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By buying cheap and selling dear, risk-neutral commodity specula- 
tors can smooth commodity prices and induce serial dependence in 
price even when none would exist under a simple process of supply 
and demand. Commodity prices are variable and strongly positively 
correlated from one year to the next. The variability is often ex- 
plained by supply factors, and the autocorrelation by the activities 
of speculators. We show that this explanation is not consistent with 
the evidence. Speculation can substantially increase autocorrelation 
for prices that are weakly autocorrelated in its absence, but not to 
the high levels that are observed in the data. 

I. Introduction 

This paper is concerned with the estimation and testing of a model of 
price formation for primary commodities, where supply and demand 
shocks are mediated by speculative storage. In the version that we 
estimate, the model supposes that, in the absence of storage, price 
will be a linear function of a single shock that is allowed to follow a 

This paper incorporates and updates the empirical results reported in "Estimating 
the Commodity Price Model," Princeton and INSEE, November 1991. This material 
is based on work supported by the National Science Foundation under grant number 
SES-9223668. We are grateful to an anonymous referee for comments on an earlier 
version. This paper focuses on substantive results; fuller documentation of the econo- 
metric and computational procedures is contained in Deaton and Laroque (1995). 

[Journal of Political Economy, 1996, vol. 104, no. 5] 
K 1996 by The University of Chicago. All rights reserved. 0022-3808/96/0405-0004$01.50 

896 



COMPETITIVE STORAGE 897 

first-order autoregression, a specification that is designed to capture 
at least some of the time dependencies in supply and demand shocks. 
The presence of risk-neutral and profit-maximizing stockholders 
means that expected future prices cannot be greater than current 
prices by more than the cost of holding inventories into the future, 
so that, whenever stocks are held from one period to the next, prices 
in those periods are tied together. As a result, the actions of specula- 
tors will generate serial dependence in prices even when there is no 
dependence in the original shocks, and more generally, speculation 
will modify the serial dependence that would otherwise come directly 
from serial dependence in supply and demand. Speculative storage 
also changes the variability of prices; when speculators hold stocks 
and their expectation of the future price is sufficiently low, their 
sales will moderate the effects on price of negative supply (positive 
demand) shocks. The theoretical properties of this model, at least 
in the case in which the shocks are independently and identically 
distributed (i.i.d.), are by now relatively familiar from the contribu- 
tions of Samuelson (1971) and Newbery and Stiglitz (1981), as well 
as the excellent recent book by Williams and Wright (1991). 

In Deaton and Laroque (1992), we made a first attempt to confront 
the model with actual commodity prices using annual data on 12 
commodities from 1900 to 1987. Under the assumption of i.i.d. har- 
vest shocks, an assumption that has dominated previous discussion in 
the literature, we simulated the model in an attempt to reproduce 
some of the stylized facts of commodity price behavior, and we tested 
some of its implications, for example, about the relationship between 
current and expected future prices. Our results were encouraging, 
at least in some respects. Simulated data reproduce the pattern of 
"doldrums" interrupted by upward (not downward) "spikes" that is 
characteristic of many actual commodity prices. Furthermore, our 
limited econometric tests could not reject the implication of the model 
that, below a fixed cutoff, one-period-ahead price expectations are 
current prices multiplied by a factor greater than unity, whereas 
above the cutoff, expectations are constant. However, without start- 
ing from autocorrelated shocks, and thus building autocorrelation 
into the prices by construction, we did not find parameter values 
whose associated simulations reproduced the high levels of positive 
autocorrelation that are displayed by the actual series. Whether or 
not such parameters exist is a question that we could not answer 
because the application of generalized method of moments (GMM) 
estimation to the commodity price model leaves crucial parameters 
unidentified. Without estimates of all the parameters, it is impossible 
to calculate the autocorrelations implied by the model and to compare 
them with the data. We were therefore left without an answer to the 
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central question of whether the highly autocorrelated price data are 
consistent with profit-maximizing and risk-neutral speculators' acting 
on an i.i.d. weather-driven process. 

In the current paper, we attempt to resolve the issue by going 
beyond GMM and fitting the competitive storage model directly to 
the price data. In the case of an i.i.d. harvest, we find that the proper- 
ties of the data are not as predicted by the model. In particular, the 
storage model with i.i.d. shocks predicts that there is a critical (con- 
stant) price, p* say, such that whenever the current price is above 
p*, there is no storage and the one-period-ahead forecast of price is 
unrelated to the current price. By contrast, autoregression of prices 
in the data is as pronounced at high prices as it is at low prices, so 
that for most of the commodities one-period-ahead price expectations 
are better matched by a simple first-order linear autoregression than 
by the predictions of our fitted model. The theory also makes predic- 
tions when prices are low, and these predictions also fail to hold in 
the data. When prices are below p*, speculators are holding stocks in 
the expectation that prices will rise, so that in the data, it should be 
possible to find some critical price below which the average price 
increase is sufficiently large to cover carrying costs. By searching over 
plausible values of p*, one can easily check that this prediction does 
not hold; stockholding is typically unprofitable unless speculators 
have more information than is allowed by the model. 

These results suggest that if the competitive storage model is to 
be maintained, at least some of the positive autocorrelation must be 
attributed to the underlying processes of supply and demand and 
that speculative storage by itself is not sufficient. To try to capture 
this, we extend the analysis to allow for time-dependent shocks. Inde- 
pendent shocks make the most sense for the prices of annual agricul- 
tural crops, such as wheat, rice, cotton, or maize, where the main 
source of variation comes (arguably) from the supply side, particu- 
larly weather, and where harvests in one year have little effect on 
subsequent harvests. Independent shocks are less useful for tree 
crops, such as cocoa, coffee, or tea, where a single supply shock is 
capable of affecting production for several seasons or, more gener- 
ally, when demand fluctuations are an important source of price 
changes. Although such considerations could lead to a wide range of 
time-series processes, we can make progress by considering a simple 
first-order autoregression, which would occur if supply were propor- 
tional to a depreciating capital stock that is incremented by an i.i.d. 
process. In the absence of storage-for example, when storage is 
sufficiently expensive-linearly autoregressive shocks and linear de- 
mands will generate a linear autoregression for prices. Hence the 
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model with autoregressive shocks and storage nests the simple price 
autoregression that fits better than the competitive storage model 
with i.i.d. shocks. From this starting point, we fit the competitive 
storage model with autoregressive shocks to the price data. 

For most of the commodities, the results offer a substantial im- 
provement in fit over both the i.i.d. storage model and the simple 
AR(1) without storage in which all serial correlation is attributed to 
the driving process. However, the best-fitting models are not those in 
which mildly autocorrelated harvests are filtered by competitive stor- 
age into a more strongly autocorrelated price process. Instead, we 
find that we can explain the autocorrelation in the price process only 
by building it into the driving process, so that storage plays little 
role in accounting for price autocorrelation. When, in the absence of 
storage, prices are highly autocorrelated and when storage is costly, 
there is little scope for speculative storage to smooth prices over time. 
Price swings are so large and so long-lived that their effective smooth- 
ing requires that large stocks be held for long periods, an activity that 
is typically neither profitable nor socially desirable. Even so, and even 
with high autocorrelation in prices, some stock will be transferred 
from periods of low prices to periods of high prices, an activity that 
limits the variability of prices when prices are low. This heteroskedas- 
ticity appears to be a feature of the data, and it accounts for the 
superior fit of the storage model over the simple autoregression with- 
out storage. Since weather-driven harvest processes are unlikely to 
be highly autocorrelated and since our results suggest that the source 
of the autocorrelation in prices should be located in the driving pro- 
cess rather than in the mediation of speculative markets, it would 
seem likely that demand shocks are a more plausible source of price 
fluctuations than has usually been supposed in the literature. 

