positive and negative visualisations correspond to the most

extreme positive and negative scores for each PC.

4.2.1.2. Posterior surface (pcurve)

Thefirst four PCs of the posterior curve analysis explain 28.7%, 14.5%, 10.5% and 6.38%,
respectively, of the variation (total 60.08%). Subsequent PCs explain minimal amounts of the

variation and are not considered further.
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The posterior PCs are very similar to the anterior curve. PC1 reflects variation in the degree of
anterior curvature (Figure 4-3 and Figure 4-4 a). PC2 is the posterior projection of the proximal
end of the curve (Figure 4-4 b). PC3 isrelated to the apex of curvature (Figure 4-3 and Figure
4-4c). PC4 isthe direction of the posterior projection of the distal end of the curve (Figure 4-4d).
Popul ation distribution for the degree and apex of curvatureis shown in Figure 4-3.
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Figure 4-3 Thefirst and third PCsfor the posterior curve of the femur. All recent modern human
samples. PCsare explained in Figure 4-4.

87



FC1 pcurve pos.

FC1 pcurve neg.

FC2 pcurve pos.

— .

FC2 pcurnve negq.
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FC3 pcurve neq.

PC4 pcurve pos.

— .
FC4d pourve neg.

Figure 4-4 Morphological trendsfor the posterior curve of the femur for all recent modern humans.

a: Principal component 1: lateral view. Negative values have alow and positive values have a
high degree of curvature. b: Principal component 2: lateral view. Positive values have aless
posteriorly projected proximal posterior surface and negative values are more posteriorly

projected. c: Principal component 3: lateral view. Negative values have a higher apex of

curvature and positive values have alower apex of curvature. d: Principal component 4: anterior

view. Positive values have aless posteriorly projected distal posterior surface and negative

values are more posteriorly projected distally. Positive and negative visualisations correspond to

the most extreme positive and negative scores for each PC.
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4.2.1.3. Medid surface (mcurve)

Thefirst three PCs of the medial curve analysis explain 49.1%, 17.2%, and 5.52% ,,respectively,
of the variation (total 71.82%). Subsequent PCs explain minimal amounts of the variation and

are not considered further. Distribution of populationsis shown in Figure 4-5.

Patternsin the first two PCs are similar to those of the anterior curve. PCL1 reflects differencesin
degree of anteroposterior curvature (Figure 4-5 and Figure 4-6a). PC2 isrelated to the apex of
curvature (Figure 4-5 and Figure 4-6b). PC3 is the posterior projection of the distal end of the

curve and the evenness of the curve (Figure 4-6¢).
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Figure 4-5 Thefirst and second PCsfor the medial curve of the femur. All recent modern human
samples. PCsare explained in Figure 4-6Figure 4-4.
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Figure 4-6 Morphological trendsfor the medial curve of the femur for all recent modern humans.
Allin lateral view
a: Principal component 1. Positive values have a higher degree of curvature compared to

negative values. b: Principal component 2. Positive values have alower apex of curvature,
whereas negative values have a more proximal apex of curvature. c: Principal component 3.
Positive values are more flattened off with increased posterior projection of the distal curve,
whereas negative values reflect a shaft surface approaching an arc of acircle with alower degree
of posterior projection distally. Positive and negative visualisations correspond to the most

extreme positive and negative scores for each PC.
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4.2.1.4.

Lateral surface (Icurve)

Thefirst four PCs of the lateral curve analysis explain 43.8%, 15.2%, 9.08% and 4.82%
Jrespectively, of the variation (total 72.93%). Subsequent PCs explain minimal amounts of the

variation and are not considered further. Distribution of the populations are shown in Figure 4-7.

Asin the other curves anterior curvature is the most important factor (PC1) (Figure 4-7 and

Figure 4-8a). (Figure 4-7 and Figure 4-8a). The other principal componentsfor the lateral curve

arethe most difficult to interpret. PC2 isrelated to the “straightening” of the lateral surface of

the femur at the level of the lesser trochanter (Figure 4-8b). PC3 is related to the apex of

curvature and the anterior or posterior orientation of the proximal curve (Figure 4-7 and Figure

4-8c). PC4 isthe sinusoidal shape of the lateral surface in anterior view (Figure 4-8d).
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Figure 4-7 Thefirst and second PCsfor thelateral curve of the femur. All recent modern human

samples. PCsare explained in Figure 4-8.
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Figure 4-8 Morphological trendsfor thelateral curve of the femur for all recent modern humans.

a: Principal component 1: lateral view. Positive values have a higher degree of curvature and
negative values have lower degrees of curvature. b: Principal component 2: latera view.
Negative values have a curve that approximates an arc on a circle, whereas positive values which
have aflattening at the proximal end of the curve c: Principal component 3: lateral view.
Negative values have alower apex of curvature and more anterior orientation of the proximal
curve compared to positive values which have a higher apex of curvature and a posteriorly
oriented proximal curve. d: Principal component 4: anterior view. Positive values are the
straightest, whereas negative values have an S-curve. Positive and negative visualisations

correspond to the most extreme positive (right) and negative (left) PC scores on the scale.
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4.2.1.5. Proximal and distal epiphyses (Epi)

Thefirst five PCs of the epiphyses analysis explain 14%, 9.45%, 7.40%, 4.80% and 4.80%,
respectively, of the variation (total 39.64%). Subsequent PCs explain minimal amounts of the

variation and are not considered further.

PC1 reflects differences in width of the distal epiphyses and neck-shaft angle (Figure 4-9a). PC2
isrelated to the overall width of the femur and its epiphyses (Figure 4-9b). PC3 isrelated to the
width of the distal epiphyses and degree of torsion (Figure 4-9¢). PC4 is not easily interpreted.
The changes along the principal component are very subtle, and this PC will therefore not be
considered further in the subsequent analyses. PC5 isrelated to the length of the femoral neck
(Figure 4-9d).
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Figure 4-9 Morphological trendsfor the epiphyses of the femur for all recent modern humans. All
anterior view.

a: Principal component 1. Individuals with negative values have wider distal epiphyses, wider
shafts and a smaller neck-shaft angle compared to those with positive values. b: Principal
component 2. Individuals with negative val ues have narrower epiphyses, heads, neck and
proximal shaft compared to those with positive values. ¢: Principal component 3. Individuas
with negative values have narrower distal epiphyses, and more torsion compared to those with
positive values. d: Principal component 5. Individuals with negative values have a shorter neck
compared to those with positive values. Positive and negative visualisations correspond to the

most extreme positive and negative scores for each PC.

42.1.6. Summary

Degree of anterior curvature isthe most important PC for all four curves (acurveAMHPCL,
pcurveAMHPC1, mcurveAMHPCL, IcurveAMHPCL). Thisisreflected in the significant
correlations between the scores for the curvature PCs (Table 4-1). Because the curves are similar
in this respect, only the anterior and posterior curve will be analysed for degree of anterior

curvature. Thereis no correlation between the PCs of the epiphyses and the four curvature PCs.

Apex of curvature (or the position along the shaft where the maximum subtense islocated) is the
major factor in acurveAMHPC2, pcurveAMHPC3, mcurveAMHPC2, IcurveAMHPC3. Most of
these principal components are significantly correlated, although correlations are lower than for
PCsrelated to the degree of curvature (Table 4-12). AcurveAMHPC2 and pcurveAMHPC3 will

be used in further analyses to represent the position of the apex of curvature.
The other principal components for each of the four curves explain minor variation in curve

shape and will be included in the analyses to explore other aspects of shaft shape in relation to

curvature.
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Table 4-1 Pear son’s correlation matrix: femoral curvature PCs (n= 428).
acurAMHPC1 PcurvAMHPC1 McurAMHPC1

PcurvAMHPC1 r 0.454**
P <0.001

McurAMHPC1 r 0.656** 0.241**
P <0.001 <0.001

LcurAMHPC1 r 0.572** 0.382** 0.358**
P <0.001 <0.001 <0.001

** Correlation is significant at the 0.01 level (2-tailed).
* Correlation is significant at the 0.05 level (2-tailed).

Table 4-2 Pear son’s correlation matrix femoral apex of curvature PCs (N=428)
acurAMHPC2 PcurvAMHPC3 McurAMHPC2

PcurvAMHPC3 r 0.238**
P <0.001
McurAMHPC2 r 0.370** 0.127**
P <0.001 0.008
LcurAMHPC3 r 0.022 0.018 0.153*
P 0.647 0.708 0.002
*x Correlation is significant at the 0.01 level (2-tailed).
* Correlation is significant at the 0.05 level (2-tailed).
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4.2.2. Correlations between PCs and univariate measurements

The purpose of these analysesis to establish covariates between the shape PCs and univariate

measurements in order to place curvature in the context of the rest of the anatomy of the femur.

All modern humans

The curvature PCsvary in their correlations with the univariate measurements (Table 4-3).
Overall, curvature of the posterior surfaceis positively correlated with robusticity (head,
condyles and midshaft). A rounder midshaft shape (midshaftratio) is correlated with alow
degree of anterior curvature. A rounder proximal shaft (subtrochratio) is correlated with alow

degree of posterior curvature.

The different apex of curvature PCsvary in their correlations (Table 4-4). Neck-shaft angle and
torsion angle are negatively correlated with the position of the apex of curvature
(acurveAMHPC2). Robusticity of the condylesis correlated with alower apex of curvature
(EpiAMHPCL). Shaft shape at the subpilastric ratio is negatively correlated with apex of
curvature (acurvAMHP2 and pcurvVAMHPC3).

Increasing epiphyseal robusticity is correlated (headrob and condylediamratio) with a more
posteriorly projected proximal posterior surface (pcurvAMHPC2) (Table 4-5). Torsion angleis
positively correlated with a more flattened off medial surface with increased distal projection of
the distal curve (McurveAMHPC3). Longer femora have less flattening off proximally of the
lateral surface (this flattening reflects the shorter femoral shaft by including the slope towards
the lesser trochanter) (Table 4-6).
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Table 4-3 Pear son’s corr elation matrix for femoral curvature PCs and univariate measurements for

all modern human populations (N=36).

acurAMHPC1 PcurvAMHPC1

FemLength r -0.104
P 0.548
Neck-shaft angle r -0.028
P 0.871
torsionangle r -0.012
P 0.943
subtrochratio r 0.189
P 0.270
midshaftratio r 0.450**
P 0.006
subpilratio r 0.188
P 0.273
condylediamratio r 0.162
P 0.345
robustindex r -0.240
P 0.159
headrob r 0.187
P 0.274
necklengthratio r 0.128
P 0.458

-0.087
0.615
-0.046
0.788
0.178
0.300
0.375**
0.024
0.133
0.439
0.201
0.239
0.454**
0.005
0.207
0.226
0.460**
0.005
0.501**
0.002

* Correlation is significant at the 0.05 level (2-tailed).
** Correlation is significant at the 0.01 level (2-tailed).
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Table 4-4 Pear son’s correlation matrix for apex of curvature PCsand univariate measurements for

all modern human populations (N=36).

acurAMHPC2 PcurvAMHPC3

FemLength r -0.304
P 0.071
Neck-shaft angle r -0.437**
P 0.008
torsionangle r -0.423*
P 0.010
subtrochratio r -0.047
P 0.787
midshaftratio r -0.307
P 0.068
subpilratio r -0.417*
P 0.012
condylediamratio r -0.114
P 0.508
robustindex r -0.067
P 0.696
headrob r -0.038
P 0.828
necklengthratio r -0.068
P 0.695

-0.327
0.052
0.035
0.838

-0.129
0.452
0.058
0.737
0.001
0.994

-0.346*
0.039

0.389*
0.019

-0.231
0.176
0.285
0.093
0.116
0.501

* Correlation is significant at the 0.05 level (2-tailed).
** Correlation is significant at the 0.01 level (2-tailed).
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Table 4-5 Pear son’s correlation matrix for other shaft shape PCsand univariate measurementsfor all modern human populations (N=36).
acurAMHPC3 acurAMHPC4 PcurvAMHPC2 PcurvAMHPC4  McurAMHPC3  LcurAMHPC2  LcurAMHPC4

FemLength
Neck-shaft angle
torsionangle
subtrochratio
midshaftratio
subpilratio
condylediamratio
robustindex
headrob

necklengthratio

r -0.086
P 0.618
r 0.086
P 0.617
r -0.023
P 0.893
r -0.338*
P 0.044
r -0.045
P 0.793
r -0.131
P 0.445
r -0.009
P 0.956
r 0.166
P 0.332
r -0.182
P 0.287
r 0.000
P 1.000

-0.039
0.820
0.204
0.232
0.264
0.120
0.209
0.220

-0.003
0.986
0.107
0.534

-0.028
0.873

-0.184
0.283

-0.036
0.837
0.047
0.786

0.038
0.826
-0.030
0.860
0.078
0.653
-0.225
0.187
-0.172
0.315
-0.083
0.632
-0.396*
0.017
-0.187
0.275
-0.416*
0.012
-0.141
0.411

0.183
0.286
-0.087
0.613
0.046
0.790
0.043
0.801
0.161
0.350
0.219
0.199
0.145
0.398
0.254
0.135
-0.100
0.562
0.097
0.575

-0.119
0.489
0.333
0.047

0.364*
0.029

-0.044
0.799
0.284
0.093
0.180
0.292
0.200
0.243

-0.252
0.138
0.285
0.092
0.094
0.585

-0.464*
0.004
-0.256
0.133
-0.192
0.261
0.031
0.857
-0.193
0.258
-0.399
0.016
0.075
0.665
0.031
0.858
0.101
0.558
0.154
0.368

-0.130
0.450
0.158
0.357
0.195
0.254

-0.337*
0.044

-0.262
0.123

-0.244
0.151

-0.140
0.415

-0.159
0.356

-0.125
0.468
0.036
0.835

*

*%

Correlation is significant at the 0.05 level (2-tailed).
Correlation is significant at the 0.01 level (2-tailed).



Table 4-6 Pear son’s correlation matrix for femoral epiphyses shape PCsand univariate
measurementsfor all human populations (N=36).
EpiIAMHPC1  EpiAMHPC2  EpiAMHPC3 EpiAMHPC5

FemLength r -0.305 0.080 -0.110 0.208
P 0.071 0.644 0.525 0.223
Neck-shaft angle r 0.265 0.072 -0.200 0.040
P 0.119 0.676 0.242 0.818
torsionangle r 0.020 -0.129 -0.119 0.204
P 0.908 0.454 0.490 0.232
subtrochratio r -0.103 -0.290 -0.195 0.096
P 0.549 0.086 0.256 0.576
midshaftratio r 0.060 0.029 -0.339* 0.177
P 0.728 0.868 0.043 0.302
subpilratio r -0.115 0.131 -0.137 0.150
P 0.503 0.447 0.425 0.381
condylediamratio r -0.274 -0.383* -0.294 0.366*
P 0.106 0.021 0.082 0.028
robustindex r -0.479** -0.040 -0.150 -0.014
P 0.003 0.816 0.382 0.936
headrob r -0.284 -0.439* -0.176 0.396
P 0.093 0.007 0.303 0.017
necklengthratio r -0.244 -0.199 0.159 0.085
P 0.151 0.245 0.354 0.622
* Correlation is significant at the 0.05 level (2-tailed).
*x Correlation is significant at the 0.01 level (2-tailed).

Populations with high activity levels only

The populations with high activity levels (N=21) are included in the same analyses and all the
modern humans above. Overall, degree of curvature is positively correlated with midshaft and
subpilastric shaft shape (for anterior curvature) and robusticity (for posterior curvature) (Table
4-7). Thelength of the neck is related to the posterior curvature. Anterior curvature isrelated to
arounder shaft shape at midshaft. The different apex of curvature PCs also vary in their
correlations with the univariate measurements (Table 4-8). As epiphyseal robusticity increases

(headrob and condylediamratio), apex of the posterior curve moves distally.

Increasing epiphyseal robusticity is correlated (headrob and condylediamratio) with amore
posteriorly projecting proximal posterior surface (pcurvAMHPC?2) (Table 4-9). The length of the
femur is positively correlated with a more even latera curve that does not straighten out at the
level of the lesser trochanter (IcurveAMHPC?2). Midshaft robusticity is negatively correlated
with shaft and epiphysea width and neck-shaft angle (EpiAMHPC1) and with robusticity of the
proximal and distal epiphyses (EpiAMHPC2) (Table 4-10).
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Table 4-7 Pear son’s corr elation matrix for femoral curvature and univariate measurements for
populationswith high activity levels (N=21).
acurAMHPC1 PcurvAMHPC1

FemLength r 0.150 0.027
P 0.515 0.907
Neck-shaft angle r -0.109 -0.300
P 0.639 0.186
torsionangle r -0.142 -0.104
P 0.539 0.654
subtrochratio r 0.322 0.398
P 0.154 0.074
midshaftratio r 0.724** 0.235
P <0.001 0.306
subpilratio r 0.540* 0.176
P 0.011 0.446
condylediamratio r 0.260 0.445*
P 0.256 0.043
robustindex r 0.276 0.640**
P 0.225 0.002
headrob r 0.042 0.489*
P 0.858 0.024
necklengthratio r -0.076 0.478*
P 0.745 0.028

* Correlation is significant at the 0.05 level (2-tailed).
** Correlation is significant at the 0.01 level (2-tailed).
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Table 4-8 Pear son’s correlation matrix for femoral apex of curvature and univariate measur ements
for populationswith high activity levels (N=21).
acurAMHPC2 PcurvAMHPC3

FemLength r -0.290 -0.258
P 0.202 0.259
Neck-shaft angle r -0.479 0.029
P 0.028 0.900
torsionangle r -0.292 -0.028
P 0.200 0.904
subtrochratio r 0.190 0.223
P 0.409 0.331
midshaftratio r -0.299 0.042
P 0.188 0.857
subpilratio r -0.311 -0.177
P 0.170 0.444
condylediamratio r -0.159 0.568**
P 0.492 0.007
robustindex r 0.020 -0.015
P 0.932 0.947
headrob r 0.008 0.476*
P 0.972 0.029
necklengthratio r -0.138 0.148
P 0.551 0.521

*=Correlation is significant at the 0.05 level (2-tailed).
**=Correlation is significant at the 0.01 level (2-tailed).
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Table 4-9 Pear son’s correlation matrix for other femoral shaft shape PCs and univariate measurementsfor populationswith high activity levels (N=21).

acurAMHPC3 acurAMHPC4 PcurvAMHPC2 PcurvAMHPC4 McurAMHPC3 LcurAMHPC2 LcurAMHPC4

FemLength
Neck-shaft angle
torsionangle
subtrochratio
midshaftratio
subpilratio
condylediamratio
robustindex
headrob

necklengthratio

r -0.241
P 0.293
r 0.175
P 0.448
r 0.054
P 0.815
r -0.405
P 0.069
r -0.085
P 0.714
r -0.113
P 0.625
r -0.061
P 0.791
r 0.043
P 0.854
r -0.169
P 0.464
r 0.079
P 0.732

0.151
0.515
-0.358
0.111
-0.424
0.055
-0.012
0.957
-0.088
0.704
0.086
0.711
-0.368
0.101
-0.199
0.387
-0.442*
0.045
-0.148
0.523

0.126
0.586
-0.117
0.614
-0.025
0.915
-0.305
0.179
-0.177
0.442
-0.100
0.665
-0.484*
0.026
-0.267
0.242
-0.534*
0.013
-0.185
0.422

0.109
0.639
-0.174
0.450
-0.116
0.617
-0.010
0.965
0.180
0.436
0.145
0.531
0.118
0.611
0.163
0.480
-0.151
0.514
0.107
0.645

0.115
0.620
0.349
0.121
0.305
0.179
-0.279
0.221
0.283
0.214
0.097
0.676
0.296
0.193
-0.042
0.857
0.364
0.105
0.084
0.719

-0.515*
0.017
-0.357
0.112
-0.192
0.404
0.159
0.491
-0.303
0.181
-0.383
0.086
0.134
0.562
0.242
0.291
0.218
0.342
0.263
0.249

-0.152
0.511
0.021
0.926
0.137
0.554

-0.382
0.087

-0.324
0.152

-0.325
0.151

-0.309
0.172

-0.049
0.833

-0.210
0.361

-0.064
0.782

*

*%

Correlation is significant at the 0.05 level (2-tailed).
Correlation is significant at the 0.01 level (2-tailed).
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Table 4-10 Pearson’s correlation matrix for femoral epiphyses shape PCsand univariate measurementsfor populationswith high activity levels (N=21).

EpiAMHPC1 EpiIAMHPC2 EpiAMHPC3 EpiAMHPC5S
FemLength r -0.221 -0.015 -0.147 0.323
P 0.335 0.949 0.525 0.153
Neck-shaft angle r 0.489* 0.070 -0.331 -0.298
P 0.024 0.762 0.143 0.190
torsionangle r 0.171 -0.210 -0.188 -0.171
P 0.457 0.361 0.415 0.458
subtrochratio r -0.064 -0.409 -0.180 -0.207
P 0.781 0.066 0.436 0.367
midshaftratio r 0.133 -0.003 -0.270 0.004
P 0.566 0.990 0.236 0.985
subpilratio r 0.123 0.083 -0.207 -0.228
P 0.596 0.721 0.369 0.321
condylediamratio r -0.241 -0.475* -0.285 0.387
P 0.292 0.030 0.210 0.083
robustindex r -0.589** -0.154 -0.197 0.003
P 0.005 0.505 0.392 0.990
headrob r -0.400 -0.566** -0.232 0.391
P 0.072 0.007 0.312 0.080
necklengthratio r -0.405 -0.239 0.247 -0.034
P 0.069 0.298 0.281 0.883

*

*%

Correlation is significant at the 0.05 level (2-tailed).
Correlation is significant at the 0.01 level (2-tailed).



Summary

Overall, the anterior and posterior degrees of curvature are correlated with different variables.
Individuals with higher levels of posterior curvature have higher levels of robugticity.
Individuals with a high degree of anterior curvature have arounder shaft at midshaft. Increased
robusticity of the distal and proximal epiphysesis also correlated with a more distal apex of
curvature of the posterior curve. A more proximal posterior apex of curvature is found with high

neck-shaft and torsion angles.

4.2.3.  Factorsinfluencing curvature in modern humans

The following analyses focus on the relationship between anterior femoral curvature and the
behavioural, environmental and biological variablesthat might be expected to influence

curvature. These correlation analyses test the hypotheses and predictions presented in Chapter 2.

4.2.3.1. Body Size

The purpose of these analysesis to investigate the correlation between body size and curvature.
Body size is known to be correlated with diaphyseal variables, such as cross-sectional geometry
and robusticity (Ruff, 2000a; Stock, 2002; Shackelford, 2007) and may also have an effect on
curvature. The relationship between body size and robusticity (subtrochanteric, midshaft and

subpilastric) and curvatureis analysed for the whole sample.

Using anteroposterior head diameter as an estimate for body size (Ruff, 1991; McHenry, 1992;
Grine et al., 1995) for the modern human sample (36 populations) the rel ationship between body
size and robusticity and body size and femoral curvature and apex of curvature are investigated.
Thereisasdignificant correlation between body size and the three different measures of

robusticity (Table 4-11). Thereis no correlation between curvature and the position of the apex

of curvature and body size (Table 4-12).
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Table 4-11 Pearson’s correlationsfor body size (head diameter) and robusticity of the femur (N=36).
HeadAPdiameter

PcurvAMHPC1 r 0.215
P 0.208
PcurvAMHPC3 r -0.207
P 0.225
acurAMHPC1 r -0.010
P 0.952
acurAMHPC2 r -0.259
P 0.128

* = Correlation is significant at the 0.05 level (2-tailed).
** = Correlation is significant at the 0.01 level (2-tailed).

Table 4-12 Pearson’s correlations for body size (head diameter) and robusticity of the femur (N=36).
headAPdiameter

condylediamratio r 0.525
P 0.001
robustindex r 0.541
P 0.001
headrob r 0.524
P 0.001

*  Correlation is significant at the 0.05 level (2-tailed).
**  Correlation is significant at the 0.01 level (2-tailed).

Summary

Thereis no alometric relationship between body size and curvature or apex of curvature.

4.23.2. Sex

The purpose of these analysesis to investigate the effect of sex on curvature and apex of
curvature as well as other aspects of bone morphology. Differences between males and females
can either be the consequence of higher body size in males than in females (Student’ s t-test;
t=6.507; P<0.001), different bone modelling and remodelling ratesin males and females, or due

to different loading regimes and activity levels because of sexual division of |abour.

Curvature

Although robusticity (midshaft and distal epiphyses) isalso related to AP femoral head diameter
(body size) (Table 4-13) and males have alarger AP femoral head diameter (body size) than
femal es (Student’ st-test; t=6.507; P<0.001), the analysis above did not find a correlation with
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body size and curvature. For the whole sample of known sex (N=102 males and 89 females),

curvatureis malesis not greater than in females (Table 4-14).

Table 4-13 Student’ st-test resultsfor robusticity in modern human males and females.

Sex N Mean S.D. T P
condylediamratio male 102 17.35 1.35 2.618 0.010*
female 89 16.84 1.33
robustindex male 102 12.59 0.99 3.231 0.002*
female 89 12.09 1.13
headrob male 102 18.59 1.75 1.877 0.062
female 89 18.14 1.59

* P = significant at the 0.05 level.

Table 4-14 Student’st-test resultsfor femoral curvature in modern human males and females.

Sex N Mean S.D. T P
acurAMHPC1 male 102 -0.00129 0.009428  1.237 0.217
female 89 -0.00298  0.009359
PcurvAMHPC1 male 102 -0.00104 0.008312 -1.093 0.276
female 89 0.00029 0.008623
* P = significant at the 0.05 level.

For the samples in this study the prediction that the effect of sex on robusticity and curvatureis
more evident in groups with high activity levels than in populations with moderate or low
activity levelsis only partly met. The prediction is met for two out of three measures of
robusticity for those with high activity levels (N=41 males and 44 females) and as for the whole
sample, males have higher midshaft and distal epiphysis robusticity (condylediamratio) than
females (Table 4-15). For the high activity group the degree of curvature is higher in malesfor
the anterior surface but not for the posterior (Table 4-18). For the moderate activity group (N=34
males and 28 females), there is a significant difference in midshaft robusticity (Table 4-16) but
no differencein curvature (Table 4-19, Table 4-20). For the low activity group, there are no
differences between males and females in robusticity (Table 4-17) or curvature (Table 4-20). In
the analysis of the entire human sample the differences between males and females with high
activity levels are masked by the similarity between males and femal es with moderate and low

activity levels.
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Table 4-15 Student’ st-test resultsfor robusticity in modern humanswith high activity levels.

Sex N Mean S.D. T P
condylediamratio male 42 17.34 1.19 2.542 0.010*
female 44 16.61 1.43
robustindex male 42 12.59 1.09 2.089 0.038*
female 44 12.05 1.32
headrob male 42 18.49 1.85 0.588 0.558
female 44 18.27 1.71

* P = significant at the 0.05 level.

Table 4-16 Student’st-test resultsfor robusticity in modern humanswith moder ate activity levels.

Sex N Mean S.D. T P
condylediamratio male 34 17.77 1.38 1.261 0.212
female 28 17.36 1.11
robustindex male 34 12.85 0.78 3.865 <0.001*
female 28 12.07 0.81
headrob male 34 19.06 1.53 1.792 0.078

female 28 18.37 1.46

* P = significant at the 0.05 level.

Table 4-17 Student’st-test resultsfor robusticity in modern humanswith low activity levels.

Sex N Mean S.D. T P
condylediamratio male 26 16.82 1.39 0.444 0.659
female 18 16.64 1.22
robustindex male 26 12.24 1.00 -0.098 0.922
female 18 12.27 1.05
headrob male 26 18.15 1.78 1.115 0.271

female 18 17.58 1.45

* P = significant at the 0.05 level.

Table 4-18 Student’ st-test resultsfor curvature in modern humanswith high activity levels.

Sex N Mean S.D. T P
acurAMHPC1 male 42 0.00237 0.00899 2.143 0.035*
female 44 -0.00198 0.00979
PcurvAMHPC1 male 42 -0.00043 0.00864 -0.686 0.494

female 44 0.00087 0.00892
* P = significant at the 0.05 level.

Table 4-19 Student’st-test resultsfor curvature in modern humanswith moder ate activity levels.

Sex N Mean S.D. T P
acurAMHPC1 male 34 -0.00241 0.00874 0.119 0.906
female 28 -0.00267 0.00872
PcurvAMHPC1 male 34 -0.00071 0.00793 -0.413 0.681

female 28 0.00012 0.00779

* P = significant at the 0.05 level.
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Table 4-20 Student’st-test resultsfor curvature in modern humanswith low activity levels.

Sex N Mean S.D. T P
acurAMHPC1 male 26 -0.00575 0.00897 0.002 0.998
female 18 -0.00575 0.00891
PcurvAMHPC1 male 26 -0.00246 0.00841 -0.725 0.472

female 18 -0.00050 0.00936

* P = significant at the 0.05 level.

Apex of curvature

For al individuals (N=102 males and 89 females), females have alower apex of curvature than
males (acurveAMHPC2; p=0.034) (Table 4-21). Thisdifference isnot present in groups with
high activity levels (N=42 males and 44 females) (Table 4-22) or low activity levels (N=26
males and 18 females) (Table 4-24). Only for groups with moderate activity levels (N=34 males
and 28 females) (Figure 4-16 and Table 4-25) is there a significant difference between males and

females.

Table 4-21 Student’st-test resultsfor apex of curvature in modern human males and females.

Sex N Mean S.D. T P
acurAMHPC2 male 102 -0.00053  0.00403 -2.137 0.034*
female 89  0.00074 0.00417
PcurvAMHPC3 male 102 -0.00056  0.00532 -0.125 0.900
female 89 -0.00047  0.00523
* P = significant at the 0.05 level.

Table 4-22 Student’ st-test resultsfor apex of curvature in modern humanswith high activity levels.

Sex N Mean S.D. T P
acurAMHPC2 male 42 0.00053 0.00426 -1.463 0.147
female 44 0.00178 0.00361
PcurvAMHPC3 male 42 -0.00026 0.00508 -1.296 0.199

female 44 0.00109 0.00457
* P = significant at the 0.05 level.

Table 4-23 Student’ st-test resultsfor apex of curvature in modern humanswith moder ate activity

levels.
Sex N Mean S.D. T P
acurAMHPC2 male 34 0.00055 0.00307 -2.733 0.008*
female 28 0.00198 0.00422
PcurvAMHPC3 male 34 -0.00019 0.00630 -.299 0.766

female 28 0.00264 0.00560
* P = significant at the 0.05 level.
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Table 4-24 Student’ st-test resultsfor apex of curvature in modern humanswith low activity levels.

Sex N Mean S.D. T P
acurAMHPC2 male 26 -0.00223 0.00430 -0.996 0.325
female 18 -0.00338 0.00280
PcurvAMHPC3 male 26 -0.00204 0.00407 -1.725 0.092

female 18 -0.00426 0.00440
* P = significant at the 0.05 level.

Other shaft shapes
Males have significantly straighter proximal posterior diaphyses whereas those of females dope

posteriorly (pcurveAMHPC2, Student’ s t-test, p=0.031) (Table 4-25).

Table 4-25 Student’st-test resultsfor other aspects of shaft shape in modern human males and

females.
Sex N Mean S.D. T P
acurAMHPC3 male 102 -0.00004 0.00310 -0.076 0.939
female 89 0.00000 0.00391
acurAMHPC4 male 102 -0.00008 0.00383 -0.659 0.511

female 89 0.00027 0.00338

PcurvAMHPC2 male 102 0.00157 0.00597 2.178 0.031*
female 89 -0.00029 0.00574

PcurvAMHPC4 male 102 0.00030 0.00396 1.913 0.572
female 89 -0.00082  0.00407

McurAMHPC3 male 102 -0.00045  0.00430 -1.357 0.176
female 89  0.00033 0.00345

LcurAMHPC2 male 102 -0.00019  0.00659 -0.243 0.808
female 89  0.00006 0.00711

LcurAMHPC4 male 102 -0.00020 0.00354 0.842 0.401

female 89 -0.00070  0.00469
* P = significant at the 0.05 level

Epiphysis morphol ogy

Males and females are similar in their epiphyseal morphology. None of the PCs show distinct
differences between males and females for the whole sample (Table 4-26). Thereis only one
significant sex difference for the subsample with low activity levels for EpiIAMHPC3 (Table
4-27; Table 4-28; Table 4-29). This suggests that males have wider distal condyles and more

torsion than females with low activity levels.
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Table 4-26 Student’st-test resultsfor epiphysis shape in modern human males and females.

Sex N Mean S.D. t P

EpiAMHPC1 male 101 -0.00185 0.01291 -0.553 0.581
female 89 -0.00078 0.01367

EpIAMHPC2 male 101 0.00069 0.01054 0.361 0.719
female 89 0.00014 0.01059

EpIAMHPC3 male 101 -0.00120 0.00971 0.623 0.534
female 89 -0.00212 0.01060

EpIAMHPC5 male 101 0.00038 0.00711 1.929 0.055
female 89 -0.00157 0.00673

* P = significant at the 0.05 level.

Table 4-27 Student’ st-test resultsfor epiphysis shape in moder n humanswith high activity levels.

Sex N Mean S.D. T P

EpiAMHPC1 male 41 0.00262 0.01458 0.805 0.423
female 44 -0.00012 0.01657

EpiAMHPC2 male 41 -0.00172 0.01109 -0.586 0.559
female 44 -0.00036 0.01030

EpIAMHPC3 male 41 -0.00387 0.00988 -0.337 0.737
female 44 -0.00311 0.01100

EpIAMHPC5 male 41 -0.00175 0.00692 1.115 0.268
female 44 -0.00335 0.00633

* P = significant at the 0.05 level.

Table 4-28 Student’ st-test resultsfor epiphysis shape in moder n humans with moder ate activity

levels.
Sex N Mean S.D. t P

EpiAMHPC1 male 34 -0.00550 0.01137 -1.477 0.145
female 28 -0.00131 0.01085

EpiAMHPC2 male 34 0.00249 0.01022 0.609 0.545
female 28 0.00078 0.01193

EpiAMHPC3 male 34 -0.00025 0.00990 -0.860 0.393
female 28 0.00196 0.01027

EpIAMHPC5 male 34 0.00049 0.00710 0.512 0.610
female 28 -0.00044 0.00721

* P = significant at the 0.05 level.

Table 4-29 Student’ st-test resultsfor epiphysis shape in moder n humanswith low activity levels.

Sex N Mean S.D. t P

EpIAMHPC1 male 26 -0.00410 0.00999 -0.738 0.465
female 18 -0.00191 0.00920

EpiAMHPC2 male 26 0.00213 0.00969 0.460 0.648
female 18 0.00078 0.00937

EpiAMHPC3 male 26 0.00178 0.00833 2.875 0.006*
female 18 -0.00557 0.00834

EpiAMHPCS5 male 26 0.00357 0.00638 1.328 0.191
female 18 0.00107 0.00577

* P=significant at 0.05 level.
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Univariate measurements

Males have significantly longer femora in the combined modern human sample (Table 4-30) and

in each of the three activity subsamples (Table 4-31; Table 4-32; Table 4-33). Males with high

activity levels also have arounder distal shaft (subpilratio) than females.

Table 4-30 Student’ st-test results for univariate measur ements in moder n human males and

females.
Sex N Mean S.D. t P

Femur length male 102 44496 31.57 8.514 <0.001*
female 89 408.28 27.40

Neck-shaft angle male 102 127.40 6.19 -0.396 0.693
female 89 127.76 6.69

Torsion angle male 102 1655 6.82 0.189 0.851
female 89 16.37 6.52

subtrochratio male 102 76.40 9.36 0.695 0.488
female 89 75.44 9.66

midshaftratio male 102 114.79 17.91 0.561 0.575
female 89 113.24 20.15

subpilratio male 102 9141 15.72 2.128 0.035*
female 89 86.50 16.08

* P = significant at the 0.05 level.

Table 4-31 Student’ st-test resultsfor univariate measur ements in modern humans with high

activity levels.

Sex N Mean S.D. t P

Femur length male 42 437.07 37.05 4.943 <0.001*
female 44 400.27 31.89

Neck-shaft angle male 42 127.98 6.48 -1.453 0.150
female 44 130.00 6.37

Torsion angle male 42 16.66 6.77 -0.754 0.453
female 44 17.76 6.77

subtrochratio male 42 75.38 10.57 -0.454 0.651
female 44 76.37 9.59

midshaftratio male 42 112.59 16.30 0.892 0.374
female 44 109.19 18.88

subpilratio male 42 89.71 13.76 3.454 0.001*
female 44 80.00 12.31

* P = significant at the 0.05 level.
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Table 4-32 Student’ st-test results for univariate measur ements in moder n humans with moder ate
activity levels.
Sex N Mean S.D. t P

Femur length male 34 453.43 24.07 7.206 0.000*
female 28 409.41 23.77

Neck-shaft angle male 34 12556 5.38 0.333 0.741
female 28 125.07 5.98

Torsion angle male 34 15.09 554 0520 0.605
female 28 14.37 5.23

subtrochratio male 34 7433 8.74 1.402 0.166
female 28 71.02 9.87

midshaftratio male 34 112.43 19.34 -0.482 0.631
female 28 114.75 18.11

subpilratio male 34 84.76 14.09 -1.256 0.214

female 28 89.17 13.32

* P = significant at the 0.05 level.

Table 4-33 Student’st-test resultsfor univariate measur ements in modern humanswith low activity
levels.
Sex N Mean S.D. t P

Femur length male 26 446.63 28.38 3.239 0.002*
female 18 422.66 15.98

Neck-shaft angle male 26 128.85 6.35 1.246 0.220
female 18 126.36 6.73

Torsion angle male 26 18.29 8.12 1.097 0.279
female 18 15.68 7.19

subtrochratio male 26 80.74 6.55 0.188 0.851
female 18 80.37 6.10

midshaftratio male 26 121.41 17.49 0.090 0.929
female 18 120.85 23.94

subpilratio male 26 102.83 14.99 0.927 0.359

female 18 97.89 20.45

* P = significant at the 0.05 level.

Summary

For the whole sample males have longer and more robust femora than females. Males also have
relatively wider knees and straighter proximal anterior shafts. Maes do not have higher levels of
curvature when the whole recent modern human sample is considered. Therefore, curvatureis

not due to differences in bone modelling and remodelling between males and females.
The prediction that males would have a higher degree of curvature and higher robusticity due to

having higher activity levels is supported for groups with high activity levelsin which division

of labour is more pronounced.
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42.33. Age

The purpose of these analysesis to investigate the changes in femoral curvature throughout

adulthood. If curvature is a plastic feature that responds to habitual loading, it is predicted that as

activity levels decrease with increasing age (for this skeletally adult sample up to 87 years old),

so will degree of curvature. Of the whole sample, only 88 individua s had known ages or age

range estimates (represented populations: African-American, Aleut, Andamanese, Australians,
English Medieval and 18" — 19" Century, Ohio Native, Natufian, Danish Medieval and Czech

Medieval. These populations represent al three activity groups).

Thereis no relationship between age after adulthood and curvature nor is there arelationship
with apex of curvature or the other PCs (Table 4-34). When the univariate measurements are
compared to age there are three significant trends visible: age is negatively correlated with

torsion and neck-shaft angle and positively correlated with robusticity of the distal condyles

(condylediamratio). Older individuals have wider knees relative to shaft length, lower femora

torsion and lower neck-shaft angles (Table 4-35).

Table 4-34 Kendall’s Tau b correlationsfor PCsand age (N=88).

