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A two-dimensional acoustic waveguide of infinite extent described by two parallel lines 
contains an obstruction of fairly general shape which is symmetric about the centreline 
of the waveguide. It is proved that there exists at least one mode of oscillation, 
antisymmetric about the centreline, that corresponds to a local oscillation at a 
particular frequency, in the absence of excitation, which decays with distance down the 
waveguide away from the obstruction. Mathematically, this trapped mode is related to 
an eigenvalue of the Laplace operator in the waveguide. The proof makes use of an 
extension of the idea of the Rayleigh quotient to characterize the lowest eigenvalue of 
a differential operator on an infinite domain. 

1. Introduction 
The existence of trapped modes above a long submerged horizontal circular cylinder 

of sufficiently small radius, in deep water, was proved by Ursell(l951) over forty years 
ago. At about the same time Jones (1953), using deep results on unbounded operators, 
extended Ursell’s proof to a wide class of submerged horizontal cylindrical obstacles 
in finite water depth and also removed the requirement that the obstacle be small. 
Jones’ results, as applied to the water-wave problem, formed just a small part of his 
paper in which a number of general results were obtained concerning the spectrum of 
the Laplace operator satisfying certain boundary conditions given on semi-infinite 
domains. Possibly because of the difficult nature of the paper, little attention appears 
to have been paid to these results in the acoustic or water-wave literature. 

Recently, there has been a revival of interest in predicting those situations in which 
trapped modes, or acoustic resonances, as they are described in the acoustic literature, 
might occur, because of their importance in, for example, the design of turbomachinery. 
A good review is provided by Parker & Stoneman (1989) who describe a wide variety 
of engineering applications where acoustic resonances have been observed and 
measured. 

Motivated by problems in water waves, a series of recent papers has been concerned 
with both existence proofs and numerical algorithms for the computation of trapped 
modes for different geometries. For example, Evans & Linton (1991) provided a 
numerical technique for computing trapped modes in the vicinity of a vertical cylinder 
extending throughout the water depth and midway between the walls of a channel of 
infinite extent when the cylinder is of rectangular cross-section and has two opposite 
faces parallel to the channel walls. These trapped modes, which are antisymmetric with 
respect to the centreplane of the channel, also describe acoustic resonances associated 
with a two-dimensional acoustic waveguide containing a rectangular obstruction since 
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separation of the depth factor in the water-wave problem reduces it to the acoustic 
waveguide problem. Again Callan, Linton & Evans (1991) using methods similar to 
Ursell (1951) proved that an antisymmetric trapped mode existed for a sufficiently 
small circular cylinder midway between parallel walls of finite extent whilst Ursell(l99 1) 
generalized this result to the axisymmetric case of a small sphere on the centreline of 
a circular tube of infinite extent. Evans (1992) proved the existence of trapped modes 
in the case of a sufficiently long vertical plate positioned parallel to and midway 
between the walls of the channel. The corresponding acoustic problem to this was 
observed by Parker (1966) who also used numerical techniques to estimate the acoustic 
resonant frequencies. Evans, Linton & Ursell (1993) considered the case of a 
sufficiently long vertical plate off the centreplane of the channel, where it is not possible 
to separate the problem into solutions symmetric or antisymmetric with respect to the 
centreplane, and showed that in this case also a trapped mode existed which, since the 
problem allowed all positive frequencies, had a corresponding trapped mode frequency 
embedded in the continuous spectrum. Finally, Linton & Evans (1992) used an 
appropriate Green’s function to construct a homogeneous integral equation for the 
trapped modes in the case of a cylinder of fairly general cross-section and showed that 
the trapped mode frequencies agreed numerically with the previous results for the 
circular and rectangular cross-sections. 

In each of the water-wave problems described above the alternative interpretation of 
a trapped mode in an acoustic waveguide can be made and for definiteness we shall 
adhere to this interpretation in what follows. 

In the next two Sections we shall prove, using a variational formulation, that a 
trapped mode exists in a two-dimensional acoustic waveguide of fairly arbitrary cross- 
section. We shall identify a trapped mode frequency as an eigenvalue of the Laplace 
operator on an unbounded domain and we shall establish the existence of the smallest 
such eigenvalue by making use of a theorem in which the eigenvalue is described in 
terms of the Rayleigh quotient. This theorem, which is not proved here, provides an 
extension to certain differential operators on unbounded domains having combined 
discrete and continuous spectra, of the simple Rayleigh quotient characterization for 
the lowest eigenvalue of differential operators on bounded domains where the 
spectrum is purely discrete. 