The paper is arranged as follows. Section II first summarizes the 
simple storage model in a way that allows for the possibility that 
the driving variable (the harvest) is serially dependent. Section III is 
concerned with the storage model when harvests are i.i.d. It discusses 
the data, the econometric procedures, and the empirical results. Sec- 
tion IV contains the corresponding material for the case in which the 
harvest follows a first-order autoregression. Estimation is complicated 
by the fact that the matching of the model to the data to calculate a 
measure of fit requires the prior computation of a nonlinear policy 
function. In the autoregressive case, matters are made more difficult 
by the fact that the policy function has two state variables, one of 
which is unobserved. Given the substantive focus of the current pa- 
per, we do not dwell in detail on the technical issues; they are sepa- 
rately reported in a companion paper (Deaton and Laroque 1995). 
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Given the technical difficulties, the results from the estimation of the 
autoregressive storage model are necessarily more speculative than 
those from the simpler case with i.i.d. harvests. 

II. A Simple Model of a Commodity Price 

The basic model of a commodity price is one in which there are 
profit-maximizing, risk-neutral stockholders who modify what would 
otherwise be the outcome of a simple process of supply and demand. 
It is convenient to start with the specification of prices in the absence 
of storage, and then to bring in the speculators and the storage tech- 
nology. 

Suppose that, in the absence of stocks, there is a price Pt and a 
stochastic shock zt such that 

Pt = P(zt). () 

In the simplest case, z, is an inelastically supplied harvest and (1) is 
the (inverse) demand function; with reference to this interpretation, 
we shall often refer to zt as the "harvest." Alternatively, both supply 
and demand could be linear functions of current price, with shocks 
in both schedules, so that zt would be an amalgam of shocks to both 
supply and demand. The stochastic process is assumed to be station- 
ary and first-order Markov, with transition probabilities characterized 
by the conditional cumulative distribution function 4F(z, Z), where 

4F(z, Z) = Pr(zt+1 ' Ztt = z). (2) 

In the empirical analysis in the paper, we use the linear inverse 
demand function 

P(zt) = a + bzt, (3) 

where a and b < 0 are parameters. For the driving process zt we 
consider two cases. In the first, zt is independently and identically 
distributed with mean [L and variance c2, so that, in the absence of 
any other factors and given the linear demand function (3), prices 
will also be independently and identically distributed with mean a + 
bp, and variance b2cr2. For future reference, note that in this case, if 
only price is observed, a is not identified separately from pL, nor b 
from cr. In our second case, the harvest follows a linear autoregressive 
process 

Zt+- I = P(Zt - 1i) + (st+I, (4) 

where p is an autoregressive parameter, and the shocks -t have com- 
pact support and are normalized so that E (t+ I I zt) = 0 and V(Et+ 1 I zt) 
= 1. Under the interpretation of zt as a harvest, positive autocorrela- 
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tion could occur in the tree crop case, where damage to the trees 
reduces crops for several periods, or in the case of annuals if farmers 
use previous profits to improve their land or capital; negative auto- 
correlation might occur if bumper harvests remove nutrients from 
the soil, negatively affecting its future productivity. Under (3) and 
(4), prices will also follow a linear first-order autoregression, and once 
again a is not identified separately from pu, nor b from c. 

To introduce storage into the general model, suppose only that (1) 
and (2) hold and that at the end of period t, stockholders hold a 
nonnegative amount of inventory I,; the market cannot hold negative 
stocks since commodities cannot be consumed before they exist. 
There is a constant real rate of interest r, and stocks physically de- 
teriorate at rate 8, so that an inventory of I, units of stocks yields 
(1 - 8)It units one period later. If prices are expected to fall or 
to rise by less than carrying costs, inventories are zero; for positive 
inventories, the expected price next period must be the current price 
plus carrying costs. Hence, in the presence of risk-neutral speculators, 
price must satisfy 

Pt = max[l + 6 EPt+ I, P(Z + (1 - 8)It- )] (5) 

The first term on the right-hand side is the expected value of holding 
one unit of the good into the next period, after allowing for deteriora- 
tion and interest costs, conditional on information held by the specu- 
lators. If inventories are being held, this expectation net of costs must 
equal the current price. The second term is the value of the current 
price if no stocks are taken into t + 1, with the current harvest zt and 
surviving inventories (1 - 8) It_ 1 sold for what they can fetch. If this 
latter price is larger than the former, speculators will be unwilling to 
hold inventories, and it is the latter that will set the market price. 
However, if selling everything would drive the price lower than the 
future price less costs, stocks will be held, and the price arbitraged 
up to the first term in the brackets. 

Define the state variable xt, the "amount on hand," by 

Xt = (1 - 8)It_ I + zt. (6) 

Under appropriate assumptions-the most important of which are 
that the speculators know the current harvest and the amount on 
hand, that r + 8 > 0, and that zt has compact support-there exists 
a rational expectations equilibrium. The price Pt is a function of the 
amount on hand and of the current harvest 

Pt = f(xt, 9Zt), 9(7) 
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where f(x, z) is the unique nonnegative, nonincreasing (in its first 
argument) solution to the functional equation 

f(X,z) = 

max 1 a - 8) [x - P'- (f(x, z))], z') PD(z, dz'), P(x)T. (8) ma1 +rfz'+(- - 

Note that (8) simply replicates (5), except that the one-period-ahead 
rational price expectation is written explicitly in terms of the underly- 
ing functions. According to (8), f(x, z) depends on the fundamental 
"parameters" of the problem, the depreciation rate 8, the interest 
rate r, the inverse demand function P(Q), and the transition probabil- 
ity function ID(z, Z) of the harvest process z. The results for i.i.d. 
shocks are proved in Deaton and Laroque (1992, theorem 1) and can 
be extended under the same conditions to the dependent case along 
the lines of Chambers and Bailey (1994; 1996, theorem 2). 

Once the function is calculated, the price is given by (7), and the 
state variable zt is updated according to 

Xt+ I = (1 -8) [xt - P'(f(xt, Zt))] + Zt+ I (9) 

By (9), inventories in t are the amount on hand less consumption, 
given by inserting price f(xt, zt) into the demand function P- (p). 
To get next period's amount on hand, they are multiplied by the 
depreciation factor 1 - 8 and augmented by the new harvest zt+1. 
The harvest process is updated according to the transition probabili- 
ties embodied in FD(z, Z), so that, given (7), the vector of amount on 
hand and harvests (xt, zt) follows a bivariate first-order Markov pro- 
cess. We shall assume that this process has a unique invariant limit 
distribution. 

