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Abstract

A large number of algorithms have been developed to perform non-rigid reg-

istration and it is a tool commonly used in medical image analysis. The Free-

Form Deformation algorithm is a well-established technique, but is extremely

time consuming. In this paper we present a parallel-friendly formulation of

the algorithm suitable for Graphics Processing Unit execution. Using our

approach we perform registration of T1-weighted MR images in less than 1

minute and show the same level of accuracy as a classical serial implemen-

tation when performing segmentation propagation. This technology could

be of significant utility in time-critical applications such as image-guided

interventions, or in the processing of large data sets.
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1. Introduction

In the field of medical image analysis, image registration remains one of

the main research topics and challenges. Image registration consists of de-

forming a floating image to match a reference image. The most active area

of research is non-rigid registration (NRR), in which attempts are made to

locally “warp” one image into correspondence with another. Example prob-

lems are matching 3D MRI scans of two different patients, or two scans of the

same patient before and after surgery. While a huge amount of research has

been devoted to the methodological development [1, 2], very little research

has focused on the computational burden of the proposed algorithms. One

of the most widely used NRR algorithms, Free-Form Deformation [3] (FFD),

has not reached its full clinical utility as a result; FFD’s computation time

on a single data set can extend to several hours. If such constraints could

be removed, or alleviated a new range of clinical applications, which require

real-time or near real-time computation could be attempted. Such appli-

cations arise, for instance, in the context of real-time image-guided surgery:

new patient information acquired during surgery, such as ultra-sound images,

could be used efficiently to update a previously developed surgical plan.

The bottleneck of the FFD algorithm is the cubic B-Spline computation,

and consequently work has been done to speed up this part using various

architectures. Jiang et al. [4] used a FPGA-based implementation which

lead to a speed-up of 3.2 times compared to a 2.666 GHz CPU execution.

Rohlfing et al. [5] reduced computation time by more than 50 times using 64

CPUs of a shared-memory supercomputer. More recently, Rohrer et al. [6]

presented a multicore implementation of the B-Spline computation based
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on a Cell Broadband EngineTM (Cell/B.E.) platform. Their architecture

performed 40% faster than serial execution on a standard computer.

These techniques provide considerable computation time improvements,

however they require either high technical knowledge or hardware with prices

inhibiting wide adoption. We propose the use of graphics processing units

(GPUs) as a cost effective high performance solution. Moreover we advocate

use of NVidia Corporation’s CUDA API, which requires only knowledge of

the C language and very little awareness of the hardware.

In this article we present a data parallel formulation of the FFD algo-

rithm and describe its execution on GPU architecture using the CUDA API.

The formulation affords particularly efficient memory use, allowing much

improved use of computational resources. The resulting system provides sig-

nificant speed improvements, without resorting to theoretical or numerical

approximations.

In the first section we present the methodology and its GPU-based im-

plementation. In the second we present the computation time benefit from

such an implementation, and evaluate the formulation’s accuracy. The time

benefit is simply assessed by comparing the computation time of a serial

and a parallel implementation of the same algorithm. The accuracy is eval-

uated by comparing the result of segmentation propagation using our GPU

implementation and the classical serial FFD formulation.

3



2. Method

2.1. The Free-Form Deformation algorithm

The main requirement for an algorithm to benefit from GPU execution

is data parallelism. The FFD algorithm comprises three components, which

may be considered independently: transformation of the floating image using

the splines and an interpolation function; evaluation of an objective function;

and optimisation against this function. Individually, these components may

be formulated in a data parallel manner as they mainly consist of voxel-wise

computations. However difficulties associated with GPU memory constraints

mean certain aspects are not easily implemented in practice.

2.1.1. Cubic B-Splines interpolation

The FFD algorithm consists of locally deforming an image volume using

cubic B-Splines. This technique has the desirable feature of guaranteeing

a C2 continuous deformation (see Fig. 1). The cubic B-Splines framework

is well documented elsewhere [3], and the details are omitted for brevity.

However we note that a particularly favourable property of the framework

is that any deformation produced with a grid of density n can be exactly

produced on a grid of density 2n − 1. This property has been used in a

pyramidal approach in our implementation.