It will become clear from the method of proof that the method can be adapted to 
other situations where trapped modes are anticipated, including the case considered by 
Ursell(l991). To illustrate this we indicate in 54 how the method can be applied to the 
case of a two-dimensional acoustic waveguide containing symmetric indentations on 
opposite sides. 

2. Mathematical statement of the problem and some basic mathematical 
facts 

We consider a two-dimensional acoustic waveguide G = {(x,y):lyl < d }  the 
boundary of which is represented in Cartesian coordinates {x, y }  by two parallel lines 
Ti = { y  = +d}.  The waveguide encloses an obstruction I; which is symmetric about 
the centreline y = 0 of the waveguide, but otherwise has arbitrary shape; the boundary 
@ = @+ u @- of the obstruction is assumed to be piecewise smooth and parametrized 
in the form d s ,  = {(x,y):x = X(s),  y = f Y(s), 0 < s d L}, where X(s),  Y(s) are 
continuous, piecewise infinitely smooth functions such that Xi2 + Yi2 = 1,0 < Y(s) < d, 
Y(0) = Y(L) = 0,  X(0)  = -a, X ( L )  = a (see figure 1). The only conditions on the 
shape of the obstruction are Xl 2 0, and (X(s), Y(s)) + (A’(,?), Y($) for all s + s” (we do 



Existence theorems for trapped modes 23 

l Y  

FIGURE 1. Waveguide with obstruction (Y(s) + 0).  

not go through the same point twice). For technical reasons we also assume that 
Y’(s + 0) - Y’(s - 0) < 2 for all s E (0, L) (there are no cusps protruding inside the 

obstacle). We denote by 2agf X(L)-X(0)  > 0 the length of obstruction. By S(x) we 
denote the inverse function to the function X(s)  (i.e. S(x) is the root of the equation 
x = X(S(x)) if this root is unique; on the parts of the boundary where X’(s) = 0 we put 

for definiteness S(x) zf min {s: x = X(s)}).  Note that the case Y(s) = 0 (infinitely thin 
obstruction along the centreline, see figure 2) is included in our general scheme. 

We consider the following boundary value problem for a potential $(x,y): 

( d + h ) $  = 0 for ( x , y ) ~ V =  G\F, (2.1) 

(2.2) -= a4 0 for ( x , y ) ~ I ‘ + ,  
aY 

$ + O  for IxI+co, lyl d d .  (2.4) 

In (2.3) a/an denotes the derivative with respect to the normal vector to the boundary 
of the obstruction; (2.3) is assumed to be fulfilled on the smooth parts of the boundary 
of the obstruction, because at the vertices the normal is undefined. In (2.1) I/ is the 
volume occupied by the acoustic medium, and h is a spectral parameter which is related 
to the frequency of acoustic vibration o by h = 02/c2,  c being the velocity of sound. 
Convergence in (2.4) is understood as uniform convergence over IyI < d. Equations 
(2.1)-(2.4) arise after separating out the time factor exp (iot) in the full time-dependent 
problem, the actual potential being Re($exp(iot)). At the same time, as in Evans & 
Linton (1991) and Callan et al. (1991) these equations describe the water-wave problem 
in which the water is of depth H and the obstruction extends throughout the entire 
depth. In this case the depth factor coshha(z+H) is also separated out ( z  being the 
vertical coordinate) and h is the unique positive root of 

o2 = ghi tanh AtH. 
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FIGURE 2. Waveguide with obstruction (Y(s) =- 0). 

We seek values of h for which non-trivial solutions $(x, y )  of (2.1)-(2.4) exist. These 
values correspond to the so-called trapped modes with frequency w. 

We shall be mostly interested in solutions which are antisymmetric about the axis 
y = 0, i.e. $(x, y )  = --$(x, -y) .  It is easily seen that such solutions (which we shall 
denote by $"(x, y ) )  satisfy the following auxiliary problem : 

( A  + A )  $" = 0 for (x, y )  E V, = G+\F+, (2.5) 

$a = 0 for ( X , Y ) E @ ~ ,  

$a+O for IxI--tco, O < y < d .  

