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Abstract

Uncertainty in various forms plagues our interactions with the environment.
In a Bayesian statistical framework, optimal inference and learning, based on im-
perfect observation in changing contexts, require the representation and manip-
ulation of different forms of uncertainty. We propose that the neuromodulatory
systems such as acetylcholine (ACh) and norepinephrine (NE) play a major role
in the brain’s implementation of these uncertainty computations. ACh and NE
have long been supposed to be critically involved in cognitive processes such as
attention and learning. However, there has been little consensus on their precise
computational functions. We propose that acetylcholine reports ezpected uncer-
tainty; norepinephrine signals unezpected uncertainty. The interaction between
these formally distinct sorts of uncertainty is suggested as playing a important
role in mediating the interaction between top-down and bottom-up processing in
inference and learning.

The generative models we use to describe probabilistic relationships in the en-
vironment belong to the class of noisy dynamical systems related to the Hidden
Markov Model (HMM). At any given time point, the animal has uncertainty about
the hidden state of the world that arises from two sources: the noisy relationship
between the true state and imperfect sensory observations, and the inherent non-
stationarity of these hidden states. The former gives rise to expected uncertainty,
the latter to unexpected uncertainty.

These theoretical concepts are illustrated by applications to several attentional
tasks. When ACh and NE are identified with the proposed uncertainty measures
in these specific tasks, they exhibit properties that are consistent with a diverse
body of pharmacological, behavioral, electrophysiological, and neurological find-
ings. In addition, numerical and analytical analyses for these models give rise
to novel experimental predictions. Preliminary data from several experimental

studies engendered by this set of theoretical work will also be discussed.
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Chapter 1
Introduction

Every reduction of some phenomenon to underlying substances and
forces indicates that something unchangeable and final has been found.
We are never justified, of course, in making an unconditional assertion
of such a reduction. Such a claim is not permissible because of the
incompleteness of our knowledge and because of the nature of the in-

ductive inferences upon which our perception of reality depends.
— Hermann Ludwig Ferdinand von Helmholtz [98]

Our sensory systems are constantly bombarded by a rich steam of sensory in-
puts. Selectively filtering these inputs and maintaining useful interpretations for
them are important computational tasks faced by the brain. So well-adapted are
our sensory systems for these purposes, that they typically execute these compu-
tations seamlessly and without our conscious awareness. Hermann von Helmholtz
was among the first to recognize that sensory processing involves an active process
of “unconscious inference” that combines remembered ideas arising from past sen-
sory experiences with fresh sense impressions, in order to arrive at “conclusions”
about the sensory world [98]. Many of the Gestalt laws of psychophysics formu-
lated in the early twentieth century can also be interpreted as capturing instances
of prior knowledge and expectations influencing visual perception [71]. Fig 1.1
shows some examples of visual illusions constructed by modern visual scientists.
They demonstrate that our prior knowledge and biases play a strong role in the
interpretation of a visual scene.

An implicit but critical feature of the computations underlying sensory process-
ing, and indeed all computations in the brain, is the omni-presence of uncertainty.
Uncertainty arises from numerous sources: inherent stochasticity or nonstationar-
ity in causal/correlational relationships in the environment, incomplete knowledge

about the state of the world (eg due to limitations of our sensory receptors, or
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Figure 1.1: Visual perception and the influence of prior knowledge. (A) The disks
are ambiguous: sometimes the top row appear to be convex spheres and the bottom
row cavities, sometimes the converse percept dominates. These alternating percep-
tions reflecting an implicit assumption of the lighting source being on the right or
left with equal probability. (B) Disks that are brighter on top are overwhelmingly
perceived as convex spheres, while disks that are darker on top are perceived as cav-
ities. This biased percept presumably arises from the higher prior probability of the
light source being above rather than below in the natural environment. (A) and (B)
adapted from [158]. (C) Square A appears much darker than square B, even though
they are exactly the same shade of gray. This percept reflects prior knowledge about
the effect of a shadow on the color of an obscured surface. Adapted from [1].

the fact that we can only be in one place at any given time), neuronal processing
noise, etc. Such uncertainty affects not only our perception of our sensory environ-
ment, but also our predictions about the future, including the consequences of our
actions. For example, uncertainty due to sensory noise makes internal knowledge
invaluable for arriving at accurate interpretations of the external environment.
But uncertainty also complicates the very task of constructing and maintaining
an appropriate internal representation of the world. An important problem in the
study of sensory systems is the formal description of these computational tasks
and the role of uncertainty. If we understood the different computational compo-
nents of these problems, then perhaps we can also understand how the brain goes
about implementing them. One set of useful mathematical tools comes from what
is known as Bayesian probability theory, which deals with the quantification and

integration of uncertain information sources.
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In the Bayesian framework, the two main computational tasks under conditions
of uncertainty are inference and learning. The problem of inference refers to the
computation of an “interpretation” or “representation” for sensory inputs based
on an internal model of how events and properties of our external environment
“generate” these observations. Some of the first problems in neuroscience and
psychology to receive an extensive Bayesian treatment are inference problems in
visual perception [81, 26, 78, 124, 188, 42, 117]. "The problem of learning deals with
a longer time-scale proceés thfoﬁgh which sénéory experiences get incorporated
into the internal representations of how entities in the environment interact and
generate sensory observations. The Helmholtz Machine [49] is a Bayesian neural
network model that attempts to address both inference and learning problems
faced by the brain. In fact, inference and learning are two highly related problems,
and can be treated using very similar mathematical formulations.

In the following, we consider a concrete toy problem from classical conditioning.
It will illustrate a Bayesian treatment of the uncertainty underlying the implicit
computational problems. It will be shown that when multiple sources of noisy
information are combined, the relative contribution of an information source is in-
versely proportional to the uncertainty associated with that source. Moreover, such
uncertainty, if reducible through experience, would promote the learning about the

corresponding information source.

An example: classical conditioning

The field of classical conditioning probes the way that animals learn and utilize
predictive relationships in the world, between initially neutral stimuli such as lights
and tones, and reinforcers such as food, water, or small electric shocks [60, 123].
In these experiments, the animals is thought to be “reverse-engineering” the arbi-
trary predictive relationships set by the experimenter [187]. Figure 1.2 graphically
illustrates these ideas.

One statistical formulation of the “true” underlying stimulus-reinforcer rela-
tionship, which is sometimes referred to as the generative model, is to assume that
the stimuli x; (eg light, tone) on trial ¢ stochastically determine the reward (or
punishment) r;, through a linear relationship:

Te =Xt W+1n (11)

Here, each z! in x; = {z},...,z7} is a binary variable representing whether stim-
ulus ¢ is present or not on trial ¢, - denotes the dot product, w = {wy, ..., w,} are

the weights that specifies how each stimulus z; contributes to the reward outcome,
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Figure 1.2: Inference and learning in classical conditioning. The experimenter, typi-
cally using a computer, would set the weights {w;} that specify (usually stochastically)
how stimuli combine to predict the reinforcement outcome (see Eq. 1.1). Based on
these relationships, the subject/animal is shown a set of stimuli (eg light or tone),
followed by the appropriate reward, and then the presentation is repeated, with either
the same set of stimuli, or a different set. Based on these stimulus-reward pairings, the
animal must learn the weights that parameterize the stimulus-reward relationships,
and use them to make predictions about rewards based on only the stimuli.

and 7, ~ N(0,72) is a noise term following a Gaussian (normal) distribution with

2. The task for the animal on each trial is to predict

zero mean and variance T
the amount of reinforcer given the stimuli, based on the learned relationship be-
tween stimuli and reinforcer, and to update those relationships according to the
observation of a new pair of x;,r; on each trial.

Let us consider the simple case of there being two stimuli, ¢ = 1,2, and that
it is known that only the first stimulus is present on trial 1, x; = (1,0), and both
are present on trial 2, x, = (1, 1).

Before any observations, we assume that the prior distributions of w; and w,
are independent and Gaussian: w; ~ N(wp,0?), for i = 1,2. After observing
the first set of (x3,71), the distribution over wj, is still just the prior distribution
N (wp, 0?), since stimulus 2 was not present. The distribution over w; takes the
following form:

p(r1, X1 |w)p(w)

p(wi|xy,m) = a0 (1.2)

2 2
o T 1
& N sty 4 gy, 5
T+ 05 T+ 0 ?j""

The first equation is just an instantiation of Bayes’ Theorem, which states that the

oq:J =
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posterior distribution of a variable (w,) after observations (x;,7;) is proportional
to the likelihood of the data (p(r1,x;|w)) times the prior (p(w)). The distribution
is normalized by the constant p(x;,r;). Thomas Bayes, an English minister, first
formulated a version of this principle in the 18th century, when he tried to compute
a distribution over the settings of a parameter p that stochastically determines
observable events through a binomial distribution [19].

On the second trial, when both stlmuh are presented we can again ap-
ply Bayes' Theorem to obtain a new postenor distribution in the weights,
p(wy, wa|Xy, 71, X2, T2), where now the prior distribution is the posterior from the
previous trial. If we make the simplifying assumption that the correlation between
w; and wy is 0, then it can be shown using a set of iterative Bayesian computa-
tions, known as the Kalman filter [7], that the posterior distribution is Gaussian
with mean @, = {#},w?} and diagonal variance {(o})?, (¢2)%}, where for i = 1,2,

si e (07-1)? — X W
BT Bl >0l 1) + 7 (re = ) -3
@ = @ (o) - (1.9

Eq. 1.3 séys that the new estimate ! is just the old one plus the prediction
error 1, — X; - W, times a coefficient, called the Kalman gain, which depends on the
uncertainty associated with each weight estimate relative to the observation noise.
The Kalman gain indicates a competitive allocation between the stimuli, so that
the stimulus associated with the larger uncertainty o; gets the bigger share. On
trial 2, because (02)? = 02 and (0})? < 02, W? would be accorded relatively faster
learning. In addition, large observation noise 72 would result in slower learning for
all weights, as the inputs are known to be unreliable indicators of the underlying
weights, and small 72 leads to faster learning. Eq. 1.4 indicates that the uncertainty
associated with each stimulus is also reduced faster when the observation noise 72
is relatively small.

In the computation of the new weight estimate, larger prior uncertainty (o})?
(relative to observation noise) leads to greater weight placed on the observation,
and lower prior uncertainty limits the impact of the observation. This demon-
strates the principle that in probabilistic inference, more uncertain information
sources have less influence in the information integration process. Notice that the
uncertainty (¢%)? in Eq. 1.4 only depends on the number of times that the stimulus
z' has been observed, and not on the prediction error. This is a quirk of the simple
linear-Gaussian generative model that we consider here.

Figure 1.3 illustrates these ideas with an example. On trial 1, only stimulus 1 is
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A Uncertainty

B Kalman gain

1 1 1 1

1 2 3 4 5 6 7 8 9 10
Trial

Figure 1.3: Associative learning and inferential uncertainty. Stimulus 1 is present
on all trials, while stimulus 2 is only present on trial 2 and onward. See text for
more details. (A) Inferential uncertainty. (c?)? is greater than (¢!)? on trial 2,
when stimulus 2 is first introduced, but the two start to converge toward the same
equilibrium. (B) Kalman gain. Because stimulus 1 alone appears on trial 1, it gets
a big Kalman gain coefficient. When stimulus 2 is introduced on trial 2, the much
larger relative uncertainty associated with stimulus 2 means that it gets a big fraction
of the weight update, while stimulus 1 gets a small portion. Over time, the Kalman
gain coefficients associated with both weights decrease, as both of their uncertainties
decrease. Simulation parameters: o9 = 0.1, 7 = 0.1, wg = 0.

present, on trials t = 2,3, ..., both are present. Figure 1.3A shows the uncertainty
associated with each stimulus. Because stimulus 2 is introduced later, (0?)? is
greater than (o})? on trial 2, as well as on the subsequent trials, although the two
eventually converge. Figure 1.3B shows the Kalman gain coefficients. On trial 1,
' alone gets a (large) update; on trial 2, 1? gets a big boost because of its much
larger uncertainty. The quick reduction of uncertainty (02)? associated with the
new stimulus, however, almost levels the playing field on the next trial, and so on.
This example illustrates the concept that uncertainty associated with a component
of the internal model enhances learning about that component.

Another computational problem underlying the task is that of prediction. That
is, the animal needs to compute a distribution over the reward given the stimuli,
based on the internal model about how the weights relate the stimuli and the
reward. This internal model is constructed based on all past stimulus-reward

observations. More concretely,

p(rt|Xt, X1yT1y ooy Xg—1, Tt—l) b= p("'tlxt, W)p(wlxl, T1yeeoy Xg—1, rt—l) (15)

= N(z; + Wiaxt, (00)z; + (01-1)°7),
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since means and variances add when two Gaussian variables are added. In other
words, the resulting prediction uncertainty would be large if the uncertainty asso-
ciated with either weight estimate is large.

Additional forms of uncertainty

We have seen through a simple classical conditioning example that uncertainty
plays important roles in various aspects of the implicit computational tasks. How-
ever, this example is overly simplistic in several respects. First, we talked about
the distinction between.inference and learning in the Introduction, but because
we had only one kind of hidden variable, the association weights w, the inference
and learning problems were jumbled together. An implicit assumption of the in-
ference process is that certain variables are highly changeable, perhaps differing
from trial to trial (or observation to observation), and these are state variables
whose interpretations need to be inferred. The learning process deals with another
type of hidden variables, typically referred to as parameters, which are relatively
stable over time and can be learned. Parameters usually specify how hidden state
variables interact with each other, and generate observations. Specifically in the
classical conditioning example, if x; and r; were not observed directly but induce
noisy sensory inputs, then computing a distribution over potential values of x;
and r; would be part of the inference problem, whereas the computation about
the weights is more typically a learning type of problem. After all, under realistic
circumstances, there are usually noise associated with any sensory inputs, either at
the receptor level, generated in the cortex, or true stochasticity within the external
environment itself.

Another inadequacy of the simple example we have considered is that the “hid-
den” relationships in the world (parameterized by w) are constant over time. What
if these predictive relationships can actually fundamentally change at times, as for
instance when the experimenter suddenly changes the true association weights
through the common manipulation of reversal or eztinction? Clearly the sim-
ple linear-Gaussian model that we have proposed would be inadequate, since the
uncertainties in this model decrease over exposure time without regard to pre-
diction errors. One consequence of dramatic changes in the parameters of an
environmentally specified generative model is the need for a measure of unexpected
uncertainty, which monitors gross discrepancy between predictions made by the
internal model and actual observations. This unexpected uncertainty measures
the amount of “surprise” modulo any expected stochasticity within the (learned)
behavioral environment. We call this latter form of well-known stochasticity ez-
pected uncertainty, which should be encoded in the internal model for the current
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environment. Jumps in unexpected uncertainty signal that there may have been
dramatic changes in the statistical contingencies governing the behavioral envi-
ronment, and should alert the system to a possible need to overhaul the internal
model.

Indeed, uncertainty is so ubiquitous and arises from such a large number of
sources, that it doubtlessly appears in many guises in the brain. However, there
is compelling evidence that two key componerts are expected and unexpected un-
certéirity. One reason is that there is some empirical data pointing to the neural
substrate that supports the representation and computation under these types of
uncertainty. What should we expect of the neural realization of expected and
unexpected uncertainty signals? First, both should have the effect of suppress-
ing internal, expectation-driven information relative to external, sensory-induced
signals, as well as promoting learning about lesser-known aspects of the environ-
ment. Second, they should be differentially involved in tasks engaging just one or
the other form of uncertainty. There is evidence that cholinergic and noradrener-
gic neuromodulatory systems may be good candidates for signaling expected and
unexpected uncertainty, respectively. The cholinergic system releases the neuro-
modulator acetylcholine (ACh); the noradrenergic system releases norepinephrine

(NE; also known as noradrenaline).

Acetylcholine and norepinephrine

A sophisticated series of conditioning experiments combined with cholinergic le-
sions has shown that cholinergic inputs to the posterior parietal cortex are critical
for the faster learning accorded to stimuli associated with greater uncertainty
[100, 40], and that cholinergic inputs to the hippocampus are crucial for the decre-
ment in learning accorded to stimuli whose predictive consequences are well known
[18]. These properties are suggestive of ACh playing a role in signaling the sort
of expected uncertainty such as the kind described in our weight-learning exam-
ple above. Neurophysiological data also indicate that ACh selectively suppresses
top-down and recurrent synaptic transmission over bottom-up relaying of more im-
mediate sensory inputs, sometimes even actively enhancing the latter, in various
sensory cortical areas [92, 79, 116, 104]. This provides further support for a role
of ACh in signaling top-down uncertainty, as we have argued from the Bayesian
theoretical point of view that uncertainty of this kind should suppress the influ-
ence of internal knowledge and expectations, presumably relayed by top-down and
recurrent synapses, in the processing of immediate sensory inputs.
Norepinephrine, another major neuromodulatory system, stands out as a prime

candidate for the signaling of unexpected uncertainty. Recordings of neurons in
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the locus coeruleus, the source of cortical NE, show robust responses to unexpected
external changes such as novelty, introduction of reinforcement pairing, and ex-
tinction or reversal of these contingencies [174, 199, 175, 14]. NE has also been
observed to modulate the P300 component of ERP [150, 138, 193], which has been
associated with various types of violation of expectations: “surprise” [201], “nov-
elty” [61], and “odd-ball” detection [150]. In addition, boosting cortical NE levels
with pharmacological mampulatlons [46] has been shown to accelerate the ability
of animals to adapt to new, unexpected changes in the predictive consequence of
environmental stimuli [59]. These data are consistent with the idea that NE re-
ports unexpected global changes in the external environment, and thus serving as
an alarm system for the potential need to revamp the internal model in the face

of gross environmental changes.

Outline

In this thesis, we study how various forms of uncertainty are learned, represented,
and utilized in the brain, with a particular emphasis on the roles of ACh and
NE in the process. We will review in more details the relevant experimental and
theoretical work on ACh and NE in Chapter 2, and relate them to Bayesian in-
ference in general, and uncertainty in particular. In Chapter 3, we will consider a
class of inference problems in which the overall state of the environment undergoes
discrete changes from time to time, and apply the formalism to understand the
role of ACh in a sustained attention task. In Chapter 4, we will develop a more
sophisticated theory of inference and learning that has clear and separate roles for
expected and unexpected uncertainty, and we interpret a number of attentional
paradigms in this unified framework. In Chapter 5, we will consider an explicit
neural architecture that accumulates noisy sensory information on a finer temporal
scale, and propose a scheme in which cortical populations and neuromodulators

represent complementary forms of uncertainty.



Chapter 2

Acetylcholine and Norepinephrine

2.1 Introduction

Some of the most important and ubiquitous components of the vertebrate ner-
vous system are the centralized and powerful neuromodulatory systems. The
major types of neuromodulators are well-conserved across mammalian species,
with acetylcholine (ACh), norepinephrine (NE), dopamine (DA), serotonin (5-HT),
and histamine being the most prominent. Like ordinary neurons, the neurons in
the neuromodulatory systems release neurotransmitters (called neuromodulators)
when activated; however, they differ from ordinary neurons in several respects:
(1) they tend to reside in localized clusters (often called nuclei) outside the cere-
bral cortex, with each cluster releasing a particular neuromodulatory substance;
(2) they send extensive and far-reaching projections throughout the cortical and
subcortical areas; (3) they tend to have mixed actions on post-synaptic neurons,
sometimes excitatory and sometimes inhibitory, depending on postsynaptic re-
ceptor composition and cell type; and (4) they can alter the synaptic efficacy or
plasticity of target neurons, thus modulating the way other neurons communicate
with each other and store information. These features place neuromodulatory sys-
tems in the powerful position of being able to alter information processing and
storage in multiple brain areas in a coordinated fashion. _
The anatomical centrality and ubiquity, and the unique modulatory powers,
of neuromodulatory systems make them ideal targets for theoretical investigations
of the brain. Some early ideas, based on the relative promiscuity of neuromodu-
lators, tended to associate them with rather general computational roles, such as
controlling the signal to noise ratio of cells (see [87] for a review). More recently,
as data suggesting more specific and heterogeneous actions for neuromodulators
have emerged, there has been a flourishing of theoretical ideas prescribing them
more specific computational functions [93, 179, 73, 64, 91, 111, 48]. For instance,
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there is persuasive evidence that the DA system signals a reward prediction error
[179]. The activities of dopaminergic neurons in the ventral tegmental area and
the substantia nigra show remarkable similarity to the on-line reward prediction
error signal in the temporal difference algorithm, which models the way artificial
systems can learn to make temporally-precise predictions [186). A related piece of
work suggests that serotoninergic neurons in the raphe nucleus may play a role op-
ponent to DA in the signaling of short-term and long-term reward and punishment
prediction errors [48]. -

As we have argued in Chapter 1, uncertainty is a critical component of proba-
bilistic computations. There are various experimental findings that point to ACh
and NE being involved in reporting uncertainty in the brain. We summarize some
of the relevant literature in this chapter. In Section 2.2, we will review anatomical
and physiological properties of these neuromodulators. In Section 2.3, we will sum-
marize the data on the involvement of ACh and NE in behavior that have come
from animal behavioral neuroscience studies in which the level of a neuromodu-
lator is measured or altered, and human behavioral studies involving patients of
neurological diseases that have known deficits or hyper-activity of a neuromodula-
tory system. In Section 2.4, we will review the various earlier theoretical studies on
ACh and NE. In these discussions, we will relate the data to the previous chapter’s
discussion of Bayesian inference and learning, and uncertainty in particular.

2.2 Anatomy and Physiology

There is an enormous and confusing body of data on the anatomical and physiolog-
ical properties of ACh and NE systems, with no immediately obvious overarching
theory that would account for this plethora of data. These neuromodulators are
found in abundance in both central and peripheral nervous systems. Here, we
focus on their actions in the brain. In particular, several characteristics stand
out as being notable for understanding their computational functions. The first is
that higher levels of ACh and NE both seem to suppress the top-down sources of
information, presumably reflecting internal expectations and priorities, relative to
bottom-up flow of information, which are mainly sensory-driven. This makes ACh
and NE appealing candidates as messengers for top-down uncertainty, which was
shown in Chapter 1 to suppress top-down influence in the analysis of bottom-up
information. In the following, we will first discuss some relevant facts about the

ACh and NE systems in isolation, and then about their interactions.
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Acetylcholine

Because ACh is also found outside the central nervous system in locations that
are easier to study, it was the first neurotransmitter to be discovered. Otto Loewi
showed in 1921 that the change in heart beat rate induced by stimulation of the
vagus nerve is mediated by the release of a chemical substance that he called
“Vagusstoff”, which later was identified as acetylcholine [112]. Prior to this dis-
covery, it was unclear whether such effects were mediated by chemical, electrical,
or even hydraulic means. In the brain, ACh binds to two major classes of receptors,
nicotinic and muscarinic, so named because nicotine (found in the leaves of the
tobacco plant Nicotiniana tabacum) and muscarine (found in the poison mushroom
Amanita muscaria) readily bind to the respective receptors and mimic the actions
of ACh. Nicotinic receptors are ionotropic: they gate fast-acting ligand-gated ion
channels; muscarinic receptors are metabotropic: they are coupled to G-proteins
that act via second messengers and can have diverse and more sustained effects.
There are at least five types of muscarinic receptors (conventionally denoted as
M1-M5) and two types of nicotinic receptors, and they have been found to differ
in their biochemical make-up, sensitivity to different agonists, location on post-
synaptic cells, and distribution across the brain (reviewed in [87]), although their
functional distinctions are much less well-understood.

ACh is delivered to many cortical and subcortical areas by neurons residing
in several nuclei in the basal forebrain. The most prominent among these are
the nucleus basalis magnocellularis (of Meynert in humans; NBM; also referred
to as the substantia innominata, SI), which provides the main cholinergic inputs
to the neocortex, and the medial septum, which innervates the hippocampus. In
addition, these same nuclei receive strong, topographically organized, reciprocal
projections from the prefrontal cortex [77] and the hippocampus [4]. Figure 2.1
shows a schematic diagram of the projection patterns of the cholinergic system.

In the basal forebrain, ACh-releasing neurons intermingle with neurons releas-
ing other transmitter types, including a notable population of GABAergic neurons,
some of which are local interneurons, some of which are large projection neurons
[75, 84]. GABAergic terminals of basal forebrain neurons appear to synapse with
GABAergic interneurons in the hippocampus and neocortex [76]. This raises the
interesting possibility that the cholinergic and GABAergic projections from the
basal forebrain work synergistically on their cortical targets [58].

As is typical for neuromodulators, ACh has a wide array of physiological effects
on downstream neurons. While the activation of nicotinic receptors is generally
excitatory, effects mediated by the indirectly coupled muscarinic receptors are var-

ied, including increases in a non-specific cation conductance, increases or decreases
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Figure 2.1: Cholinergic innervation of the cortex and hippocampus by neurons in the
nucleus basalis of Meynert (NBM) and the medial septum (MD), respectively. These
nuclei are part of the basal forebrain, which is located at the base of the forebrain
anterior to the hypothalamus and ventral to the basal ganglia [58].

in various potassium conductances, and a decrease in calcium conductance [142].
While ACh release sites can directly target specific dendritic or somatic receptors,
the majority portion of ACh release is non-specific, resulting in substantial volume
transmission in the hippocampus [194] and the neocortex [195].

Due to anatomical and physiological heterogeneity in the basal forebrain, direct
recording of the cholinergic neurons have been difficult to verify [58]. Two classes
of in vivo experiments focusing on the effects of ACh on target cortical areas
have contributed significant insights toward a more coherent understanding of
cholinergic actions.

One established series of studies has shown that ACh facilitates stimulus-evoked
responses across sensory cortices [182, 135, 191]. For example, tetanic stimulation
in the nucleus basalis increases cortical responsiveness by facilitating the ability of
synaptic potentials in thalamocortical connections to elicit action potentials in the
rat auditory cortex [133, 90], an effect blocked by the application of atropine (an
antagonist that deactivates cholinergic receptors). Similarly, iontophoretic appli-
cation of ACh in somatosensory cortex [62, 134] and visual cortex [181] enhances
stimulus-evoked discharges and short-term potentiation without a concomitant loss
in selectivity.

