
Mutant Parkin Impairs Mitochondrial Function and
Morphology in Human Fibroblasts
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Lübeck, Lübeck, Germany, 4 Department of Clinical Neurosciences, Institute of Neurology, University College London, London, United Kingdom, 5 Institute of Genetic

Medicine, European Academy, Bolzano, Italy

Abstract

Background: Mutations in Parkin are the most common cause of autosomal recessive Parkinson disease (PD). The
mitochondrially localized E3 ubiquitin-protein ligase Parkin has been reported to be involved in respiratory chain function
and mitochondrial dynamics. More recent publications also described a link between Parkin and mitophagy.

Methodology/Principal Findings: In this study, we investigated the impact of Parkin mutations on mitochondrial function
and morphology in a human cellular model. Fibroblasts were obtained from three members of an Italian PD family with two
mutations in Parkin (homozygous c.1072delT, homozygous delEx7, compound-heterozygous c.1072delT/delEx7), as well as
from two relatives without mutations. Furthermore, three unrelated compound-heterozygous patients (delEx3-4/duplEx7-
12, delEx4/c.924C.T and delEx1/c.924C.T) and three unrelated age-matched controls were included. Fibroblasts were
cultured under basal or paraquat-induced oxidative stress conditions. ATP synthesis rates and cellular levels were detected
luminometrically. Activities of complexes I-IV and citrate synthase were measured spectrophotometrically in mitochondrial
preparations or cell lysates. The mitochondrial membrane potential was measured with 5,59,6,69-tetrachloro-1,19,3,39-
tetraethylbenzimidazolylcarbocyanine iodide. Oxidative stress levels were investigated with the OxyBlot technique. The
mitochondrial network was investigated immunocytochemically and the degree of branching was determined with image
processing methods. We observed a decrease in the production and overall concentration of ATP coinciding with increased
mitochondrial mass in Parkin-mutant fibroblasts. After an oxidative insult, the membrane potential decreased in patient
cells but not in controls. We further determined higher levels of oxidized proteins in the mutants both under basal and
stress conditions. The degree of mitochondrial network branching was comparable in mutants and controls under basal
conditions and decreased to a similar extent under paraquat-induced stress.

Conclusions: Our results indicate that Parkin mutations cause abnormal mitochondrial function and morphology in non-
neuronal human cells.
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Introduction

Mutations in the Parkin gene (MIM 602544) are the most

common known cause of early-onset Parkinson disease (PD; MIM

168600), accounting for up to 77% of the cases with an age of

onset ,30 years [1]. Parkin encodes a 465-amino-acid protein with

a modular structure [2,3].

In addition to Parkin’s roles as E3 ligase and neuroprotectant, it

has been reported to be involved in mitochondrial function [4]. This

connection was first established when Parkin loss-of-function mice

presented with reduced expression of mitochondrial function- and

oxidative stress-related proteins, decreased mitochondrial respira-

tory capacity and increased oxidative damage [5]. Similar results

were obtained in additional animal models [6,7,8,9].

Investigation of mitochondrial function in human samples

supports the findings from animal studies. Functional assays in

leukocytes as well as fibroblasts of patients with homozygous or

compound-heterozygous Parkin mutations consistently showed
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reduced mitochondrial complex I activity, coinciding with reduced

ATP synthesis rates [10,11].

Another intriguing finding is that Parkin is involved in the

regulation of mitochondrial morphology. The knockdown of Parkin

causes swollen mitochondria in Drosophila indirect flight muscles

[12,13]. As a human model, fibroblasts from PD patients with

Parkin mutation have been used to investigate mitochondrial

morphology and revealed a greater degree of mitochondrial

branching in the patients than in controls [11].

Recently, several publications linked Parkin and mitophagy in

different cellular models [14,15,16,17]. Induced by loss of

mitochondrial membrane potential, Parkin is recruited by the

PTEN-induced putative kinase 1 (PINK1; MIM 608309) to

dysfunctional mitochondria, where it mediates their engulfment by

autophagosomes and their selective elimination [14,17,18,19]. In

Drosophila, terminally damaged mitochondria are labeled for

degradation by ubiquitylation of mitofusion (mfn) [20,21,22].

Most of the above-mentioned data explaining Parkin’s function

with respect to PD were either obtained in animal models or in

small sets of human cellular samples. Here, we evaluated a larger

sample of Parkin-mutant fibroblasts for changes in mitochondrial

function and morphology.