Here G, = {(x,y):O < y < d} ,  = { ( x , y ) : y  = 0 ,  XE(-GO,  -a] u [a, +GO)}, F+ is the 
upper half of the obstacle F, and V+ is the volume occupied by the acoustic medium. 
Convergence in (2.9) is understood as uniform convergence over 0 < y < d. The 
essential new element in comparison with the initial problem (2.1)-(2.4) is condition 
(2.8), which allows us to continue the solution $" antisymmetrically about the line 
y = 0. Later on we will show that condition (2.8) also plays a crucial role for the 
existence of trapped modes. 

In order to conclude the rigorous mathematical statement of the problems (2.1)-(2.4) 
and (2.5)-(2.9) we should describe appropriate classes of functions in which we seek the 
potentials q5 and q5", respectively. Both from the mathematical and physical points of 
view it is reasonable to require the potentials to be infinitely diferentiable at all internal 
points of the region V (respectively, V,) occupied by the acoustic medium as well as up 
to the smooth parts of the boundary. Since the boundary @+ of the obstruction is 
assumed to be only piecewise smooth, we shall require the potentials $ and $" to be 
continuous at all the vertices of the lines @ and @+, respectively. 

Further on we shall refer to the problem (2.1)-(2.4) with these 'smoothness' 
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requirements on the solution as problem (P) and to the problem (2.5)-(2.9) as problem 
(Pa>. 

Now we introduce the important concepts of continuous and point spectra of our 
problems. 

We shall say that a number h is an eigenvalue of the problem (P) or (Pa) (in other 
words, h belongs to the point spectrum of the problem (P) or (Pa)) if for this h there 
exists a non-trivial potential q5 or which satisfies (2.1)-(2.4) or (2.5)-(2.9), 
respectively. 

We shall say that a number h belongs to the continuous spectrum of the problem (P) 
or (Pa) if for this A there exists a non-trivial potential q5 or #a which satisfies (2.1)-(2.3) 
or (2.5)-(2.Q grows at x-infinity not faster than polynomially, but does not vanish at 
x = f co. In other words, here we allow the potential q5 (or @) to behave at x-infinity, 
for example, as Ix(", n 2 0,  but do not allow it to behave at x-infinity as exp 1x1. Note 
that the potentials appearing in our definition of the continuous spectrum are not really 
solutions of our problems (P) or (Pa) because they do not satisfy the decay conditions 
(2.4) or (2.9). However, consideration of such non-decaying solutions is essential for 
the understanding of our problems in terms of spectral theory of operators. 

From the physical point of view, modes (potentials) corresponding to eigenvalues do 
not radiate towards x = & co or receive radiation from x = f co, whereas radiation to 
x = & co occurs in modes corresponding to points of the continuous spectrum. 

We shall call the potentials involved in the definition of eigenvalues eigenfunctions or 
trapped modes; the latter name is more physical because it reflects the fact that these 
potentials are localized near the obstacle, while away from the obstacle they rapidly 
decay. The potentials involved in the definition of the continuous spectrum can be 
called eigenfunctions of the continuous spectrum or propagating modes. 

Our main aim is to show that trapped modes always exist, i.e. that problem (P) 
always has at least one eigenvalue. As we shall see the main difficulty in proving this 
fact is that this eigenvalue is necessarily embedded in the continuous spectrum of the 
problem (P), which prevents us from using the standard functional analysis technique. 
Normally, eigenvalues embedded in a continuous spectrum are a very rare occurrence; 
their study requires special methods and there must be special reasons for there 
existence. In our particular case this special reason is the symmetry of the problem (P) 
with respect to the axis y = 0. This symmetry will allow us to reduce our consideration 
to the more simple problem (Pa) for which the continuous spectrum starts higher and, 
as a result, the eigenvalue in question lies below the continuous spectrum. 

The following result is well-known (see, e.g. Jones 1953; Evans & Linton 1991; and 
for a more general discussion Birman & Solomjak 1987 and Sanchez-Hubert & 
Sanchez-Palencia 1989). 