Curvature

acurAMHPC1 r -0.050
P 0.641

PcurvAMHPC1 r -0.008
P 0.943

Apex of curvature

acurAMHPC2 r -0.144
P 0.181

PcurvAMHPC3 r 0.089
P 0.411

Other shaft shape PCs
acurAMHPC3 r 0.097
P 0.370
acurAMHPC4 r 0.163
P 0.130
PcurvAMHPC2 r -0.109
P 0.314
PcurvAMHPC4 v 0.135
P 0.208
McurAMHPC3 r -0.063
P 0.558
McurAMHPC4 r 0.171
P 0.112
LcurAMHPC2 r -0.072
P 0.506
LcurAMHPC4 r -0.159
P 0.138

*=Caorrelation is significant at the a=0.05
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Table 4-35 Kendall’s Tau b correlationsfor univariate measur ements and age (N=88).

r  Femur length -0.002 r subpilratio -0.108
P 0.984 P 0.317
r  Neck-shaft angle -0.368 r condylediamratio 0.247
P <0.001* P 0.020*
r  Torsion angle -0.354 r  necklengthratio 0.068
P 0.001* P 0.531
r  subtrochratio 0.145 r  robustindex 0.145
P 0.177 P 0.177
r  midshaftratio -0.003 r headrob 0.032
P 0.980 P 0.769

*=Caorrelation is significant at the a=0.05

When age categories (see Chapter 3 for more information) were used instead of absolute age of
the individual, the ANOV A showed no significant difference between the groups (Table 4-36).

Table 4-36 ANOVA resultsfor adult age categories on curvature PCs (N=4)

F Sig.
acurAMHPC1 0.985 0.374
PcurvAMHPC1 0.557 0.573

*=significant at a=0.05

Summary
The prediction is not met. Thereis no trend towards lower degrees of curvature with increasing
age. Neck-shaft angle and torsion angle decrease with increasing age and the relative size of the

distal condyles increases.

4.2.34. Activity levels

The purpose of the following analyses is to determine if there are differences in degree and apex
of curvature between samples with different activity levels, using the activity groups and

subsi stence categories described in Chapter 3 and summarised in Appendix 8.
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Figure 4-10 Distribution of the activity level categoriesin the space of PC1 (degree of curvature) and
PC2 (apex of curvature) of the anterior curvefor all modern humans.

Circles: high activity; squares: moderate activity; crosses. low activity.
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Figure 4-11 Distribution of the activity level categoriesin the space of PC1 (degree of curvature) and
PC2 (apex of curvature) of the posterior curvefor all modern humans.

Circles: high activity; squares: moderate activity; crosses: low activity.

Curvature

The activity groups are significantly different in anterior but not in posterior curvature (Table
4-37). For the two curvature related PCs, those with high activity levels are the most curved and
those with low activity levels are the least curved (Figure 4-12) (Appendix 12). However, the

principal source of variation is the difference between low activity populations and all others.
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Table 4-37 ANOVA resultsfor activity levelsand femoral curvature PCs.

d.f.=2 F Sig.
acurAMHPC1 8.900 0.000*
PcurvAMHPC1 1.698 0.184

*=significant at a=0.05

0.00254 I

0.0000

-0.00254

Mean acurAMHPC1

-0.0050+

-0.00734

N=183 N=201 N=44
-0.0100 T T T
High Moderate Low
Activity Level

Error Bars: 95% Cl

Figure 4-12 Anterior femoral curvature for modern humans, by activity level. M ean and 95%
confidence interval (whiskers).

For the subsistence categories, there are significant differences in the degree of posterior
curvature (PcurAMHPC1) (Table 4-38). The pastoralists have a higher degree of posterior
curvature than all other categories (Figure 4-13) (Appendix 13).

Table 4-38 ANOVA resultsfor high activity subsistence categories and femoral curvature PCs.

d.f.=5 F Sig.
acurAMHPC1 0528  0.715
PcurvAMHPC1 5.246  0.001*

*=significant at a=0.05
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Figure 4-13 Posterior femoral curvature for modern humans, by subsistence strategy. M ean and

95% confidenceinterval (whiskers).

Apex of curvature

The activity groups are significantly different for apex of curvature in both PCs (Table 4-39).

Post-hoc procedures show that high and low activity categories are different from each other.

Low activity groups have the most proximal apex of curvature, high acitivity groups the most
distal and moderate activity groups are intermediate (Figure 4-14 and Figure 4-15) (Appendix
14).

Table 4-39 ANOVA resultsfor activity levelsand the apex of femoral curvature PCs.

d.f.=2 F Sig.
acurAMHPC2 13.407 <0.001*
PcurvAMHPC3 11.744 <0.001*

*=significant at a=0.05

120



0.00400

0.00300+

0.00200-

0.00100-

0.00000- T

Mean acurveAllPC2 reversed

-0.00100+

N=183 N=201 N=44
-0.00200 T T T
High Modlerate Low
Activity Level

Error Bars: 95% CI

Figure 4-14 Anterior femoral apex of curvaturefor modern humans, by activity level. Scaleis

reversed so that higher valuesindicate a more proximal apex of curvature. M ean and 95%

confidence interval (whiskers).
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Figure 4-15 Posterior femoral apex of curvature for modern humans, by activity level. Scaleis

reversed so that higher valuesindicate a more proximal apex of curvature. M ean and 95%

confidence interval (whiskers).
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The anterior apex of curvature is significantly different for the high activity subsistence groups
(Table 4-40). Post-hoc procedures show that the equestrian foragers have the most distal apex of
curvature. The aquatic foragers have the most proximal apex of curvature and are significantly

different from the equestrian foragers and (Appendix 15) (Figure 4-16).

Table 4-40 ANOVA resultsfor subsistence categories and the apex of femoral curvature PCs.

d.f.=5 F Sig.
acurAMHPC2 5.008 0.001*
PcurvAMHPC3 1.631 0.169

*=significant at a=0.05
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Figure 4-16 Anterior femoral apex of curvature for modern humans, by subsistence strategy. Scale
isreversed so that higher valuesindicate a mor e proximal apex of curvature. M ean and 95%

confidence interval (whiskers).
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Other elements of shaft shape

Four of the other shaft shape PCs (pcurveAMHPC4, mcurveAMHPCS, |curveAMHPC2 and
LcurveAMHPC4) are affected by activity level (Table 4-41) (Figure 4-2, Figure 4-4, Figure 4-6,
Figure 4-8). Post-hoc procedures show that the distal end of the diaphysisin the moderate
activity groups is straighter, whereas in high activity groups it is more posteriorly projected
digtally (Appendix 15). This could be an indication of more posterior expansion of the distal
condyles (pcurveAMHPC4) (Figure 4-17). The moderate activity groups also have a more even
curve that approximates and arc of acircle with less posterior projection of the distal media
surface compared to the high activity level groups who have a more flattened off medial curve
with increased posterior projection distally (mcurveAMHPC3) (Figure 4-18). The high and
moderate activity groups have a“straightening” of the femur at the level of the lesser trochanter,
whereas those with low activity levels have a lateral surface that approximates the surface of a
circle (lcurveAMHPC?2) (Figure 4-19). The low activity populations are aso significantly
different (P<0.001) in having a lateral surface that, in anterior view, is sinusoidally shaped,
whereas high and moderate activity groups have a more even lateral surface (IcurveAMHPC4)
(Figure 4-20).
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Table 4-41 ANOVA resultsfor activity levelsand the other femoral shaft shape PCs.

d.f=2 F Sig.
acurAMHPC3 1.217 0.297
acurAMHPC4 0.598 0.550
PcurvAMHPC2 1.036 0.356
PcurvAMHPC4 8.651 <0.001*
McurAMHPC3 9.654 <0.001*
LcurAMHPC2 7.661 0.001*
LcurAMHPC4 9.852 <0.001*
*=significant at a=0.05
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Figure 4-17 PcurvAMHPCA4 for modern humans, by activity level. Mean and 95% confidence

interval (whiskers).

Errar Bars: 95% Cl

Negative values have a posterior expansion of the distal epiphyses reflecting more posteriorly

projecting condyles.
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Figure 4-18 McurvAMHPC3 for moder n humans, by activity level. Mean and 95% confidence

interval (whiskers).

High values have a more flattened off medial curve with increased posterior projection distally.
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Figure 4-19 LcurvAMHPC2 for modern humans, by activity level. Mean and 95% confidence
interval (whiskers).

Low values have alateral surface that approximates an arc of acircle.
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The same analysis for the other shaft shape PCs was repeated for the high activity subsistence
groups (Table 4-42). There are significant differences between the groups for pcurveAMHPC2
and post-hoc comparisons indicate that equestrian foragers have a significantly proximally
straighter posterior diaphyseal surface compared to agquatic foragers and pastoralists (Figure 4-21
and Appendix 17).

Table 4-42 ANOVA resultsfor subsistence categories and the other femoral shaft shape PCs.

d.f.=5 F Sig.

acurAMHPC3 0.462 0.763
acurAMHPC4 0.755 0.556
PcurvAMHPC2 3.219 0.014*
PcurvAMHPC4 0.645 0.631
McurAMHPC3 2.132 0.079
LcurAMHPC2 1.295 0.274
LcurAMHPC4 1.701 0.152

*=significant at a=0.05
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Figure 4-21 PcurvAMHPC2 for modern humans, by subsistence strategy. M ean and 95%
confidence interval (whiskers).

High values have a proximally straighter posterior diaphyseal surface.
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Univariate measurements

The activity groups are significantly different in femur length, neck-shaft angle, torsion, shaft

shape at the sub-trochanteric and sub-pilastric level, neck length ratio and robusticity of the shaft
and head (Table 4-43, Figure 4-22 - Figure 4-29).

High activity groups have significantly more robust and shorter femora with a higher neck-shaft

angle and a shorter neck than low activity groups (Appendix 18) (Figure 4-23 -Figure 4-29).

Moderate activity groups also have alonger femur than high activity groups (Figure 4-22). The

low activity groups have rounder shafts at the sub-trochanteric and sub-pilastric level and are

anteroposteriorly wide at the midshaft level compared to high and moderate activity groups

(Figure 4-24 - Figure 4-26).

Table 4-43 ANOVA resultsfor activity level and the univariate measur ements of the femur.

d.f=2 F Sig.

Femur length 8.712800964 <0.001*
Neck-shaft angle 8.140769238 <0.001*
Torsion angle 1.75641636 0.174
subtrochratio 8.481384719 <0.001*
midshaftratio 3.590933717  0.028*
Subpilratio 17.37404345 <0.001*
condylediamratio 1.959586004 0.142
necklengthratio 11.89107459 <0.001*
robustindex 6.519969349  0.002*
Headrob 6.39445168  0.002*

*=significant at a=0.05
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The subsistence categories with high activity levels are also different for some of the univariate
measurements (Table 4-44). Most univariate measurements have significant between group

differences, with the exception of sub-trochanteric and sub-pilastric shaft shape.

The post-hoc procedures (Appendix 19) show that the aquatic foragers have shorter femora than
al other groups (not statistically significant for horticulturalists) (Figure 4-30). Equestrian
foragers and pastoralists have lower neck-shaft angles (Figure 4-31). Equestrian foragers have
the lowest amount of femoral torsion and the smallest femora head size (Figure 4-32, Figure
4-33). Thereisatrend from anteroposteriorly wide to round shafts through the different
subsistence strategies, but not all groups are significantly different from each other. Thistrend
may reflect changesin the anatomy with the adoption of subsistence strategies with lower
activity intensity (Figure 4-33). Pastoralists have the highest robusticity indices at midshaft
(Figure 4-34).

Table 4-44 ANOVA resultsfor subsistence categories and the femoral univariate measur ements.

d.f.=5 F Sig.

Femur length 6.784 <0.001*
Neck-shaft angle 6.068 <0.001*
Torsion angle 4.853 0.001*
subtrochratio 1.617 0.172
midshaftratio 3.282 0.013*
Subpilratio 1.530 0.196
condylediamratio 5.644 <0.001*
necklengthratio 10.559 <0.001*
Robustindex 7.917 <0.001*
Headrob 2.792 0.028*

*=significant at a=0.05
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Epiphysis shape

The activity level groups are significantly different for 2 out of 5 epiphysis shape PCs
(EpiAMHPC2 and EpiAMHPCS) (Table 4-45; Figure 4-36 and Figure 4-37). Groups with high
activity levels have wider epiphyses compared to groups with moderate or low activity levels,
and both high and moderate activity groups have a shorter neck than groups with low activity
levels (Appendix 20).

For the subsistence groups, 3 out of 4 PCs were significantly different: EpiAMHPC1,
EpiAMHPC3 and EpiAMHPCS (Table 4-46). Pastoralists have wider epiphyses than
horticulturalists, pedestrian and aguatic foragers. The equestrian foragers are intermediate
(EpiAMHPC?2) (Figure 4-38). Pedestrian foragers have less torsion and have wider distal
epiphyses than equestrian foragers and pastoralists but are not different from the aquatic foragers
and horticulturalists (EpiAMHPC3) (Figure 4-39). Aquatic foragers have alonger neck than
pedestrian and equestrian foragers. The other categories are not different from each other

(EpiAMHPC5) (Figure 4-40) (Appendix 21).

Table 4-45 ANOVA resultsfor activity level categoriesand the femoral epiphyses shape PCs.

d.f.=2 F Sig.
EpIAMHPC1 2.045  0.131
EpIAMHPC2 5218  0.006*
EpIAMHPC3 1472 0.231
EpIAMHPCS5 3.425  0.033*

*=significant at a=0.05
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Table 4-46 ANOVA resultsfor subsistence categories and the femoral epiphyses shape PCs.

d.f.=5 F Sig.

EpIAMHPC1 5386 <0.001%
EpPIAMHPC2 1.144  0.337
EpPIAMHPC3 10.683 <0.001*
EpIAMHPC5 6.502 <0.001*

*=significant at a=0.05
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Figure 4-38 EpiAMHPCL1 (epiphysiswidth) for modern humans, by subsistence strategy. M ean and
95% confidenceinterval (whiskers).
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Summary

As predicted, the high activity group has a higher degree of curvature and alower apex of
curvature than the low activity group. The moderate activity group isintermediate and
significantly more curved that the low activity group. Within the high activity groups the
pastoralists were the most curved. This may reflect their higher levels of terrestrial mobility
compared to the other high activity categories. Aquatic foragers have the highest apex of
curvature. This could be areflection of their preference for the use of watercraft for subsistence-
related activity and reflect the resulting reduced amount of terrestrial mobility. Increased
curvature for the high activity groups coincides with increased robusticity, a more mediolaterally

wide shaft and a shorter femoral neck.

4.2.3.5. Evolution over timein Europe

The purpose of the following analyses is to determine if, with time, patterns of curvature have

been affected by the adoption of increasingly sedentary lifestyles in Europe (Appendix 8).

Curvature

The prediction is that European populations from the Mesolithic through to the 18"-19" century
would show decreasing degrees of curvature (Figure 4-41 and Figure 4-42). Thereis no
significant difference between time periods in Europe (Table 4-47). The degree of anterior
curvature does decrease (Figure 4-43), but the posterior curve shows a different pattern (Figure

4-44 and Figure 4-45).
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Figure 4-41 Distribution of time periods in the space of PC1 (degree of curvature) and PC2 (apex of
curvature) of theanterior curvefor all modern humans.

Circles: 18™-19" C, triangles: Medieval, squares: Mesolithic, crosses: Neolithic.
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Figure 4-42 Distribution of the time periods in the space of PC1 (degree of curvature) and PC3
(apex of curvature) of the posterior curvefor all modern humans.

Circles: 18™-19" C; triangle: Medieval; squares: Mesolithic; crosses: Neolithic.

Table 4-47 ANOVA resultsfor time period and the femoral curvature PCs.

d.f.=3 F Sig.
acurAMHPC1 1.993 0.117
PcurvAMHPC1 1.551 0.203

*=significant at a=0.05
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Figure 4-43 Anterior femoral curvature for modern Europeans, by time period. M ean and 95%

confidence interval (whiskers).
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Figure 4-44 Posterior femoral curvature for modern Europeans, by time period. M ean and 95%
confidence interval (whiskers).
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Apex of curvature

Time period has a significant effect on the anterior apex of curvature (Table 4-48). Post-hoc
comparisons show that 18™-19" century samples have a higher apex of curvature compared to

Medieval samples but are not significantly different from the other populations (Appendix 22)
(Figure 4-45).

Table 4-48 ANOVA resultsfor time period and the femoral curvature PCs

d.f.=3 F Sig.
acurAMHPC2 3557  0.015*
PcurvAMHPC3 0.796  0.498

*=significant at a=0.05
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Error Bars: 95% Cl

Figure 4-45 Anterior apex of femoral curvaturefor modern Europeans, by time period. M ean and
95% confidenceinterval (whiskers).

Summary

The prediction is not supported because no significant differences between the time periods were
found. The plots, however, show that with increasing sedentism thereisadecreasing trend in
degree of anterior curvature. The posterior curve follows an opposite pattern, however. This may

be because time period does not accurately reflect a decrease in activity levels and loading.
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4.2.36. Climateand latitude

Asdiscussed in Chapter 3 latitude is used here as a general proxy for climate (Appendix 8).
Thereis no correlation between latitude and curvature, or apex of curvature (Table 4-51).
Individualsin higher |atitudes have wider proximal and distal epiphyses (EpiAMHPCL) (Table
4-49).

The relationship between the univariate measurements and latitude are a so investigated and
follow previously established patterns (Table 4-50). Individuals living in higher latitudes have
higher levels of robusticity and arelatively longer femoral neck. There was a positive correlation
between femur length and latitude. This relationship was surprising but when the data were
investigated, the correlation appeared skewed by small-bodied populations living in low latitudes
(Figure 4-46) and by the lack of tall equatoria groupsin the sample. When the Andamanese,
Pygmy and Peruvian are excluded the correlation is negative, but not significant (r=-0.353;
P=0.051; N=31).
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Table 4-49 Pearson’s correlations for curvature, apex of curvature, diaphyseal shape and epiphyses shape PCs and latitude (climate) on the femur

(N=35).

Absolute latitude ° (N=35)

Curvature

PcurvAMHPC1 r 0.302
P 0.078

acurAMHPC1 r -0.079
P 0.654

Apex of curvature

acurAMHPC2 r -0.023
P 0.897

PcurvAMHPC3 r -0.105
P 0.550

Other shaft shape Epiyphyses

acurAMHPC3 r -0.082 EpiAMHPC1
P 0.639

acurAMHPC4 r -0.110 EpiAMHPC2
P 0.528

PcurvAMHPC?2 r -0.129 EpiAMHPC3
P 0.459

PcurvAMHPC4 r 0.131 EpiAMHPC4
P 0.452

McurAMHPC3 r 0.119 EpiAMHPC5
P 0.498

LcurAMHPC?2 r 0.119
P 0.496

LcurAMHPC4 r -0.194
P 0.263

r -0.437*
P 0.009
r -0.228
P 0.187
r 0.254
P 0.141
r -0.213
P 0.218
r 0.180
P 0.301

*%

Correlation is significant at the 0.05 level (2-tailed).
Correlation is significant at the 0.01 level (2-tailed).



Table 4-50 Pearson’s correlations for femoral univariate measurements and latitude (climate) on
the femur (N=35).

Absolute | atitude °

Univariate measurements

FemLength r 0.354* subpilratio r -0.077
P 0.037 P 0.659

Neck-shaft angle r -0.428* condylediamratio r 0.430*
P 0.010 P 0.010

torsionangle r -0.179 necklengthratio r 0.547**
P 0304 P 0.001

subtrochratio r -0.096 robustindex r 0.524**
P 0.585 P 0.001

midshaftratio r 0.047 headrob r  0.535*%*
P 0.789 P 0.001

*  Correlationissignificant at the 0.05 level (2-tailed).
**  Correlationissignificant at the 0.01 level (2-tailed).
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Figure 4-46 Femur length and absolute latitude for the recent moder n human sampleincluding the

small bodied equatorial samples: Pygmy, Peruvian and Andamanese samples.

Femur shape PCs for groups with high activity levels only
Because the high activity groups have more anteriorly curved femora than the moderate and low
activity levels and the high activity groups are possibly more exposed to climatic conditions

without permanent housing and insulation, the correlations were repeated for the high activity
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groups. The correlation between epiphysis width and neck-shaft angle stands (EpiAMHPCL).

Thereis still no correlation between degree and apex of curvature and latitude. A positive

correlation exists with LcurAMHPC2, indicating that individuals living in higher latitudes have

femorathat are straighter at the level of the lesser trochanter (Table 4-51).

Table 4-51 Pearson’s correlationsfor curvature, apex of curvature, diaphyseal shape and epiphyses

shape PCsand latitude (climate) on the femur in high activity groups (N=17).

Absolute |atitude °

Curvature Other shaft shape Epicondyles
acurAMHPC1 r -0.079 acurAMHPC3 r 0.334 EpiAMHPC1
P 0.764 P 0.190
PcurvAMHPC1 r 0.461 acurAMHPC4 r -0.254 EpiAMHPC2
P 0.063 P 0325
Apex of curvature PcurvAMHPC2 r -0.341 EpiAMHPC3

acurAMHPC2 r 0.035 P 0.180
P 0.895 PcurvAMHPC4 r  0.079 EpiAMHPCA4

PcurvAMHPC3 r 0.112 P 0.763
P 0.667 McurAMHPC3 r 0.259 EpiAMHPC5

P 0316

LcurAMHPC2 r 0.539*

P 0.025

LcurAMHPC4 r 0.011

P 0.967

T~ W™ W™

T " T[T

-0.487*
0.047
-0.275
0.285
0.338
0.185

0.101
0.701
-0.207
0.425

*  Correationissignificant at the 0.05 level (2-tailed).
** Correlation is significant at the 0.01 level (2-tailed).
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4.2.3.7. Mante test

The Mantel tests take a different approach from the latitude analysis, in this case comparing
environmental differencesto shape differences. Results are summarised in Table 4-52. Thereisa
significant correlation between anterior femoral curvature (acurvePCL distances) and altitude
differences. No correlation exists between curvature (acurvePCL distances), apex of curvature
(acurvePC2 distances) or the whole femur shape (includes all PCs used in the analyses above)

and average rainfall and average temperature differences.

Table 4-52 Results of the M antel tests performed for environmental distance matrices - femur

Ant. curvature apex of curvature  al femur PCs

r P r P r P
atitude 0.354 0.001* -0.037 0.614 -0.041 0.618
rainfall -0.090 0.784 0.054 0.339 0.099 0.239
temperature 0129 0080 -0.066 0.736 0.145 0.097
r = Pearson correlation coefficient. All probabilities based on 5000

permutations.

424. Summary

Curvature

Thereis no correlation between body size and femoral curvature so the prediction that curvature
would be related to body size was not met. Shaft shape and measures of external robusticity are
covariates of anteroposterior femoral curvature. Individuals with a higher degree of curvature
have higher robusticity levels and are more anteroposteriorly wide. This supports the prediction

that degree of curvature and robusticity are related.

Anterior curvature does not relate to climate but is a good indicator of activity levels. Groups
with high activity levels are the most curved and, among them, especially those with high levels
of terrestrial mobility (pastoralists). Groups with low activity levels are the least curved. Aquatic
foragers are less curved than the other high activity groups. Thisisin support of the prediction

made in Chapter 2. Altitude differences are correlated with anterior curvature differences which
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may support the importance of the effect of terrestrial mobility over subsistence related activity.
Thereis no difference between al males and females, and there is no correlation between body
size and degree of curvature. Therefore, the observed differences in degree curvature between
males and females in high activity groups reflects sexual division of labour, rather than sex

differences in body size or bone modelling and remodelling rates.

Apex of curvature

Apex of curvature is aso not related to body size or climate. Thereis some indication that higher
levels of external robusticity and a more anteroposteriorly wide shaft are related to a more distal
apex of curvature. Apex of curvature isagood indicator of activity levels. Groups with high
activity levels have a more distal apex. Group with low activity levels have the most proximal
apex of curvature. Among the high activity level subsistence strategies, aguatic foragers have the
most proximal apex of curvature and the equestrian foragers the most distal.

Rest of the morphology

No predictions were made about other aspects of shaft shape and the univariate measurements;
however, there were some interesting results. The low activity group had alateral surface that
approximated an arc of acircle more and alateral surface that, from an anterior view, was more
sinusoidal than moderate and high activity groups who show a straightening of the proximal
lateral surface. The equestrian foragers stood apart from the other subsistence categoriesin
having a proximally straighter posterior diaphyseal surface compared to aquatic foragers and
pastoralists. Thereis no relationship between climate and femoral shaft shape but individuas
from colder areas do have greater epiphyseal robusticity.

The high activity groups had more robust femora (at midshaft and epiphyseal) with a higher
neck-shaft angle and relatively longer femoral neck length. Low activity groups had more
anteroposteriorly wide femoral shafts compared to high and moderate activity groups who were
not different from each other. Among the high activity groups the equestrian foragers and
pastoralists had the lowest neck-shaft angles and in the pastoralists this was combined with high
levels of midshaft robusticity.
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4.3. Thelower arm

Asfor the femur, the analyses on the lower arm are based on the entire sample of modern
humans and the PCs for the radius and ulnawill be presented first with their respective

visualisations. Subsequently, the results are presented in the same order as the femur.

4.3.1. Radius principa components explained

4.3.1.1. Media surface (mcurve)

Thefirst three PCs of the media curve explain 40.4%, 19.7% and 8.75%,,respectively, of the
variation (total 68.9%). Subsequent PCs explain minimal amounts of the variation and are not

considered further. Figure 4-47 shows the distributions for the populations for PC1 and PC2.

PC1 reflects the differencesin lateral curvature of the interosseous crest (Figure 4-47 and Figure
4-48a). PC2 isrelated to the medial expansion of the proximal interosseous crest and the
mediolateral direction of the distal end of the media surface (Figure 4-47 and Figure 4-48b).
PC3 isthe sinusoidal shape of the medial surface in the anteroposterior plane (Figure 4-48c).
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Figure 4-47 Thefirst and second PCsfor the medial curve of theradius. All recent modern human

samples. PCsare explained in Figure 4-48.
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Figure 4-48 M orphological trendsfor the medial curve of theradiusfor all recent modern humans.
a: Principal component 1: anterior view. Negative values are more curved. b: Principal
component 2: anterior view. Negative values show an increased medial extension of the
proximal interosseous crest and a medial direction of the distal curve (more medially expanded
ulnar notch), whereas positive values show no media expansion of the interosseous crest and an
ulnar notch that is not medially projected. c: Principal component 3: medial view. Negative
values have a more sinusoidal shape than positive values which are straighter. Positive and
negative visualisations correspond to the most extreme positive and negative scores for each PC.
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4.3.1.2. Lateral surface (Icurve)

Thefirst three PCs of the lateral curve explain 40.4%, 19.7% and 8.75%, respectively, of the

variation (total 68.9%). Subsequent PCs explain minimal amounts of the variation and are not

considered further.

Asfor the medial curve, PC1 of the lateral surface reflects differencesin lateral curvature

(Figure 4-49 and Figure 4-50a). The lateral curve is not affected by the development of the

interosseous crest and can give a better indication of an apex of curvature for the radius. PC2 is

influenced by the position of the apex of curvature and the direction of the distal end of the

lateral surface (Figure 4-49 and Figure 4-50b). PC3 relates to the sinusoidal shape of the latera

curve in the anteroposterior plane (Figure 4-50c).
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Figure 4-49 Thefirst and second PCsfor thelateral curve of theradius. All recent modern human

samples. PCsare explained in Figure 4-50.
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Figure 4-50 M orphological trendsfor thelateral curve of theradiusfor all recent modern humans.
a: Principal component 1: antior view. Negative values have a higher degree of curvature
whereas positive values have alower degree of curvature. b: Principal component 2: anterior
view: Positive values have a more proximal apex of curvature and a more laterally projecting
styloid process, whereas negative values have their apex of curvature at midshaft and lack the
lateral projection of the styloid process.c: Principal component 3: lateral view. Negative values
are more sinusoidal compared to positive values. Positive and negative visualisations correspond

to the most extreme positive and negative scores for each PC.
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4.3.1.3. Epiphyses (Epi)

Thefirst 2 PCs of the epiphysis andysis explain 34.8% and 8.89%,,respectively, of the variation
(total 43.7%). Subsequent PCs explain minimal amounts of the variation and are not considered
further.

PC1 reflects the direction of the head and the distal articular surfacein relation to the shaft
(Figure 4-51a). PC2 relates to the length of the radial neck between the radial tuberosity and
80% level of the shaft and the orientation of the tip of the styloid process (Figure 4-51b).
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Figure 4-51 Morphological trendsfor the epiphyses of theradiusfor all recent modern humans. All

medial view.

a: Principal component 1. Individuals with negative values have a more anteriorly oriented head,
whereas those with positive values are more posteriorly oriented. b: Principal component 2.
Negative valuesindicate a shorter distance between the radial tuberosity and the 80% level of
the shaft and a more medially located styloid process, and positive values have alonger neck and
more anteriorly located styloid process. Positive and negative visualisations correspond to the

most extreme positive and negative scores for each PC.
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43.1.4. Summary

Lateral curvatureisthe most important PC for both the medial and the lateral shaft surfaces
(mcurveAMHPC1 and lcurveAMHPCL). Thisisreflected in the significant correlation between
the scores for the curvature PCs (r=0.271) (Table 4-53). There is no correlation between the PCs
of the epiphyses and the two curvature PCs (Table 4-54).

Table 4-53 Pearson’s correlation matrix: radial curvature PCs (n= 360)
mcurAMHPC1  IcurAMHPC1 mcurAMHPC2 mcurAMHPC3

lcurvAMHPC1 r 0.271
P <0.001**
mcurveAMHPC2 r 0.162
P 0.002**
mcurveAMHPC3 r -0.023
P 0.658
lcurvAMHPC2 r -0.367 0.046 0.080
P <0.001** 0.380 0.129
lcurvAMHPC3 r 0.275 0.131
P <0.001** 0.013*

** Correlation is significant at the 0.01 level (2-tailed).
* Correlation is significant at the 0.05 level (2-tailed).

Table 4-54 Pearson’s correlation matrix: radial curvature and epiphyses PCs (n= 349).
EpiAMHPC1  EpiAMHPC2

mcurveAMHPC1 r -0.059 -0.084
P 0.270 0.118
lcurvAMHPC1 r -0.004 0.026
P 0.943 0.627
mcurveAMHPC2 r -0.261 -0.026
P 0.000** 0.626
mcurveAMHPC3 r 0.304 0.027
P 0.000** 0.617
lcurvAMHPC2 r 0.011 -0.090
P 0.841 0.092
lcurvAMHPC3 r -0.176 -0.049
P 0.001** 0.360

** Correlation is significant at the 0.01 level (2-tailed).
* Correlation is significant at the 0.05 level (2-tailed).

Correlations between the other shaft shape PCsindicate that individuals who have a higher
degree of medial curvature (mcurveAMHPC1) have an apex of curvature at midshaft
(mcurveAMHPC?2), less medial expansion of the proximal interosseous crest and the
mediolateral direction of the distal end of the media surface (IcurveAMHPC?2) and aless
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sinusoidal shaft (IlcurveAMHPC3). A higher degree of lateral curvature (IcurveAMHPC1) and
increased sinusoidal shape (IcurveAMHPC3) is correlated with an increased devel opment of the
proximal interosseous crest and increased medial projection of the radia notch
(mcurveAMHPC?2).

Correlations between the epiphysis PCs show that a more posteriorly projected head resultsin a
more developed proximal interosseous crest, a more devel oped radia notch (mcurveAMHPC?2)
and amore sinusoidal shape (lcurveAMHPC3 but see lcurveAMHPC?2). Correlation coefficients
are significant but low (see 4.3.4.1. Left and Right differences).

4.3.2.  Ulnaprincipal components explained

4.3.2.1. Posterior surface (pcurve)

Thefirst four PCs of the posterior curve analysis explain 34.2%, 22.6%, 13.3% and 6.43%,
respectively, of the variation (total 76.53%). Subsequent PCs explain minimal amounts of the
variation and are not considered further. The distribution of the populationsalong PC1 and 2is

shown in Figure 4-52.

PC1 reflects differencesin mediolatera curvature (Figure 4-52 and Figure 4-53a). PC2 isthe
sinusoidal shape of the shaft in the mediolateral plane (Figure 4-52 and Figure 4-53b). PC3
relates to the sinusoidal shape of the shaft in the anteroposterior plane (Figure 4-53c) and best
reflects the posterior subtense described in the literature (Fischer, 1904). PC4 is the direction of
the proximal shaft (Figure 4-53d).
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Figure 4-52 Thefirst and second PCsfor the posterior curve of the ulna. All recent modern human

samples. PCsare explained in Figure 4-53.
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PC4 pcur;fe pos.

Figure 4-53 M orphological trendsfor the posterior curvature of the ulna for all recent modern
humans.
a: Principal component 1: anterior view. Negative val ues have a higher degree of mediolateral

curvature, whereas positive values have alower degree of curvature. b: Principal component 2:
anterior view. Positive values have a straight shaft while negative values are sinusoidal in the
mediolateral plane. ¢: Principal component 3: medial view Positive values are more sinusoidal in
the anteroposterior plane compared to negative values. d: Principal component 4: medial view.
Positive values show a bent proximal shaft indicating a more anteriorly projected ulnar head,
whereas negative values are relatively straight. Positive and negative visualisations correspond

to the most extreme positive and negative scores for each PC.
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4.3.2.2. Proximal ulna (prox)

Thefirst four PCs of the proximal ulna analysis explain 22.0%, 18.4%, 7.84% and 4.33%,

respectively, of the variation (total 52.6%). Subsequent PCs explain minimal amounts of the

variation and are not considered further.

PCL1 reflects differences in the orientation of the proximal ulna in relation to the shaft (Figure

4-54 and Figure 4-55a). PC2 relates to the distance between the 80% level of the shaft and the

coronoid process (Figure 4-55b). PC3 shows the orientation of the trochlear notch (Figure

4-55¢c). PC4 isrelated to the size and dimensions of the trochlear notch (Figure 4-55d).

Population distribution for the orientation of the proximal ulna and the distance between the 80%

level of the shaft and the coronoid process is shown in Figure 4-54.
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Figure 4-54 Thefirst and second PCsfor the proximal ulna. All recent moder n human samples. PCs

are explained in figure Figure 4-55.
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Figure 4-55 M orphological trendsfor the proximal ulnafor all recent modern humans.

a: Principal component 1. Negative values have a proximal ulna that is medially projected with a
medial facing trochlear notch, whereas positive values have a head that is laterally projected and
has a more lateral facing trochlear notch. b: Principal component 2. Positive values have a
longer distance between the 80% and the coronoid process, whereas negative values have short
distances. PC3 shows the orientation of the trochlear notch. ¢: Principal component 3. Negative
values have a more proximo-anterior facing trochlear notch and positive values have a more
anterior facing trochlear notch. d: Principal component. Positive val ues have a deeper trochlear
notch with a higher radial notch and alower olecranon process compared to the negative values.
Positive and negative visualisations correspond to the most extreme positive and negative scores
for each PC.
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43.2.3. Summary

Because the analysis of the ulha has the main goal of identifying the correlates with radial
curvature, and the bone is one that is not frequently studied, the analyses below are exploratory
and will consider al the PCs described above. The correl ations between the posterior curve and
the proximal ulna PCs shows there is a negative correlation between the distance between the
80% level of the shaft and the coronoid process (proxAMHPC?2) and the sinusoida shape in the
anteroposterior plane. Individuals with a greater distance between the 80% level of the shaft and
the coronoid process have amore sinusoidal shaft shape in the anteroposterior plane (Table
4-55).

Table 4-55 Pearson’s correlation matrix: posterior surfaceand proximal ulna PCs (n= 347).
proxAMHPC1 proxAMHPC?2 proxAMHPC3 proxAMHPC4

pcurveAMHPCL1 r 0.121* -0.057 -0.025 -0.012
P 0.024 0.286 0.646 0.828
pcurve AMHPC?2 r 0.090 0.006 0.098 -0.083
P 0.093 0.906 0.068 0.124
pcurveAMHPC3 r 0.023 -0.243** -0.048 -0.074
P 0.669 <0.001 0.374 0.167
pcurveAMHPCA4 r -0.085 -0.078 0.098 -0.075
P 0.113 0.147 0.067 0.162

* = Correlation is significant at the 0.05 level (2-tailed).
** = Correlation is significant at the 0.01 level (2-tailed).

4.3.3. Correlations between PCs and univariate measurements

All modern humans

Curvature of the medial curve of the radiusis positively correlated with robusticity of the head
and distal articulation. McurveAMHPC2 and IcurveAMHPC3 are negatively correlated with
robusticity of the distal articulation and show that individuals with relatively larger distal
articulations have a medial projection on the proximal interosseous crest and a more pronounced
ulnar notch (mcurveAMHPC?2) and are more sinusoidd (IcurveAMHPC3) compared to those
with smaller distal articulations. There is also a positive correlation between midshaft and head
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robusticity and a more sinusoidal radius (N=35) (Table 4-56).

Lateral curvature of the radial shaft is not correlated with any of the univariate measurements.
Individuals with a relatively longer radial neck and an anteroposterioly narrow head have a
higher apex of curvature and a more laterally projecting styloid process (IcurveAMHPC?2). There
is arelationship between increased robusticity of the dista articulation, a relatively longer radia
neck and a more anteriorly located styloid process (EpiAMHPC2) (Table 4-56).

Anteroposterior sinusoidal shape of the ulnar shaft (pcurveAMH3) is related to the olecranon
orientation, relative size of the proximal ulna and relative position of the brachial tuberosity. The
mediolateral orientation of the proximal ulna (proxAMHPCL) is positively correlated with the
coronoid-olecranon size ratio, the size of the brachial tuberosity, length of the pronator crest and
midshaft robusticity. Individuals with a shorter distance between the tip of the coronoid process
and the 80% level of the shaft (proxAMHPC2) have a smaller proximal ulna size, a smaller
radial notch surface area, a higher coronoid-olecranon size ratio, alarger brachia tuberosity and
increased robusticity at the 25% level of the shaft and greater distal articulation robusticity.
Individuals with a more proximoanteriorly facing rather than an anteriorly facing trochlear notch
(proxAMHPC3) have arelatively smaller olecranon, a more proximoanteriorly facing trochlear
notch, greater angle of the proximal ulna and increased distal articulation robusticity. The depth
of the trochlear notch and the position of the radial notch (proxAMHPC4) are positively
correlated with the midshaft shape ratio, the position of the radial notch and robusticity at the
25% of the shaft (Table 4-57; Table 4-58).
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Table 4-56 Pearson’s correlation matrix for radius shape PCs and univariate measurementsfor all modern human populations (N=35).

mcurveAMHP  lcurvAMHP  mcurveAMHP  mcurveAMHP  IcurvAMHP  lcurvAMHP  EpiAMHP  EpiAMHP
C1 C1 C2 C3 C2 C3 C1 Cc2
Midshaftrobusticit
y r -0.257 -0.072 0.112 0.021 0.206 -0.380 0.249 -0.117
P 0.136 0.679 0.523 0.903 0.236 0.024* 0.149 0.503
Headrobusticity r -0.506 -0.045 -0.263 -0.341 -0.266 -0.502 0.124 0.205
P 0.002** 0.799 0.127 0.045* 0.122 0.002** 0.477 0.238
distArtShaftSizeR -0.539 -0.138 -0.421 -0.289 -0.046 -0.518 0.045 0.345
atio P 0.001** 0.428 0.012* 0.092 0.793 0.001** 0.799 0.043*
Max_ Length r -0.220 0.310 0.331 -0.328 0.077 0.005 -0.271 -0.076
P 0.205 0.070 0.052 0.054 0.662 0.975 0.115 0.665
neck-shaftangle °© r 0.334 0.077 -0.168 -0.033 0.140 0.266 0.229 -0.217
P 0.050* 0.662 0.334 0.852 0.424 0.122 0.186 0.211
PosRadTubML r 0.095 -0.095 -0.142 -0.032 0.023 -0.065 0.246 -0.215
P 0.588 0.586 0.415 0.854 0.896 0.710 0.154 0.215
DorsalST r -0.316 0.120 -0.283 0.048 0.209 -0.538 0.146 -0.123
P 0.064 0.492 0.099 0.784 0.228 0.001** 0.404 0.480
LateralST r 0.346 -0.121 -0.016 0.049 -0.038 0.017 0.418 0.069
P 0.042* 0.489 0.925 0.781 0.828 0.923 0.012* 0.692
NeckLengthRatio  r -0.012 -0.047 0.098 0.327 0.476 -0.186 0.140 -0.194
P 0.945 0.787 0.576 0.055 0.004** 0.284 0.424 0.264
HeadShapeRatio -0.121 0.107 -0.122 -0.132 -0.480 -0.075 0.209 0.174
P 0.490 0.542 0.483 0.450 0.004** 0.669 0.228 0.317
midshaftShapeRat ' 0.338 0.071 0.208 -0.088 0.054 0.588 -0.185 -0.280
io P 0.047* 0.685 0.231 0.614 0.758 <0.001 0.286 0.103

* = Correlation is significant at the 0.05 level (2-tailed).