Materials and Methods

Ethics statement
The study was approved by the ethics committee of the University

of Lübeck and all participants gave written, informed consent.

Patients
Skin biopsies were obtained from 11 individuals including six

affected cases (mean age 6 STD: 56.2613.3 years) with two

mutant Parkin alleles and five age-matched controls (mean

age6STD: 51.8611.5 years) without mutations in known PD

genes. Phenotypic and genotypic data are summarized in Table 1

(further clinical details were published earlier [23]).

Tissue culture
Fibroblasts were cultured in high glucose Dulbecco’s Modified

Eagle’s Medium supplemented with 10% foetal bovine serum and

1% penicillin–streptomycin (all PAA, Pasching, Austria) at 37uC, 5%

CO2. In all assays, fibroblast passage numbers were matched (,15).

To induce oxidative stress, cells were treated with 2 mM

paraquat for 24 h (Sigma-Aldrich, St. Louis, MO).

Assessment of mitochondrial function
Cellular ATP synthesis rates were determined according to a

published protocol [24]. In brief, the amount of protein was

determined using the Dc Protein Assay Kit (Bio-Rad, Hercules,

CA, USA) following the manufacturer’s instructions. Fibroblasts

were harvested and diluted with cell suspension buffer (150 mmol/

l KCl, 25 mmol/l Tris-HCl; pH 7.6, 2 mmol/l EDTA pH 7.4, 10

mmol/l KPO4 pH 7.4, 0.1 mmol/l MgCl2 and 0.1% [w/v] BSA)

to a concentration of 1 mg protein per ml. ATP synthesis was

initiated by the addition of 250 ml of the cell suspension to 750 ml

of substrate buffer (10 mmol/l malate, 10 mmol/l pyruvate, 1

mmol/l ADP, 40 mg/ml digitonin and 0.15 mmol/l adenosine

pentaphosphate). Cells were incubated at 37uC for 10 min. At 0

and 10 min, 50 ml aliquots of the reaction mixture were

withdrawn, quenched in 450 ml of boiling 100 mmol/l Tris-HCl,

4 mmol/l EDTA pH 7.75 for 2 min and further diluted 1/10 in

the quenching buffer. The quantity of ATP was measured in a

luminometer (Berthold, Detection Systems, Pforzheim, Germany)

with the ATP Bioluminescence Assay Kit (Roche Diagnostics,

Basel, Switzerland) following the manufacturer’s instructions.

Cellular ATP levels were quantified in intact cells as described

[25]. In both assays, the control average value per run was set to

100% and the relative average patient value was calculated. By

this, variation of absolute ATP levels between experimental runs

due to variable quality of the used kit was not taken into account.

To investigate respiratory chain function, mitochondria were

isolated as published [25]. Mitochondrial respiratory chain

complex activities were measured spectrophotometrically and

expressed as ratios of citrate synthase activity [25].

The mitochondrial membrane potential was analyzed using

5,59,6,69-tetrachloro-1,19,3,39-tetraethylbenzimidazolylcarbocya-

nine iodide (Invitrogen, Carlsbad, CA) [25].

All measurements were performed in duplicate and in at least

three independent runs per sample on a microplate reader

(Synergy HT, BioTek, Winooski, VT).

Table 1. Genotypic and phenotypic characterisation of investigated individuals.

Code Sex
Age of onset
(yr) Age (yr) Mutation Zygosity Clinical status

Mutants B11 M 64 79 delEx7+c.1072delT compound heterozygous affected

B125 M 43 62 c.1072delT homozygous affected

B300 F 34 49 delEx7 homozygous affected

L3035 M 31 49 delEx3-4+duplEx7-12 compound heterozygous affected

L3048 M 15 57 delEx4+c.924C.T compound heterozygous affected

L3244 F 37 41 delEx1+c.924C.T compound heterozygous affected

Ø 6 STD 37.3616.1 56.2613.3

Controls 802.1 F n/a 60 none n/a unaffected

902.1 F n/a 68 none n/a unaffected

B963 M n/a 44 none n/a unaffected

B964 M n/a 44 none n/a unaffected

L3293 M n/a 43 none n/a unaffected

Ø 6 STD 51.8611.5

doi:10.1371/journal.pone.0012962.t001
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Quantification of oxidized proteins
Protein carbonyl levels were measured with the OxyBlot kit

(Millipore, Billerica, MA), according to the manufacturer’s

recommendations. Carbonyl groups in the protein side chains

were derivatized to 2, 4-dinitrophenylhydrazine (DNP). Western

blot analysis was performed with an antibody against DNP. Equal

loading was assessed using an antibody against mouse polyclonal

anti-b-actin (Sigma-Aldrich, St. Louis, MO). The experiment was

performed three times and a representative blot was analyzed

densitometrically with TotalLab software (Nonlinear Dynamics,

Newcastle, UK).