LEMMA 2.1. The continuous spectrum of the problem (5') is the semi-interval [0, + co). 
The continuous spectrum of the problem (Pa) is the semi-interval [n2/(4d2), + a). 

Physically, Lemma 2.1 means that in the full problem (P) for any positive h there 
exists a mode of vibration radiating to x = co and receiving radiation from x = & 00, 

whereas in the antisymmetric problem (Pa) no radiation is possible when h < n2/(4d2). 
The frequency 52 = CA; corresponding to A = n2/(4d2) (the lower point of the 
continuous spectrum of the problem (Pa)), is called the cut-of frequency. 

The rigorous mathematical proof of Lemma 2.1 lies beyond the scope of this paper 
(see references above). Note, however, that it can be obtained directly from our 
definitions using separation of variables for sufficiently large 1x1. 

It is easy to see that if some h is an eigenvalue of the antisymmetric problem (Pa), 
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then it is also an eigenvalue of the full problem (P). In fact, if $" is a non-trivial solution 
of the problem (P") corresponding to A, then we can define the function 

$"(x,v> for (X,Y)E v, y > 0, 
-$"(x, -Y) for (x, y )  E v, y < 0. 

$(X,Y) = { 
Obviously, $(x,y) satisfies (2.1k(2.4) and by definition is an eigenfunction of the 
problem (P). 

Note that since the continuous spectrum of the problem (P) occupies the entire non- 
negative half-line [0, + oo), and all the eigenvalues of this problem (if they exist) are 
positive, they are necessarily embedded in the continuous spectrum. 

We shall need to use some ideas from functional analysis and to introduce additional 
notation. 

First, let us introduce the space C" which consists of all functions $(x, y) in V, that 
are infinitely differentiable at all the interior points of V, as well as up to the whole 
boundary of V, (not only its smooth parts). By we shall denote the subspace of C" 
consisting of functions $(x, y) satisfying the following two properties: $(x, 0 )  = 0 for 
1x1 > a (i.e. for (x, y) E Q0), and $(x, y) = 0 uniformly over 0 < y < d for sufficiently 
large 1x1 (i.e. the support of $ is compact in the x-direction). 

For any two functions $, E cr we can define the inner product 
" "  

Consequently, for any function $E eF the norm is defined as 

(2.10) 

(2.11) 

Then, we construct a closure of the space c;, i.e. we add to the elements of this space 
all limit points of Cauchy sequences (in the sense of the norm (2.11)). Clearly, the 
closure of the space c; is wider than c;o" itself; we will denote this closure by fii. The 
space fit, being equipped with the same inner product (2.10) and norm (2.1 I), is a 
complete inner product space, i.e. a Hilbert space. Hilbert spaces of this particular type 
are called Sobolev spaces. 

Remark. The remarkable fact is that the space c; is dense in fit. This means that 
for any element $ E fii and any number c > 0 there exists an element $c E @ (which 
at the same time belongs to I?;) such that I\$- $J < c. Practically, this means that in 
all our following considerations we can work with the smaller space c;, instead of the 
wider space fit. 

(the 
part of the boundary where the Dirichlet condition is imposed), a, V+ = r+ u @+ (the 
part of the boundary where the Neumann condition is imposed), and A = n2/(4d2) (the 
lower point of the continuous spectrum). 

The following fundamental result is the variational principle for the problem (Pa). 
Omitting its general form (see, for instance, Birman & Solomyak 1986 or Sanchez- 
Hubert & Sanchez-Palencia 1989) we give it for our concrete problem (Pa). 

Let us now consider the antisymmetric problem (P"). Let us denote a, V, = 

r r  LEMMA 2.2. Let 

(2.12) 
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Then A, d A .  Moreover, if 
A, < A ,  
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(2.13) 

then A, is the smallest eigenvalue of the problem (Pa), and if 

A, = A ,  (2.14) 

then there are no eigenvalues of the problem (Pa) below the continuous spectrum 

As mentioned above we can substitute the space 2: instead of the space I?; in (2.12), 
which is more convenient for applications. 

