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Nonlinear three-dimensional gravity–capillary
solitary waves
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School of Mathematics, University of East Anglia, Norwich, NR4 7TJ, UK

(Received 4 October 2004 and in revised form 13 January 2005)

Steady three-dimensional fully nonlinear gravity–capillary solitary waves are
calculated numerically in infinite depth. These waves have decaying oscillations in
the direction of propagation and monotone decay perpendicular to the direction of
propagation. They travel at a velocity U smaller than the minimum velocity cmin of
linear gravity–capillary waves. It is shown that the structure of the solutions in three
dimensions is similar to that found by Vanden-Broeck & Dias (J. Fluid Mech. vol. 240,
1992, pp. 549–557) for the corresponding two-dimensional problem.

1. Introduction
Three-dimensional gravity–capillary solitary waves travelling at the surface of a

fluid of infinite depth with a velocity U <cmin are considered. Here cmin is the
minimum phase velocity of linear gravity–capillary waves defined as

cmin =

(
4gT

ρ

)1/4

, (1.1)

where T is the constant coefficient of surface tension, g is the acceleration due
to gravity and ρ is the fluid density. Vanden-Broeck & Dias (1992) and Dias
Menasce & Vanden-Broeck (1996) considered the corresponding two-dimensional
problem. They calculated numerically branches of solitary waves which have either a
central depression or a central elevation. Iooss & Kirrmann (1996) have proved the
existence of these two branches of solitary waves for cmin − U > 0 small. Analytical
approximations for solitary waves with either a central elevation or depression were
given by Dias & Iooss (1993). Solitary gravity–capillary waves for U � cmin were also
computed by Longuet-Higgins (1989).

In this paper we calculate fully nonlinear three-dimensional solitary waves by
a boundary integral equation method. The numerical procedure is similar to that
used by Forbes (1989) and by Părău & Vanden-Broeck (2002) for pure gravity
waves. We show that the three-dimensional problem is qualitatively similar to the
two-dimensional problem. In particular there are branches of fully localized three-
dimensional gravity–capillary solitary waves. These waves have decaying oscillations
in the direction of propagation and are monotonically decaying perpendicular to the
direction of propagation. The curves obtained by cutting the free surface with planes
parallel to the direction of propagation are qualitatively similar to the profiles for the
two-dimensional problem obtained by Vanden-Broeck & Dias (1992) and by Dias
et al. (1996).
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Three-dimensional gravity–capillary waves do not appear to have been calculated
before in the fully nonlinear regime. However Kim & Akylas (2005) derived asymptotic
formulae for gravity–capillary solitary waves for values of U close to cmin. Three-
dimensional solitary waves were also obtained for a weakly nonlinear model by
Milewski (2005). These works complement our numerical investigations. Furthermore
the theoretical existence of three-dimensional fully localized solitary waves, but on
finite depth, was predicted in some very recent papers by Groves (2004) and Groves &
Sun (2004). Fully localized solitary-wave solutions are also known to exist as solutions
of the KP-I equation, which is a model equation used in the case of finite depth and
strong surface tension. Zhang (1995) performed experiments on three-dimensional
gravity–capillary waves in a wind-wave tank and observed isolated steep surface dips
which resemble the gravity–capillary solitary waves computed in this paper.

The formulation of the problem is considered in § 2 and the numerical results are
presented in § 3.

2. Formulation
We consider a three dimensional solitary wave travelling at a constant velocity U

at the upper surface of a fluid of infinite depth. The fluid is incompressible and the
flow is irrotational. We choose a frame of reference moving with the wave and assume
that the flow is steady. We introduce Cartesian coordinates x, y, z with the z-axis
directed vertically upwards (opposite to the direction of gravity) and the x-axis in
the direction of the wave propagation. We denote by z = ζ (x, y) the equation of the
free surface. We introduce dimensionless variables by using U as the unit of velocity
and T/ρU 2 as the unit of length. The velocity potential function Φ(x, y, z) satisfies
Laplace’s equation

∇2Φ = 0, x, y ∈ R, z < ζ (x, y), (2.1)

in the flow domain.
The kinematic and dynamic boundary conditions can be written as

Φxζx + Φyζy = Φz, z = ζ (x, y), (2.2)

1

2

(
Φ2

x + Φ2
y + Φ2

z

)
+ αζ −

[
ζx√

1 + ζ 2
x + ζ 2

y

]
x

−
[

ζy√
1 + ζ 2

x + ζ 2
y

]
y

=
1

2
, z = ζ (x, y).