Another, more recent set of experiments has shed light on the modulatory
role ACh plays at the network level. At this higher level, ACh seems selectively
to promote the flow of information in the feedforward pathway over that in the
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Figure 2.2: Differential suppression of afferent (layer Ia) and intrinsic (layer Ib)
synaptic transmission by ACh and NE in a dose-dependent fashion. Perfusion of
carbachol (open symbols), a cholinergic agonist, into the rat piriform cortex induces
a strong suppression of extracellularly recorded activities in layer Ib (mainly feed-
back/recurrent inputs) in response to fiber stimulation (circle); in contrast, carbachol
has a much smaller suppressive effect on the afferent (feed-forward) fiber synapses
to layer Ia (square). The effects are concentration-dependent [92]. Similarly selec-
tive suppression of intrinsic but not afferent fibers have also been observed with the
perfusion of norepinephrine (solid) [94]. Figure adapted from [94].

top-down feedback pathway [116, 92, 79, 104]. Data suggest that ACh selectively
enhances thalamocortical synapses via presynaptic nicotinic receptors [79] and
strongly suppresses intracortical synaptic transmission in the visual cortex through
postsynaptic muscarinic receptors [116]. In a separate study, ACh has been shown
selectively to suppress synaptic potentials elicited by the stimulation of a layer in
the rat piriform cortex that contains a high percentage of feedback synapses, while
having little effect on synaptic potentials elicited by the stimulation of another
layer that has a high percentage of feedforward synapses [92] (see Figure 2.2).
ACh also seems to play an important permissive role in experience-dependent
cortical plasticity, which allows the revision of internal representations based on
new experiences [87]. Monocular deprivation in kittens, and other young mammals,
induces ocular dominance shifts in the visual cortex [210]. This activity-dependent
plasticity is abolished or delayed by cortical cholinergic depletion [88], particularly
in combination with noradrenergic denervation [20]. Similarly, cholinergic den-
ervation can disrupt experience-dependent plasticity in the somatosensory cortex

[16]. In addition, the pairing of acetylcholine application with visual [83], auditory
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[135, 115], or mechanical [160] stimuli can induce receptive-field modifications in
the respective sensory cortical areas, presumably via enhanced LTP (long-term
potentiation).

Collectively, these data suggest ACh modulates the way that information prop-
agates in hierarchical cortical networks, by enhancing the influences of bottom-up,
sensory-bound inputs at the expense of the top-down/recurrent influence. ACh
also seems to be a potent agent for promoting experience-dependent plasticity.
These properties are reminiscent of our discussions in Chapter 1 of the need for a
signal for top-down uncertainty, which would limit the relative impact of internal
knowledge/expectations on the interpretation of immediate sensory inputs, and

which would promote learning about uncertain aspects of the internal model.

Norepinephrine

Cortical noradrenergic innervation arises solely from the locus coeruleus in the
brain stem. Like the basal forebrain cholinergic nuclei, locus coeruleus has
widespread cortical and subcortical projections, as well as receiving potent frontal
cortical innervation [173, 108]. Figure 2.3 illustrates the projection pattern of the
LC noradrenergic system. There are two broad families of noradrenergic recep-
tors (also known as adrenoceptors), all G protein-coupled: o receptors, which are
relatively insensitive to the classic adrenergic agonist isoproterenol, and 3 recep-
tors, which are potently stimulated by that compound, with each of these families
divided into various receptor sub-classes. As with the ACh receptor classes, not
much is known about the functional distinctions among the adrenoceptors, except
that all (inhibitory) autoreceptors are of type a,. There appears to be significant
volume transmission of NE in the hippocampus [194] and the neocortex [11], with
NE molecules being released from bead-like axonal varicosities lining the axonal
branches.

At the physiological level, NE has many of the same diverse downstream ef-
fects as ACh. Like ACh, direct applications of NE or its agonists selectively sup-
press feedback/recurrent synaptic transmission relative to feedforward activation
[207, 94, 129, 118]. Figure 2.2 shows a preparation in which both cholinergic and
noradrenergic perfusion result in dose-dependent suppression of synaptic poten-
tials due to stimulation in layers Ia (afferent fibers) and Ib (recurrent fibers) in
the rat piriform cortex [92, 94]. Moreover, ACh and NE modulation appear to be
synergistic, acting roughly additively [94].

With respect to experience-dependent plasticity, we already mentioned in the
previous section that NE plays a role in supporting ocular dominance shifts that is
synergistic to that of ACh [20]. In addition, stimulation of the locus coeruleus can
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Figure 2.3: Projections of norepinephrine-containing neurons in the locus coeruleus
(LC). LC lies in the pons just beneath the floor of the fourth ventricle. LC neurons
have widespread ascending projections to cortical and subcortical areas.

induce ocular dominance changes in adult cat visual cortex that do not normally
experience such changes [113].

One notable difference between ACh and NE systems is that the noradrenergic
neurons in the locus coeruleus display much more anatomical and physiological

homogeneity than the mixed-type neurons in the basal forebrain [12, 14].

ACh and NE

There is a diffuse, though non-uniform, noradrenergic projection from the locus
coeruleus into various areas in the basal forebrain [220]. They have chiefly depolar-
izing effects on both cholinergic and non-cholinergic neurons in the basal forebrain
[58]. Besides this noradrenergic input and the cortical feedback, the basal fore-
brain neurons also receive inputs from a wide variety of limbic, diencephalic, and
brainstem structures, some of which project to, or have projections from, the locus
coeruleus. [180, 221]

The effects of cholinergic modulation of the LC noradrenergic system are mixed.
Stimulation of presynaptic nicotinic receptors generally increases NE release in
brain slice preparations. Activation of presynaptic muscarinic receptors has been
reported to increase, decrease, or have no effect on release of NE in brain slices. In-
fusions of nicotinic and muscarinic receptor agonists into the olfactory bulb suggest
that the two cholinergic receptor subtypes exert opposing actions on NE release:

nicotine increases, and the muscarinic receptor agonist pilocarpine decreases, ex-
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tracellular levels of NE (reviewed in [70]). The locus coeruleus also receives potent
excitatory inputs from the central nucleus of the amygdala[27], which also inner-
vates the basal forebrain and has been implicated in the increased learning about

stimuli with uncertain predictive consequences [101, 40].

Conclusions

On the whole, there are many apparent similarities in the actions of ACh and NE,
both at the cellular and networks level. They both tend to facilitate bottom-up,
sensory-bound inputs at the expense of top-down, internally driven activities, and
they both promote experience-dependent plasticity at the developmental time-
scale. In addition, there seems to be a complex web of interactions between the
cholinergic and noradrenergic systems. There appear to be multiple direct and
indirect pathways in which the two neuromodulatory systems can influence each
other. A more complete picture of their functions requires an understanding of
when and how much each neuromodulator is released during different cognitive
states, and how they interact with behavioral responses.

2.3 Behavioral Studies

There is a rich body of behavioral studies on ACh and NE. In contrast to the simi-
larity and synergism between the two neuromodulatory systems in their anatomical
and physiological properties, behavioral studies indicate that they are differentially
involved in a number of experimental paradigms. In conjunction with behavioral
testing, pharmacological and electrophysiological studies suggest that ACh and
NE play distinct computational roles in cognition and behavior. We review some
of these data below.

Acetylcholine

Direct measurements of cholinergic neuronal activities or ACh release during be-
havioral testing have had limited success so far. One approach involves electro-
physiological recording of cholinergic neurons in awake, behaving animals. A major
problem with direct recordings of ACh neurons in the basal forebrain is identifi-
cation: ACh neurons are substantially intermingled with other types of neuron
(mainly GABAergic) in the basal forebrain and they share similar projection pat-
terns. For instance, a few recording studies in the NBM suggest they respond to
rewarding stimuli [54, 166], but no distinction was made between cholinergic and

GABAergic neurons, which have been shown through pharmacological techniques



Behavioral Studies 25

to be differentially involved in cognition and behavior [35]. Due to this identifi-
cation problem, direct recordings of cholinergic neurons in behavioral tasks have
been scarce in the literature. Were there to be a technological breakthrough in the
recording of ACh neurosn in behaving animals, or the unequivocal identification
of neuronal type in extracellular recording, we can expect to learn many new and
interesting things about ACh activation during different behavioral and cognitive
states. o

Another approach is microdié.lysis of ACh in various parts of the brain. This
approach suffer from the problem of temporal resolution, as typically only one
measurement is taken every 10-20 minutes, whereas phasic events in behavioral
testing typically last seconds or even less than a second. Thus, microdialysis
techniques are restricted to measurements of rather tonic changes in the substance
of interest. For instance, one study reported the somewhat non-specific observation
that when contingencies in an operant conditioning task are changed, ACh and
NE levels are both elevated, but that ACh increases in a more sustained fashion
and is less selective for the specific change in contingencies [47].

Partly due to the limitations mentioned above, experimental manipulation of
ACh in conjunction with behavioral testing has been a popular approach. Phar-
macological approaches include local (iontophoretic) or systemic administration
of agonists and antagonists, as well as certain drugs that interfere with either
the production of the ACh molecule within the cholinergic neuron or the re-
uptake/destruction of ACh in the extracellular medium. It is also possible to
stimulate ACh neurons directly, or lesion them through incisions or neurotoxins.
Through these techniques, ACh has been found to be involved in a variety of at-
tentional tasks, such as versions of sustained attention and spatial attention tasks.
Importantly for our theories, the attentional tasks studied in association with ACh
can generally be viewed as top-down/bottom-up inferential tasks with elements of
uncertainty.

The first class of attention tasks involves sustained attention, which refers to
a prolonged state of readiness to respond to rarely and unpredictably occurring
signals [177]. Data from experiments in which cortical ACh levels are pharma-
cologically manipulated [102, 192, 130] show an interesting double dissociation:
abnormally low levels of ACh leads to a selective increase in error rate on sig-
nal trials, while abnormally high ACh levels lead to an increase in error rate on
no-signal trials. One interpretation of these results is that the typically rare oc-
currence of signals should lead to an implicit top-down expectation of the signal
rarely being present. If ACh signals the uncertainty about that information, then
higher ACh levels correspond to low presumed signal frequency and lower ACh
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levels correspond to high presumed frequency. Thus, pharmacologically suppress-
ing ACh leads to over-confidence in the “rarity” prior and therefore a tendency
not to detect a signal when it is actually present. In contrast, pharmacologically
elevating ACh corresponds to under-valuation of the “rarity” prior, which can re-
sult in an over-processing of the bottom-up, noisy sensory input, leading to a high
number of false signal detections. Of course, this is a somewhat over-simplified
view of the problem. In Section 3.2, we consider a more detailed model of ACh in
this task. - -

The second class of attention tasks, the Posner probabilistic spatial cueing
task [151], is a well-studied paradigm for exploring the attentional modulation of
visual discrimination by manipulating the top-down expectation of the location of
a target stimulus. In a typical rendition of Posner’s task, a subject is presented
with a cue that indicates the likely location of a subsequent target, on which a
detection or discrimination task must be performed. The cue is valid if it correctly
predicts the target location, and invalid otherwise. Subjects typically respond
more rapidly and accurately on a valid-cue trial than an invalid one [151, 63].
This difference in reaction time or accuracy, termed validity effect (VE), has been
shown to be inversely related to ACh levels through pharmacological manipulations
[149, 211] and lesions of the cholinergic nuclei [204, 40]. VE has also been shown
to be elevated in Alzheimer’s disease patients [145] with characteristic cholinergic
depletions [209], and depressed in smokers after nicotine consumption [211]. Again,
if we think of ACh as signaling the top-down uncertainty associated with the cued
location, then increasing ACh corresponds to an under-estimation of the validity
of the cue and therefore a decrease in the cue-induced attentional effect. We will
return to more detailed discussions of this task in Chapter 4 and 5.

Finally, certain neurological conditions are associated with abnormal levels of
specific neuromodulatory substances. In addition to the higher validity effect ex-
hibited by Alzheimer’s Disease patients as mentioned above, there is a tendency
toward hallucination common among patients diagnosed with Lewy Body Demen-
tia, Parkinson’s Disease, and Alzheimer’s Disease, all of which are accompanied
by some degree of cortical cholinergic deficit [147]. In the Bayesian framework,
this route to hallucination might reflect over-processing of top-down information
due to an ACh deficit. The cholinergic nature of hallucination is supported by
the observed correlation between the severity of hallucination and the extent of
cholinergic depletion [147]. Consistent with the notion that hallucination is antag-
onistic to sensory processing, hallucinatory experiences induced by plant chemicals
containing anti-muscarinic agents such as scopolamine and atropine [178] are en-

hanced during eye closure and suppressed by visual input [74]. Many patients with
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Lewy Body Dementia and Alzheimer’s Disease also exhibit the related condition of
pereidolias (also referred to as a misidentification syndrome), or the discernment
of images such as faces or animals in wallpaper, curtains, or clouds [148], which
can be interpreted as the inappropriate dominance of an top-down sensory percept
over bottom-up inputs. This condition is also cholinergic in nature, as it is amelio-
rated by the administration of physostigmine, an ACh reuptake-inhibitor [45]. In
addition to hallucinations related to the basal forebrain cholinergic system listed
here, there are also other bohditibné, Illotablyr due rto4hypera,ctivities of cholinergic
neurons in the pedunculopontine nucleus (Ch5) and dorsolateral tegmental nucleus
(Ch6) [148], as well as via serotonin receptors (eg [105]). As we are only proposing
a computational theory of basal forebrain cholinergic system, a wider discussion is

beyond the current scope.

Norepinephrine

Because of the relative homogeneity, both anatomical and physiological, of neurons
in the locus coeruleus (LC), extracellular recording of noradrenergic neurons com-
bined with behavioral testing has been a rather successful approach. A large body
of physiological data points to robust activation of the LC noradrenergic neurons
to novel or unexpected stimuli/situations in the world, especially those contra-
dicting internal expectations and which might require a reorganization of internal
knowledge. Specifically, LC neurons fire phasically and vigorously to novel objects
encountered during free exploration [199], novel sensory stimuli [175, 156], unpre-
dicted changes in stimulus properties such as presentation time [38], introduction
of association of a stimulus with reinforcement [175, 125, 185], and extinction or
reversal of that association [175, 125]. Figure 2.4A shows an example in which
the average NE neuronal response increases significantly when the reinforcement
contingencies in a task are reversed [156] (we will discuss the data in Figure 2.4B-
D in Section 2.4). In addition, NE activation to novel stimuli habituates rapidly
when the subject learns that there is no predictive value or contingent response
associated with the stimuli, and also disappears when conditioning is expressed at
a behavioral level [175]. Altogether, the data suggest that sustained NE activation
may signal dramatic changes in the underlying contingencies in the environment.

Pharmacological manipulations with NE levels in the brain support the idea
that NE promotes the learning of new underlying relationships in the world. Un-
like ACh, NE does not interact with the sustained attention task or Posner’s task
after initial acquisition [131, 212, 41], but does interact with attention-shifting
tasks, where the predictive properties of sensory stimuli are deliberately and sud-

denly changed, in order to study the capacity of the subjects to shift and refocus
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Figure 2.4: (A) Enhanced firing of an NE neuron in the locus coeruleus (LC) in
response to reversal in reinforcement contingencies. Firing rates are averaged from
a moving windows of 10-sec, for a single neuron recorded in a monkey performing
original and reversed visual discrimination tasks (horizontal versus vertical bars). Its
activities are significantly elevated for at least tens of minutes after reversal. Adapted
from [14]. (B) Temporal correlation between firing of an LC neuron and behavioral
performance (measured in number of false alarms per second). The neuron has high
baseline firing rate when behavioral performance was poor (many false alarms), and
low firing rate when performance was better. Adapted from [196]. (C) Average
phasic response of an LC neuron to the target stimulus during good performance
(false alarm rate < 7%), and (D) during bad performance (false alarm rate > 7%).
Phasic response to target is greater during epochs of low baseline firing rate and low
false alarm rate. Adapted from [196].
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attention between sensory cues and adapt to new predictive relationships. One ex-
ample is a linear maze navigation task, in which rats undergo an unexpected shift
from spatial to visual cues [59]. Indirectly boosting NE with the drug idazoxan,
which antagonizes a,-autoreceptors that inhibits NE release [46], accelerates the
detection of the cue-shift and learning of the new cues in this task [59]. This is
consistent with our proposal that NE is involved in reporting the unexpected un-
certainty arising from dramatic changes in the cue-target relationship, and that
this increased NE release in turn boosts léarning.' In a related é,ttehtion-shifting
task formally equivalent to those used in monkeys and humans [23], cortical nora-
drenergic (but not cholinergic) lesions impair the shift of attention from one type
of discriminative stimulus to another (Eichenbaum, Ross, Raji, & McGaughy. Soc.
Neurosci. Abstr. 29, 940.7, 2003).

The most prominent neurological condition that has an apparent noradrenergic
abnormality is Attention Deficit and Hyperactivity Disorder (ADHD), which is
effectively treated by drugs that selectively inhibit the noradrenergic transporter
[184] and in turn increase cortical levels of NE and dopamine [36]. One way of
interpreting ADHD and its treatment is consistent with the general idea that NE
plays an important role in the normal focusing and shifting of attention. However,
there is some controversy over whether the symptoms in ADHD arise more from
a NE or DA mal-functioning, and over how these experimental drugs alleviate
symptoms of ADHD.

ACh and NE

In contrast to the mainly synergistic interactions between ACh and NE that have
been found at the physiological level, as discussed in the previous section, ACh and
NE sometimes exhibit an antagonistic relationship in behavioral testing. In a set
of learning and memory experiments, Sara and colleagues have shown that deficits
induced by cholinergic denervation can be partially alleviated by the administra-
tion of clonidine [170, 5, 172, 68, 67], a noradrenergic a; agonist that decreases
the level of NE release.

Conclusions

In summary, ACh and NE appear to be involved in distinct sets of behavioral
paradigms, as well as interacting antagonistically in some contexts. One possible
explanation is that ACh is particularly important for tasks that involve a degree
of ezpected uncertainty, while NE is involved in reporting unezrpected uncertainty.

We will explore these ideas more formally and extensively in Chapters 3, 4, and 5.
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2.4 Computational Theories

There have been relatively few computational theories on the individual functions
of ACh and NE, and particularly scarce on their interactions. We describe some
of the more well-developed ones below. While there are certain conceptual simi-
larities between these theories and ours, our theory appears unique in its Bayesian

statistical approach.

Acetylcholine

ACh was one of the first neuromodulators to be attributed a specific role. In a
sophisticated series of experimental and theoretical contributions, Hasselmo and
colleagues [93, 91] argued that cholinergic (and also GABAergic [96]) modulation
from the basal forebrain controls read-in to and read-out from recurrent, attractor-
like memories, such as area CA3 of the hippocampus. Such memories fail in a
rather characteristic manner if the recurrent connections are operational during
storage, as new patterns would be forced to be mapped onto existing memories,
and lose their specific identity. Even more detrimentally, the attraction of the
offending memory would increase through standard synaptic plasticity, making
similar problems more likely in the future. Hasselmo et al thus suggested, and
collected theoretical and experimental evidence in favor of, the notion that medial
septum cholinergic neurons control the suppression and plasticity of specific sets
of inputs to CA3 neurons. During read-in, high levels of ACh would suppress the
recurrent synapses, but make them readily plastic, so that new memories would
be stored without being pattern-completed. Then, during read-out, low levels of
ACh would boost the impact of the recurrent weights (and reduce their plasticity),
allowing auto-association to occur. The ACh signal to the hippocampus can be
characterized as reporting the unfamiliarity of the input with which its release
is associated. This is related to its characterization as reporting the uncertainty

associated with top-down predictions as we have proposed.

Norepinephrine

One of the most important computational theories of the drive and function of
NE is that developed over the last fifteen years by Aston-Jones, Cohen and their
colleagues [13, 196]. They have studied NE mainly in the context of vigilance and
attention in well-learned tasks, showing how NE neurons are driven by selective
task-relevant stimuli, and that higher stimulus-driven activity positively correlates

with better behavioral performance and negatively correlates with baseline firing
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rate (see Fig 2.4B;C;D). They originally suggested that greater electrotonic cou-
pling among the locus coeruleus cells leads to lower baseline rate (through noise
averaging) and greater phasic response to target stimulus [196]. These effects were
demonstrated in a computational modeling study [196]. One potential weakness
of this attractive theory is the lack of persuasive evidence on the existence of
significant electrotonic coupling in adult LC. More recently, they have suggested
that part of these effects may instead be due to the greater synchronization effect
the target stimulus has on the NE pobulatioh respohse under conditions of lower
base firing rates [33], leading to apparently higher phasic response to target. This
is an interesting set of theoretical ideas, with a strong emphasis on biophysical
mechanisms. However, the modeling and the targeted experimental data focus on
experimental phenomena that happen on a much faster time-scale than the “tonic”
properties of NE reviewed in the previous sections. For example, note the different
scaling of the time axis in Fig 2.4A and B. In the major part of this thesis, we focus
on the more tonic properties of NE activations. In Chapter 6, we will also return
to a discussion of the more “phasic” properties of NE in a Bayesian framework.
Another piece of related theoretical work is Grossberg’s proposal of neuro-
modulatory involvements in the learning and retrieval of discrete activity patterns
[85, 86]. Grossberg has proposed several versions of an elaborate neural network
model (called adaptive resonance theory, or ART) [86], that essentially imple-
ments a version of a clustering algorithm for binary patterns [139], whereby an
input pattern is classified to be of a learned class if their similarity exceeds a cer-
tain threshold (as measured by the resonance or reverberation between the input
and top-down layers). In general, the learning of a large number of pattern classes,
that moreover can evolve over time, faces a stability-plasticity problem: it is im-
perative to allow learning to take place (plasticity) without letting new inputs to
erase or distort learned patterns (stability). Grossberg has proposed that NE may
part of a solution to controlling this delicate balance in ART [86]: NE monitors the
incompatibility between a partial input pattern and the on-going activity states of
the rest of the network, in turn driving the arousal level, which can suppress the
partial input pattern to prevent misclassification [86], and simultaneously recruit

a new representational prototype [39].

ACh and NE

Doya [64] has proposed a unified theory of ACh and NE, as well as serotonin
and dopamine, in the specific context of reinforcement learning. Reinforcement
learning is a computational framework for an agent to learn to take an action in
response to the state of the environment so as to maximize reward. A well-studied
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algorithm for these problems is the temporal difference (TD) model [186]. Doya
proposed that NE controls the balance between exploration and exploitation, and
ACh controls the speed of update of the internal model (in addition, dopamine
signals the error in reward prediction, and serotonin controls the balance between
short-term and long-term prediction of reward). This theory is not inconsistent
with our proposal that NE signals unexpected model uncertainty, which would
control the switch between persmtent explmtatlon of the current model and the
exploration necessary for developmg a new behavioral model nor with the notion
that ACh signals expected uncertainty, which would drive the rate of learning in
response to new observations. However, our theory is more statistical in nature

and broader in scope.

Conclusions

The various models outlined share with ours the notion that neuromodulators can
alter network state or dynamics based on information associated with internal
knowledge. However, the nature of the information that controls the neuromodu-
latory signal, the effect of neuromodulation on cortical inference and learning, and
the type of problems that these network are capable of solving, are quite different
from what we have in mind.

2.5 Summary

There is a huge and diverse experimental literature on the properties of choliner-
gic and noradrenergic neuromodulatory systems, encompassing anatomical, phys-
iological, pharmacological, behavioral, and neurological data. This very richness
and complexity have deterred an obvious explanation of the underlying functions
of ACh and NE. Placing the problems of inference and learning in the Bayesian
framework, however, we see the emergence of the outline of a unified theory of
ACh and NE as signaling differential forms of uncertainty. We have argued that
available data on the effects of these neuromodulators on cortical processing and
plasticity are consistent with their reporting uncertainty about top-down, inter-
nal model-driven information. Their differential interactions with attention and
learning tasks suggest that the ACh signal is appropriate for reporting ezpected
uncertainty, while NE may serve as an unezrpected uncertainty signal. In the fol-
lowing chapters, we will focus on specific inference and learning problems, cast
them in Bayesian mathematical formalisms, and analyze the role of ACh and NE

in potential solutions implemented by the brain.



Chapter 3

Non-Stationary Environment and

Top-Down Uncertainty

3.1 Introduction

The literature reviewed in Chapter 2 demonstrates a critical and challenging need
for a more coherent understanding of ACh and NE neuromodulatory systems. We
proposed that various properties of these neuromodulators are consistent with their
playing a role in inference and learning as signals for distinctive classes of top-down
uncertainty. In Chapter 1, we examined a relatively simple linear Gaussian model,
for modeling associative learning in classical conditioning. This example illustrated
that uncertainty in the internal model should suppress the influence of top-down
expectations in the inference about a hidden quantity based on noisy sensory
inputs, and that it should also promote learning about the relevant aspect of the
internal model. However, this linear-Gaussian model was clearly over-simplified
in several respects. Intuition says the observation of greater errors should lead to
greater uncertainty in top-down predictions, but in this the simple model, internal
uncertainty is only driven by the number of observations and not their content.
One natural source of such uncertainty is when, for instance, the state of a hidden
variable of interest does not remain constant over time.

In this chapter, we focus on inference problems in which the “hidden” state
of the world undergoes occasional changes, and consider the role of ACh in such
tasks. In the next chapter, we will further develop these ideas, and make a clearer
distinction between inference and learning, and between expected and unexpected
uncertainty (the latter presumably signaled by NE).