Note that we seek the infimum in (2.12) among functions that satisfy the Dirichlet 
boundary condition on a, V+ (see definitions of the spaces cr and I?:) but do not 
necessarily satisfy the Neumann boundary condition on a, V+ ! Nevertheless, if 
condition (2.13) holds, then the system (2.5)-(2.9) has a non-trivial solution for 
h = A, which satisfies both the Dirichlet boundary condition on a, V+ and the 
Neumann boundary condition on a, 6. 

Formula (2.12) formally coincides with the well-known Rayleigh quotient which 
gives, for example, the first eigenvalue of a vibrating membrane. However, in our 
problem (with the infinite domain) one must use (2.12) very carefully because of the 
presence of the continuous spectrum - in this situation A, is the smallest eigenvalue if 
and only if the inequality (2.13) holds. Otherwise (in the case A, = A) ,  (2.12) gives the 
lower point of the continuous spectrum rather than the first eigenvalue. This restriction 
does not arise if one deals with the spectrum of a vibrating bounded membrane because 
the spectrum in this case is purely discrete. 

[A,  + a). 

3. Existence of a trapped mode 
Let us fix smooth cut-ojf function ~ ( x )  with the following properties : 

~ ( x )  = 1 for 1x1 d 1, 

for 0 < ~(x) < 1 1 < 1x1 < 2, 

J ~ ( x )  = 0 for 1x1 2 2. 

Such a function exists. For example, we can take 

It is easily checked that x( f 1) = 1, x( _+ 2) = 0, and x(")( _+ 1) = x(")( 2) = 0 for 
m = 1,2, ... . 

Further on we shall consider separately two cases - Y(s) + 0 (an obstruction that is 
not infinitely thin, see figure 1); and Y(s) = 0 (infinitely thin obstruction, see figure 2). 

Let A be a positive number. Let us introduce the function 

(3.2a) 



28 

in the case Y(s) + 0; in the case Y(s) = 0 we set 
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(3.2b) 

Obviously, in both cases the function Y(x,y) belongs to c; because Y(x,y) = 0 for 

LEMMA 3.1. For suficiently large A 

(x, y )  E Go and for (x, y )  E {lxl 3 2A, 0 < y < d}.  

Proof. For brevity let us denote for an arbitrary domain W 

4( W )  Ef /Iw I Y’ dx dy, &( W )  Ef IV !TIz dx dy. 

We must show that for sufficiently large A 

First, let us consider the case Y(s) + 0. Recall that V+ = G+\F+, where G, is the 
infinite strip bounded by the lines y = 0 and y = d and F+ is the upper half of the 
obstacle F. So, we can write 

4 ( G + )  = -2A x2(;)dx[sin2(&y)dy 

= @ x2(x)dx. (3.7) 
J - 2  

On the other hand, 

(Td ) (;) . (;d )( ’(:)I 7c2 

4d 
I V I ~ ~ ~ = , C O S ~  -y  x 2  - +-sin2 -y  x - 

(here the prime denotes differentiation with respect to the argument). Hence, using the 
fact that x’(x /A)  = 0 for 1x1 3 2A and for 1x1 6 A ,  we have 

(3.8) 

Now we shall compute integrals over 4. We may assume that A 3 a, so the 
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obstruction Flies in the zone in which x(x/A)  = 1 and x ' ( x / A )  = 0. Using the notation 
introduced at the beginning of $2, we obtain 

Combining (3.5)-(3.10), we get 

When the parameter A on the right-hand side of (3.11) tends to + cc we see 
left-hand side tends to the positive number 

(3.10) 

(3.11) 

that the 

(3.12) 

Recall that under our assumptions Y(s) + 0, and this, together with the conditions 
X i  3 0 and (X(s),  Y(s)) =k (X($, Y($) for all s + Z, implies Y(S(x)) + 0. The function 
Y(S(x))  is left-continuous, not identically zero and 0 6 Y(S(x)) < d, so the integral 
(3.12) is indeed positive. 

Thus, for sufficiently large A formula (3.4) holds. 
The case Y(s) = 0 (infinitely thin obstruction) is handled in precisely the same 

manner. Direct calculations show that in this case 

rc2 7ca /I2 x(x) dx 
A-~+O(A- ' )  as ~ + + c c ,  @m)-aU = 2d 

whence the result. Lemma 3.1 is proved in both cases. 0 
Lemmas 2.2 and 3.1 immediately imply 

LEMMA 3.2. The problem (Pa) has eigenvalues (at least one). The smallest eigenvalue 
A, of the problem (Pa) is less than 7c2/(4d2). 