However, cubic B-Spline methods are extremely computationally expen-

sive. For this reason in the classical approach only one control point is

optimised at a time, which means the whole image does not have to be fully

interpolated at each step. The computation of each voxel’s position and their

new intensities are fully independent and thus their computation is suitable
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for parallel implementation. Since GPU-based computation is more efficient

when processing large amounts of data concurrently, we optimise all control

points and interpolate the whole image at each step.

The deformation T which optimises an objective function between the

deformed floating image F (T) and the reference R is sought.

2.1.2. Metric computation

The Normalised Mutual Information (NMI) is a voxel intensity-based

information-theoretic similarity measure based on the paired-intensity dis-

tribution in R and F(T). A larger NMI value reflects a greater level of

shared information between the two images. It is computed from

NMI =
H(R) + H(F (T))

H(R, F (T))
,

where H(R), H(F (T)) and H(R, F (T)) are respectively the two marginal

entropies and the joint entropy. Its computation thus requires a joint his-

togram which, in our implementation, was filled using a Parzen Window

(PW) approach[7].

In order to promote smooth deformation, a penalty term P has been

added to the NMI value. The objective function C to be optimised is a

balance between the NMI similarity measure and the deformation penalty:

C = (1 − α) × NMI − α × P, (1)

where 0 ≤ α < 1. The penalty-term we describe here, the bending-energy,
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was used for non-rigid registration by Rueckert et al.[3]. It is defined as

P =
1

N

∑
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where N is the voxel number in Ω, the domain of R. We approximated this

penalty term by computing the bending-energy values at the control point

positions only, which reduced the number of computations. Furthermore, as

explained in Rohlfing et al.[5], this approach allowed precomputation of the

cubic B-spline basis values for each node, thus easing the calculation further.

2.1.3. Control point position optimisation

To optimise the control point positions, we used a conjugate gradient

ascent. This approach is more efficient than a simpler steepest ascent op-

timisation, and is less memory intensive than Newton type algorithms. We

thus required the derivative ∂C
∂µ

ξ
ijk

of the objective function:

∂C

∂µ
ξ
ijk

= (1 − α) ×
∂NMI

∂µ
ξ
ijk

− α ×
∂P

∂µ
ξ
ijk

, (3)

where ξ are the x, y and z components of the control point µijk.

The gradient of the NMI is calculated as:

∂NMI

∂µ
ξ
ijk

=

∂H(R)

∂µ
ξ
ijk

+ ∂F (T)
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ξ
ijk

− NMI × ∂H(R,F (T))
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ξ
ijk

H(R, F (T))
,

which requires computation of the derivative of the marginal and joint en-

tropies. These can be computed from the derivative of the intensity distri-

bution, which requires the derivative of the joint histogram H[8]:

∂H(r, f)

∂µ
ξ
ijk

=
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This approach provides the mathematical value of the gradient but in-

volves significant computational redundancy, since each voxel is included in

the neighborhood of several control points. Moreover it is memory intensive

as each node requires one joint histogram per degree of freedom. In order to

decrease this redundancy and the memory requirement, we propose a voxel-

centric approach to evaluate the node-centric gradient. We first compute the

gradient value for every voxel, then gather the information from all voxels to

obtain the nodal gradient values.

We computed the voxel-centric gradient values ∂H(r,f)

∂u
ξ
z

using the formulas

in equation 4, with ∂T(x)
∂µijk

replaced by ∂T(x)

∂u
ξ
z

, where ∂T(x)

∂u
ξ
z

= I if z = x as

T(x) = x + u(x).

From the voxel-centric gradient values, we extracted the analytical node-

centric derivative of the similarity measure. We first applied a convolution

window to the gradient field where the convolution window was a cubic B-

Spline curve which matched the basis functions in the deformation model in

terms of node spacing; it was equivalent to ∂T(x)
∂µijk

in equation 4. Secondly, we

extracted the gradient value from the smoothed image at the node position.

As seen in equation 3, the gradient of the bending energy is required also.