The price function f(x, z) is monotone decreasing in the amount 
on hand, so that the greater the current availability of the commodity, 
the lower its price. The dependency on the second argument z comes 
from the fact that the current harvest carries information about fu- 
ture harvests, the size of which is important in calculating expected 
future prices and, thus, the demand for current inventories. Cham- 
bers and Bailey (1994; 1996, theorem 3) have shown that if a higher 
harvest now shifts upward the distribution of next period's harvest, 
so that z' > z implies 'D(z', Z) < 'D(z, Z) for all Z, then f(x, z) is 
decreasing in z for all x. Note that the linear autoregression (4) satis- 
fies the condition provided that the autocorrelation coefficient p is 
positive. These results make good intuitive sense: if a good harvest 
today means good harvests next year and therefore also in the further 
future, then there is less need to stockpile now or in the future, more 
can be consumed, and prices should be lower. When a good harvest 
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today shifts downward the distribution of tomorrow's harvest, it is 
unclear how prices vary with the harvest; while more today means 
less next year, there will be more again the year after, and so on. We 
suspect that in the special case in which the harvest follows the linear 
autoregression (4) with i.i.d. innovations and with p < 0, good har- 
vests will increase the current price conditional on current availability; 
however, we have made no progress in proving this conjecture, even 
under relatively restrictive conditions. 

Deaton and Laroque (1992) provide a number of results character- 
izing the properties of the stationary rational expectations equilib- 
rium in the i.i.d. case, and these results have been extended to the 
case of dependent shocks (7), (8), and (9) by Chambers and Bailey 
(1996). Some of the results are required later in this paper and are 
restated here. Associated with the price function f(x, z) is a stocking 
or inventory function I(x, z) defined by 

I(xz) = x - P-(f(xz)) (10) 

so that, given the amount on hand x, inventories carried into the next 
period are the amount on hand less consumption, which is given by 
applying the demand function P'- (p) to the current pricef(x, z). The 
function I(x, z) has the property that, for each level of the harvest z, 
there exists a critical amount on hand x*(z) and associated critical 
price p*(z) = f(x*(z), z) such that, for x ' x*(z) and hence p -p*(z), 
I(x, z) = 0, no stocks are carried forward, and f(x, z) = P(x). If the 
amount on hand is greater than x*(z), it is optimal to store some of 
it, so that I(x, z) > 0 and f(x, z) > P(x), because speculative inventories 
are a source of demand over and above consumption. Neither I(x, z) 
nor (x, z) is differentiable at x = x*(z), where p = p*(z). 

Since inventories are always positive when p < p*(z) and since in- 
ventories can be positive only if the expected price next period is 
sufficient to cover the holding costs, we see immediately that, for Pt 
< p*(zt), 

E(Pt+ I IPt, zt) = 1 P( la) 

whereas for Pt > P*(zt), 

E(Pt+ I IP zt) = f(z' z') (zt, dz') = 1 (z (I lb) 

When, as in the present analysis, only price data are available and zt is 
unobserved by the econometrician, equations (11) have limited value. 
However, when the harvests are i.i.d. so that 'D(z, Z) is independent 
of Z, p*(z) is a constant independent of z, zt yields no information on 
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Pt+ 1, and the autoregression function E(pt+1 IPt) is given by (1 la) for 

Pt ' p* and is constant for Pt > p*. This simple piecewise linear 
structure for the autoregression will be useful for interpreting the 
results in Section III. In the i.i.d. case, Deaton and Laroque (1992) 
also show that, provided that P(x) is convex, the conditional variance 
V(pt+llpt) is monotone increasing in the conditioning price. The 
higher current prices are, the smaller the inventories that are carried 
from the current into the next period. Since it is these inventories 
that buffer next period's prices against poor harvests, the lower the 
buffer, the higher the expected variance of prices. 

Our method of estimation chooses parameters so as to maximize 
the closeness of the first two theoretical and empirical conditional 
moments E(pt+1IPt) and V(pt+IIpt). In the next two sections we shall 
discuss how these theoretical magnitudes can be calculated, but it is 
worth briefly considering the nature of these expressions, especially 
in the case of time dependence. In the i.i.d. case, there is a single 
state variable xt, of which the observed price is a monotone decreasing 
function. In this case, (9) shows that xt follows a first-order Markov 
process, so that price also follows a first-order process, from which 
the conditional means and variances are readily defined. With time 
dependence, we still have a first-order Markov process, but it is a 
bivariate process in (xt, zt), neither element of which is observed. In 
such circumstances, we can no longer characterize the behavior of 
future prices by knowledge of the current price. This does not pre- 
vent us from computing the conditional moments E(pt+lIpt) and 
V(pt+ 1I Pt), provided that we know the distribution of the underlying 
bivariate (xe, zt) process, which we can compute if we assume that the 
process has settled down on its invariant limit distribution. For each 

Pt we can associate a set S(pt) of elements (xt, zt) that satisfy Pt = f(xt, 
Zt). We then calculate the transition probability of each element of 
S(pt) to each (xt+1, zt+1) and the associated pricePt+I = f(xt+I, Zt+ ). 
These prices are then weighted together according to the probabili- 
ties associated with each member of S (Pt) in the invariant distribution. 
In this way, we move from the transition probabilities associated with 
the equilibrium bivariate distribution to the probabilities for prices 
conditional on prices one period earlier, and thus to the conditional 
moments that we require for the estimation. Note that this is not the 
only way of proceeding in the serially dependent case. In particular, 
we could use the limit distribution to calculate the expectation and 
variance of Pt+ I conditional on several earlier prices. In the i.i.d. case, 
this would add nothing, since the conditional distribution of Pt+ 1 is 
characterized by the value of current price, but this is not true once 
the shocks are serially dependent. 
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The empirical analysis in this paper assumes that the inverse de- 
mand function is linear, equation (3), in which case it is possible to 
be a good deal more specific about the nature of the functions f(xt, 
Zt) and I(xt, zt). To explain these new results, it is useful to begin from 
the case in which there is no storage and the harvests are i.i.d. with 
mean zero and unit variance; since the z's will sometimes be negative, 
they are best thought of as excess supply shocks, the harvest less the 
demand shock. Given the linear price function (3), prices will also be 
i.i.d. with mean a and variance b2. Imagine a second economy, with 
an identical history of excess supply shocks, except that the mean and 
variance are now pu and c&. With the same inverse demand function 
(3), prices in this second economy will be the same as prices in the 
first economy, but with the mean shifted to a + bpy and the variance 
(irb)2. If, instead of (3), the second economy's inverse demand func- 
tion had been 

P ( ) ( b p) + b X,(12) 

then the differences in means and variances would be offset, and the 
sequence of prices would be identical in the two economies. If only 
prices are observed, it is also clear that the four parameters a, b, L,, 
and cr cannot be separately identified and that, in this case, there 
would be no loss in generality in assuming that the shocks have mean 
zero and unit variance. 

As is to be expected, the result readily extends to the case of depen- 
dent shocks, but more surprisingly, it also holds in the presence of 
optimal speculative storage, although the reasoning is more complex. 
Optimal storage provides a stationary buffer stock that shields con- 
sumption against variations in the harvest, transferring the commod- 
ity from periods in which it is less valued to periods in which it is 
more valued. With linear demand functions, it is reasonable to conjec- 
ture that an increase in the mean of the harvest will simply reduce 
prices by the appropriate amount, without changing storage behav- 
ior. Inventories follow a stationary process, and the increase in mean 
supply must eventually be passed through into the same increase in 
consumption. By contrast, changes in the variability of the harvest 
will produce more opportunities for speculative storage, since the 
spread between today's price and tomorrow's expected price that is 
required to induce storage will now occur more often. Once again, it 
might reasonably be conjectured that the amount of storage is pro- 
portional to the standard deviation of the harvest, and we show in 
the Appendix that these conjectures are correct when the demand 
function is linear. From this, it is easy to see that the result of the 
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previous paragraph continues to hold in the presence of storage. At 
all times, the second economy will have Cr times as much storage as 
the first economy, so that in any period t, if the amount on hand in 
the second economy is *9, we have 

9t = (I - 8)1t_1 + it = c(I - 8)(It-I + zt) + >L = crxt + AL, (13) 

where the quantities without tildes refer to the first, baseline econ- 
omy. Hence, just as the harvest is subject to a linear transformation 
in the no-storage case, so is the amount on hand in the storage case. 
The effect on prices is the same. 