** = Correlation is significant at the 0.01 level (2-tailed).



Table 4-57 Pearson’s correlation matrix for ulna shape PCs and univariate measurementsfor all modern human populations (N=35).

Max_ Radial Notch
Length Olec-shaftratio MidShaftShape Surface ratio TrochNotchOri  Olec-orient angle
pcurveAMHPC1 r 0.004 0.055 0.267 0.162 0.213 0.270
P 0.981 0.766 0.139 0.375 0.241 0.135
pcurveAMHPC2 r -0.197 -0.260 0.121 -0.152 -0.241 -0.339
P 0.279 0.150 0.511 0.405 0.184 0.058
pcurveAMHPC3 -0.297 0.413* -0.140 0.090 0.058 0.442*
P 0.098 0.019 0.443 0.624 0.751 0.011
pcurveAMHPC4 ¢ 0.239 -0.009 0.250 0.233 -0.389 -0.176
P 0.188 0.963 0.167 0.200 0.028 0.336
ProxAMHPC1 r -0.291 0.081 0.100 -0.012 -0.021 0.190
P 0.106 0.660 0.587 0.946 0.911 0.298
ProxAMHPC2 r -0.102 -0.493** 0.279 -0.627** -0.265 -0.732**
P 0.579 0.004 0.122 <0.001 0.143 <0.001
ProxAMHPC3 r 0.011 -0.422* 0.105 -0.138 -0.570** -0.434*
P 0.951 0.016 0.568 0.452 0.001 0.013
ProxAMHPC4 r 0.235 -0.147 0.536** 0.206 -0.343 -0.365*
P 0.195 0.422 0.002 0.258 0.055 0.040

89T

* = Correlation is significant at the 0.05 level (2-tailed).
** = Correlation is significant at the 0.01 level (2-tailed).
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Table 4-58 Pearson’s correlation matrix for ulna shape PCs and univariate measurementsfor all modern human populations (N=35).

CorOleRatio  BrachRatio  pron.cr. length Robust 50% Robust 25%  Robust dist art

pcurveAMHPC1 r 0.320 -0.115 0.202 0.226 0.317 0.293
P 0.074 0.531 0.267 0.214 0.077 0.104
pcurveAMHPC2 r -0.317 -0.142 0.064 -0.086 -0.247 -0.261
P 0.077 0.439 0.729 0.638 0.173 0.150
pcurveAMHPC3 r 0.110 0.382* 0.194 0.250 0.138 0.295
P 0.548 0.031 0.287 0.167 0.452 0.102
pcurveAMHPC4 r 0.020 0.143 -0.315 -0.028 0.178 0.116
P 0.913 0.435 0.079 0.881 0.331 0.526
ProxAMHPC1 r 0.519** 0.390 0.579** 0.608** 0.139 0.208
P 0.002 0.027 0.001 <0.001 0.447 0.253
ProxAMHPC2 r -0.448** -0.544** -0.150 -0.329 -0.499** -0.648**
P 0.010 0.001 0.414 0.066 0.004 <0.001
ProxAMHPC3 r 0.032 -0.106 0.006 0.282 -0.013 -0.409*
P 0.861 0.563 0.974 0.118 0.945 0.020
ProxAMHPC4 r 0.186 0.418* -0.253 0.117 0.444** 0.222
P 0.307 0.017 0.163 0.523 0.011 0.223

* = Correlation is significant at the 0.05 level (2-tailed).
** = Correlation is significant at the 0.01 level (2-tailed).



Populations with high activity levels only

For high activity groups, latera curvature of the radiusis not correlated with robugticity. Medial
curvatureis correlated with the robusticity of the articulations, but not with robusticity at
midshaft. Robugticity of the distal articulation is negatively correlated with mcurveAMHPC2
and IcurveAMHPC3 and shows that individuals with relatively larger distal articulations have an
increased media extension of the proximal interosseous crest, amedial direction of the dista
curve (more medially expanded ulnar notch) and are more sinusoidal compared to those with

smaller distal articulations (Table 4-59).

The correlation between the shape PCs of the ulna and the univariate measurements are the same
as for the whole sample. Only, there is no relationship between the depth of the trochlear notch
(ProxAMHPC4) and the position of the radial notch and robusticity at the 25% of the shaft
(Table 4-66; Table 4-67)
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Table 4-59 Pearson’s correlation matrix for radius PCs and univariate measurements for populationswith high activity levels (N=20).

mcurveA IlcurvAMHP  mcurveAMHP  mcurveAMHP  IcurvAMHP  lcurvAMHP  EpiIAMHPC  EpiAMHPC
MHPC1 C1 C2 C3 C2 C3 1 2

Midshaftrobusticity r -0.311 -0.198 0.121 0.235 0.388 -0.421 0.305 -0.086
P 0.182 0.402 0.613 0.318 0.091 0.064 0.191 0.718

Headrobusticity r -0.536 -0.076 -0.239 -0.266 -0.216 -0.335 0.082 0.321
P 0.015* 0.749 0.310 0.258 0.361 0.149 0.731 0.167

distArtShaftSizeRatio r -0.705 -0.227 -0.507 -0.144 0.027 -0.469 0.115 0.426
P 0.001** 0.336 0.022* 0.545 0.909 0.037* 0.630 0.061

Max_ Length r -0.319 0.332 0.335 -0.264 0.211 0.202 -0.296 0.017
P 0.171 0.153 0.149 0.261 0.372 0.393 0.205 0.944

neck-shaft angle ° r 0.302 0.199 -0.147 -0.094 -0.177 0.234 0.088 -0.123
P 0.195 0.399 0.536 0.694 0.456 0.321 0.712 0.606

PosRadTubML r -0.045 -0.274 -0.064 0.082 0.035 -0.093 0.137 0.021
P 0.852 0.242 0.790 0.732 0.882 0.696 0.565 0.931

DorsalST r -0.204 -0.140 -0.280 0.366 0.402 -0.536 0.301 -0.023
P 0.387 0.555 0.232 0.113 0.079 0.015* 0.197 0.922

LateralST r 0.263 -0.241 0.022 0.133 0.105 0.058 0.693 -0.074
P 0.262 0.307 0.927 0.576 0.659 0.808 0.001** 0.756

NeckLengthRatio r 0.251 -0.157 0.069 0.520 0.630 -0.244 0.239 -0.418
P 0.286 0.509 0.771 0.019* 0.003** 0.300 0.310 0.066

HeadShapeRatio r -0.038 0.188 -0.022 -0.222 -0.468 0.075 0.172 0.412
P 0.873 0.426 0.928 0.347 0.037* 0.754 0.467 0.071

midshaftShapeRatio r 0.219 0.141 0.312 -0.238 -0.004 0.712 -0.282 -0.211
P 0.354 0.554 0.180 0.313 0.986 <0.001** 0.229 0.372

* = Correlation is significant at the 0.05 level (2-tailed).

** = Correlation is significant at the 0.01 level (2-tailed).
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Table 4-60 Pearson’s correlation matrix for ulna PCs and univariate measurementsfor populationswith high activity levels (N=19)

Max
Length Olec-shaftratio MidShaftShape Rad.Notch Surf.  TrochNotchOri ~ Olec-orient angle
pcurveAMHPC1 r 0.021 0.091 0.035 0.268 0.085 0.217
P 0.932 0.710 0.886 0.266 0.730 0.372
pcurveAMHPC2 r -0.173 -0.184 0.057 -0.148 -0.182 -0.317
P 0.479 0.450 0.817 0.547 0.455 0.186
pcurveAMHPC3 r -0.275 0.516* -0.022 0.077 0.240 0.487*
P 0.255 0.024 0.928 0.754 0.323 0.035
pcurveAMHPC4 r 0.145 -0.068 0.295 0.181 -0.380 -0.075
P 0.553 0.781 0.220 0.459 0.109 0.759
ProxAMHPC1 r -0.283 0.112 0.122 -0.033 -0.078 0.110
P 0.241 0.648 0.619 0.894 0.750 0.653
ProxAMHPC2 r -0.080 -0.470* 0.340 -0.593** -0.413 -0.834**
P 0.744 0.042 0.155 0.008 0.079 <0.001
ProxAMHPC3 r 0.013 -0.555* 0.061 -0.267 -0.661** -0.533*
P 0.957 0.014 0.804 0.269 0.002 0.019
ProxAMHPC4 r 0.243 -0.336 0.493* 0.104 -0.388 -0.403
P 0.315 0.160 0.032 0.672 0.100 0.087

* = Correlation is significant at the 0.05 level (2-tailed).
** = Correlation is significant at the 0.01 level (2-tailed).
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Table 4-61: Pearson’s correlation matrix for ulna PCsand univariate measurementsfor populationswith high activity levels (N=19).

Robust dist
CorOleRatio  BrachRatio  pron.cr. length Robusticity at 50%  Robusticity at 25%  artic
pcurveAMHPC1 r 0.323 -0.187 0.317 0.415 0.369 0.257
P 0.177 0.443 0.186 0.077 0.120 0.288
pcurveAMHPC2 r -0.281 -0.253 0.038 -0.174 -0.497* -0.391
P 0.244 0.296 0.879 0.476 0.031 0.097
pcurveAMHPC3 r 0.342 0.592** 0.235 0.222 0.154 0.419
P 0.151 0.008 0.332 0.362 0.528 0.074
pcurveAMHPC4 -0.046 0.046 -0.291 -0.102 0.093 0.049
P 0.853 0.852 0.227 0.677 0.704 0.841
ProxAMHPC1 r 0.600** 0.502* 0.737** 0.690** 0.189 0.242
P 0.007 0.028 <0.001 0.001 0.438 0.317
ProxAMHPC2 r -0.565* -0.616** -0.145 -0.342 -0.547* -0.744**
P 0.012 0.005 0.553 0.151 0.015 <0.001
ProxAMHPC3 r -0.137 -0.255 -0.105 0.239 -0.103 -0.590**
P 0.575 0.292 0.669 0.324 0.673 0.008
ProxAMHPC4 r 0.097 0.293 -0.207 0.087 0.278 0.010
P 0.691 0.224 0.396 0.724 0.249 0.968

* = Correlation is significant at the 0.05 level (2-tailed).
** = Correlation is significant at the 0.01 level (2-tailed).



4.3.4.  Factorsinfluencing curvature in modern humans

The following analyses will focus on the relationship between radial curvature and ulna shaft
shape and the behavioural, environmenta and biological variables that might be expected to
influence morphology. These analyses address the same hypotheses and predictions tested for

the femur.

4.3.4.1. Bilatera asymmetry of the lower arm

Left and right side are not different in degree of radial curvature (Table 4-71) (N=143 left and
218 right radii). Left radii have a more devel oped proximal interosseous crest and radial notch
(mcurveAMHPC2) and a straighter shaft, whereas the right radiusis more sinusoidal and lacks
the proximal development on the interosseous crest (mcurveAMHPC3) (Table 4-71). Left radii
have a more posteriorly oriented radial head (EpiAMHPCL) than right radii. The high t-value for
EpiAMHPC1 indicates that the shape differences along the PC axis trand ate into the differences
between right and | eft (Table 4-62).

The ulna shows marked asymmetry. Right ulnae have more medial curvature (pcurveAMHPC1)
and are more sinusoidal in the mediolateral plane than left ulnae (pcurveAMHPC2) (Table 4-63).
Right ulnae have a proximal ulna that is medialy projected with a medial facing trochlear notch
(proxAMHPC1), have a more proximo-anterior trochlear notch (proxAMHPC3), and a deeper
trochlear notch with a higher radial notch and alower olecranon process (proxAMHPC4) (Table
4-63).
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Table 4-62 Student’st-test resultsfor bilateral asymmetry in radius shapein modern humans.

Side N Mean S.D. t P

McurveAMHPC1 left 143 -0.00098 0.01019 -1.388 0.166
right 218 0.00064 0.01120

lcurvAMHPC1 left 142 0.00007 0.01215 0.100 0.920
right 218 -0.00005 0.01100

McurveAMHPC2 left 143 -0.00211 0.00702 -5.110 <0.001**
right 218 0.00138 0.00588

McurveAMHPC3 left 143 0.00274 0.00583 8.495 <0.001**
right 218 -0.00179 0.00429

lcurvAMHPC2 left 142 0.00038 0.00808 0.753 0.452
right 218 -0.00027 0.00795

lcurvAMHPC3 left 142 -0.00057 0.00571 -1.653 0.099
right 218 0.00038 0.00504

EpiAMHPC1 left 137 0.02254 0.01440 25.945 <0.001**
right 212 -0.01457 0.01210

EpiAMHPC2 left 137 0.00054 0.01164 0.722 0.471
right 212 -0.00035 0.01108

* Significant at a=0.05

Table 4-63 Student’ st-test resultsfor bilateral asymmetry in ulna shapein modern humans.

Side N Mean S.D. t P

PcurveAMHPC1 right 227 -0.00064 0.00900 -2.156 0.032*
left 118 0.00148 0.00800

PcurveAMHPC2 right 227 -0.00053 0.00736 -2.109 0.036*
left 118 0.00117 0.00650

PcurveAMHPC3 right 227 -0.00006 0.00539 -0.226 0.822
left 118 0.00008 0.00565

PcurveAMHPC4 right 227 0.00013 0.00386 0.815 0.416
left 118 -0.00022 0.00370

proxAMHPC1 right 227 -0.03983 0.05087 -18.678 <0.001*
left 118 0.07760 0.06324

proxAMHPC2 right 227 0.00152 0.07100 0.497 0.620
left 118 -0.00254 0.07397

proxAMHPC3 right 227 -0.00404 0.04851 -2.325 0.021*
left 118 0.00826 0.04262

proxAMHPC4 right 227 0.00715 0.03195 5.450 <0.001*
left 118 -0.01354 0.03616

*=significant at a=0.05

Univariate measurements
Left radii have lower neck-shaft angles, amore medially located radial tuberosity, and a higher
dorsal and lateral subtense (Table 4-64).

Right ulnae have larger proximal ulnae (Olec-shaftratio) that are oriented more in line with the

shaft axis both mediolaterally (head orientation angle) and anteroposteriorly (troch-notch

orientation) (Table 4-65). Right ulnae aso have more equal coronoid and olecranon heights
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(CorOleRatio), ashorter pronator crest and lower robusticity at midshaft and at the 25% level of

the shaft.

Table 4-64 Student’st-test resultsfor univariate measur ements of the radiusin modern humans.

N Mean S.D. t P

Max_ Length left 143 232.49 19.68 -1.926 0.055
right 218 236.57 19.72

neck-shaft angle ° left 143 40.84 15.69 5.632 0.000*
right 218 32.72 11.64

PosRadTubML left 143 17.71 7.93 4.837 0.000*
right 218 14.05 6.37

DorsalST left 143 7.14 216 4.227 0.000*
right 218 6.24 1.86

LateralST left 143 7.81 293 5.941 0.000*
right 218 6.14 2.37

NeckLengthRatio left 143 11.20 1.33 1.789 0.074
right 217 10.92 156

OlecShapeRatio left 143 106.42 898 1.845 0.066
right 217 104.70 8.46

Midshaft Shape Ratio left 143 84.51 16.40 -0.376 0.707
right 217 85.10 13.21

* Significant at 0=0.05

Table 4-65 Student’ st-test results for univariate measur ements of the ulna in moder n humans.

Side N Mean S.D. t P

Max_ Length right 227 251.82 20.45 1.843 0.066
left 119 247.56 20.32

Olec-shatft ratio right 227 9.21 0.97 2.922  0.004*
left 119 8.88 1.01

MidShaft Shape right 227 109.52 35.16 -0.245 0.806
left 119 110.40 24.38

Radial Notch Surf. ratio right 227 29.77 7.86 0.397 0.692
left 119 2943 6.72

TrochNotchOri right 227 19.76 6.15 -3.181 0.002*
left 119 22.06 6.79

Olec-orient angle right 227 23.42 464 -3.491 0.001*
left 119 25.39 5.64

CorOleRatio right 227 105.62 1.69 -15.168 0.000*
left 119 108.93 2.32

BrachRatio right 227 23.01 191 0.402 0.688
left 119 2293 1.63

Rel. pron. cr. size right 227 14.15 3.77 -3.592 <0.001*
left 119 15.63 3.33

Robusticity at 50% right 227 994 139 -8.091 <0.001*
left 119 11.18 1.29

Robusticity at 25% right 227 1025 141 -2.071 0.039*
left 119 10.58 1.45

Robust dist artic right 227 1559 1.83 -0.001 1.000
left 119 1559 1.94

*=significant at a=0.05
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Results below are reported for the pooled sample only, unless the significance values are
affected. In the analyses investigating sex differences al variables affected by bilateral
asymmetry are performed for the right side only.

4.3.4.2. Body size

Anteroposterior diameter of the femoral head is used as an measure of body size (for those
specimens for which the femur is also preserved) (Ruff, 1991; McHenry, 1992; Grine et al.,
1995). Based on this size surrogate there is no correlation between curvature of the radius and
the shape of the ulna shaft and body size. (Table 4-66; Table 4-67).

Table 4-66 Pearson’s correlationsfor body size (head diameter) and radial curvature (N=27).

HeadAPdiam

mcurveAMHPC1 r 0.165
P 0.409

lcurvAMHPC1 r -0.020
P 0.921

* = Correlation is significant at the 0.05 level (2-tailed).
** = Correlation is significant at the 0.01 level (2-tailed).

Table 4-67 Pearson’s correlationsfor body size (head diameter) and ulna shaft shape (N=27).
HeadAPdiam

UlnpcurveAMHPC1 r 0.163
P 0.418
Ulnpcurve AMHPC?2 r -0.154
P 0.442

* = Correlation is significant at the 0.05 level (2-tailed).
** = Correlation is significant at the 0.01 level (2-tailed).

4343. Sex

Asfor the femur the purpose of these analyses isto investigate sexual dimorphism in the lower

am.

Curvature

For the whole sample of radii of known sex (N=90 males and 82 females), the prediction that
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males have higher robusticity (Table 4-68) because they have higher activity levels than females

was met but males and females were not different in degree of radial curvature (Table 4-69).

Table 4-68 Student’ st-test resultsfor robusticity in modern human males and females.
Sex N Mean S.D. t P

Midshaftrobusticity male 90 2055 2.05 6.329 0.000*
female 82 18.64 1.89

Headrobusticity male 90 30.67 2.73 7.636 0.000*
female 82 27.48 2.73

distArtShaftSizeRatio male 90 37.25 3.12 8.530 0.000*
female 83 33.37 2.84

* Significant at a=0.05

Table 4-69 Student’st-test resultsfor radius curvature PCsin modern human males and females.

Sex N Mean S.D. t P
mcurveAMHPC1 male 90 .00034 .01030 0.261 0.794
female 83 -.00008 .01054
lcurvAMHPC1 male 90 -.00034 .01170 -1.624 0.106

female 83 .00251 .01140

* Significant at 0=0.05

It was demonstrated in the analyses of the femur that there is evidence that division of labour is
most pronounced in groups with high activity levels. Therefore, the expectation is that the effect
of sex on robusticity and curvature is more evident in those groups than for the whole sample
(Table 4-70; Table 4-71). The prediction is met for robusticity (N=39 males and 38 females) and
asisthe case for the whole sample, males and females are significantly different for shaft and
epiphysea robusticity. Degree of curvature is not different between males and females with high

activity levels.

Table 4-70 Student’ st-test resultsfor radiusrobusticity in modern human males and females with
high activity levels.
Sex N Mean S.D. t P

Midshaftrobusticity male 39 2046 2.36 2970 0.004*
female 38 19.01 1.89

Headrobusticity male 39 29.39 2.80 4.727 <0.001*
female 38 26.34 2.87

distArtShaftSizeRatio male 39 36.23 354 3.817 <0.001*
female 38 33.30 3.19

* Significant at a=0.05
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Table 4-71 Student’st-test resultsfor radius curvature PCsin moder n human males and females

with high activity levels.

Sex N Mean S.D. t P
mcurveAMHPC1 male 39 .00199 .01118 1.284 0.203
female 38 -.00094 .00864
lcurvAMHPC1 male 39 -.00013 .01314 -0.376 0.708
female 38 .00101 .01335

* Significant at a=0.05

Other shaft shape PCs

The other shaft shape PCs are bilaterally asymmetric so only theright side is analysed. For all

individuals (N=61 males and 50 femal es) femal es have a more pronounced proximal

interosseous crest and ulnar notch (mcurveAMHPC2) and have a more sinusoidal

anteroposterior shaft shape (mcurveAMHPC3) (Table 4-72). The difference in anteroposterior

shaft shape (mcurveAMHPC3) is also present in the groups with high activity levels, but not the

difference in the interosseous crest and the ulnar notch (Table 4-73).

Table 4-72 Student’ st-test resultsfor radius shaft shape PCsin modern human malesand females —

right only.
Sex N Mean S.D. t P

mcurveAMHPC?2 male 61 0.00277 0.00485 2.986 0.003*
female 50 -0.00037 0.00626

mcurveAMHPC3 male 61 -0.00097 0.00365 3.074 0.003*
female 50 -0.00309 0.00357

lcurvAMHPC2 male 61 0.00049 0.00774 0.332 0.741
female 50 0.00000 0.00755

lcurvAMHPC3 male 61 -0.00108 0.00526 -1.900 0.060
female 50 0.00088 0.00557

* Significant at a=0.05
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Table 4-73 Student’ s t-test resultsfor radius shaft shape PCsin modern human males and females

with high activity levels-right only.

Sex N Mean S.D. t P

mcurveAMHPC?2 male 26 0.00301 0.00440 0.685 0.497
female 22 0.00197 0.00607

mcurveAMHPC3 male 26 -0.00051 0.00325 2.413 0.020*
female 22 -0.00276 0.00320

IcurvAMHPC2 male 26 0.00195 0.00868 0.328 0.744
female 22 0.00117 0.00744

lcurvAMHPC3 male 26 0.00138 0.00467 -0.893 0.376
female 22 0.00263 0.00506

* Significant at a=0.05

Thefirst and second PC for the ulna show bilateral asymmetry. Therefore the analyses are

performed on the right side only. Thereisno sexua dimorphism in the right ulna (65 males and
49 females) for any of the shaft shape PCs (Table 4-74). In the right ulnae of the high activity

group (30 males and 22 females), males have a straighter shaft in the mediolateral plane
compared to females (pcurveAMHPC2) (Table 4-75).

Table 4-74 Student’ st-test resultsfor ulna shaft shape PCsin modern human males and females —

right only.
Sex N Mean S.D. t P

pcurveAMHPC1 male 65 -0.00071 0.00849 -0.404 0.687
female 49 -0.00009 0.00781

pcurveAMHPC2 male 65 -0.00028 0.00704 0.634 0.527
female 49 -0.00119 0.00821

pcurve AMHPC3 male 65 -0.00070  0.00549 0.806 0.422
female 49 -0.00150 0.00483

pcurveAMHPC4 male 65 0.00060 0.00416 1.017 0.311
female 49 -0.00017 0.00374

*=significant at a=0.05

Table 4-75 Student’st-test resultsfor ulna shaft shape PCsin modern human males and females

with high activity levels—right only.

Sex N Mean S.D. t P

pcurve AMHPC1 male 30 -0.00280 0.00891 -1.691 0.097
female 22 0.00104  0.00680

pcurve AMHPC2 male 30 0.00185 0.00678 2.626 0.011*
female 22 -0.00311  0.00667

pcurve AMHPC3 male 30 -0.00114  0.00577 -0.163 0.871
female 22 -0.00091 0.00398

pcurveAMHPC4 male 30 0.00084 0.00413 1.771 0.083
female 22 -0.00115 0.00376

*=significant at a=0.05
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Epiphysis shape

EpiAMHPC1 shows significant side differences so only the right side is analysed. Males and
females are similar in their radial epiphysis morphology for the whole sample (Table 4-76) and
for high activity groups aone (Table 4-77).

Table 4-76 Student’ st-test resultsfor radius epiphyses PCsin modern human males and females —

right only.
Sex N Mean S.D. t P
EpiAMHPC1 male 61 -0.01280 0.01340 0.007 0.994
female 46 -0.01282 0.01286
EpiAMHPC2 male 61 -0.00064 0.00961 -0.994 0.322
female 46 0.00148 0.01243

* Significant at a=0.05

Table 4-77: Student’st-test resultsfor radius epiphyses PCsin modern human males and females

with high activity levels-right only.

Sex N Mean S.D. t P
EpiAMHPC1 male 26 -0.01415 0.01310 0.847 0.402
female 20 -0.01715 0.01015
EpiAMHPC2 male 26 -0.00130 0.00807 -0.995 0.325
female 20 0.00141 0.01043

* Significant at a=0.05

Thereis bilateral asymmetry in the PCsfor the proximal ulna. Therefore, these analyses are
performed on the right ulnaonly. Males have alonger distance between the 80% level of the
shaft and the tip of the coronoid process than females (65 males and 49 females)
(proxAMHPC2) (Table 4-78). For right ulnae of the high activity groups (30 males and 22

femal es) thereis no difference in proximal ulna shape (Table 4-79).

Table 4-78 Student’ st-test resultsfor the proximal ulna PCsin modern human males and females —

right only.
Sex N Mean S.D. t P

proxAMHPC1 male 65 -0.03654 0.04761 -0.684 0.495
female 49 -0.02985 0.05661

proxAMHPC2 male 65 0.00007 0.07346 -2.226 0.028*
female 49 0.03047 0.07042

proxAMHPC3 male 65 -0.00449  0.05483 -1.806 0.074
female 49 0.01340 0.04886

proxAMHPC4 male 65 0.00790 0.02668 -1.663 0.099

female 49 0.01769  0.03616
*=significant at a=0.05
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Table 4-79 Student’st-test resultsfor the proximal ulna PCsin modern human males and females

with high activity levels-right only.

Sex N Mean S.D. t P

proxAMHPC1 male 30 -0.05290 0.04030 -0.047 0.962
female 22 -0.05228 0.05352

proxAMHPC2 male 30 0.01240 0.07383 -0.700 0.487
female 22 0.02739  0.07958

proxAMHPC3 male 30 0.00746  0.05689 0.537 0.594
female 22 -0.00047  0.04609

proxAMHPC4 male 30 0.00099 0.02458 -0.343 0.733
female 22 0.00395 0.03755

*=significant at a=0.05

Univariate measurements

Males have significantly longer radii (Max_Length, p<0.001 for both all AMH and high activity

groups only) (Table 4-80). When al individuals are considered females have arelatively shorter

radial neck (NeckLengthRatio), but this sexual dimorphism disappears when only groups with

high activity levels are considered (Table 4-81).

Table 4-80: Student’st-test resultsfor the univariate measur ements of the radiusin modern human

males and females. Underlined variables show bilateral asymmetry and wer e analysed for the right

sideonly.
Sex N Mean S.D. t P

Max_ Length male 90 248.43 16.5 9.572 <0.001*
female 83 225.3 15.18

neck-shaft angle ° male 61 33.51 12.11 0.947 0.346
female 50 31.12 14.48

PosRadTubML male 61 14.65 7.64 1.397 0.165
female 50 12.82 5.78

DorsalST male 61 6.68 1.94 1.671 0.098
female 50 6.08 1.86

LateralST male 61 6.09 2.5 0.369 0.713
female 50 5.93 1.9

NeckLengthRatio male 90 11.23 1.6 241 0.017*
female 82 10.69 1.3

HeadShapeRatio male 90 107.19 7.83 0.867 0.387
female 82 106.09 8.85

midshaftShapeRation male 90 84 13.05 -0.258 0.797
female 82 84.57 16.18

* Significant at a=0.05
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Table 4-81 Student’st-test resultsfor the univariate measurements of theradiusin modern human

males and females with high activity levels. Underlined variables show bilateral asymmetry and

were analysed for theright side only.

Sex N Mean S.D. t P

Max_ Length male 39 247.75 16.52 5.057 <0.001*
female 38 227.18 19.12

neck-shaft angle ° male 26 3164 7.74 -0.938 0.353
female 22 34.63 13.94

PosRadTubML male 26 1397 6.35 0.683 0.498
female 22 12.75 5.97

DorsalST male 26 6.4 217 1.437 0.157
female 22 5,53 1.95

LateralST male 26 589 2.79 0.483 0.631
female 22 5.54 2.1

NeckLengthRatio male 39 1063 1.39 0.201 0.841
female 38 10.57 1.28

HeadShapeRatio male 39 107.02 8.85 1.132 0.261
female 38 104.56 10.17

midshaftShapeRation male 39 87.02 14.87 0.272 0.787
female 38 85.93 19.89

* Significant at a=0.05

Males have longer ulnae than females (Max_L ength, p<0.001 for both all AMH and high

activity groups only) (Table 4-82). When al individuas are considered, males are rounder at the

ulnar midshaft and are more robust at the midshaft and at the 25% level of the shaft than

femal es. These differences disappear when only high activity groups are anaysed (Table 4-83).
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Table 4-82 Student’st-test resultsfor the univariate measurements of the ulna in modern human

males and females. Underlined variables show bilateral asymmetry and wer e analysed for theright

sideonly.
Sex N Mean S.D. t P

Max_ Length male 101 262.48 18.79 9.364 <0.001*
female 79 238.23 15.02

Olecshaftration male 66 9.37 1.03 2.886 0.005*
female 49 8.85 0.89

MidShaftShape male 101 106.28 22.80 -3.430 0.001*
female 79 123.07 41.91

Radial Notch Surface ratio male 101 3156 8.25 3.582 <0.001
female 79 2743 6.85

TrochNotchOri male 66 20.49 6.92 1.476 0.143
female 49 18.67 6.01

Olec-orient angle male 101 23.88 4.99 1.033 0.303
female 79 23.06 5.68

CorOleRation male 66 106.04 1.45 2.807 0.006*
female 49 105.22 1.66

brachRatio male 101 22.84 1.92 0.626 0.532
female 79 23.03 2.09

Rel. pron. cr. size male 66 14.12 4.08 0.888 0.376
female 49 14.80 4.04

Robusticity at 50% male 101 10.81 1.34 3.543 0.001*
female 79 10.06 1.50

Robusticity at 25% male 66 10.73 1.53 3.052 0.003*
female 49 9.89 1.33

Robust dist artic male 101 15.70 1.92 0.802 0.424
female 79 15.47 1.83

*=significant at a=0.05
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Table 4-83 Student’st-test resultsfor the univariate measurements of the ulna in modern human

males and females with high activity levels. Underlined variables show bilateral asymmetry and

were analysed for theright side only.

Sex N Mean S.D. t P

Max_ Length male 47 262.15 18.75 5.918 <0.001*
female 37 238.4 17.61

Olec-shaftratio male 30 8.99 0.94 1.595 0.117
female 22 8.59 0.87

MidShaftShape male 47 103.11 24.65 -0.984 0.328
female 37 109.2 32.11

Radial Notch Surface ratio male 47 28.07 7.84 1.202 0.233
female 37 26.09 7.09

TrochNotchOri male 30 19.78 6.49 1.091 0.281
female 22 17.76  6.71

Olec-orient angle male 47 2322 481 -1.617 0.11
female 37 25.18 6.27

CorOleRation male 30 105.58 1.4 1.676 0.1
female 22 104.92 1.41

brachRatio male 47 22.05 1.85 0.232 0.748
female 37 21.91 2.12

Size pron.cr. rel. length male 30 14.74 3.86 0.747 0.458
female 22 13.92 3.94

Robusticity at 50% male a7 10.9 1.4 1.635 0.106
female 37 10.39 1.45

Robusticity at 25% male 30 10.75 1.51 1.516 0.136
female 22 10.17 1.12

Robust dist artic male 47 15.01 1.84 0.021 0.983
female 37 15 1.89

*=significant at a=0.05

Summary

Thereis no sexual dimorphism in curvature of the shaft of the radius or the ulna. Females have

shorter and less robust radii than do males. Females also have a more anteroposterior sinusoidal

radial shaft shape. Females have a smaller ulnathat is more sinusoidal than that of males.

43.4.4. Age

Of the whole sample, there were 93 radii from individuals of known age and 97 ulnae.

Thereis no relationship between age and curvature and epiphyseal shape of the radius (Table

4-84), for the pooled and right-only sample. A negative correlation with mcurveAMHPC2 and

lcurveAMHPC3 indicate that younger individuals have an increased medial extension of the

185



proximal interosseous crest and amedial direction of the distal curve (more medialy expanded

ulnar notch) and have a more sinusoidal shape compared to older individuals.

Table 4-84 Kendall’'s Tau b correlationsfor radius PCs and age (N=93).

Specimen age

Curvature
McurAllPC1

LcurAllPC1

Shaft shape
McurAllPC2

McurAllPC3
LcurAllPC2
LcurAllPC3

Epiphyses shape
EpiAllPC1

EpiAlIPC2

- U-

0.085
0.238
-0.029
0.690

0.232**
0.001
-0.077
0.283
-0.026
0.717
0.266**
<0.001

0.121
0.095
0.269**
<0.001

* = Correlation is significant at the 0.05 level

(2-tailed).

** = Correlation is significant at the 0.01 level

(2-tailed).

Thereis no relationship between age and the shape of the shaft or the proximal ulna (Table

4-85). Thereisaweak correlation (r=0.182, P=0.041) between proxAMHPCL1 and age for the

right ulnae. Older individuas have a more medialy projected proximal ulna with a more medial

facing trochlear notch.

Table 4-85 Kendall’s Tau b correlationsfor ulna PCs (N=97).

shaft shape
pcurveAMHPC1

pcurveAMHPC2
pcurveAMHPC3

pcurveAMHPC4

r
P
r
P
r
P
r

P

0.094
0.181
-0.003
0.965
0.012
0.869
0.001
0.993

Proximal ulna
proxAMHPC1

proxAMHPC2
proxAMHPC3

proxAMHPC4

L 2NN v B e v B R v B

0.080
0.257
-0.094
0.181
-0.020
0.781
0.105
0.135

* = Correlation is significant at the 0.05 level (2-tailed).
** = Correlation is significant at the 0.01 level (2-tailed).
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Univariate measurements
Ageis positively correlated with head-shaft size ratio (Table 4-86). Older individuals have

larger heads relative to shaft length compared to younger individuals. For the ulna the position of

the brachial tuberosity may shift more distally but this correlation is absent in the right only
sample (r=0.163; P=0.068). There is aweak positive correlation between distal articulation

robusticity and age (Table 4-87).

Table 4-86 Kendall’s Tau b correlationsfor the univariate measurementson theradius and age

(N=97).
Specimen age
Max_ Length r -0.009
P 0.902
neck-shaft angle ° r 0.075
P 0.296
PosRadTubML r 0.193**
P 0.007
DorsalST r 0.055
P 0.446
LateralST r -0.013
P 0.860
NeckLengthRatio r -0.092
P 0.201
HeadShapeRatio r 0.190**
P 0.009
midshaftShapeRatio r -0.087
P 0.226
HeadShaftSizeRatio r 0.175*
P 0.016
Robusticity
Midshaftrobusticity r -0.016
P 0.829
Headrobusticity r 0.174*
P 0.016
distArtShaftSizeRatio r 0.113
P 0.114

* = Correlation is significant at the 0.05 level (2-

tailed).

** = Correlation is significant at the 0.01 level (2-

tailed).
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Table 4-87 Kendall’s Tau b correlationsfor univariate measurementson the ulna (N=97).

Max_ Length

Olec-shaftratio

r
P
r
P
MidShaftShape r
P
Rad. Notch Surf. ratio r

P

r

TrochNotchOri
P

-0.001
0.985
0.171*
0.015
-0.010
0.886
0.047
0.500
0.076
0.280

Proximal ulna
Olec-orient angle

CorOleRatio
brachRatio

Rel. pron.cr. size

r
P
r
P
r
P
r
P

0.130
0.065
0.042
0.553
0.231*
0.001
0.036
0.608

robusticity
Robusticity at 50%

Robusticity at 25%

Robust dist artic

-0.023
0.745
0.054
0.446

0.189**
0.007

* = Correlation is significant at the 0.05 level (2-tailed).
** = Correlation is significant at the 0.01 level (2-tailed).
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When age categories were used in order test for the effect of age on radid curvature the
ANOVA showed no significant effect (Table 4-88). For the ulna, adults have the shortest
distance between the 80% level of the shaft and the tip of the coronoid process (proxAMHPC2.)
(Table 4-89, Figure 4-56).

Table 4-88 ANOVA resultsfor age categories and radius curvature PCs.

d.f.=2 F Sig.
mcurveAMHPC1 0.191886894 0.825
lcurvAMHPC1 0.516318658 0.597

*=significant at a=0.05

Table 4-89 ANOVA resultsfor age categories and ulna shape PCs.

d.f.=2 F Sig.

pcurveAMHPC1 0.575 0.563
pcurveAMHPC2 1.490 0.227
pcurveAMHPC3 0.637 0.530
pcurveAMHPC4 0.194 0.824
proxAMHPC1 0.403 0.669
proxAMHPC2 3.505 0.031*
proxAMHPC3 0.425 0.654
proxAMHPC4 2.412 0.091

*=significant at a=0.05
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Figure 4-56 ProxAMHPC2 for moder n humans, by age strategy. M ean and 95% confidence interval
(whiskers).

High values have a greater distance between the tip of the coronoid process and the 80% level of
the shaft.

Summary

Thereis no relationship between age and curvature, nor are there curvature differences when the
age categories are used. Y ounger individuals have an increased medial extension of the proximal
interosseous crest and a medial direction of the distal curve (more medially expanded ulnar
notch) and have a more sinusoidal shape compared to older individuals. Older individuals have

larger heads relative to shaft length compared to younger individuals.

4.3.4.5. Activity levels

The following analyses use the same categories used in the analyses of the femur. The
digtribution of the populations (Appendix 8) for the first PCs of the radius and ulna are presented
in Figure 4-57 to Figure 4-59).
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Figure 4-57 Distribution of the activity level categoriesin the space of PC1 (degree of curvature) and
PC2 (medial expansion of the inter osseous crest) of the medial curve of theradiusfor all modern

humans. Circles: high activity, squares: moder ate activity, crosses: low activity.
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Figure 4-58 Distribution of the activity level categoriesin the space of PC1 (degree of curvature) and
PC2 (apex of curvature) of the lateral curve of theradiusfor all modern humans.

Circles: high activity, squares: moderate activity, crosses: low activity.
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Figure 4-59 Distribution of the activity level categoriesin the space of the PC1 (degr ee of
mediolateral curvature) and PC2 (mediolateral sinusoidal shape) of the posterior curve of theulna

for all modern humans.

Circles: high activity, squares: moderate activity, crosses: low activity.

Curvature

There are no differences in the curvature of the radius across activity levels(Table 4-90). There
are differences between high activity subsistence strategies for both curvature PCs, however
(Table 4-91). The horticulturalists are the least curved and significantly different in lateral
curvature from equestrian foragers and pastoralists (lcurveAMHPC1) (Appendix 23,Figure

4-60). The post-hoc comparisons show no significant pairwise differences for mcurveAMHPCL.

Table 4-90 ANOVA resultsfor activity levelsand radius curvature PCs.
d.f.=2 F Sig.

mcurveAMHPC1 2.936920496 0.054
lcurvAMHPC1 2417027448 0.091

*=significant at a=0.05
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Table 4-91 ANOVA resultsfor high activity subsistence subsistence strategies and radius curvature
PCs.

d.f.=4 F Sig.
mcurveAMHPC1 2.612 0.037*
lcurvAMHPC1 4566 0.002*

*=significant at a=0.05

0.01000+

0.00500+

0.00000+

-0.00500

Mean lecurveMAHPC1rev

-0.010004

= N=14 N=47 = =

001500 N 5?| | d M 3|1 M |22
pedestrian eguestrian aguatic foraging pastoralism horticutturalists
faraging foraging

subsistence stragegy

Errar Bars: 95% Cl

Figure 4-60 Lateral curvature of the radiusfor modern humans, by subsistence strategy.
The scale of IcurveAMHPC1 isreversed so that the higher valuesindicate a higher degree of

curvature. Mean and 95% confidence interval (whiskers).