Abbreviating equation 2 as P = 1
N

∑

~x∈Ω A2 + B2 + C2 + 2D2 + 2E2 + 2F 2,

the derivative of the penalty term involves a sum of derivatives each of which

can be obtained using the chain rule, e.g.
∂(A2)
∂µ

ξ
ijk

=
∂(A2)

∂A
. ∂A

∂µ
ξ
ijk

= 2A ∂A

∂µ
ξ
ijk

. As

for the bending energy evaluation, and for the same reason, this gradient was

computed at the control point positions only.
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2.2. A GPU-based implementation

The F3D implementation was achieved using CUDA [9] which is an Appli-

cation Programming Interface developed by NVidia to simplify the interface

between CPU (host) and GPU (device). Our framework comprises four steps,

organised as in Fig. 2.

The first step performs image interpolation via cubic B-Splines and trilin-

ear interpolation to define the new voxel position and intensity. As already

stated the computation of each voxel’s displacement and intensity interpo-

lation is independent and their parallel hardware implementation is there-

fore straightforward. However the calculations are demanding in terms of

dynamic memory resources, requiring allocation of around 22 registers per

computational thread. As GPU memory is limited, a higher register require-

ment per thread dictates that fewer threads may be executed concurrently,

resulting in sub-optimal use of the device’s computational resources. The ra-

tio of active threads to maximum allowed (hardware dependent) is referred

to as occupancy [9], and an efficient implementation should maximise this.

A single kernel requiring 22 registers leads to an occupancy of 42%. For

this reason this step has been split into two kernels, the first dealing with

the B-Splines interpolation only and the second with trilinear interpolation.

Register requirements then fall to 16 and 12 respectively, and occupancies

increase to 67% and 83%. Such a technique allows a computation time im-

provement of 36.8% in our case.

The second step involves filling the whole joint histogram and computing

the different entropy values. A GPU implementation of this step did not

show a significant reduction in computation time compared with serial im-
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plementation. Furthermore this step occupies only around 2.2% of the entire

computation time. Moreover a GPU implementation necessitates use of sin-

gle precision which, for this step, proves detrimental to accuracy1. For these

reasons this step is executed on CPU rather than on GPU. This choice does

not affect the computation time even with the data transfer between device

and host.

In the third step the gradient value is computed for each voxel and the

convolution windows are applied. As for the first step, we distributed the

computation across several kernels to improve occupancy. The first kernel

computed the gradient values. The gradient was then smoothed using three

different kernels, each dealing with one axis. For these kernels it appeared

that computing the cubic spline curve “on the fly” was faster than precom-

puting and fetching them from memory.

The last step normalises the gradient and updates the control point po-

sitions using a conjugate gradient optimisation. A first kernel is used to

extract the maximal gradient value from the whole field. The field is split

into several parts from which a maximal value is extracted. Subsequently,

the largest value from the extracted maximas is kept. A last kernel updates

the control point positions based on the normalised gradient value.

A final feature of our approach is the use of a convergence criterion.

Whereas time constraints dictated that earlier implementations [3] performed

a set (and small) number of iterations, our algorithm iterates until conver-

gence, aiming to ensure better registration.

1Newer devices do offer double precision accurary, but at a significant lower

performance[9]
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We used an NVidia 8800GTX GPU, which included 128 processors and

768 MB of memory. The memory size was a limitation as it prohibited loading

very large image sets with a small control point spacing δ. Nonetheless

we managed to run tests on 2563 voxel images with δ = 2.5 voxels along

each axis. These specifications are generally acceptable for MR brain images

for example. Moreover, recently released card have an increase amount of

memory, up to 4 GB for example2.

3. Evaluation

3.1. Computation time evaluation

To evaluate the benefit of a GPU-based implementation, our parallel-

friendly algorithm has been implemented in both C++ and CUDA. The

speed improvements presented in Table 1 were obtained using a 3.0GHz CPU

and an NVidia 8800 GTX GPU. The image sizes were 181×217×181 voxels

and the spline lattice contained 40×44×40 control points, which is common

for inter-subject brain MR images. The overall speed improvement from the

GPU implementation was 9.89 times. This value includes the data transfer

between host and devices, as well as the registration initialisation. For this

reason, 9.89 does not correspond to the mean of the speed improvements for

each function in Table 1. A non-rigid registration using the FFD approach

(see Fig. 3) was performed in 42 sec on standard T1 weighted MR brain

images.