(2.3)

We have used the conditions

(Φx, Φy, Φz) → (1, 0, 0), ζ → 0 as (x2 + y2)1/2 → ∞ (2.4)

to fix the value of Bernoulli’s constant in (2.3). The parameter α in (2.3) is defined by

α =
gT

ρU 4
.

We solve the problem numerically by a boundary integral equation method. The
approach follows the work of Părău & Vanden-Broeck (2002) and Forbes (1989)
in which pure gravity flows are calculated. One different feature for the numerical
scheme is that the surface tension term introduces higher derivatives in (2.3). They
are approximated by centred-difference formulae. Another new feature is that no
radiation condition is needed. Instead the solutions are assumed to be symmetric
about the x- and y-axes. The discretization involves a regular grid with N points in
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Figure 1. Solitary gravity–capillary wave with central depression for α = 0.35. The surface
elevation is vertically exaggerated by a factor 20.
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Figure 2. Central depression solitary gravity–capillary wave for α = 0.35. Only half of the
solution is shown. The surface elevation is vertically exaggerated by a factor 20.

the x-direction and M in the y-direction. The uniform mesh size on the x- and y-axes
are denoted by �x and �y. The algebraic equations obtained after discretization are
solved by Newton’s method. A suitable initial guess to compute solitary waves is
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Figure 3. Central elevation solitary gravity–capillary wave for α = 0.35. Only half of the
solution is shown. The vertical exaggeration is by a factor 20.

obtained by adapting Vanden-Broeck & Dias’s (1992) method from two dimensions
to three dimensions. This consists of first obtaining solutions for the problem with an
extra pressure term in equation (2.3) and then taking the limit as the magnitude of
the pressure tends to zero.

3. Results
We computed solutions for various values of α by using the numerical scheme

described in the previous section. In all cases α is assumed to be greater than 1/4,
which corresponds to waves moving steadily with a constant velocity U smaller than
the minimum phase speed cmin defined by (1.1). In this case only a highly localized
disturbance of the water surface is predicted. In two dimensions, Vanden-Broeck
& Dias (1992) computed capillary-gravity waves in the same regime of parameters
(α > 1/4).

Most of the computations were performed with �x = �y = 0.8 and N = 40, M = 50.
The accuracy of the solutions has been tested by varying the number of grid points and
the intervals �x and �y between grid points. To indicate the numerical consistency
we have found that for α = 0.35 if we change �x and �y from 0.8 to 0.6 the
corresponding change in the wave surface elevation is less than 5% everywhere. The
smallness of �x and �y is limited by memory capacity in order to obtain a truncated
domain large enough to encompass nearly all of the wave disturbance.

We present typical free surface profiles in figures 1–3 and 5. As expected, there is
a localized disturbance of the water surface. For each α there is a central depression
wave (ζ (0, 0) < 0, figure 1 for the full solution and figure 2 for half of the solution) and
a central elevation wave (ζ (0, 0) > 0, figure 3). The waves have decaying oscillations
in the direction of propagation and monotonic decay in the direction perpendicular
to the direction of propagation. Figure 4 shows the x and y cross-sections and a
close-up in natural scaling for α = 0.35. As α decreases and approaches 1/4 more and
more oscillations appear in front of and behind the main disturbance.
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Figure 4. (a) The centreline in the Ox-direction (solid line) and Oy-direction (dashed line)
for a central depression wave and α = 0.35. The vertical exaggeration is by a factor 20. (b) A
close-up with natural scaling.

The amplitude of the free capillary-gravity waves decreases to zero as α decreases to
1/4. Their form (see figure 5) suggests that they approach a train of two-dimensional
(constant in the y-direction) periodic waves in the limit as α decreases to 1/4. When
α is increased, the solitary capillary-gravity wave elevation decreases quickly in every
direction and the surface has the form of a central depression or central elevation
three-dimensional fully localized solitary wave (see figures 1–3).

The branches of solitary waves are shown in figure 6. These branches bifurcate
from the uniform stream at α = 1/4. For the corresponding two-dimensional problem
Vanden-Broeck & Dias (1992) and Dias et al. (1996) found, as α increases, that the
central depression waves reach a limiting configuration with a trapped bubble at the
trough. Also the branch of the central elevation waves has a complicated structure
with multiple turning points (see figure 3.2 in Dias et al. 1996). Further work is needed
to reveal the related behaviour in the three-dimensional case.
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Figure 5. Solitary capillary-gravity waves for α = 0.266. Only half of the solution (y � 0) is
shown. The vertical exaggeration is by a factor 20.
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Figure 6. Values of the amplitude ζ (0, 0) versus α.
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