Other shaft shape PCs

The different activity level groups are significantly different in radial shaft shape in one out of
four PCs (IcurveAMHPC3) (Table 4-92). Post-hoc tests of the lcurveAMHPC3 show that high
activity groups have the straightest shaft compared to the more sinusoidal shaft in moderate and
low activity groups (Appendix 24 and Figure 4-61).
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Table 4-92 ANOVA resultsfor activity levelsand radius shaft shape PCs.

d.f.=2 F Sig.

mcurveAMHPC2 1.181 0.308
mcurveAMHPC3 1.402 0.247
lcurvAMHPC2 2.217 0.110
IcurvAMHPC3 13.799 0.000*

*=significant at a=0.05

0.00200+

0.00000+

Mean lcurvAMHPC3

-0.00200-

-0.00400

MN=171 N=154 N=B5
T T
High Moderate Low
Activity level

Errar Bars: 95% Cl

Figure 4-61 LcurvAMHPC3 (high values have the least sinusoidal shaft) of theradiusfor modern

humans, by high activity subsistence strategy. M ean and 95% confidence interval (whiskers).

For two out of four other radial shaft shape PCs the high activity subsistence categories are

significantly different (Table 4-93). Compared to pedestrian foragers, aquatic foragers have an

increased medial extension of the proximal interosseous crest and amedial direction of the distal

curve (more medially expanded ulnar notch) (mcurveAMHPC2) (Figure 4-62). Pastoralists have

the most sinusoidal shaft compared to other subsistence categories (IcurveAMHPC3) (Appendix

25) (Figure 4-63).

For the ulna, there are no significant differencesin shaft shape between the different activity

groups or subsistence patterns (Table 4-94; Table 4-95).
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Table 4-93 ANOVA resultsfor subsistence strategies with high activity levels and radius shaft shape
PCs.

d.f.=4 F Sig.

mcurveAMHPC2 2.458 0.048*
mcurveAMHPC3 1.555 0.189
lcurvAMHPC2 1.795 0.132
IcurvAMHPC3 3.499 0.009*

*=significant at a=0.05

0.00600—

0.00400+

0.002004

0.000004

Mean mcurveAMHPC2

-0.00200+

57 14 47
-0.00400 T T T 3|1 2|2
pedestrian eguestrian aguatic foraging pastoralism horticuturalists
foraging faraging

subsistence stragegy

Errar Bars: 95% Cl

Figure 4-62 M curvePC2 of theradiusfor modern humans, by high activity subsistence strategy.
Mean and 95% confidenceinterval (whiskers).

Low values have increased medial extension of the proximal interosseous crest.
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Figure 4-63 L curvePC3 (low values are more sinusoidal) of theradiusfor modern humans, by high

activity subsistence strategy. Mean and 95% confidenceinterval (whiskers).

Table 4-94 ANOVA resultsfor activity levelsand ulna shaft shape PCs.

d.f.=2 F Sig.

pcurveAMHPC1 0.048 0.953
pcurveAMHPC2 1.339 0.264
pcurveAMHPC3 2.793 0.063
pcurve AMHPCA4 0.602 0.548

*=significant at a=0.05

Table 4-95 ANOVA resultsfor subsistence strategies with high activity levels and ulna shaft shape

PCs.
d.f.=4 F Sig.
pcurveAMHPCL1 1.035 0.391
pcurveAMHPC2 1.398 0.237
pcurveAMHPC3 0.606 0.659
pcurveAMHPC4 1.153 0.334

*=significant at a=0.05
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Epiphysis shape
Although there is a significant difference between the activity levels for radia epiphysis shape,
the post-hoc procedures did not find differences between the three activity levels (Table 4-96

and Appendix 26).

For the high activity subsistence groups there is a significant difference between pastoralists and
aguatic and equestrian foragers for EpiAMHPC2 (Table 4-97). Pastoralists have amore
posteriorly oriented head than horticulturalists and aguatic and equestrian foragers (Figure 4-64
and Appendix 27).

Table 4-96 ANOVA resultsfor activity levelsand radius epiphyses PCs.

df=2 F Sig.
EpIAMHPC1 3163 0.044%
EpiIAMHPC2 0213  0.809

*=significant at a=0.05

Table 4-97 ANOVA resultsfor subsistence groupswith high activity levels and radius epiphyses
PCs.

d.f.=4 F Sig.
EpIAMHPC1 6.008 <0.001*
EpIAMHPC2 1.024  0.397

*=significant at a=0.05
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Figure 4-64 EpiAMHPC2 for moder n humans, by subsistence strategy. The scale of lcurveAMHPC1
isreversed to easeinter pretations (have a more posteriorly oriented head). M ean and 95%
confidence interval (whiskers).

High values have a more posteriorly oriented head.

The activity levels are significantly different for proxAMHPCA4 (Table 4-98). Populations with
low activity levels have a deeper trochlear notch with a higher radial notch and alower
olecranon process compared to the high and moderate activity groups (Appendix 27, Figure
4-65).
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Table 4-98 ANOVA resultsfor activity levelsand the proximal ulna PCs.

d.f=2 F Sig.
proxAMHPC1 0.981 0.376
proxAMHPC2 0.716 0.490
proxAMHPC3 1.370 0.256
proxAMHPC4 8.148 <0.001*
*=significant at a=0.05
0.04000-
0.030004 -1
=t
(3]
o
% 0.02000-
<
5
s 1
c
T 0.01000
=
000000 T
[rm— N:TF{Q- N;+I-r'1— N=|38
High Moderate Low
Activity level

Figure 4-65 ProxAMHPC4 for modern humans, by activity level. Mean and 95% confidence
interval (whiskers).

High values have a deeper trochlear notch with a higher radia notch and alower olecranon

process.

Error Bars: 95% Cl

The high activity subsistence groups are different for proxAMHPC2 and proxAMHPC4 (Table

4-99). Equestrian and aquatic foragers have a greater distance between the 80% shaft level and

the tip of the coronoid process compared to pastoralists who have the shortest distance. Also,

aguatic foragers have a shallower trochlear notch with alower radial notch and a higher

olecranon process compared to pastoralists and pedestrian and equestrian foragers (Figure 4-66
and Figure 4-67) (Appendix 29).

200



Table 4-99 ANOVA resultsfor subsistence strategy and the proximal ulna PCs.

d.f.=4 F Sig.

ProxAMHPC1 1.025  0.396
ProxAMHPC2 3.600 0.008*
ProxAMHPC3 2263  0.065
pProxAMHPC4 5.188 0.001*

*=significant at a=0.05
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Figure 4-66 ProxAMHPC2 for moder n humans, by subsistence strategy. Mean and 95% confidence
interval (whiskers).
High values greater distance between the tip of the coronoid process and the 80% level of the
shaft.
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Figure 4-67 ProxAMHPC4 for modern humans, by subsistence strategy. Mean and 95% confidence
interval (whiskers).
High values have a deeper trochlear notch with a higher radial notch and alower olecranon
process.
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Univariate measurements

The activity groups are different for radial head robusticity (Table 4-100; Appendix 30; Figure
4-68). The high activity subsistence strategies are significantly different in robusticity at all three
levels of the radial shaft (head, midshaft and distal articulation) (Table 4-101). Pastoralists are
the most robust overall, whereas horticulturalists and aquatic foragers have the least robust radii
(Appendix 31 and Figure 4-69 - Figure 4-71).

Table 4-100 ANOVA resultsfor activity level and radiusrobusticity.

d.f.=2 F Sig.

Midshaftrobusticity 2.461 0.087
Headrobusticity 10.563 <0.001*
distArtShaftSizeRatio 1.979 0.140

*=gsignificant at a=0.05
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Errar Bars: 95% Cl
Figure 4-68 Head robusticity for moder n humans, by activity level. Mean and 95% confidence

interval (whiskers).
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Table 4-101 ANOVA resultsfor subsistence strategy and radiusrobusticity.

d.f.=4 F Sig.
Midshaftrobusticity 3.869 0.005*
Headrobusticity 5.260 0.001*

distArtShaftSizeRatio 5.186 0.001*

*=gsignificant at a=0.05
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Figure 4-69 Midshaft robusticity for moder n humans, by subsistence strategy. M ean and 95%

confidence interval (whiskers).
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Figure 4-70 Head robusticity for moder n humans, by subsistence strategy. M ean and 95%

confidence interval (whiskers).
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Figure 4-71 Relative distal articulation size for modern humans, by subsistence strategy. M ean and

95% confidenceinterval (whiskers).
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Thereisasdignificant difference for the activity groups for a series of univariate measurments of
the radius. Low activity groups have a smaller neck-shaft angle and a more medially placed
radial tuberosity (Table 4-102; Figure 4-72 and Figure 4-73). High activity groups have a shorter
neck than both moderate and low activity groups and less dorsal subtense than moderate activity
groups (Appendix 31 and Figure 4-74 and Figure 4-75). The differences for two univariate
measurements affected by bilateral asymmetry disappear when only the right sideis considered
(Neck-shaft angle and position and radial tuberosity) (Appendix 33; Table 4-103).

Table 4-102 ANOVA resultsfor activity level and univariate measurements on the radius.

d.f.=2 F Sig.

Max_ Length 1.652 0.193
neck-shaft angle ° 7.426 0.001*
PosRadTubML 4.402 0.013*
DorsalST 3.493 0.031*
LateralST 1.271 0.282
NeckLengthRatio 14594  <0.001*
HeadShapeRatio 1.064 0.346
midshaftShapeRation 1.320 0.268

*=significant at a=0.05

Table 4-103 ANOVA resultsfor activity level and univariate measurements on the radius—right

only.

d.f.=2 F Sig.

Max_ Length 0.088 0.916
neck-shaft angle ° 1.224 0.296
PosRadTubML 1.240 0.291
DorsalST 5.140 0.007*
LateralST 1.836 0.162
NeckLengthRatio 10.080 <0.001*
HeadShapeRatio 1.198 0.304
midshaftShapeRatio 1.390 0.251

*=significant at a=0.05
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Figure 4-72 Position of theradial tuberosity for modern humans, by activity level. Lower valuesare

mor e medially placed. M ean and 95% confidence interval (whiskers).
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Figure 4-73 Neck-shaft angle for modern humans, by activity level. M ean and 95% confidence

interval (whiskers).
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Figure 4-74 Relativeradial neck length for modern humans, by activity level. M ean and 95%
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Figure 4-75 Dor sal subtense for modern humans, by activity level. M ean and 95% confidence

interval (whiskers).
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Within the high activity groups (Table 4-104; Figure 4-76 - Figure 4-81) the aquatic foragers
have significantly shorter radii with a high neck-shaft angle (Figure 4-76). Equestrian foragers
have the lowest neck-shaft angle (Figure 4-77). Pastoralists have the lowest midshaft shape ratio,
indicating a more devel oped interosseous crest on the radius compared to pedestrian foragers,
horticulturalists and aguatic foragers who have higher midshaft shape ratios (Appendix 34;
Figure 4-81).

Table 4-104 ANOVA resultsfor subsistence strategy and univariate measurementson the radius.

d.f.=4 F Sig.

Max_ Length 8.039 <0.001*
neck-shaft angle ° 12.630 <0.001*
PosRadTubML 2.626  0.036*
DorsalST 2.647  0.035*
LateralST 2.246 0.066
NeckLengthRatio 4.062 0.004*
HeadShapeRatio 0.429 0.787
midshaftShapeRatio 6.885 <0.001*

*=significant at a=0.05
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Figure 4-76 Maximum length for modern humans, by subsistence strategy. M ean and 95%
confidence interval (whiskers).
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Figure 4-77 Neck-shaft angle for modern humans, by subsistence strategy. M ean and 95%

confidence interval (whiskers).
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Figure 4-78 Position of the radial tuberosity for modern humans, by subsistence strategy. L ower

values are more medially placed. M ean and 95% confidenceinterval (whiskers).
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Figure 4-79 Dor sal subtense for modern humans, by subsistence strategy. M ean and 95%

confidence interval (whiskers).
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Figure 4-80 Neck length ratio for moder n humans, by subsistence strategy. M ean and 95%

confidence interval (whiskers).
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Figure 4-81 Midshaft shaperatio for modern humans, by subsistence strategy. M ean and 95%

confidence interval (whiskers).

The activity groups are significantly different for most univariate measurements of the ulna
(Table 4-105). High activity groups have shorter ulnae, smaller radial notches, asmaller
coronoid-olecranon size ratio and are more robust than moderate activity groups (Appendix 35
and Figure 4-82 - Figure 4-90). Low activity groups are more robust at the 25% level of the
shaft, have alower brachia tuberosity and a higher midshaft shape ratio than do high and
moderate activity groups (Figure 4-88 and Figure 4-83).
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Table 4-105 ANOVA resultsfor activity levels and univariate measurements on the ulna.

d.f.=2 F Sig.

Max_ Length 3.052 0.049*
Olec-shaftratio 2.884 0.057
MidShaftShape 5.442  0.005*
Rad. Notch Surf. ratio 6.115 0.002*
TrochNotchOri 5.749  0.004*
Olec-orient angle 3.219  0.041*
CorOleRatio 4,763  0.009*
brachRatio 7.265 0.001*
Size pron.cr. rel. length 1.490 0.227
Robusticity at 50% 6.382  0.002*
Robusticity at 25% 5.571  0.004*
Robust dist artic 1.624 0.199

*=significant at a=0.05
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Figure 4-82 Maximum length for modern humans, by activity level.

Mean and 95% confidence interval (whiskers).
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Figure 4-83 Midshaft shape for modern humans, by activity level.

Mean and 95% confidence interval (whiskers).
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Figure 4-84 Radial notch surface area for modern humans, by activity level.
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Mean and 95% confidence interval (whiskers).
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Figure 4-85 Trochlear notch orientation for modern humans, by activity level.
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Figure 4-87 Coronoid-olecranon ratio for modern humans, by activity level.

Mean and 95% confidence interval (whiskers).
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Figure 4-88 Brachial muscle attachment ratio for modern humans, by activity level. Higher values

have arelatively lower insertion. Mean and 95% confidence interval (whiskers).

216



10.80—

=
(=)
(7
= 1050
o .
e
w
3 —
2
[=]
o 10204
c
m
@
=
9,90
. M :I1 69 N:I1 41 NE]?E'
High Moclerate Low
Activity level

Error Bars: 95% Cl

Figure 4-89 Robusticity at 50% shaft level for modern humans, by activity level. M ean and 95%
confidence interval (whiskers).
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Figure 4-90 Robusticity at 25% shaft level for modern humans, by activity level. M ean and 95%
confidence interval (whiskers).
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There are significant differences between the high activity subsistence categoriesfor all
univariate measurements of the ulna (except midshaft shape) (Table 4-106 and Appendix 36).
Aquatic foragers have the shortest ulnae and have the rel atively largest proximal ulnae (Figure
4-91). The pastoralists have the largest radia notch surface. The aquatic foragers and the
horticulturalists have the smallest radia notch surface and are different from the pedestrian
foragers and pastoralists (Figure 4-94). Pastoralists have the largest ol ecranon angle compared to
pedestrian and equestrian foragers (Figure 4-96). The coronoid-olecranon ratio islargest in
pastoralists and smallest in equestrian foragers. Aquatic and pedestrian foragers and
horticulturaists are intermediate (Figure 4-97). Pastoralists have the lowest brachilis insertion,
the horticulturalists the highest (Figure 4-92). The horticulturalists also have the longest pronator
crest, whereas equestrian foragers have the shortest (Figure 4-98). The equestrian foragers have
the lowest midshaft robugticity, pastoralists the highest (Figure 4-99). At the 25% level of the
shaft, pastoralists are still the most robust, but the least robust are the horticulturalists (Figure
4-100).

Table 4-106 ANOVA resultsfor subsistence patternsand univariate measurements on the ulna.

d.f.=4 F Sig.

Max_ Length 8.622 <0.001*
Olec-shaftratio 4.050 0.004*
MidShaftShape 1.589 0.180
Radial Notch Surface ratio 8.722 <0.001*
TrochNotchOri 2.604  0.038*
Olec-orient angle 3.290 0.013*
CorOleRation 9.836 <0.001*
BrachRatio 2.534 0.042*
Size pronator crest rel. lenth 2.838  0.026*
Robusticity at 50% 11.390 <0.001*
Robusticity at 25% 15.183 <0.001*
Robust dist artic 3.471  0.009*

*=significant at a=0.05
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Figure 4-91 Ulna maximum length for modern humans, by subsistence strategy. M ean and 95%

confidence interval (whiskers).
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Figure 4-92 Position of the brachial tuberosity for moder n humans, by subsistence strategy. Mean

and 95% confidence interval (whiskers).
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Figure 4-93 Olecranon-shaft sizeratio for modern humans, by subsistence strategy. M ean and 95%

confidence interval (whiskers).
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Figure 4-94 Radial notch surfaceratio for modern humans, by subsistence strategy. M ean and 95%

confidence interval (whiskers).
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Figure 4-95 Trochlear notch orientation for modern humans, by subsistence strategy. M ean and

95% confidenceinterval (whiskers).
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Figure 4-96 Olecranon orientation angle for modern humans, by subsistence strategy.

Mean and 95% confidence interval (whiskers).
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Figure 4-97 Coronoid-olecranon ratio for modern humans, by subsistence pattern.

Mean and 95% confidence interval (whiskers).
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Figure 4-100 Robusticity at 25% shaft level for modern humans, by subsistence pattern. Mean and
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223



17.004

16.00+

15.00+

Mean Robust dist artic

14.00

N=65 M=12 M=50 M=30 N=12
pedesil'ialL foraging equestrial['l foraging aquatic :oraging pasto:'align horticurlluralis‘ts
subsistence stragegy

13.00

Error Bars: 95% CI
Figure 4-101 Robusticity of the distal articulation for modern humans, by subsistence pattern. Mean

and 95% confidence interval (whiskers).

4.3.4.6. Evolution over timein Europe

Curvature

For the radius, only the lateral surface curvature (lcurveAMHPC1) is significantly affected
through time. However; it doesn not show a steady decrease.The Medieval populations are the
least |aterally curved (Figure 4-102) (Table 4-107) (Appendix 37; Appendix 8).

Table 4-107 ANOVA resultsfor time-period and curvature of the radius.

d.f.=3 F Sig.
mcurveAMHPC1 0.836 0.476
lcurvAMHPC1 6.092 0.001*

*=significant at a=0.05
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Figure 4-102 L ateral curvature of theradiusfor modern Europeans, by time period.

Mean and 95% confidence interval (whiskers).
Ulna shape

Thetime periods are significantly different for two of the ulna PCs (Table 4-108; Appendix 38),
but none of the significant variables shows a steady change through time. The Nealithic
individuals have more anteroposteriorly sinusoidal shafts than the Medieval sample

(pcurveAMHPC3) (Figure 4-103) and the 18" and 19" Century sample has a deeper trochlear
notch (proxAMHPC4) (Figure 4-104).

Table 4-108 ANOVA resultsfor time-period and ulna shape.

d.f.=3 F Sig.

pcurveAMHPCL1 0.127 0.944
pcurveAMHPC2 1.696 0.171
pcurveAMHPC3 3.326 0.022*
pcurveAMHPC4 0.356 0.785
proxAMHPC1 2,512 0.061
proxAMHPC2 1.188 0.317
proxAMHPC3 1.109 0.348
proxAMHPC4 4.881 0.003*

*=significant at a=0.05
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Figure 4-103 PcurveAM HPC3 (high values have a mor e anteroposteriorly sinusoisal shaft) of the
radiusfor modern Europeans, by time period.

Higher values have more anteroposteriorly sinusoisal shafts. Mean and 95% confidence interval
(whiskers).
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Figure 4-104 ProxAM HPCA4 (high values have a deeper trochlear notch) of theradiusfor modern
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Summary
Although there are some differences among samples from different time periods there are no

general trends for aspects of radius and ulna shape through time in Europe.

4.3.4.7. Climateand latitude

Asfor the femur analysis, latitude is used here as a general proxy for climate (Appendix 8).
Individuals from higher latitudes have a higher degree of lateral radial curvature than those from
lower latitudes (LcurveAMHPCL) (Table 4-109; Figure 4-105). There are no correlations
between the radial epiphysis shape PCs and latitude (Table 4-109). The other shaft shape PCs
show that individuals from higher latitudes have an increased medial extension of the proximal
interosseous crest with amore medial expanded ulnar notch (mcurveAMHPC?2) (Figure 4-106)
and amore sinusoidal shape than those living in low latitudes (mcurveAMHPC3) (Table 4-109
and Figure 4-107).

Table 4-109 Pear son’s correlations for curvature, apex of curvature, diaphyseal shape and

epiphyses shape PCs and latitude (climate) on the radius (N=34).

Latitude °

Curvature Other diaphyseal shape

mcurveAMHPC1 r -0.177 mcurveAMHPC2 r -0.550
P 0.316 P 0.001*

lcurvAMHPC1 r -0.371 mcurveAMHPC3 r -0.362
P 0.031* P 0.035*

Epiphyses shape lcurvAMHPC2 r -0.227

EpiAMHPC1 r 0.229 P 0.197
P 0.193 lcurvAMHPC3 r -0.247

EpiAMHPC2 r 0.227 P 0.159
P 0.196

*  Correlation is significant at the 0.05 level (2-tailed).
**  Correlation is significant at the 0.01 level (2-tailed).
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Individuals from high latitudes have shorter distances between the 80% level of the shaft and the
tip of the coronoid process (Table 4-110) (proxAMHPC2). (proxAMHPC?2) (Figure 4-108) and a

more proximo-anterior trochlear notch (proxAMHPC3) (Figure 4-109).

Table 4-110 Pear son’s correlations for curvature, apex of curvature, diaphyseal shape and

epiphyses shape PCs and latitude (climate) on the ulna (N=32).

Latitude °

Shaft shape Proximal ulna

pcurveAMHPCL1 r 0.019 ProxAMHPC1 r 0.174
P 0.920 P 0.350

pcurveAMHPC2 r -0.196 ProxAMHPC2 r -0.644**
P 0.291 P <0.001

pcurveAMHPC3 r 0.318 ProxAMHPC3 r -0.365*
P 0.081 P 0.043

pcurveAMHPC4 r 0.142 ProxAMHPC4 r -0.099
P 0.447 P 0.595

* = Correlation is significant at the 0.05 level (2-tailed).
** = Correlation is significant at the 0.01 level (2-tailed).
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Univariate measurements

Head and distal articulation robusticity of the radiusis positively correlated with absol ute
latitude but midshaft robusticity is not (Table 4-111; Figure 4-110 - Figure 4-112). Thereisno
relationship between the univariate measurements of the radius and absolute latitude (Table
4-112).

Latitude has a pervasive effect on ulna shape as represented by the univariate measurements.
Proximal ulnasize, radial notch surface area, trochlear notch orientation, olecranon orientation,
coronoid-olecranon ratio, brachial tuberosity length and distal articulation robusticity are
positively correlated with latitude (Table 4-113, Figure 4-113 - Figure 4-118).

Table 4-111 Pearson’s correlations for radiusrobusticity (head, midshaft and distal articulation)
and latitude (climate) (N=34).
Midshaftrobusticity = Headrobusticity  distArtShaftSizeRatio

Latitude r 0.178 0.457 0.493
P 0.314 0.007** 0.003**

* = Correlation is significant at the 0.05 level (2-tailed).
** = Correlation is significant at the 0.01 level (2-tailed).
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Figure 4-110 Radius midshaft robusticity and latitude for recent modern humans.
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Table 4-112 Pear son’s correlations for univariate measurements on the radius and latitude (climate)

(N=34).
Absolute Latitude
Max_ Length r -0.188
P 0.287
neck-shaft angle ° r 0.092
P 0.605
PosRadTubML r -0.094
P 0.598
DorsalST r -0.009
P 0.958
LateralST r 0.081
P 0.648
NeckLengthRatio r -0.137
P 0.441
HeadShapeRatio r -0.029
P 0.869
midshaftShapeRation r -0.198
P 0.263

* = Correlation is significant at the 0.05 level (2-tailed).
** = Correlation is significant at the 0.01 level (2-

tailed).

Table 4-113 Pear son’s correlations for univariate measurements on the ulna and latitude (climate)

(N=31).

Max_ Length r 0.063 TrochNotchOri  r  0.487* pron.cr. size r 0.313
P 0.736 P 0.005 P 0.087

Olec-shaftratio r 0.590** Olec-orient r  0.609** Robust 50% r 0.100
P <0.001 P <0.001 P 0.591

MidShaftShape r -0.154 CorOleRation r 0.376* Robust 25% r 0.295
P 0.409 P 0.037 P 0.107

Rad Not Surf r  0.476** BrachRatio r 0.568** Robust distart r 0.625*
P 0.007 P 0.001 P <0.001

* = Correlation is significant at the 0.05 level (2-tailed).

** = Correlation is significant at the 0.01 level (2-tailed).
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Figure 4-113 Scatterplot for olecranon shaft ratio and latitude for recent modern humans.
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TrochMotchOri

Figure 4-115 Orientation of the trochlear notch and latitude for recent modern humans.
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Figure 4-116 Olecranon orientation angle and latitude for recent modern humans.
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Figure 4-117 Position of the brachial muscle insertion and latitude for recent modern humans.
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Summary

Individuals from higher latitudes have a higher degree of lateral radial curvature and medial
expansion of the interosseous crest. Individuals from higher latitudes also have alarger proximal
ulna, larger radia notch surface area, a more proximo-anteriorly facing trochlear notch, a more
lateral olecranon orientation, a higher coronoid-olecranon ratio, alower relative brachial

insertion and greater distal articulation robusticity.

4.3.4.8. Mantel test

The results for the Mantel test are summarised in Table 4-114 and Table 4-115. Thereisa
significant correlation between the lateral curve of the radius and temperature which is
consistent with the analysis of latitude. Thereis no correlation with curvature or the whole radius

shape, altitude and average rainfall.

Table 4-114 Results of the Mantel tests performed for environmental distance matrices—radius.

lateral curvature  medial curvature  whole radius shape

r P R P r P
altitude differences -0.068 0.817 -0.027 0.604 0.216 0.034*
rainfall differences 0.058 0.774 0.085 0.205 0.054 0.327

temperature differences 0.119 0.032* 0.052 0.268 0.077 0.214

r = Pearson correlation coefficient
Randomisation tests with 5000 permutations show significance values of p<0.05 for all
significant correlations between matrices.

Ulna shaft shape is not correlated with altitude, rainfall, temperature or geographic distance. The
direction of the proximal ulna (proxPC1) is correlated with altitude. The distance between the
80% level of the shaft and the tip of the coronoid process is correlated with rainfall and

temperature.
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Table 4-115 Results of the Mantel tests performed for environmental distance matrices - ulna

pcurvel pcurve?2 proximal ulna 1 proximal ulna 2 whole bone

r P R P r P r P r P
altitude differences 0.074 0.222 0.155 0.105 0.327 0.010* -0.07 0.761 0.123 0.137
rainfall differences -0.101 0.841 0.087 0.251 -0.133 0.818 0.221 0.016* 0.161 0.085
temperature differences -0.076 0.825 0.159 0.057 -0.12 0.857 0.163 0.024* 0.113 0.103

r = Pearson correlation coefficient
Randomisation tests with 5000 permutations show significance values of p<0.05 for all significant correlations between matrices.
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435  Summary

Overall, there is no asymmetry between the between left and right radial curvature (medial or
lateral). For the ulnathereis some asymmetry in the medial curvature and the mediolateral
sinusoidal shape of the shaft.

The predictions that curvature of the radius and ulnawould be related to body size and activity
levels were not met. There is no sexua dimorphismin radia curvature or in ulnar shaft shape
but males are more robust. There are no general trends through time in Europe or with individual
age. Curvature does not vary significantly between groups with different activity levels. Within
high activity groups, horticulturalists show the lowest degree of lateral curvature, and the
eguestrian foragers and pastoralists show the highest degree. Pastoralists are the most robust in
both ulnaand radius. There is a positive correlation between latitude and lateral radius curvature.
The Mantel test aso showed correlations between colder temperature and more pronounced

curvature. Specimens with more robust radii have less medial curvature.

A minority of the analyses presented here was exploratory rather than performed to address
specific predictions. The significant results from these analyses were used to aid the
interpretation of long bone curvature. However, there were afew significant results which did
not fit any a priori expectation and for which the significance was close to 0.05. Therefore, it is
likely that these occurred because multiple tests were conducted on the same data, and the
Bonferroni correction was not applied (see section 3.3). These resultsinclude the straighter
proximal posterior femoral diaphyses of males, whereas those of females dope posteriorly
(pcurveAMHPC2, Student’ s t-test, p=0.031), and the more medial projection of the proximal
ulnaand more medially facing trochlear notch of older individuals (proxAMHPC1 Kendall tau
b; r=0.182, P=0.041). There are a couple of cases where the significance value islow, but the
results did not follow the predicted trend and cannot be functionally explained. These results are
amore anteroposterior sinusoidal ulnar shaft in Neolithic populations (pcurveAMHPC3:
ANOVA; F=3.326, P=0.022) and a deeper trochlear notch in the 18"-19" century sample
(proxAMHPC4: ANOVA; F=4.881, P=0.003).
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4.4,

Systemic effects of curvature

The correlations between curvature of the different bones are weak (Table 4-116) (N=27

populations). Posterior femoral curvature and medid radia curvature are correlated. The

anteroposterior sinusoidal shape of the ulna (posterior subtense) is correlated with lateral radial

curvature and anterior femoral curvature.

Table 4-116 Pearson’s correlations for curvature and apex of curvature PCs between the femur,

radius and ulna (N=218).

Radmcurve
AMHPC1
RadlcurvAM
HPC1

UlnpcurveA
MHPC1

UlnpcurveA
MHPC2

UlnpcurveA
MHPC3

UlnpcurveA
MHPC4

r
P
r
P
r
P
r
P
r
P
r

P

FemacurAMHP
C1

0.051

0.456

-0.029

0.669

-0.037

0.591

0.022

0.750

0.151*

0.026

0.042

0.540

FemPcurvAMHP
C1
-0.108
0.110
-0.136*
0.044
0.051
0.452
-0.106
0.118
-0.005
0.941
-0.012
0.862

RadmcurveAMH
PC1

-0.032
0.642
-0.088
0.196
-0.015
0.830
-0.037
0.590

RadlcurvAMH
PC1

-0.067
0.327
-0.052
0.447
-0.158*
0.019
-0.109
0.110

* = Correlation is significant at the 0.05 level (2-tailed).
** = Correlation is significant at the 0.01 level (2-tailed).
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4.5. Discussion

Three different hypotheses were proposed to explain the variation in long bone curvature
between modern human populations in Chapter 2. The results of the foregoing analyses will be

discussed in relation to the predictions of these hypotheses.

Hypothesis 1: A high degree of curvatureisrelated to body size.

Long bone curvature in mammalsis allometrically scaled with body size (Biewener, 1983;
Swartz, 1990). Biewener (1983) suggested that increased curvature is a mechanism by which
animal s reduce bone stresses because curvature responds more rapidly to body size increase than
does bone cross-sectional area. Loading of the femoral diaphysisin humansis proportional to
body size (Ruff, 2000b) and morphol ogical features, such as robusticity, are also allometrically
related to body size. On this basis, a relationship between curvature and body size is predicted in
the load-bearing femur. The relationship is expected to be somewhat different in the arm as the

ulna and radius are not weight-bearing bones and, therefore, are not axially loaded.

Femur

For this sample, the results demonstrate that there is a relationship between external robusticity
and body size (estimated using femoral head diameter as a proxy) for both the femur and radius.
However, none of the curvature PCs of the femur are correlated with body size, except in the

populations with high activity levels where division of labour is most pronounced.

Lower arm

External robusticity isrelated to body size (estimated using femoral head diameter). Thereisno
correlation between the curvature of the radius and the ulna and body size. There is adifference
between males and females in forearm robusticity but not in curvature of the radius. Females
with high activity levels have a more mediolatera sinusoidal shape compared to males, but this

differenceis not present for the whole sample.

Although there is a difference in femoral curvature between males and females in populations

with high activity levels, the lack of sexual dimorphism in long bone curvature for the whole
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sample suggests that the differences are not due to the fact that males have larger bodies or

because they have different hormone levels.

Hypothesis 2: Curvatureisaresponsetoincreased activity levels.

Femur

Femoral curvature hastwo aspects. The first isthe degree of curvature and the second isthe
position of the apex of curvature. These are not statistically covariates but they behave similarly
in their relationships with habitua behaviour and environmental factors. In general, as degree of
curvature increases, the apex of curvature moves inferiorly. This confirms the hypothesis
suggested by Shackelford and Trinkaus (2002) that a high degree of curvature is associated with

amore inferior apex of curvature.

Individuals from popul ations with high activity levels have more curved femora and have a
lower apex of curvature than those from populations with moderate and low activity levels. This
relationship with activity is also reflected in a correlation of femoral curvature with skeletal
measures of activity such as external robusticity. It was predicted that if curvature and
robusticity were related that there would be a decrease in femoral curvature occurring with
agriculture and then with urbanism (Ruff et al., 1993; Trinkaus and Ruff, 1999b; Ruff and
Trinkaus, 2000; Holt, 2003). Thisis confirmed in the temporal trend for femoral curvature in the
European sample and supports the hypothesis suggested by Shackelford and Trinkaus (2002)
that low levels of curvature are related to a decrease in long-distance mobility. Thereis also no

trend in curvature with increasing age and decreasing activity intensity, however.

For the sample of high activity level populations, males have more curved femora than do
females. This difference disappears when the whole sample is considered and reflects a
postulated reduction in division of labour from the onset of the adoption of agriculture where
both sexes participate in agricultura activities (Ruff, 1999). Ruff (1999) suggests the importance
of terrain relief on anteroposterior hypertrophy of the femoral shaft. During downhill walking
the impact of the force is dissipated at incremental angles rather than at a straight angle through
the bone resulting in less impact on the joints. The estimation of terrain relief for each of the
modern human samples was beyond the scope of this study, but a matrix correlation between

anterior femoral curvature and altitude of the mean location of population (which could
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potentially serve as a proxy for relief), show that thereis potential to develop thisideafurther. In
order to do this, it would be necessary to include samples in these analyses for which terrain
relief and home range data is available and for which other factors such as climate, and activity

|levels remain constant.

These results support the hypothesis that femoral curvature is a bone response to stresses and
strains present during habitual behaviour. Populations with an aquatic subsi stence strategy have
less biomechanical stress on the lower limb (Stock and Pfeiffer, 2001; Stock, 2002; Stock, 2006)
compared to the other subcategories within high activity groups, and this is shown in that the
lowest degree of curvature and highest apex of curvature in aquatic foragering populations. The
pastoralists have the highest terrestrial mobility and also the highest degree of curvature.

The results presented here demonstrate the potential of femoral curvature as a predictor of
activity intensity. Femoral curvature may be a better predictor than cross-sectional robusticity
(Ruff, 1987; Pearson, 2000b; Ruff and Trinkaus, 2000; Stock, 2002; Stock and Pfeiffer, 2004;
Stock, 2006) which is affected aso by both activity levels and climate (Pearson, 2000b; Stock,
2006).

There were four biomechanical hypothese for long bone curvature: 1) curvature lowers bending
stress by tranglating bending stress to axial compression (Frost, 1967; Hall, 2004), 2) curvature
facilitates muscle expansion and packing (Lanyon et al., 1979; Lanyon, 1980), 3) curvatureis a
compromise between bone strength and predictability of bending strains and material failure
(Lanyon, 1980, 1987; Bertram and Biewener, 1988), or 4) generates strains necessary for
optimal strength (Lanyon, 1980). Out of the four biomechanical hypotheses for long bone
curvature that were suggested in Chapter 2, it is unlikely that the stress reduction hypothesis
(Frogt, 1967) accounts for the differencesin femoral curvature between these human populations
asit has been widely demonstrated that most of the stress in the long bones is bending stress and
that increased curvature is correlated with increases in bending stress (Lanyon and Baggott,
1976; Lanyon and Bourn, 1979; Lanyon et al., 1979; Lanyon, 1980; Biewener, 1983; Lanyon
and Rubin, 1986; Lanyon, 1987; Bertram and Biewener, 1988; Swartz, 1990; Biewener and
Bertram, 1994; Main and Biewener, 2004).

The second hypothesis suggests that curvature facilitates muscle packing (Lanyon, 1980). By

increasing curvature the tendons are abl e to attach close to the joints while the curvature of the
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shaft accommodates the large bellies of the musclesin the midshaft region (Lanyon, 1980).
During ontogeny the development of the muscles on the concave side of the shaft increases the
periosteal pressure on the shaft which results in increased concavity and curvature. This
hypothesisis supported by the radius and tibia of many mammals (Lanyon, 1980), but Swartz
(1990) found no correlation between muscul ature and curvature in anthropoids. However, this
study does provide support for the hypothesisin that increased curvature is found in humans
from groups with high activity levels who are likely to be more muscular than those from groups

with lower activity levels

The third hypothesis suggests that a high degree of curvature increases bending moments which
ultimately may increase bone strength. Maintaining a moderate amount of strain is necessary for
maintenance of bone mass (Lanyon, 1980; Biewener, 1983; Biewener and Bertram, 1994;
Pearson and Lieberman, 2004; Ruff et al., 2006). Therefore, increased curvature may provide a
physiological benefit without affecting second moments of area or cross-sectional area (Lanyon,
1980). Thisis supported in the results from this study in that high degrees of femoral curvature
tend to be correlated with increased levels of robusticity.

The fourth hypothesis suggests that curvature gives predictability to the direction of bone failure
(Lanyon, 1980, 1987; Bertram and Biewener, 1988). Because the bone is loaded through
bending stress rather than axially when it is curved, it is predicted that if alarge amount of stress
is applied, the bone is most likely to suffer from failure (fracture) in the direction of the
curvature. Therefore, rather than maintaining low amounts of strain by having a straight and
axially loaded shaft, curvature serves as safety factor of abiological structure requiring increased
strength in asingle location, rather than across the bone (Alexander, 1981). Thisis supported by
the results presented here in that individuals with a higher degree of curvature have a more
anteroposteriorly wide shaft. Results from studies of cross-sectional robusticity suggest that the
cortical bone at midshaft is thickened in the anteroposterior plane (Ruff, 1999), and thereforein
the direction of the curve, rather than in the mediolateral plane. In order to fully understand this
interaction, however, it is necessary to combine the curvature data with measures of cross-

sectional geometry.
The shape analysis also found that the human femoral shaft shows variation in the sinusoidal

shape of the lateral side of the shaft. Populations with lower activity levels had significantly

more sinusoidal femoral shafts compared to the moderate and high activity group. These
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differences could be due to a decrease in bone remodelling rates and lack of physiologically
beneficia strainsin the shaft. Lower levels of habitua loading can potentially cause the bone to
be less dense and, therefore, more susceptible to the pressure of muscles, or cause the bone to
take on a sinusoidal shape because there is no need for maintaining structural integrity. The lack
of acorrelation with other morphological and behavioural factors makes the sinusoidal aspect of

femoral curvature difficult to interpret.

In summary, the hypotheses discussed above suggest that femoral curvatureisaresult of
increased activity levels and can be biomechanically explained by facilitating greater muscle
mass, generating physiologicaly beneficial strains and may increase the predictability of

material failure.

Lower arm

The radius has two curves which were used in the analyses. The medial curve describes the
development of the interosseous crest, whereas the lateral curved describes the overall degree of
curvature of the bone. There was no difference between popul ations representing the different
activity levelsfor either the medial or the lateral curve. However, there were some differences
between the subsistence groups. The horticulturalists were the least curved. Horticulturalists use
their upper limbs for subsistenc-related activity, though, so this result cannot be explained by

intensity of subsistence-related activity.