We state this formally in the following proposition and prove it in 
the Appendix. 

PROPOSITION 1. Identification when only prices are observed. -Consider 
an economy E, with real interest rate r and inventory depreciation 
parameter 8, where the shocks z are characterized by the transition 
function FD(z, Z) and the inverse demand function P(x) is linear, as 
in equation (3). Any other economy E, with real interest rate r and 
inventory depreciation parameter 8, with shocks characterized by the 
transition function iD(z, Z) = (Dr- (z - p1), cr-(Z - ii)) and inverse 
demand function (12), has the same rational expectations price pro- 
cess as the base economy E. 

For the purposes of the current analysis, the result is important 
because it prevents us from attempting to estimate an underidentified 
model and allows us to reduce the number of parameters to be esti- 
mated. We can arbitrarily set the mean and standard deviation of the 
driving process to be zero and one, respectively, and estimate only 
the four parameters a, b, r, and 8 plus the autoregressive parameter 
rather than the original six parameters plus the autoregressive pa- 
rameter. This should be regarded as an arbitrary normalization with- 
out economic significance. The reduction in the dimensionality of the 
estimation problem is an important advantage of the linear demand 
function. It is clear that, in general, we cannot expect the distribution 
of prices alone to identify both the harvest process and the demand 
function, and our specification recognizes this general lack of identi- 
fication in an explicit and transparent manner. 

III. Storage Models When the Harvest Is 
Independently and Identically Distributed 

A. Data 

The data used in this study come from the commodity division of the 
World Bank and are the prices of 12 commodities from 1900 to 1987; 
apart from the omission of bananas, for which we can obtain no 
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sensible results, the data are identical to the data used in Deaton and 
Laroque (1992). The commodities are cocoa, coffee, copper, cotton, 
jute, maize, palm oil, rice, sugar, tea, tin, and wheat. The price data 
are indexes of annual average prices divided by an index of the U.S. 
consumer price index. Better than the U.S. price would be an index 
of consumer prices in industrialized countries, but no such index is 
available over the period. The degree to which the storage model can 
be expected to apply to these commodities clearly varies a good deal 
from case to case. For many commodities, there have been more 
or less successful attempts to influence the world price through the 
formation of cartels, usually by the producers, but occasionally, as 
with coffee, by producers and consumers acting in concert. The his- 
tory of these schemes is discussed in Gilbert (1987); all have tended 
to break down eventually, although some have clearly had effects on 
prices in the short term if not in the long. Even so, we believe that it 
is a useful exercise to assess the extent to which the storage model 
is consistent with actual outcomes. If the model fits the data, one 
interpretation might be that the cartels have been successful only 
when the administered price was close to what the market would have 
set; if the model fails, the actions of the cartels can be examined for 
an alternative explanation. Of course, there are other reasons why 
the model may not fit the data. Neither supply nor demand can rea- 
sonably be supposed to be stationary over the sample period, and 
the only support for our assumption that excess demand shocks are 
stationary is the lack of obvious trends in actual prices. On the supply 
side, metals such as copper and tin do not have annual "harvests," 
and it is at best unclear whether the analogy with agricultural crops 
is valid. That excess demand shocks should be i.i.d. is hard to credit, 
especially for the metals and the tree crops, but we start with the i.i.d. 
case, partly because it has been the standard model in the previous 
literature, partly to establish a baseline, and partly because the techni- 
cal difficulties make us less confident about the results from the auto- 
correlated models that will be presented in Section IV. 

B. Estimation in the i.i.d. Case 

Our estimation strategy is discussed in some detail in Deaton and 
Laroque (1995), and our presentation here is designed only to make 
the current paper self-contained. Although the calculations are some- 
what more involved than usual, the basic outline is a familiar one. 
We begin from the parameters of the model, in this case the intercept 
and slope of the price function, a and b; the parameters of the storage 
technology, r and 6; and the parameters of the distribution of excess 
demands (harvests). From these we compute the value of a pseudo- 
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likelihood function that is to be maximized by choice of the param- 
eters. 

In order to match actual prices with their predictions, we need to 
be able to go from the inverse demand function, the harvest distribu- 
tion, and the storage technology to the price function. In the i.i.d. 
case, price is a function of a single variable, the amount on hand, and 
the price function is given by the solution to the simplified version 
of (8), namely, 

f(x) = max t+I if f(z' + (I - 8) [x - P1 (4(x))]) dA (z)) , P (x) ( 4) 

where A(-) is the univariate cumulative distribution function of the 
i.i.d. shocks. Given the parameters of A(-), of the storage technology, 
and of the inverse price function, f(x) is determined by (14). Once it 
is calculated, we use f(x) to make the transition from any observed 
price in the data to the distribution of prices in the next period. Given 
Pt and the fact that f(x) is monotone decreasing, we can invert the 
function to obtain the implicit amount on hand, x, = f' (p), so that, 
by equation (9), 

Pt+l =f((' - 6)[f-(pt) - P' (pt)] + Zt+ ). (15) 

From (15) and the distribution of the shocks, we can calculate the 
first two conditional moments of pt+ 1, which we write as 

m(pt) = E(pt+I1p) 

S(pt) = V(Pt+IpI) ( 

and which are then used to form the (log) pseudo-likelihood function 

T-1 T-1 

2lnL = In It -(T-1) Iln(2T)- In s(pt) 
1 1 

T_ 1 (pt)]2 (17) 
'K'[Pt+ I -M 

S(pt) 

Equation (17) would be the exact likelihood function if, conditional 
on lagged price, price were normally but heteroskedastically distrib- 
uted. If the theory is correct, this will not be the case, but the estimates 
will nevertheless be consistent (see Gourieroux, Monfort, and Trog- 
non 1984). Unlike the likelihood function proper, which would re- 
quire the Jacobian of the nondifferentiable function (15), the pseudo- 
likelihood function (17) is continuous in the parameters. Of course, 
the nondifferentiability off(-) carries through to (17); both functions 
m and s are nondifferentiable at p*. However, our practical proce- 
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dures for calculatingf(Q) use cubic spline approximations as interpola- 
tion devices, so that the approximations to (16) are everywhere differ- 
entiable. Given this, we calculate the variance-covariance matrix in 
the standard way. For the k-vector of parameters P, define the (T - 
1) x k matrix G and the k x k matrix J by 

Gti ; Ji alidpj= (18) 

The asymptotic variance-covariance matrix of the parameters is com- 
puted from 

V = J-'(G'G)J-'. (19) 

The accuracy of the cubic spline approximation tof(x) is determined 
by the frequency of the number of grid points between which they 
interpolate. Given enough points, the splines are capable of approxi- 
mating the nondifferentiable functionf(x), and by the results of La- 
roque and Salanie (1994), the consistency of pseudo-maximum likeli- 
hood estimation is preserved under the nondifferentiability. 

