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Intermittency of two-dimensional decaying electron magnetohydrodynamic turbulence
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The intermittent nature of energy dissipation in two-dimensional electron-magnetohydrodynamic turbulence
is investigated by means of high resolution direct numerical simulations. It is found that, when the main
contribution to the energy is given by the magnetic field, dissipation is mostly concentrated on one-dimensional
filaments. As a consequence, the multifractal spectrum has a simple form which can be approximately de-
scribed in terms of a bifractal model.@S1063-651X~99!01803-6#

PACS number~s!: 47.27.Eq
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The statistical theory of three-dimensional fully deve
oped hydrodynamic turbulence relies on one outstanding
sue: the nonlinear transfer of energy from large to sm
scales@1,2#. The energy flux is constant over the interme
ate scales of the inertial range, but does not need to
homogeneous in space. Moreover, experiments in fluid
bulence indicate that the self-similarity of the energy dis
pation distribution is broken by the presence of small-sc
structures in the flow. Recent direct numerical simulatio
revealed the presence of filaments and other dissipa
structures candidate as physical sources of intermittency@3#.

It is therefore interesting to look for two-dimensional tu
bulent systems sharing these same features. Actually m
of them exhibit a reversed energy flux, from the small sca
to the larger ones, as is the case of two-dimensional~2D!
Navier-Stokes turbulence@4–7#, Hasegawa-Mima turbul-
ence @8#, or its geophysical counterpart equivalent ba
tropic turbulence @9#. In this framework 2D electron-
magnetohydrodynamic~EMHD! turbulence deserves speci
attention, beyond its modeling applications, since it has b
shown to display, for the freely decaying case, a forw
energy cascade a´ la Richardson-Kolmogorov@10#.

EMHD equations are a fluid dynamical model for a co
electron plasma, moving in a uniform charge-neutraliz
background of stationary ions. In recent years this model
received considerable interest for its relation to inertia
confined plasma and to laser-plasma interactions, but
comparison with experimental results is limited by the fa
that plasma which evolve according to EMHD equations
usually short-lived.

In the 2D case, the velocity and magnetic field arez in-
dependent, and can be expressed in terms of the stream
tion w and the magnetic flux functionc according tov
5(2]yw,]xw,2Dc) and B5(2]yc,]xc,w). The EMHD
equation are then written for the scalar fieldsw andc as
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] t~c2de
2Dc!1@w,c2de

2Dc#52mn~2D!nc, ~1!

] t~w2de
2Dw!1@w,w2de

2Dw#2@c,c2de
2Dc#

52mn~2D!nw, ~2!

where the Jacobian operator is defined as usual@a,b#
5]xa]yb2]ya]xb. The equations have been adimension
ized with respect to the characteristic macroscopic lengthL,
the typical magnetic fieldB0 , and the characteristic timet
5mec/(eB0de

2), and de5@mec
2/(4pe2nL2)#1/2 is the ratio

of the inertial electron length scale to the integral scaleL.
The density of the number of electronsn is assumed to be
uniform according to the incompressibility of the veloci
field “•v50. The generalized dissipation operators cor
spond to resistivity forn51 and to electron viscosity forn
52.

In the ideal limit mn50, Eqs. ~1! and ~2! conserve the
total energy~kinetic plus magnetic!

E5E d2x~de
2v21B 2!. ~3!

For finite dissipation, EMHD exhibits a direct energy ca
cade from large to small scale, which suggests an ana
with 3D hydrodynamic turbulence. We thus expect, for
sufficiently small dissipation coefficient, a constant ener
flux in an intermediate range of wave number~inertial range!
where the dissipative effects can be neglected.

This suggests investigating in more detail the mechan
of energy transfer and energy dissipation to see whe
there is any intermittency analogously to what observed
3D hydrodynamic turbulence. Recently a relation analog
to the ‘‘ 4

5’’ Kolmogorov relation has been derived and test
for 2D-EMHD turbulence@11#. Let us recall that in 3D
Navier-Stokes turbulence, the Kolmogorov law states t
3724 ©1999 The American Physical Society
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the average energy fluxē5^e& is related to velocity differ-
ence fluctuations]v(l ) at a scale l by ^dv3(l )&
52 4

5 ēl . This relation is the starting point for the analys
of the scaling properties of the generic structure funct
^dvp(l )&. The self-similarity assumption implieŝdvp(l )&
;l p/3, and deviations from this scaling are associated,
the refined similarity hypothesis, to intermittency in the e
ergy dissipation@3#.

In EMHD turbulence, the situation is complicated by t
fact the energy flux is written as a combination of corre
tions involving fluctuation at scalel of both the velocity and
the magnetic field~see Ref.@11#!. Thus it is not obvious in
this case how to derive a prediction for the scaling of a sin
structure function, because there may be strong cancella
effects.

The situation becomes simpler if one considers the lim
l !de;1, where the energy flux is locally dominated by t
kinetic contribution, orde!l !1, dominated by the mag
netic energy. Simple dimensional considerations suggest
in the kinetic casedv(l ).l 1/3 and thus we expect a
Kolmogorov-like spectrum

E~k!5Cē2/3k25/3. ~4!

In the magnetic limit, the leading contribution to the flu
involves structure functions containing two magnetic flu
tuations and one velocity fluctuation. Recalling that, on
dimensional basisdB(l );dv(l )l , in this case we expec

E~k!5C8ē2/3k27/3. ~5!

