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Intermittency of two-dimensional decaying electron magnetohydrodynamic turbulence
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The intermittent nature of energy dissipation in two-dimensional electron-magnetohydrodynamic turbulence
is investigated by means of high resolution direct numerical simulations. It is found that, when the main
contribution to the energy is given by the magnetic field, dissipation is mostly concentrated on one-dimensional
filaments. As a consequence, the multifractal spectrum has a simple form which can be approximately de-
scribed in terms of a bifractal mod¢51063-651X99)01803-9

PACS numbep): 47.27.Eq

The statistical theory of three-dimensional fully devel- o p—d2AP) +[ @, p—d2Ay)=—pn,(—A)"¢, (D)
oped hydrodynamic turbulence relies on one outstanding is-
sue: the nonlinear transfer of energy from large to small a(o—d2A@)+[ @, —d2A @] —[ i, y—d2A /]
scaleq1,2]. The energy flux is constant over the intermedi- : ¢ ¢ ¢
ate scales of the inertial range, but does not need to be =—um,(—A)", 2

homogeneous in space. Moreover, experiments in fluid tur-

bulence indicate that the self-similarity of the energy dissi-Where the Jacobian operator is defined as ug@ab]
pation distribution is broken by the presence of small-scalé= x@dyb—dyadxb. The equations have been adimensional-
structures in the flow. Recent direct numerical simulationdZ€d with respect to the characteristic macroscopic length
revealed the presence of filaments and other dissipativii'® typical magnetic field®,, and the characteristic time

— 2 _ 2 2 2\11/2 ; :
structures candidate as physical sources of intermittgglcy — MeC/(€Bode), andde=[m.c/(47€°nL")]™ is the ratio
It is therefore interesting to look for two-dimensional tur- ©f the inertial electron length scale to the integral sdale

bulent systems sharing these same features. Actually man € density of .the numbe_r of electror_lsis_ assumed to b?
niform according to the incompressibility of the velocity
i

of them exhibit a reversed energy flux, from the small scales. . LT
ot eld V.-v=0. The generalized dissipation operators corre-

to the larger ones, as is the case of two-dimensid2B) . - ! .
Navier-Stokes turbulencé4—7], Hasegawa-Mima turbul- s_pond to resistivity fon=1 and to electron viscosity for
ence [8], or its geophysical counterpart equivalent baro-
tropic turbulence[9]. In this framework 2D electron-
magnetohydrodynami(EMHD) turbulence deserves special
attention, beyond its modeling applications, since it has been

shown to display, for the freely decaying case, a forward E=J d?x(d?v?+B?). 3
energy cascade la Richardson-Kolmogoro{10].

EMHD equations are a fluid dynamical model for a cold g finjte dissipation, EMHD exhibits a direct energy cas-
electron plasma, moving in a uniform charge-neutralizingcade from large to small scale, which suggests an analogy
background of stationary ions. In recent years this model hagjith 3D hydrodynamic turbulence. We thus expect, for a
received considerable interest for its relation to inertiallysyfficiently small dissipation coefficient, a constant energy
confined plasma and to laser-plasma interactions, but thgux in an intermediate range of wave numbieertial range
comparison with experimental results is limited by the factwhere the dissipative effects can be neglected.
that plasma which evolve according to EMHD equations are This suggests investigating in more detail the mechanism
usually short-lived. of energy transfer and energy dissipation to see whether

In the 2D case, the velocity and magnetic field ai@-  there is any intermittency analogously to what observed in
dependent, and can be expressed in terms of the stream fur@D hydrodynamic turbulence. Recently a relation analogous
tion ¢ and the magnetic flux functiony according tov to the “2” Kolmogorov relation has been derived and tested
=(—dyp,dxp,—A¢) and B=(—d,4,dy,¢). The EMHD  for 2D-EMHD turbulence[11]. Let us recall that in 3D
equation are then written for the scalar fieldsnd ¢ as Navier-Stokes turbulence, the Kolmogorov law states that

In the ideal limit u,=0, Egs.(1) and (2) conserve the
total energy(kinetic plus magnetic
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the average energy flug=(e) is related to velocity differ- p ¥

ence fluctuationsdv(/) at a scale / by (6v3(/)) 10 N

=—2€/. This relation is the starting point for the analysis R

of the scaling properties of the generic structure function 10% RO

(6vP(/)). The self-similarity assumption impligsSv (/"))

~/P3, and deviations from this scaling are associated, via I 10°

the refined similarity hypothesis, to intermittency in the en-

ergy dissipatiorf3]. 107 |
In EMHD turbulence, the situation is complicated by the

fact the energy flux is written as a combination of correla- 100 |

tions involving fluctuation at scalé of both the velocity and : :

the magnetic fieldsee Ref[11]). Thus it is not obvious in 1 10 100 1000

this case how to derive a prediction for the scaling of a single K

structure function, because there may be strong cancellation F|G. 1. Energy spectrum at 0.1 for the decaying simulation at

effects. resolution N=1024. The line represent the theoretical spectrum
The situation becomes simpler if one considers the limitsg (k) ~k= 7.