The calculations of the price function and of the likelihood func- 
tion were eased by the following considerations. First, although 8 and 
r are separately identified, we have made no attempt to estimate the 
latter, setting it at 0.05 in all the calculations. Second, we use proposi- 
tion 1 to choose a distribution of harvests with mean zero and unit 
variance. More precisely, we use a discrete approximation to a stan- 
dard normal, restricting z to take one of the 10 values (+ 1.755, 
+ 1.045, + 0.677, + 0.386, and + 0.126) each with equal probability 
of .1. These values are the conditional means of 10 equiprobable 
divisions of the standard normal distribution. Using them rather than 
the normal gives the harvest a compact support and means that 
(costly) numerical integration is replaced by the simple operation of 
taking the mean of 10 values, both when calculating the expectation 
in the price function (14) and when calculating the conditional means 
and variances (16) from (15). Third, instead of estimating the three 
original parameters a, b, and 8, which would require us to impose the 
restrictions that b be negative and 8 > -0.05 (= -r), restrictions 
without which the price function cannot be computed, we estimate 
the parameters 01, 02, and 03 defined by 

a = 01, b = -e 2, a = -0.05 + e63. (20) 

Fourth, the function f(x) was calculated iteratively starting from the 
functionf0(x) defined by 

fo(x) = max [P (x), 0]. (21) 
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The procedure is begun by substituting this into the right-hand side 
of (14) and then using the resulting left-hand side as the next trial 
function, and so on until convergence. Each function is evaluated 
over an equally spaced grid of points, with interpolation between grid 
points done using cubic splines. The smallest value on the grid is the 
minimum value of x, which is the minimum harvest - 1.755. When 
the depreciation rate 8 is positive, the largest value of x is finite and 
is equal to the maximum harvest 1.755 divided by 8; this value would 
be attained if the harvest were at its maximum value indefinitely and 
consumption were zero. Of course, such a grid is practical only if we 
have some idea of the size of the parameter estimate so that we can 
construct a grid before estimation. Doing this required some trial and 
error for a few of the commodities, though in all cases we found at 
least a local maximum of the pseudo-likelihood function at a positive 
value of 8 that was larger than that used to construct the grid. 

C. Results 

The econometric methods of the previous section allow us to estimate 
all the parameters of the storage model, so that in contrast to Deaton 
and Laroque (1992), where we used GMM to identify and estimate a 
subset of the parameters, we can now construct more comprehensive 
comparisons of the model and the data. The parameter estimates for 
the 12 goods are given in columns 1-3 of table 1. 

The estimates of 8 in column 3 are directly interpretable. The a 
and b parameters are best thought of in terms of the distribution of 
prices that would have occurred in the absence of storage, which, 
according to the model, is (up to the discrete approximation) N(a, 
b2). In consequence, the ratio of the standard deviation of actual price 
to b shows how much the standard deviation is reduced below its 
hypothetical value in the absence of storage. This reduction is typi- 
cally substantial, ranging from 57 percent for maize to 28 percent 
for cotton; the other values are cocoa 0.50, coffee 0.35, copper 0.43, 
jute 0.45, palm oil 0.40, rice 0.33, sugar 0.32, tea 0.37, tin 0.46, and 
wheat 0.33. If we were to believe the model, the standard deviation 
for cocoa (e.g.), which at 0.11 is already more than 50 percent of the 
mean price, would have been twice as large over the period from 
1900 to 1987 if there had been no speculative storage. 

The a parameters, which are the mean prices in the absence of 
storage, are close to the actual sample means. If the inventory depre- 
ciation rate 8 were zero, storage would not change the mean price 
because the demand functions are linear; what is grown is eventually 
sold, and the effect of an additional unit of supply on price is the 
same whenever that unit is sold. With positive depreciation, storage 
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TABLE 1 

PARAMETER ESTIMATES AND AUTOCORRELATIONS, STORAGE MODEL WITH i.i.d. SHOCKS 

p 

a b 8 (1 + r)/(l - 6) Actual Predicted 

(1) (2) (3) (4) (5) (6) 

Cocoa .162 -.221 .116 1.025 .834 .298 
(.01) (.03) (.04) (.14) 

Coffee .263 - .158 .139 1.040 .804 .242 
(.02) (.03) (.02) (.07) 

Copper .545 - .326 .069 1.015 .838 .392 
(.03) (.05) (.02) (.05) 

Cotton .642 - .312 .169 1.013 .884 .192 
(.04) (.04) (.03) (.05) 

jute .572 - .356 .096 1.046 .713 .302 
(.03) (.06) (.05) (.04) 

Maize .635 - .636 .059 1.015 .756 .356 
(.04) (.15) (.03) (.08) 

Palm oil .461 - .429 .058 .995 .730 .416 
(.05) (.06) (.03) (.14) 

Rice .598 - .336 .147 1.012 .829 .224 
(.03) (.03) (.04) (.06) 

Sugar .643 - .626 .177 1.090 .621 .264 
(.05) (.06) (.03) (.14) 

Tea .479 -.211 .123 1.009 .778 .230 
(.02) (.02) (.03) (.04) 

Tin .256 -.170 .148 1.013 .895 .256 
(.04) (.05) (.05) (.07) 

Wheat .723 - .394 .130 1.005 .863 .259 
(.04) (.03) (.03) (.07) 

NOTE.-a, b, and 8 are the parameter estimates for the storage model with i.i.d. shocks. Col. 4 comes from Deaton 
and Laroque (1992) and was estimated directly from the same data using GMM applied to eq. (11). Col. 5 shows 
the actual first-order autocorrelation coefficients in the data, and col. 6 the autocorrelation coefficients predicted 
by the storage model using the parameters in cols. 1-3. 

destroys some of the commodity, and the mean price must rise; in- 
deed, the sample means (not shown) are greater than the estimates 
of a for eight of the 12 commodities. For the other four goods, the 
difference has the wrong sign, but this could reflect sampling variabil- 
ity of the parameter estimate and the mean, as well as possible inade- 
quacies in the model. 

Table 1 also presents the estimates of (1 + r)/(l - 8) from Deaton 
and Laroque (1992). These estimates were obtained by noting that, 
when harvests are i.i.d., the cutoff (no-storage) price p*(z) is a con- 
stant p * = E (f(z)) independent of z, so that the autoregression func- 
tion (11) takes the form 

) + r 
E(ptjpt_ 1) = f _^,min(p*, pt- ). (22) 
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The parameters (1 + r)/(l - 8) and p* in equation (22) can be 
estimated directly by GMM, and the estimates of the former are 
shown in the table. They should be thought of as direct measures of 
(one plus) the expected growth rate of prices when prices are below 
the cutoff p* and storage is positive. For the estimation in the current 
paper, we took the real interest rate to be 5 percent, so that these 
numbers should be compared with the numbers in the previous col- 
umn plus 1.05. Clearly, the expected rate of growth of prices condi- 
tional on pt ' p* is much greater when computed from the parameter 
estimates of the model, that is, from the values of 8 in column 3, than 
when it is computed from GMM. The GMM estimates come directly 
from the data and do not impose all the restrictions of the theoretical 
model. The discrepancies are in the same direction for all 12 com- 
modities and are large relative to the standard errors. When prices 
are low, they do not rise as quickly as the model predicts. 