Predictions~4! and ~5! are very well verified in direct nu-
merical simulations@10,11#.

With this preliminary results in mind, it is natural to as
whether also in 2D-EMHD turbulence the energy transfer
the dissipative scales is intermittent as it is supposed to b
3D hydrodynamic turbulence. To address this point we h
performed a detailed numerical investigation on high reso
tion simulations of Eqs.~1! and ~2! in the magnetic regime
We use a pseudospectral numerical code on a peri
2p32p box with 10242 collocation points and a standar
2
3 dealiasing rule. The physical parameters arede50.01, n
53, andm3510210. Following Ref.@10#, the initial condi-
tions are given byc(k)5exp@2k2 /2k0

21 ia(k)# and w(k)
5exp@2k2/2k0

21 ib(k)#, where a~k! and b~k! are random
phases andk055. Since the initial energy is concentrated
large scales, we first observe a direct cascade toward s
scales. The energy dissipation rate increases up to a m
mum value at timeTm.0.1, at which we observe the spe
trum ~5! well developed on the inertial wave numbersk
<de

21 ~see Fig. 1!.
As is customary, the intermittency of the energy casc

in the inertial range is studied by using the moments of
average energy dissipation@12#

^e~ l !p&5K F 1

V~ l !
E

B~ l !
d2x e~x!G pL , ~6!

wheree(x) is the local energy dissipation andB(l ) is a box
of size l and volumeV(l ) centered onx. For our simula-
tions,^¯& stands for the spatial average. Of course, we h
n
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^e(l )&5 ē for any l , while we expect a scale dependen
for pÞ1 in Eq.~6! if the dissipation is not uniformly distrib-
uted in space. The statistical properties of the dissipa
fluctuations are summarized by the set of scaling expon
t(p) defined by

^e~ l !p&;l t~p!. ~7!

In the multifractal description of intermittency, the scalin
exponentst(p) are given in terms of a Legendre transform
tion

t~p!5min
a

@qa122F~a!#, ~8!

wherea is the scaling exponent of local energy dissipati
which is realized on a set of dimensionF(a)<2.

In Fig. 2, we plot the spectrumt(p) obtained from the fit
of ^e(l )p& in our simulations. The most remarkable featu
is the linear dependence onp for almost allp:

t~p!.0.2p for p,0, ~9!

t~p!.21.2p for p.2. ~10!

Our findings have a simple physical interpretation if w
look at the snapshot of the energy dissipation fielde~x!, like

FIG. 1. Energy spectrum att50.1 for the decaying simulation a
resolution N51024. The line represent the theoretical spectr
E(k);k27/3.

FIG. 2. Energy dissipation scaling exponentst(p) obtained by a
log-log fit of thee( l ). The continuous line represents the predicti
of the bifractal model as discussed in the text.
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that shown in Fig. 3. The most dissipative structures are
long filaments which cross all the domain, while there a
large regions—corresponding to coherent structures in
magnetic field—in which the dissipation is almost zero. T
suggests that a simple~bi!fractal model should be able t
capture the main qualitative features of intermittency.

Let us divide the physical domain, which concerns t
energy dissipation, into two sets: a background, tw
dimensional, region of almost no dissipation on whiche(x)
5e0 ; and an active one-dimensional region on whiche(x)
5e1@e0 . The average energy dissipation@Eq. ~6!# is simply
evaluated ase(l );e0 if the box B(l ) does not contain
dissipation filaments, while we havee(l );e1 /l if B(l )
includes a dissipative filament. Asl →0, the probabilities of
finding the two sets scale respectively asp(l );l 0 and
p(l );l ; thus we can write

FIG. 3. Instantaneous energy dissipation fielde(x) at t50.1.
Gray indicates dissipation active regions.
ce
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^e~ l !p&;S e1

l
D p

l 1e0
p;e1

pl 12p1e0
p . ~11!

For l →0 the leading contribution in Eq.~11! is selected by
the value ofp, so that the scaling exponents predicted by
bifractal model are

t~p!50 for p<1, ~12!

t~p!512p for p>1. ~13!

Figure 2 shows that predictions~12! and ~13! are only
qualitatively correct. The deviation from the numerical da
cannot be explained on the basis of statistical errors, i.e.,
numerical uncertainty of the scaling exponents is very sm
It is relatively simple to correct the prediction fort(p) by
playing with the parameters of the bifractal model, but t
physical interpretation becomes less clear. For positivep the
fact that t(p);21.2p instead of t(p);2p can be ex-
plained by assuming that the set on which the dissipatio
most active has a fractal dimension slightly less than 1.

It is interesting to compare the present situation with
other renowned turbulent model displaying bifractality, i.
the Burgers equation. In that case bifractal scaling is an e
consequence of the infinite number of conserved quant
@3#, while here it is only approximate and does not have su
a simple explanation. Despite these differences, in both c
bifractality reveals a strong intermittent statistics.

In conclusion, we have computed the multifractal scali
exponent of the energy dissipation for 2D-EMHD turbulen
in the limit of negligible electron inertia. We have foun
fairly clear scaling for the local average of the energy dis
pation, ^e(l )p&;l t(p), with nontrivial scaling exponents
t(p) revealing a strong intermittency. We have shown th
the main intermittency features can be captured by a bifra
model suggested by physical arguments.
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