In Section 3.2, we will consider a concrete behavioral task, the sustained at-
tention task [132], to elucidate some of the computations involved in coping with

a temporally non-stationary environment. In this task, rats are required to report
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the presence of a faint and temporally unpredictable light stimulus, which is only
present on half of the trials. Pharmacological manipulations of ACh in the sus-
tained attention task have shown that suppressing and elevating ACh result in spe-
cific and distinct patterns of impairment that are dose-dependent {102, 130, 192].
The stimulus state in this task undergoes discrete changes (between “on” and
“off”) that are relatively infrequent and temporally unpredictable. This element
of non-stationarity leads to state uncertainty that depends on observations, in con-
trast to the stationary linear-Gaussian model considered in Chapter 1. We will
identify ACh with a form of top-down uncertainty in the model, and demonstrate
that bi-directional modulation of ACh in the model has similar consequences as
those observed in the experiments [102, 130, 192].

In Section 3.3, we will generalize the model to scenarios where the hidden vari-
able can be in more than two states, and explore the role of ACh in this more
generalized task. The generative model we will adopt is a version of the hidden
Markov model (HMM), in which the frequency of transitions is determined by
the self-transition probabilities of the hidden variable. This element of state un-
certainty significantly complicates exact Bayesian inference, with a requirement
of computational and representational resources growing exponentially with the
number of observations. However, due to the relative rarity of such changes, the
computational task can be dramatically simplified by using recent observations to
obtain a most likely estimate for the hidden variable, as well as a measure of un-
certainty associated with that estimate. In this approrimate algorithm, transitions
in the hidden variable are accompanied by characteristic rise and fall of the uncer-
tainty measure, which we propose to be signaled by ACh. This measure depends
not only on familiarity with a particular setting of the hidden variable but also on
prediction errors. We will demonstrate that this simplified approzrimate algorithm
has inferential performance approaching that of the exact algorithm, and much
better than a naive algorithm not taking temporal information into account. A

version of the work in Section 3.3 has been published elsewhere [51, 214].

3.2 ACh and Sustained Attention

Sustained attention typically refers to a prolonged state of readiness to respond to
brief, hard-to-detect signals that occur infrequently and unpredictably [177]. In a
rodent version of a sustained attention task, rats are required to press one lever
in response to a hard-to-detect light stimulus, and another lever when no light
stimulus has been presented [132]. On half of the trials, no stimulus is present; the

remaining half are divided into trials with signals of varying length. Figure 3.1A
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Figure 3.1: (A) Schematic illustration of a sustained attention task in rodents. Rats
were trained to discriminate between signal (center light illuminated for 25, 50, or 500
ms), and non-signal conditions. T'wo seconds following either stimulus, the levers were
extended. The animal is rewarded only if it responds correctly (left for signal, called
hits; right for for non-signal, called correct rejection) within 4 s of lever extension.
Right lever press for signal and left lever press for non-signal trials constitute “miss”
and “false alarm” responses, respectively. Figure adapted from [192]. (B) An HMM
that captures the basic stimulus properties in this task. The hidden variable s can
take on one of two values: 0 for signal off, 1 for signal on. The transition matrix 7°
controls the evolution of s. The observation z; is generated from s; under a Gaussian
distribution.

schematically illustrates the task, as well as the classification of the different correct
and incorrect responses. As might be expected, the ability of the rats to detect a
stimulus drops with shorter stimuli. In an extensive series of experiments, Sarter
and colleagues have shown that the basal forebrain cholinergic system plays an
important role in this task. Cortical ACh elevation, via the administration of either
benzodiazepine receptor inverse agonists [102] or an NMDA agonist into the basal
forebrain [192], results in the decrease of the number of correct rejections (CR) but
no changes to the number of hits. In contrast, infusion of 192 IgG-saporin [130],
an ACh-specific neurotoxin, or an NMDA antagonist [192] into the basal forebrain
adversely affects hits but not CR. These doubly-dissociated effects are moreover
dose-dependent on the drug concentration [192]. Figures 3.2A and 3.3A show these
interesting behavioral impairment from NMDA agonist/antagonist manipulations
[192].

3.2.1 The Model

In the experiment, a trial consists of a 9 + 3 sec inter-trial interval (ITI), followed
by the stimulus presentation, and, two seconds later, the extension of the two
levers on one of which the animal is required to make a response (left lever for
signal, right lever for non-signal). The response is then reinforced (depending
on its rectitude), before another variable ITI and a new trial. The non-signal
stimulus is presented on 50% of the trials, and the remaining trials are equally
divided among stimulus durations of 25, 50, and 500 ms. All trial types, including

the different stimuli lengths and the no-signal trials, are inter-mixed and presented
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Figure 3.2: Effects of cholinergic depletion on a sustained attention task. (A)
Infusion of DL-2-amino-5-phophonovaleric acid (APV) into the basal forebrain, an
NMDA antagonist known to block corticopetal ACh release, dose-dependently de-
creases the animals’ ability to detect brief, infrequent, unpredictably occurring light
stimuli (line graph), but does not affect the number of correct rejections (CR) rela-
tive to false alarms (FA) on no-signal trials (bars). Error bars: standard errors of the
mean. Adapted from [192]. (B) Simulated ACh depletion, corresponding to an over-
heightened expectation of signal rarity, leads to a similar dose-dependent decrease in
hits (relative to misses), while sparing CR (relative to FA). Red: a = 0.98, green:
a=10.90, blue: a=0.80 (see text for more information on «). Error bars: standard
errors of the mean.

in a pseudo-random fashion [192].

Let us consider a computational characterization of this sustained attention
task in the Bayesian framework. The hidden variable of interest is the presence (or
absence) of the light stimulus. It undergoes transitions between two different states
(signal on and signal off). There is uncertainty about both when the transitions
occur and how long the stimulus variable persists in each of these states. These
properties of the task suggest that a form of hidden Markov model (HMM) would
be an appropriate generative model for the task, allowing the rarity (in total time)
and unpredictability of the signal to be captured.

In the HMM, the hidden stimulus variable s; takes on the value 1 if the signal
is on at time ¢ and 0 otherwise. We assume the observation z; is directly generated
by s; in under a Gaussian distribution, with the mean and variance determined by
S¢:

p(xilse = i) = N (i, 07) - (3.1)

For simulations in this section, we use the following parameters: po=1, =2, op=
.75, o1 =1.5. While this is clearly a simplifying model that assumes that all sensory
inputs at time ¢ can be summarized into a single scalar x;, it captures the properties
that there is a baseline activity level (reflecting the constantly lit house light,
neuronal noise, etc) associated with the non-signal state, and a heightened activity
level associated with the signal state, as well as multiplicative noise. Figure 3.1B

illustrates the generative model with a graphical model; Figure 3.4A illustrates
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Figure 3.3: Effects of cholinergic elevation on a sustained attention task. (A)
Infusion of NMDA into the basal forebrain, known to elevate corticopetal ACh release,
dose-dependently decreases the fraction CR’s, but has no effect on the number of hits
relative to misses. Error bars: standard errors of the mean. Adapted from [192]. (B)
Simulated ACh elevation, corresponding to an suppressed expectation of signal rarity,
leads to a similar dose-dependent decrease CR, while sparing hits (relative to misses).
Red: a = 1.10, green: a = 1.15, blue: o = 1.20 (see text for more information on a).
Error bars: standard errors of the mean.

the noise generation process.
The dynamics of s between one time step and the next are controlled by the

transition matrix 7, s,:
Tij = P(st=jlst-1=1) . (3.2)
The number of consecutive time-steps (/;) that the hidden variable spends in a

particular state s = i is determined by the self-transition probabilities (see Eq. 3.6)

T

<l 2= _7;

(3.3)

Thus, the average signal length being (500+50+25)/3 &~ 200 ms translates into
a signal self-transition probability of P(s;=1|s;—;=1) = 0.9756 (we use time units
of 5 ms). And the average duration of no-signal being 9 s = 9000 ms translates
into a no-signal self-transition probability of P(s; =0|s;—; =0) = 0.9994. These

quantities completely specify the Markov transition matrix 7:

0.9994 0.0006
T = P(s¢|st-1) = (3.4)
0.0244 0.9756

where the entry 7;; in row ¢ and column j specifies P(s; =1|s;—; =7j). Markovian
state dynamics lead to exponential distributions of dwell-time in each state, which
may or may not be the case for a particular experiment. We will return to this

issue in Section 3.2.3.
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Here, we focus on the inference problem and not the learning process, and
assume that the animal will have learned the parameters of the generative model
(the transition matrix, the prior distribution of s, and the noise distributions of z)
at the outset of the experimental session. In addition, since the onset of the ITI
resets internal belief (s; =1) at the beginning of each trial, we assume that the
animal knows with perfect certainty that there is no signal: P(s;=1) =0.

When the animal is confronted with the levers at the end of ¢ time steps (for
simplicity, we assume that the animal can recall peffectly the inferential state 2
seconds prior to lever extension, and therefore do not model the 2-second delay
explicitly), we assume that the animal must decide whether a signal was present
or not depending on the relative probabilities of s; = 1 versus s; = 0, given all
observations D; = {z;,Z,...,7:}. In other words, P(s; =1|D,) > P(s; =0|D;)
would lead to the decision s; = 1, and the opposite would lead to the decision
s¢ =0, since the prior probability of there being a light stimulus on a given trial
is exactly 1/2. The computation of this posterior is iterative and straight-forward

given Bayes’ Theorem:

P(stIDt) X p(l'tlst)P(St'Dt—l)
= p(mtlst)zq;e—lstp(st—lIDt—l) .

st—l

As usual, we see here a critical balance between the bottom-up likelihood term,
p(z¢|s:), and the top-down prior term P(s:|D;—;). If the prior term favors one
hypothesis (eg s; = 0), and the likelihood term favors the other (eg s; = 1), then
this prediction error would shift the posterior (and the prior for the next time-step)
a bit more in favor of s; = 1. Multiple observations of inputs favoring s; = 1 in
a row would shift the dynamic prior increasingly toward s; = 1. Note that the
influence of the prior on the inference step relative to the likelihood is determined
by a constant component (the transition matrix 7") and a dynamic component
(P(8¢-1|Ds-1)) driven by observations.

Such an inferential/decision process is optimal according to Bayesian theory,
but it still can result in an error when the posterior distribution based on a finite
amount of noisy data favors the “wrong” hypothesis by chance. In addition to
these “inferential” errors, we assume that the animal makes some non-inferential
(eg motor or memory) errors that are in addition to any in the inferential process.
So even though the animals should ideally always choose the left lever when P(sp=
1|Dr) > .5, and the right lever otherwise, we model them as pressing the opposite
lever with a small probability (.15).
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Figure 3.4: Generative noise and posterior inference in an HMM model of the
sustained attention task. (A) “Sensory” noise generated by non-signal (red: po=1,
oo = .75) and signal (blue: p; =2, o3 = 1.5). (B) Posterior probability of signal
P(s; = 1|D;) for different signal lengths, aligned at stimulus onset (dashed cyan at
1800 ms). Traces averaged over 5 trials generated from the noise parameters in (A),
stimulus durations are specified as in legend.

3.2.2 Results

As can be seen in Figure 3.4A, there is a substantial amount of “sensory” noise
due to the overlap in the distributions: p(z|s = 0) and p(z|s = 1). Consequently,
each observation z; tends to give relatively little evidence for the true state of
the stimulus s;. The initial condition of P(s; =0) = 1 and the high non-signal
self-transition probability (7o) together ensure a “conservative” stance about the
presence of a stimulus. If s persists in one state (eg the “on” state) for longer,
however, the bottom-up evidence can overwhelm the prior. The accumulation
of these effectively iid (independently and identically distributed) samples when
the stimulus is turned on drives the posterior probability mass in the “on” state
(s = 1), and underlies the monotonic relationship between stimulus duration and
hit rate (see Figure 3.2A and 3.3A). Figure 3.4B shows the evolution of the iterative
posterior probability of s; = 1 for stimuli that appear for different amount of time.
As evident from the traces (averaged over 5 random trials each), the posterior
probabilities closely hug to 0 when there is no signal, and start rising when the
signal appears. The length of stimulus duration has a strong influence on the height
of the final posterior probability at the end of the stimulus presentation. The
black trace in the line plot of Figure 3.2B shows this more systematically, where
we compare the averages from 300 trials of each stimulus duration. The results
qualitatively replicate the duration-dependent data from the sustained attention
experiment (filled circles in Figure 3.2A).

A strong component of the top-down information here is the rarity of the signal
“on” state: s; = 0 is almost 2 orders of magnitude more likely than s; = 1 at any

particular time ¢, in both the experimental setting and the generative model. In
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accordance with our proposition that ACh signals expected uncertainty, a natu-
ral semantic for ACh might be the uncertainty associated with the predominant
expectation s; = 0, or 1 — P(s; = 0|D;) = P(s; = 1|D;).

With this identification of ACh to a specific probabilistic quantity in place, we
can explore the consequences of manipulating ACh levels (or the corresponding
probabilities) in the model. ACh depletion, for instance, is equivalent to decreasing
P(s; =1|D,), which we model here as multiplying it by a constant « less than 1
(lower-bounded at 0). Similarly, ACh elevation can be modeled as multiplying
P(s; = 1|D;) by a constant o greater than 1 (the probability is upper-bounded
at 1). Consequently, ACh depletion in the model results in an under-estimation
of the probability of the stimulus being present and a drop in hit rate. However,
the CR rate is already saturated, with a false alarm (FA) rate reflecting the non-
inferential error rate of .15, and cannot fall substantially lower despite the over-
estimation of non-signal trials. It makes no sense that the animals should be more
likely to report “no signal” on true signal trials but not on true non-signal trials,
when the substantial error rates indicate that a number of the trials, both signal
and no-signal, must be inferentially confusable. One explanation for the lack of
improvement in the number of CR is that there is a base rate of non-inferential
errors, either motor or memory-related, which do not depend on the difficult of
the sensory discrimination or the perceptual decision criterion.

In contrast, ACh elevation in the model is equivalent to an over-estimation of
the probability of the stimulus being present, resulting in a rise of FA’s relative
to CR’s. The benefits to hit rate, also close to saturation, are relatively small.
Figure 3.2B and Figure 3.3B show that under these assumptions, our model can
produce simulation results that qualitatively replicate experimental data [192] for
ACh depletion and elevation, respectively. Although there is some flexibility in the
formal implementation of ACh manipulations (different values of a or altogether
a different functional form), the monotonic (dose-dependent) and doubly disso-
ciated properties of ACh depletion/elevation observed experimentally are clearly
demonstrable in our model. The exact quantitative effects of NMDA drugs on

ACh release in the cortical areas, in any case, are not precisely known.

3.2.3 Discussion

In this section, we used a simple 2-state HMM with Gaussian noise to model a
signal detection task, in which the light stimulus appears briefly, infrequently, and
unpredictably. In the model, we identify ACh level as the iterative posterior prob-
ability of the stimulus being present, P(s; = 1|D;). As observed in experiments
[132], shorter stimuli lead to poorer detection performance in the model. Moreover,
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we could simulate pharmacological manipulations of ACh by artificially altering
the posterior probability in the inference model. Similar to experimental data
[192], ACh depletion leads to a dose-dependent decrease of hit rate while sparing
CR’s, and ACh elevation selectively impairs CR while having little effect on hit
rate. The strength of this model is its simplicity and its ability to capture the
experimental data compactly.

It is possible that animals can actually learn and utilize a more complex in-
ternal model than the HMM that we have assumed here, which is the simplest
model that can capture something about the frequency and timing of the stimulus
presentation, as it does not require the representation or tracking of time. The
HMM is limited in its capacity to represent arbitrary distributions of signal dura-
tion and onset times. A 2-state HMM has only two free parameters 7o and 7y,
which can be used to mold the distributions. We showed in Eq. 3.3 the relation-
ship between the mean duration of the two signal states (on and off) and the two
self-transition probabilities. In the HMM, it can also be shown that these prob-
abilities determine the variance of the signal durations: var(l;) = 73/(1 — T;;)2.
This limits the capacity of the HMM in modeling the experimental settings. For
instance, the transition matrix that we used makes the standard deviation of the
inter-signal interval (8.3 sec) much larger than the experimental value (1.75 s).
Moreover, the stimulus cannot actually occur within 6 seconds of ITI onset, nor
can it appear more than once per trial. These additional pieces of information
can be helpful for signal detection, but not captured by the simple HMM, as they
require longer-range temporal contingencies and richer representations.

Another hint that the HMM formulation may be overly simple comes from
a discrepancy between Figure 3.3A and B. One qualitative difference is that the
animals’ performance on intermediate signal (50 ms) trials is significantly worse
than on the long signal (500 ms) trials, whereas in the model, the performance is
already near saturation at 50 ms), and it is this saturation property that prevents
the hit rate from rising when ACh is elevated in the model. This may be empir-
ical evidence that the animals might be employing a computational model more
complex than the HMM.

Despite these shortcomings, the HMM has been shown to capture the core
characteristics of the experimental data, indicating that the representation of these
additional experimental contingencies are not fundamental to induce the general
pattern of deficits observed in the animals. Even in richer Bayesian models, iden-
tifying ACh with the on-line posterior probability of signal presence should give
qualitatively similar results as those presented here. Of course, it is possible that

other, non-Bayesian models might equally well explain some of the experimental
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phenomena explored here. Without further verification, it is impossible to distin-
guish between this Bayesian formulation and other potentially suitable models. In
the next session, we extend the ideas developed here to tasks in which the hidden
variable is allowed to be in more than two states, and explore the role of ACh there.
This approach will allow us to make novel, experimentally verifiable predictions

about ACh in certain inference and learning tasks.

3.3 State Non-stationarity and ACh-mediated

Approximate Inference

In general, hidden environmental variables can reside in one of a large number of
states. Inferring appropriate representations for these variables from noisy sensory
inputs is a formidable task, complicated by the inherent ambiguity in the sensory
input and potential non-stationarity in the external environment. A vital source of
information that helps this inferential problem comes from the temporal persistence
of environmental variables. This form of stability allows appropriate incorporation
of recent observations to provide useful top-down information for disambiguating
noisy bottom-up sensory inputs [203, 141, 82].

In Section 3.3.1, we use a 3-layer hidden Markov model (HMM) as a generative
model for illustrating these ideas. The top layer consists of a discrete contextual
variable that evolves with Markovian dynamics. This hidden contextual variable
determines the relative probabilities of an observed data point being generated
by one of n different clusters (for concreteness, we assume n = 4 in the rest of
Section 3.3, but the generalization to arbitrary n should be straight-froward). In
section 3.3.2, we consider the inferential task of computing the posterior probabil-
ity of the data being generated from each of the clusters, by integrating the top-
down contextual information, distilled from past observations, and the bottom-up
sensory inputs. While the series of inputs are individually ambiguous, top-down
information based on a slowly-changing overall contextual state helps to resolve
some of the ambiguity [21]. However, exact Bayesian inference in this model can
be daunting when the state space of the hidden variable is large. Instead, we
consider an approrimate inference model in section 3.3.3, which is computation-
ally inexpensive. This approximate algorithm only keeps track of the most likely
state for the hidden variable and the uncertainty associated with that estimate.
We will demonstrate that the performance of this approximate recognition model
approaches that of the exact recognition model, and significantly outperforms a

naive algorithm that ignores all temporal information.



State Non-stationarity and ACh-mediated Approximate Inference 43

7;1 12t z

Figure 3.5: Hierarchical HMM. (A) Three-layer model, with two hidden layers, z
and y, and one observed layer, x. The temporal dynamics are captured by the tran-
sition matrix 7;, ,., in the z layer, and the observations x are generated from y and,
indirectly, from z. (b) Example parameter settings: z€{1,2,3,4}=y€{1,2,3,4} =
x € R? with dynamics (7') in the z layer (P(z;=2;_1)=0.97), a probabilistic mapping
(O) from z —y (P(y: = 2t|2t) = 0.75), and a Gaussian model p(x|y) with means at
the corners of the unit square and standard deviation o = 0.5 in each direction. Only
some of the links are shown to reduce clutter.

3.3.1 A Hierarchical Hidden Markov Model

The hierarchical HMM we consider consists of three levels of representation (Fig-
ure 3.5). The first one is z;, which we sometimes refer to as the contezt, is the
overall state of the environment at time ¢. It exhibits Markov dynamics, in that
the state of 2z, given the immediate past z;_; is independent of more distant past.
This variable is also hidden, so that its states cannot be directly observed. Instead,
z; probabilistically determines an intermediate variable y;, also hidden, which in
turn gives rise to the observable variable x; stochastically. The hidden and Marko-
vian nature of the variable z; makes the model a hidden Markov model (HMM);
in addition, it is hierarchical since it contains three interacting levels of represen-
tations. The only directly observable variable is the successive presentations of x:
D; = {x1,Xa,...,%:}. The inferential task is to represent inputs x; in terms of
the y; values that were responsible for them. However, the relationship between y;
and x; is partially ambiguous, so that top-down information from the likely states
of z; is important for finding the correct representation for x;. Figure 3.5A rep-
resents the probabilistic contingencies among the variables in a directed graphical
model. Figure 3.5B shows the same contingencies in a different way, and specifies
the particular setting of parameters used to generate the examples found in the
remainder of this section.

More formally, the context is a discrete, hidden, random variable z;. Changes
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to z; are stochastically controlled by a transition matriz T,,_,,,:

T if 2, = 21
Toporu = P(ztlzt—l) = (35)

1—-1 .
r— otherwise

where n, is the number of all possible states of z, and 7 is the probability of
persisting in one context. When 7 is close to 1, as is the case in the example of
Figure 3.5B, the context tends to remain the same for a long time. When 7 is
close to 0, the context tends to switch among the different states of z rapidly, and
visiting the different states with equal probability. The probability that a state
persists for ! time steps without switching, and then switches on the next time
step, depends on the self-transition probability 7: P(l;7) = 7¢(1 — 7). Therefore,

the average duration of a continuous context state is

<l>= IZ(;(I—T)IT’=(1—T)(1_TT)2 = 1;. (3.6)

The prior distribution over the initial state is assumed to be uniform: P(z;) =
1/n,.

The relationship between z; and y; exhibits coarse topology. For a particular
value of 2;, P(y:|2) is largest when the two are equal, smaller for the more distant
values of y;, and smallest for the value of y; most distant from 2;. In the particular
implementation that we consider, there are four possible states for each of z; and
Y:, 50 that their relationship has a “square topology” (see Figure 3.5B). In other
words, the probability distribution over y; given 2; has the following form:

0.75 if Y = 2
Qe = P(yelz) = 0.1 if |ys — 2| = 1 (mod 4) (3.7)
0.05 if |y, — 2| > 1 (mod 4)

The third level is the observed input x;, which depends stochastically on y; in

a Gaussian fashion:

_N' 2I — 1 _|xt"'l‘y:|2 3.8
p(xtlyt) - (/‘yuU )_ \/2—7‘_0_ €xp 20_2 ( . )

y: controls which of a set of circular two-dimensional Gaussian distributions is used
to generate the observations x; via the densities p(x|y), and the actual value of y;
(hidden to the observer) is called the model’s true representation or interpretation
of x;. The means of the Gaussians p(x|y) are at the corners of the unit square, as
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Figure 3.6: Generative model. A sample sequence involving 400 time steps, gener-
ated from the model shown in Figure 3.5B. Note the slow dynamics in z, the stochastic
mapping into y, and substantial overlap in x’s generated from the different y’s (dif-
ferent symbols correspond to different Gaussians shown in Figure 3.5B).

shown in Figure 3.5B, and the variances of these Gaussians are o1.

Figure 3.6 shows an example of a sequence of 400 states generated from the
model. The state in the z layer stays the same for an average of about 30 time
steps, and then switches to one of the other states, chosen with equal probability.
The key inference problem is to determine the posterior distribution over y, that
best explains the observation x;, given the past experiences D;_; = {X3,...,X¢_1}
and the internal model of how the variables evolve over time.

One way of interpreting this generative model (see [167]) is that the data is
generated by a mixture of Gaussian components, and the set of mixing proportions
is specified by the contextual variable. The inference problem is equivalent to
determining which cluster generated the observation. While the data itself gives
some information about which cluster it came from, top-down information about
the mixing proportions is also helpful.

The parameters in the model specify the transition matrix 7, the conditional
distributions O,,, and the emission densities p(x;|y;). It is assumed that all the
parameters have already been correctly learned at the outset of the inference prob-

lem; we do not deal with the learning phase here.
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3.3.2 Exact Bayesian Inference

Inference of the exact posterior distribution, P(y:|x¢, Di—1) = P(y:|D;), uses tem-
poral contextual information consisting of existing knowledge built up from past
observations, as well as the new observation x;.

In each time step ¢, the top-down information is propagated through z;, while
the bottom-up information is carried by z;. The dynamic prior distribution over
2t

P(2|Ds-1) = ) P(2-1|De-1)Toroim (3.9)

2t—1
distills the contextual information from past experiences D;_;. This information

is propagated to the representational units y by

P(e|De-1) = Y _P(24|Ds-1)O%sys - (3.10)

2zt

This acts as a past data-dependent prior over y;.

The bottom-up information is the likelihood term, p(x|y;), which interacts
with the top-down information, P(y;|D;-1), in what is known as the conditioning
step:

P(ye|De-1,%¢) o< P(ys|De—1)p(xeye) (3.11)

This distribution over y; gives the relative belief in each of the states of y; having
generated the current observation z;, in the context of past experiences. Hence-
forth, it will be referred to as the eract posterior over y;. Analogous to the con-
tinuous case of Eq. 1.2 in Chapter 1, the relative uncertainty in the two sources of
information determines how much each source contributes to the inference about
the variable of interest y;.