It was predicted that the aquatic foragers would have the highest degrees of overall curvature.
They had a high degree of lateral curvature but alow degree of medial curvature reflecting the
strong development of the interosseous crest. The aquatic foragers also had a proximal medial
devel opment on the interosseous crest and a medially expanded ulnar notch. These may reflect
the increased use of the forearm during the use of watercraft and stronger devel opment of the
interosseous membrane. Although none of the shaft shape PCs of the ulna showed differences
between the activity levels or subsistence groups, the aguatic foragers have the longest ulnar
neck (greatest distance between the tip of the coronoid and the 80% level of the shaft). While it
was predicted that there would be a correlation between the position of the radial tuberosity and
the neck-length of the radius and radial curvature these predictions were not supported by the
results. There was no difference between males and females and radial curvature and ulna shaft

shape.
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Although some of the results support the hypothesis that curvature is a bone response to stresses
and strains during habitual behaviour, the results are inconclusive and may be explained by the

differencesin climate instead (see more below).

Hypothesis 3: Curvatureisa consequence of adaptation to cold climate.

Based on Bergmann and Allen’srule related to body size and body proportions, it is known that
individuals from colder climates have shortened distal limbs and that these differences are
established through genetic adaptations rather than individual ontogeny (Y'Edynak, 1976;
Eveleth and Tanner, 1990; Ruff et al., 1994; Pearson, 2000b; Van Andel, 2003; Weaver, 2003;
Ruff et al., 2005). Foreshortening of the limbs may have an effect on curvature.

Femur

Aswas shown in the past (Pearson, 2000b; Stock, 2006), there was a significant correlation
between latitude and robusticity. Neither femoral curvature nor apex of curvature shows any
significant patterns with latitude, despite the correlation of latitude with other morphological
features, such asfemoral length and epiphysis size. This would suggest that other morphol ogical
elements that are under strong climatic influence, such as the pelvis width, neck-shaft angle
(correlated with torsion angle) and body size (from femoral length) (Ruff, 1995; Weaver, 2003)
would not be correlated with curvature. With the exception of pelvis width, all these variables
were explored, and none were correlated with either degree of curvature or position of the apex

of curvature. Therefore, femoral curvature is not a consequence of adaptation to cold climate.

Lower arm

Lateral curvature of the radiusisrelated to climate. Thisis aso reflected in the higher degree of
lateral curvature for the aquatic foragers who have the lowest mean annual temperature (Inuit,
Russian Eskimo, Greenland Inuit — but less Andamanese). The low degree of curvature for the
horticulturalists can be explained by the relative warm climate in which these groups live (New
Mexico and Ohio). The development of the proximal interosseous crest of the radiusisaso
highly correlated with climate but is likely a sign of the habitual aguatic subsistence-related
behaviour (such as the use of watercraft). The aguatic foragers show a higher radial neck-shaft
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angle which may be related to the use of the forearm during the use of watercraft or fishing.

Aquatic foragers do not stand out in the other univariate measurements of the radius or ulna

Robusticity of the distal articulation of both the ulnaand the radius is highly correlated with
climate reflecting the relatively short forearm bones. The radius in populations from higher
latitudes is more sinusoidal but shows no particular patterns in the rest of its morphology with
climate other than curvature. For the ulnathere are some interesting patterns. Individuals from
higher latitudes have larger proximal ulnas, larger neck-shaft angles (joint-axis angle), amore
inferior insertion of the brachial tuberosity, a smaller distance between 80% of the shaft and the
tip of the olecranon, a more proximoanterior trochlear notch, a more anteroposteriorly sinusoidal
shape, aless mediolateral sinusoidal shape and alarger radial notch surface area. The
anteroposterior sinusoidal shape of the ulnais correlated with lateral curvature of the radius and
reflects the posterior subtense discussed in Fischer (1909).

Anincrease in lateral radial curvature, amore sinusoidal radial shaft and the increased
anteroposterior sinusoidal shape of the ulnais likely a consequence of the shortening of the
lower limbs. In the light of the biomechanical hypotheses discussed above for the femur,
curvature of the ulna and radius cannot be explained by factors caused by axial loading of the
shaft. Curvature of the forearm is most likely away of facilitating muscle packing in response to
the reduction in relative long bone length in cold-adapted popul ations. Maintaining the tendon
insertions of muscles close to the joints and preventing shortening of the muscles inserting on
the shaft (and therefore prevent loss of contraction function of the pronator teres) aids horizontal
muscle packing by allowing space for the muscle bellies (Lanyon, 1980). It also maximises the
degree of pronation and supination by maintaining the size and axis of rotation (Y asutomi et al .,
2002). The next step in testing this hypothesis isto combine data from this study with dataon

muscle devel opment.

The other biomechanical hypotheses explaining curvature of the forearm do not have any direct
support from the data in this study. Despite the size of the radial articular surfaces being
correlated with radial curvature, thereis no correlation with midshaft robusticity. The
correlations between ulnar shaft shape and robusticity are not consistent across the bone.
Therefore, these results are inconclusive in their support for the “materia failure predictability”
hypothesis (Bertram and Biewener, 1988). In order to test the hypothesis of physiological benefit

to the bone, it is necessary to combine the curvature data of the forearm samplein this study
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with measures of cross-sectional geometry. Very little is known about cross-sectional geometry
of the ulna and radius and midshaft shape of the radius and external shape ratios in these modern

human samples were not correlated with lateral or medial curvature.
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Predicting curvaturein Neanderthals and early modern humans.

Theresults of the variation in curvature of the femur, ulna and radius within modern humans
indicate that there are patterns of longitudinal long bone curvature but that these are different for
the upper and lower limb. Severa of the conclusions from the analyses of recent humans are
especialy relevant and can provide aframework for looking at the meaning of long bone
curvature in Palaealithic samples. Long bone curvature follows different trends than robusticity
and is not necessarily aresponse to the same types of loading (Ruff et al., 1993; Ruff et al.,
1994; Trinkaus et al., 1994; Trinkaus et al., 1999a; Pearson, 2000b; Ruff and Trinkaus, 2000;
Shackelford and Trinkaus, 2002; Stock, 2002; Stock and Pfeiffer, 2004; Stock, 2006; Carlson et
al., 2007; Shackelford, 2007).

The highest levels of curvature for the femur were identified in samples with high activity levels.
Therefore, it is hypothesised that both early modern humans and Neanderthal s will possess high
degrees of femoral curvature and amore distal apex of curvature. The curvature of the radius
and ulnais strongly influenced by climate. Individuals from colder climates tend to have more
curved ulnae and radii. Neanderthals, as a group, were subject to cold climatic conditionsfor a
more extended period of time than any modern human population, so it is hypothesised that they
have “hyperpolar” adaptations to the climate in which they lived (Boule and Valois, 1952;
Trinkaus, 1981; Churchill, 1998; Pearson, 2000a, 2000b; Aiello and Wheeler, 2003; Weaver,
2003; Krause et al., 2007; Shackelford, 2007). Hence, the Neanderthals radius is predicted to
have a higher degree of lateral curvature and a more sinusoidal shape, and the ulnais predicted
to be more anteroposteriorly sinusoidal than any other modern human sample. The early modern
humans are predicted to have lessradial and ulnar curvature than Neanderthals as they were not
exposed to the cold European climate for the same extended time. Depending on the time the
early modern humans spent in the cold European climate, it can be hypothesised that they, too,
may have a high degree of curvature. However, as modern humans were likely to have
originated in tropical Africa (Mellars and Stringer, 1989; Smith et al., 1989; Bar-Y osef, 1992;
Deacon, 1992; Stringer, 1992; Ingman et al., 2000; Pearson, 2000a; Stringer, 2002; White et al.,
2003; Méllars, 2004) they may display very low levels of curvature.

These hypotheses will be tested in Chapter 5.
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CHAPTERS5. LONGBONE CURVATURE IN
NEANDERTHALS, EARLY AND RECENT MODERN
HUMANS.

5.1 Objective

The purpose of the interspecific anaysesis to determine where fossil specimensfall relative to
patterns of variation in long bone curvature in recent modern humans. The Neanderthal and early
modern human fossil specimens are included in the General Procrustes Analyses and in the
Principal Component analyses. The inclusion of the fossilsin the Principal Component analysis
slightly changes the distribution of the shape changes along the principal components and will be
discussed below.

In order to examine variation in long bone morphology, the principal component scores are used
in Analyses of Variance (ANOV As) and post-hoc tests using pairwise comparisons. Asin
Chapter 4, the Hochberg GT2 and Games-Howell procedures were used (discussed in more
detail in Chapter 3: Materials and Methods) and the results will be discussed for significant F-
scores. For these anayses, fossil hominins are either grouped as Neanderthals or early modern
humans. To determine the relationship between the different aspects of morphology and group
differences, discriminant functions are calculated using the principal component scores as

independent variables.

In the results described below the abbreviations of the principal components (PCs) names are
made up of three parts. The first designates the landmark set included in the study (i.e. “acurve®
stands for anterior curve). The second designates the sample included (i.e. “ALL”" stands for all
fossils and all recent modern humans). The third isthe PC number (i.e. “PC2" stands for second
PC), e.g. “AcurveAllPC1".
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5.2. Femur

5.2.1. Femur principa components explained

Aswas the case for the investigation of intraspecific variation within modern humans, the
changes for each of the curves and the proximal and distal epiphyses (epiphyses) aong each
principal component are visualised using Morphologika®. Although the PCs are very similar to
those obtained when only the modern humans are considered, there are differences between the
PC scores and shape changes aong the PCs. Therefore, the PCswill be explained again bel ow.
The figures presented correspond to the most extreme positive and negative individuals on the
scale for each PC. The curves are semi-landmarks only, whereas the epiphyses are landmarks.
Viewing angles were chosen to illustrate similarities and differences most clearly. For the
curves, thisisin lateral view, unless otherwise stated in the Figure captions. The Neanderthal
sample consists of eight specimens, the early modern humans sample consists of 13 specimens,

and 428 individua s are included in the recent modern human sample.

5.2.1.1. Anterior surface (acurve)

Thefirst three principal components explain 63.7%, 9.62%, and 7.30% of the variance,
Jrespectively ,(total 80.06%). Subsequent PCs explain minimal amounts of the variation and are

not considered further.

AcurveAllPC1 reflects variation in degree of anterior curvature or subtense (Figure 5-1a). The
second principal component (acurveAllPC2) is related to the position of the apex of curvature
(Figure 5-1b). Thethird principal component is the shape of the shaft in anterior view (Figure

5-1c). Negative values are more sinusoidal, whereas positive values are straight.
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PC1 acurve neg.| | PC2 acurve neg.|| PC3 acurve neg.

PC1 acurve pos. | |PC2 acurve pos. | |PC3 acurve pos.

Figure5-1 Morphological trendsfor the anterior curve of the femur for Neanderthals, early and
recent moder n humans.
a: Principal component 1: lateral view. Negative values are less curved, positive values are more

curved. b: Principal component 2: laterd view. Individuals with negative values have a more
proximal apex of curvature, whereas those with positive values have a more distal apex of
curvature. ¢: Principal component 3; anterior view. Negative values are the straightest, whereas
positive values indicate a mediolaterally sinusoidal shape. Positive and negative visualisations

correspond to the most extreme positive and negative scores for each PC.
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5.2.1.2. Posterior surface (pcurve)

Thefirst four principal components of the posterior curve analysis explain 34.9%, 14.8%, 11.4%
and 7.47%,,respectively, of the variation (total 68.5%). Subsequent PCs explain minimal
amounts of the variation and are not considered further.

The posterior curveisvery similar to the anterior curve. PcurveAllPCL1 reflects differencesin
degree of curvature or subtense (Figure 5-2a) (note that pcurveAllPC1 isloaded in an opposite
direction from the other curvature PCs). The second principal component (pcurveAllPC2) isthe
shape of the shape of the curve in posterior view (Figure 5-2b). The third principal component
(pecurveAllPC3) isrelated to the apex of the posterior curve (Figure 5-2¢). The fourth principal
component (pcurveAMHPC4) isthe direction of the distal end of the curve (Figure 5-2d).
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FC1 pcurve neg.

PC1 pocurve pos.

FC2 pcurve neg.

—

FC2 pcurve pos.

FC3 pcurve neq.

FC3 pcurve pos,

-

FC4 pcurve neg.

—

FC4 pcurve pos.

Figure 5-2 Morphological trendsfor the posterior curve of the femur for Neanderthals, early and

recent moder n humans.

a: Principal component 1: lateral view. Negative values are more curved, positive values are less

curved. b: Principal component 2: anterior view. Negative values are the straightest, whereas

positive values are mediolaterally sinusoidal. c: Principal component 3: lateral view Negative

values have a higher apex of curvature compare to positive values. d: Principal component 4:

lateral view. Positive individuals have a more posteriorly projected distal curve. Positive and

negative visualisations correspond to the most extreme positive and negative scores for each PC.
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5.2.1.3. Media surface (mcurve)

Thefirst three principal components of the media curve analysis explain 49.9%, 16.6%, and
15.39% ,respectively ,of the variation (total 83.1%). Subsequent PCs explain minimal amounts
of the variation and are not considered further.

Aswas the case in the analysis on modern humans the component mcurveAllPC1 reflects
differences in degree of anterior curvature (Figure 5-3a). The second principal component
(mcurveAllPC2) is related to the position of the apex of curvature (Figure 5-3b). The third
principal component (mcurveAllPC3) is the posterior extension of the distal end of the curve and

the evenness of the curve (Figure 5-3c).
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FC1mcurve ned.| | PC2 mcurve neg. || PC3 mourve neg.

—

PC1 pecurve pos. || PC2 peurve pos. || PC2 pourve pos.

Figure 5-3 Morphological trendsfor the medial curve of the femur for Neanderthals, early and
recent moder n humans. All lateral view.

a: Principal component 1. Negative values are less curved, positive values are more curved. b:
Principal component 2. Negative values have a higher apex of curvature compare to positive
values. c: Principal component 3. Positive values are more flattened off with increased posterior
projection of the distal curve, whereas negative values have a curve that approximates an arc of a
circle. Positive and negative visualisations correspond to the most extreme positive and negative

scores for each PC.
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5.2.14. Laterd surface (Icurve)

Thefirst four principal components of the lateral curve analysis explain 51.3%, 15.5%, 9.54%
and 5.44%,,respectively, of the variation (total 81.78%). Subsequent PCs explain minimal

amounts of the variation and are not considered further.

The component lcurveAllPC1 reflects differences in anterior curvature or subtense (Figure 5-4a).
The second principal component (IcurveAllPC2) is related to the position of the apex of
curvature and the direction of the proximal part of the surface (Figure 5-4b). The third principal
(IcurveAllPC3) component is related to the “ straightening” of the femur at the level of the lesser
trochanter (Figure 5-4c). The fourth principa component (IcurveAllPC4) is the shape of the

lateral surface in anterior view (Figure 5-4d).
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PC1 lcurve neg. P2 lcurve neg. PC3 lcurve neg. PC4 lcurve neg.
. — t

— .

— "

PC1 lcurve pos. PC2 lcurve pos. PC3 lcurve pos. FCd lcurve pos.

Figure 5-4 Morphological trendsfor thelateral curve of the femur for Neanderthals, early and
recent moder n humans.
a: Principal component 1: lateral view. Negative values are less curved, positive values are more

curved. b: Principal component 2: latera view. Negative values have a more distal apex of
curvature and little posterior direction of the proximal curve, whereas those with positive values
have a more proximal apex of curvature and a more posteriorly projecting proximal curve. c:
Principal component 3: lateral view. Positive values show a flattening off at the level of the
lesser trochanter and negative values are evenly curved. d: Principal component 4: anterior view.
Positive values are the straightest, whereas negative values have a mediolaterally sinusoidal
shape. Positive and negative visualisations correspond to the most extreme positive and negative

scores for each PC.

258



5.2.15. Proxima and distal epiphyses (Epi)

Thefirst five principal components of the epiphysis analysis explain 14.5%, 9.62%, 7.47%,
5.30% and 4.34%,,respectively, of the variation (total 43.9%). Subsequent PCs explain minimal

amounts of the variation and are not considered further.

The component epi AllPCL1 reflects differencesin the width of the distal epiphyses and the neck-
shaft angle (Figure 5-5a). The second principal component (epi AlIPC2) isrelated to the overal
width of the femur and the position of the lesser trochanter (Figure 5-5b). The third principal
component (epiAlIPC3) is related to the width of the distal epiphyses and degree of torsion
(Figure 5-5¢). The fourth principal component (epiAlIPC4) is hard to interpret and it is unclear
what it relates to. The changes along the principal component axis are very subtle and this PC
will not be included in any of the the subsequent analyses. The fifth principal component

(epi AlIPCS) relates to the length of the neck and the depth of the distal epiphyses (Figure 5-5d).
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Figure 5-5Morphological trendsfor the epiphyses of the femur for Neanderthals, early and recent
moder n humans.

a: Principal component 1: anterior view. Individuals with negative values have wider distal
epiphyses and alower neck-shaft angle. b: Principal component 2: anterior view. Negative
values have wider distal epiphyses and heads and alower lesser trochanter, whereas positive
values are narrow and have a relatively higher lesser trochanter. c: Principal component 3:
superior view. Individual s with negative values have wider distal epiphyses and lesstorsion than
those with positive values. d: Principal component 5. Individuals with negative values have a
long neck and deep knees compared to individuals with positive values. Positive and negative

visualisations correspond to the most extreme positive and negative scores for each PC.

52.1.6. Summary

Asinthe analysis of recent modern human populations, anterior curvature is the most important
principal component in al four curves (acurveAllPC1, pcurveAllPC1, mcurveAllPC1,
[curveAllPCL). Thisisreflected in the significant correlations between all these curves (note that
pcurveAllPC1 isloaded in the opposite direction from the other curvature PCs and is therefore
negatively correlated with them) (Table 5-1). For this reason, only acurveAllPC1 and
pcurveAllPC1 will be analysed and discussed.

The position of the apex of curvature is the major factor in acurveAllPC2, pcurveAllPC3,
mcurveAllPC2 and lcurveAllPC2, so only acurveAllPC2 and pcurveAllPC3 will be discussed.
These areadso al correlated, but none of the r-values are high (Table 5-2). The other principal
components for the curves explain minor changes in surface shape and will be included in

subsequent analyses.
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Table 5-1 Pear son’s correlation matrix: femoral curvature PCs (n= 449). Neanderthals, early and
recent moder n humans.

AcurveAllPC1 pcurveAllPC1 McurveAllPC1

pcurveAllPC1 r -0.529**
P <0.001

McurveAllPC1 r 0.645** -0.271**
P <0.001 <0.001

LcurveAllPC1 r 0.601** -0.434** 0.368**
P <0.001 <0.001 <0.001

* = Correlation is significant at the 0.05 level (2-tailed).
** = Correlation is significant at the 0.01 level (2-tailed).

Table 5-2 Pear son’s correlation matrix: femoral apex of curvature PCs (n=449). Neanderthals,
early and recent modern humans.

AcurveAllPC2 pcurveAllPC3 McurveAllPC2

pcurveAllPC3 r 0.172**
P <0.001

McurveAllPC2 r 0.361** 0.152**
P <0.001 <0.001

LcurveAllPC2 r 0.389** 0.177** 0.213**
P <0.001 <0.001 <0.001

* = Correlation is significant at the 0.05 level (2-tailed).
** = Correlation is significant at the 0.01 level (2-tailed).
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5.2.2.  Differencesinfemora morphology between Neanderthals, early

and recent modern humans.

5.2.2.1. Curvature

The groups are significantly different for both curvature PCs: acurveAllPCL, pcurveAllPC1
(Table 5-3). Neanderthals have the highest degree of anterior and posterior curvature, followed
by early modern humans. Recent modern humans are the straightest (Figure 5-6 and Figure 5-7).
Statistically, Neanderthal s are different for both principal components from recent modern
humans. Early modern humans are different from Neanderthals for acurvAllPC1 only (Appendix

39). Box plots are used in order to display curvature and apex of curvature for the separate
fossils.

Table 5-3 ANOVA results for palaeogroup® and femoral curvature PCs.

d.f.=2 F Sig.
AcurveAllPC1 22.839 <0.001*
pcurveAllPC1 31.810 <0.001*

*=gsignificant at a=0.05

! Palaeogroup refers to the three categories commonly used in palaeoanthropological research that are
included in these analyses: Neanderthals, early anatomically modern humans, recent modern humans.
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5.2.2.2. Apex of curvature

The groups are significantly different for the position of the apex of curvature in one PC (Table

5-4). On the anterior surface, Neanderthals have the lowest apex of curvature and are

significantly different from early and recent modern humans (Figure 5-8 and Appendix 40).

Table 5-4 ANOVA resultsfor palaeogr oup and femoral apex of curvature PCs.

d.f.=2 F Sig.
AcurveAllPC2 9.376 0.000*
pcurveAllPC3 0.365 0.694
*=significant at a=0.05
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Figure5-8 Theanterior apex of curvature of the femur for Neanderthals, early and recent modern
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lower apex of curvature.
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5.2.2.3. Other shaft shape

The groups are significantly different for only one of the other shaft shape PCs (Table 5-5). The
post-hoc tests shows that Neanderthals may have alateral curve that straightens at the level of
the lesser trochanter (IcurveAllPC3)(Appendix 41).

Table 5-5 ANOVA resultsfor palaeogroup and other femoral shaft shape PCs.

d.f.=2 F Sig.

AcurveAllPC3 0.263 0.769
pcurveAllPC2 1.510 0.222
pcurveAllPC4 1.736 0.177
McurveAllPC3 1.925 0.147
LcurveAllPC3 3.010 0.050*
LcurveAllPC4 2.345 0.097

*=gsignificant at a=0.05

0.00800-

0.00800

0.00400-

0.00200+

Mean LeurveAllPC3

0.00000+

i N=13 N=428
T T T
MNeanderthal Early Homo sapiens Recent Homo sapiens

palasogroup

-0.00200

Error Bars: 95% Cl

Figure5-9 Lcur AlIPC3 for Neanderthals, early and recent moder n humans.
The lower values for Neanderthals indicate wider distal epiphyses and alower neck-shaft angle.
Mean and 95% confidence interval (whiskers).
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5.2.24. Epiphysisshape

Neanderthals have more robust epiphyses, alower neck-shaft angle and alower lesser trochanter
than early and recent modern humans (EpiAlIPC1 and EpiAlIPC2) (Table 5-6 and Figure 5-10
and Figure 5-11; Appendix 42). Neanderthals also have less torsion (EpiAlIPC3) (Figure 5-12)
and along neck and deep distal condyles (EpiAlIPC5) (Figure 5-13).

Table 5-6 ANOVA results for palaeogr oup and other femoral shaft shape PCs.

d.f.=2 F Sig.

EpIAIIPC1 14.000 <0.001*
EpIAIIPC2 5954  0.003*
EpIAIIPC3 3.179  0.043*
EpIAIIPC5 4.825  0.008*

*=significant at a=0.05
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Figure5-10 EpiAlIPC1 for Neanderthals, early and recent moder n humans.
The lower values for Neanderthals indicate wider distal epiphyses and alower neck-shaft angle.
Mean and 95% confidence interval (whiskers).
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Figure5-11 EpiAlIPC2 for Neanderthals, early and recent moder n humans.
The lower values for the Neanderthals indicate wider distal epiphyses and heads and alower
lesser trochanter. Mean and 95% confidence interval (whiskers).
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Figure5-12 EpiAlIPC3 for Neanderthals, early and recent moder n humans.
The lower values for Neanderthals indicate wider distal epiphyses and less torsion than modern

human groups with positive values. Mean and 95% confidence interval (whiskers).
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Figure5-13 EpiAllIPC5 for Neanderthals, early and recent moder n humans.
The lower values for Neanderthals indicate along neck and anteroposteriorly deep distal
epiphyses. Mean and 95% confidence interval (whiskers).

5.2.2.5. Univariate measurements

The groups are significantly different for all univariate measurements (Figure 5.7). The highest
F-scores are for head-robusticity, neck-length, neck-shaft angle and robusticity index (Table
5-8). Post-hoc tests (Appendix 43) indicate that Neanderthal s have the largest femoral head,
longest neck and largest distal epiphyses compared to early and recent modern humans, although
their midshaft robusticity and neck-shaft angle is comparable to that of early modern humans
(Figure 5-23; Figure 5-21 and Figure 5-15). Early modern human femora are longer and have
lower torsion angles, are more robust, and have higher midshaft and subpilastric ratios than do
recent modern humans (Figure 5-14; Figure 5-16; Figure 5-22; Figure 5-18; Figure 5-19). Early
modern human femora have a high midshaft shape ratio, which probably reflects the strong
expression of the linea aspera. Neandertha femora have an amost round shaft at the midshaft

level and lack aclear linea aspera (Figure 5-18).
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Table 5-7 Descriptives for Neanderthals, early and recent modern humans and the univariate

measur ements of the femur.

N Mean S.D.
Femur length Neanderthal 8 430.25 32.06
Early Homo sapiens 13 456.14 34.17
Recent Homo sapiens 428 426.52 34.18
Neck-shaft angle Neanderthal 8 118.68 5.21
Early Homo sapiens 13 124.27 7.63
Recent Homo sapiens 428 127.41 571
Torsion angle Neanderthal 8 1043 14.87
Early Homo sapiens 13 11.17 9.02
Recent Homo sapiens 428  16.73 6.91
subtrochratio Neanderthal 8 84.87 10.42
Early Homo sapiens 13 80.46 16.23
Recent Homo sapiens 428  75.09 9.85
midshaftratio Neanderthal 8 103.02 14.49
Early Homo sapiens 13 128.38 20.95
Recent Homo sapiens 428 114.16 19.11
subpilratio Neanderthal 8 87.63 9.83
Early Homo sapiens 13 102.06 18.80
Recent Homo sapiens 428  88.08 15.73
condylediamratio Neanderthal 8 18.87 1.39
Early Homo sapiens 13 17.12 1.18
Recent Homo sapiens 428 17.11 1.33
necklengthratio Neanderthal 8 15.85 2.62
Early Homo sapiens 13 13.98 1.09
Recent Homo sapiens 428  13.87 1.07
robustindex Neanderthal 8 13.66 1.01
Early Homo sapiens 13 13.44 0.93
Recent Homo sapiens 428 12.41 1.15
headrob Neanderthal 8 2235 1.00
Early Homo sapiens 13 18.72 1.37
Recent Homo sapiens 428 1854 1.65

Table 5-8 ANOVA resultsfor palaeogroup and femoral univariate measurements.

d.f.=2 F Sig.

Femur length 4.775 0.009*
Neck-shaft angle 10.688 <0.001*
Torsion angle 6.679 0.001*
subtrochratio 5.363 0.005*
midshaftratio 4,933 0.008*
subpilratio 4,984 0.007*
condylediamratio 6.882 0.001*
necklengthratio 12.322 <0.001*
robustindex 9.604 <0.001*
headrob 21.204 <0.001*

*=gsignificant at a=0.05

270



450+
460
= ——r—
=
o
[ =
2
=
£
@ 440
'
N 1
I
L]
= I
420
— =8 N=13 N=428
400 T T T
Meanderthal Early Homo sapiens Recent Homo sapiens

palaeogroup
Error Bars: 95% ClI
Figure 5-14 Femur length for Neanderthals, early and recent moder n humans. M ean and 95%
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Figure 5-15 Neck-shaft angle for Neanderthals, early and recent modern humans. M ean and 95%
confidence interval (whiskers).
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Figure5-16 Torsion angle for Neanderthals, early and recent moder n humans. M ean and 95%
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95% confidenceinterval (whiskers).
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5.2.2.6. Discriminant function analysis

A DFA with cross-validation using al PCs (included in the above analyses) and univariate
measurements used in the analyses above was used to separate Neanderthals, early and recent
modern humans. Function 1 separates best between Neanderthal s and modern humansin
general, whereas function 2 separates early modern humans from recent modern humans (Figure
5-24). The variablesin Table 5-9 appear in the order of their discriminating power. Function 1
reflects (ordered according to decreasing correlation between the variable and the function)
degree of curvature, robusticity of the head, width of the distal and proximal femur, neck-length
ratio, low neck-shaft angle, robusticity. Function 2 reflects the midshaft and subpilastric shaft
shape, femur length, and other aspects of shaft shape (Table 5-9).

For these three popul ations (Neanderthal s, early and recent modern humans) with very uneven
sample sizes, the expected proportion of correct random classification based on sample size is
~90%. The DFA with cross-validation was able to correctly classify Neanderthal s and recent
modern humans relatively succesfully with 87.5% (7 out of 8 Neanderthals) and 99.5% (425 out
of 427 modern humans) classified correctly. Early modern humans were ailmost all classified as
recent modern humans (92.3% - 12 out of 13), although none were classified as Neanderthals.

Overall, for the three groups together, this gives 96.7% of correct classification.
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Table 5-9 Discriminant function coefficients - femur.

Function 1

pcurveAllPC1 -0.528
AcurveAllPC1 0.457
headrob 0.427
EpiAlIPC1 -0.360
necklengthratio 0.326
Neck-shaft angle -0.313
LcurveAllPC1 0.273
robustindex 0.262
condylediamratio 0.239
EpiAlIPC2 -0.225
Torsion angle -0.215
subtrochratio 0.213
EpiAlIPC3 -0.165
McurveAllPC1 0.115
AcurveAllPC3 0.043
Canonical R=.571 N\ =<0.001
Function 2

midshaftratio 0.351
subpilratio 0.350
Femur length 0.328
AcurveAllPC2 -0.278
EpiAllPC4 -0.252
LcurveAllPC2 -0.244
LcurveAllPC4 0.238
pcurveAllPC4 0.214
McurveAllPC3 -0.196
EpiAlIPC5 0.188
pcurveAllPC2 0.173
AcurveAllPC4 0.132
McurveAllPC2 -0.127
pcurveAllPC3 -0.077
Canonical R=.380 N\ =<0.001
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523. Summary

Neanderthals have femora with a higher degree of anterior curvature than do early modern
humans and recent modern humans. They a so have the most distal apex of curvature. They have
wider and deeper distal epiphyses, larger femoral heads, lower neck-shaft angles (only compared
to early modern humans) and are the most robust (significantly different from recent modern
humans only). Discriminant function classification very successfully distinguished Neanderthals
from the recent modern human groups, but the overlap between early and recent modern humans
resulted in frequent misclassification of early modern humans into the much larger and more

variable recent modern human group.
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5.3. Thelower arm

The results presented here will first discuss the principal components and visualisations, using
the same approach that was used for the section on the femur. The radius sample consists of 15
Neanderthals, 15 early modern humans and 361 recent modern humans. The ulna sample

consists of 13 Neanderthals, 21 early modern humans and 344 recent modern humans.

5.3.1.  Radius shape principa components explained

5.3.1.1. Medial surface (mcurve)

Thefirst three PCs of the medial curve explain 46.1%, 13.2% and 8.94%, respectively, of the

variation (total 68.2%). Subsequent PCs explain minimal amounts of the variation and are not
considered further.

PCL1 reflectsthe variation in lateral curvature of the radius (Figure 5-25a). PC2 is related to the
medial expansion of the proximal interosseous crest and the direction of the distal end of the
media surface (Figure 5-25b). PC3 isthe sinusoidal shape of the shaft in the anteroposterior
plane (Figure 5-25¢).
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Figure 5-25 Morphological trendsfor the medial curve of theradius for Neanderthals, early and
recent moder n humans.
a: Principal component 1: anterior view. Negative val ues have a higher degree of curvature than

positive values. b: Principal component 2: anterior view. Positive values show an increased
media extension of the proximal interosseous crest and a medial direction of the distal curve
(more medially expanded ulnar notch), whereas negative values show no media expansion of
the proximal interosseous crest and an ulnar notch that is not medially projected. c: Principal
component 3: lateral view. Positive values have a more sinusoidal shape, whereas negative
values have no sinusoidal shape. Positive and negative visualisations correspond to the most

extreme positive and negative scores for each PC.
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5.3.1.2. Laterd curve (Icurve)

Thefirst three PCs of the lateral curve explain 40.6%, 20.9% and 9.43% ,respectively ,of the
variation (total 70.9%). Subsequent PCs explain minimal amounts of the variation and are not

considered further.

Similar to the analyses on modern humans PC1 reflects differencesin lateral curvature (Figure
5-26a). PC2 isinfluenced by the apex of curvature and the direction of the distal end of the
lateral surface (Figure 5-26b). PC3 relates to the sinusoidal shape of the lateral curvein the

anteroposterior plane (Figure 5-26¢).
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Figure 5-26 Morphological trendsfor thelateral curve of theradiusfor Neanderthals, early and
recent moder n humans.

a: Principal component 1: anterior view. Negative values have a higher degree of curvature
whereas positive values have alower degree of lateral curvature. b: Principal component 2:
anterior view. Positive values have a more proximal apex of curvature and a more laterally
projecting styloid process, whereas negative values have their apex of curvature at midshaft and
lack the lateral projection of the styloid process. ¢: Principal component 3: lateral view. Positive
values are more sinusoidal. Negative values are not sinusoidal. Positive and negative

visualisations correspond to the most extreme positive and negative scores for each PC.
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5.3.1.3. Epiphyses (Epi)

Thefirst two PC's of the epiphysis analysis explain 33.3% and 8.53%,,respectively, of the
variation (total 41.8%). Subsequent PCs explain minimal amounts of the variation and are not
considered further. When scatterpl ots of the PCs were observed, PC6 (4.71% of variation)
showed Neanderthal s to have primarily positive values and is therefore included in the following
analyses.

PC1 reflects the direction of the head and the distal articular surfacein relation to the shaft
(Figure 5-27a). PC2 relates to the length of the radius between the radia tuberosity and 80%
level of the shaft and the orientation of the tip of the styloid process (Figure 5-27b). PC6 is
related to the position of the radial turberosity (Figure 5-27c¢).
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Figure 5-27 Morphological trendsfor the epiphyses of theradiusfor Neanderthals, early and recent

moder n humans. All medial view.
a: Principal component 1. Individuals with negative values have a more anteriorly oriented head,

whereas those with positive values are more posteriorly oriented. b: Principal component 2.
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Negative valuesindicate a shorter distance between the radial tubercle and the 80% level of the
shaft and a more posteriorly located styloid process and positive values have alonger distance
and amore anteriorly located styloid process. ¢: Principal component 6. Individuals with
negative values have a more anteriorly located radial tuberosity compared to those with positive
values who have a more posteriorly located tuberosity. Positive and negative visualisations

correspond to the most extreme positive and negative scores for each PC.

53.1.4. Summary

Degree of mediolateral curvature isthe most important PC for both medial and latera surface
(mcurveAllPC1 and IcurveAllPC1). Thisisreflected in the significant correlation (r=0.369)
between the two curvature PCs. There is no significant correlation between the PCs of the

epiphyses and the two curvature PCs (Table 5-10 and Table 5-11).

Correlations between the other shaft shape PCsindicate that individuals who have alower
degree of medial curvature (mcurveAllPCL) have an apex of curvature at midshaft and a weakly
devel oped styloid process (IcurveAllPC2), and a less sinusoidal shaft (IcurveAllPC3) (Table
5-12). A higher degree of lateral curvature isrelated to an increased development of the
proximal interosseous crest and increased medial projection of the radial notch (mcurvePC2).

Thereis no correlation between the epiphysis and the other shaft shape PCs (Table 5-13).
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Figure5-28 Thefirst PCsfor the medial and lateral curve of theradius.
Both PCsreflect the degree of mediolateral curvature (negative values are more curved). All
Neanderthals, early modern humans and recent modern human samples.

Table 5-10 Pearson’s correlation matrix for radius curvature PCs (n= 391).

McurAllPC1
LcurAllPC1 r 0.369
P <0.001**

* = Correlation is significant at the 0.05 level (2-tailed).
** = Correlation is significant at the 0.01 level (2-tailed).
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Table 5-11 Pearson’s correlation matrix for radius curvature and epiphyses PCs (n= 377).

EpiAllPC1 ApiAlIPC2
McurAllPC1 r -0.013 -0.049
P 0.799 0.347
LcurAllPC1 r -0.071 0.062
P 0.169 0.228

* = Correlation is significant at the 0.05 level (2-tailed).
** = Correlation is significant at the 0.01 level (2-tailed).

Table 5-12 Pear son’s correlation matrix for radius curvature and other shaft shape PCs (n= 391).

McurAllPC1 LcurAllPC1
McurAllPC2 r 0.000 -0.144**
P 1.000 0.004
McurAllPC3 r 0.000 0.002
P 0.999 0.972
LcurAllPC2 r -0.414** 0.000
P <0.001 0.999
LcurAllPC3 r -0.284** 0.000
P <0.001 0.998

* = Correlation is significant at the 0.05 level (2-tailed).
** = Correlation is significant at the 0.01 level (2-tailed).

Table 5-13 Pearson’s correlation matrix for radius epiphyses and other shaft shape PCs (n= 377).

EpiAlIPC1 EpiAlIPC2
McurAllPC2 r 0.082 0.005
P 0.111 0.919
McurAllPC3 r 0.045 -0.098
P 0.381 0.058
LcurAllPC2 r -0.066 -0.040
P 0.200 0.435
LcurAllPC3 r 0.061 0.101
P 0.237 0.051

* = Correlation is significant at the 0.05 level (2-tailed).
** = Correlation is significant at the 0.01 level (2-tailed).
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5.3.2. Theulna principal components explained

5.3.2.1. Posterior curve (pcurve)

Thefirst four PCs of the posterior curve analysis explain 33.7%, 23.3%, 13.4% and
6.31%,,respectively, of the variation (total 76.71%). Subsequent PCs explain minimal amounts

of the variation and are not considered further.

PCL1 reflects differencesin mediolatera curvature (Figure 5-29a). PC2 isthe sinusoida shape of
the shaft in the mediolateral plane (Figure 5-29b). PC3 relates to the sinusoidal shape of the
lateral curve in the anteroposterior plane (Figure 5-29c). PC4 is the deflection of the proximal
shaft (Figure 5-29d).
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Figure 5-29 Morphological trendsfor the posterior curve of the ulna for Neanderthals, early and

recent moder n humans.

a: Principal component 1: anterior view. Negative values have a higher degree of mediolateral

curvature, whereas positive values have alower degree of curvature. b: Principal component 2:

anterior view. Positive values have less of a sinusoidal shape in the mediolateral plane than
negative values. c: Frincipal component 3: medial view. Positive values are more sinusoidal
compared to negative values. d: Principal component 4: medial view. Positive values show a

bent proximal shaft indicating a more anteriorly projected head, whereas negative values are

relatively straight. Positive and negative visualisations correspond to the most extreme positive

and negative scores for each PC.
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5.3.2.2. Proximal ulna (prox)

Thefirst three PCs of the lateral curve analysis explain 20.4%, 16.6% and
7.89%,,respectively,,of the variation (total 44.9%). Subsequent PCs explain minimal amounts of
the variation and are not considered further.

PC1 reflects differences in the orientation of the proximal ulna in relation of the shaft (Figure
5-30a). PC2 relates to the distance between the 80% level of the shaft and the coronoid process
(Figure 5-30b). PC3 shows the orientation of the trochlear notch (Figure 5-30c).
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Figure 5-30 Morphological trendsfor the proximal ulna for Neanderthals, early and recent modern

humans.

a: Principal component 1: anterior view. Positive values have a proximal ulna that is medially

projected with amedia facing trochlear notch, whereas negative values have a proximal ulna

that islaterally projected and has a more lateral facing trochlear notch. b: Principa component 2:

anterior view. Positive values have alonger distance between the 80% and the coronoid process,

whereas negative values have short distances. ¢: Principal component 3: lateral view. Positive

values have a more proximo-anterior facing trochlear notch and negative values have a more
anterior facing trochlear notch. Positive and negative visualisations correspond to the most

extreme positive and negative scores for each PC.
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5.3.23. Summary

Thereis no significant correlation between the shaft PCs nor are the proximal ulna PCs

significantly related (Table 5-14). The correlations between the posterior curve and the proximal
ulna PCs showed that individual s with a greater distance between the 80% level of the shaft and

the coronoid process (proxALLPC2) have a more sinusoidal shaft shape in the anteroposterior

plane (pcurveALLPC3). Also, individuals with a more proximo-anterior trochlear notch

(proxAllPC3) have aless mediolaterally sinusoidal shaft shape (pcurveALLPC2).