Assessment of mitochondrial branching
The mitochondrial network in fibroblasts was stained with an

anti-GRP75 antibody (Abcam, Cambridge, MA) in combination

with the zenon immunolabelling kit (Invitrogen, Carlsbad, CA)

according to manufacturer’s protocol.

The mitochondrial network morphology was investigated using

a fluorescence microscope equipped with an ApoTome and

AxioVision software (all Zeiss, Jena, Germany). By means of

ImageJ 1.42, raw images were binarized, mitochondrion area and

outline were measured and the form factor was calculated (defined

as [Pm
2]/[4pAm]), where Pm is the length of the mitochondrial

outline and Am is the area of the mitochondrion [11]). The form

factor allows quantifying the degree of branching of the

mitochondrial network. Images of at least five randomly selected

cells per individual were analyzed under basal conditions and after

paraquat treatment.

Statistical analysis
The Mann-Whitney U test was applied for comparisons

between mutants and controls. In case of the ATP concentration

and synthesis data, a Mann-Whitney U test was performed to

compare the mutant with the average control values set to 100%

in each run. For evaluation of the impact of stress on cells, the

Wilcoxon matched-pairs signed-ranks test was used to determine

differences before and after treatment. The significance level was

set at 0.05.

Results

We analyzed primary dermal fibroblasts from six PD patients

with homozygous or compound-heterozygous mutations and five

age-matched controls for mitochondrial changes (Table 1).

Respiratory chain function is impaired in Parkin-mutant
fibroblasts

We first determined ATP synthesis rates and cellular ATP

concentrations. These experiments revealed a significant (ATP

synthesis: p = 0.002; ATP level: p = 0.029) reduction of both

parameters in mutants compared to controls (Figure 1A, B).

We next investigated whether the lower ATP synthesis rates and

cellular ATP levels in the patient samples were due to a

dysfunction of respiratory chain enzymes. Kinetic assays per-

formed in mitochondrial preparations showed no significant

differences in complex I activity in patient fibroblasts (median

[interquartile range; IQR]: 72% [66%, 87%], n = 6) compared to

controls (median [IQR]: 100% [80%, 102%], n = 5). Furthermore,

we performed an NADH ferricyanide reductase assay, which

allows to determine the content of functional complex I [26]. This

assay also showed similar levels in mutants (median [IQR]: 87%

[71%, 101%], n = 6) and controls (median [IQR]: 100% [88%,

107%], n = 5). The activities of complexes II+III (median [IQR]:

patients, 134% [85%, 180%], n = 6; controls, 100% [92%, 112%],

n = 5) and IV (median [IQR]: patients, 95% [82%, 108%], n = 6;

controls: 100% [75%, 112%], n = 5) were comparable in Parkin-

mutant fibroblasts and controls.

We then went on to determine the mitochondrial membrane

potential as a central parameter of mitochondrial integrity. Under

basal conditions, the membrane potential was similar in patients

and controls, whereas under paraquat-induced stress, the mutants

showed a significant (p = 0.028) loss (Figure 1C).

Mutant-Parkin alters the cellular oxidative stress level
In order to determine basal levels of oxidative stress in

fibroblasts from Parkin mutants, we applied an OxyBlot. This

technique demonstrated significantly (p = 0.038) higher levels of

oxidized proteins in the Parkin-mutant samples than in controls

(Figure 2A). Under paraquat-induced stress, the difference in

oxidation between mutants and controls increased markedly. Due

to increased variability of the individual results after stress this

result was not significant (Figure 2A). The findings from

densitometric analyses in single individuals were supported by an

OxyBlot performed with pooled control and patient samples under

basal and stress conditions (Figure 2B).

Mitochondrial mass is increased in Parkin-mutant
fibroblasts

Next, we tested mitochondria of our fibroblast samples for

morphological changes since impaired mitochondrial fission

[11,27,28] or the failure to activate mitophagy [18] are well-

established findings in Parkin null mutants.