The new posterior over 2;_; can be computed as:

P(2|D) o P(2|Ds-1) ) P(yel2)p(x:ly:) (3.12)

Yt

which is propagated forward to the next time step (t+1) as in Eq. 3.9. Figure 3.7A
illustrates this iterative inference process graphically. '
Figures 3.8 and 3.9 show various aspects of inference in the HMM for a partic-
ular run. The true contextual states {z}, 23, ...}, the true representational states
{v%,v3, ...}, and the observations {x,Xa,...} are generated from the model with
the parameters given in Figure 3.5B. The posterior distributions over 2; and
given D, (all the observations up to and including time t) are computed at each

time step using the algorithm detailed above. If the algorithm is working properly,
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Figure 3.7: Recognition models. (A) Exact recognition model. P(z;_1|D;—_) is
propagated to provide the prior P(z¢|D;—1) (shown by the lengths of the thick vertical
bars), and thus the prior P(y;|D;—1). This is combined with the likelihood term from
the data x; to give the true P(y;|D;). (B) Bottom-up recognition model uses only a
generic prior over y;, which conveys no information, so the likelihood term dominates.
(C) Approximate model. A single estimated state Z;_; is used, in conjunction with
its uncertainty 1 — 7,_;, presumably reported by cholinergic activity, to produce an
approximate prior P(z|D;_;) over z, (which is a mixture of a delta function and a
uniform), and thus an approximate prior over y;. This is combined with the likelihood
to give an approximate P(y;|D;), and a new cholinergic signal 1 — 7, is calculated.

A % B  argmax, P[zt|’Dt] C
3- — -—| 3 -— -——| 3
%
2| — —- | 2= —=- 2
g — | 1

0 Tme 400 0 Tme 400 0  Tme 400

Figure 3.8: Contextual representation in exact inference. (A) Actual z; states. (B)
Highest probability z; states from the exact posterior distribution. (C) Most likely
Z; states from the approximate inference model.

then we would expect to see a close correspondence between the “true” contextual
state z; and the inferred, most likely state 2, = argmax,, P(2|D;). Figure 3.8A;B
shows that 2; mostly replicates 2; faithfully. One property of inference in HMMs
is that these individually most likely states Z; do not form a most likely sequence
of states (see [202]), but rather a sequence of most likely states.

Figure 3.9A and 3.9B show histograms of the representational posterior prob-
abilities of the true states y; and all the other possible states §; # y;, respectively,
computed by the exact inference algorithm. As one would expect, the former
are generally large and cluster around 1, while the latter are generally small and
cluster around 0.

The exact inference algorithm that we have described achieves good perfor-
mance. However, one may well ask whether it is computational feasible for the
brain to perform the complete, exact inference in all its mathematical complexity.

Viewed abstractly, the most critical problem seems that of representing and ma-
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Figure 3.9: Quality of exact inference. Histograms of the posterior distributions
of the true state y; (A, C, and E) and all other possible states g; # vy; (B, E, and
F), tallied over 1000 time steps of a run. (A,B) are based on the exact inference
algorithm, (C,D) the approximate inference algorithm, and (E,F) the bottom-up
inference algorithm. The x-axis is divided into bins of P(y:|D;) ranging from 0 to 1,
and the y-axis refers to the number of occurrences that probability accorded to y;
or y; falls into each of the binned probability intervals in the posterior distributions.
Note that the histograms in the right column have larger entries than those in the left,
because at each time steps, only the “true” state contributes to the histogram on the
left, while the other three contribute to the right. The differential degrees of similarity
between the histograms produced by the approximate algorithm compared to the
exact algorithm, and by the bottom-up algorithm compared to the exact algorithm,
are an indication of their respective quality of representational inference.

nipulating simultaneously the information about all possible contexts: P(z;|Dy).
This is particularly formidable in the face of distributed population coding, where
the whole population of units in the relevant cortical area is used to encode infor-
mation about a single context. In our simple example, there are only four possible
contexts; in general, however, there are potentially as many contexts as known
environments, a huge number.

A “naive” solution to the complexity problem is to use only the likelihood term,
p(x¢|y:), and a generic uniform prior over y;, in the inference about the current
representational states y;, and ignore all other (temporal) top-down information
altogether. This is actually one traditional model of inference for unsupervised
analysis-by-synthesis models (eg [99]). Figure 3.7B shows the structure of a purely

bottom-up model, where the approximate posterior is computed by P(ytlxt) =



State Non-stationarity and ACh-mediated Approximate Inference 49

A B
1 c'&“"g@ 1 - .l. :
. gpoerses ST Y v
':?. o' ®es ."c_ -~ :.i;- & if -:l L
| Y o
a :‘, ."..'. o - .'f‘-:.-'."' s
o LR
R AL
év}:"ﬁﬁ* o
0 . 0 g :
0 P [yt|Dt] 1 0 P [yt|Dt] 1

Figure 3.10: Representational performance. Comparison of (A) the purely bottom-
up P(y;|D;) and (B) the approximated P(y;|D;), with the true P(y:|D;) across all
values of y;. The approximate model is substantially more accurate.

p(x¢|ly:)/ 2, where Z is a normalization factor. Purely bottom-up inference solves
the problem of high computational costs: there is no need to carry any information
from one time step to the next. However, the performance of this algorithm is likely
to be poor, whenever the probability distribution of generating x for the different
values of y overlaps substantially, as is the case in our example. This is just the
ambiguity problem described above.

Figure 3.10A shows the representational performance of this model, through
a scatter-plot of P(y,|x,) against the exact posterior P(y,|D;). If bottom-up in-
ference was perfectly correct, then all the points would lie on the diagonal line of
equality. The bow-shape shows that purely bottom-up inference is relatively poor.
The particularly concentrated upper and lower boundaries indicate that when the
true posterior distribution assigns a very high or very low probability to a state of
y, the corresponding distribution inferred from bottom-up information alone tends
to assign a much more neutral probability to that state. This tendency highlights
the loss of the contribution of the disambiguating top-down signal in the bottom-
up model. With only the bottom-up information, it rarely happens that one can
say with confidence that a state of y; is either definitely the one, or definitely not
the one, that generated x;. The exact shape of the envelope is determined by the
extent of overlap in the densities p(x|y) for the various values of y, but we do not
analyze this relationship in detail here, as it depends on the particular structure

and parameters of the generative model.

3.3.3 Approximate Inference and ACh

A natural compromise between the exact inference model, which is representa-
tionally and computationally expensive, and the naive inference model, which has

poor performance, is to use a model that captures useful top-down information
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at a realistic computational cost. The intuition we gain from exact inference is
that top-down expectations can resolve bottom-up ambiguities, permitting better
processing. Since the context tends to persist, the corresponding posterior distri-
bution over 2z tends to be sparse and peaked at the most probable setting of z.
Therefore, a good approximation to the posterior in most cases can be obtained
from the family of discrete mixture distributions that has a peaked (Kronecker)
Delta component and a flat uniform component. This distribution is parame-
terized by jﬁst two variableé, one ihdicafirig the most probable contextual state,
Z = argmaxnf?(ztll)t), and the other indicating the confidence associated with
that designation, 4, = P(%|D;). The result is an approrimate posterior distribu-
tion:

P(2De) = %buuz, + (1 = 642)(1 — %)/ (n2 — 1) (3.13)

The computational steps of this approximate algorithm are the same as those
in Eq. 3.9-3.12, except the posterior distribution P(z|D;) is approximated by
P(2|D,) everywhere, and the latter quantity is the 2-component mixture distribu-
tion described above. The crucial differences between the approximate inference
algorithm and the exact one detailed before is this substitution. The computa-
tional and representational simplification result from the collapse of the state space
into just two possibilities: that 2, takes on the estimated the value Z;, or that it
does not. Figure 3.7C shows a schematic diagram of the proposed approximate
inference model.

In exact inference, the notion of uncertainty is captured implicitly in the poste-
rior distribution of the contextual state P(z;—1|D;—1) in Eq. 3.9. This uncertainty
determines the relative contribution of the top-down information, P(y;|D;-,), com-
pared with the information from the likelihood p(x:|y:), in Eq. 3.11. In the ap-
proximate inference algorithm, 4, is the uncertainty signal that controls the extent
to which top-down information based on Z;_; is used to influence inference about

y:. More precisely, let us expand the approximate posterior distribution over y;:

P(yDy) o< Y Pz, wlDe1)p(:lye)

zt

= p(xelye) Y P(u:l2) D P(2tl#-1)P(2-1|De-1)

2t—1

~ p(xilyr) Y P(yil2)P(2-1 = 2|Dy)

2t

= p(Xelye) (YP(Ye|Ze—1) + (1 — 7)) P(ye|2e # Z:-1)) (3.14)

where the approximation comes from the contextual persistence assumption of

Eq. 3.5: 7 = 1. Because the contextual variable 2z has a strong influence on the
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hidden variable y in the generative model (P(y; = z]|2;) large; Eq. 3.7), high
confidence in the current context (7 = 1) makes the first term in the parentheses
dominate and therefore the top-down expectation of y; = Z_; dominates the
posterior in y;. However, if there is low confidence in the current context (y = 0),
then the second term dominates the sum of Eq. 3.14; in this case, the top-down
expectations are relatively uninformative (second and third cases of Eq. 3.7), and
thus the bottom-up likelihood term in the product, p(x;|y:), drives the posterior
inference OVer.yt. « | 7 |

One potentially dangerous aspect of this inference procedure is that it might
get unreasonably committed to a single state: Z,_; =2%;=.... Because the proba-
bilities accorded to the other possible values of 2;_; given D;_; are not explicitly
represented from one time step to the next, there is little chance for confidence
about a particular (new) context to build up, a condition important for inducing
a context switch. A natural way to avoid this is to bound the uncertainty level
from below by a constant, ¢, making approximate inference slightly more stimulus-

bound than exact inference. Thus, in practice, rather than using Eq. 3.13, we use

1 —m)=¢+(1-9)(1— P(z|D)) (3.15)

We propose that ACh reports on this quantity. Larger values of ¢ lead to a
larger guaranteed contribution of the bottom-up, stimulus-bound likelihood term
to inference, as can be seen from Eq. 3.14.

Figure 3.11A shows the same example sequence as in Figure 3.8A, and Fig-
ure 3.11B shows the corresponding “uncertainty signal” 1 — argmax,, P(2;|D;) for
this run. As might be expected, the level of uncertainty is generally high at times
when the true state 2 is changing, and decreases during the periods that z} is con-
stant. During times of change, top-down information is confusing or potentially
incorrect, and so the current context should be abandoned while a new context
is gradually built up from a period of perception that is mainly dominated by
bottom-up input. Figure 3.11C shows the ACh-mediated uncertainty level in the
approximate algorithm for the same case sequence, using ¢ = 0.1. Although the
detailed value of this signal over time is different from that arising from an ex-
act knowledge of the posterior probabilities in Figure 3.11B, the gross movements
are quite similar. Note the effect of ¢ in preventing the uncertainty signal from
dropping to 0. Figure 3.9C;D show that the approximate inferences has the same
tendency as the exact algorithm (Figure 3.9A;B) to accord high probabilities to
the true sequence of states, y;, and low probabilities to all the other states, ;. In
comparison, the bottom-up model performs much worse (Figure 3.9E;F), tending
in general to give the true states, y;, lower probabilities. Figure 3.10B shows that
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Figure 3.11: Uncertainty and approximate inference. (A) Actual sequence of con-
textual states z; for one run. (B) Exact uncertainty from the same run (see text).
(C) Uncertainty estimate in the approximate algorithm, adjusted with the parameter
¢. Note the coarse similarity between B and C.

the approximate posterior values P(y|D) are much closer to the true values than
for the purely bottom-up model, particularly for values of P(y;|D;) near 0 and 1,
where most data lie. Figure 3.8C shows that inference about 2; is noisy, but the
pattern of true values is certainly visible.

Figure 3.12 shows the effects of different ¢ on the quality of inference about
the true states y;. What is plotted is the difference between approximate and
exact log probabilities of the true states y;, averaged over 1000 cases. The av-
erage log likelihood for the exact model is —210. If ¢ = 1, then inference is
completely stimulus-bound, just like the purely bottom-up model. Note the poor
performance for this case. For values of ¢ slightly less than 0.2, the approximate
inference model does well, both for the particular setting of parameters described
in Figure 3.5B and for a range of other values (not shown here). An upper bound
on the performance of approximate inference can be calculated in three steps by:
i) using the exact posterior to work out 2, and -, ii) using these values to con-
struct the approximate P(%|D,), and iii) using this approximate distribution to
compute P(y,|D,) iteratively. The difference between this upper-bound algorithm
and our approximate inference algorithm is that in the latter, the approximation

accumulates. A large difference in performance would indicate that the iterative
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Figure 3.12: Representational cost, defined as (log Q(y;|D:) — log P(yf|Dt)) p(x.)>
where P(y;|D;) is the posterior probability accorded to the true hidden variable y; by
the exact algorithm, and Q(y;) is the posterior probability accorded by the (approx-
imate) inference algorithm. Higher values (closer to 0) indicate better performance
(more similar to the optimal, exact inference algorithm). Dashed: The representa-
tional cost, denoted as A(log P(y})), for the naive bottom-up algorithm. Solid: the
mean extra representational cost for the approximate inference model, A(log P(y;)),
as a function of ¢. It is equivalent to the bottom-up model when ¢ =1. The opti-
mal setting of ¢ is just below 0.2 for this particular setting of the generative model.
Error-bars show standard errors of the means over 1000 trials.

approximation leads to accumulated errors that degrade performance over time.
Previously, it had been shown that such iterative approximation in probabilitic
propogation results in a bounded error under most circumstances [30]. In fact,
Figure 3.12 shows that the average inferential cost for this upper-bound algorithm
(ie the average resulting difference from the log probability under exact inference)
is —3.5 log units, only slightly better than —13 for the approximate algorithm,
and both are an order of magnitude better than the purely bottom-up algorithm
(—=72).

3.3.4 Discussion

In this section, we explored inference problems in which a contextual state variable
undergoes Markovian and infrequent changes among various possible values. Per-
sistence in this contextual state variable means that top-down information distilled
from past observations are valuable for determining an appropriate representation

y; for new sensory inputs x;. The extent to which the contextual information is
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helpful for the inference problem is determined by the relative uncertainty in the
“top-down” distribution over y;, relative to the noise in the generation of observa-
tions, p(x¢|y;). Compared to standard hidden Markov models [167], the particular
implementation here has an extra intermediate layer of y;. The insertion of this
extra layer isolate top-down and bottom-up sources of information, and helps to
illustrate the importance of a correct balance between the two in optimal inference.

This HMM generative model is more realistic than the stationary linear-
Gaussian model introduced in Chaptér '1, as the environment is allowed to un-
dergo occasional and abrupt contextual changes. However, this added element of
stochasticity significantly complicates the inference problem, with the computa-
tional complexity growing with the total number of possible states for z;, which
can be a huge number in realistic scenarios. Instead, we propose that the brain
may implement an approrimate inference algorithm that only needs to keep track
of a single most likely contextual state Z;, and the corresponding expected un-
certainty associated with this estimate, in order to make inferences about y;. In
addition, we propose that ACh signals this uncertainty measure. This approxi-
mate inference model was shown to achieve performance approaching that of the
exact algorithm, and much better than a naive algorithm that ignores all tempo-
ral contextual information. The ACh-mediated uncertainty signal fluctuates with
prediction errors, which are driven by observation noise and inherent stochasticity
in environmental contingencies. It controls the balance between top-down infor-
mation and bottom-up input in a way consistent with the intuition developed in
Chapter 1.

3.4 Summary

In this chapter, we explored the role of uncertainty in a class of inference tasks,
in which observations from the recent past provide useful top-down information
in the interpretation of new sensory inputs. This is a more realistic scenario than
the simple weight-learning task introduced in Chapter 1, in which the hidden
state of the environment remains stationary for an indefinite amount of time.
We used a hidden Markov model (HMM) to capture the temporal dynamics of
the hidden variable of interest. In an HMM, the state of the hidden variable
evolves among discrete settings according to a probabilistic transition matrix. In
this more sophisticated model, the influence of top-down information over the
interpretation of new sensory inputs is determined by both a dynamic factor, the
posterior based on past data, and a constant factor, the transition matrix. More

certain (peaked) posterior distributions have greater influence, as does greater
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temporal persistence in the hidden variable (greater self-transition probabilities).
Unlike in the stationary linear-Gaussian model in Chapter 1, prediction errors
affect the impact of top-down influence by shaping the posterior distribution.

We proposed that ACh reports top-down uncertainty in such tasks. Using a
simple 2-state HMM to capture the computational demands of a sustained at-
tention task [132], and identifying ACh with a form of top-down uncertainty, we
demonstrated that bi-directional modulation of ACh in the model captures the
specific and distinct patterns of ir'np<ai1"m'ent7: in the taék, which are found by phar-
macologically increasing or decreasing the level of ACh [192]. Although there are
some small discrepancies, such as a saturation of hits at shorter stimulus durations
in the model than in the experiment, the general patterns of deficits are quite simi-
lar. We also generalized such tasks to conditions in which the hidden state variable
is allowed to take on one of many values, and considered a generalized role of ACh
in these computations. The results amount to concrete predictions about the role
of ACh in inference tasks involving context changes. In Chapter 6, we will discuss
some preliminary results from an experimental study specifically testing some of
these predictions.

Despite its utility, the class of HMM models we considered in this chapter
is minimalist and clearly inadequate for addressing some interesting issues that
deserve further consideration. A critical issue is that the class of HMM we con-
sidered is not express enough to distinguish between expected and unexpected
uncertainty. Perhaps the sustained attention task itself is not complex enough to
engage a separate unexpected uncertainty. It has been observed that noradrener-
gic manipulations do not interact with performance in this task [131]. Also, we
did not consider sources of top-down information that are distinct from temporal
context. In the next chapter, we will examine a still more powerful model, and

examine both of these issues in more detail.



Chapter 4

Expected and Unexpected

Uncertainty

4.1 Introduction

In the previous chapter, we considered a class of inference tasks in which past
observations help to inform the internal model, which in turn exerts top-down
influence in the interpretation of new sensory inputs. We explored the provenance
and consequence of top-down uncertainty in such a scenario, using the hidden
Markov model (HMM) as the generative model. Top-down uncertainty, driven by a
combination of internal assumptions and direct observations, was shown to control
the balance of top-down and bottom-up influence in the inference about sensory
inputs. We also used a simple version of the HMM to model the experimental
contingencies of a sustained attention task. By identifying ACh with a form of
top-down uncertainty, we could simulate ACh manipulations in the task, which
result in patterns of behavioral deficits similar to experimental data. However, the
HMM we considered lacks the expressive power to distinguish between different
forms of uncertainty that can plague the inference/learning process, as it lumps
together all top-down uncertainty into a single quantity.

In particular, we are interested in the distinction between ezpected uncertainty
and unezpected uncertainty. The experimental data reviewed in Chapter 2 suggest
that ACh and NE may signal expected and unexpected uncertainty, respectively.
Expected uncertainty comprises known factors that limit the impact of top-down
expectations in the interpretation of sensory inputs, such as known ignorance about
a particular behavioral context and known stochasticity in the statistical regular-
ities in the environment. Unexpected uncertainty, on the other hand, arises from
observations that completely contradict the internal model of the environment,

even when expected variabilities are taken into account. Such unexpected errors,
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especially observed in succession, should drive the inferential system to consider
the possibility that the overall state of the environment has changed and a new
model of environmental contingencies may be necessary. In order to gain a bet-
ter understanding of the two different types of uncertainty, we need an inferential
task that involves both kinds of uncertainty, and a generative model that clearly
separates the two.

We use several variants of selective attention tasks to concretize our theoret-
ical ideas. Selective attention typi‘calrly' refers to top-down, differential filtering
of sensory inputs in sensory inference and representational learning. There have
been several Bayesian models of attention that examine the provenance and con-
sequence of selective attention [50, 214, 215]: where these top-down biases come
from and how they should influence inference and learning. One important in-
sight is that certain aspects of attentional selection can help achieve statistical
and informational optimality, above and beyond the classical resource-constraint
argument [3].

In section 4.2, we describe a novel attentional task that generalizes spatial
cueing tasks and attention-shifting tasks, two classes of attention tasks known to
interact with ACh and NE differentially. We will argue that these two classes
of tasks involve either only expected uncertainty or only unexpected uncertainty,
while the novel task involves both. In section 4.3, we present a formal genera-
tive model of the novel task, along with the exact Bayesian inference algorithm.
We will argue that the representational and computational demands of this exact
algorithm are formidable for the brain and unrealistic under most scenarios. In-
stead, we propose in section 4.4 an approrimate inference algorithm, which utilizes
ACh and NE as expected and unexpected uncertainty signals, respectively. In
section 4.5, we will show that this much simpler approximate algorithm neverthe-
less achieves performance close to the optimal exact algorithm and much better
than a “naive” algorithm that does not use past observations as top-down infor-
mation in interpreting new inputs. We will show how spatial cueing tasks and
attention-shifting tasks are special cases of the generalized inferential task, and
why manipulating ACh and NE lead to the pattern of behavioral changes, or lack
thereof, in these tasks. We will also study the fully generalized task in some detail,
and make specific predictions about ACh and NE activation levels during different
states in this novel class of attentional tasks, as well as predictions about con-
sequences of pharmacologically manipulation ACh and/or NE. A version of this
work has been published elsewhere [217].
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4.2 Uncertainty and Attention

From a Bayesian perspective, the ideal task for studying inference and learning
should clearly distinguish top-down information and bottom-up inputs, and al-
low these two factors to be independently controlled. For these reasons, tasks
that involve selective attention seem ideal. Attention is a somewhat loose term
used to describe the phenomenon, whether conscious or not, of devoting enhanced
processing to some restricted subset of the wealth of sensory inputs constantly
bombarding the brain. The target of this enhanced processing could be an object,
a sensory modality (eg auditory), a spatial location, a specific feature (eg color),
and so on. The causes of this enhanced processing can often be framed as prior
knowledge about temporal, spatial, featural, or reinforcement properties of sen-
sory stimuli. Such internal knowledge is usually accompanied by some amount of
uncertainty, which can arise from a number of factors internal and external to the
brain. Because attention tasks provide the experimenter with explicit control over
the top-down information available to the subject, including the uncertainty as-
sociated with that information, they are appealing targets for Bayesian modeling.
Moreover, as we discussed in Chapter 2, ACh and NE have repeatedly been shown
to be importance for a range of attentional tasks. Understanding the roles of ACh
and NE in these attentional tasks are both pressing and amenable to Bayesian
techniques.

One class of attentional tasks that is known to involve ACh but not NE is
the probabilistic cueing task [151]. In Chapter 2, we already introduced this
class of tasks, including the experimentally observed relationship between the cue-
dependent validity effect (VE) and the validity of the cue (probability of the cue
making a correct prediction about the spatial location of the target stimulus) [63].
The cue invalidity (1 — cue validity) parameterizes the stochasticity of the task,
and is typically constant over a whole experimental session. Therefore it induces
a form of ezpected uncertainty well known to the subject. CV has been shown to
be inversely related to the level of ACh [149, 211, 204, 40, 145, 209, 211]. This is
consistent with our intuition that ACh reports expected uncertainty and therefore
has an effect of suppressing the use of the cue to predict target locations. NE, in
contrast to ACh, does not consistently interact with the probabilistic cueing task
after initial acquisition [212, 41]. This also makes sense as the cue-target rela-
tionship is kept constant throughout the experimental session, so that unexpected
uncertainty should not play an important role.

NE instead appears to play an important role in a second paradigm, the
attention-shifting task, which we also discussed in Chapter 2. In an attention-
shifting task, the predictive properties of sensory stimuli are deliberately changed
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by the experimenter without warning, engaging an unezpected form of uncertainty.
If NE reports this unexpected uncertainty and in turn controls the adaption to new
environmental contingencies, then boosting NE pharmacologically should have just
the kind of learning facilitation observed in rates undergoing an unexpected shift
from spatial to visual cues in a maze-navigation task [59]. Converse to the spatial
cueing tasks, attention-shifting tasks tend not to manipulate expected uncertainty:
cue identity changes are not accompanied by any changes in cue validity. There-
fore, it is no surprise that in a related atténtion—shiftirig task that is forfnally
equivalent to those used in monkeys and humans [23], cortical noradrenergic (but
not cholinergic) lesions impair the shift of attention from one type of discrimina-
tive stimulus to another (Eichenbaum, Ross, Raji, & McGaughy. Soc. Neurosci.
Abstr. 29, 940.7, 2003).

The generalization of these two classes of tasks to a new task that involves both
expected and unexpected uncertainty seems straight-forward. We simply need a
task in which both the cue identity and cue validity are allowed to change from time
to time. In Figure 4.1, we illustrate one such instantiation. While other paradigms
might equally well have been adapted, we focus here on a particular extension of
the Posner task. The experimental settings here are chosen for conceptual clarity,
without regard to detailed experimental considerations, although adaptation to
other settings should be straight-forward.

In this generalized task, subjects observe a sequence of trials, each containing
a set of cue stimuli (the colored arrows, pointing left or right) preceding a tar-
get stimulus (the light bulb) after a variable delay, and must respond as soon as
they detect the target. The directions of the colored arrows are randomized inde-
pendently of each other on every trial, but one of them, the cue, specified by its
color, predicts the location of the subsequent target with a significant probability
(cue validity > 0.5), the rest of the arrows are irrelevant distractors. The color
of the cue arrow (the “relevant” color) and the cue validity persist over many tri-
als, defining a relatively stable contezt. However, the experimenter can suddenly
change the behavioral context by changing the relevant cue color and cue validity,
without informing the subject. The subjects’ implicit probabilistic task on each
trial is to predict the likelihood of the target appearing on the left versus on the
right, given the set of cue stimuli on that trial. Doing this correctly requires them
to infer the identity (color) of the currently relevant arrow and estimate its va-
lidity. In turn, this requires the subject to accurately detect the infrequent and
unsignaled switches in the cue identity (and the context). In this generalized task,
unsignaled changes in the cue identity result in observations about the cue and

target that are atypical for the learned behavioral context. They give rise to unex-
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Block 2: relevant cue = red
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Figure 4.1: Example of an extended Posner task involving differently colored cue
stimuli: (1) red, (2) green, (3) blue, (4) purple, (5) yellow. This is just for illustrative
purposes — experimental concerns have been omitted for clarity. Each trial consists of
a cue frame followed by a target frame after a variable delay. The subject must report
the target onset as quickly as possible. The first block has T'—1 trials, during which the
blue arrow predicts the target location with a constant cue validity (y1 = ... = yr-1),
and the arrows of all other colors are irrelevant (each on average points toward the
target on half of the trials by chance). In the second block, starting on trial T', the red
arrow becomes the predictive cue, but with a different cue validity yr = yr4+1 = ...
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pected uncertainty, and should therefore engage NE. Within each context, the cue
has a fixed invalidity, which would give rise to expected uncertainty, and should
therefore engage ACh.