There is a more direct (and more robust) way of making the same 
point. In this speculative storage model with i.i.d. harvests, it is the 
behavior of profit-maximizing, risk-neutral speculators that generates 
autocorrelation in prices. If, in the absence of storage, prices would 
be abnormally low, the demand for speculative storage will bid up 
the price, and the release of stocks when prices are high will moderate 
what would otherwise be even higher prices. Adjacent prices are 
therefore brought into closer conformity than would be the case with- 
out the speculators. If this mechanism is to account for the high levels 
of autocorrelation in the data, stocks must normally be held, and on 
average it must be profitable (or at least not loss making) for specula- 
tors to hold them. In fact, given the actual data, it is hard to simulta- 
neously reconcile profitable speculation and infrequent stock-outs. 

Consider a speculator whose strategy is to buy one unit of the 
commodity whenever its price is below some critical level and to resell 
it in the next period. When harvests are i.i.d., we know that the 
expected profit associated with this strategy is zero whenever the criti- 
cal price is below p* and becomes negative when the critical price is 
above p*. If the model is true, prices can be expected to rise to cover 
the cost of holding inventories whenever prices are below p*, so that 
if we calculate average profits on the basis of observed prices below 
a range of different cutoffs, profits should be zero for low prices and 
should be negative as soon as our cutoff is higher than p*. If the 
autocorrelation is to be explained, the losses should not start until 
the cutoff is at a relatively high point in the actual distribution of 
prices, since losses are not compatible with stocks and autocorrelation 
is not compatible with stock-outs. In fact, if the cutoff price is set at 
the sample median price for each commodity, there will be stock-outs 
at half the sample points; yet if the total cost of storage is no less 
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than 5 percent per year, speculators would have made losses over the 
period as a whole on all the commodities except cocoa, coffee, and 
maize. If the cutoff is at the upper quartile, with stock-outs at 25 
percent of observations, speculators would have made losses on all 
the commodities. Once again we see that when prices are low, prices 
do not rise fast enough to be consistent with speculative activity. 

Table 1 also compares the actual and predicted first-order autocor- 
relation coefficients for each of the prices. The actual coefficients 
are taken directly from the data. The predicted autocorrelations are 
calculated by using the estimated parameters to calculate the invariant 
distribution of prices and thus the autocorrelation coefficient of 
prices in the invariant distribution (see Deaton and Laroque 1995, 
eqq. 29-35). (The same results could be obtained rather less effi- 
ciently and accurately by simulation.) The predicted and actual auto- 
correlations bear little relationship to one another, and in particular, 
the estimated storage model cannot reproduce the high levels of auto- 
correlation in the actual data. Indeed, the predicted first-order auto- 
correlation coefficients are typically less than half of the actual ones. 
In the simulations reported in Deaton and Laroque (1992), we noted 
that, although the storage model could reproduce several features of 
the data, none of the parameter values that we selected generated 
autocorrelation coefficients as high as those in the data. Of course, it 
is impossible to run simulations for all possible parameters, so we 
were unable to conclude that the storage model was incapable of 
explaining highly autocorrelated prices. Table 1 provides the missing 
evidence. The best-fitting storage models can account for year to year 
price autocorrelations of 0.3 or 0.4, but they cannot account for the 
actual autocorrelations, which are never less than 0.6. 

Figure 1 shows how the storage model fails for cotton; much the 
same phenomena are apparent for the other commodities. The figure 
shows the actual price together with the one-step-ahead predictions 
from an AR(1) and from the storage model with parameters as esti- 
mated in table 1. The AR(1) fits the data badly and cannot match the 
fact that prices come off their peaks quickly, so that its prediction is 
not well synchronized with the actual data. Clearly, the data contain 
more complex dynamics than are allowed for by this simple specifica- 
tion. However, even the AR(1) does much better than the predictions 
of the storage model, which do not track the data whenever prices 
are high. According to (22), the one-period-ahead price predictions 
are constant and independent of current price whenever the current 
price is above the critical level p*. These upper limits on the price 
forecasts are apparent in the graph and are contradicted by elemen- 
tary inspection of the data. Note that this failure is fundamental to 
the storage model when harvests are independently and identically 
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FIG. 1.-Actual and one-period-ahead expectations of cotton prices 

distributed. When prices are above the critical value p* and because 
with i.i.d. harvests high prices are no indication of poor harvests in 
the future, speculators will not choose to hold inventories because 
next year's price is not expected to be high enough to justify the 
interest and depreciation costs of carrying inventories into the next 
period. But with no serial correlation in either demand or supply 
behavior, inventories are the only link between the present and the 
future, so the expectation of next period's price is a constant. Hence 
the model predicts that there should be autocorrelation only when 
prices are below p*. This prediction is clearly falsified by the behavior 
of the actual prices, where there is clear evidence of positive autocor- 
relation even when prices are high. The AR(1), with all its manifest 
faults, captures this "high-price" autocorrelation better than the stor- 
age model does. 

IV. Storage Models When the Harvest 
Is Autocorrelated 

If speculative storage is not the sole cause of the autocorrelation in 
commodity prices, perhaps it is a contributory cause. Even in the 
absence of storage and even if the fluctuations in prices were driven 
by supply shocks, we should expect autocorrelation, at least for some 
commodities. Tree crops are the obvious examples. Bad weather, 
pests, and diseases can damage trees, so that i.i.d. shocks can be trans- 
formed into outputs that are positively autocorrelated. Autocorrela- 
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tion without storage can also readily be explained by appeal to an 
autocorrelated demand process, although most accounts of price 
fluctuations by market commentators identify supply shocks as the 
main source of instability. But most supply processes are unlikely 
to generate autocorrelation as high as that observed in the actual 
prices-not all the world's orchards are destroyed by a single frost, 
and trees can be replanted and replaced within a few years-so that 
an obvious question of interest is whether a mildly autocorrelated 
supply process can be filtered by speculative storage to yield the de- 
gree of serial correlation that we see in the data. 

That speculation can supplement harvest autocorrelation is demon- 
strated by the following experiment. We generated an autocorrelated 
discrete harvest process corresponding to the 10-point discrete har- 
vest discussed in Section IIIB above. This process is a first-order 
Markov chain limited to the 10 values (? 1.755, ? 1.045, ? 0.677, 
? 0.386, and ? 0.126) and controlled by a matrix of transition proba- 
bilities that is set to reproduce a prespecified autocorrelation coeffi- 
cient p. For a range of values of p and 8, we generate 2,000 harvest 
observations from this process, solve out the two-variable policy func- 
tion (8), and starting from zero inventories use the harvests to calcu- 
late 2,000 realizations of price. The first 100 observations are dis- 
carded, and a first-order autocorrelation coefficient is calculated for 
the remaining 1,900 prices. Figure 2 shows a particular example in 
which the parameters of the price function (a, b) are set at (0.2, - 0.5) 
and the depreciation rate 8 varies from 0.025 to unity, at which point 
there is no storage. The figure plots the resulting autocorrelation of 

? 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Autocorrelation of the harvest 
FIG. 2.-Price and harvest autocorrelations in relation to carrying costs 
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prices against the autocorrelation of the harvests, together with the 
45-degree line, which corresponds to a value of 8 of unity. 

It is typically the case that the activity of the speculators increases 
the autocorrelation and that it does so by more the lower the cost 
of carrying inventories. When harvest autocorrelations are low, the 
speculation can have a large effect on the autocorrelation of prices; 
for the lowest values of 8 in the figure, the autocorrelation is increased 
from zero to more than 0.5. But as the autocorrelation of the harvest 
increases, the modulating effect of the speculators is less, so that 
although prices are still usually more autocorrelated than the har- 
vests, the increment is smaller the higher the initial autocorrelation. 
These effects do not result from any decrease in storage at higher 
levels of autocorrelation; indeed, for all the cases shown in the figure, 
mean storage increases as one moves from left to right. However, the 
storage has less and less effect in increasing the autocorrelation of 
prices. 