2www.nvidia.com/page/hpc.htm
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Function Speed improvement

Deformation field computation × 11.27

Trilinear resampling × 12.83

Cubic spline resampling × 10.12

Bending-energy computation × 9.13

NMI gradient computation × 26.30

Bending-energy gradient computation × 13.33

Table 1: Speed improvements of parallel GPU computation over serial CPU computation

for each function in the implementation.

3.2. Registration accuracy evaluation

In order to assess the accuracy of our implementation we performed

segmentation propagations and compared the results with those obtained

from a classical FFD implementation3. The dataset consisted in 20 T1-

weighted brain MR images, of which 10 scans were of clinically-diagnosed

Alzheimer’s disease (AD) patients and 10 age-matched control subjects. The

data acquisition protocol as well as the subject characteristics have been

described by Chan et al. [10]. The size of the images used in the reg-

istration was 180 × 180 × 124 voxels, with a voxel spatial resolution of

0.9375×0.9375×1.5mm3. For each brain image, different manual segmenta-

tions have been performed. The regions of interest are listed in table 2 and

a few are illustrated in figure 4.

3A FFD algorithm executable can be downloaded from Daniel Rueckert’s webpage:

http://www.doc.ic.ac.uk/∼dr

11



Using our Fast-FFD and the classical serial FFD, we performed 380

(20 × 19) registrations in which each scan was registered to all others. As

scans of both diagnosed AD patients and controls were used, we expected

significantly differing brain shapes and correspondingly significant deforma-

tions to be recovered by the algorithms. Prior to the non-rigid registration,

an affine registration has been performed using FLIRT [11]. All the non-rigid

registrations were performed with a pyramidal approach with 3 levels. The

finer lattice of control points had a spacing of 5 mm along each axis. Both

algorithms employed a conjugate gradient optimisation, and a bending en-

ergy weight of α = 1% (Eq. 1). As a preprocessing step, each T1w MR image

was skull stripped using BET [12] and a dilation was applied on the obtained

mask. The resulting set of deformation fields were then used to propagate

the manually segmented masks between images. We computed the Dice sim-

ilarity (DS), as in equation 5, between each manual segmentation (Mm) and

the corresponding propagated (Mp) region of interest.

DS = 2 ×
||Mm ∩ Mp||

||Mm|| + ||Mp||
(5)

The DS rates the overlap of two masks between 0 and 1, where 1 indicates

a perfect overlap and 0 none. Table 2 summarizes the obtained results using

both implementations. For comparison, the DS was computed using only an

affine transformation also.

For these data the mean registration time was around 5 hours per image

using the classical FFD algorithm, but less than 20 seconds using our GPU-

based implementation. For comparison, our implementation had a mean

computation time of 3 minutes 18 seconds when running on the same CPU.
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3.3. Discussion

The comparison of our CPU and GPU implementations of the presented

algorithm (section 3.1) showed a speed-up of approximately 10 times using

the latter. We conclude that the algorithm maps well to parallel architec-

tures, and consequently is well-suited to GPU execution. However, for the

segmentation propagation examples (section 3.2) dramatically higher perfor-

mance was shown by our formulation (and implementation) compared with

the classical algorithm. Thus the majority of the speed improvement arises

from the improved formulation, rather than the GPU implementation itself.

Two features of the formulation are likely to be responsible: (1) optimisa-

tion of all control points concurrently, rather than serially, and (2) use of

an analytical objective function gradient, rather than a symmetric difference

estimate. The latter, in particular, is significant: a symmetric difference eval-

uation is time consuming as it requires resampling of the floating image and

evaluation of the objective function value six times per control point. More-

over, the use of the analytical metric gradient may lead to a faster conjugate

gradient convergence. The DS evaluation showed that both the classical

FFD and our implementation improved the overlap between regions of inter-

est, compared to a single affine registration. Moreover the Fast-FFD method

appears to perform better in most cases; the higher values are statistically

significant for the left and right entorhinal cortex and the left parahippocam-

pal gyru when performing a paired t-test (p < 0.01). The improvements can

be attributed to the use of a stopping criteria based on the objective function

value (and the consequent increase in the number of iterations performed)

in the Fast-FFD method. To limit computation time we used a maximum of
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10 iterations in the classical FFD.