Table 5-14 Pearson’s correlation matrix: ulna PCs (n= 344).

pcurAlIPC1 pcurAlIPC2  pcurAllIPC3  pcurAllPC4 ProxAllPC1  ProxAllPC2

pcurAllPC2 r 0.000

P 1.000
pcurAllPC3 r 0.000 0.000

P 0.996 0.999
pcurAllPC4 0.000 0.000 0.000

P 0.999 0.998 0.998
ProxAllPC1 r -0.108* -0.074 -0.007 0.064

P 0.036 0.155 0.886 0.213
ProxAllPC2 r -0.081 -0.070 -0.222** -0.040 0.002

P 0.117 0.173 <0.0001 0.435 0.976
ProxAllPC3 r -0.016 -0.194** 0.083 0.006 0.002 -0.001

P 0.764 <0.001 0.107 0.915 0.970 0.992

* = Correlation is significant at the 0.05 level (2-tailed).
** = Correlation is significant at the 0.01 level (2-tailed).
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5.3.3. Differencesin lower arm morphology between Neanderthals,

early and recent modern humans.

5.3.3.1. Curvature

The groups are significantly different for both curvature PCs: mcurveAllPC1 and lcurveAllPC1
(Table 5-15). Neanderthals have a higher degree of lateral and media curvature than early and
recent modern humans (Figure 5-31 and Figure 5-32). The early and recent modern human

samples are not different from each other (Appendix 44).

Table 5-15 ANOVA resultsfor palaeogroup and radius curvature PCs.

df=2 F Sig.
McurAllPC1 35297  <0.001*
LcurAllPC1 5.804 0.003*

*=significant at a=0.05
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Figure 5-31 The medial curve of the radius for Neanderthals, early and recent modern humans.
(Line=mean, Box= 2 SE., whiskers: 2 S.D.). The lower values for Neandertha radii indicate

that they are more curved than those of modern humans.
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Figure5-32 Thelateral curve of theradius for Neanderthals, early and recent modern humanst.
(Line=mean, Box= 2 S.E., whiskers: 2 S.D.). The lower values for Neandertha radii indicate

that they are more curved than those of modern humans.

5.3.3.2. Other shaft shape

For the radius, the groups are significantly different for the lateral shaft shape PCsonly (Table
5-16). Neanderthal s have an apex of curvature at midshaft and lack alateral projection of the
styloid process compared to those of modern humans, who have a more proximal apex and a
more projecting styloid process (IcurveAllPC2) (Figure 5-33). Neanderthals also have a more
sinusoidal radius in the anteroposterior plane compared to that of modern humans
(IcurveAllPC3) (Figure 5-34) (early modern humans only significantly different using
Hochberg's GT2 (Appendix 44).
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Table 5-16 ANOVA resultsfor palaeogroup and other radius shaft shape PCs.

d.f.=2 F Sig.

McurAllPC2 0.359 0.698
McurAllPC3 0.296 0.744
LcurAlPC2 12.742  <0.001*
LcurAlPC3 11.243  <0.001*

*=significant at a=0.05

0.02000+

001500+

0.01000+

0.00500+

Mean LcurAlIPC2

0.00000—

N=15 H=15 MN=361
T T T
Meanderthal Early modern human Recent modern human
Palaeogroup

-0.00500

Error Bars: 95% ClI
Figure5-33 LcurAlIPC2 for Neanderthals, early and recent modern humans.
The higher values for the Neanderthals indicate an apex of curvature at midshaft and a lack of

lateral projection of the styloid process. Mean and 95% confidence interval (whiskers).
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Figure5-34 LcurAllIPC3for Neanderthals, early and recent modern humans.
The higher values for the Neanderthals indicate a more sinusoidal radius in the anteroposterior
plane. Mean and 95% confidence interval (whiskers).

For the ulna, the groups are significantly different for two of the shaft shape PCs (Table 5-17).
Neanderthals have less mediolateral curvature of the ulnar shaft compared to early and recent
modern humans (pcurveAllPC1) (Figure 5-35). Neanderthals also have aless mediolateral
sinusoidal ulnar shaft shape compared to recent modern humans (Figure 5-36) (Appendix 46).

Table 5-17 ANOVA resultsfor palaeogroup and ulna shaft shape PCs.

d.f.=2 F Sig.

pcurveAllPC1 3.302 0.038*
pcurveAllPC2 8.540 <0.001*
pcurveAllPC3 0.100 0.904
pcurveAllPC4 0.888 0.412

*=significant at a=0.05
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Figure5-35 PcurAlIPC1 for Neanderthals, early and recent moder n humans.
The higher values for the Neanderthals indicate less mediolateral curvature of the ulnar shaft.
Mean and 95% confidence interval (whiskers).

0.01500

0.01000+

0.00500+

Mean pcurveAllPC2

0.00000+ %

MN=13 = =
000500 : N=19 N=344
MNeanderthal Early modern human Recent modern human
Palaeogroup

Error Bars: 35% Cl
Figure5-36 PcurAlIPC2 for Neanderthals, early and recent moder n humans.
The higher values for the Neanderthals indicate aless mediolatera sinusoidal ulnar shaft shape.
Mean and 95% confidence interval (whiskers).
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5.3.3.3. Epiphyses shape

The groups are similar in their radial epiphysea shape (Table 5-18). For the ulna, the groups are

significantly different for two proximal shape PCs (Table 5-19). Neanderthal s have a shorter

distance between the 80% level of the shaft and the coronoid process compared to early modern

humans (ProxAlIPC2) (Figure 5-37). Thereis atrend from Neanderthals to recent modern

humans in having a more proximo-anterior rather than an anterior facing trochlear notch and al

groups are significantly different from each other (ProxAlIPC3) (Appendix 47) (Figure 5-38).

Table 5-18 ANOVA resultsfor palaeogroup and radius epiphysis shape PCs.

d.f.=2 F

EpiAllPC1 0.089
EpiAllPC2 0.195
EpiAllPC6 0.416

*=significant at a=0.05

Table 5-19 ANOVA resultsfor palaeogroup and proximal ulna PCs.

d.f.=2 F Sig.

ProxAllPC1 1.045  0.353
ProxAllPC2 3.761  0.024*
ProxAllPC3 32.235 <0.001*

*=significant at a=0.05
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Figure5-37 ProxAllIPC2 for Neanderthals, early and recent moder n humans.
The lower values for the Neanderthals indicate a shorter distance between the 80% level of the

shaft and the coronoid process. Mean and 95% confidence interval (whiskers).
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Figure 5-38 ProxAllIPC3 for Neanderthals, early and recent moder n humans.
The lower values for the Neanderthals indicate a more proximo-anterior rather than an anterior

facing trochlear notch. Mean and 95% confidence interval (whiskers).
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5.3.34.

Univariate measurements

The groups are significantly different for most univariate measurements of both the radius and

the ulna (Table 5-20 and Table 5-21). Recent modern humans have shorter radii than early

modern humans (Figure 5-39). Neanderthal s have a more mediolaterally located radial tuberosity

than early and recent modern humans (Figure 5-40). Neanderthal s have a higher degree of dorsal

and lateral subtense, alonger radial neck and a more anteroposteriorly wide radial head than
early and recent modern humans (Figure 5-41; Figure 5-42; Figure 5-43). The early modern

humans are similar to the recent modern humans for those features. The midshaft shape ratio

shows no difference between the samples, but a downward trend in the means suggests atrend

toward more anteroposterior flattening and mediolateral widening which can be interpreted as

the increased devel opment of the interosseous crest with time (Figure 5-44) (Appendix 48).

Table 5-20 Descriptives of palaeogroup and the univariate measurements of the radius.

N Mean S.D.
Max_ Length Neanderthal 15 234.11 23.33
Early modern human 15 254.09 20.14
Recent modern human 361 234.95 19.78
neck-shaft angle ° Neanderthal 15 36.31 14.26
Early modern human 15 30.17 12.80
Recent modern human 361 35.94 13.95
PosRadTubML Neanderthal 15 22.86 11.95
Early modern human 15 1551 4.13
Recent modern human 361 15.50 7.24
DorsalST Neanderthal 15 10.78 3.54
Early modern human 15 7.01 2.04
Recent modern human 361 6.59 2.03
LateralST Neanderthal 15 15.19 22.40
Early modern human 15 9.49 3.32
Recent modern human 361 6.80 2.73
NeckLengthRatio Neanderthal 15 1231 2.21
Early modern human 15 10.97 1.30
Recent modern human 36 11.03 1.48
HeadShapeRatio Neanderthal 15 120.07 21.10
Early modern human 15 103.68 8.86
Recent modern human 361 105.38 8.70
midshaftShapeRation Neanderthal 15 93.99 32.44
Early modern human 15 92.49 25.03
Recent modern human 361 84.85 14.57
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Table 5-21 ANOVA resultsfor palaeogroup and univariate measurements of the radius.

d.f.=2 F Sig.

Max_ Length 6.689  0.001*
neck-shaft angle ° 1.247 0.289
PosRadTubML 7.176  0.001*
DorsalST 28.571 <0.001*
LateralST 21.517 <0.001*
NeckLengthRatio 5.215 0.006*
HeadShapeRatio 17.861 <0.001*
midshaftShapeRatio 3.813 0.023*

*=significant at a=0.05
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Figure5-39 Maximum radiuslength for Neanderthals, early and recent modern humans. M ean and
95% confidenceinterval (whiskers).
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Figure 5-40 Position of the radial tuberosity for Neanderthals, early and recent modern humans.
Mean and 95% confidence interval (whiskers).
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Figure 5-41 Dorsal subtense for Neanderthals, early and recent moder n humans. M ean and 95%
confidence interval (whiskers).
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Figure5-42 Relativeradius neck length for Neanderthals, early and recent modern humans. M ean

and 95% confidence interval (whiskers).
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Figure 5-43 Head shape ratio for Neanderthals, early and recent modern humans. M ean and 95%

confidence interval (whiskers).
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Figure 5-44 Midshaft shaperatio for Neanderthals, early and recent moder n humans. M ean and

95% confidenceinterval (whiskers).

For the ulna, there are differences among the groups for most univariate measurements (Table
5-22 and Table 5-23). Neanderthals have arelatively large proximal ulna, smaller shaft-
olecranon angle, more even coronoid-ol ecranon ratio and alow brachial tuberosity compared to
both early and recent modern humans (Figure 5-46; Figure 5-49; Figure 5-50; Figure 5-51;
Figure 5-52). Neanderthals are a so more robust at midshaft, have asmall radial notch, and have
amore anteroposteriorly wide ulnar shaft than do recent modern humans (Figure 5-53; Figure
5-48; Figure 5-47). Neanderthal s also have more robust distal articulations than early modern
humans but are not different in this aspect from recent modern humans (Figure 5-54). Early
modern humans have longer ulnae with relatively larger proximal heads than those of recent
modern humans but are similar in other aspects of their morphology (Appendix 48) (Figure 5-45;
Figure 5-46).

305



Table 5-22 Descriptives of palaeogroup and the univariate measurements of the radius.

N Mean S.D.
Max_ Length Neanderthal 13 255.41  25.09
Early modern human 21 266.88  18.70
Recent modern human 344 250.35 20.65
Olecshaftratio Neanderthal 13 9.88 1.15
Early modern human 21 8.47 0.97
Recent modern human 344 9.10 1.00
MidShaftShape Neanderthal 13 86.71  16.65
Early modern human 21 101.62  26.08
Recent modern human 344 109.75 31.87
Radial Notch Surface ratio Neanderthal 13 23.88 5.38
Early modern human 21 28.67 8.83
Recent modern human 344 29.77 7.45
TrochNotchOri Neanderthal 13 16.46 9.75
Early modern human 21 18.32 452
Recent modern human 344 20.60 6.46
OlecOrient angle Neanderthal 13 19.21 7.72
Early modern human 21 24.80 5.88
Recent modern human 344 24.13 5.06
CorOleRatio Neanderthal 13 104.31 4.47
Early modern human 21 107.36 2.03
Recent modern human 344 106.75 2.47
BrachRatio Neanderthal 13 26.45 2.71
Early modern human 21 23.33 1.88
Recent modern human 344 22.97 1.81
Pronator crest length Neanderthal 13 14.77 2.73
Early modern human 21 15.30 3.80
Recent modern human 344 14.64 3.69
Robusticity at 50% Neanderthal 13 11.73 1.60
Early modern human 21 11.01 1.22
Recent modern human 344 10.36 1.48
Robusticity at 25% Neanderthal 13 10.95 1.44
Early modern human 21 10.52 0.84
Recent modern human 344 10.36 1.43
Robust dist artic Neanderthal 13 16.56 1.65
Early modern human 21 14.73 2.32
Recent modern human 344 15.59 1.87
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Table 5-23 ANOVA resultsfor palaeogroup and univariate measurements of the ulna.

d.f.=2 F Sig.

Max_ Length 6.555  0.002*
Headshaftration 8.093 <0.001*
MidShaftShape 3.952 0.020*
Radial Notch Surface ratio 4,020 0.019*
TrochNotchOri 3.601 0.028*
headorient angle 5.850 0.003*
CorOleRation 6.534  0.002*
BrachRatio 22.411 <0.001*
Size pronator crest rel. length 0.323 0.724
Robusticity at 50% 7.048 0.001*
Robusticity at 25% 1.206 0.301
Robust dist artic 3.886 0.021*

*=significant at a=0.05
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Figure 5-45 Maximum ulna length for Neanderthals, early and recent modern humans. M ean and

95% confidenceinterval (whiskers).
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Figure5-46 Olecranon-shaft ratio for Neanderthals, early and recent moder n humans. M ean and

95% confidenceinterval (whiskers).
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Figure5-47 Midshaft shaperatio for Neanderthals, early and recent modern humans. M ean and

95% confidenceinterval (whiskers).
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Figure 5-48 Radial notch surface area for Neanderthals, early and recent modern humans. M ean

and 95% confidence interval (whiskers).
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Figure5-49 Trochlear notch orientation for Neanderthals, early and recent modern humans.

A lower value is amore anteriorly facing trochlear notch compare to a proximo-anteriorly facing

one. Mean and 95% confidence interval (whiskers).
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Figure 5-50 Olecranon orientation for Neanderthals, early and recent modern humans.

A lower value is amore anteriorly facing trochlear notch compare to a proximo-anteriorly facing

one. Mean and 95% confidence interval (whiskers).

108.00=
2 1 I
R =
EE 106.00
.
o
E=
o
Q
[ =
(]
1]
= 104.00
102.00
M=13 N=21 M=344
T T T
MNeanderthal Early modern human Recent modern human

Palaeogroup

Errar Bars: 95% CI

Figure5-51 Coronoid-olecranon ratio for Neanderthals, early and recent modern humans. Mean

and 95% confidence interval (whiskers).
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Figure5-52 Brachial insertion ratio for Neanderthals, early and recent modern humans. A higher

value meansarelatively lower insertion. Mean and 95% confidence interval (whiskers).
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Figure5-53 Ulnarobusticity at 50% shaft level for Neanderthals, early and recent modern humans.

Mean and 95% confidence interval (whiskers).
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Figure5-54 Robusticity of the head of the ulna area for Neanderthals, early and recent modern

humans. M ean and 95% confidence interval (whiskers).

5.3.3.5. Discriminant function analysis

A DFA with cross-validation using al radius PCs used in the analyses above and univariate
measurements of the radius was used to separate Neanderthals, early and recent modern humans
(Figure 5-55). Function 1 separates best between Neanderthals and all modern humans, whereas
function 2 separates early modern humans from recent modern humans. Function 1 reflects by
(ordered according to decreasing correlation between the variable and the function)
mcurveAllPC1 (media curvature), head shape ratio, IcurveAllPC3, IcurveAllPC2, position of
theradial tuberosity, lcurveAllIPC1 (lateral curvature), neck-length ratio, and proximal and dista
articulation sizeratio. Function 2 reflects the length of the radius, midshaft shape, neck-shaft
angle, head robusticity, mcurveAllPC2, mcurveAllPC3, EpiAllIPC1 and midshaft robusticity
(Table 5-24).

For all three groups (Neanderthals, early and recent humans) with very uneven sample sizes, the
expected proportion of correct random classification based on sample sizes is ~85%. The DFA

with cross-validation using all PCs for the radius included in the above analyses and univariate
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measurements was able to classify Neanderthal s and recent modern humans with 50% (7 out of
14) of Neanderthals and 83% (289 out of 348) of modern humans correctly classified. The early
modern humans were classified correctly in 50 % (7 out of 14) of cases, 14.3% (2 out of 14)

were classified as Neanderthals. This gives an overall correct classification of 80.6%.

Discriminant Funtions
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Figure 5-55 Discriminant Function 1 and 2 for for Neanderthals, early and recent modern humans.
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Table 5-24 Discriminant function coefficients — radius.

Function 1

McurAllPC1 -0.613
DorsalST 0.543
HeadShapeRatio 0.441
LcurAllPC3 0.398
LcurAllPC2 0.392
PosRadTubML 0.282
distArtShaftSizeRatio 0.197
LcurAllPC1 -0.196
NeckLengthRatio 0.193
McurAllPC3 0.069
CondAllIPC2 0.020
Canonical R=.548 P A =<0.001
Function 2

Max_ Length 0.467
LateralST 0.461
midshaftShapeRation 0.266
Headrobusticity 0.224
neck-shaft angle ° -0.219
McurAllPC2 -0.165
HeadShaftSizeRatio 0.112
CondAllIPC1 0.079
Midshaftrobusticity -0.077
Canonical R=.382 P A =<0.001

A DFA using al ulna PCs and univariate measurements used in the analyses above was used to
distinguish between Neanderthals, early and recent modern humans (Figure 5-56). Function 1
separates best between Neanderthal s and modern humansin general, whereas function 2
separates early modern humans from recent modern humans. Function 1 reflects (ordered
according to decreasing correlation between the variable and the function) proxAllPC3
(direction of the trochlear notch), neck-shaft angle, surface area of the radial notch, robusticity at
25% and negatively by brachia tuberosity ratio, pcurveAllPC2, and robusticity at 50%. Function
2 reflects the length of the ulna, the size of the head, robusticity of the distal articulation,
coronoid-olecranon ratio, ProxAllIPC2, pcurveAllPCL, proxAllPC1, pronator crest size,
pcurveAllPC3, and pcurveAllPC4 (Table 5-25).

For these three popul ations with very uneven sample sizes, the expected proportion of correct

random classification is ~83%. The DFA with cross-validation using all PCsfor the ulna

included in the above analyses and univariate measurements was able to classify 61.5% (9 out of
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15) of Neanderthals and 98.5% (356 out of 361) of recent modern humans correctly. Early
modern humans had low classification success: 94.7% (14 out of 15) was classified as recent
modern human, 5.3% (1 out of 15) were classified as Neanderthals. This gives an overall correct

classification of 92.3%.

Discriminant Functions
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Figure 5-56 Discriminant Function 1 and 2 for Neanderthals, early and recent modern humans.

Mean and 95% confidence interval (whiskers).
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Table 5-25 Discriminant function coefficients - ulna

Function 1

ProxAllIPC3 0.577
BrachRatio -0.480
pcurveAllPC2 -0.294
Robusticity at 50% -0.252
headorient angle 0.233
Radi Notch Surf ratio 0.213
MidShaftShape 0.196
TrochNotchOri 0.178
Robusticity at 25% -0.109
Canonical R=.581 P A =<0.001
Function 2

Max_ Length 0.484
Headshaftration -0.480
Robust dist artic -0.362
CorOleRation 0.276
ProxAllIPC2 0.251
pcurveAllPC1 -0.215
ProxAllPC1 -0.204
pron. cr. Length ratio 0.116
pcurveAllPC4 0.104
pcurveAllPC3 0.039
Canonical R=.344 P A =<0.001

5.34. Summary

Neanderthals have more curved radii (medial and lateral) and a more sinusoidally shaped shaft
than modern humans, and early modern humans are similar to recent modern humans.
Neanderthals also have an apex of curvature at midshaft, whereas that of modern humansis
located proximally. The Neanderthals are not different in anteroposterior sinusoidal shape from
modern humans. Neanderthals are characterised by a poorly projected styloid process and less
mediolateral curvature of the ulnar shaft. Neanderthal s have the most anterior facing trochlear
notch. Early modern humans have an intermediate and modern humans have the most
proximoanterior trochlear notch. Neanderthals have alarge proximal ulna with a small neck-
shaft angle, alow brachial tuberosity, and higher midshaft robusiticity of the ulnathan recent

modern humans.
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CHAPTER 6. DISCUSSIONAND CONCLUSION

6.1. Discussion

The goa of this research was to investigate the differences and similarities between
Neanderthals and modern humansin long bone curvature. More specificaly, this study tested
hypotheses to explain variation in curvature among present-day and Holocene popul ations of
humans, and applied these results to the interpretation of Neanderthals. Since there was
relatively little information available about long bone curvature in modern humans, this study
examined geographically, temporally and behaviourally diverse modern human samplesin order
to evaluate correlates of longitudinal 1ong bone curvature such as body size, climate, habitual
behaviour, and mobility. The femur and radius were chosen because they have been described as
highly curved in Neanderthals (Ried, 1924; Patte, 1955; Churchill, 1998). The ulnawas included
because the shape of the radius can only be fully understood if itsinteraction with the ulnais
aso investigated.

Limitations of prior research on curvature may have been due to the difficulty of accurate
quantification which is apparent from the inconsistency in techniques reported in the literature
(Ried, 1924; Genna, 1930; Stewart, 1962; Walensky, 1962, 1965; Gilbert, 1975, 1976; Trudell,
1999; Shackelford and Trinkaus, 2002). Therefore, it was necessary to find a method to quantify
the pattern of longitudinal bone curvature that would accurately represent the three-dimensional
aspect of the diaphyseal surface and eliminate effects of scale. Three dimensional geometric
morphometrics have frequently been used in cranial research (for an overview see Slice, 2005),
but its application to postcraniais rare, and this method has not previously been used to quantify
long bone curvature in humans and their close relatives. Here, the method was successfully
tested for intra-observer error and shown to distinguish among popul ations more effectively than

traditional methods, such as direct measurement of subtense.

In Chapter 4, the results of the curvature analyses for the femur, ulna and radius were presented
for the recent human samples. These results suggest that there are patterns within long bone
curvature but that these are different for the upper and lower limb. Femoral curvatureisrelated

to habitual activity patterns. The highest levels of curvature for the femur were found in
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populations with the highest activity levels. Femoral curvature follows different trends from
robusticity and is not necessarily aresponse to the same loading regime (Ruff et al., 1993; Ruff
et al., 1994; Trinkaus et al., 1994; Trinkaus et al., 1999a; Pearson, 2000b; Ruff and Trinkaus,
2000; Shackelford and Trinkaus, 2002; Stock, 2002; Stock and Pfeiffer, 2004; Stock, 2006;
Carlson et al., 2007; Shackelford, 2007). For the femur, which is loaded proximodistally,
curvature lowers bending stress by translating bending stressto axial compression (Frost, 1967;
Hall, 2004), and curvature may be a compromise between bone strength and predictability of
bending strains and material failure (Lanyon, 1980, 1987; Bertram and Biewener, 1988).
Because femoral curvature is unrelated to climate (latitude in this analysis), it may ultimately be

a better indicator of activity levels than cross-sectional measures of long bone robusticity.

In contrast, variation in curvature of the radius and ulnais influenced by climate. Individuals
from colder climates tend to have more curved and more sinusoidal radii. Consistent with
Bergmann's (1847) and Allen’s (1877) rules on body size and proportions, human populations
from colder climates have shortened distal limb segments, and it is thought that these differences
are genetic adaptations rather than epigenetic outcomes (Bergmann, 1847; Allen, 1877;
Y'Edynak, 1976; Eveleth and Tanner, 1990; Ruff et al., 1994; Pearson, 2000b; Van Andel, 2003;
Weaver, 2003; Ruff et al., 2005). The results for the recent modern human sample suggest that
curvature of the forearm bonesis aso a consequence of long-term exposure to cold climate
conditions rather than as aresult of habitual behaviour. This curvature is arguably not an
adaptation in itself, but a consequence of reduced relative forearm length in cold-adapted
populations. In order to optimise strength of the forearm despite its shorter length, curvature may
serve to maintain full function of the pronation and supination muscles, preserve interosseous
surface area and facilitate muscle packing by allowing for the position of slender attachments
close to the joints while providing adequate space for the muscle bellies in the midshaft region
(Lanyon and Bourn, 1979; Lanyon, 1980) (see Chapter 4).

In Chapter 5, variation between Neanderthals, early and recent modern humans was eval uated
(Objective 2). Neanderthals are distinct from both early and recent modern humans and exhibit a
higher degree of anterior femoral curvature and a higher degree of lateral and media curvature
of the radius. There are no differences in anteroposterior sinusoidal shaft shape of the ulna
(posterior subtense) but Neanderthals are less mediolaterally sinusoidal than early and recent

modern humans.
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Based on previous research, Neanderthals are thought to show evidence of cold-adaption in their
femora, radii and ulnae. For the femur, Neanderthal s have extremely large femoral heads and
knees (distal ends) which are consistent with their cold-adapted body proportions and relatively
large body size (Trinkaus, 1981; Ruff, 1991; Churchill, 1998; Weaver, 2003). Both the radius
and ulna arerelatively short and aso have large articulations. This shows that Neanderthal s
conform to Bergmann's (1847) and Allen’s (1877) rules and that Neanderthals fall at the “cold”
end of the distribution, more extreme than modern human populations. Some have suggested
that the effects of, for example, foreshortening of the distal extremitiesis not a heat conservation
mechanism reducing surface area, but instead is the effect of the cooling of distal segments of
the limbs and dlowing of the metabolism and growth of the peripheral tissues (Steegmann Jr. et
al., 2002). However, body shape manifestsitself in early feta life (Warren, 1998; Holliday,
2000) and does not appear to change with the secular trend in modern humans that affects body
size and stature. Therefore, it islikely to be genetically controlled (Katzmarzyk and Leonard,
1998).

The extreme cold-adapted physique of Neanderthals can also be explained by their lifestyle
(Churchill, 1998). Although Neanderthals would have needed additional protection from the
cold in order to survive in Europe (Aiello and Wheeler, 2003), the severe physical stress of
living in the Late Pleistocene cold European and Western Asian climate with simple technology
may be sufficient to explain their hyper-polar body form (Churchill, 1998). The Mousterian
(with which most Neanderthal s are associated) does not show much evidence for cultura
buffering against the cold. In contrast, the Upper Palaeolithic tool industries are typified by the
first solid evidence for the systematic construction of complex hearths suitable for intensifying
and containing heat (James et al., 1989; Stiner, 1993; Trinkaus and Shipman, 1993 but see
Henry et al., 2004). Punches or awls and the subsequent appearance of needles represent
advances in making tools for binding hide together for clothing (Trinkaus, 1981; Holliday, 1997,
Holliday, 1999; Weaver and Steudel-Numbers, 2005 and articlesin Melars and Stringer, 1989).
Thelack of such technological advancesin thermal protection in Neanderthals may explain the
sel ective pressures on them while their presence in modern archaeological assemblages may
point to the reduction in those sel ective pressuresin modern humans inhabiting similar climates
(Rak, 1990; Trinkaus et al., 1998a; Holliday, 2000; Churchill, 2001; Niewoehner, 2001; Shea,
2003).
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Although the Neanderthal femur shows some climatic adaptations (Trinkaus, 1981; Ruff, 1991,
Churchill, 1998; Weaver, 2003), the results from the recent human analyses indicate that there is
no effect of climate on the curvature of the femur (Walensky, 1965; Gilbert, 1976). In addition,
curvatureis not correlated to femoral torsion. Thisis consistent with femoral curvature being
unrelated to climate because, if femoral curvature was a consequence of the wider “cold-
adapted” Neanderthals hip, it would be correlated with torsion as was suggested by Weaver
(2003).

The curvature of the radius and overall morphology of the ulnain Neanderthal s shows good
correspondence with the climate data. This climatic variation is confirmed also in the
digtribution of the medial radial curvature: fossils from Neanderthal populationsin colder
climates (Spy, Le Moustier, LaQuina, La Ferrassie) have a higher degree of curvature than the
Middle Eastern fossils (Shanidar and Kebara).

As discussed above, the relationship between curvature and climate can be explained as a
consequence of the shortening of the forearm. Other characteristicsin the forearm that are
correlated with climate in recent modern humans are a more sinusoidal radial shaft, shortening
of the ulnar neck (distance between 80% level of the ulna and the tip of the coronoid), a
proximo-anteriorly facing trochlear notch, increased distal articulation size, alarger ulnar head
relative to shaft, larger radial notch surface area and arelatively lower insertion of the brachia
muscle. These features indicate that the absolute dimensions of the head and articulations of the
ulnaand radius remain relatively large for the length of the shaft. Also, foreshortening of the
forearm in response to cold climatic conditionsis not a scaling down of the whole bone but
rather a reduction in shaft length. Shortening the diaphysis reduces the surface area for muscle
insertions and may affect lever advantage and contraction function (which is affected by muscle
fibre size) of several arm and hand muscles, such as the pronator teres (Hall, 2004). Therefore,
curvature may be a means of maintaining full function and force despite areduction in length.
By increasing the curvature of the radius and adopting a more sinusoidal shaft shape diaphyseal

length is maximised.

Theresults for the Neandertha ulna and radius show that Neanderthal s have all the above
mentioned “cold climate features’ and express them to a more extreme degree. Neanderthals
have the highest degree of lateral curvature of the radius, relatively the largest ulnar head,
shortest ulnar neck (distance between 80% of the shaft and the tip of the coronoid), the most
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anteriorly facing trochlear notch and the most inferior brachial tuberosity. The emergence of
modern humans saw a pronounced reduction in the muscular hypertrophy of the upper limb
(Trinkaus, 1986) and areduction in the size of the muscle insertions on the arm and hand
skeleton (pronator quadratus on the ulna, the flexor pollicis longus and the opponens muscles on
the carpals and distal phalanges) (Trinkaus, 1983a). The reduction in muscle size in modern
humans may also explain the lower degree of curvature in modern-day Arctic populations

compared to Neanderthals (Lanyon and Bourn, 1979).

The Neanderthal radius shows some distinct features such as a more medially placed radial
tuberosity compared to modern humans. It has been suggested that this position of the radial
tuberosity is a consequence of the use of the forearm in flexion (Trinkaus and Churchill, 1988).
In the present study it was predicted that if curvature of the radiusis aresult of the habitual use
of thearm in that position and the associated increased strain of the forearm, that there would be
a correlation between the position of theradia tuberosity, the neck-length of the radius and
curvature. Neanderthal s do have a more medially oriented radial tuberosity than do modern
humans, but there is no correlation with neck length or with curvature. Also, in modern humans

amore medially oriented radial tuberosity was associated with low activity levels.

The recent modern human analyses suggested that femoral curvatureis a plastic feature that
responds to loading of the femur during activity. Confirming the hypothesis by Shackelford and
Trinkaus (2002), populations with high activity levels have a high degree of femoral curvature.
Thiswas evident aso in the relationship between activity levels and robusticity at different
points along the shaft. It is not surprising, then, that there is arelationship between curvature and
robusticity in modern humans. The correlation between cross-sectional anteroposterior
robusticity and activity levels was hypothesised to be the result of repetitive loading on the lower
limb during subsistence strategy-related terrestrial mobility (Ruff, 1987; 1994; Larsen et al.,
1995; Hoalt, 2003; Stock and Pfeiffer, 2004), and this hypothesis is supported by the strength
circularity indices at the femoral midshaft and their strong correspondence with terrestrial
mobility (Stock, 2006). Because of the correlation between subsistence-related activity and
curvature in recent modern humans, the prediction was that Neanderthal s, being hunter-
gatherers, would have a high degree of femoral curvature. Moreover, their curvature should be
comparable to that of early modern humans because the two groups had broadly similar
lifestyles (Trinkaus et al., 1989).
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Early modern humans and Neanderthals most likely did not differ in their subsistence strategies
and were both hunting and scavenging (Lieberman, 1989; Bar-Y osef, 2004; Pearson et al .,
2006). Faunal assemblages from occupation and butchery sites shows that both groups had early
access to the animals and cut-mark patterns indicate a primary reliance on hunting rather than
scavenging (Speth and Tchernov, 1998). Trinkaus and Zimmerman (1982) and Klein (2003)
have argued that Middle Stone Age people were less adept hunters because they only hunted a
few of the available species and that Neanderthals show a high incidence of skeletal trauma
because of the risk involved in close range hunting (Trinkaus and Zimmerman, 1982; Klein,
2003). Recent investigations of faunal assemblages have shown that some Neanderthal sites may
be dominated by a single prey species, but thisis also documented among some modern hunter-
gatherer societies (Marean and Assefa, 1999; Marean and Assefa, 2005).

The reliance on meat for Neanderthals and early modern humans living in temperate and cold
regions such as Europe and Western Asiawas important for survival. Early Europeans must
have relied on frequent meat acquisition for their diet asit is likely that plant foods would have
been unavailable for consumption during parts of the year. Thisis confirmed in stable-isotope
analyses from sites such as Vindija Cave, Croatia; Scladina, Spy and Engisin Belgium and
Marillac and Saint-Césaire in France (Fizet et al., 1995; Richards et al., 2000; Bocherens et al.,
2001; Richards et al., 2001; Drucker and Bocherens, 2004; Bocherens et al., 2005).

Marean (1999) argued that the Middle Palaeolithic Neanderthals may not have been less adept
hunters than their Middle Stone Age modern human contemporaries but, instead, might have
been less adept at using and processing carcasses in order to render higher caloric yields, such as
fat rendering and storage, which put them at a subtle disadvantage in comparison to modern
humans. These disadvantages were not only the lower caloric intake per prey animal, but also
the increased personal risk because of more frequent hunting (Marean and Assefa, 1999). This
low return on time expended may have resulted in moderately higher activity and mobility levels

in Neanderthals compared to early anatomically modern humans.

Similarities in lifestyle and subsistence pattern between Neanderthal s and the earliest modern
humans is also apparent in the archaeological record, where similar species of large animals are
found in both Neanderthal and early modern human deposits. Neanderthals were effective
hunters (Speth and Tchernov, 1998) and some consider them a top predator in the environment

in which they lived (Bocherens et al., 2005). They also hunted a given region for alonger period
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of time than modern humans who were more seasonally mobile (Lieberman, 1989). Although
there is some variation, overall, Neanderthals and early modern humans were likely very similar
in terms of mobility, resource acquisition and overall workload, and thisis apparent in their
postcrania anatomy (Lieberman, 1989). When corrected for size and body proportions,
Neanderthals have lower limb bones that were similar in cross-sectiona strength to those of
modern humans (Trinkaus et al., 1989). Thisis also reflected in the results on robusticity
presented here, which showed no significant differences between robusticity levels of the shaft

between Neanderthals and early modern humans.

In degree of femoral curvature, however, and contrary to the hypothesis of Shackelford and
Trinkaus (2002), Neanderthals show a significantly higher degree of curvature and alower apex
of curvature compared to both early and recent modern humans. This difference suggests that
Neanderthals had much higher activity levels, in contrast to what is suggested by the robusticity
results (Trinkaus et al., 1989).

The comparatively small range of variation in femoral curvature in Neanderthals compared to
early and recent modern humans (and in particular compared to the range of variation of the high
activity group) suggests that Neanderthals had a smaller range of subsistence behaviours than
modern humans and that this behaviour involved high activity levels. The curvature of the radius
isareflection of climate and the variation among Neanderthals and early modern humans is very
wide compared to that of recent modern humans. Also Neanderthal radii from the Levant tend to
be less curved than those from Northwest Europe. Most early modern humans fall within the
range of recent modern humans, but Skhul 1V and Qafzeh 9 fall outside. The sites of Skhul and
Qafzeh are the earliest modern human sites outside of Africa, and it has been suggested that the
individuals from these sites were not yet fully modern human (McCown and Keith, 1939b,
1939a; Arensburg and Belfer-Cohen, 1998; Kramer et al., 2001; Rak, 2002). The early modern
humans from Skhul and Qafzeh aso pre-date the presence of Neanderthalsin the region, and
some have suggested that the distinctiveness of Neanderthal versus modern humans in the
Levant may not be as clear asin other places, and the overlap in morphology may be explainable
by admixture between the two groups (Kramer et al., 2001). This may a so explain the higher

degree of radia curvature observed in those two individuals compared to the rest of the group.

In light of the recent genetic evidence showing that Neanderthals did not contribute to the
modern human gene pool (Caramelli et al., 2003; Ovchinnikov and Goodwin, 2003; Green et al .,
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2006) the differences in curvature of the Skhul and Qafzeh could be explained by the very early
date for these individualsif there was evidence for increased muscularity relative to more recent
modern humans. This has been contradicted by studies on the humerus and hand bones which
showed that the early Near Eastern modern humans were more gracile than Middle Stone Age
and later Upper Palaeolithic modern humans and were thus somewhat of an anomaly (Trinkaus
and Churchill, 1999; Niewoehner, 2001).

The evolutionary significance of long bone curvature for hominins more generaly has not been
investigated. The femur and radius of gorillas and chimpanzees are more curved than those of
modern humans (Martin and Saller, 1959), and long bone curvature in primates is known to
scale positively with body weight (Swartz, 1990). In humans, there is no correlation between
body size and curvature, but the variation in modern human long bone curvature shows that,
despite not being allometrically scaled, its plasticity was retained throughout human evolution
and curvature should therefore be considered a selectively adaptive feature.

With the shift to bipedal walking in hominins, weight distribution and muscle organisation of the
femur has changed, and the upper limb lost its locomotor function. The functional significance
of long bone curvature in earlier hominins has not been commented on, but it is possible to
examine some hominin casts and published photographs. The Homo erectus Nariokotome femur
isrelatively straight but the Homo sp. KNM-ER 1481 shows a marked degree of femoral
curvature despite having arelatively gracile shaft. Photographs of relatively complete femora
from other members of the genus Homo, such as those from Atapuerca and Dmanisi, have only
been published in anterior view, so it isimpossible to comment on the degree of femoral
curvature (Lordkipanidze et al., 2007). Radii are poorly represented in the fossil record. The
fragmentary radius from OH 62 and a fragment from KNM-ER 3735 indicate amoderately
curved radius for H. habilis (Haeusler and McHenry, 2004), and aradia fragment from
Atapuerca suggests alow degree of radia curvature for H. antecessor. Although complete and
well dated postcrania fossils arerelatively rare, the use of 3D geometric morphometrics on both
complete and partial fossil specimens and a comparison with the African apes should provide
sufficient data for investigating further the evolutionary significance of long bone curvaturein

earlier hominins.
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6.2. Conclusion

The evidence presented here supports the hypothesis that femoral curvature is a bone response to
stresses and strains during habitual behaviour and shows good correspondence with measures of
externa robusticity. Populations with high activity levels have a higher degree of anterior
femoral curvature and amore distal apex of curvature than populations with low and moderate
activity levels. Within populations with high activity levels, males have more curved femora
than females. Thisis not due to sexual dimorphism in body size or sex differencesin bone
modelling and remodelling as there is no sex difference in groups who have less sexual division
of labour and curvature is not correlated to body size. Of the high activity subsistence strategies
the aguatic foragers, with low levels of terrestria activity, are the least curved, and the
pastoralists, with high levels of terrestrial mobility, are the most curved. Biomechanically,
increased femoral curvature serves to generate physiologically beneficial strains, facilitates

muscle packing and increases the predictability of material failure.

Lateral curvature of the radius, mediolateral curvature of the ulna and overall forearm bone
shape are correlated with climate and are poor predictors of habitual behaviour. However, the
aguatic foragers were distinct in having a proximal development on the interosseous crest and
high neck-shaft angles which may reflect their use of watercraft. Curvature of the radius and
ulnaislikely a consequence of the foreshortening of the forearm in col d-adapted popul ations.
The results suggest that this foreshortening is areduction in length of the diaphysis while
maintaining relatively large epiphyses and rather than an overall downscaling of the bone.
Increased forearm bone curvature aids in maintaining the tendon insertions close to the joints
while facilitating muscle packing, and retaining interosseous space, muscle length and function

and maximising diaphyseal length.