How much autocorrelation comes from the shocks and how much 
from speculation can be settled only by estimating the full model. 
The estimation follows the procedures in the i.i.d. case, at least in 
principle. For each price in the data, we calculate the expectation and 
variance of next period's price, feeding the results into the pseudo- 
likelihood function (17), which is then used as a guide to choose the 
parameters a, b, 8, and p. The calculation of the price function is 
more complex because it contains two arguments, the current harvest 
in addition to the amount on hand, but the approximation of the 
harvest process by a discrete Markov chain removes any serious diffi- 
culty. The hardest technical issue comes from the fact that, when the 
price function contains two arguments, we cannot solve back from 
the observed price to the amount on hand, but only to a set of combi- 
nations of amount on hand and harvest. In order to integrate over 
the various possibilities, we have to assume that prices have settled 
onto their invariant distribution, which has to be calculated and the 
results used to combine the price forecasts for the various combina- 
tions of harvest and amount on hand. Although straightforward 
enough in conception, the implementation has presented a number 
of difficulties that are described in the technical paper (Deaton and 
Laroque 1995). 

The evaluation of the pseudo-likelihood function requires the first 
two moments of prices conditional on lagged price, and the calcula- 
tion of these moments is illustrated in figure 3 (the conditional expec- 
tation) and figure 4 (the conditional variance). They are calculated for 
hypothetical parameters; note that the autocorrelation of the harvest 
process is taken to be 0.5, which is lower than the values that we shall 
obtain in the estimation. The three nonbold lines in figure 3 show 
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FIG. 3.-One-period-ahead price expectations and harvest information 
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FIG. 4.-One-period-ahead price variances and harvest information 

the conditional expectations from (11), that is, the one-period-ahead 
forecast of price conditional on both the current price and the current 
harvest. These autoregressions are piecewise linear, with slope (1 + 
r)/(l - 8) when pt ' p*(z) and zero when pt : p*(z). Because the 
harvests are assumed to be positively autocorrelated, the expected 
price next period is a decreasing function of the current harvest con- 
ditional on current price. For market participants, who observe the 
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harvest, these three lines would be the relevant predictors. The 
econometrician does not observe the harvest and must integrate out 
the harvests conditional on current price alone. As described above, 
this is done by weighting the conditional expectations by the probabil- 
ities of each harvest outcome conditional on the current price. The 
result is the bold line in figure 3, which is the conditional expectation 
that would be fed into the pseudo-likelihood function. This line coin- 
cides with the three light lines when prices are low enough so that 
storage takes place whatever the harvest, it smooths over the kinks at 
intermediate prices, and it continues to rise to the right because the 
weights shift to lower harvests at higher values of the current price. 

Figure 4 illustrates the corresponding conditional variances, again 
with and without conditioning on the current harvest. These variance 
functions are monotone increasing, are constant above p*(z), but, un- 
like the conditional expectations, are nonlinear for prices less than 
p*(z). These graphs, together with the conditional expectation in fig- 
ure 3, show that the first two conditional moments of prices under 
the storage model are quite different from those of a standard linear 
AR(1). (This property extends to higher moments, though our 
pseudo-maximum likelihood estimation methods do not use the in- 
formation.) When the harvests are autocorrelated, as in figures 3 and 
4, the conditional moment functions are differentiable. This is not 
the case in the i.i.d. model, because the econometrician's ignorance 
of the current harvest zt smooths over the nondifferentiability at p*(z). 
Note also that the nonlinearity of the price series under the model is 
affected by the value of the autocorrelation parameter p. The relevant 
case in our empirical results is the one in which p is large. Thus the 
bold line in figure 3 has a lower slope at low p and a higher slope at 
high p, so that its curvature is reduced and the conditional expecta- 
tion is closer to the linear form of an AR(1). In consequence, an 
estimated storage model with a (highly) positively autocorrelated har- 
vest is closer to the linear autoregression than the simpler storage 
model without autocorrelation. 

High autocorrelation also exacerbates the technical and computa- 
tional problems. For the current substantive purposes, these difficul- 
ties mean that the estimates here are presented only as those that 
generate the highest pseudo-likelihood values that we have been able 
to locate, albeit after a thorough and extensive search over a relatively 
small (four-) dimensional space. Furthermore, we have not been able 
to calculate useful estimates of standard errors. In spite of these prob- 
lems, the Monte Carlo experiments reported in the companion paper 
show that the estimation procedure has reasonable success in recov- 
ering the parameters when the model is correct, and that it does so 
with some precision even for sample sizes like those used here. The 
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greatest difficulty is in the estimate of p, which was quite variable in 
our experiments; with the true p set at 0.5, the mean estimate over 
100 replications was 0.40 with a standard deviation of 0.25. 

Tables 2 and 3 present our results. Table 2 contains values of the 
log pseudo-likelihoods for a number of specifications, and table 3 
presents parameter estimates. The code used to evaluate the pseudo- 
likelihood for the autocorrelated model is a good deal more compli- 
cated than that for the simpler storage model of Section 111. Partly 
in order to check the code, but also to ensure our ability to compare 
the i.i.d. and AR(1) specifications with storage and the AR(1) model 
without storage, we begin by evaluating the full model likelihood at 
the parameter values of the previous models. For the i.i.d. storage 
model, we supplement the parameters in table 1 with a p of zero, and 
for the AR(1) model without storage, we add to the AR(1) parameters 
a depreciation rate of 0.9. Up to the approximation error introduced 
by the different estimation techniques in the i.i.d. and autoregressive 
cases, these likelihood values should be equal to those obtained in 
Section III from estimation of the i.i.d. storage model and from stan- 
dard estimation of a linear AR(1). Although not all the numbers are 
very close to their previous values, they are close enough to suggest 
that the different sets of procedures are estimating the same thing. 
Column 3 of the table lists the highest likelihood values that we have 
been able to obtain. 

TABLE 2 
LOG PSEUDO-LIKELIHOOD VALUES FOR VARIOUS MODELS 

AR(l) 

i.i.d. WITH Without With CONSTANT 
STORAGE Storage Storage VARIANCE 

(1) (2) (3) (4) 

Cocoa 123.6 117.6 141.6 124.4 
Coffee 109.9 110.2 131.2 119.7 
Copper 75.0 73.2 103.1 82.2 
Cotton 33.9 69.6 79.0 74.6 
jute 42.0 47.2 53.3 49.2 
Maize 30.6 22.2 46.2 27.9 
Palm oil 24.1 17.3 58.9 19.3 
Rice 22.0 55.9 61.0 59.4 
Sugar - 15.1 - 28.9 -3.90 - 23.5 
Tea 67.0 99.8 102.5 100.5 
Tin 106.1 149.5 152.3 150.5 
Wheat 22.0 50.0 53.2 50.2 

