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Abstract. In this study, we introduce a new technique to model the
variation of microstructural parameters across specific brain regions. We
use a simple model of di↵usion in each voxel, but model the variation
of parameters across the region using penalised splines. We fit the whole
region model directly to the di↵usion-weighted signals. We test the tech-
nique on the mid-sagittal section of the corpus callosum (CC) using a
di↵usion MRI data set with distinct age groups. The method detects
di↵erences and separates the groups.

1 Introduction

Di↵usion MRI is a powerful, non-invasive imaging tool which measures the dis-
placement of water molecules in vivo. Because the paths of water molecules are
heavily influenced by the shape and structure of the environment in which they
move, di↵usion MRI is a sensitive probe for measuring tissue microstructure. It
has been used extensively to study white matter in the brain. From a clinical
perspective, this is an invaluable technique as we can use di↵usion MRI to in-
fer microstructural tissue changes due to pathology, potentially improving our
understanding and treatment of neurological diseases. However, to do this we
need a biomarker that is both sensitive and specific to underlying microstruc-
ture changes. The most commonly used white matter biomarkers are Fractional
Anisotropy (FA) and Mean Di↵usivity (MD), but they are di�cult to relate to
specific tissue features. More complex models exist with parameters that corre-
spond to specific microstructure changes [4–6] but as model complexity increases
accurate parameter estimation is more susceptible to noise.

In this study, we present a new technique which uses a spatial model within
an ROI or tract to describe the variation of tissue di↵usion properties. The
method fits a spatial model directly to the di↵usion-weighted signals, which
should reduce the e↵ect of noise on parameter estimation and better capture the
underlying variation of parameters. The method combines with di↵usion models
of varying complexity, allowing a variety of biomarkers to be studied. Because
the model is fit within a shaped-based normalisation framework, this technique
could be used in group comparison studies. The spatial model can be compared
between populations, providing localised information about tissue changes.
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The paper is organised as follows. In Section 2 we discuss di↵usion models and
review previously proposed group study techniques. In Section 3 we introduce
our Spatial Variation framework and in Section 4 we apply it to di↵usion MRI
data with distinct age groups. We discuss our results and conclude in Section 5.

2 Background

In this section we describe some of the most commonly used models of water
di↵usion in tissue and provide an overview of current methods used to perform
group studies. We also introduce the concept of continuous medial representation
which we make use of in our Spatial Variation model in Section 3.

2.1 Di↵usion Models

To date, most di↵usion MRI group studies use the di↵usion tensor (DT) [1] to
relate di↵usion-weighted signals to the di↵usion properties of tissue. The DT
model assumes that the displacement of water particles is Gaussian and fits a
tensor to the di↵usion-weighted signals that represents the amount of di↵usion
along di↵erent directions. Scalar indices such as FA and MD can be derived from
the elements of the DT [2] and used as biomarkers in group studies. However,
water di↵usion in the brain is not Gaussian (particularly in white matter where
water is restricted by myelinated axons) and FA and MD cannot be directly
related to the underlying tissue microstructure. Recently, Panagiotaki et al [3]
showed that simple two-compartment models of di↵usion, such as a ball and
stick [4] or tensor and stick, provide a better fit to di↵usion MR data than the
DT model. These models mimic the structure of white matter more closely than
the DT and the model parameters are potentially more physiologically relevant.

2.2 Group Studies

Group studies can be broadly divided into three categories - region of interest
(ROI), voxel or tract based. In ROI studies, the anatomical feature is segmented
in each subject and the parameter of interest (usually FA or MD) is averaged
over the ROI to provide one value for each subject. However, the e↵ect of aver-
aging could mask small but potentially significant di↵erences in spatial variation
between subjects. Unless the ROIs are small, it is not possible to localise the tis-
sue changes. Voxel-based approaches such as Voxel Based Morphometry (VBM)
[7] take a very di↵erent approach and compare all voxels in the brain between
subjects. To do this e↵ectively, the data must be very carefully registered as
misalignment and excessive data smoothing can both introduce false positives.
Tract-based spatial statistics (TBSS) [8] has been proposed to circumvent some
of these problems by projecting each data set onto a template skeleton and
performing statistics only on the skeleton. Whilst it does avoid the need for
smoothing and perfect alignment, reducing the data down to a skeleton could
reduce the statistical significance of the results. Finally, tract based methods use