4.3 A Bayesian Formulation

In this section, we examine a formal model of the generalized attention task. On
trial ¢, the subject is presented with a set of h binary sensory cues ¢; = {c1,...,cn}s,
followed by the presentation of a target stimulus S;. For simplicity, and in accor-
dance with typical experimental designs, we assume that each of the cue stimuli,
as well as the target stimulus, takes on binary values (0 or 1, representing for
instance left versus right). We also suppose that the animal is equipped with a

generic internal model with the following properties:

. ¥ if S =(a
P(Siles pe =1i,m) = t ) = (4.1)
11— if S; # (c):

T ifi=3j
T'i =P t = ] t—1 = ] = 4.2
i (ne =1ilp 7) =)ho1) ifid] (4.2)

0(ve —ye—1)  if pe = per
P(’Yt|’Yt—1,Nt, Nt—l) = ¢ . (4.3)
U[’Ymim 7maa:] if Mt :,é He—1

P({c:}r=1) = 0.5Vi,¢ (4.4)

where Ula, b] denotes the uniform distribution over the continuous interval [a, b],
and §() is the Dirac-delta function. Eq. 4.1 says whether the target S; at time ¢
takes on the value 0 or 1 (eg left or right) depends only on the value of cue input
¢; (eg one of the many colored cues), and not on any of the other A—1 cue stimuli
{c;j};si, where the cue identity i is specified by the value of the contextual variable
it = 1, and the cue validity is determined by the context-dependent parameter v; =
P(S;=(c;):)- Eq. 4.2 says that the context u evolves over time in a Markov fashion,
and that the frequency of context change depends on 7 € [0,1]. For instance, a
high self-transition probability 7= 1 implies that the context (cue identity) tends
to persist over many presentations: p; =ps=ps3=... Eq. 4.3 describes the way v
evolves over time: when the context variable changes (u;# pt—1), v also switches
from 7;_; to a new value drawn from a uniform distribution bounded by 7y, and
Ymaz (Without loss of generality, assume i, > 0.5 for positive correlation); it is
otherwise constant over the duration of a particular context (v, ="¢—1 if pe=pe—1)-
In addition, each (c;); is independently distributed, with probability 0.5, for being
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either 0 or 1 (eg pointing left or right).

During the experiment, the animal must decide how to allocate attention to
the various c; in order to predict S;, as a function of the probable current context
e, which depends on the whole history of observations D; = {c;, 51,...,¢:, St}
This is a difficult task, since on any particular trial ¢, not only can the relevant
cue incorrectly predict the target location with probability 1 — 4, , but about half
of all the h — 1 irrelevant cues can be expected to predict the target correctly by
chance! In addition, the inhefent, uns1gna.led non-statioharity in the cué-target
rela,tiohship creates difficulties. For instance, when the presumed cue appears to
predict the target location incorrectly on a particular trial, it is necessary to distin-
guish between the possibility of a one-off invalid trial, and that of the experimenter
having changed the cue identity. Formally, the underlying problem is equivalent
to computing the joint posterior:

) 1 ) )
P(us=1%,%|Dy) = ZP(Ct, Stlpe = 1,7) Z P(pe = t|p—) *
He—1

/P(7t|ﬂt=i,ﬂt—1a Ye—1)P(ttt—-1, Ye-1|De-1)dye—1 (4.5)

where Z, is the normalizing constant for the distribution. The marginal posterior
probability P(u|D;) = [ P(u¢,Y:|D:)dv: gives the current probability of each cue
stimulus being the predictive one.

Eq. 4.5 suggests a possible iterative method for exactly computing the joint
posterior, which would constitute an ideal learner algorithm. Unfortunately, the
integration over « in the joint posterior of Eq. 4.5 is computationally and represen-
tationally expensive (it is required multiple times for the update of P(u; = 1, v:|D;)
at each time step: once for Z;, and once for each setting of y; in the marginaliza-
tion). Given the history of ¢ observations, the true contextual sequence could have
had its last context switch to any new context during any of the past ¢ trials, some
more probable than others depending on the actual observations. Crudely, doing
the job “perfectly” on trial ¢ requires entertaining all different combinations of
cue and validity pairs as possible explanations for the current observation (c;, S;),
based on all past observations. This iterative computation, as each new cue-target
pair is observed, underlies the chief obstacles encountered by any biologically re-
alistic implementation of the ideal learner algorithm.

More specifically, the posterior distribution over +; given D; is a weighted sum
of beta distributions, each arising from the possibility of the last context switch
happening on a particular trial and the current context being a particular value,
and weighted by the probability of this possibility. Thus, Eq. 4.5 requires the
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representation of a mixture of h times ¢t components. This can be achieved in
one of two ways: explicitly, as a discretized approximation of the 7 space in the
computation of the posterior; exactly, based on a large and growing number of
sufficient statistics. The former is unlikely because the probability mass can be
arbitrarily concentrated, thus requiring arbitrarily fine resolution of the approxi-
mation; also, in more complex behavioral environments, the parameters involved
may be multi-dimensional, rendermg discrete approxnnatlon 1nfea31b1e The latter
is also unrealistic, since animals are faced with rich sensory environment (h large)

and make continuous observations (¢ large and growing).

4.4 Approximate Inference

In most natural environments, contexts tend to persist over time so that the rel-
evant cue-target relationship at a certain time also tends to apply in the near
future (7 =~ 1). Thus, animals may be expected to do well by maintaining only
one or a few working hypotheses at any given time, and updating or rejecting those
hypotheses as further evidence becomes available.

We propose one realization of such an approximation, which bases all estimates
on just a single assumed relevant cue color, rather than maintaining the full prob-
ability distribution over all potential cue colors. In the algorithm, NE reports the
estimated lack of confidence as to the particular color that is currently believed
to be relevant. This signal is driven by any unexpected cue-target observations
on recent trials, and is the signal implicated in controlling learning following cue
shift in the maze navigation task [59]. ACh reports the estimated invalidity of the
color that is assumed to be relevant, and is the signal implicated in controlling VE
in the standard Posner task [149]. These two sources of uncertainty cooperate to
determine how the subjects perform the trial-by-trial prediction task of estimating
the likelihood that the target will appear on the left versus the right.

More concretely, the posterior distribution P(u; = 1,7
Dd,) is approximated with a simpler distribution P* that requires the computation
and representation of only a few approximate variables: the most likely context
y; = i, the currently pertaining cue validity «;, the confidence associated with
the current model A\ = P*(u; = pf|D;), and an estimate of the number of trials
observed so far for the current context If. To reconstruct the full approrimate
posterior, we assume P*(u; = j # i|D;) = (1— A;)/(h—1) (ée uniform uncertainty
about all contexts other than the current one ¢), and the correlation parameters
associated with all j # ¢ to be 7o, a generic prior estimate for v. We suggest that
ACh reports 1 —~; and NE reports 1 — Af. 1—; is the expected disagreement be-
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tween (c;); and S;, and therefore appropriate for ACh’s role as reporting expected
uncertainty. 1 — A} is the “doubt” associated with current model of cue-target re-
lationship. It can be interpreted as a form of unexpected uncertainty, appropriate
for NE signaling, since 1 — A} is large only if many more deviations have been ob-
served than expected, either due to a contextual change or a chance accumulation
of random deviations. Iterative computation of this approzrimate joint posterior
is tractable and efficient, and comprises two scenarios: the target appears in the
predicted, or unpredicted, location. '

Target appears in the predicted location

If the target S; appears in the location predicted by the assumed cue ¢}, where
i;_, = i, then the current contextual model is reinforced by having made a correct

prediction, leading to an increase in A} over A;_;:

P*(ug=t,c¢, S| Dy—1,7;)
P*(pe=1, ¢, Se| Dy-1,77) + P*(pe #1, €, Sel Der, %

Ar = P (me=i|Dy) = ) (4.6)

where the joint probability of p; = p;_; = ¢ and the new observations, given all

previous observations and the current cue validity estimate +;, is

P*(pe=14,¢4, St|Di-1,%;) = P(Se=(c)eluse=1,7)(P(pe=1|ps—1=1)P(pe-1=1|D;-1)
+P(pe=1|pe-1#8) P(pe-1#1|De-1))
= nMar+ (1 -2)A-7)/(h-1))

and the joint probability of u;#¢ and the new observations is

P*(us#i, ¢4, Se|Deo1,¥;) = P(St=(Gi)t|Nt7£i,’Y:)(P(Ht7éi|ﬂt—l=i)P(Nt—l=i|Dt—1)
+P(pe # 4| pe-1 #5) P(pe—1 7| Dp-1))
~ 0.5(M_ (1—7)+ (1= X))

The approximation of 0.5 comes from the observation that, on average, half of all
the cue stimuli on a given trial can appear to “predict” the target S; correctly,
when A > 1. The optimal estimate of the cue identity remains the same in this
case (uf = p;_y, Iy = I;_; + 1), and the estimated correlation parameter 4} also
increases to reflect having observed another instance of a concurrence between the

target and the supposed cue:

*

_ # valid trials
"= # trials in current context

=%-1+ 1 —%-)/E (4.7)
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Target appears in the unpredicted location

If Sy # (c})¢—1, then there is a need to differentiate between the possibility of having
simply observed an invalid trial and of the context having changed. This requires
comparing P*(p: = i|Dy, 77) and P*(pe # 4| Dy, 1Y), where ) = v, =i, /(i_,+1)
would be the new estimate for v*, if the context were assumed not to have changed.

This is equivalent to comparing the following two quantities:

P*(ps = 1, ¢, StlDt—'l, ’Yf) = (1- ’Y:)(’\:—l"' + (1= A_)7/(h—1)) (4.8)
P*(ﬂt # 1,Cy, St|Dt—1,’Yf) ~ 0-5(A:-1(1 - 7') + (1 - /\:—1)7) (4-9)

where the approximation comes from the same h > 1 assumption as before. Con-
textual change should be assumed to have taken place if and only if the quantity
in Eq. 4.9 exceeds that in Eq. 4.8, or equivalently, if we assume 7 = 1 and A > 1,

0.5(1 = A*) > (1 —*)A" (4.10)

Setting ACh = 1 — 4* and NE = 1 — )\*, and rearranging the terms, we arrive at

the following expression

S ACh
0.5+ ACh
In addition to the threshold specified in Eq. 4.11, we assume the system may

be alerted to a contextual change if the ACh signal exceeds a certain threshold

(1 — Ymin being a natural choice here). That is, we assume that under extreme

NE (4.11)

circumstances, the brain can utilize ACh as an imperfect substitute for signaling
potential contextual changes, even in the complete absence of NE activation. This
is an assumption that needs further empirical verification.

Once a context change is detected, we assume that the animal waits a few “null”
trials (10 in our simulations) to come up with an initial guess of which stimulus is
most likely predictive of the target. The cue stimulus that most consistly correlates
with the target location is assumed to be the new predictive cue. When an initial
guess of the context is made after the “null” trials, A} and +; are initialized to

generic values (A\g=0.7 and 7o ="min in the simulations), and I} is set to 1.

Partially antagonistic relationship between ACh and NE

This inequality points to an antagonistic relationship between ACh and NE: the
threshold for NE which determines whether or not the context should be assumed
to have changed, is set monotonically by the level of ACh. Intuitively, when the

estimated cue invalidity is low, a single observation of a mismatch between cue and



Results 66

target could signal a context switch. But when the estimated cue invalidity is high,
indicating low correlation between cue and target, then a single mismatch would
be more likely to be treated as an invalid trial rather than a context switch. This
antagonistic relationship between ACh and NE in the learning of the cue-target
relationship over trials contrasts with their chiefly synergistic relationship in the
prediction of the target location on each trial.

Validity effect

Both expected and expected uncertainty should reduce the attention paid to the
target location predicted by the assumed cue, since it reduces the degree to which
that cue can be trusted. VE in our model is therefore assumed to be proportional
to v*A* = (1 — ACh)(1 — NE), though other formulations inversely related to
each type of the uncertainties signaled by ACh and NE would produce qualitatively
similar results. This is consistent with the observed ability of both ACh and NE
to suppress top-down, intracortical information (associated with the cue), relative
to bottom-up, input-driven sensory processing (associated with the target) [79, 96,
104, 116, 118].

4.5 Results

We first show how a spatial cueing task (the Posner task, [149]) and an attention-
shifting task (the maze-navigation task [59]) can be interpreted as special cases of
the generalized model we presented in section 4.3. We can then simulate ACh and
NE manipulations in the corresponding restricted models based on the formalism
developed in section 4.4. We will show that simulated pharmacological manipu-
lations correspond closely to experimental findings. Finally, we will examine the
fully generalized task, and make predictions about the trial-to-trial ACh and NE
activations under different conditions, as well as the interactions between the two

neuromodulatory systems.

4.5.1 The Posner Task

We model the Posner task [149] as a restricted version of the general task, for
which the identity of the relevant color does not change and the cue validity is
fixed. Since there is no unexpected uncertainty, NE is not explicitly involved,
and so noradrenergic manipulation is incapable of interfering with performance in
this task. This is consistent with experimental observations [212]. However, low

perceived cue validity, whether reflecting true validity or abnormally high ACh,
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Figure 4.2: The Posner task and cholinergic modulation. Validity effect (VE) is the
difference in reaction time between invalidly and validly cued trials. (A) Systemic
administration of nicotine decreases VE in a dose-dependent manner. Adapted from
(Phillips et al, 2000). (B) Systemic administration of scopolamine increases VE in
a dose-dependent manner. Adapted from (Phillips et al., 2000). Even though the
baselines for the two control groups (with drug concentration equal to 0) in (A)
and (B) are not well-matched, the opposite and dose-dependent effects of the bi-
directional manipulations are clear. (C, D) Simulation results replicate these trends
qualitatively. Error bars: standard errors of the mean over 1000 trials.

results in relatively small VE. Conversely, high perceived cue validity, possibly
due to abnormally low ACh, results in large VE. This is just as observed in ex-
perimental data [149]; Figure 4.2 shows a close correspondence between the two.
In contrast to the 50% cue validity used in the experiment, we use 80% in the
simulations. This is to compensate for the observation that over-trained subjects
such as in the modeled experiment, compared to naive subjects, behave as though
the cue has high validity (probability of being correct) even when it does not [29).

Note that the scaling and spacing of the experimental and simulated plots in
Figure 4.2 should not be compared literally, since empirically, little is known about
how different doses of ACh drugs exactly translate to cholinergic release levels, and
theoretically, even less is known about how ACh quantitatively relates to the level
of internal uncertainty (for simplicity, we assumed a linear relationship). Moreover,
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the wide disparity in VE for the control conditions (drug concentration equal to 0
mg/kg) in (B,C) forces a cautious interpretation of the y-axis in the experimental
plots.

4.5.2 The Maze-Navigation Task

In contrast to the Posner task, which involves no unexpected uncertainty, the
attention-shifting task involves unexpected, but not expected, uncertainty. Within
our theoretical framework, such a task explicitly manipulates the identity of the
relevant cue, while the cue validity is kept constant. We simulate the task by
exposing the “subject” to 5 sessions of ¢; being the predictive cue, and then 18
sessions of ¢; being the predictive cue, with each session consisting of 5 consecutive
cue-target observations, just as in the experiment. The self-transition probability
of the contextual variable is set to 7 = 0.9999, so that on average a context change
can be expected occur about once every 10,000 trials. The cue validity ~; is 95%
for both contextual blocks. It is slightly less than 100% to account for the fact
that there is always some perceived inaccuracy due to factors outside experimental
control, such as noise in sensory processing and memory retrieval. “Reaching cri-
terion” is modeled as making no mistakes on two consecutive days, more stringent
than in the experiment, to account for motor errors (and other unspecific errors)
rats are likely to make in addition to the inferential errors explicitly modeled here.

Experimentally enhancing NE levels [59] results in greater unexpected uncer-
tainty and therefore a greater readiness to abandon the current hypothesis and
adopt a new model for environmental contingencies (Figure 4.3A). Simulations
of our model show a similar advantage for the group with NE levels elevated to
10% above normal (Figure 4.3B). Our model would also predict a lack of ACh
involvement, since the perfect reliability of the cues obviates a role for expected
uncertainty, consistent with experimental data (Eichenbaum, Ross, Raji, & Mc-
Gaughy. Soc. Neurosci. Abstr. 29, 940.7, 2003).

These results do not imply that increasing NE creates animals that learn faster
in general. In the model, control animals are relatively slow in switching to a
new visual strategy because their performance embodies an assumption (which
is normally correct) that task contingencies do not easily change. Pharmacologi-
cally increasing NE counteracts the conservative character of this internal model,
allowing idazoxan animals to learn faster than the control animals under these
particular circumstances. The extra propensity of the NE group to consider that

the task has changed can impair their performance in other circumstances.
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Figure 4.3: A maze-navigation task and the effects of boosting NE. (A) The cumu-
lative percentage of idazoxan rats reaching criterion (making no more than one error
on two consecutive days) considerably out-paced that of the saline-control group.
Adapted from (Devauges & Sara, 1990). (B) In the model, simulated “rats” with el-
evated NE levels (10% greater than normal) also learn the strategy shift considerably
faster than controls. Data averaged over 20 simulated experiments of 30 models rats
each: 15 NE-enhanced, 15 controls. Error bars: standard errors of the mean.

4.5.3 The Generalized Task

In the generalized task of Figure 4.1, both cue identity and validity are explicitly
manipulated, and therefore we expect both ACh and NE to play significant roles.
Figure 4.4A shows a typical run in the full task that uses differently colored cue
stimuli. The predictive cue stimulus is g = 1 for the first 200 trials, u = 5 for the
next 200, and p = 3 for the final 200. The approximate algorithm does a good job
of tracking the underlying contextual sequence from the noisy observations. The
black dashed line (labeled 1 — «) in Figure 4.4B shows the cue invalidities of 1%,
30%, and 15% for the three contexts. Simulated ACh levels (dashed red trace in
Figure 4.4B) approach these values in each context. The corresponding simulated
NE levels (solid green trace in Figure 4.4B) show that NE generally correctly
reports a contextual change when one occurs, though occasionally a false alarm
can be triggered by a chance accumulation of unexpected observations, which takes
place most frequently when the true cue validity is low. These traces directly give
rise to physiological predictions regarding ACh and NE activations, which could be
experimentally verified. Psychophysical predictions can also be derived from the
model. The validity effect is predicted to exhibit the characteristic pattern shown
in Figure 4.4C, where large transients are mostly dependent on NE activities,
while tonic values are more determined by ACh levels. During the task, there is a
strong dip in VE just after each contextual change, arising from a drop in model
confidence. The asymptotic VE within a context, on the other hand, converges to
a level that is proportional to the expected probability of valid cues.
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Figure 4.4: Typical run of the approximate inference algorithm on the generalized
attention task involving both expected and unexpected uncertainties. (A) Tracking of
cue identity. The true underlying context variable p (in black stars), indicates which
one of the h = 5 colored cue stimuli is actually predictive of the target location: p =1
for first 200 trials, u = 5 for the next 200, and u = 3 for the final 200. The true
u is closely tracked by the estimated p* (in magenta circles, mostly overlapping the
black stars). The blue dots indicate “null” trials on which the algorithm has detected
a context change but has yet to come up with a new hypothesis for the predictive
cue among the h possible cue stimuli. Here, it takes place for 10 trials subsequent to
every detected context switch (see Experimental Procedures). (B) Tracking of cue
validity. The black dashed line is 1 — v, indicating the true cue invalidity: 1 — «
is 0.01 for the first 200 trials, 1 — v = 0.3 for the next 200, and 1 — v = 0.15 for
the final 200. Higher values of 1 — 7y result in noisier observations. The red trace
indicates the level of ACh, reporting 1 — v*, or the estimated probability of invalid
cueing in the model. It closely tracks the true value of 1—+. The green trace indicates
the level of NE, reporting on the approximate algorithm’s model uncertainty 1 — A*.
It surges when there is a context change or a chance accumulation of consecutive
deviation trials, but is low otherwise. (C) Predicted validity effect (VE), measured
as either the difference in accuracy or reaction time between valid and invalid trials.
Modeled as proportional to the total confidence in the predictive power of the cue,
which depends on both types of uncertainty, VE varies inversely with both ACh and
NE levels: VE = (1—ACh)(1—NE). It is low whenever NE signals a context change,
and its more tonic values in different contexts vary inversely with the ACh signal and
therefore the cue invalidity.
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Performance valuation

To gauge the performance of this approximate algorithm, we compare it to the
statistically optimal “ideal learner” algorithm, and a simpler, bottom-up algorithm
that ignores the temporal structure of the cues. The algorithm thus uses the naive
strategy of ignoring all but the current trial for the determination of the relevant
cue. On a given trial, the truly relevant cue takes on the same value as the target
with probability v (and disagrees with it with probability 1 —+). Having observed
that n of the cues agree with the target, the predictive prior assigned to each of
these n cues, using Bayes Theorem, is:

. Yo
P =1 il = S ,'n, = 4.12
(e =l =S m) = = m T =) 12
where 79 = 0.75 is a generic estimate of v independent of observations made so far
(since we assume the bottom-up algorithm does not take any temporal structure
into account). And the probability assigned to each of the other n — h cues, which
did not correctly predict the target on the current trial, is:

. 1-7%
P = i|(¢ S;,n) = 4.13
(”t+1 |(ct)t 7& t ) Yo + (h _ n)(l _ 70) ( )
Then the predictive coding cost C' = (—log P(u3,,|D;)), which rewards high prob-
ability assigned to the true cue yg,, on trial £+ 1 based on observations up to trial
t, and punishes low probability assigned to it, can be computed as:

C(7) = (~log P(i2slces Si)) pierssitn = = Y P((€)es Sty 1) log P(igy1|()z, Sty )
(4.14)
Fig. 4.5 compares the performance of this naive algorithm with the performance of
the exact ideal learner algorithm and the proposed approximate algorithm, while
varying the cue validity . In the simulation, each session consists of 500-trial con-
textual blocks of different « values (ranging from 0.5 to 1), that are arranged in a
random order, and the error bars indicate standard errors of the mean estimated
from 40 such sessions. All algorithms perform more proficiently as cue validity in-
creases. The quality of the approximate algorithm closely tracks that of the exact
algorithm, and, for cues that are actively helpful (4 > 0.5), significantly outper-
forms the bottom-up model. The somewhat better performance of the bottom-up
algorithm at v = 0.5 reflects the fact that, because the v = 0.5 block is typically
preceded by another block with higher cue validity and the context switch is not
signaled, this bias for a previously favored cue persists into the current block in

the face of insubstantial evidence for another cue being predictive, thus degrading
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Figure 4.5: Approximate vs. exact (ideal) inference/learning. The ideal learner
(exact) algorithm is simulated by discretizing the continuous space of the hidden
parameter « into finely spaced bins. The approximate algorithm uses ACh and NE
signals as detailed in the Experimental Procedures section. The predictive coding
cost is (—log Q(p5,1|D¢)), as defined in Figure 4.7. The approximate algorithm does
much better than the bottom-up algorithm for larger values of . Error bars: every
session contains one block of 500 trials for each 7 value, with random ordering of the
blocks; standard errors of the mean are averaged over 40 such sessions for each -.
Self-transition probability of u is 7 = 0.998. Total number of cue stimuli is h = 5.

the predictive performance somewhat.

Pharmacological manipulations

It follows from Eq. 4.11 and the related discussion above, that ACh and NE in-
teract critically to help construct appropriate cortical representations and make
correct inferences. Thus, simulated experimental interference with one or both
neuromodulatory systems should result in an intricate pattern of impairments.
Figure 4.6 shows the effects of depleting NE (A;B), ACh (C;D), and both ACh
and NE (E;F), on the same example session as in Figure 4.4. NE depletion results
in the model having excessive confidence in the current cue-target relationship.
This leads to perseverative behavior and an impairment in the ability to adapt
to environmental changes, which are also observed in animals with experimentally
reduced NE levels [171]. In addition, the model makes the prediction that this re-
luctance to adapt to new environments would make the ACh level, which reports
expected uncertainty, gradually rise to take into account all the accumulating evi-
dence of deviation from the current model. Conversely, suppressing ACh leads the
model to underestimate the amount of variation in a given context. Consequently,
the significance of deviations from the primary location is exaggerated, causing the
NE system to over-react and lead to frequent and unnecessary alerts of context
switches. Overall, the system exhibits symptoms of “hyper-distractibility”, remi-

niscent of empirical observations that anti-cholinergic drugs enhance distractibility
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[110] while agonists suppress it [155, 189, 144].

Finally, the most interesting impairments come from simulated joint depletion
of ACh and NE. Figure 4.6E;F shows that, compared to the intact case of Fig-
ure 4.4, combined ACh and NE depletion leads to inaccurate cholinergic tracking
of cue invalidity and a significant increase in false alarms about contextual changes.
However, it is also apparent, by comparison with Figure 4.6A;C, that combined
depletion of ACh and NE can actually lead to less severe impairments than either
single depletion. 'Fi.gu‘re'4."7 shows this in a éystehlétic cbmpé,riéon of combined de-
pletions with single ACh and NE depletions, where ACh level is severely depressed,
and NE suppression is varied parametrically from very depleted to normal levels.
Intermediate values of NE depletion, combined with ACh depletion, induce im-
pairments that are significantly less severe than either single manipulation.