4. Conclusion

Non-rigid registration is a central but computationally-expensive tool in

medical imaging. We have developed an efficient data-parallel formulation of

the widely used FFD algorithm which maps well to high performance GPU

architectures. Our implementation performed the registration in Fig. 3 in

less than one minute, making possible the analysis of very large cohorts of

subjects, with the aim of better understanding diseases such as Alzheimer’s.

By alleviating time constraints the approach could also allow development

of new time-critical application areas, for example in surgical planning and

navigation.

Code

The GPU-based code which has been used to process the data in the arti-

cle can be downloaded from http://cmic.cs.ucl.ac.uk/staff/marc modat/code/
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Figure 1: From splines to image warps. (a) A weighted sum of uniformly spaced cubic B-

spline basis functions used to construct a C2 continuous curve in one dimension. (b) The

previous five basis functions are combined with another four to generate a two-dimensional

tensor product; two weighted sums of these 2D basis functions are used to model the x

and y components of a displacement vector field. (c) The x displacement field in yellow

has been used to deform a regular grid, overlaid in blue. (d) The same transformation

illustrated using a brain image: the red edges from the original MRI are overlaid on a

grayscale image of the warped result.
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Figure 2: Organization of our implementation
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(a) (b) (c)

(d) (e) (f)

Figure 3: 3D image registration. By optimising a measure of the similarity of two images

(NMI) as a function of the spline weights, a floating image (a) can be automatically brought

into alignment (b) with a reference image (c). The initial misalignment is illustrated by

alternating between the two images (d) and as a difference image (e-left). The equivalent

results after registration are shown in (f) and (e-right). Optimisation of the 40-by-44-by-

40-by-3 = 211,200 weights is computationally challenging.
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(a) (b) (c)

Figure 4: Examples of manually segmented masks. Segmentation of the amygdala areas

are presented on the axial view (b), the blue area on the sagital view (b) corresponds to

the entorhinal cortex and the coronal view (c) shows the superior temporal gyra.
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Mask area Affine only classical FFD Fast-FFD

left amygdala 0.531 (0.163) 0.759 (0.089) 0.776 (0.066)

left entorhinal cortex 0.203 (0.189) 0.296 (0.164) 0.372(0.155)

left fusiform gyrus 0.398 (0.103) 0.483 (0.096) 0.499(0.098)

left hippocampus 0.429 (0.157) 0.658 (0.093) 0.686(0.075)

left medial-inferior temporal gyrus 0.626 (0.070) 0.699 (0.061) 0.709(0.064)

left parahippocampal gyru 0.399 (0.146) 0.527 (0.094) 0.637(0.070)

left superior temporal gyrus 0.607 (0.069) 0.742 (0.057) 0.737(0.048)

left temporal lobe 0.748 (0.052) 0.832 (0.046) 0.827(0.041)

right amygdala 0.571 (0.139) 0.779 (0.072) 0.787 (0.058)

right entorhinal cortex 0.170 (0.177) 0.266 (0.169) 0.334 (0.162)

right fusiform gyrus 0.450 (0.111) 0.542 (0.119) 0.534 (0.113)

right hippocampus 0.479 (0.162) 0.631 (0.120) 0.710 (0.086)

right medial-inferior temporal gyrus 0.662 (0.062) 0.763 (0.059) 0.760 (0.053)

right parahippocampal gyru 0.276 (0.208) 0.323 (0.189) 0.340 (0.275)

right superior temporal gyrus 0.624 (0.055) 0.780 (0.048) 0.775 (0.040)

right temporal lobe 0.733 (0.119) 0.811 (0.128) 0.813 (0.125)

Table 2: Average (standard deviation) results of the segmentation propagation. For each

propagation, the Dice similarity value between the manual and the propagated segmenta-

tions has been computed.
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