166



fibre tractography algorithms to segment and study individual tracts of interest.
Tracts are analysed either by averaging parameter values along the whole tract
or, more recently, sampling parameter values along the arc length of the tract to
create a function [9, 10]. These functions can be analysed either by using point-
wise [9] or functional analysis [10]. Like TBSS, these techniques consider only
peak parameter values from the centre of the tract, again discarding potentially
useful information. These techniques work well for tract with tubular geometries;
however it is also possible to derive skeletons for tracts with sheet-like structure
using techniques such as tract-specific analysis (TSA) [11, 14].

2.3 Continuous medial representation

Continuous medial representation (cm-rep) is a shape analysis technique which
has been shown to be suitable for analysing white matter tracts using medial
axes for two-dimensional structures such as the mid-sagittal cross-section of the
CC [13] and medial surfaces for three-dimensional sheet-like tracts such as the
corticospinal tract [11, 14]. It allows for comparison between populations using
shape-based normalisation which aligns objects based on global shape and is
particularly appropriate for white matter tracts which have homogeneous inte-
riors.

3 Methods

In this Section we introduce the Spatial Variation framework and describe a
simple implementation. We discuss some statistical techniques which can be
used to assess di↵erences in spatial models between groups.

3.1 Spatial Variation framework

The Spatial Variation framework estimates microstructure parameters across
a whole tract using prior spatial information to constrain the fitting. Rather
than fitting in each voxel individually, it uses a forward model that predicts the
di↵usion MR signals within the whole tract using a set of spatial functions, the
spatial model, that control the regional variation of microstructure parameters
across the tract. The key components of the method are the spatial model, which
predicts the di↵usion model parameters in every voxel, and the local di↵usion
model, which calculates the di↵usion MR signals in every voxel from the di↵usion
model parameters. The optimal spatial model, which should be fully described by
a small set of parameters, is found by minimising an objective function based on
di↵erences between predicted and measured di↵usion MR signals. This process
is illustrated in Figure 1, which gives an overview of the pipeline.

The framework itself is independent of the choice of spatial model, di↵usion
model and objective function. In the next sections, we describe one possible
implementation using simple spatial and di↵usion models, and show how the cm-
rep of tracts can be used to bridge the gap between global and local parameters.
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Fig. 1: The shape model comprises a set of curves describing the variation of di↵usion
model parameters across the tract medial axis. These curves predict local di↵usion
parameters in every voxel of the tract. The di↵usion model predicts the MR signals,
given the predicted di↵usion parameters. The shape model is controlled by a small set of
parameters, and its goodness of fit can be calculated using an objective function based
on predicted and measured MR signals. The spatial model is optimised by iteratively
minimising the objective function.

Spatial Model We choose to model the variation of the di↵usion model param-
eters using B -splines, a natural choice of basis functions since they e↵ectively
capture local features of non-periodic data. Specifically, we follow the penalised
B -spline (P -spline) approach of Eilers and Marx [16] which uses a large number
N of equally spaced knots to specify the mth order basis functions B. The basis
functions are penalised during optimisation to reduce excessive local variation.
Each di↵usion model parameter p=(p1, p2, . . . pk) is written as a function of
position along the medial axis s using these basis functions as

pk(s,a) =
N�mX

n=1

ak,nBn(s), (1)

where a are the relative weights of the basis functions. We optimise a so the set of
functions p best reflect the true variation of the di↵usion parameters across the
tract. This requires us to compare the observed MR signals, measured in voxels
with discrete spatial positions, with MR signals predicted from our continuous
model. The cm-rep provides a convenient way to convert our predictions from
continuous to discrete as it outputs a list of points lying on the medial axis. We
use a simple nearest neighbour approach to assign a distance along the medial
axis to all voxels of interest. Once we know the positions of all voxels along the
medial axis, we can predict the di↵usion parameters, and thus the MR signals,
at these locations only.