Intuitively, since ACh sets the threshold for NE-dependent contextual change
(Eq. 4.11), abnormal suppression of either system can be partially alleviated by
directly inhibiting the other. Due to this antagonism, depleting the ACh level
in the model has somewhat similar effects to enhancing NE; and depleting NE is
similar to enhancing ACh. Intriguingly, Sara and colleagues have found similarly
antagonistic interactions between ACh and NE in a series of learning and memory
studies [170, 5, 172, 68, 67). They demonstrated that learning and memory deficits
caused by cholinergic lesions can be alleviated by the administration of clonidine
[170, 5, 172, 68, 67], a noradrenergic a-2 agonist that decreases the level of NE
[44].

4.6 Summary

In this chapter, we explored a Bayesian-motivated, unified framework for under-
standing ACh and NE functions in a variety of attentional tasks. We suggested
that ACh and NE report ezpected and unezpected uncertainty in representational
learning and inference. As such, high levels of ACh and NE should both corre-
spond to faster learning about the environment and enhancement of bottom-up
processing' in inference. However, whereas NE reports on dramatic changes, ACh
has the subtler role of reporting on uncertainties in internal estimates.

We used a hybrid HMM-like generative model with both discrete and contin-
uous hidden variables. The discrete variable, y;, represents the contextual state,
which captures the discrete possibilities of different contexts. The continuous vari-
able, 7, parameterizes the probabilistic contingencies within a context that give
rise to observations. The combination of dynamically varying discrete and con-

tinuous hidden variables makes exact inference intractable. Instead, we proposed
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Figure 4.6: Simulated pharmacological depletions: same sequence of cue-target
inputs as in Figure 4.4. (A, C, E) Same convention as in Figure 4.4A; (B, D, F) same
as in Figure 4.4B. (A) 50% NE depletion leads to excessive confidence in the model,
and results in a perseverative tendency to ignore contextual changes, as evidenced
by the delayed detection of a cue identity switch between the first and second blocks
of 200 trials, and the lack of response to the switch between the second and third
blocks. (B) Substantial under-activation of NE, especially during the second and
third blocks. ACh level rises gradually in the third block to incorporate rising number
of unexpected observations (with respect to the presumed relevant cue identity being
5) due to NE dysfunctions. (C) 50% ACh depletion leads to an over-estimation of
the cue validity, thus exaggerating the significance of any invalid trial, resulting in a
pattern of “hyper-distractibility.” (D) ACh levels are abnormally low; the NE system
becomes hyper-active. (E) Combined 50% depletion of ACh and 50% of NE leads to
less impairment than single depletion of either NE or ACh. (F) However, compared
with the control case, ACh no longer accurately tracks cue invalidity, and NE detects
far more apparent false alarms.
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Figure 4.7: Combined ACh and NE reveal partial antagonism. Black trace indi-
cates the average predictive coding cost for the intact algorithm, red trace for severe
cholinergic depletion to 1% of normal levels (and intact NE system), and green trace
for NE depletion at various percentages of normal levels (and intact ACh system).
Predictive coding cost is defined as (—log Q(ug,,|D:)), where u° is the true value
of the contextual variable p in each trial, D; = {c;,S51,...,¢t, St} is all cue-target
pairs observed so far, Q(ug,;|D;) is the dynamic prior probability accorded to ug,,
by the approximate algorithm, given all previous cue-target pair observations, and ()
denotes the expectation taken over trials. This assigns high costs to predicting a small
probability for the true upcoming context. The impairments are largest for very small
levels of NE, which lead to severe perseveration. Combining ACh and NE depletions
actually leads to performance that is better than that for either single depletion. For
intermediate values of NE depletion, performance even approaches that of the intact
case. Error bars: standard errors of the mean, averaged over 30 sessions of 600 tri-
als each for the green and blue traces. Standard errors of the mean, averaged over
330 sessions of 600 trials each, are very small for the red and black traces (less than
the thickness of the lines; not shown). Self-transition probability of the contextual
variable is set to 7 = 0.995.
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an approximate inference algorithm that maintains and computes only a few crit-
ical, tractable variables. These include probabilistic quantities that we identify as
expected and unexpected uncertainty, and which we propose to be reported by
ACh and NE, respectively. Framing existent attentional paradigms, in particular
the Posner spatial cueing task [151] and the attention-shifting task [59], as spe-
cial cases of this unified theory of ACh and NE, we were able to replicate and
interpret the differential involvement of the neuromodulators in different tasks.
Moreover, the framework naturally lends itself to a novel class of attentional tasks
that should involve both ACh and NE. Our simulations of normal performance in
the task, as well as that under pharmacological manipulations of the neuromod-
ulators, make specific, verifiable predictions about the trial-to-trial responses of
ACh and NE in normal and perturbed performance, as well as interactive patterns
that are part-synergistic, part-antagonistic.

The computational complexity of the approximate algorithm is modest, and
there are appealing candidates as neural substrate for the various components. In
addition to the two kinds of uncertainty, which we propose to be signaled by ACh
and NE, the algorithm only requires the tracking of current cue identity and the
number of trials observed so far in the current context. We suggest that these two
quantities are represented and updated in the prefrontal working memory [137].
This cortical region has dense reciprocal connections with both the cholinergic
[176, 222, 95] and noradrenergic [173, 108] nuclei, in addition to the sensory pro-
cessing areas, making it well suited to the integration and updating of the various
quantities.

These examples demonstrate that identifying ACh and NE signals as specific
probabilistic quantities in the inference and learning tasks faced by the brain is a
powerful and effective tool for the succinct interpretation of existent experimental
data, as well as for the design and analysis new experiments that would provide
further insights into these neuromodulatory systems. Despite a measure of gener-
ality, however, our theory of ACh and NE in probabilistic attention and learning
is clearly not a comprehensive theory of either neuromodulation or attention. For
instance, there are established aspects of ACh and NE functions, such as their reg-
ulation of wake-sleep cycles, theta oscillation, autonomic functions, as well even as
aspects of attention, such as salience and orienting responses, that lack a straight-
forward Bayesian probabilistic interpretation. A related issue is that the theory
here mainly focuses on the function of the cholinergic nuclei in the basal forebrain.
There are important cholinergic nuclei outside the basal forebrain as well: the
pedunculopontine nucleus, the cuneiform nucleus, and the laterodorsal tegmental

nucleus. ACh released by these nuclei has been implicated in modulating REM
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sleep [107, 200, 120] and saccadic eye movement [2], among other processes. It is
not yet clear what, if any, similarities or interactions exist in the drive and effects
of cortical ACh released by the basal forebrain and by the other sources.

Moreover, from a theoretical point of view, the line between expected and
unexpected uncertainty is rather blurred. Crudely, uncertainty is unexpected when
it cannot be predicted from a model. It is often the case, however, that more
sophisticated models (sometimes called meta-models) can be constructed which
capture uncertainties about uncertainties. Thus, with ever more compléx internal
models, unezpected uncertainties can often be rendered ezpected. However, at any
point in the learning and execution of a task, some kinds of variabilities are always
more unexpected than others. It is the relatively more unexpected uncertainties
that we expect to depend on NE.

Another simplifying assumption made was that the sequence of contextual
states obeys the Markov property: the context at any particular time step only
depends on the context in the preceding step and not on any of the previous ones.
However, perceptual inference in real-world problems often benefit from using top-
down information from arbitrarily distant past, stored in long-term memory. A
more sophisticated mathematical model would be needed to capture the contribu-

tion of multiple and longer term temporal dependencies.



Chapter 5

Cortical Uncertainty and

Perceptual Decision-Making

5.1 Introduction

So far, we have focused on the role of neuromodulatory systems in the represen-
tation of uncertainty in inference and learning tasks. In addition to this more
global signal of uncertainty, however, there is a separate body of work on the
encoding of uncertainty by cortical neurons themselves. Besides the uncertainty
that arises from interactions with an imperfectly known and constantly chang-
ing environment, neurons themselves respond to inputs in a stochastic way. All
these different sources of “noise” require cortical neuronal populations to be able
to propagate uncertain information and compute in the presence of uncertainty.
How this cortical neuronal representation of uncertainty interacts with the neu-
romodulatory signal of uncertainty is an important question. In this chapter, we
examine this issue in the context of the Posner spatial attention task [151] that we
introduced earlier.

In Chapter 4, we have already used the Posner task and related extensions to
study inference and learning. However, the approach we took earlier was rather
abstract, particularly in its treatment of time within a trial and the influence of
neuromodulation on cortical computations. In this chapter, we consider a tempo-
rally and spatially more refined model of computation in the context of the Posner
task. This more detailed model allows us to examine the way neuronal popula-
tions interact to filter and accumulate noisy information over time, the influence
of attention and neuromodulation on the dynamics of cortical processing, and the
process through which perceptual decisions are made. The treatment of compu-
tations at a finer temporal scale is related to the hidden Markov model (HMM)
of sustained attention explored in Chapter 3. Unlike the sustained attention task,
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Figure 5.1: Experimentally observed multiplicative modulation of V4 orientation
tunings by spatial attention. Darker line is normalized average firing rate when at-
tending into the receptive field; lighter line is attending away from the receptive field.
Dashed lines are the respective baseline firing rates. Figure adapted from [128].

however, the Posner task involves a spatial component of attention and therefore
a critical involvement of the visual cortical neurons, affording us an opportunity
to examine cortical representations of uncertainty.

One empirically observed consequence of spatial attention is a multiplicative
increase in the activities of visual cortical neurons [128, 127]. Figure 5.1 shows
one example of the effect of spatial attention on V4 neuronal tuning functions,
when attending into the receptive field versus attending away [128]. If cortical
neuronal populations are coding for uncertainty in the underlying variable, it is of
obvious importance to understand how attentional effects on neural response, such
as multiplicative modulation, change the implied uncertainty, and what statistical
characteristics of attention license this change.

An earlier work gave an abstract Bayesian account of this effect [53]. It was
argued that performing an orientation discrimination task on a spatially localized
stimulus is equivalent to marginalizing out the spatial uncertainty in the joint

posterior over orientation ¢ and spatial location y given inputs I:
pOID) = [ p(o,yiD). (5.1)
Y

If that spatial integration is restricted to a smaller region that contains the visual
stimulus, then less irrelevant input (e noise) is integrated into the computation.

This in turn leads to more accurate and less uncertain posterior estimates of é. It
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was proposed that under encoding schemes such as the standard Poisson model,
such decrease in posterior uncertainty is equivalent to a multiplicative modulation
of the orientation tuning curve [53].

In this Chapter, we use a more concrete and more powerful model of neuronal
encoding, and demonstrate how neuromodulator-mediated spatial attention influ-
ences the dynamics and semantics of neuronal activities in visual areas. In this
scheme, spatial attentlon once more effects a multlphcatlve sca.hng of the orien-
tation tuning function. Compa.red to the standard Poisson model, however this
encoding scheme is able to represent a more diverse range of probabilistic dis-
tributions over stimulus values. Moreover, we will examine how information is
accumulated over time in such a network, and enables the timely and accurate
execution of perceptual decisions.

Before delving into the model itself, we review, in section 5.2, previous work on
cortical representations of uncertainty, and on the psychology and neurobiology of
decision-making. In section 5.3, we re-introduce the Posner task and formulate a
spatially and temporally more refined model of the task in the Bayesian framework.
In section 5.4, we describe a hierarchical neural architecture that implements the
computations in the Posner task. Finally, in section 5.5, we present some analytical
and numerical results that bear interesting comparisons to experimental data. A
version of this chapter has been published elsewhere [216].

5.2 Background

5.2.1 Probabilistic Representations in Neuronal Popula-

tions

Various external sensory or motor variables have been found to selectively activate
neurons in different cortical areas. A major focus in neuroscience has been to
determine what information neuronal populations encode and how downstream
neurons can decode this information for further processing. In probabilistic terms,
the encoding problem involves specifying the likelihood p(r|s), the noisy activity
patterns across a population r = {r;} given a particular stimulus value s. While
the decoding problem involves computing the posterior p(s|r), the distribution
over possible stimulus values given a particular pattern of activities r. The two

are related by Bayes’ Theorem:

plxls)p(s) 62

p(slr) = ()
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where p(s), the prior over the stimulus, expresses any top-down expectations given
by the behavioral context.

There has been a substantial body of work on the way that individual cortical
neurons and populations either implicitly or explicitly represent probabilistic un-
certainty. This spans a broad spectrum of suggestions, from populations that only
encode a most likely estimate of a stimulus variable without regard to uncertainty
[154, 55], to more sophisticated encoding of both the most likely estimate and
the associated uncertainty [223], to the éncoding of full distributions over hidden
variables [168, 208, 15, 159]. In the following, we review some of these models in
increasing complexity.

5.2.1.1 The Poisson Encoding Model

Two major empirical observations about neuronal activation patterns have had
strong influence on early model of neuronal encoding and decoding. One is that
neuronal responses to a particular stimulus vary from trial to trial, but typically
have a smooth tuning function with respect to one or more stimulus dimensions,
such as the orientation, color, and velocity of a visual stimulus, or the frequency
and intensity of an auditory stimulus, etc. The second observation is that nearby
neurons have similar tuning properties, allowing a neuron’s tuning function to be
indexed by its spatial location.

A simple rate-based encoding model is to assume that the firing rate r;(s) of a
cell 7 is driven by the value of the stimulus s, whose mean is a deterministic tuning
function f;(s), with addition stochasticity in the form of a zero-mean noise term
mi(s):

ri(s) = fi(s) + mi(s), where(n;(s)) = 0. (5.3)

A common approach is to model the tuning curve f;(s) as a bell-shaped (Gaussian)
function of s, and the noise as independent (both in time and among neurons) and
Poisson. In other words, the conditional probability of population activity given
a stimulus s for the time period At is:

e—f.-(a)At (s riAt
Plrls] = [[ (if A(t))!At) (5.4)

1

This descriptive model of neuronal encoding is sometimes referred to as the
standard Poisson encoding model [223]. For such an encoding scheme, it has been
shown that the maximum likelihood (ML) estimate §, which maximizes p(r|s),
can be obtained by a network of deterministic neurons receiving inputs from Pois-

son encoding models, and which interact recurrently to admit particular forms of
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continuous line attractors [55].

In addition to a single estimate of the stimulus value, it would be useful for the
decoding algorithm to be able to report the uncertainty, or the variance, associated
with that estimate. For instance, if there are sensory inputs from multiple modal-
ities (eg visual, auditory, etc.) about a single underlying quantity (eg location),
and the data generation processes are Gaussian, p(rp|s) = N (tp,, Xm), where m
ranges over the different modalities, then the Bayes-optimal integration of these
sensory cues can be shown to be a linear summation of the individual mean esti-
mates, where the coefficients are inversely proportional to the respective variances
[106, 50]. Under certain circumstances, it has been shown that humans and other
animals indeed integrate noisy cues in an Bayes-optimal fashion [42, 117, 72, 17].
- Because ML estimation typically only involves the relative activity levels of neu-
rons, the standard Poisson encoding model can be extended, so that the overall
population activity level codes the additional variance information [223]. Relating
back to the multiplicative effect of spatial attention on visual cortical activities
[128], multiplicative increase of the tuning response would exactly lead to a reduc-
tion in posterior uncertainty [53]. This concept underlies the ability of an extension
[56] of the recurrent attractor network mentioned before [55] to implement optimal

integration of sensory cues.

5.2.1.2 Population codes for full distributions

A serious limitation of the Poisson encoding model is its implicit assumption that
the underlying quantity being encoded is a single value (of the stimulus), and not
a distribution over them, or possibly a multitude of simultaneously present stimuli
[223]. Given bell-shaped tuning curves, extended Poisson encoding would typically
limit a population of such neurons to representing a Gaussian distribution. If there
is also significant baseline firing, such a population can encode bimodal estimates,
although once again, its expressive power in relating uncertainty information about
those estimates is limited [223], as only the overall activity is free to communi-
cate a scalar uncertainty measure. This scalar uncertainty approximation to full
probabilistic distribution can be particularly detrimental if the true underlying
distribution is skewed or multi-modal with unequal widths. It is especially catas-
trophic when applied over many iterations of computation, or when incrementally
integrating many features of a complex object, or when a hidden variable varies
dynamically in a nonlinear fashion over time. Truly optimal computations based
on uncertain quantities require the propagation of full probabilistic distributions,
and the capacity to entertain the possibility of multiple simultaneously present
stimuli.
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To overcome these limitations, more complex encoding and decoding models
are needed, where neural activities are driven by some aspect of a probabilistic dis-
tribution over the variable of interest. An important proposal is the kernel density
estimation (KDE) model [8, 10], where the probability distribution represented by
the activities r is S rii(s)

_ 2T
q(s) = S (5.5)

Each ¢;(s) is a kernel distribution contributed by neuron %, and r is chosen such
that gr(s) is chosen to be as close to the desired p(s) as possible (eg as measured
by KL-divergence). Since the basis function decomposition in general requires
an infinite number of coefficients, and there are only finite neurons in a popu-
lation, the approximation of p(s) by ¢(s) can be poor, particularly when p(s) is
sharply peaked, or multi-modal with nearby peaks [223]. Another challenge to this
decoding-oriented approach is the need to figure out how neurons should respond to
their inputs in a biophysiologically realistic fashion, so that their activity patterns
lead to the correctly decoded distribution in Eq. 5.5 [223, 15].

Another body of work approaches the problem directly from the encoding per-
spective. After all, the brain has chosen a particular encoding scheme, so that
one population of activity patterns are transformed into another, but the brain
may not need to decode the underlying distributions explicitly at every stage of
computation. One encoding-based approach of neural modeling is the distribu-
tional population code (DPC), which is a convolutional extension of Equation 5.3
[223]. The activities (r) here are driven by a distribution py(s) over the stimulus,
specified by the inputs I, rather than a single “true” value of s:

(re) = f £(5)pa(s)ds. (5.6)

When there is perfect certainty about s so that pi(s) = (s — s*), as is the case
in most experimental settings, then Equation 5.6 reduces to the standard Poisson
encoding model in Equation 5.3. This extended model has been shown to have
much higher decoding fidelity than both the standard Poisson model and KDE
[223]. A further extension, called the doubly distributional population code, has
been proposed to deal with the additional problem of multiplicity, ¢ e whether the
number of stimuli present is 1,2, 3, ..., or perhaps none at all [168].

An obvious drawback of these distributional population codes is the computa-
tional complexity of the decoding process. In addition, in both KDE and DPC
models, the effect of decreasing posterior uncertainty would lead to a sharpen-
ing rather than a multiplicative modulation of the population response by spatial
attention, contrary to empirical observations [128]. For the KDE model of Equa-
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tion 5.5, which has localized decoding functions for tuned encoding functions [15],
a decrease in the variance of the decoded distribution implies that the neurons
with preferred orientation closest to the posterior mode(s) would have higher fir-
ing rate, and those farthest away would have lower firing rate. A similar scenario
would take place for the DPC model of Equation 5.6, where a sharpening of the
encoded distribution py(s) would cause neurons at the center of the peak to fire
more and those far away to fire less.

5.2.1.3 Direct-encoding methods

An alternative approach to these distributed population codes is the direct en-
coding scheme, where neuron ¢ explicitly reports on a monotonic function of the
likelihood p(I|s = s;) or the posterior P(s = s;|I): eg the log likelihood [208], the
log likelihood ratio [80], or the log posterior probability [159]. There are several
properties associated with such encoding schemes that make them particular suit-
able for our goal in this chapter of constructing a hierarchical populational model
that performs accumulation of information over time, and marginalization over
“irrelevant” stimulus dimensions, and makes perceptual decisions based on such
information.

One advantage of the direct encoding scheme is that most of the Bayesian com-
putations in such networks are biophysiologically plausible, involving mainly local
computations, and some instances of global inhibition, which are also commonly
observed in sensory areas [37, 6, 169, 97, 198]. In this scheme, a neuron i typi-
cally receives information about certain stimulus values and outputs information
about those same stimulus values. It is also relatively straight-forward to relate
known neuronal properties to concrete aspects of of Bayesian computations. For
instance, a neuron in the early part of a sensory pathway (typically not receiving
top-down modulations) could be interpreted as having an activation function that
is monotonic to the likelihood function, which has been learned over time (possibly
both evolutionary and developmental): eg (r;) = p(I|s;). A neuron higher up in
the hierarchy, receiving both feedforward input z; and top-down modulation z;,
may be integrating likelihood and prior information to compute the posterior: eg
(rs) = p(I|si)p(s:)/p(I) = zizi/ 3_; x2j. Also, cortical neurons at various stages of
sensory processing have been seen to integrate information over a spatially localized
region; they may be computing a “partially-marginalized” posterior distribution:
eg (ri) = p(ss[1) = 3o, p(si|T) = 32, 7.

The logarithmic transform of a probabilistic quantity favored by some [208, 80,
159] offers some additional advantages, as well as complications. Multiplication,

an essential operation in probabilistic computations (eg for incorporating priors,
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combining iid (independent and identical) samples, integrating multiple cues, etc.)
becomes addition in the log space, which is much more straight-forward for neurons
to implement. Similarly, division, which is necessary for normalizing distributions,
becomes subtraction in the log space. Shunting inhibition, long touted as a po-
tential cellular mechanism for division [69, 24], has been shown to have more of a
subtractive effect on firing rates under certain circumstances [103].

Unfortunately, the logarithmic transformation also complicates certain com-
putations, such as addition in 'prbbé,biliétié st)abe -reQuired byr margiﬁalizdtibn: if
z; = log p(s;|I), then )", p(s;|I) = log >, exp ;. There are at least general possibil-
ities of how neurons might implement such a computation. One is to look at this as
a maximum operation [218], due to the nonlinear exaggeration of the difference be-
tween the maximal Z,x and the other inputs: log ), exp z; & log eXp Tmax = Tmax-
Another possibility is to approximate the log-of-sum computation with sum-of-log;:
log) ;expz; = Y, a;logexpz; = Y ,a:z;, where the coefficients a; are chosen
to optimize the approximation. It has been shown that under certain restricted
circumstances, this approximation can achieve reasonable performance [159]. An-
other potential issue of logarithmic representations has to do with noise. Because
of the nonlinear nature of a log transformation, noise in log probability space can
introduce a bias in the corresponding probability space.

On the whole, the combination of representational and computational ease at
both the single-unit and network level makes logarithmic direct encoding a partic-
ularly attractive neural encoding scheme. Clearly it is far from generally accepted
that this encoding scheme, or any other particular scheme, is definitively the cor-
rect way to characterize neuronal activities. Nevertheless, it is convenient to adopt
a concrete framework in order to study certain computational problems faced by
the brain, such as the incorporation and updating of prior/internal knowledge, the
marginalization over “irrelevant” stimulus dimensions, and the process of making
a perceptual decision based on a continuous stream of noisy inputs. Exactly which
encoding scheme is closest to the “truth”, and how well the conclusions we draw
from this study generalize to other encoding schemes, are important questions
that need substantial future work and are beyond the scope of the present chap-
ter. In Section 5.4, we will describe in detail the version of logarithmic probability
encoding scheme that we employ, and, later on in Section 5.5, explore the relation-
ship between posterior uncertainty and a multiplicative modulation of neuronal
activities.
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5.2.2 Decision-making

Perceptual discrimination can be characterized as a form of decision-making. Im-
plementational and computational issues underlying binary decisions in simple
cases (for instance with sequentially presented iid sensory data) have been ex-
tensively explored, with statisticians [205], psychologists [122, 183], and neuro-
scientists [80, 25] using common ideas about random-walk processes and their
continuous-time analog, drift-diffusion processes, to capture the underlying com-

putations and interpret behavioral and neurophysiological data.

Data accumulation as a random-walk process

From a statistical view, the integration of independent and identically distributed
(iid) samples x,, = {z1, Z, ...z, } conditioned on a stationary underlying stimulus
8 is straightforward:

log p(xx|s) = log [ [ p(z:ls) = D log p(x:|s) (5.7)

For 2-alternative (binary; s = s; or s = s;) decision tasks, we can define the
incremental log likelihood ratio

p(zt|s1)

dy = log o(@lsa) (5.8)
In this case, d; itself is a random variable, whose distribution depends on whether
z; is really generated by s = s; or s = s3, and not on the previous observations
X;_1. The accumulation of d;, D,, = z;;l d; defines a random-walk, whose slope is
determined by the expectation (d;)p(z,|s), and whose “randomness” is determined
by the variance of d;. For instance, if p(z:|s;) = N (i, 0%) is Gaussian for both s;
and s, with the same variance o2, but different means p; and u, (without loss of
generality, assume 43 > ys), then

g = P F2) (zt - w) | (5.9)

o? 2
so that p(ds|s;) = N(E(u1 — p2)?/0?, (41 — p2)?/0?) is also Gaussian, where the
mean is positive if s = s;, and negative if s = s3). In other words, if s = s,
then the process drifts in a positive direction on average; otherwise, it drifts in a
negative direction.

If the observations are generated from Poisson distributions with different
means A; and )p (without loss of generalization, assume A\; > Ay > 0, then d;
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is again linearly related to z;, with

(d) = (z+) logi—: + (A2 — A1) (5.10)

This quantity, when Taylor expanded, can be shown to have a positive expectation
if s = s, and negative if s = s, (and 0 if A\; = Ap).
This discrete-time random-walk process has also been extended to the

continuous-time domain, in the form of the related drift-diffusion process [162, 31].

Sequential probability ratio test

The sequential probability ratio test (SPRT) is a decision procedure that termi-
nates the data accumulation process as soon as D, = ), d; hits one of the two
boundaries, one positive and one negative, and reports § = s, if the positive bound-
ary is hit, and § = s, if the negative boundary is hit [205]. SPRT has been shown
to be statistically optimal in the sense that for a fixed error rate, this procedure
on average minimizes the number of data samples needed [206] before one of the
two boundaries is reached. This is an important property if there is a cost associ-
ated with longer reaction times before a decision/response is made. For a desired
error rate of € and a uniform prior distribution over s, it can be shown [119] that
the minimum reaction time is achieved by setting the boundaries to be +log 1=,

giving an average observation time of
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) = s ((1—26)1og1;6) .