NOTE.-COIS. 1-3 are log pseudo-likelihoods from the AR(l) model with storage. Col. 1 is calculated at the 
parameter estimates for the i.i.d. model shown in table 1 and p = 0; col. 2 is calculated at the parameters estimated 
from a simple AR(1) model supplemented by 8 = 0.9; and col. 3 is calculated from the unrestricted model. Col. 
4 is the log pseudo-likelihood from the parameters in col. 3, but with the individual s(pt) in (17) replaced by its 
sample mean. 
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TABLE 3 
PARAMETER ESTIMATES FOR AR(1) MODELS WITH AND WITHOUT STORAGE 

a a-AR(l) b b-AR(l) 8 p 

(1) (2) (3) (4) (5) (6) 

Cocoa .226 .185 - .064 - .059 .083 .837 
Coffee .245 .226 - .075 - .062 .036 .833 
Copper .535 .455 -.246 -.096 -.046 .751 
Cotton .862 .604 - .088 - .104 .010 .945 
Jute .526 .591 - .154 - .137 .053 .741 
Maize .731 .696 - .469 - .178 - .050 .720 
Palm oil .412 .525 -.244 -.177 -.050 .864 
Rice .609 .571 -.120 -.121 .027 .889 
Sugar .683 .682 -.493 -.382 .112 .626 
Tea .438 .483 - .053 - .076 .232 .918 
Tin .223 .222 -.038 -.043 .046 .918 
Wheat .680 .647 - .162 - .133 .051 .785 

NOTE.-CoIs. 1, 3, 5, and 6 are the estimates of the parameters of the storage model with autocorrelated shocks. 
Cols. 2 and 4 are derived from the parameters of a first-order linear AR(1) model as described in the text; the 
autocorrelation parameter of the AR(1) model is (approximately) col. 5 of table 1 and is not repeated. 

When interpreting the numbers in table 2, note that log pseudo- 
likelihood values do not behave like log likelihood values; in particu- 
lar, twice the differences in log pseudo-likelihood values do not have 
asymptotic x2 distributions even when we are dealing with nested 
models. Nevertheless, the pseudo-likelihood values are useful as de- 
scriptive statistics of model fit; from (17), the pseudo-likelihood func- 
tion penalizes variance, and it penalizes deviations from the one-step- 
ahead predictions and does so by more when a high variance is not 
predicted. 

The parameter estimates for the storage model with autocorrelated 
shocks are listed in table 3. For comparison, we also include the corre- 
sponding parameter estimates from a linear first-order autoregres- 
sion fitted to the prices. Given our normalization of the harvest, the 
parameter a of the storage model corresponds to the estimated mean 
of the AR(1), that is, the estimated constant in the autoregression 
divided by 1 - p, and the storage model parameter b to the variance 
of the innovation in the AR(1). By the same argument as in Section 
111, the truth of the model would imply that the estimated a parame- 
ters should be less than mean prices or, equivalently, than the means 
of the estimated autoregressions. This condition fails for nine of the 
12 commodities. 

The pseudo-likelihood values for the AR(1) model with storage in 
column 3 of table 2 are larger than those for the restricted model, as 
they must be, by large margins for all commodities except tea, tin, 
and wheat. However, for three other goods, copper, maize, and palm 
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oil, the estimates of the depreciation parameter 8 have been forced 
to or close to its lower bound of - 0.05; see equation (20). While such 
estimates are substantively absurd, their effect is to drive to zero the 
cost of holding inventories, thus permitting large or infinite invento- 
ries that can be used to smooth prices in spite of the autocorrelation 
in the driving process. For these three goods, the estimates of the 
standard deviation in the absence of storage (b) are a good deal larger 
than the corresponding estimates from the AR(1) in column 4. For 
the other nine commodities, the best-fitting estimates show a marked 
similarity to those from the simple autoregression. 

Given the similarity of the parameter estimates, why does the AR(1) 
model with storage yield higher pseudo-likelihood values than those 
from the autoregression without storage? Certainly, if we plot actual 
prices against one-period-ahead forecasts for the two models, there 
is little or no difference that is perceptible to the naked eye. A clue 
can be found by examining simulations of prices with and without 
storage. The differences between such price series come at low levels 
of prices, where the speculators enter the market and bid up prices 
by taking commodity into store for later resale. Because the optimal 
purchases are modest and resales are spread over the long subsequent 
boom, there is no perceptible effect in lowering prices when they 
are high. The effect of storage on prices is quite modest when the 
autocorrelation of the driving process is so large, as was also seen in 
the simulations in figure 2. However, the existence of storage has an 
effect not only on the mean of next period's price, but also on its 
variance. It is this effect that accounts for most of the improvement 
in the likelihood between column 3 and columns 1 and 2 of table 2. 
Column 4 of table 2 documents this by calculating the log pseudo- 
likelihood according to (17) but with the variances s(pt) replaced by 
their average value, a change that brings the likelihood most of the 
way back to that for the best of the other two models. 

We find these results almost as disappointing as those for the stor- 
age model with i.i.d. harvests. We began our research from the rela- 
tively favorable results in Deaton and Laroque (1992) and with a 
reasonable expectation that the behavior of speculators could filter 
i.i.d. prices into the highly autocorrelated prices that we see in the 
data. Not only is that expectation disappointed, but so is the more 
limited ambition of attributing the autocorrelation partly to the driv- 
ing processes of supply and demand and partly to the activities of 
the speculators. Instead, we are forced to attribute effectively all of 
it to the underlying processes. Although speculation is capable of 
increasing the autocorrelation that would otherwise exist in an un- 
moderated price series, it cannot raise it to the levels that we observe. 
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Appendix 

Proof of Proposition 1 

Letf(x, z) be the rational expectations equilibrium associated with the base 
economy, in which the harvests have zero mean and unit variance and the 
inverse demand function P(z) a + bz is linear. Denote by I(x, z) the amount 
of inventories carried forward when the amount on hand is x and the harvest 
is z. We know that, under some continuity and monotonicity requirements, 
[f(x, z), I(x, z)] is the unique solution of the following system of functional 
equations: 

f(x,z) = max{l + ff[z' + (1 - 8)I(xz),z ]4 (z, ), P()} 

(Al1) 
I(x,z) =x - P-'[(x,z)]. 

Consider now the alternative economy, with the same interest rate r and 
the same depreciation rate 8, where all magnitudes are denoted with tildes. 
This economy is characterized by a transition function for the harvests given 
by 

and an inverse demand function 

P(z) = (a _ ) 
b + b 

z. 

The rational expectations equilibrium of this economy is the solution of the 
system of functional equations (Al), with tildes over all the functions and 
variables. The proposition comes from the fact that there is a simple corre- 
spondence between the equilibria of the two economies. Let 

x= X 
, z+ = 

f(xz) =f(ux + pL,cz + A), I(x,z) = I + + A) 

We start with the system of equations satisfied by the initial economy and 
show by substitution that (Al) also holds for the new economy. Consider the 
first equation. On the left-hand side, replacef(x, z) withf(x, Z). Similarly, on 
the right-hand side, substitute P5() for P(x) and D(Z, di') for (F(z, dz'), these 
quantities being equal by definition. Finally, it is straightforward to check 
that 

f[z' + (1 - 8)I(x,z),z'] =f[urz' + IL(l - 8)uI(x,z),ucz' + A] 

and is therefore equal toflz' + (1 - 8)I(x, 2), Z']. 
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It remains only to verify that a similar transformation applies to the second 
equation of (Al): 

I(z, x) = x - P-[f(x, z)] 

yields 

I(g, )= U{x - P1[f(x, z)]} = x- _ - _ p- [f x, ZA 

-- 
a 

- -P-I[1(gZ)], 

which completes the proof. 
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