Neanderthals and early modern humans had broadly similar hunter-gatherer lifestyles, and their
postcrania skeleton was likely subject to the same stresses as modern humans. Neanderthal s
show a high degree of femoral curvature, reflecting their active lifestyles, and a high degree of
radial curvature, reflecting their cold-adapted body form. Early modern humans display a high
degree of femoral curvature but, contrary to Neanderthals, one that is well within the range of

variation of modern humans. Early modern humans, except for Skhul and Qafzeh, show arange
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of variation of radial curvature that falls within the range of recent modern humans.
Neanderthals fall above the human range of curvature, although there is some overlap.
Neanderthals also show a number of differences in the shape of the ulna (e.g., more anteriorly

facing trochlear notch and shorter ulnar neck).

Although there may have been some variation in the specific subsistence-related activities they
performed, thereis awidely held view that Neanderthals and early modern humans had similar
lifestyles and activity levels. Therefore, the higher degree of femoral curvature in Neanderthal s
cannot be explained by behaviour alone. From ataxonomic and phylogenetic perspective,
Neanderthals are distinct in their expression of curvature compared to modern humans, but it
remains to be investigated whether the low degree of curvature is a derived recent human trait,

or whether a marked degree of curvature is an autapomorphy of Neanderthals. It has also been
suggested that certain differences in morphology between Neanderthal s and recent modern
humans are the result of behaviour during ontogeny (Trinkaus, 1993), but the results presented in
this study would suggest that only femoral curvature may be affected by individual ontogeny. In

order to investigate this further it is necessary to expand this study to an ontogenetic sample.

Numerous studies have emphasised the unusual features of Neanderthals and highlighted
differences between “them” and “us’. As other studies have done (see Trinkaus, 1975; Trinkaus
and Villemeur, 1991; Churchill, 1998, 2001; Weaver, 2003; Pearson et al., 2006), this study
used models based on variation in Homo sapiens to discuss postcranial morphology in the
context of evolutionary biology and adaptive history of modern humans. Neanderthals had active
lifestyles and were adapted to life in the cold climate of Europe and Western Asia, but they were
different from cold-adapted modern humans and equally active early modern humans. Even
when only the available evidence from earlier members of the genus Homo is taken into account,
Neanderthal femoral and radial morphology appearsto be distinct, especialy whenitis
considered in combination with the rest of Neanderthal postcranial characters. This
digtinctiveness can most easily be explained by the isolation of the Neanderthal s during an

extended period of time from the modern human lineage.
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APPENDIX

Appendix 1 Landmar ks and measurementsfor the femur

Nr M easurement and Description
landmark
1 Subtrochanteric Medio-lateral diameter taken at the 80% level. The 0% shaft level is defined as the most inferior edge of the
mediolateral diameter medial condyle; the 100% is the most superior point of the head of the femur.
(Martin n°9)
M 80% Most medial point at 80% level.
L 80% Most lateral point at 80% level
2 Midshaft mediolateral Medio-lateral diameter taken at the 50% level. The 0% shaft level is defined as the most inferior edge of the
diameter (Martin n® 8) medial condyle; the 100% is the most superior point of the head of the femur
M 50% Most medial point at 50% level.
L 50% Most latera point at 50% level.
3 Subpilastric mediolateral  Medio-lateral diameter taken at the 25% level. The 0% shaft level is defined as the most inferior edge of the
diameter medial condyle; the 100% is the most superior point of the head of the femur
M 25% Most medial point at 25% level.
L 25% Most latera point at 25% level.
4 Subtrochanteric Antero-posterior diameter taken at the 80% level. The 0% shaft level is defined as the most inferior edge of
anteroposterior diameter  the medial condyle; the 100% is the most superior point of the head of the femur
(Martin n°11)
A 80% Most anterior point at 80% level.
P 80% Most posterior point at 80% level.
5 Mid-shaft anteroposterior ~ Antero-posterior diameter taken at the 50% level. The 0% shaft level is defined as the most inferior edge of
diameter (Martin n°10) the medial condyle; the 100% is the most superior point of the head of the femur
A 50% Most anterior point at 50% level.
P 50% Most posterior point at 50% level.
6 Subpilastric Antero-posterior diameter taken at the 25% level The 0% shaft level is defined as the most inferior edge of the

anteroposterior diameter

medial condyle; the 100% is the most superior point of the head of the femur
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A 25% Most anterior point at 25% level.
P 25% Most posterior point at 25% level.
7 Femur length (Martin Maximum length measured along the biomechanical axis.(biomech axis. where the most superior point of the
n°1) head of the femur and the most lateral point of the greater trochanter describe a 90° angle, the perpendicular
line down from the most superior point of the head to the most inferior point on the media condyle).
FEML1 The most superior point of the head measured along the biomechanical axis.
FEML2 The most inferior point on the medial condyle measured along the biomechanical axis.
8 Length of the head-neck Length of the axis from the most medial point of the head to the middle of the intertrochanteric line.
axis (Martin N° 14)
HNAX1 Most medial point of the head
HNAX?2 Middle of the intertrochanteric line
9 Head diameter (Martin N°  Maximum diameter of the femoral head on the edge of the articular surface
18 and 19)
HDIA1s Most superior point on aline describing the maximum super-inferior diameter
HDIAZ2i Most inferior point on aline describing the maximum supero-inferior diameter
HDIA3p Most posterior point on aline describing the maximum mediolateral diameter
HDIA4a Most anterior point on aline describing the maximum mediolateral diameter
10 Neck-shaft angle (Martin ~ Also collo-diaphyseal angle. Martin n°29. The angle described by the shaft-axis (going through the middle of
N° 29) the shaft) and the neck-axis (going through the middle of the neck)
HNAX1 Most medial point of the head
NSAG2 Point where the neck axis intersects with the axis through the middle of the shaft
NSAG3 Located on the superior edge of patellar surface midway between medial and lateral borders of superior
portion of the patellar surface. Also lies on line passing through middle of axis of the distal shaft.
11 Torsion (Martin n° 28) The angle of femoral torsion isthe angle made by the axis of the femoral neck with the tangent of the

HNAX1
TORS2

TORS3

TORHA

posterior surfac of the femoral condyles.

Most medial point of the head

The most posteriorly projecting point of the media condyle. The point where the condyle would touch a
surface if it were horizontally placed on a surface.

The most posteriorly projecting point of the lateral condyle. The point where the condyle would touch a
surface if it were horizontally placed on a surface.

Most latera point on the greater trochanter on the neck axis
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12 Middle of the insertion Located on the antero-inferior surface of the greater trochanter, just medial to the lateral border, in the center
areafor gluteus minimus  of the oval insertion areafor gluteus minimus. The insertion area may extend as a thinner strip superiorly and
(Weaver n°3) medially, but record the point in the center of the insertion.

GMIN Center of the oval insertion areafor gluteus minimus on the antero-inferior surface of the greater trochanter,
medial to the lateral border

13 Middle of theinsertion Located on the postero-superior surface of the greater trochanter, in the center of the oval insertion areafor
areafor gluteus medius the gluteus medius. The insertion area extends as a thinner strip inferiorly and anteriorly, but record the point
(Weaver n°4) in the center of the insertion.

GMED Center of the oval insertion areafor the gluteus medius located on the postero-superior surface of the greater
trochanter

14 Tip of the lesser Where the lesser trochanter projects maximally (local maximum of a curved surface)
trochanter (Weaver n°5)

LSTR The tip where the lesser trochanter projects maximally

15 Tip of the adductor L ocated where the adductor tubercle projects maximally (local maximum of a curved surface)
tubercle (Weaver n°8)

ADTB Tip located where the adductor tubercle projects maximally

16 Midpoint of the antero- Located on the superior edge of the patellar surface midway between the medial and lateral borders of the
superior edge of the superior portion of the patellar surface. This point also lies on aline that passes through the middle of the axis
patellar surface of the of the distal femoral shaft.
distal femur (Weaver n°9)

NSAG3 Located on the sup edge of patellar surface midway between medial and lateral borders of superior portion of
the patellar surface. Also lies on line passing through middle of axis of the distal shaft.

17 Midpoint of the medial Midpoint, from an inferior view, of the medial edge of the inferior surface of the medial condyle.
edge of the inferior
surface of the medial
condyle (Weaver n°10)

MCMDi Midpoint, from an inferior view, of the medial edge of the inferior surface of the medial condyle.
18 Midpoint of the |ateral The midpoint, from an anterior view, of the lateral edge of theinferior surface of the lateral condyle. Thereis

edge of the inferior
surface of theinferior
surface of the lateral

usually adlight notch or depression at this point. Points 27 and 28 should connect to form alinethat is
horizontal when the femur is held in anatomical position. Points 27 and 28 usually fall just anterior to the
anterior edge of the intercondylar notch.
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condyle (Weaver n°11)
LCMDi

Midpoint, from an inferior view, of the lateral edge of theinferior surface of the lateral condyle.

19 Midpoint of the medial This point is defined as the midpoint, from a posterior view, of the medial edge of the posterior surface of the
edge of the posterior medial condyle.
surface of the medial
condyle (Weaver n° 12)

MCMDp Midpoint, from a posterior view, of the medial edge of the posterior surface of the medial condyle.

20 Midpoint of the lateral This point is defined as the midpoint, from a posterior view, of the lateral edge of the posterior surface of the
edge of the posterior lateral condyle. Thereisusually aslight notch or depression at point 30. Point 29 and 30 should connect to
surface of the lateral form aline that is afrontal plane when the femur is held in anatomical position.
condyle (Weaver n° 13)

LCMDp Midpoint, from a posterior view, of the lateral edge of the posterior surface of the lateral condyle.

21 Maximum condylar width  The distance between the point where the medial epicondyle projects maximally (local maximum of a curved
(Martinn°21) surface) and the point where the lateral epicondyle projects maximally (local maximum of a curved surface)
MLMDM1 The point where the medial epicondyle projects maximally (local maximum of a curved surface)

MLMDL2 The point where the lateral epicondyle projects maximally (local maximum of a curved surface)

22 Most superior projection  The points on a curved surface where the direction of the articulation of the patellar surface changes direction

of the patellar surface (from lateral/medial to inferior)
PROJ1 The point where the media condylar articular surface projects most anteriorly
PROJ2 The point where the lateral condylar articular surface projects most anteriorly
23 Curvature Curvature of the femur along four sides. Posterior measured from 80% level along the linea aspera down to
the midpoint between the posterior media and lateral patellar surface. Anterior curvature measured from the
80% level down to the midpoint on the most superior edge of the patellar surface. Media curvature from
80% level down to the adductor tubercle. Lateral curvature from 80% level down to the
LMXTB The point where the lateral surface projects maximally (opposite side adductor tubercle)
MIDPS The midpoint between the posterior medial and lateral patellar surface
PCURV Semi-landmarks taken every 5 mm along the posterior curve of the femur.
ACURV Semi-landmarks taken every 5 mm along the anterior curve of the femur.
MCURV Semi-landmarks taken every 5 mm along the medial curve of the femur.
LCURV Semi-landmarks taken every 5 mm along the lateral curve of the femur.
24 Midshaft robusticity index AP diameter 50% + ML diameter 50% / length * 100
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25

Head robusticity index

Sl head diameter + AP head diameter / length * 100

26

Condyle diameter ratio

M aximum condylar width/length *100

27

Neck length ratio

Neck length/length * 100

28

Subtrochanteric ratio

AP diameter 80% / ML diameter 80%* 100

29

Midshaft ratio

AP diameter 50% / ML diameter 50%* 100

30

Subpilastric ratio

AP diameter 25% / ML diameter 25%* 100
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Appendix 2 Landmark diagram — femur (After www.bartelby.com).
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Appendix 3 Landmar ks and measurementsfor theradius

Nr  Measurement and Description
landmark

1 Maximal length (Martin Maximum length measured from the most superior point on the articular surface on the head to the most dista
n° 1) point on the styloid process.
RADL1 The most superior point on the articular surface on the head
RADL?2 The most distal point on the styloid process

2 80% mediolatera Medio-lateral diameter taken at the 80% level. The 0% shaft level is defined as the most inferior edge of the
diameter (Martin 5a) styloid process; the 100% is the most superior point on the articular surface on the head.
M 80% Most medial point at 80% level.
L 80% Mogt lateral point at 80% level.

3 50% mediolatera Medio-lateral diameter taken at the 50% level. The 0% shaft level is defined as the most inferior edge of the
diameter styloid process; the 100% is the most superior point on the articular surface on the head.
M 50% Most medial point at 50% level.
L 50% Mogt lateral point at 50% level.

4 25% mediolatera Medio-lateral diameter taken at the 25% level. The 0% shaft level is defined as the most inferior edge of the
diameter styloid process; the 100% is the most superior point on the articular surface on the head.
M 25% Most medial point at 25% level.
L 25% Mogt latera point at 25% level.

5 80% anteroposterior Antero-posterior diameter taken at the 80% level. The 0% shaft level is defined as the most inferior edge of the
diameter (Martin 44) styloid process; the 100% is the most superior point on the articular surface on the head.
A 80% Most anterior point at 80% level.
P 80% Most posterior point at 80% level.

6 50% anteroposterior Antero-posterior diameter taken at the 50% level. The 0% shaft level is defined as the most inferior edge of the
diameter (Martin 5a) styloid process; the 100% is the most superior point on the articular surface on the head.
A 50% Most anterior point at 50% level.
P 50% Most posterior point at 50% level.

7 25% anteroposterior Antero-posterior diameter taken at the 25% level. The 0% shaft level is defined as the most inferior edge of the

diameter
A 25%

styloid process; the 100% is the most superior point on the articular surface on the head.
Most anterior point at 25% level.
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P 25% Most posterior point at 25% level.
8 Length of the head-neck Length of the axis from the most superior point of the head to the radial tuberosity.
axis (Martin 1a)
HDI14a Most anterior point on aline describing the maximum diameter on the most inferior edge of the head
RADT Thetip where theradial tuberosity projects maximally
9 Superior head diameter Maximum diameter of the radial head on the edge of the articular surface
(Martinn® 4 (1))
HDIS1m Most medial point on aline describing the maximum mediolateral diameter on the most superior edge of the
head
HDIS2| Most latera point on aline describing the maximum mediolateral diameter on the most superior edge of the
head
HDIS3p Most posterior point on aline describing the maximum anteroposterior diameter on the most superior edge of
the head
HDIS4a Most anterior point on aline describing the anteroposterior maximum diameter on the most superior edge of
the head
10 Inferior head diameter Maximum diameter of the femoral head on the edge of the articular surface
(Based on Martinn® 4 (1)
)
HDII1m Most medial point on aline describing the maximum mediolatera diameter on the most inferior edge of the
head
HDI12| Most latera point on aline describing the maximum mediolateral diameter on the most inferior edge of the
head
HDI13p Most posterior point on aline describing the anteroposterior maximum diameter on the most inferior edge of
the head
HDI14a Most anterior point on aline describing the anteroposterior maximum diameter on the most inferior edge of
the head
11 Neck-shaft angle (Martin  Also collo-diaphyseal angle. Martin n°7. The angle described by the shaft-axis (going through the middl e of
n°7) the shaft) and the neck-axis (going through the middle of the neck)
HDI14a Most anterior point on aline describing the maximum diameter on the most inferior edge of the head
NSAG2 Point where the most narrow diameter of the neck intersects with the anterior neck axis through the middle of
the shaft
A 80% Most anterior point at 80% level. The 0% shaft level is defined as the most inferior edge of the styloid process;

the 100% is the most superior point on the articular surface on the head.
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12 Theradia tuberosity The most projecting point on the radia tuberosity
RADT Thetip where theradial tuberosity projects maximally
13 Middleof thedistal radial  The middle of the distal radial articular surface edge on the posterior side. The middle of a curved surface
articular surface edge
ARTSp The middle of the distal radial articular surface edge on the posterior side. The middle of a curved surface
14  Themiddle of the ulnar The middle of the articular surface on the medial side of the radial notch.
notch
ULNT The middle of the medial articular surface on the ulnar notch
15 Middle of thedistal radial The middle of the distal radial articular surface edge on the anterior side. The middle of a curved surface
articular surface edge
ARTSa The middle of the distal radial articular surface edge on the anterior side. The middle of a curved surface
16  Dorsal subtense (based on  Maximum distance from a chord connecting P80% and ART Sp and the posterior surface of the shaft.
Martin 6b)
17  Lateral subtense (based Maximum distance from a chord connecting L80% and the most distal point on the styloid process (RADL2)
on Martin 6a) and the posterior surface of the shaft.
18  Curvature Curvature of the radius along two sides. Media curvature from 80% down to the middle of the ulnar notch.
Lateral curvature from 80% level down to thetip of the styloid process.
MCURV Semi-landmarks taken every 5mm along the medial curve of the radius
LCURV Semi-landmarks taken every 5mm along the lateral curve of the radius
19  Midshaft robusticity anteroposterior midshaft diameter + mediolateral midshaft diameter/ maximum length * 100
20  Head robusticity anteropostior head diameter+ mediolateral diameter/ maximum length * 100
21  Didtd articulation Size anteroposterior dista articulation diameter + mediolateral distal articulation diameter/ maximum length * 100
Ratio
22  Position Radial Tubercle  the angle between a vector connecting the most projecting point on the radial tuberosity and the most medial
point at the 80% level and the vector running through the most medial point at 50% and 80% (see diagram)
23  Neck Length Ratio Neck |ength/maximum length * 100
(Martin n°la/Martin n°1)
24  Head Shape Ratio anteropostior head diameter / mediolateral diameter * 100
25  Midshaft Shape Ratio anteroposterior midshaft diameter / mediolateral midshaft diameter * 100

(Martin n°4al Martin
n°5a)




Appendix 4 Landmark and measurement diagrams - radius (After www.bartelby.com and www.physioweb.nl )
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Appendix 5 Landmar ks and measurementsfor the ulna

Nr  Measurement and Description
landmark

1 Maximum length Maximum length measured from the most superior point on the olecranon process to the most distal point on the
(Martin n°1) articular surface (not styloid process because of preservation issuesin archaeological samples)
ULNL1 The most superior point on the olecranon process
ULNL2 The most distal point on the radia articulation surface

2 80% mediolatera Medio-lateral diameter taken at the 80% level. The 0% shaft level is defined as the most distal point on the
diameter articular surface; the 100% is the most superior point on olecranon process
M 80% Most medial point at 80% level.
L 80% Most lateral point at 80% level.

3 50% mediolateral Medio-lateral diameter taken at the 50% level. The 0% shaft level is defined as the most distal point on the
diameter articular surface; the 100% is the most superior point on olecranon process
M 50% Most medial point at 50% level.
L 50% Most latera point at 50% level.

4 25% mediolateral Medio-lateral diameter taken at the 25% level. The 0% shaft level is defined as the most distal point on the
diameter articular surface; the 100% is the most superior point on olecranon process
M 25% Most medial point at 25% level.
L 25% Most latera point at 25% level.

5 80% anteroposterior  Antero-posterior diameter taken at the 80% level. The 0% shaft level is defined as the most distal point on the
diameter articular surface; the 100% is the most superior point on olecranon process
A 80% Most anterior point at 80% level.
P 80% Most posterior point at 80% level.

6 50% anteroposterior  Antero-posterior diameter taken at the 50% level. The 0% shaft level is defined as the most distal point on the
diameter articular surface; the 100% is the most superior point on olecranon process
A 50% Most anterior point at 50% level.
P 50% Most posterior point at 50% level.

7 25% anteroposterior  Antero-posterior diameter taken at the 25% level. The 0% shaft level is defined as the most distal point on the

diameter
A 25%
P 25%

articular surface; the 100% is the most superior point on olecranon process
Most anterior point at 25% level.
Most posterior point at 25% level.
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8 Pronator quadrutus The dimensions of the pronator quadrutus crest
crest
PRQC1 The most proximal point of the pronator quadrutus crest
PRQC2 The most distal point of the pronator quadrutus crest
9 Proximal articulation The dimensions of the olecranon and coronoid process.
dimension
OLTP Thetip of the Olecranon process
OLMXm The most medial point on the olecranon process
OLMXI The most lateral point on the olecranon process
OLMXp The most posterior point on the olecranon process
TRWD1 The most medial point on the trochlear notch along the minimum width line perpendicular to the shaft axis
TRWD2 The most lateral point on the trochlear notch along the minimum width line perpendicular to the shaft axis
CORPR Thetip of the coronoid process
RADNmM The most medial point on the radial notch
RADNa The most anterior notch on the radial notch
RADNp The most inferior notch on the radial notch
10 Dista articulation Anteroposterior and mediolateral diameter of the superior edge of the distal articulation
diameter
HDIAp The most posterior point on the superior edge of the distal articulation
HDIAa The most anterior point on the superior edge of the distal articulation
HDIAmM The most medial point on the superior edge of the distal articulation
HDIAI The most lateral point on the superior edge of the distal articulation
11  Styloid process Thetip of the styloid process
STPR Thetip of the styloid process
12 Fexor digitorum The most projecting tip of the flexor digitorum sublimis
sublimis
FLXSm The middle of the flexor digitorum sublimis
13 Brachiadisinsertion The dimensions of the brachialisinsertion
BRACH1s The most superior point of the brachialisinsertion
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BRACH2i Themost inferior point of the brachialisinsertion
BRACH3m The middle of the brachialis insertion

14  Curvature Posterior curvature measured from 80% level down to the most posterior point on the radial articulation.
PCURV Semi-landmarks taken every 5 mm along the posterior curve of the ulna

15  trochlear notch The angle between the vector running along the anterior surface and the vector connecting the tip of the olecranon
orientation (Martin and coronoid (also joint-axis angle)
n°15)

16 Olecranonsize The distance between the tip of the olecranon and the most posterior point on the proximal surface of the ulna (see
(Patte, 1955; Fisher,  diagram)
1906 p. 227)

17  Position brachialis The position of the brachialis tuberosity: Distance from the proximal extremity to the most distal point of the
(Solan, 1992) brachialis tuberosity (see diagram)

15  Head orientation The angle at the olecranon when atriangle is formed between the 80% anterior surface, the tip of the olecranon
(Martin, 15a) and the coronoid (see diagram)

19  Head/shaft ratio Size of the head: olecranon size/length * 100 (see diagram)

20  Coronoid Olecranon  Height olecranon/height coronoid* 100 (see diagram)

ratio (Martin 7aand
8a)




Appendix 6 Landmark and measurement diagrams— ulna (After www.bartelby.com and www.physioweb.nl )
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Appendix 7 Diagrams for measur ements calculated from the landmarks on the ulna (After www.bartelby.com and www.physioweb.nl )

Olecranon
height

Coronoid
height

Surface area
Radial notch


http://www.bartelby.com/
http://www.physioweb.nl/

Trochlear Notch
Orientation

Head-orientation
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Appendix 8 Summary table for categorical data for all modern human populations.

subsistence fine subsistence time

Population strategy stragegy period lat. Cat. abslatitude
African American  low activity n/a 18-19C n/a n/a

Alaskan Aleut high activity aquatic forager 18-19C high 71
Alaskan Native high activity aquatic forager n/a high 68
Andaman high activity aquatic forager 18-19C low 11
Arizona high activity n/a n/a midlow 36
Australian high activity pedestrian forager 18-19C midlow 30
Bantou high activity pedestrian forager n/a low 7
Belgian Medieval moderate activity n/a Medieval midhigh 50
Belgian

Mesolithic moderate activity n/a Mesolithic  midhigh 50
Belgian Neolithic  moderate activity n/a Neolithic midhigh 50
British Neolithic moderate activity n/a Neolithic midhigh 51
Chinese low activity n/a 18-19C midlow 35
Colorado native high activity pedestrian forager n/a midhigh 43
Czech Medieval moderate activity n/a Medieval midhigh 49
Danish Medieval = moderate activity n/a Medieval midhigh 55
Danish Neolithic ~ moderate activity n/a Neolithic midhigh 55
Egyptian moderate activity n/a n/a midlow 26
English Medieval moderate activity n/a Medieval midhigh 54
English Urban low activity n/a 18-19C midhigh 51
French Medieval moderate activity n/a Medieval midhigh 49
French Neolithic  moderate activity n/a Neolithic midhigh 48
Greenland Inuit high activity aquatic forager n/a high 69
Hottentot high activity pedestrian forager midlow 28
Lapland high activity pastoralist n/a high 67
Natufian high activity pedestrian forager Mesolithic ~ midlow 32
New Mexico moderate activity horticulturalist n/a midlow 31
Ohio high activity horticulturalist n/a midlow 40
Peru high activity n/a n/a low 11
Pygmee high activity pedestrian forager n/a low 7
Russian Eskimo  high activity pedestrian forager n/a high 66
Russian

Mesolithic high activity pedestrian forager Mesolithic ~ midhigh 58
Siberia high activity pedestrian forager n/a high 66
South Dakota high activity equestrian forager n/a midhigh 45
Tasmanian high activity pedestrian forager 18-19C midhigh 42
Tierra del Fuego  high activity equestrian forager 18-19C midhigh 54
Kazach high activity pastoralist 18-19C midhigh 47
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Rainfall distance matrix between populations (data from Hijmans et al., 2005)

Appendix 9

fric I [Andam[ArizNa[AustAb[Bantou[BelMed[BelMes[BelNeo|BriMed|BriNeo|BriUrb[Chines|ColNat] CzeMeElDanMed DanNeo|Egypts|FreMed|FreNeo|Grelnu[Laplan(Natufil (OhiNat{PeruNa|Pygmee|RusEsk|Rt Nat|SouDak|Tasman|Tierra|VolMed|

IAfrica o 179 5_5| 2732 107| 526 1114 552 552 552 377] 377 377 1607 17§ 325 33| 338 291 435 435 421 186 51 104 680 277) 1093 39 344 166 140| 376| 395 66|
IAlasAl 179 0 1247 2911 286 705 1293 731 731 731] 556/ 556 556 1786 357 504 517 517 112 614 614/ 137 365 128 283 859 98| 1272 218 523 345 319 565 574 113
IAlasNa 55 124 0 2787 162 581 1169 607| 607| 607| 432 432 432 1662 233 380 393 393 236 490| 490| 13( 241 4 159 735 222 1148 94 399 221 195| 431 450 11
IAndam | 2732 2911 2787 0] 2625 2206 1618 2180 2180 2180 2355 2355 2355 1125 2554 2407| 2394 23941 3023| 2297 2297| 2774 2546 2783 2628 2052 3009 1639 2693 2388 2566( 2592 2356 2337| 2798
IArizNa 107 286 162 2625| 0 419 1007 44! 445 44! 270] 270, 270 1500 71 218 231 231 398 328 328 149 79 15—8| 3 573 384 986 68| 237| 59| 33 269 288 173
IAustAb | 526 705 581 2206] 419 0 588 26| 26| 26| 149 149 149 1081 348 201 188 188 817 91 91] 568 340 577| 422 154 803 567 487 182 360 386 150 131 592
Bantou | 1114 1293 1169 1618 1007| 58| 0] 562 562 562 737] 737 737 493 936 789 776| 776 1405 679 679 1156 928 116—5| 1010, 434 1391 21 1075 770 948 974 738 719 1180
BelMed | 552 731 607| 2180] 445 26 562 [0 0 0l 175 175 175 1055 374 227 214 214 843 117 117 594 366 603] 448 128 829 541 513] 208 386 412 176 157 618
BelMes | 552 731 607 2180 445 26 562 [0 0 of 175] 175 175 1058 374 2217 214 214 843 117| 117| 594 366 603] 448 128 829 541 513 208 386 412 176 157 618
BelNeo 552 731 607| 2180] 445 26 562 [0 0 0l 175 175 175 1055 374 227 214 214 843 117 117| 594 366 603] 448 128 829 541 513] 208 386 412 176 157 618
BriMed 377 556 432 235—5| 270 149 737 175 175 175 0 0 0] 1230 199 52| 39 39 668 58 58 419 191 428 273 303 654 716 33| 33 211 237 1 18 443
BriNeo 377] 556 432 2355 270 149 737 175 175| 175 0 0 0] 1230 199 52| 39 39 668 58 58 419 191 428 273 303 654 716 33| 33 211 237 1 18 443
Briurb 377 556 432 235—5‘ 270 149 737 175 175 175 0 0 0] 1230 199 52| 39 39 668 58 58 419 191 428 273 303 654 716 33| 33 211 237 1 18 443
IChines | 1607| 1786 1662 1125 1500, 1081f 493 1055 1055 1055 1230 1230 1230| 0 1429 1282 1269 1269 1898 1172 1172| 1649 1421) 1658 1503 927 1884 514 1568 1263 1441 1467 1231 1212 1673
IColNat 178 357| 233 2554 71 348 936 374 374 374 199 199 199 1429 0] 147| 160| 160 469 257| 257|220 8 229 74 502 455 915 139 166 12| 38 198 217 244
ICzeMed| 325 504 380| 2407| 218| 201 789 2217| 227 2217| 52| 52| 52| 1282 147 0 13| 13 616 110 110 367 139 376 221 355 602 768 286 19 159 185| 51 70| 391
DanMed| 338 517| 393 2394 23] 188 776 214 214 214 39| 39| 39| 1269 160 13 0 0 629 97| 97| 380 152 389 234 342 615 755| 299 6 172 198 38 57 404
DanNeo| 338 517| 393 2394 231 188 776 214 214 214 39| 39| 39 1269 160 13 0l 0 629 97| 97| 380 152 389 234 342 615 755 299 6 172 198 38 57| 404
'Egypts 291 112 236) 3023 39| 817 1405 843 843 843 668 668 668 1898 469 616 629 629 0] 726 726) 249 477 240 395 971 14 1384 330 635 457 431 667| 686 225
FreMed | 435 614 490 2297 328 91 679 117 117| 117 58| 58| 58 1172 257 110, 97| 97| 726 0l 0 477 249 486 331 245 712 658 396 91] 269 295 59 40| 501
FreNeo | 435 614] 490 2297 32§ 91 679 117 117| 117| 58 58 58 1172 257 110 97| 97| 726 0 0 477 249 486 331 245 712 658 396| 91 269 295 59 40| 501
IGrelnu 420 137 13 2774 149 568 1156 594 594 594 419 419 419 1649 220 367 380 380 249 477 477 0 228 9 146 722 235 1135 81 386 208 182 418 437 24
Laplan 186 365 241 2546 79 340 928 366| 366 366 191] 191 191 1421 8 139 152 152 477 249 249 228 0 237 82 494 463 907| 147 158 20| 46| 190 209 252
Natufi 51f 128| 4 2783 158| 577 1165 603 603 603 428 428 428 1658 229 376 389 389 240 486 486 9 237 0 155 731 226 1144 90| 395 217 191 427|  446| 15
lewM 104 283 159 2628 3 422 1010 448 448 448 273 273 273 1503 74 221 234 234 395 331 331 146 82 155| 0 576 381 989 65| 240 62| 36| 272 291 170
[OhiNat 680 859 735 2052 573 154 434 128 128 128 303 303 303 927] 502 355 342 342 971 245 245 722 494 731 576 0l 957 413 641 336 514 540 304 285 746
PeruNa | 277 98| 222 3009, 384 803 1391 829 829 829 654 654 654 1884 455| 602 615 615 14 712 712|235 463 226 381 957 0 1370 316 621 443 417 653 672 211
Pygmee| 1093 1272 1148 1639 986 567| 21 541 541 541 716 716 716 514 915 768 755| 755 1384 658] 658 1135 907| 1144 989 413 1370 0 1054 749 927| 953 717| 698 1159
RusEsk 39 218| 94 2693 68 487 1075 513 513 513 338 338 338 1568 139 286 299 299 330 396| 396| 81 147 90| 65 641 316 1054 0 305 127 10y 337] 356 105
RusMes| 344 523 399 2388 237 182 770 208 208 208| 33| 33| 33| 1263 166 19 6] 6 635 91 91] 386 158 395 240, 336 621 749 305 0o 178 204 32 51 410]
SibNat 166 343' 221 2566 59| 360 94g| 386| 386 386 211 211 211 1441 12| 159 172 172 457 269 269 208] 20( 217 62 514 443 927] 127 178 0] 26| 210 229 232
SouDak [ 140 319 195 2592 33| 386 974 412 412 412 237 237 237| 1467 38| 185| 198 198 431 295 295 182 46 191 36( 540 417 953 101 204 26| 0l 236| 255 206
[Tasman| 376 EEI 431) 2356 269 150 738 176 176| 176| 1 1 1f 1231 198 51 38 38 667 59| 59 418 190 427| 272 304 653 717| 337 32 210 236| o 19 442
Tierra 395 574 450 2337 288 131 719 157| 157| 157| 18 18 18 1212 217 70| 57| 57| 686 40| 40 437 209 446 291 285 672 698 356 51 229 255| 19| 0l 461
‘olMed 66 113] 11 2798 173 592 1180 618 618 618 443 443 443 1673 244 391 404 4041 225 501 501 24 252 15 1700 746 211 115—9| 105| 4101 232 206 442 461 0
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Appendix 10 Temperatur e distance matrix between po

ulations (data from Hijmans et al., 2005)

AfricalAlasAllAlasNalAndam]A zNa%ustAbBantouBelMe IMes|BelNeo[BriMe: D.iN:oBriUrbChinesCoINg{ICzeMedDanMedDanNeoEgyptsFreMedFreNeoGreInuLMNatufiNewMexOhiNadPeruNe_xIPygmeeRusEskRusMesSibNatSouDakTasmanTierra olMed|

|Africa O 305 265 7.3 105 5 6.5 8.5 8.5 85 83 83 83 31 158 10.3 10.3] 103 5| 7.8 7.8 231 19.7 5| 471 93 13 6.4 255 134 297 11.2| 8.8 129 128
AlasAl | 30.5] 0 4 378 20| 255 37 22 22 22) 222 222 222 336 147 202 202 202 355 227 227 7.4 10.§ 355 258 212 318 369 5 171 0.8 193 217 176 17.7
IAlasNa | 26.5| 4 0| 338 16| 21.5 33 18 18 18 18.2) 182 182 29.60 10.7] 16.2 162l 162 315 187 187 34/ 6.8 315 218 172 27.8 329 1 133 32 153 17.7] 13.6] 137
IAndam 7.3] 37.8 338 O 17.8f 123 08 158 158 158 156 15.6] 156 4.2] 231 17.6| 17.6] 17.6) 23 151 151 304 27 2.3 12| 16.6) ) 09 328 20.7 37| 185 16.1 20.2] 20.3
ArizNa | 10.5| 20 16] 17.§ o 5.5 17] 2| 2| 2l 22 22 22 136 5.3 0.2| 0.2 0.2 15.9 2.7] 27 126 9.2 155 58 12 118 16.9 15| 2.9 19.2 0.7] 17 2.4 2.3
JAUStADb 5 255 215 123 5.5 0 115 3.9 3.9 35 33 33 33 81 108 5.3 5.3 5.3 10| 2.8 2.8 181 147 10 03 43 6.3 114 205 8.4 247 6.2| 3.8 7.9 7.8
[Bantou 6.5] 37| 33| 0.8 171 115 [y 15| 15| 15 14.8 14.8 148 34 223 16.8) 16.8 16.8 15 143 143 29.6]| 262 15 11.2| 158 5.2 0. 32 19.9 36.2 17.7| 15.3 194 193
BelMed | 85 22 18] 15.8 2l 39 15) [y [y o 02 02 02 116 7.3 1.8 1.8 1.8 13.5 0.7 0.7] 14.6] 11.2] 13.5 3.8 0§ 9.8 149 17] 49 212 2.7] 0.3 44 4.3
BelMes | 8.5 22 18] 15.8 2l 39 15| [9) [9) 0 02 02 02 116 7.3 18 1.8 1.8 13.5 0.7 0.7] 146 11.2 135 38 08§ 9.8 149 17] 49 212 2.7] 0.3 44 4.3
BelNeo | 85 22 18] 15.8 2l 39 15) [y [y o 02 02 02 116 7.3 1.8 1.8 1.8 13.5 0.7 0.7] 14.6] 11.2] 13.5 3.8 0§ 9.8 149 17] 49 212 2.7] 0.3 44 4.3
BriMed 8.3 222 182 156 22 33 148 0.2 0.2 0.2 0 0 Of 114 7.5 2| 2| 2| 133 0.5 0.5 14.8 11.4) 133 3.6| bl 9.6 147 17.2 51 21.4 2.9 0.5 4.6 4.9
BriNeo 8.3 222 182 156 22 33 148 0.2 0.2 0.2 0 0 O 114 7.5 2| 2| 2| 133 0.5 0.5 14.8 11.4 13.3 3.6] 1 9.6 147 17.2 51 214 2.9 0.5 4.6 4.9
BriUrb 8.3 222 182 156 22 33 148 0.2 0.2 0.2 0 0 Of 114 7.5 2| 2| 2| 133 0.5 0.5 14.8 11.4) 133 3.6| bl 9.6 147 17.2 51 21.4 2.9 0.5 4.6 4.9
IChines 3.1 336 296 42 136 81 34 116 116 116 114 11.4 114 0 189 134 134 134 19 109 109 262 22§ 1.9 7.8 124 1.8 33 286 165 328 143 119 16/ 159
(ColNat | 15.8] 14.7] 10.7] 231 53 108 223 7.3 7.3 73 75 75 75 189 (9] 5.5] 5.5 5.5 20.§ 8| 8 7.3 3.9 208 111 65 171 222 9.7 2.4 139 4.6| 7 29 3
eMed| 10.3| 202 16.2| 17.6) 02 53 16.8 1.8 1.8 1.8 2| 2| 2| 134 5.5 [ 0 0 153 2.5 25 128 9.4 153 5.6| 4 116 167 152 3.1 194 0.9 1.5 2.6 2.4
DanMed| 10.3] 20.2] 16.2] 17.6) 0.2 5.3 16. 18 18 18 2| 2| 2| 134 55 [y 0 0 153 2.5 25 128 9.4 153 5.6| 1 116 167 152 3.1 194 0.9 15 2.6 2.5
DanNeo| 10.3] 20.2] 16.2] 17.6) 0.2l 5.3 16.§ 1.8 1.8 1.8 2| 2| 2| 134 5.5 [ 0 0 153 2.5 25 128 9.4 153 5.6| 4 116 167 152 3.1 194 0.9 1.5 2.6 2.4
Egypts 5| 355 315 2.3 155 10 15 135 135 135 133 13.3 13.3 1.9 20.8 15.3 15.3 15.3 O 128 12.8 28.1 24.7 [y 9.7 143 3.7 14 305 184 347 16.2 13.8 179 178
FreMed | 7.8 22.7] 187 151 27 2.8 143 0.7 0.7 07 05 05 05 109 8| 2.5 2.5 2.5 128 (Y 0 153 11.9 128§ 31 15 91 142 17.7 5.6 21.9 3.4 1 51 E|
FreNeo 7.8 2270 187 151 27 28 143 0.7| 0.7| 0.7| 05 05 0.5 109 gl 2.5 2.5 25 128 9] 0O 153 119 12.§ 3.1 1.5 9.1 142 17.7] 5.6 21.9 3.4 1 5.1 9
Grelnu | 23.1) 7.4 3.4 304 126/ 181 29.6 146/ 14.6| 146/ 14.8 148 148 262 7.3 128 128 128 281 153 153 o 3.4 281 18.4 138 244 29.5 2.4 97 6.6 119 143 102 10.3
Laplan | 19.7| 10.§| 6.8 271 92 147 262 112 112 112 114 114 114 228 3.9 9.4 9.4 94 247 119 119 34 0 24.7 15 104 21 26.1| 5.9 6.3] 10 8.5 109 6.8 6.9
Natufi 5 355 315 23 155 100 15 135 135 135 13.3 133 133 1.9 208 153 153 153 O 128 128 281 247 0 9.7] 143 3.7 14 305 184 347 162 138 179 17§
4.7 258 21.8| 12 58 03 112 3.8 3.8 38 36 36 36 78 111 5.6| 5.6 5.6 9.7 3.1 3.1 184 15 9.7 o 4.6 6 113 20.§ 8.7 25 6.5] 4.1 8.2 8.1