Psychophysics data in humans and monkeys on visual discrimination tasks in-

dicate that accuracy and reaction time distributions can be captured to a large
extent by assuming an iid (independent and identical) noise process over time and
a decision-threshold at a fixed value of the log likelihood ratio (or, equivalently, a
threshold on the posterior probability, for uniform priors) [119, 122, 183]. For in-
stance, this decision process predicts long-tailed reaction time distributions, which
has been observed in a large number of experiments [119, 122, 183]. Another pre-
diction of the simple SPRT decision process, identical distribution for correct and
error reaction times, has not always been found experimentally [119, 122, 162].
Instead, error reaction times tend to be faster than correct reaction times in easy
tasks with high accuracy , and slower in difficult tasks with lower accuracy[161]. It
has been proposed that trial-to-trial variability in starting point and the drift rate
of the random-walk process can explain faster [119, 161} and slower [121, 161] error
responses, although it is unclear why starting point variability should dominate
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Figure 5.2: Direction discrimination and lateral intraparietal area (LIP) neuronal
activities. (A) In the 2-alternative forced choice task (2AFC), where a small fraction
of coherently moving dots are embedded within a dynamic noisy display , monkeys are
required to saccade to one of two targets that most closely corresponds to perceived
coherent motion and rewarded for correct response. One of the targets is within the
response field of the neuron, indicated by the grey shading. Reaction time is defined
as the interval from motion onset to saccade initiation. Figure adapted from [165]. B
LIP neuronal firing rates increase at higher rates for greater motion coherence in the
signal, and reach about the same level just prior to response. Figure adapted from
(80].

in easy tasks and drift rate variability should dominate in difficult tasks. While
additional experimental and theoretical investigations are needed to clarify some
of these issues not captured by simple SPRT, it is certainly a remarkably successful
model for its simplicity.

There is also some physiological evidence that sensorimotor decision pathways
in the brain may implement something like the SPRT. In a motion-detection task,
monkeys are shown a random field of moving dots with some amount of coherent
motion, and subsequently required to saccade to one of two oppositely located tar-
gets depending on the overall motion (see Figure 5.2a). Lateral intraparietal (LIP)
neurons, previously shown to be highly selective to saccadic eye movements into
a spatially localized region, display gradually increasing or decreasing activities
during the stimulus presentation, depending on whether the monkey eventually
decides to saccade into their receptive fields or not, respectively. The dynamics
of these neuronal responses are significantly correlated with the monkey’s behav-
ioral response on a trial-by-trial basis. In addition, when the motion coherence is
higher, corresponding to a lower noise level, an LIP neuron’s response to a saccade
into its receptive field increases faster [80], reminiscent of the faster drift rate in

SPRT-type random-walk/drift-diffusion processes (see Figure 5.2b).
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These electrophysiological data of LIP neurons suggest they are part of the
neural perceptual decision-making pathway involved in the random-dot task, and
give some hint as to the intermediate levels of representation. Several neural net-
work models of varying degrees of complexity and abstraction have been proposed
to implement SPRT for 2-alternative forced choice tasks (reviewed in [183, 25]).

N-nary decision-making

Some interesting questions arise when we move to the scenario of n-alternative
decisions[119]. After all, most realistic sensorimotor decisions involve choosing
among more than 2 alternatives, or even among a continuum of possibilities. On
the theoretical side, there is the question of how to extend SPRT to an optimal
n-nary decision procedure. There is not one unique and natural way to extend
the log likelihood ratio quantity. Should it be the ratio of the probability of half
of the hypotheses against the other half, the ratio of one hypothesis against all
the rest combined, the ratio of one against each of the others, or something else
altogether? And what should the decision criterion be, that the maximal log-
likelihood ratio exceeds some threshold, or that the difference between the largest
ratio and the second largest ratio exceeds a threshold, or the combination of the
two? Mechanistically, neural network models that require reciprocal inhibition
of units representing log likelihood values [197, 126] would also run into trouble
when the number of hypotheses 7 is large, as they would require n(n — 1) pairwise
connections.

Actually, since the log likelihood ratio and the posterior are monotonically
related, the whole framework could be re-interpreted in terms of posterior distri-
butions. The posterior P(s;|xs) = p(xn|s:)P(si)/ 3_; p(%xls;) is a natural general-
ization of the log likelihood ratio, as it normalizes the likelihood of one hypothesis
against the sum of likelihood of all possible hypotheses. It also deals with more
general scenarios in which the prior distribution over the stimulus values is not
uniform. Moreover, the optimal decision process for a given loss function is always

a function of the posterior distribution in Bayesian decision theory.

5.3 Computations Underlying the Posner Task

As we have already discussed in Chapter 4, the Posner probabilistic spatial cue-
ing task [151] is a well-characterized paradigm for investigating the attentional
modulation of visual discrimination by manipulating probabilistic spatial cueing.

We focus on the Posner task again because it captures with elegant simplicity

the issues of neural representation of uncertainty, selective attention, and per-
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Figure 5.3: The Posner task and cue-induced spatial prior. (A) A simple version
of the Posner task. A cue (the arrow) indicates the likely location of a subsequent
target (the oriented stimulus). In this example, the cue is valid. (B) Cue-induced
prior distribution in the form of a mixture of Gaussian and uniform, giving rise to
a peaked prior with long tails: p(y) = YN(#,v?) + (1 — 7)c, where v parameterizes
the relative importance of the two components. The blue trace shows the case of
v = 0.9, where the Gaussian component strongly dominates the uniform one; red
trace corresponds to v = 0.5, where the Gaussian component is less dominant. The
influence of the uniform component is strongest away from the center of the Gaussian,
as the Gaussian tends to taper away rapidly. Note that because of the difference in
the widths of the Gaussian and uniform components, a small change in the uniform
component is equivalent to a large difference in the height of the Gaussian component.

ceptual decision. One critical issue is how the cue-dependent information is rep-
resented, another is exactly how it influences sensory processing and perceptual
decision-making.

For concreteness, we focus on the case where the target stimulus can appear
either to the left or right of a central fixation point, and the task is to identify
some feature of the stimulus, such as the orientation of an oriented bar or grating.
Figure 5.3A shows a simple example of this task: a cue (the arrow) indicates the
likely location of a subsequent target (the oriented stimulus). In this example, the
cue is valid.

Thus, we have a one-dimensional spatial variable y parameterizing the horizon-
tal position of the target, and a periodic variable ¢ parameterizing the discriminant
feature (orientation). The cue induces a prior distribution over the target location
y. However, it is reasonable to assume that other factors should also come into the
prior, such as a more generic prior distribution of target locations accumulated over

lifetime experiences, and the possibility that the assumed cue-target contingency
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could be incorrect altogether (eg due to invalid cueing or unsignaled changes in the
behavioral context). “Robustness” would require that a sensory stimulus, however
improbable under the current top-down model, should get processed to some ex-
tent. Thus, we model the prior distribution to be a mixture between a cue-induced
component and a more generic component, p.(y; ¢) = Y¢.(y) + (1 —¥)gy(y), where
the cue-induced component should be relatively peaked, while the generic one
should be rather broad. v parametenze the relative probablhty of the cue-induced
component being correct, and 1ncorporates factors such as the va.hdlty of the cue.
Ideally, the brain should implement the cue-induced component as bimodal, with
the modes centered at the two possible locations for the target. However, there is
much experimental controversy over the spatial extent, shape, and complexity (eg
number of modes) of spatial attentional focus [164]. Fortunately, the main simu-
lation and analytical results in this work do not depend on the precise shape of
the prior, as long as the cue-induced component is relatively peaked and centered
at the cued location, and v parameterizes the relative importance of this peaked
component and the broader cue-independent component. For concreteness, we
assume the former is a Gaussian centered at ¢, and the latter is uniform over the

(finite) visual space. Thus, the prior distribution induced by the cue is:

p) = NG v*) + (1 =7)c (5.11)

Figure 5.3B shows some examples of prior distributions that we use in this chapter.

As v parameterizes the relative importance (“peakiness”) of the cue-induced
spatial prior distribution, it should be proportional to cue validity. Consistent
with our theory of neuromodulation outlined in the previous chapters, we suggest
that 1—+ should be signaled by ACh. The Gaussian component of the prior comes
from a top-down source, perhaps a higher cortical area such as the parietal cortex,
and its mean and width, possibly of high spatial precision, should be represented
by a cortical population itself.

The neural computations we have in mind involve some intermediate level
of processing in the visual pathway, which receives top-down attentional inputs
embodied by the prior p(y;c) and noisy sensory inputs D; = {xi,...,x;} that
are sampled iid from a stimulus with true properties y* and ¢*. We model the
pattern of activations x; = {z;;(¢)} to the stimulus as independent and Gaussian,
z;;(t) ~ N(fij(y*,¢*),0n), with variance o2 around a mean tuning function that

is bell-shaped and separable in space and orientation:

[ii(y*, ¢*) = 2z, exp(—%ﬁ)qu exp(k cos(¢; — ¢*)). (5.12)
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The task involves making explicit inferences about ¢ and implicit ones about y.
The computational steps involved in the inference can be decomposed into the
following;:

p(xly, ) = IL;; p(zi;(t)ly, ¢) Likelihood
p(ojx:) = fer p(y, d)p(xtly, #)dy Prior-weighted marginalization
(4| Dy) o p(¢|Ds-1)p(y, 4|x:) -  Temporal accumulation

Because the marginalization step is weighted by the priors, even though the task
is ultimately about the orientation variable ¢, the shape of the prior p(y) on the
spatial variable can have dramatic effects on the marginalization and the subse-
quent computations. In particular, if the prior p(y) assigns high probability to
the true y*, then the more “signal” and less “noise” would be integrated into the
posterior, whereas just the opposite happens if p(y) assigns low probability to the
true y*. This is the computational cost between valid and invalid cueing, a point
we will come back to in Section 5.5.

The decision as to when to respond and which q@ € ® to report is a function of
the cumulative posterior p(4|D;). As we discussed in Section 5.2, since the poste-
rior is monotonically related to the log likelihood ratio, one extension from binary
decision to n-nary decision is to set a threshold on the posterior, and terminate
the observation process as soon as the posterior of one of the hypotheses reaches
the threshold and report that as 43 For a fixed sample size T and 0 — 1 loss func-
tion, it is straight-forward to show that the modal value, or the MAP estimate, is
the optimal decision under Bayesian decision theory. That is, if the loss function
reporting qAS when the true value is ¢ is defined as L(<13, $)=1- 044> Where &y is
the Kronecker delta function, so that the expected loss is

(L) = Y L(4,¢)p(¢|Dr)
¢

> (1—-6;4)p(4|Dr)
)
= 1-p(¢|Dr)

then clearly the choice of ¢ that minimizes (L) is the one that maximizes the pos-
terior. This relationship holds independent of the total number of hypotheses, as
long as the subject gets “punished” equally for all wrong choices of & regardless
of how different it is from the true ¢. The extension of an optimal decision proce-
dure to the sequential case of variable ¢ is probably similar to the extension in the

binary case, and beyond the scope of discussion here.
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5.4 A Bayesian Neural Architecture

We employ a hierarchical neural architecture in which top-down attentional priors
are integrated with sequentially sampled sensory input in a sound Bayesian man-
ner, using a direct log probability encoding [208, 159]. The neural architecture
we propose has five layers (Fig 5.4). In layer I, activity of neuron 'r,-lj(t) reports
the log likelihood log p(x¢|y:, #;), where we assume that the discretization {y;}
and {¢;} respectively tile y and ¢. In layer II, neuron combines this log likeli-
hood information with the appropriate prior to arrive at the joint log posterior
log p(yi, ¢5[x¢) + as,

ri(t) = ri5(t) + log P(y;:) + ay (5.13)

up to an additive constant a; independent of y and ¢ that makes min 'r?j = 0. Thus,
top-down prior information modulates activities in this layer additively. In layer
ITI, neuron j marginalizes the spatial dependence and thereby reports log p(¢;|x:)
(up to a ¢-independent constant b;, which makes minr3(t) = 0):

ri(t) =log ) exp(r?) +b; . (5.14)
1

As discussed before in Section 5.2, this apparently tricky log-of-sum can either be
implemented by a max operation [218] or approximated with a linear sum-of-log
substitution [159]. In layer IV, neuron j uses recurrent and feedforward connections
to accumulate this sensory information over time to report log p(¢;|D;) (again up

to an additive constant ¢, that makes minr}(t) = 0):
i) =rit —1)+r3(t) +c . (5.15)

Finally, in layer V, neuron j reports on the true cumulative posterior probability

P(¢;|D;) after a softmax operation on the layer IV activities:

exp(r}) _ ¢;P(¢;,Dy)
>eexp(ry) ¢ P(Dy)

ri(t) = = P(¢;|Dy) - (5.16)

At any given time ¢, a decision is made based on the posterior P(¢;|D;): if
max rJ5- (t) is greater than a fixed threshold q, where 0 < g < 1, then the observation
process is terminated, and @max = argmaxr§~ (5) is reported as the estimated <13 for
the current trial; otherwise, the observation process continues onto time ¢+ 1, and
the same evaluation procedure is repeated. Note that a pathway parallel to ITI-IV-
V consisting of neurons that only care about y, and not ¢, can be constructed in

an exactly symmetric manner. Its corresponding layers would report log p(y;|x:),
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log p(yi|Dy), and p(y;|D;). In its present version, we do not include any noise in the
computations performed by the network. We will revisit this issue in section 5.6.

An example of activities at each layer of the network is shown in Fig 5.4, along
with the choice of prior p(y) and tuning function f;;. To summarize, the first layer
reports likelihood information and represent the activities of early stages in visual
processing that do not receive significant top-down modulation. The second layer
represents early cortical activities that incorporate top-down influence and bottom-
up inputs (fof insté,nce,r visual areas from LGN to MT/ MST have all been shown
to be significantly modulated by spatial attention [143]). Layer III represents
neuronal populations that specialize in a particular aspect of featural processing,
as it is well documented that higher visual cortical areas become increasingly
specialized. At a broad level, there is the ventral and dorsal stream division,
with the ventral stream areas more concerned with non-spatial features, and the
dorsal stream more often associated with spatial processing. Layer IV represents
neuronal populations that integrate information over time, as for instance seen
in the monkey LIP [80]. And finally, layer V neurons represent those involved in
the actual decision-making, presumably in the frontal cortical areas (though some
have argued that higher visual cortical areas such as LIP may be responsible for
this stage as well [80]).

5.5 Results

We first verify that the model indeed exhibits the cue-induced validity effect. That
is, mean reaction time and error rates for invalid cue trials should be greater than
those for valid cue trials. Here, we define the model “reaction time” to be the num-
ber of iid samples necessary to reach the decision threshold ¢, and “error rate” to
be the average angular distance between estimated q3 and the true ¢*. Figure 5.5
shows simulation results for 300 trials each of valid and invalid cue trials, for dif-
ferent values of 7, which reflect the model’s belief of cue validity. Reassuringly,
the RT distribution for invalid-cue trials is broader and right-shifted compared
to valid-cue trials, as observed in experimental data [151, 29] (Figure 5.5B). Fig-
ure 5.5A shows a similar pattern in the distribution of RT obtained in the case of
v =0.5.

Figure 5.5(c) shows that the VE increases with increasing perceived cue validity,
as parameterized by 7, in both reaction times and error rates. The robust VE
in both measures excludes the possibility of a simple speed-accuracy trade-off,
instead reflecting a real cost of invalid cueing that depends on assumed cue validity.

These results are related to a similar effect in an earlier model of the Posner task
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Figure 5.4: A Bayesian neural architecture. Layer I activities represent the log
likelihood of the data given each possible setting of y; and ¢;. It is a noisy version
of the smooth bell-shaped tuning curve (shown on the left). In layer II, the log
likelihood of each y; and ¢; is modulated by the prior information F; = log P(¢;)
and G; = log P(y;). F is flat and not shown here. G is shown on the upper left. The
prior in y strongly suppresses the noisy input in the irrelevant part of the y dimension,
thus enabling improved inference based on the underlying tuning response f;;. The
layer III neurons represent the log marginal posterior of ¢ by integrating out the y
dimension of layer II activities. Layer IV neurons combine recurrent information and
feedforward input from layer V to compute the log marginal posterior given all data
so far observed. Activity is in general more peaked and more accurately centered
than layer III activity. Layer V computes the cumulative posterior distribution of ¢
through a softmax operation. Due to the strong nonlinearity of softmax, it is much
more peaked than layer III and IV. Solid lines in the diagram represent excitatory
connections, dashed lines inhibitory. Blue circles illustrate how the activities of one
row of inputs in Layer I travels through the hierarchy to affect the final decision
layer. Brown circles illustrate how one unit in the spatial prior layer comes into the
integration process.
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Figure 5.5: Validity effect and dependence on v. (A) The distribution of reaction
times for the invalid condition has a greater mean and longer tail than the valid
condition in model simulation results. v = 0.5. (B) Similar trend in a Posner task
in rats, figure adapted from [29], CV = 0.5. (C) Stimulated VE, either in terms of
reaction time (VE = (RTj,, — RTy,;)/RTj,,) or error rate (VEer = (ERjp, —
ERy,1)/ER;,y), increases with increasing . Error rate is defined as the angular

distance between ¢ and ¢*. Error-bars are standard errors of the mean. Simulation
parameters: {y;} = {—1.5,—1.4,...,1.4,1.5}, {¢,} = {n/8,27/8,...,167/8}, o, = 0.1,
s = m/16, ¢ = 0.90, y* = 0.5, v € {0.5,.75,.99}, v = 0.05, 300 trials each of valid
and invalid trials. 100 trials of each v value. (D) VE, defined in terms of RT, also
increases with cue validity in a human Posner task [213]. More details about the task
in Chapter 6.

(Figure 4.2C,D) that treated time more coarsely. These effects are also consistent
with the data from a human Posner task study, in which subjects exhibit VE, as
measured in RT, increasing with perceived cue validity [213] (Figure 5.5D, more
details about the experiment in Chapter 6).

Since we have an explicit model of not only the “behavioral responses” on each
trial, but the intermediate levels of neural machinery underlying the computations,
we can look more closely at the activity patterns in the various neuronal layers and
relate them to the existent physiological data. Electrophysiological and functional
imaging studies have shown that spatial cueing to one side of the visual field
increases stimulus-induced activities in the corresponding part of the visual cortex
[163, 114]. Fig 5.6(a) shows that our model can qualitatively reproduce this effect:
cued side is more active than the uncued side. Moreover, the difference increases
for increasing <y, the perceived cue validity. Electrophysiological experiments have
also shown that spatial attention has an approximately multiplicative effect on
orientation tuning responses in visual cortical neurons [128] (Figure 5.1). We see a
similar phenomenon in the layer IIT and IV neurons. Fig 5.6(b) shows the layer IV
responses averaged over 300 trials of each of the valid and invalid conditions; layer

IIT effects are similar and not shown here. The shape of the average tuning curves
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Figure 5.6: Multiplicative gain modulation by spatial attention. (A) r?j activities,
averaged over the half of layer II where the prior peaks, are greater for valid (blue)
than invalid (red) conditions. (B) Effect of spatial cueing on layer IV activities is
multiplicative, similar to multiplicative modulation of V4 orientation tuning curves
observed experimentally [128]. Compare to empirical data in Figure 5.1. (C) Linear
fits to scatter-plot of layer IV activities for valid cue condition vs. invalid cue condition
show that the slope is greatest for large v and smallest for small v (magenta: v = 0.99,
blue: v = 0.75, red: v = 0.5, dashed black: empirical linear fit the study in Figure 5.1
[128]). Simulation parameters are same as in Fig 5.5. Error-bars are standard errors
of the mean.

and the effect of attentional modulation are qualitatively similar to those observed
in spatial attention experiments [128]. Fig 5.6(c) is a scatter-plot of (r}) , for the
valid condition versus the invalid condition, for various values of . The quality
of the linear least square error fits is fairly good, and the slope increases with
increasing confidence in the cued location (eg larger ). For comparison, the slope
fit to the experiment of Figure 5.1 is shown in black dashed line. In the model,
the slope not only depends on 7 but also the noise model, the discretization, and
so on, so the comparison of Figure 5.6(c) should be interpreted loosely.

In valid cases, the effect of attention is to increase the certainty (narrow the
width) of the marginal posterior over ¢, since the correct prior allows the rela-
tive suppression of noisy input from the irrelevant part of space. If the marginal
posterior were Gaussian, the increased certainty would translate into a decreased
variance. For Gaussian probability distributions, logarithmic coding amounts to
something close to a quadratic (adjusted for the circularity of orientation), with a
curvature determined by the variance. Decreasing the variance increases the cur-
vature, and therefore has a multiplicative effect on the activities (as in figure 5.6).
The approximate Gaussianity of the marginal posterior comes from the accumu-
lation of many independent samples over time and space, and something like the
central limit theorem.

While it is difficult to show this multiplicative modulation rigorously, we can
demonstrate it for the case where the spatial prior is very sharply peaked at its
Gaussian mean §. In this case, ((log p1(x¢, ¢;)), + ¢1)/({log pa(x:, ¢;)), + c2) = R,
where ¢, ¢z, and R are constants independent of ¢; and y;. Based on the peaked
prior assumption, p(y) ~ d(y — §), we have p(x;,¢) = [ p(x¢)|y, )p(y)p(¢)dy =~
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p(x¢t|¢,J). We can expand log p(x;|7, #) and compute its average over time

Qogp(xuls ), = C — ooy ((f50"8) — Fs@ APy (517)

Then using the tuning function of equation 5.12, we can compare the joint proba-

bilities given valid (val) and invalid (inv) cues:

(logpygy(x:,0)), 1~ B(e w1t (9(9)),
(logpiny (Xt 9)),  az — B (e WV +w—dD/27) (g(g)).

(5.18)

Therefore,
{logpua(Xt, ) + &1, —)2/a0d)
(log pinv(x¢, @), + C2

which is a constant that does not depend on ¢;. The derivation for a multiplicative

(5.19)

effect on layer IV activities is very similar and not shown here.

Another interesting aspect of the intermediate representation is the way atten-
tion modifies the evidence accumulation process over time. Fig 5.7 show the effect
of cueing on the activities of neuron r3.(t), or P(¢*|D,), for all trials with cor-
rect responses: ie where neuron j* representing the true underlying orientation ¢*
reached decision threshold before all other neurons in layer V. The mean activity
trajectory is higher for the valid cue case than the invalid one: in this case, spatial
attention mainly acts through increasing the rate of evidence accumulation after
stimulus onset (steeper rise). This attentional effect is more pronounced when the
system has more confidence about its prior information ((a) v = 0.5, (b) v = 0.75,
(c) v = 0.99). It is interesting that changing the perceived validity of the cue
affects the validity effect mainly by changing the cost of invalid cues, and not the
benefit of the valid cue. This has also been experimentally observed in rat versions
of the Posner task [212]. Crudely, as y approaches 1, evidence accumulation rate
in valid-cue case saturates due to input noise. But for the invalid-cue case, the
near-complete withdrawal of weight on the “true” signal coming from the uncued
location leads to catastrophic consequences. Of course, the exact benefit and cost
induced by valid and invalid cueing, respectively, depend on the choice of the form
of the spatial prior. In any case, the effect of increasing v is generally equivalent
to increasing input noise in invalid trials.

Figure 5.7 (d) shows the average traces for invalid-cueing trials aligned to
the stimulus onset and (e) to the decision threshold crossing. These results bear
remarkable similarities to the LIP neuronal activities recorded during monkey
perceptual decision-making [80] (see Figure 5.2). In the stimulus-aligned case, the
traces rise linearly at first and then tail off somewhat, and the rate of rise increases
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Figure 5.7: Accumulation of iid samples in orientation discrimination, and depen-

dence on prior belief about stimulus location. (A-C) Average activity of neuron 1'15.. :

which represents P(¢*|D;), saturates to 100% certainty much faster for valid cue trials
(blue) than invalid cue trials (red). The difference is more drastic when 7 is larger,
or when there is more prior confidence in the cued target location. (A) v = 0.5,
(B) ¥ = 0.75, (C) v = 0.99. Cyan dashed line indicates stimulus onset. (D) First
15 time steps (from stimulus onset) of the invalid cue traces from (A-C) are aligned
to stimulus onset; cyan line denotes stimulus onset. The differential rates of rise
are apparent. (E) Last 8 time steps of the invalid traces from (A-C) are aligned to
decision threshold-crossing; there is no clear separation as a function . Simulation
parameters are same as in Fig 5.5.

for lower (effective) noise. In the decision-aligned case, the traces rise steeply and
in sync. Roughly speaking, greater input noise leads to smaller average increase
of r;? at each time step, but greater variance. Because the threshold-crossing
event is strongly determined by both the mean and the variance of the random
walk, the two effects tend to balance each other, resulting in similarly steep rise
prior to threshold-crossing independent of the underlying noise process. All these
characteristics can also be seen in the experimental results of Figure 5.2, where

the input noise level was explicitly varied.

5.6 Summary

We have presented a hierarchical neural architecture that implements approxi-
mately optimal probabilistic integration of top-down information and sequentially
observed iid (independent and identical) data. We consider a class of attentional
tasks for which top-down modulation of sensory processing can be conceptualized
as changes in the prior distribution over the relevant stimulus dimensions. We
use the specific example of the Posner spatial cueing task to relate the character-

istics of this neural architecture to experimental data. The network produces a
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reaction time distribution and error rates that qualitatively replicate experimental
data (Figure 5.5). The way these measures depend on valid versus invalid cueing,
and on the exact perceived validity of the cue, are similar to those observed in
attentional experiments. These output-level results indicate that our conceptual-
ization of the computations involved in these attentional tasks are promising. In
addition, intermediate layers in the model exhibit response properties observed
experimentally in visual cortical neurons. For instance, spatial attention multi-
plicatively modulates driént'ati'ori-tunéd-néur_oris, and te‘mpora.l' accumulation of
sensory information has trajectories dependent on input noise and respohse time.
These results suggest that the particular form of hierarchical logarithmic coding
that we have chosen may be appropriate for modeling the true underlying neural
representations and computations in the brain.