To compare the degree of mitochondrial network branching in

Parkin mutants and controls, we determined the form factor. This

morphological assessment demonstrated no differences between

mutant and control individuals under basal conditions (Figure 3A–

C). After treatment with paraquat, the degree of branching

decreased by 34% within the controls and by 46% within the

Parkin-mutant samples. This drop was only significant (p = 0.028)

in the latter group (Figure 3A–C).

Finally, to quantify the mitochondrial mass per cell, we

determined the citrate synthase activity in cell lysates. These levels

were significantly (p = 0.004) higher in mutants than in controls

(Figure 3D).

Discussion

In this study we demonstrate that mutations in Parkin cause

abnormal mitochondrial function and morphology in PD patient

fibroblasts.

Oxidative stress is a key element implicated in the pathophys-

iology of PD, as recently further supported by studies on human

skin fibroblasts from PD patients [11,25]. Our results demonstrate

increased oxidative stress levels in Parkin-mutant fibroblasts under

basal conditions. This difference between mutants and controls

became more pronounced when the cells were exposed to

paraquat. In keeping with our findings, a deficiency of the Parkin

interaction partner PINK1 has been reported to cause mitochon-

drial accumulation of calcium in mammalian neurons, resulting in

a mitochondrial calcium overload which then stimulates the

production of reactive oxygen species (ROS) via NADPH oxidase

[29].

Furthermore, there is strong evidence that a deficit in

respiratory chain function is involved in the pathogenesis of PD

[30,31]. In a study on Parkin-mutant fibroblasts, the authors

reported that a decrease in ATP production was linked to complex

I [11]. Here, we determined significantly reduced ATP synthesis

rates and cellular concentrations in patient cells with Parkin

Mutant Parkin in Human Cells
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Figure 1. Mitochondrial function. (A) Basal ATP synthesis rates. The assay demonstrated a significant reduction in ATP production in the Parkin-
mutant patients (median [IQR]: 39% [23%, 55%]) compared to controls (set to 100%). (B) Basal ATP levels. Quantifying the overall cellular ATP
concentration showed significantly lower levels in the mutants (median [IQR]: 69% [58%, 75%]) than in controls (set to 100%). (C) Mitochondrial
membrane potential under basal and oxidative stress conditions. Control (median [IQR]: 100% [94%, 115%]) and patient fibroblasts (median [IQR]:
113% [93%, 128%]) with Parkin mutations show similar membrane potential under basal conditions. When the cells were treated with paraquat
(shaded boxes), no relevant changes were detected in the controls (median [IQR]: 102% [100%, 118%]). In the Parkin mutants, a significant drop of the
membrane potential was observed (median [IQR]: 84% [81%, 103%]). The median, the interquartile range (IQR), the minimum and the maximum value
of 6 (A) or 4 (B) independent experimental runs are plotted. In each experimental run the average ATP level in the controls was set to 100%.
doi:10.1371/journal.pone.0012962.g001

Figure 2. Protein oxidation under basal and stress conditions. Oxidation of proteins in Parkin-mutant fibroblasts and controls was
determined by means of an OxyBlot. (A) When quantifying the protein oxidation in each individual using an antibody against DNP, the Parkin
mutants (median [IQR]: 123% [113%, 136%]) showed significantly higher levels of oxidation than the controls (median [IQR]: 100% [97%, 105%]). After
treatment of the cells with paraquat (shaded boxes), the difference in oxidation between mutants (median [IQR]: 131% [96%, 172%]) and controls
(median [IQR]: 100% [90%, 102%]) increased, but was no longer significant. Equal protein loading was verified with an antibody against b-actin.
Expression ratios of oxidized proteins vs. b-actin were calculated. The median, the interquartile range (IQR), the minimum and the maximum value of
the investigated groups of individuals are given. (B) OxyBlot of pooled protein samples before and after paraquat treatment showing a similar trend
as identified by individual measurements.
doi:10.1371/journal.pone.0012962.g002
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mutations compared to controls. By contrast, we saw no significant

difference in complex I activity between patient samples and

controls. Also the activities of complexes II to IV were not

significantly altered in the Parkin-mutant cells. A possible

explanation for this discrepancy might be a loss of the electron

carrier glutathione or oxidation of ubiquinone due to increased

oxidative stress in the patient cells.