/<d¢~1, where the energy flux is locally dominated by the

kinetic contribution, ord.</'<1, dominated by the mag- (e(/))="€ for any /, while we expect a scale dependence

netic energy. Simple dimensional considerations suggest th@r p=1 in Eq.(6) if the dissipation is not uniformly distrib-

in the kinetic casesv(/)=/"" and thus we expect a yted in space. The statistical properties of the dissipation

Kolmogorov-like spectrum fluctuations are summarized by the set of scaling exponents

defined b
E( k) — CE?/Ska/S. (4) T( p) y

o _ L (e(/)Py~/"P), 7)
In the magnetic limit, the leading contribution to the flux
involves structure functions containing two magnetic fluc-in the multifractal description of intermittency, the scaling

tuations and one velocity fluctuation. Recalling that, on aexponents(p) are given in terms of a Legendre transforma-
dimensional basi$B(/)~ dv(/)/, in this case we expect tion

E(k)=C"e* " (5 7(p)=min[ga+2—F(a)], ®)

Predictions(4) and (5) are very well verified in direct nu-

merical simulation$10,11]. where « is the scaling exponent of local energy dissipation
With this preliminary results in mind, it is natural to ask Which is realized on a set of dimensiéi{a)=<2.

whether also in 2D-EMHD turbulence the energy transfer to  In Fig. 2, we plot the spectrum(p) obtained from the fit

the dissipative scales is intermittent as it is supposed to be iaf (e(~)P) in our simulations. The most remarkable feature

3D hydrodynamic turbulence. To address this point we havés the linear dependence @rfor almost allp:

performed a detailed numerical investigation on high resolu-

tion simulations of Eqs(1) and(2) in the magnetic regime. 7(p)=0.2p for p<O, 9
We use a pseudospectral numerical code on a periodic

27X 27 box with 1024 collocation points and a standard 7(p)=—-12p for p>2. (10

2 dealiasing rule. The physical parameters dge=0.01, v o . o o
=3, andus=10"° Following Ref.[10], the initial condi- Our findings have a simple physical interpretation if we

tions are given byw(k) :exp[—k2/2k§+ i a(k)] and ¢(k) look at the Snapshot of the energy dissipation fdbd, like
=exd —k¥2k3+iB(k)], where a(k) and B(k) are random

phases an#l;=5. Since the initial energy is concentrated on (1) I
large scales, we first observe a direct cascade toward small %
scales. The energy dissipation rate increases up to a maxi- T e
mum value at timeT,=0.1, at which we observe the spec- )
trum (5) well developed on the inertial wave numbeks 8y
<d. ! (see Fig. L T 4r

As is customary, the intermittency of the energy cascade ST
in the inertial range is studied by using the moments of the 6 r
average energy dissipati¢h2] 7t

.8 F
1 P 9 : : : : ; : ;
(e(/)p)=<{mfs(/)dzx €(x) > (6) 8 6 -4 2 0 2 4 6 8

wheree(x) is the local energy dissipation al{/") is a box FIG. 2. Energy dissipation scaling exponentp) obtained by a

of size/ and volumeV(/) centered orx. For our simula-  log-log fit of thee(l). The continuous line represents the prediction
tions, (- --) stands for the spatial average. Of course, we havef the bifractal model as discussed in the text.



3726 BRIEF REPORTS PRE 59

p
/+eb~ NP+ €. (11

<s</’>p>~(;

For /—0 the leading contribution in Eq11) is selected by
the value ofp, so that the scaling exponents predicted by the
bifractal model are

7(p)=0 for p=<1, (12
7(p)=1—p for p=1. (13

Figure 2 shows that predictiond2) and (13) are only
qualitatively correct. The deviation from the numerical data
cannot be explained on the basis of statistical errors, i.e., the
numerical uncertainty of the scaling exponents is very small.
It is relatively simple to correct the prediction fe{p) by
playing with the parameters of the bifractal model, but the

e / e physical interpretation becomes less clear. For posgitiee
0 ' T 2 fact that 7(p)~—1.2p instead of 7(p)~—p can be ex-
X plained by assuming that the set on which the dissipation is
most active has a fractal dimension slightly less than 1.

It is interesting to compare the present situation with the
other renowned turbulent model displaying bifractality, i.e.,
the Burgers equation. In that case bifractal scaling is an exact
Bonsequence of the infinite number of conserved quantities
3], while here it is only approximate and does not have such

simple explanation. Despite these differences, in both cases
bifractality reveals a strong intermittent statistics.

FIG. 3. Instantaneous energy dissipation fielck) at t=0.1.
Gray indicates dissipation active regions.

long filaments which cross all the domain, while there ar
large regions—corresponding to coherent structures in th
magnetic field—in which the dissipation is almost zero. This

suggests that a simplévi)fractal model should be able o, onciusion, we have computed the multifractal scaling

capture the main qualitative features of intermittency. exponent of the energy dissipation for 2D-EMHD turbulence

Let us .di\(ide.the physical domain, which concerns thein the limit of negligible electron inertia. We have found
energy dissipation, into two sets: a background,

two-: ; o

. . ) o2 . fairly clear scaling for the local average of the energy dissi-
dimensional, region of alm.ost no dISSIpat.IOI’] on whgﬂx) pation, (e(/) p>~/‘f(p), with nontrivial scaling exponents
ieo’ and_lislhn active one—dlmendslonal reglonGOr! Wr_“{ﬂxl) 7(p) revealing a strong intermittency. We have shown that
=€1> €. The a\//erage.energy ISSIpa?tI[Eq.( )]is SIMPY the main intermittency features can be captured by a bifractal
evaluated ase(/)~ ¢, if the box B(/) does not contain model suggested by physical arguments.
dissipation filaments, while we havg/)~¢€,// if B(/)
includes a dissipative filament. A6— 0, the probabilities of This work was partially supported by the CNR Special
finding the two sets scale respectively p&”)~/° and  Project “Fully Developed Turbulence in Plasmas,” and by
p(/)~/; thus we can write MURST (Program No. 9702265437
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