This work has various theoretical and experimental implications. The model
presents one possible reconciliation of cortical and neuromodulatory representa-
tions of uncertainty. The sensory-driven activities (layer I in this model) them-
selves encode bottom-up uncertainty, including sensory receptor noise and any
processing noise that have occurred up until then. The top-down information,
which specifies the Gaussian component of the spatial prior p(y), involves two
kinds of uncertainty. One determines the locus and spatial extent of visual atten-
tion, the other specifies the relative importance of this top-down bias compared
to the bottom-up stimulus-driven input. The first is highly specific in modality
and featural dimension, presumably originating from higher visual cortical areas
(eg parietal cortex for spatial attention, inferotemporal cortex for complex fea-
tural attention). The second is more generic and may affect different featural
dimensions and maybe even different modalities simultaneously, and is thus more
appropriately signaled by a diffusely-projecting neuromodulator such as ACh. This
characterization is also in keeping with our previous models of ACh [214, 215] and
experimental data showing that ACh selectively suppresses cortico-cortical trans-
mission relative to bottom-up processing in primary sensory cortices {116}, as well
as pharmacological studies showing an inverse relationship between the cue validity
effect and the level of ACh [149).

Our results illustrate the important concept that priors in a variable in one di-
mension (space) can dramatically alter the inferential performance in a completely
independent variable dimension (orientation). Increasing <y leads to an increased
mismatch between the assumed prior distribution (sharply peaked at cued loca-
tion) and the true generative distribution over space (bimodally-modally peaked
at the two locations +yx). Because the spatial prior affects the marginal posterior

over ¢ by altering the relative importance of joint posterior terms in the marginal-
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ization process, overly large v results in undue prominence of the noise samples in
the cued location and negligence of samples in the uncued sample. Thus, while a
fixed posterior threshold would normally lead to a fixed accuracy level under the
correct prior distribution, in this case larger v induces larger mismatch and there-
fore poor discrimination performance. This model is related to an earlier model
[53], but uses a more explicit and somewhat different neural representation.

The perceptual decision strategy employed in this model is a natural multi-
dimensional extension of SPRT [205], be- rhorﬁtbring the first-time passage of any
one of the posterior values crossing a fixed decision threshold.. Note that the
distribution of reaction times is skewed to the right (Fig 5.5(a)), as is commonly
observed in visual discrimination tasks [122]. For binary decision tasks modeled
using continuous diffusion processes [205, 122, 183, 80, 25], this skew arises from
the properties of the first-passage time distribution (the time at which a diffu-
sion barrier is first breached, corresponding to a fixed threshold confidence level
in the binary choice). Our multi-choice decision-making realization of visual dis-
crimination, as an extension of SPRT, also retains this skewed first-passage time
distribution.

There are two subtleties regarding our multi-hypothesis extension of SPRT.
One concerns aspects of behavioral results in decision paradigms that do not ex-
actly correspond to the predictions of SPRT, such as the unequal distribution
of error and correct reaction times [119, 121, 161]. As discussed before in Sec-
tion 5.2.2, this is an important point and an area of active research. Another issue
is the optimality of our particular multi-hypothesis extension of SPRT. Given that
SPRT is optimal for binary decisions (smallest average response time for a given
error rate), and that MAP estimation is optimal for 0-1 loss, we conjecture that our
particular n-dim generalization of SPRT should be optimal for sequential decision-
making under 0-1 loss. Preliminary theoretical analysis suggests that, for the case
of square loss function, the covariance of the posterior distribution is the right
metric for uncertainty on which to set a fixed decision threshold. This is also an
area of active research [65, 66], which we hope to explore in more depth in the
future.

In addition to its theoretical implications, this work has interesting bearings
on the experimental debate over the target of top-down attention. Earlier studies
suggested that spatial attention acts mainly at higher visual areas, that attentional
modulation of striate cortical activities is minimal, if at all significant[140]. How-
ever, a recent study using more sensitive techniques[143] has demonstrated that
spatial attention alters visual processing not only in primary visual cortex, but

also in the lateral geniculate nucleus in the thalamus. In our neural architecture,
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even though attentional effects are prominent at higher processing layers (III-V),
the prior actually comes into the integration process at a lower layer (II). This
raises the intriguing possibility that attention directly acts on the lowest level that
receives top-down input and is capable of representing the prior information. The
attentional modulation observed in higher visual areas may be a consequence of
differential bottom-up input rather than direct attentional modulation.

There are several important open issues. One is the question of noise. This
network can pérfofm exact Bay'esiran‘ inference because pfocessing (and particularly
integration) is noise-free; it remains to be examined how much processing noise
can impair the inferential process. A relevant question is how a finite population
of neurons can represent a continuous stimulus space. In this chapter, we have
assumed, for reasons of simplicity, that both the spatial and orientation variables
can be represented by a discrete set of points. This is similar to the discretization
used in earlier work on log probabilistic encoding in neuronal populations [159,
208]. An alternative is to use a set of basis functions that are either radial [57] or
more complex [223, 168].

Another important question is how the quality of the input signal can be de-
tected and encoded. If the stimulus onset time is not precisely known, then naive
integration of bottom-up inputs is no longer optimal, because the effective sig-
nal/noise ratio of the input changes when the stimulus is turned on (or off). More
generally, the signal strength (possibly 0) could be any one of several possibilities,
as in the random-dot motion detection experiment [80]. Optimal discrimination
under such conditions requires the inference of both the stimulus strength and its
property (eg orientation or motion direction). There is some suggestive evidence
that the neuromodulator norepinephrine may be involved in such computations.
In a version of the Posner task in which cues are presented on both sides (so-called
double cueing), and so provide information about stimulus onset, there is exper-
imental evidence that norepinephrine is involved in optimizing inference [212].
Based on a slightly different task involving sustained attention or vigilance [156],
Brown et al [32] have recently made the interesting suggestion that one role for no-
radrenergic neuromodulation is to implement a change in the integration strategy
when the stimulus is detected. We have also attacked this problem by ascribing
to phasic norepinephrine a related but distinct role in signaling unexpected state

uncertainty [52].



Chapter 6
Conclusions and Open Issues

In this thesis, we focused on several examples of inference and learning problems
faced by the brain, in which various types of uncertainty play crucial roles. In
particular, we considered situations in which environmental contingencies are in-
herently stochastic, and moreover have the possibility of undergoing infrequent
but drastic changes. We proposed potential neural representations for various un-
certainty measures, and compared the properties these neural components should
exhibit for their proposed semantics, with existent empirical data. In Section 6.1,
we summarize the main contributions of this thesis. In Section 6.2, we describe
two experimental projects that have been inspired by the theoretical work detailed
in this thesis, and relate their preliminary results to specific predictions made by
the theory. In Section 6.3, we examine a few open issues that may prove to be

useful and fruitful areas of future research.

6.1 Contributions

Several pieces of earlier work pointed to a critical role of neuromodulators in prob-
abilistic inference and learning [50, 179, 64]. Separately, a body of empirical work
in classical conditioning [100, 18, 34, 40, 89] has implicated ACh in the increment
or decrement in associative learning driven by the amount of known uncertainty
[146]. Inspired by these two lines of evidence, the first step in this thesis was to
construct an uncertainty-based description of ACh in the Bayesian formulation of
inference and learning (Chapter 3). We then extended the model to a more gen-
eral class of inference and learning problems, and realized that there should be at
least two different components of uncertainty, separately signaled by ACh and NE
(Chapter 4). Specifically, we proposed that ACh reports on ezpected uncertainty,
arising from learned stochasticity within a behavioral context; NE reports on un-

expected uncertainty, driven by strong deviations of observed data from internal
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expectations, and consequently serving as an alerting signal for the potential need
of a representational overhaul. We identified ACh and NE with these uncertainty
quantities in concrete inference and learning problems, such as certain attentional
tasks, and showed that the properties of their proposed semantics are consistent
with various pharmacological, behavioral, electrophysiological, and neurological
data. In addition, we examined the interaction between the uncertainty informa-
tion relayed by neuromodulatory systems and that encoded by cortical populations.
In Cha‘,pter' 5, we studied a épeciﬁc -exéxhpie of such inﬁeréctions in the context of
accumulating noisy sensory information over time, integrating irrelevant stimulus
dimensions, and making perceptual decisions based on noisy inputs. This work
offers a unified, Bayesian perspective on aspects of neuromodulation, inference,

learning, attention, perception, and decision-making,.

6.2 Experimental Testing

Despite a measure of success this work has achieved in advancing our understand-
ing of uncertainty, neuromodulation, and attention, this thesis is far from the final
word on neuromodulation or attention. Indeed, what we have learned here lead to
more new questions than those that have been answered. One important challenge
faced by theoretical works is making experimentally verifiable predictions. While
we have taken care to relate theoretical findings to experimental data along the
discussions, we have also initiated collaborative efforts to experimentally verify as-
pects of our models. While it may not be immediately apparent how probabilistic
models can be turned into concrete experimental paradigms, we have succeeded,
with the help of experimental collaborators, to implement versions of the models
proposed in Chapter 3 and Chapter 4. In the following, we describe some of the
preliminary data from these studies and compare them to model predictions.

Sequential Inference in Rats

In collaboration with Chris Cérdova and Andrea Chiba at UCSD, we have car-
ried out a sequential inference experiment with rats. Male Long Evans rats were
trained to respond to probabilistic stimuli with varying degrees of predictive un-
certainty, using a generative structure very similar to that proposed in the model
of Chapter 3. The task was based on a serial reaction time task, where the rats
must respond to a light stimulus arising in one of four spatial locations. During a
particular contextual block, one of the four holes lights up with 70% probability
on each trial, a neighboring hole lights up with 20% probability, and the other two
holes light up with 5% probability each. Block transitions, whereby the identity of



Experimental Testing 105

the most probable hole (and the second most likely, etc) is changed, are introduced
without explicitly informing the rat. Attentional demands were increased by using
short (.5s) stimuli, thus encouraging the learning of stimulus probabilities to aid
prediction and detection. Following training, the rats were given cholinergic lesions
in the nucleus basalis/substantia innominata (NBM/SI) with 192-IgG saporin, an
immunotoxin that selectively binds to and kills cholinergic neurons. Two weeks
after surgery, rats were tested again on the task in 100-stimulus trials per day.

Figure 6.1A shows 'thrat‘prriof to the lésibn; the rats learned the differential
probabilities of the holes being lit: they respond fastest when the 70% hole is lit,
slower for 20%, and slower yet for the least probable 5% holes. Moreover, since the
contextual block transitions are unsignaled, this figure demonstrates that the rats
are able to track the changes in contextual contingencies. This is apparent, since
the longest latencies occur in the few trials after each contextual transition. Fig-
ure 6.1B shows that after basal forebrain cholinergic lesions, the rats’ differential
responses to the different holes are eraggerated. This is consistent with our the-
oretical proposal that ACh reports the uncertainty associated with the top-down
model. Within the model framework, cholinergic depletion should lead to over-
confidence in the top-down information, thus over-representing the infrequency of
the infrequent stimulus, and perhaps the improbability of a context transition.
In the study, the rats also displayed a similar response pattern measured as in
accuracy (data not shown), indicating that differential frequency and contextual
transitions are really affecting the rats’ perceived likelihood of holes lighting up,
and not simply resetting the latency-accuracy set-point.

An interesting step in the next phase of the study is to examine the role of NE in
the task. Since we have proposed that NE signals unexpected uncertainty induced
by events exactly like the unsignaled block transitions in this task, NE should play
an important role in the rats’ ability to alter their internal model of the relative
frequencies of the different holes. Specifically, we suspect that the rats’ extra delay
in responding to context transition trials (over the latency exhibited in response to
5% stimuli) may have a noradrenergic component. Its sensitivity to ACh depletion
(as suggested by the exaggeration of delayed response to context transitions in
Figure 6.1) may be due to the partially synergistic interaction between ACh and
NE, in which large jumps in NE should also energize the ACh system. Obviously,
these speculations/predictions need further experimental testing. One possibility
is to use noradrenergic lesion or pharmacological manipulation in the task.
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Figure 6.1: (A) Response latencies to holes of differential frequency, plus the first
trial after a block transition (unsignaled), averaged over all contextual blocks. The
rats’ reaction times are fastest for the hole most likely (70%) to light up in a contextual
block, slower for the less probable hole (20%), and slowest for the least probable ones
(5%). The contextual transition data are averaged over the first trial after the first
70% trial after an unsignaled block transition. These are surprisingly even harder for
the rats to detect than the 5% ones, indicating that they are experience additional
costs incurred by a contextual transition, in addition to the demand of responding
to an infrequent stimulus within a context. (B) Percentage change in latency from
baseline (70% condition) for 5 days prior to NBM cholinergic lesion versus 10 days
post-lesion. Measured against the baseline, the tendency to respond more slowly to
infrequent stimuli and a contextual transition is farther exaggerated post-lesion. This
is consistent with the model, in the sense that cholinergic depletion corresponds to an
over-reliance on the top-down information, both about how infrequent the rare stimuli
are and about how unlikely a contextual transition is to occur. Figures adapted from
Cérdova, Yu, & Chiba. Soc. Neurosci. Abstr. 30, 2004.
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A Generalized Posner Task in Humans

In a separate experiment, we implemented a simple version of the generalized task
introduced in Chapter 4, to examine how humans perform in inference/learning
tasks that involve both expected and unexpected uncertainty. The task we imple-
mented is an extension of the classical Posner task [151], where both the semantics
and quality of a foveal endogenous cue are allowed to change between unsignaled,
variable-length blocks. A version of the results has been published in Yu, Bentley,
Seymour, Driver, Dolan, & Dayan Soc. Neurosci. Abstr. 30, 2004. Figure 6.2 il-
lustrates the general design of the experiment. During each contextual block, one
of the two (red or green) cue arrows points to a location, where the target appears
with high probability (cue validity: .5 < v < 1). The explicit task for the subject
is to indicate with a keypad whether the white arrow inside the target stimulus is
pointing up or down; the implicit task is to learn which colored cue arrow is the
predictive one and with what cue validity. The flickering background, the variable
onset of the target, and the difficulty of discerning the (black) target/distractor
stimuli all encourage the subject to use the cue to predict the target location.
Each block lasts 15 trials on average, but can be as short as 8 and and as long
as 22. In the control condition, the subject is explicitly informed of contextual
block transitions; in the erperimental condition, the subject is not informed. The
imperfect validity of the cue induces ezpected uncertainty. In addition, the exper-
imental (but not control) condition involves unexpected uncertainty, arising from
unsignaled block changes. The subjects must detect the context transitions as well
as figuring out what the cue validity is.

Figure 6.3A shows that reaction times in invalid trials are significantly longer
than in valid trials (VE; validity effect). Moreover, Figure 6.3B shows that VE is
greater for the control condition than for the experimental condition, consistent
with model predictions (Figure 6.3C). Within the framework of our model, VE is
proportional to cue validity and model confidence, and because the second com-
ponent is generally smaller in the experimental condition, the overall VE is also
smaller.

We next examine the relationship between VE and the cue validity. Although
the true cue validity of a block is either .7, .85, or 1, we model the subjects as
having to learn the cue validity through an iterative process of maximum likelihood
estimation. Figure 6.4A shows that there is a significant trend for subjects to
show a greater validity effect when the perceived cue validity is higher, in both the
control (blue) and experimental (red) conditions (one-sided t-tests: p < 0.001).
This suggests that the subjects internalize the different cue validities in the task.
The data in Figure 6.4A are binned to aid visualization as follows: low validity
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A Novel Attention Task
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Figure 6.2: During the cue phase, a pair of green-red arrows are displayed around
the fixation point (white cross). After a variable delay period, the target phase is
initiated by the appearance of a target stimulus on one side of the screen (square)
and a distractor stimulus on the other side (circle). During each block, one of the two
colored arrows points to the subsequent target most of the time (with cue validity
between 0.5 and 1); the color of the predictive cue alternates at block transitions.
In the example, the red arrow is the cue, and trial 3 is the only invalid trial. The
subject’s explicit task is to indicate whether the white arrow in the target stimulus is
pointing up or down. Flickering white noise is present in the background at all times.
During the actual experiment, the target and distractor stimuli are black; here they
are re-colored white for illustration purposes.
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Figure 6.3: (A) Reaction time on valid trials are faster than on invalid trials. (B)
Validity effect (invalid RT - valid RT) is greater for the control condition than for
experimental. n = 15. (C) Model simulation results show a similar pattern of greater
VE in the control condition compared to experimental condition.

refers to perceived validity < .65, mid refers to between .65 and .78, high refers to
between .78 and 1. More interestingly, the dependence of VE on the cue validity is
stronger for the experimental condition than for the control condition (one-sided
t-test: p < 0.005). This is also consistent with model predictions (Figure 6.4B).
Again, the reason is that because VE should be proportional to both perceived cue
validity and model confidence, as the true cue validity decreases in the experimental
condition, both factors take a hit; whereas in the control condition, only the cue
validity component is affected. Thus, the fall in VE with decreasing cue validity
is more dramatic in experimental than control condition. The pattern of accuracy
data is quite similar to that for the reaction time data in this experiment (not
shown), indicating that the results are not confounded by a change in the latency-
accuracy set-point.

These behavioral data indicate that the subjects are able to learn the implicit
probabilistic relationships in the task, as well as adapt to changes in those con-
tingencies. Their data are consistent with model predictions in several interesting
ways. We also monitored the subjects’ brain activities in an MRI scanner during
the task, as well as altering the subjects’ effective ACh and NE levels using phar-
macological manipulations (scopolamine for lowering cortical levels of ACh [190],

and clonidine for lowering NE [44, 136]). It would be fascinating to find out which
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Figure 6.4: (A) As a validity of cue validity (CV), VE decreases for decreasing CV
(p < 0.001), and this trend is more significant for experimental condition than control
condition (p < 0.005). Control condition data same as in Figure 5.5D. n = 15. (B)
Similar pattern in model simulation results.

brain areas are involved in representing and computing the different components
of probabilistic inference and learning, and especially the uncertainty measure; we
are also very interested in the effects ACh and NE manipulations might have on
the behavioral measures and the underlying neural correlates. This is an area of
active on-going research.

6.3 Theoretical Considerations

There are a number of theoretical considerations that we have not treated in detail.
One is the issue of neuromodulatory functions at different time-scales, especially
in light of the substantial data on phasic activities in NE-releasing cells. A second
important task is a clear delineation of different kinds of uncertainty in the context
of inference and learning problems that are more complex than those considered
here. It is also of import how they are represented, and perhaps evolve over time,
in the neural substrate. A third question regards the role that other computational
signals in addition to uncertainty, such as reward, play in selective attention. A
large number of attention tasks use a form of reward to manipulate the subject’s
attention, instead of using probabilistic cueing. In the following, we consider these
issues in turn and in more detail.

Phasic NE Signaling

In this thesis, we have mainly focused on the tonic aspects of ACh and NE signal-
ing. In the case of ACh, this was a necessity due to the lack of reliable electrophys-

iological recordings of ACh neurons. In the case of NE, however, there is a con-
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Figure 6.5: Phasic properties of NE neurons in the locus coeruleus (LC). (A) In
a visual stimulus-discrimination task, a typical monkey LC neuron responds prefer-
entially to a target stimulus and not to a non-target stimulus. Figure adapted from
[157]. (B) The post-stimulus population histogram shows that the post-stimulus re-
sponse is not only modulated by the target vs. non-target (distractor) distinction, but
also by the eventual response choice made by the monkey. Figure adapted from [157].
(C) In a similar experiment in rats, who have to discriminate between a reinforced
odor (CS+) and a non-reinforced odor (CS-), LC responses are less aligned to the
onset of the conditioned stimulus than to the time of the response, indicating that
LC neurons is more associated with the decision-making aspect of the task than the
purely sensory aspect. Figure adapted from [28].

siderable body of data detailing the phasic aspect of the activities of NE-releasing
neurons in the locus coeruleus (LC). Figure 6.5 shows some of these data. In a
monkey target-discrimination task [157], NE neurons in the LC respond preferen-
tially to target stimulus rather than distractor stimulus (Figure 6.5A). In addition,
LC responses are modulated by whether the monkey responded to the stimulus as
target or distractor, independent of the actual stimulus (Figure 6.5B). In a similar
discrimination paradigm in rats [28], LC neurons’ response to a reinforced olfactory
stimulus is more aligned to response time than to the stimulus onset (Figure 6.5C;
see also [43]). It has also been observed that LC responses are inversely correlated
with the target frequency [14] and the difficulty of the task [157].

The data collectively suggest that LC neurons may be involved in the decision-
making aspect of the task rather than the sensory processing aspect. It is not
obvious how the LC neurons’ robust response to these well-learned stimuli fit
into our theory about NE reporting unexpected uncertainty induced by context
changes.

One possibility is that phasic NE release reports on unexpected state changes
within a task. This is a significant, though natural, extension of our proposal that
tonic NE reports on unexpected task changes. We briefly describe here a Bayesian
formulation of how phasic NE may act as an internal interrupt signal [109].

Once again, we can use the now-familiar HMM as a generative model for the
vigilance task used in the target-distractor discrimination task [157]. The start
state models the state established by the monkey fixation that initiates each trial.
After a variable delay (parameterized the self-transition probability of the start
state), the target state or the distractor state is entered. There is a 20% prob-
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ability of transiting from the start state to the target state, and 80% probability
of transiting into the distractor state (as in the actual task). In addition, we
assume that the observations generated by the target and distractor states are
noisy, overlapping distributions, where the extent of overlap reflects the difficulty
of the discrimination. Because the start—distractor is the default sequence, the
presentation of the infrequent start—target sequence should induce a form of
unexpected uncertainty about the default option. Therefore, we propose the iden-
tification of phasic NE with 1— P(d‘ist-rabtorld’a.t‘a); consistent with the notion that
phasic NE signal unexpected uncertainty about state changes within a task. This
identification leads to NE levels that qualitatively replicate the findings in Fig-
ure 6.5, as well as the dependence of LC activation on task difficulty [157]. These
ideas are examined in more depth elsewhere (Dayan & Yu, under review).

This theory is related to a range of existing ideas about the role of NE in
neural computation [212, 22], but is perhaps most closely related to the proposal
that phasic NE plays a part in optimal inference by changing the gain in com-
petitive decision-making networks when a stimulus has been detected against a
null background [32, 31]. That proposal is similar to ours in that phasic NE is
associated with a selective, non-motor aspect of sensory decision-making. How-
ever, it is unclear why under this “gain” theory LC neurons do not respond to the
distractor stimulus, which presumably should also change the network gain with
the change in the signal-to-noise ratio in the input. Moreover, in a pure-detection
task such as the sustained attention task [132], NE does not appear to be involved.
According to our “interrupt” theory, there is no need for NE involvement, as there
is no default stimulus for which unexpected uncertainty needs to be established.
However, in the “gain” framework, NE should be activated by the stimulus due to

the higher signal content in the input, contradicting the experimental finding.

Multiple Forms of Uncertainty

In richer tasks necessitating complex and hierarchical internal representations,
subjects can simultaneously suffer from multiple sorts of expected uncertainties,
unlike the single form considered in our model. From a neurobiological point of
view, it is important to consider the specificity and complexity of the sources
and targets of cholinergic and noradrenergic signaling. Anatomical and electro-
physiological studies suggest that cholinergic neurons in the nucleus basalis, the
main source of cortical ACh, can have quite heterogeneous behaviors [87], and
individual neurons can have high topographical specificity in their projection to
functionally distinct but related cortical areas [219] (see also Raza, Csordas, Hof-
fer, Alloway, & Zaborszky. Soc. Neurosci. Abstr. 29, 585.12, 2003). Thus, the
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corticopetal cholinergic system may be able to support simultaneous monitoring
and reporting of uncertainty about many quantities. More importantly, it is likely
that cortical neuronal populations encode uncertainties themselves in a rich man-
ner [9, 152, 153], which would interact with the neuromodulatory signals. This
could significantly augment the brain’s overall capacity to represent and compute
in the face of equivocation. 4

By contrast, the a,ct1v1ty of NE neurons in the locus coeruleus has been observed
to be more homogeneous [12] This, together with existing ideas on a role for NE
in global alertness and novelty detection, makes it more appropriate as the sort of
global model failure signal that we have employed. Understanding the specificity
and complexity of neural representations of uncertainty is an important direction

for future empirical as well as theoretical studies.

Reward-Driven Attentional Effects

In addition to probabilistic inference, a number of additional factors control se-
lective attention. In particular, reward has been used extensively to manipulate
attention, including in many tasks implicating ACh and NE. For instance, the
target discrimination tasks mentioned in the previous section [157, 28] teach the
animals the discrimination by rewarding one stimulus and not the other. Also, the
spatial attention task in Figure 5.1 manipulated attention by rewarding one or the
type or stimulus, not by probabilistic cueing. While there has been some compu-
tational work detailing the role of neuromodulatory systems in signaling reward
prediction error and shaping internal models about reinforcement [179, 111, 48],
most of that work have concentrated on dopamine and serotonin, rather than ACh
and NE. A more complete theory of attention, and neuromodulation, would require
a better understanding of the connection between reward and ACh/NE.

6.4 Summary

There is a host of exciting experimental and theoretical problems that have been
unearthed by the work described in this thesis. Much more remains to be under-
stood than have already been clarified. However, the very abundance of new ques-
tions that stem forth from this work attests to the promise of a Bayesian approach
in understanding cortical inference and learning, and the role of neuromodulation
in such processes. This work follows in the footsteps in previous efforts to restore
neuromodulatory systems, such as ACh, NE, dopamine, serotonin, and GABAg,
to their rightful place at the heart of sophisticated neural information processing.
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The most urgent tasks among future work include: additional experimental test-
ing, a unified theory of both phasic and tonic aspects of ACh and NE, a more
sophisticated model of hierarchical inference/learning problems that take into ac-
count diverse types of uncertainty, and a unified framework for sensory, cognitive,

and motor processing that integrate all the major neuromodulatory systems.
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