When quantifying the mitochondrial membrane potential as a

central factor of mitochondrial integrity [14], we found no

impairment in the Parkin mutants under basal culturing conditions.

However, exposure to high levels of ROS caused a significant

decline of the membrane potential in these cells. In an earlier

study, the membrane potential was found to be decreased in

Parkin-mutant fibroblasts already under basal conditions and

culturing in glucose depletion medium supplemented with

galactose further worsened the situation [11]. If the mitochondrial

membrane potential data were corrected for mitochondrial mass

per cell, a similar outcome would be expected in our study.

Recently, Parkin has been shown to act downstream of PINK1

in a common pathway which appears to regulate mitochondrial

morphology [27,28,32]. Two studies in human cells also

demonstrated an impact of mutations in Parkin [11] and PINK1

[25] on the shape of the mitochondrial network. Parkin-mutant

cells were found to be more prone to enter fusion as reflected by a

significant increase in mitochondrial branching in the patient

group [11]. By contrast, we detected no significant differences in

the degree of branching between Parkin mutants and controls

under basal conditions but an increase in mitochondrial mass in

the former. In the above-mentioned study [11], fibroblasts were

exposed to rotenone, an inhibitor of the respiratory chain complex

I. This treatment induced mitochondrial fragmentation in Parkin-

mutant and control cells to a comparable extent. Similarly, in our

study, no significant differences in branching between mutants and

controls were detected after exposure to paraquat.

In light of the most recent publications ascribing Parkin a role in

promotion of mitophagy [14,15,16,17] our results can be

interpreted as consequences of the inability of mutant Parkin to

perform its function. In Drosophila, the initiation of mitophagy

depends on ubiquitylation of the fusion factor mfn by parkin.

Following mfn ubiquitylation, dysfunctional mitochondria are

Figure 3. Morphology of the mitochondrial network. (A) Images of the mitochondrial network in control and patient fibroblasts demonstrating
similar degrees of branching under basal culturing conditions. (B) After treatment with paraquat, the network was less branched in patients and
controls. (C) The degree of mitochondrial branching (form factor) was comparable in patients (median [IQR]: 78% [66%, 90%]) and controls (median
[IQR]: 100% [73%, 105%]) under standard cell culturing conditions. When treated with paraquat (shaded boxes), the form factor decreased
significantly in the mutant samples (median [IQR]: 46% [43%, 54%]). By contrast, a drop seen in controls (median [IQR]: 70% [32%, 84%]) was not
significant. (D) Citrate synthase activity in cell lysates. Parkin mutants (median [IQR]: 183% [125%, 232%]) showed significantly higher citrate synthase
activities than controls (median [IQR]: 100% [43%, 101%]), indicative of increased mitochondrial mass per cell in the former. Citrate synthase activity in
cell lysates was normalized for protein concentration. The median, the interquartile range (IQR), the minimum and the maximum value of the
investigated groups of individuals are shown.
doi:10.1371/journal.pone.0012962.g003
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prevented from re-fusion with functional mitochondria [20,21,22].

If this ubiquitylation is impaired in Parkin mutants under stress,

one could imagine that mitochondria with disturbed respiratory

chain function are no longer separated and eliminated from the

general pool but dominate cellular (dys)function. This effect is in

keeping with decreased ATP synthesis rates, elevated oxidized

protein levels, increased mitochondrial mass and the observed

stress-induced loss of mitochondrial membrane potential in the

patient fibroblasts investigated here. Furthermore, one would

expect that due to impaired Mfn1/2 deactivation/degradation,

mitochondria should be less fragmented in Parkin-mutant than in

control cells under stress conditions. Since mitochondrial fusion

and fission are transient events, dynamic techniques to quantify

the degree of mitochondrial branching would be preferable to the

method established so far [11]. Methodological restrictions

together with great inter-individual variations in branching

especially after exposure to mitochondrial stressors render it

impossible to detect subtle morphological differences between

mutants and controls.

In the future, further investigations of the relationship between

changes in mitochondrial dynamics/turnover and cell death will

be necessary to identify potential targets for neuroprotective drugs

redirecting Parkin-mutant cells towards survival. The results from

our study underline that also non-neuronal cells, such as

fibroblasts from patients, allow important insights into the

mechanisms underlying PD and, therefore, will be a useful tool

to pursue this scientific goal.
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