[OhiNat 9.3 2120 17.2] 166 12 43 158 0.8| 0.8| 0.8| 1 1 1 124 6.9 1] 1 1 143 1.5 15 138 104 143 4.6| 0 106 157 16.2 4.1 204 1.9 0.5 3.6 3.9
PeruNa | 1.3] 31.8 27.8 6| 118 6.3 5.2 9.8 9.8 98 96 96 96 18 171 11.6 116 116 3.7 9.1 9.1 244 21 3.7 6] 10.6| [¢) 51 26.8 147 31 125 103 142 149
Pygmee| 6.4 36.9 329 09 169 114 01 149 149 149 147 147 147 33 222 16.7 16.7] 16.7] 14 142 142 295 26.1 1.4 11.1f 15.7] 5.1 O 319 198 361 17.6] 152 19.3 19.2
RusEsk | 25.5 9 1 328 15 20.5 32 17| 17| 170 17.2| 17.2] 17.2| 286 9.7 15.2) 15.2 152 305 177 17.7) 24 5.8 30.5 20.8] 16.2] 26.§ 31.9 [y 121 42 143 16.7) 12.6] 12.7
RusMes| 13.4] 17.1] 13.1] 20.7) 2.9 8.4 19.9 4.9 4.9 49 51 51 51 165 24 3.1 3.1 3.1 184 5.6 56 9.7 6.3 184 87 41 147 198 121 0 16.3| 2.2| 4.6 0.5 0.6
SibNat | 29.7] 0.8 3.2 37 192 247 362 212 212 212 214 214 214 328 139 194 194 194 347 219 219 6.6 10| 34.7 25 20.4 31 36.1 42 16.3 O 185 209 16.8] 16.9
SouDak | 11.2| 19.3 153 185 0.7 6.2 17.7 2.7] 2.7] 271 29 29 29 143 4.6 0.9 0.9 0.9 16.2 3.4 34 119 8.5 16.2 65 19 125 176 14.3 2.2 18.5 (Y 2.4 17 1.6
Tasman| 8.8 217 17.7) 161 1.7 3.8 153 0.3 0.3 0.3 05 05 0.5 119 7 1.9 1.9 1.5 13.9 1 1 143 10.9 138 4.1 0.5 10.1 15.2) 16.7 4.6) 209 2.4 q 41 4
[Tierra 129 17.6| 13.6] 20.2] 2.4 7.9 194 4.4 4.4 44 46/ 4.6 4.6 16 2.9 2.6| 2.6 2.6 17.9 5.1 51 10.2] 6.8 17.9 82 36 142 193 12.6 0.5 16.8 1.7 4.1 [ 0.1
olMed | 12.8] 17.7) 13.7] 20.1] 2.3 7.8 19.3 4.3 4.3 4.3 45 45 45 159 3 2.5 2.5 2.5 17.8 5 5 103 6.9 17.§ 8.1 35 14.1 19.2) 127 0.6] 16.9 1.6 4 0.3 q
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Appendix 11 Altitude distance matrix between populations (data from Hijmans et al., 2005

IAfric: masAIAIasNgIAndam zNaAustAl_)IBantouBelMe BelMes|BelNeo|BriMed|BriNe: udrbChmesCoINaﬂCzeMedDanMed DanNeoEgypt_sI_FreMedFreNeoGreInuLapIanNatufiNewMexOhiNallI_PeruNaPygmeeRusEskRusMesSibNallLSouDakTasmanTierra ‘olMed|

Africal 0] 1153 1159 954/ 913 182 520[ 1031 1031] 1031 1133 1133) 1133 1033 1515 763] 1139] 1139 1073| 1042 1042 1149 953[ 1402 575 769 1170 523 1142 1148 668 672 719 1159 719
AlasAl| 1153 0 6] 199 2066| 971 633] 122 122) 122 20| 20| 20 120| 2668 390 14) 14) 80| 111 111 4] 200] 249 1728) 384 17| 630) 11 5 485 481 434 g 438
AlasNa| 1159 6) 0] 205 2072 977 639 128 128 128 26| 26| 26( 126] 2674 396 20| 20| 86| 117 117| 10| 206] 243 1734 390 11 636] 17| 11 491 487 440 0] 444
Andam| 954 199| 205 0 1867| 772 434 77 77| 771 1790 179 179 79 2469 191 185 185 119 88| 88 195 1| 448 1529 185 216 431 188 194 286 282 235] 205 239
ArizNa| 913) 2066| 2072 1867 0] 1095( 1433 1944 1944 1944| 2046 2046 2046] 1946 602| 1676( 2052 2052 1986| 1955 1955 2062| 1866| 2315 338 1682| 2083 1436 2055 2061 1581 1585 1632 2072 1628
AustAb| 182 971 977 772 1095 0 338 849 849 849 951 951| 951 851 1697 581 957 957| 891 860 860[ 967| 771] 1220 757| 587 988 341 960 966| 486 490 537] 977| 533]
Bantou| 520 633| 639 434 1433 338 0] 511 511f 511] 613 613] 613 513 2035 243 619 619 553 522 522 629 433 882 1095 249 650] 3 622 628  148| 152 199 639 195|
BelMed| 1031) 122| 12| 77| 1944 849 511 0 [ 0O 102 102[ 102 2| 2546 268] 108 108 42| 11 11 118§ 78| 371 1606] 262 139 508 111 117| 363 359 312| 128§ 316|
BelMes| 1031) 122| 12§ 77| 1944 849 511 0 [y 0 102 102 102 2| 2546 268| 108 108 42| 11 11 118 78| 371 1606 262 139 508 111) 117| 363 359 312 128 316
BelNeo| 1031] 122 12§ 77| 1944 849 511 0 [ 0O 102 102[ 102 2| 2546 268] 108 108 42| 11 11 118§ 78| 371 1606] 262 139 508 111 117| 363 359 312| 128§ 316|
BriMed| 1133| 20| 26( 179 2046] 951] 613 102 102 102 0] 0] 0] 100| 2648 370 6] 6 60| 91 91 16] 180 269 1708 364 37| 610 9 15 465 461 414 26| 418
BriNeo| 1133| 20| 26( 179 2046) 951] 613 102 102 102 0] 0 0] 100] 2648 370 g g 60 91 91 16] 180 269 1708 364 37| 610 9 15 465 461 414) 26| 418
BriUrb| 1133| 20| 26( 179 2046] 951] 613 102 102 102 0] 0] 0] 100| 2648 370 6] 6] 60| 91 91 16] 180 269 1708 364 37| 610 9 15 465 461 414 26| 418
Chines[ 1033[ 120 126 79 1946 851 513] 2 2 2| 100, 100[ 100 0] 2548 270 106 106 40| 9 9 116 80| 369 1608 264 137| 510 109 115 365 361 314 126 318|
ColNat 1515 2668] 2674] 2469 602 1697| 2035( 2546 2546{ 2546 2648 2648| 2648 2548| O 2278 2654] 2654| 2588 2557| 2557 2664 2468| 2917 940] 2284] 2685 2038 2657| 2663 2183| 2187| 2234 2674 2230
CzeMed| 763 390 396| 191| 1676] 581 243 268 268 268 370 370] 370 270 2278 0] 376 376] 310 279 279 386 190| 639 1338 6] 407 240 379 385 95| 91 44) 396| 48|
DanMed| 1139 14 20 185 2052] 957| 619 108 108  108| 6] 6 6] 106] 2654 376 0] 0] 66| 97| 97| 10| 186] 263] 1714 370 31 616 3 9 471 467 4200 20| 424
DanNeo| 1139 14| 20 185 2052] 957| 619 108 108 108| g 6 6] 106| 2654 376 0] 0] 66| 97| 97| 10| 186] 263] 1714) 370 31 616 3 9 471 467 420 20| 424
Egypts| 1073] 80| 86 119 1986| 891] 553 42 42| 42| 60| 60 60| 40| 2588 310] 66| 66| 0] 31 31 76( 120[ 329 1648 304 97| 550 69 75(  405] 401 354 86| 358|
FreMed| 1042| 111) 117 88 1955 860 522 11 11 11 91 91 91 9 2557 279 97| 97| 31 0] 0 107 89| 360 1617| 273 128 519 100 106 374 370 323 117| 327|
FreNeo| 1042 111 117] 88| 1955 860 522 11 11 11 91 91 91 9 2557 279 97| 97| 31 0] 0 107 89| 360 1617 273 128 519 100 106| 374 370 323 117 327|
Grelnu[ 1149| 4 10| 195 2062 967| 629 118 118 118 16| 16| 16 116 2664 386 10 10 76| 107| 107| 0] 196] 253 1724) 380 21 626 7l 1 481 477 430 10 434
Laplan| 953 200| 206 1] 1866] 771 433] 78| 78 78 180 180| 180 80| 2468 190| 186 186 120 89| 89 196 0] 449 1528 184 217 430 189 195 285 281 234 206| 23|
Natufif 1402) 249 243 448 2315 1220 882 371 371 371 269 269 269 369 2917 639 263 263 329 360 360] 253 449 0l 1977] 633 232 879 260] 254] 734 730 683] 243 687]
INewMex| 575 1728] 1734 1529 338 757| 1095 1606( 1606| 1606{ 1708) 1708 1708 1608 940 133§ 1714) 1714] 1648 1617| 1617 1724 1528| 1977 0] 1344] 1745 1098 1717 1723 1243| 1247| 1294) 1734 1290|
OhiNat| 769 384 390| 185 1682 587| 249 2621 262 262 364 364 364 264) 2284 6] 370 370] 304 273 273 380 184| 633 1344 0l 401 246 373 379 101 97| 50[ 390 54
PeruNa| 1170 17| 11) 216[ 2083 988 650 139 139 139 37| 37| 37| 137| 2685 407 31 31 97| 128 128 21 217] 232 1745 401 0] 647] 28| 22 502 498 451 11 455|
Pygmee| 523 630 636 431 1436 341 3 508 508 508 610 610 610 510 2038 240 616 616] 550 519 519 626 430 879 1098) 246 647 0 619 625] 145 149 196 636 192
RusEsk| 1142| 11 17| 188 2055 960 622 111 111) 111 9 9 9 109 2657| 379 3 3 69 100 100 7] 189 260 1717 373 28| 619 0] 6] 474 470 423 17| 4217
RusMes| 1148| 5 11) 194 2061f 966 628 117| 117 117] 15 15| 15 115 2663 385 9 9 75] 106 106 1f 195( 254 1723 379 22| 625 g 0] 480 476 429 11 433
SibNat| 668 485 491] 286) 1581) 486] 148 363 363] 363| 465 465 465 365 2183 95| 471 471] 405 374 374] 481) 285 734 1243 101 502 145 474 480 0 4 51 491 47|
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Appendix 12 Post--hoc comparisonsfor activity levels and femoral curvature PCs. Matrix for
pairwise mean differences between categories.

acurAMHPC1 high moderate
Moderate 0.00077
Low 0.00680* 0.00603*

*=significant at a=0.05

Appendix 13 Post-hoc comparisonsfor high activity subsistence strategies and femoral curvature
PCs. Matrix for pairwise mean differences between categories.

pedestrian equestrian aquatic
PcurvAMHPC1 foraging foraging foraging pastoralism
equestrian foraging -0.00034
aquatic foraging 0.00143 0.00177
Pastoralism -0.00888* -0.00854* -0.01031*
horticulturalists 0.00063 0.00097 -0.00080 0.00951*

*=significant at a=0.05

Appendix 14 Post-hoc comparisonsfor activity levelsand apex of curvature PCs. Matrix for
pairwise mean differences between categories.

acurAMHPC?2
high moderate

moderate 0.00069

low 0.00337* 0.00268*
PcurvAMHPC3

hunter-gatherer  agriculturalist
agriculturalist 0.00159*
urban trader 0.00412* 0.00254*

*=significant at a=0.05

Appendix 15 Post-hoc comparisonsfor high activity subsistence strategies and femor al apex of
curvature PCs. Matrix for pairwise mean differ ences between categories.

acurAMHPC2
pedestrian foraging equestrian foraging aquatic foraging pastoralism
equestrian foraging -0.00225
aquatic foraging 0.00166 0.00391*
pastoralism -0.00114 0.00112 -0.00279*
horticulturalists -0.00058 0.00167 -0.00223 0.00056

*=significant at a=0.05
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Appendix 16 Post-hoc comparisonsfor activity levelsand other femoral shaft shape PCs. Matrix for
pairwise mean differences between categories.

PcurvAMHPC4
high Moderate
moderate -0.00178*
low -0.00083 0.00095
McurAMHPC3
high Moderate
moderate 0.00176*
low 0.00026 -0.00150
LcurAMHPC2
high Moderate
moderate 0.00054
low 0.00445* 0.00390*
LcurAMHPC4
high Moderate
moderate -0.00012
low 0.00263* 0.00012*

*=significant at a=0.05

Appendix 17 Post-hoc comparisonsfor high activity subsistence strategies and other femoral shaft
shape PCs. Matrix for pairwise mean differ ences between categories.

PcurAMHPC?2

equestrian foraging

aquatic foraging
pastoralism
horticulturalists

pedestrian equestrian aquatic
foraging foraging foraging pastoralism
-0.00335
0.00240 0.00575*
0.00232 0.00566* -0.00008
0.00209 0.00543 -0.00032 -0.00023

*=gsignificant at a=0.05

Appendix 18 Post-hoc comparisonsfor activity levels and femoral univariate measur ements. M atrix
for pairwise mean differences between categories.

Femur length

high moderate
moderate -12.278*
low -17.912* -5.634
Neck-shaft angle
high moderate
moderate 2.295*
low 0.726 -1.569
subtrochratio
high moderate
moderate 1.054
low -5.5681* -6.635*
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midshaftratio

high moderate
moderate 1.348
low -7.120 -8.469*
subpilratio
high moderate
moderate -0.629
low -14.519* -13.891*
necklengthratio
high moderate
moderate -0.513*
low -0.414 -0.002
robustindex
high moderate
moderate 0.402*
low 0.387 -0.015
headrob
high moderate
moderate 0.392
low 0.906* 0.514

*=significant at a=0.05
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Appendix 19 Post-hoc comparisonsfor high activity subsistence strategies and femoral univariate
measur ements. M atrix for pairwise mean differ ences between categories.

Femur length

equestrian foraging 0.446
aquatic foraging 0.296 -0.151
pastoralism -0.871* -1.317* -1.166*

pedestrian foraging  equestrian foraging aquatic foraging pastoralism
equestrian foraging 1.705
aquatic foraging 28.258* 26.553*
pastoralism 6.726 5.021 -21.532
horticulturalists -3.308 -5.014 -31.567* -10.035
Neck-shaft angle
pedestrian foraging  equestrian foraging aquatic foraging pastoralism
equestrian foraging 4.716*
aquatic foraging -1.606 -6.322*
pastoralism 2.003 -2.712 3.610*
horticulturalists -2.093 -6.809* -0.487 -0.001
Torsion angle
Pedestrian foraging  equestrian foraging aquatic foraging pastoralism
equestrian foraging 5.621*
aquatic foraging -0.965 -6.586*
pastoralism 2.295 -3.326 3.261
horticulturalists -3.081 -8.702* -2.116 -5.376
midshaftratio
Pedestrian foraging  equestrian foraging aquatic foraging pastoralism
equestrian foraging -6.013
aquatic foraging 0.888 6.900
pastoralism 7.768 13.781* 6.881
horticulturalists 13.601* 19.614* 12.713 5.832
condylediamratio
Pedestrian foraging  equestrian foraging aquatic foraging pastoralism
equestrian foraging 0.083
aquatic foraging -0.024 -0.107
pastoralism -1.248* -1.331* -1.224*
horticulturalists 0.716 0.633 0.740 1.964*
necklengthratio
Pedestrian foraging  equestrian foraging aquatic foraging pastoralism
equestrian foraging -0.447
aquatic foraging -0.696* -0.249
pastoralism -1.360* -0.912* -0.663
horticulturalists -0.305 0.142 0.391 1.055*
robustindex
Pedestrian foraging  equestrian foraging aquatic foraging Pastoralism
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horticulturalists 1.031* 0.585 0.736 1.902*
headrob
Pedestrian foraging  equestrian foraging aquatic foraging pastoralism
equestrian foraging 0.658
aquatic foraging -0.469 -1.127*
pastoralism -1.001 -1.659* -0.532
horticulturalists -0.401 -1.059 0.068 0.600
*=gsignificant at a=0.05
Appendix 20 Post-hoc comparisonsfor activity levels and femoral epiphysis shape PCs. Matrix for
pairwise mean differences between categories.
EpiIAMHPC2
high moderate
moderate -0.00347*
low -0.00356 -0.00009
EpiIAMHPC5
high moderate
moderate -0.00060
low -0.00315* -0.00255
*=significant at a=0.05
Appendix 21 Post-hoc comparisonsfor high activity subsistence strategies and femoral epiphysis
shape PCs. Matrix for pairwise mean differences between categories.
EpiIAMHPC1
pedestrian foraging equestrian foraging agquatic foraging  pastoralism
equestrian foraging 0.00576
aquatic foraging 0.00284 -0.00292
pastoralism 0.01454* 0.00879 0.01170*
horticulturalists -0.00225 -0.00801 -0.00509 -0.01680*
EpiIAMHPC3
pedestrian foraging equestrian foraging aquatic foraging  pastoralism
equestrian foraging 0.01396*
aquatic foraging 0.00436 -0.00960*
pastoralism 0.00876* -0.00520 0.00440
horticulturalists 0.00636 -0.00760 0.00200 -0.00240
EpiIAMHPC5
Pedestrian foraging equestrian foraging aquatic foraging  pastoralism
equestrian foraging -0.00018
aquatic foraging 0.00525* 0.00543*
pastoralism 0.00349 0.00367 -0.00176
horticulturalists 0.00491 0.00509 -0.00034 0.00142

*=gsignificant at a=0.05
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Appendix 22 Post-hoc comparisonsfor time period and femoral apex of curvature PCs. Matrix for
pairwise mean differences between categories.

acurAMHPC2
Mesolithic Neolithic Medieval
Neolithic 0.00138
Medieval 0.00054 -0.00085
18-19th C 0.00322 0.00184 0.00268*

*=significant at a=0.05

Appendix 23 Post-hoc comparisonsfor high activity subsistence strategies and radius curvature
PCs. Matrix for pairwise mean differences between categories.

mcurveAMHPC1
pedestrian equestrian aquatic
foraging foraging foraging pastoralism
equestrian foraging -0.00413
aquatic foraging -0.00526 -0.00113
Pastoralism 0.00137 0.00550 0.00663
horticulturalists -0.00144 0.00270 0.00383 -0.00280
lcurvAMHPC1
pedestrian equestrian aquatic
foraging foraging foraging pastoralism
equestrian foraging -0.00413
aquatic foraging -0.00526 -0.00113
Pastoralism 0.00137 0.00550 0.00663
horticulturalists -0.00144* 0.00270 0.00383* -0.00280*

*=significant at a=0.05

Appendix 24 Post-hoc comparisonsfor activity levels strategies and radius shaft shape PCs. Matrix
for pairwise mean differences between categories.

lcurve AMHPC3
High Moderate
Moderate 0.00259*
Low 0.00367* 0.00109

*=significant at a=0.05
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Appendix 25 Post-hoc comparisonsfor high activity subsistence strategies and radius shaft shape
PCs. Matrix for pairwise mean differences between categories.

mcurveAMHPC2
pedestrian equestrian aquatic
foraging foraging foraging pastoralism
equestrian foraging -0.00254
aquatic foraging 0.00233*t 0.00487
Pastoralism -0.00053 0.00201 -0.00286
horticulturalists -0.00183 0.00071 -0.00416 -0.00131
lcurvAMHPC3
pedestrian equestrian aquatic
foraging foraging foraging pastoralism
equestrian foraging -0.00200
aquatic foraging -0.00158 0.00042
Pastoralism 0.00212 0.00412*t -0.00370*
horticulturalists -0.00161 0.00040 -0.00373 0.00373

*=significant at a=0.05
T only significant with Games-Howell
procedure

Appendix 26 Post-hoc comparisonsfor activity levels and radius epiphysis shape PCs. Matrix for
pairwise mean differences between categories.

EpiAMHPC1
High Moderate
Moderate -0.00448
Low 0.00492 0.00940*t

*=significant at a=0.05
T only significant with Games-Howell procedure

Appendix 27 Post-hoc comparisonsfor high activity subsistence strategies and radius epiphysis
shape PCs. Matrix for pairwise mean differ ences between categories.

EpiAMHPC1
pedestrian foraging  equestrian foraging aquatic foraging pastoralism
equestrian foraging 0.01920*
aquatic foraging 0.00350 -0.01570
pastoralism -0.01036 -0.02957*% -0.01387*
horticulturalists 0.01052 -0.00868 0.00702 0.02088*

*=gsignificant at a=0.05
T only significant with Games-Howell procedure
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Appendix 28 Post-hoc comparisonsfor activity levelsand proximal ulna PCs. M atrix for pairwise
mean differences between categories.

proxAMHPC1
High Moderate
Moderate -0.00395
Low -0.03178* -0.02783*
proxAMHPC4
High Moderate
Moderate -0.00524
Low -0.02329* -0.01805*

*=significant at a=0.05

Appendix 29 Post-hoc comparisonsfor high activity subsistence strategies and proximal ulna PCs.
Matrix for pairwise mean differences between categories.

proxAMHPC2
pedestrian equestrian aguatic
foraging foraging foraging pastoralism
equestrian foraging -0.03947
aquatic foraging -0.00787 0.03160
pastoralism 0.04322 0.08269* 0.05109*
horticulturalists 0.00491 0.04438 0.01278 -0.03831
proxAMHPC4
pedestrian equestrian aquatic
foraging foraging foraging pastoralism
equestrian foraging -0.01516
aquatic foraging 0.02025* 0.03540*
pastoralism -0.00182 0.01334 -0.02207*t
horticulturalists 0.02703 0.04219* 0.00679 0.02885

*=significant at a=0.05

T only significant with Games-Howell procedure

Appendix 30 Post-hoc comparisonsfor activity levelsand radiusrobusticity. Matrix for pairwise
mean differences between categories.

Midshaftrobusticity

High Moderate
Moderate -0.41020
Low 0.31590 0.72610
Headrobusticity
High Moderate
Moderate -1.31216
Low -1.83317 -0.52101
distArtShaftSizeRatio
High Moderate
Moderate -0.66501
Low -0.86013 -0.19512

*=significant at a=0.05
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Appendix 31 Post-hoc comparisonsfor high activity subsistence strategies and radius robusticity.
Matrix for pairwise mean differences between categories.

Midshaftrobusticity

pedestrian equestrian aquatic pastoralis
foraging foraging foraging m
equestrian
foraging -0.63697
aquatic foraging 0.66463 1.30159
pastoralism -1.11912 -0.48216 -1.78375*
horticulturalists 0.38642 1.02339 -0.27820 1.50555
Headrobusticity
pedestrian equestrian aquatic pastoralis
foraging foraging foraging m
equestrian
foraging 0.76727
aquatic foraging 2.01532* 1.24805
pastoralism -0.18658 -0.95386 -2.20190*
horticulturalists 2.26395* 1.49668 0.24863 2.45054*
distArtShaftSizeRatio
Pedestrian equestrian aquatic Pastoralis
foraging foraging foraging m
equestrian
foraging 0.88407
aquatic foraging 1.76769 0.88362
pastoralism -1.06776 -1.95183 -2.83545*
horticulturalists 2.36412 1.48005 0.59643 3.43188*

*=significant at a=0.05
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Appendix 32 Post-hoc comparisonsfor activity levels and radius univariate measurements. Matrix

for pairwise mean differences between categories.

neck-shaft angle®

High Moderate
Moderate -3.30
Low 6.19*% 9.49*
PosRadTubML
High Moderate
Moderate -1.84
Low 1.50*% 3.34*
DorsalST
High Moderate
Moderate -0.56*
Low -0.56 0.00
NeckLengthRatio
High Moderate
Moderate -0.81*
Low -0.82* <0.01

*=significant at a=0.05

T only significant with Hochberg’'s T2 procedure

Appendix 33 Post-hoc comparisonsfor activity levels and radius univariate measurements — right
only. Matrix for pairwise mean differences between categories.

DorsalST
High Moderate
Moderate -0.68*
Low -0.99* -0.31
NeckLengthRatio
High Moderate
Moderate -0.83*
Low -1.07* -0.24

*=significant at a=0.05

Appendix 34 Post-hoc comparisonsfor high activity subsistence strategies and radius univariate
measur ements. M atrix for pairwise mean differences between categories.

Max_ Length
pedestrian equestrian aquatic
foraging foraging foraging pastoralism
equestrian foraging -11.79
aquatic foraging 15.59* 27.38*
pastoralism -1.41 10.38 -16.99*
horticulturalists -0.74 11.05 -16.32* 0.67
neck-shaft angle °
pedestrian equestrian aquatic pastoralism

385



foraging foraging foraging
equestrian foraging 4.88
aquatic foraging -13.13* -18.01*
Pastoralism -1.92 -6.80*t 11.21*
horticulturalists -9.82* -14.70* 331 -7.91
PosRadTubML
Pedestrian equestrian aquatic
foraging foraging foraging pastoralism
equestrian foraging 3.52
aquatic foraging 0.38 -3.14
pastoralism -0.40 -3.92 -0.78
horticulturalists 3.22 -0.30 2.84 3.62
DorsalST
Pedestrian equestrian aquatic
foraging foraging foraging pastoralism
equestrian foraging 0.05
aquatic foraging -0.31 -0.36
pastoralism -1.33* -1.37 -1.02
horticulturalists 0.10 0.05 0.41 1.42
NeckLengthRatio
Pedestrian equestrian aquatic
foraging foraging foraging pastoralism
equestrian foraging -1.34*
aquatic foraging -0.58 0.76
pastoralism -0.94* 0.41 -0.36
horticulturalists -0.38 0.96 0.19 0.55
midshaftShapeRatio
Pedestrian equestrian aquatic
foraging foraging foraging pastoralism
equestrian foraging 2.94
aquatic foraging -4.15 -7.09
pastoralism 9.58* 6.64 13.73*
horticulturalists -9.86 -12.80 -5.71 -19.44*

*=significant at a=0.05

T only significant with Games-Howell

procedure
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Appendix 35 Post-hoc comparisonsfor activity levels and ulna univariate measurements. Matrix for
pairwise mean differences between categories.
Table*: Pairwise comparisons: matrices of pairwise mean difference

Max_ Length
High Moderate
Moderate -5.61*
Low -4.55 1.06
MidShaftShape
High Moderate
Moderate -2.43
Low -18.60*t -16.16*%
Radial Notch Surf ratio
High Moderate
Moderate -2.64*
Low -3.12 -0.48
TrochNotchOri
High Moderate
Moderate -2.46*
Low -1.19 1.27
Olecorient angle
High Moderate
Moderate 0.92
Low 2.13 1.21
CorOleRatio
High Moderate
Moderate -0.83*
Low 0.01 0.84
brachRatio
High Moderate
Moderate -0.38
Low -1.19* -0.81*%
Robusticity at 50%
High Moderate
Moderate 0.58*
Low 0.45 -0.13
Robusticity at 25%
High Moderate
Moderate 0.24
Low -0.61*f -0.85*

*=significant at a=0.05

¥ only significant with Hochberg's T2 procedure
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Appendix 36 Post-hoc comparisonsfor high activity subsistence strategiesand ulna univariate

measur ements. M atrix for pairwise mean differences between categories.

Max_ Length
pedestrian equestrian aquatic
foraging foraging foraging pastoralism
equestrian foraging -11.47
aquatic foraging 17.43* 28.91*
pastoralism 1.18 12.65 -16.26*
horticulturalists -3.93 7.54 -21.37* -5.11
Olecshaftratio
pedestrian equestrian aquatic
foraging foraging foraging pastoralism
equestrian foraging -0.30
aquatic foraging -0.65* -0.35
pastoralism -0.11 0.19 0.54
horticulturalists 0.37 0.67 1.02* 0.48
Rad. Notch Surf. ratio
Pedestrian equestrian aguatic
foraging foraging foraging pastoralism
equestrian foraging 4.04
aquatic foraging 4.35* 0.31
pastoralism -3.91 -7.95* -8.26*
horticulturalists 5.26*1 1.22 0.91 9.17*
TrochNotchOri
Pedestrian equestrian aquatic
foraging foraging foraging pastoralism
equestrian foraging -1.46
aquatic foraging 1.32 2.79
pastoralism 2.84 4.31 1.52
horticulturalists -2.33 -0.87 -3.66 -5.17
Olecorient angle
Pedestrian equestrian aguatic
foraging foraging foraging pastoralism
equestrian foraging 1.39
aquatic foraging -0.67 -2.06
pastoralism -3.73* -5.12* -3.06
horticulturalists -0.58 -1.97 0.09 3.15
CorOleRation
Pedestrian equestrian aguatic
foraging foraging foraging pastoralism
equestrian foraging 1.94*
aquatic foraging 0.77 -1.17*f
pastoralism -1.64* -3.59* -2.42*
horticulturalists 0.39 -1.55 -0.39 2.03*
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BrachRatio

Pedestrian equestrian aguatic
foraging foraging foraging pastoralism
equestrian foraging 0.20
aquatic foraging 0.03 -0.17
pastoralism -0.92 -1.11*f -0.95
horticulturalists 1.03 0.83 1.00 1.95*
Size pron.cr. rel. length
Pedestrian equestrian aguatic
foraging foraging foraging pastoralism
equestrian foraging 2.41
aquatic foraging -0.60 -3.00*t
pastoralism -0.32 -2.73 0.28
horticulturalists -2.23*t -4.64* -1.64 -1.91
Robusticity at 50%
Pedestrian equestrian aquatic
foraging foraging foraging pastoralism
equestrian foraging 1.71*
aquatic foraging 0.63 -1.07
pastoralism -0.99* -2.69* -1.62*
horticulturalists 0.48 -1.22*f -0.15 1.47*
Robusticity at 25%
Pedestrian equestrian aquatic
foraging foraging foraging pastoralism
equestrian foraging 0.24
aquatic foraging 0.96* 0.72
pastoralism -0.63 -0.87 -1.59*
horticulturalists 1.87* 1.63* 0.90 2.50*
Robust dist artic
Pedestrian equestrian aquatic
foraging foraging foraging pastoralism
equestrian foraging 0.01
aquatic foraging 0.94 0.92
pastoralism -0.05 -0.06 -0.98
horticulturalists 1.50 1.49 0.56 1.55

*=significant at a=0.05

tonly significant using Games-Howell procedure

Appendix 37 Post-hoc comparisonsfor time period and radius curvature PCs. Matrix for pairwise
mean differences between categories.

lcurvAMHPC1
Mesolithic Neolithic Medieval
Neolithic 0.00444
Medieval -0.00285 -0.00729*
18-19th C 0.00311 -0.00133 0.00596*

*=significant at a=0.05
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Appendix 38 Post-hoc comparisonsfor time period and ulna PCs. M atrix for pairwise mean
differences between categories.

pcurveAMHPC3
Mesolithic Neolithic Medieval
Neolithic -0.00125
Medieval 0.00192 0.00318*
18-19th C -0.00013 0.00113 -0.00205
proxAMHPC4
Mesolithic Neolithic Medieval
Neolithic 0.01269
Medieval 0.00013 -0.01255
18-19th C -0.02465 -0.03733* -0.02478*

*=significant at a=0.05

Appendix 39 Post-hoc comparisonsfor palaeogroup and femural curvature PCs. Matrix for
pairwise mean differences between categories.
AcurveAllPC1

Neanderthal Early Homo sapiens
Early Homo sapiens 0.01398*
Recent Homo sapiens 0.02207* 0.00809*%

pcurveAllPC1

Neanderthal Early Homo sapiens
Early Homo sapiens -0.02376*
Recent Homo sapiens -0.02574* -0.00198
*=significant at a=0.05
1= only significantly different using Hochberg T2 procedure

Appendix 40 Post-hoc comparisons for palaeogroup and femoral apex of curvature PCs. Matrix for
pairwise mean differences between categories.

AcurveAllPC2

Neanderthal Early Homo sapiens
Early Homo sapiens 0.00721*

Recent Homo sapiens 0.00593* -0.00128
*=significant at a=0.05

Appendix 41 Post-hoc comparisonsfor palaeogroup and other femoral shaft shape PCs. Matrix for
pairwise mean differences between categories.

Table*: Pairwise comparisons: matrices of pairwise mean difference

LcurveAllPC3 Neanderthal  Early Homo sapiens
Early Homo sapiens 0.00138
Recent Homo sapiens 0.00370*t 0.00231

*=significant at a=0.05
T only significant with Games-Howell procedure
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Appendix 42 Post-hoc comparisonsfor palaeogroup and femoral epiphysis shape PCs. Matrix for
pairwise mean differences between categories.

EpiAlIPC1
Neanderthal  Early Homo sapiens
Early Homo sapiens -0.01818*
Recent Homo sapiens -0.02451* -0.00633
EpiAlIPC2
Neanderthal  Early Homo sapiens
Early Homo sapiens -0.01334*%
Recent Homo sapiens -0.01383*F -0.00049
EpiAlIPC3
Neanderthal  Early Homo sapiens
Early Homo sapiens -0.00358
Recent Homo sapiens -0.00754 -0.00396
EpiAlIPC4
Neanderthal  Early Homo sapiens
Early Homo sapiens 0.00267
Recent Homo sapiens -0.00371 -0.00638*
EpiAlIPC5
Neanderthal  Early Homo sapiens
Early Homo sapiens -0.00961*%
Recent Homo sapiens -0.00812*% 0.00149

*=gsignificant at a=0.05

1= only significantly different using Hochberg T2 procedure

Appendix 43: Post-hoc comparisons for palaeogroup and femoral univariate measur ments. M atrix

for pairwise mean differences between categories.

Femur length

Neanderthal Early Homo sapiens
Early Homo sapiens -25.90
Recent Homo sapiens 3.73 29.62*
Neck-shaft angle
Neanderthal Early Homo sapiens
Early Homo sapiens -5.59
Recent Homo sapiens -8.73* -3.14
Torsion angle
Neanderthal Early Homo sapiens
Early Homo sapiens -0.74
Recent Homo sapiens -6.30*F -5.56*%
subtrochratio
Neanderthal Early Homo sapiens
Early Homo sapiens 4.41
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Recent Homo sapiens 9.78*% 5.37
midshaftratio
Neanderthal Early Homo sapiens
Early Homo sapiens -25.35*%
Recent Homo sapiens -11.14 14.22*%
subpilratio
Neanderthal Early Homo sapiens
Early Homo sapiens -14.43
Recent Homo sapiens -0.45 13.98*
condylediamratio
Neanderthal Early Homo sapiens
Early Homo sapiens 1.75*
Recent Homo sapiens 1.76* 0.01
necklengthratio
Neanderthal Early Homo sapiens
Early Homo sapiens 1.87*%
Recent Homo sapiens 1.97*% 0.10
robustindex
Neanderthal Early Homo sapiens
Early Homo sapiens 0.21
Recent Homo sapiens 1.24* 1.03*
headrob
Neanderthal Early Homo sapiens
Early Homo sapiens 3.63*
Recent Homo sapiens 3.81* 0.17

*=significant at a=0.05

¥= only significantly different using Hochberg T2 procedure

Appendix 44 Post-hoc comparisonsfor palaeogroup and radius curvature PCs. M atrix for pairwise

mean differences between categories.

McurAllPC1
Neanderthal Early Homo sapiens
Early Homo sapiens -0.02384*
Recent Homo sapiens -0.02484* -0.00099
pcurveAllPC1
Neanderthal Early Homo sapiens
Early Homo sapiens -0.01221*%
Recent Homo sapiens -0.01031*% 0.00189

*=significant at a=0.05
1= significant for Hochberg T2 procedure only
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Appendix 45 Post-hoc comparisonsfor palaeogroup and other radius shaft shape PCs. Matrix for

pairwise mean differences between categories.
LcurAllPC2

Neanderthal Early Homo sapiens
Early Homo sapiens 0.00873*%
Recent Homo sapiens 0.01089* 0.00216
LcurAllPC3
Neanderthal Early Homo sapiens
Early Homo sapiens 0.00915*
Recent Homo sapiens 0.00622*% -0.00293

*=significant at a=0.05

Appendix 46 Post-hoc comparisonsfor palaeogr oup and ulna shaft shape PCs. M atrix for pairwise

mean differences between categories.
pcurveAllPC1

Neanderthal Early Homo sapiens
Early Homo sapiens 0.00794*
Recent Homo sapiens 0.00567*t -0.00227
pcurveAllPC2
Neanderthal Early Homo sapiens
Early Homo sapiens 0.00523
Recent Homo sapiens 0.00793* 0.00269

*=significant at a=0.05

T only significant with Games-Howell procedure
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Appendix 47 Post-hoc comparisonsfor palaeogr oup and proximal ulna PCs. Matrix for pairwise
mean differences between categories.

ProxAllPC2
Neanderthal Early Homo sapiens
Early Homo sapiens -0.06726*
Recent Homo sapiens -0.04543 0.02183
ProxAllIPC3
Neanderthal Early Homo sapiens
Early Homo sapiens -0.06958*
Recent Homo sapiens -0.09675* -0.02718*

*=significant at a=0.05

T only significant with Games-Howell procedure

Appendix 48 Post-hoc comparisonsfor palaeogr oup and radius univariate measur ements. Matrix
for pairwise mean differences between categories.

Max_ Length
Neanderthal Early Homo sapiens
Early Homo sapiens -19.99*
Recent Homo sapiens -0.85 19.14*
PosRadTubML
Neanderthal Early Homo sapiens
Early Homo sapiens 7.35%t
Recent Homo sapiens 7.36%t -0.01
DorsalST
Neanderthal Early Homo sapiens
Early Homo sapiens 3.77*
Recent Homo sapiens 4.19* 0.41
LateralST
Neanderthal Early Homo sapiens
Early Homo sapiens 5.70*%
Recent Homo sapiens 8.39*t 2.68*t
NeckLengthRatio
Neanderthal Early Homo sapiens
Early Homo sapiens 1.33*t
Recent Homo sapiens 1.28*t -0.06
HeadShapeRatio
Neanderthal Early Homo sapiens
Early Homo sapiens 16.39*
Recent Homo sapiens 14.69* -1.69
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midshaftShapeRation

Early Homo sapiens
Recent Homo sapiens

Neanderthal
1.50
9.12

Early Homo sapiens

7.63

*=significant at a=0.05

Appendix 49 Post-hoc comparisonsfor palaeogr oup and ulna univariate measur ements. Matrix for

pairwise mean differences between categories.

Max_ Length
Neanderthal Early Homo sapiens
Early Homo sapiens -11.47
Recent Homo sapiens 5.06 16.53*
Olecshaftratio
Neanderthal Early Homo sapiens
Early Homo sapiens 1.41*
Recent Homo sapiens 0.79*% -0.63*
MidShaftShape
Neanderthal Early Homo sapiens
Early Homo sapiens -14.91
Recent Homo sapiens -23.04* -8.13
Radial Notch Surface ratio
Neanderthal Early Homo sapiens
Early Homo sapiens -4.79
Recent Homo sapiens -5.89* -1.09
TrochNotchOri
Neanderthal Early Homo sapiens
Early Homo sapiens -1.86
Recent Homo sapiens -4.14 -2.28
Olecorient angle
Neanderthal Early Homo sapiens
Early Homo sapiens -5.59*%
Recent Homo sapiens -4.92*% 0.68
CorOleRatio
Neanderthal Early Homo sapiens
Early Homo sapiens -3.05*t
Recent Homo sapiens -2.44*% 0.61
BrachRatio
Neanderthal Early Homo sapiens
Early Homo sapiens 3.11*
Recent Homo sapiens 3.48* 0.36
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Robusticity at 50%

Neanderthal Early Homo sapiens
Early Homo sapiens 0.72
Recent Homo sapiens 1.36* 0.65
Robust dist artic
Neanderthal Early Homo sapiens
Early Homo sapiens 1.83*
Recent Homo sapiens 0.97 -0.86

*=significant at a=0.05

T only significant with Games-Howell procedure
¥ only significant with Hochberg's T2 procedure
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