Di↵usion Model A modified ball and stick model is used to describe wa-
ter di↵usion in tissue. The standard ball and stick model [4] is a simple two-
compartment model that models the total di↵usion MR signal as a mixture of
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signals due to the restricted intra-axonal water (the stick) with volume fraction f
and orientation e defined by angles ✓ and � and the hindered extra-axonal water
(the ball). Both compartments have di↵usivity d. Our modification involves a
third compartment to account for cerebrospinal fluid (CSF) contamination with
volume fraction g and di↵usivity dCSF .

The spatial model outlined in Section 3.1 assumes that the white matter
microstructure parameters p=(f, d, ✓, �), may be written as smoothly varying
functions parameterised by coe�cients a=(af , ad, a✓, a�) as shown in Equation
1; however we cannot assume the same thing of the partial volume parameters,
g and dCSF . Prior to fitting the spatial model, we estimate g in all voxels of
interest from the b=0 images. We write the total signal S in the b=0 image as
a mixture of white matter signal SWM and CSF signal SCSF

S = gSCSF + (1� g)SWM . (2)

We estimate average values for SCSF and SWM from voxels that are manually
segmented as ‘pure’ CSF or white matter voxels in the b=0 image and solve for
g. We set dCSF to 3.0⇥10�9 m2s�1, a typical value for CSF.

The model for the i th di↵usion MR signal in the j th voxel may be written as

Ãij(pj(a); gj , b, Ĝi) = gje�bdCSF +(1�gj)
⇣
fje�bdj(e(✓j ,�j)·Ĝi)

2)+(1�fj)e�bdj)
⌘

(3)
where b is the di↵usion-weighting factor and Ĝi is the gradient direction.

Optimisation We estimate the spatial model coe�cients a that best describe
the variation of the model parameters p across the whole region. We do this by
minimising the sum of squared di↵erences between Ãij predicted from Equation
3 and the observed signals Aij in all J voxels, subject to regularisation. Our
objective function is

arg min
⇣ IX

i=1

JX

j=1

(Aij � Ãij(pj(a); gj , b,Gi))2 +
X

k2(f,d,✓,�)

�k

N�mX

n=1

(�2ak,n)2
⌘
.

(4)
For the regularisation term, we use a second order di↵erence penalty on ak,
which enforces the smoothness of our solutions [16]. We minimise the objective
function iteratively using a Levenberg-Marquardt algorithm.

3.2 Statistical analysis

After fitting the spatial model for each subject, we can test for group di↵erences
using functional data analysis [15]. The mean curve for each parameter p̄k(s) for
each group can be written as

p̄k(s) =
QX

q=1

pk,q(s) (5)
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where pk,i(s) are the individual curves for the Q subjects. We test for group dif-
fences in these mean parameter curves at l points sampled along the medial axis
using Student’s t test. To correct for multiple comparisons we use a Westfall-
Young randomisation method proposed by Cox and Lee [17], specifically de-
signed for functional data. Unlike traditional multiple comparison corrections,
which lose significance as l increases, p-values obtained using Westfall-Young
randomisation converge to the continuum limit as l ! 1.

4 Experiments and Results

We demonstrate this method on the mid-sagittal section of the CC. We choose
this region as the relatively constant fibre orientation reduces the number of
parameters to estimate. Histology studies [18] have also shown that underlying
microstructural indices such as axon radius and density vary smoothly over the
anterior-posterior direction of the CC, which we hypothesise will manifest as
smooth variation in parameters such as f and d.

4.1 Data acquisition and pre-processing

In this study, our di↵usion MRI data sets are drawn from the large IXI database
(freely available at: www.brain-development.org). We use data from 30 subjects
who divide into two distinct groups: 20-29 years old (9 female, 6 male) and 60-69
years old (9 female, 6 male). All data were acquired on a 3T scanner using 15
gradient directions (b=1000 s mm�2) and 1 b=0 s mm�2 measurement.