Elementary integration by parts shows that A, is strictly positive. Otherwise, for the 
corresponding non-trivial solution y+, of the problem (Pa)  with A = A,, = 0 we would 
have 

~j-+IVy+, , /?drdg = 0, 

which implies y+, = const + 0, which, in turn, contradicts the boundary condition (2.8). 
We already noted in $2  that any eigenvalue of the problem (Pa) is at the same time 

as an eigenvalue of the problem (P). Thus, we arrive at 

THEOREM 3.1. There exists an eigenvalue A, E (0, 7c/(4d2)) of the problem (P). In other 
words, the problem (P) always has a trapped mode. 

2 F L M  261 
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FIGURE 3. Waveguide with indentations. 

It follows from Theorem 3.1 and Lemma 2.1 that A,, regarded as an eigenvalue of 
the problem (P) is embedded in the continuous spectrum of this problem, but that 
regarded as an eigenvalue of the problem (Pa) is below the cut-off value A for the 
problem (Pa). This situation contrasts with that considered by Evans et al. (1993) for 
the off-set plate in the channel where the full problem (P) had to be considered, since 
there was no symmetry involved and it was not possible to reduce the analysis to a 
simpler problem (Pa), having a trapped mode frequency below the cut-off frequency. 
Nevertheless, because of the simple geometry of the plate, it was still possible to 
construct a proof of the existence of a trapped mode, for sufficiently long plates. 

4. Further developments and generalizations 
The situation considered in the two previous sections (a waveguide bounded by two 

parallel lines and enclosing an obstruction that is symmetric about the centreline) is not 
the only one in which we can rigorously prove the existence of trapped modes. Let us 
consider the situation illustrated by figure 3. In this case a two-dimensional wave- 
guide G has two symmetric indentations P+ (we denote P = P+ u P-), so that the volume 
occupied by the acoustic medium 7s V =  G u P. The external boundaries 
17= 17+ u 17- of the indentations are assumed to be piecewise smooth and 
parametrized in the form 17, = {(x, y )  : x = X(s), y = k Y(s), 0 d s d L}, where 
Xi2 + Yi2 = 1, Y(s) 2 d, Y(0) Y(L) = d, X(0)  = -a, X (L)  = a. Similarly to the 
conditions imposed in the beginning of $2 on the shape of the obstruction, we assume 
that X’(s) 2 0, (X(s),  Y(s)) $: (X($, Y($) for all s + S; and Y’(s + 0) - Y’(s - 0) > - 2. 
We shall also assume that Y(s) + d. 

After separating out the time factor exp(iwt) we once again obtain the boundary 
value problem (2.1E(2.4) for a potential $(x, y ) ,  with the following slight modifications : 
in (2.1) the volume occupied by the acoustic medium is V = G u P, in (2.3) a/& 
denotes the derivative with respect to the normal vector to the boundary of the 
indentation, and the condition (2.3) is posed for (x, y )  E 17,. Analogously, we consider 
the auxiliary problem (2.5>-(2.9) for solutions that are antisymmetric about the 
centreline y = 0, substituting V, = G+ u P+ into (2.5) and 17, instead of @+ into (2.7). 

Both Lemmas 2.1 and 2.2 remain true in the case of the waveguide with indentations. 
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lY 

FIGURE 4. Waveguide with obstruction and indentations. 

Moreover, repeating practically literally the proof of Lemma 3.1 one can check that 
this Lemma and, consequentlx, Lemma 3.2 and Theorem 3.1 are also valid in this case. 
The ‘test’ function U(x, y )  E H,1 to be used here is very simple : for IyI < d it is given by 
(3.2), and for IyI > d by Y(x,y) = 1. 

It is clear that Lemmas 2.1, 2.2, 3.1, 3.2 and Theorem 3.1 also remain valid in the 
case when both the obstruction and the indentations (or even several different 
symmetric obstructions and indentations of the type described above) appear in the 
waveguide simultaneously (see figure 4). 

M.L. appreciates the support by the Royal Society and by the Science and 
Engineering Research Council Grant no. H.55567. 
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