The key pre-processing steps required are to identify the mid-sagittal slice of
the CC and to extract the medial axis. First the brain is extracted using FSL’s
BET tool [19] and FA maps are calculated. From these FA maps we identify
the mid-sagittal slice [20]. Thresholding (FA >0.35) and connected component
analysis isolate the CC on this slice. ITK-SNAP [21] is used to make minor
manual adjustments to the segmentation, for example in cases where the fornix is
misclassified as part of the CC. The medial axis of the CC can then be extracted
using cm-rep [13].

4.2 Spline fitting

Due to the coherent orientation of fibres within the CC, we fit constants for
✓ and � across the whole ROI. The splines modelling the variation of f and
d across the CC are fit by dividing the normalized medial axis length into 20
intervals described by 21 cubic B -splines. In total, we fit 44 parameters for each
data set. Using Generalised Cross Validation (GCV) across all data sets, we set
the regularisation parameters for f and d to be �d=�f=10.
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(a) Volume fraction curves (b) Di↵usivity curves

Fig. 2: The fitted curves for (a) volume fraction and (b) di↵usivity are shown for all
subjects. Volume fraction is consistent amongst all subjects, but we see bigger group
di↵erences in di↵usivity.

4.3 Results

Figure 2 shows the volume fraction and di↵usivity curves for all subjects. The
volume fraction curves have consistent shapes for all subjects, whereas the dif-
fusivity curves show greater di↵erences between the groups.

Figure 3 shows the mean volume fraction and di↵usivity curves calculated
using Equation 5. Again, this highlights the similarities in volume fraction be-
tween the groups and the increases in di↵usivity in the anterior genu and anterior
splenium in the older group.

Using the statistical techniques discussed in Section 3.2, we calculate p-values
for the mean group di↵erences in both volume fraction and di↵usivity at 100
positions along the medial axis length (Figure 4). After correcting for multiple
comparisons, we see that at the tip of the genu (s=0–0.4), there is significantly
higher di↵usivity in the older group than the younger, as well as a trend towards
decreased volume fraction (s=0.02). Additionally, there is a trend towards higher
di↵usivity in the older group in the anterior splenium (s=0.71–0.76), although
this is not accompanied by a corresponding change in volume fraction.

5 Discussion

We have presented a new technique that models the variation of microstruc-
ture parameters across white matter tracts. We have shown that it can identify
and localise group di↵erences due to age in the mid-sagittal section of the CC.
Specifically, we have found a significant increase in di↵usivity in the anterior
genu with age combined with a trend towards reduced volume fraction. We also
observe a trend towards increased di↵usivity with age in the anterior splenium.
Although it is commonly known that ventricle size increases with age [22], we
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(a) mean volume fraction curve (b) mean di↵usivity curve

Fig. 3: The mean curves for (a) volume fraction and (b) di↵usivity are shown for all
subjects.

(a) (b)

Fig. 4: Plots of p-values as a function the medial axis position showing group di↵erences
in (a) volume fraction and (b) di↵usivity. There is a significant increase in di↵usivity
and trend towards decreased volume fraction in the anterior genu in the older group.
We also see a trend towards increased di↵usivity with age in the anterior splenium.
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think it is unlikely that the change in di↵usivity in the genu is due to this e↵ect
as our di↵usion model explicitly accounts for partial volumes. Previous studies
[23] have shown significant changes due to age in the genu, which supports our
results. Even though we have been able to localise tissue di↵erences due to age,
we cannot specify what causes these changes, e.g. larger axon diameters or lower
axon densities, due to the simplicity of our di↵usion model.

Future work will use this method to measure small but significant changes
in tissue microstructure due to pathology that other standard techniques might
miss. This is because data is pooled across the whole ROI or tract to reduce the
e↵ect of noise on parameter estimation. However several improvements need to
be made. First, we will extend the method to three dimensions so that we can
model microstructure variation across whole tracts rather than single slices. We
will also exploit the analytical form of the spline curves further to see if the spline
derivatives can be used to identify microstructural group di↵erences. Finally, we
will replace our simple model of di↵usion with more complex models in order
to investigate more physiologically relevant microstructure parameters such as
axon radius and density. When using these complex models with parameters
that are di�cult to estimate, the real power of this method to pool data and
reduce the e↵ect of noise will be apparent.
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