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Abstract 

Dietary restriction (DR), the reduction in food intake that falls short of starvation, has 

been shown to be the most robust and reproducible intervention to extend lifespan in 

diverse organisms ranging from yeast to mammals, including the fruit fly Drosophila. 

Despite over 70 years of research, primarily on rodents, the mechanisms by which DR 

extend lifespan in any organism are poorly understood, partially due to the variation 

in how DR is defined and applied between laboratories. Lifespan extension by DR 

commonly trade-offs with reduced fecundity, leading to evolutionary-based theories 

predicting that DR elicits an evolved response to food shortage in nature, through 

reallocation of resources away from reproduction and towards somatic maintenance, 

hence increasing the chance of survival until food supply becomes more abundant. 

 

In Drosophila, DR is typically implemented by dilution of sucrose and yeast in an 

agar-based medium, with yeast being the key component regulating lifespan. Firstly, 

this thesis presents an investigation of the response of the model organism Drosophila 

to different DR diets and protocols, thereby creating one standardized and optimized 

DR diet for use. Secondly, using the optimized diet, this project investigates the role 

of specific nutrients mediating the effects of DR and the potential pathways 

controlling these effects. Essential amino acids were shown to directly regulate the 

trade-off between high fecundity and reduced lifespan observed with full feeding. 

However, methionine addition alone was necessary and sufficient to increase 

fecundity to levels seen with full feeding, without reducing lifespan, demonstrating 

that reallocation of nutrients cannot explain the DR responses. The results of this 

thesis highlight the importance for a standard DR protocol and suggest that in other 

organisms, including mammals, the beneficial effects of DR may be achieved without 

impairing fertility by using a suitable balance of nutrients in the diet. 
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1.1 Introduction to ageing 

 
The concept of ageing is familiar to everyone, yet a precise definition is not easy to 

find. Applied to humans, ageing might be seen as the deterioration of the body over 

time, whether it be in the form of physical appearance such as greying hair or 

wrinkles or the onset of ageing-related diseases such as cancer or diabetes. However, 

when viewed in a different context, ageing does not necessarily incorporate only 

negative attributes. For example some types of cheese and wine are often left to 

mature to enhance their flavour and increase their value. Hence ageing can mean 

different things to different people and thus a universal definition might define 

ageing simply as all positive, negative and indifferent things that change with age 

(Ricklefs and Finch 1995). In biological terms, ageing can be defined as the age-

related decline in fitness traits as a result of internal physiological deterioration (Rose 

1991). This definition of ageing will be applied throughout this work.  

 

Whilst ageing is almost universally observed across species, there are a few 

exceptions, suggesting that ageing may not be inevitable. For example, the simple 

fresh-water animals Hydra have been reported to show no signs of senescence when 

assayed over a four year period (Martinez 1998). Furthermore, almost all cells in the 

body are only able divide a finite number of times (Hayflick’s limit) (Hayflick and 

Moorhead 1961; Hayflick 1965); however, germ line cells (Weismann 1893) and 

tumour cells (HeLa cells) appear to be exceptions to the Hayflick’s limit and are 

therefore potentially non-ageing. Despite being ruled out by William Hamilton 

(1966), recent evidence has provided support for the existence of negative 

senescence (Vaupel et al. 2004). Negative senescence is defined as a decline in 

mortality with age following reproductive maturity, which is generally accompanied 
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by an increase in fecundity (Vaupel et al. 2004). Perhaps the strongest case for 

negative senescence was shown in three coral species whose mortality was inversely 

related to colony size and age, whilst total fecundity increased with age (Babcook 

1991). Other species including molluscs, sea urchins, some fish and some reptiles are 

also thought to display signs of negative senescence (reviewed in Vaupel et al. 

2004).  

 

One of the most interesting phenomena of ageing is the sheer diversity of lifespans 

amongst different species in nature (Ricklefs and Finch 1995; Austad 1997). Bats, 

for example, are renowned for their exceptional longevity relative to their body size, 

living around 3 ½ times longer than rodents of the same size (Austad 2005), whilst 

naked mole rats are also unusually long-lived for their size (Sherman and Jarvis 

2002). Lifespan can even vary amongst individuals with the same genotype. For 

example in eusocial insects such as ants, the queen lives significantly longer than any 

of her workers which serve to protect her from predation (Bourke and Franks 1995), 

and in some ant species this can be a remarkable 28 years (Keller and Genoud 1997).  

 

1.1.1 Studying ageing 

Research into ageing has undergone a massive rise in popularity over the last 10 

years, attracting many researchers from adjacent fields. The sheer diversity of ageing 

research, ranging from biochemistry, cellular senescence and genetics all the way 

through to evolutionary analysis and demographic studies, has made it an extremely 

attractive field for a wide range of scientists to work in.  
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Since the discovery that a single gene mutation (age-1) can extend lifespan in the 

nematode worm C.elegans (Klass 1983; Friedman and Johnson 1988), the field of 

ageing has advanced significantly. The recent sequencing of genomes for model 

organism such as the fruit fly D. melanogaster (Drosophila melanogaster sequencing 

consortium 2000) and C. elegans (C. elegans sequencing consortium 1998), in 

addition to the numerous breakthroughs in molecular and genetic techniques such as 

RNA interference (RNAi) (Fire et al. 1998), have been pivotal in enhancing our 

understanding of the genetic and molecular foundations of ageing.  

 

During the last 50 years, world life expectancy has risen by more than 20 years from 

46 years to 67 years1. In the UK, life expectancy has shown a progressive increase in 

both males and females during the last 25 years and is expected to continue rising2 

(Figure 1.1). The increase in life expectancy is owed largely to improvements in 

health care, medicine and sanitation leading to a better quality of life. However, as 

life expectancy increases, the risk of developing chronic ageing-related diseases 

becomes greater. 

 

As is the case for several biological fields, trying to uncover ways of increasing 

human longevity has attracted strong opinions from supporters (de Grey et al. 2002) 

as well as critics, who believe it to be ethically wrong (Kass 2001; Fukuyama 2002). 

However, increased age is associated with numerous pathologies including stroke, 

cardiovascular disease, cancer, arthritis, diabetes, dementia and neurodegenerative 

diseases, just to name a few. The goal of gerontologists is not solely to extend human 

longevity, but ultimately to increase the length of healthy life. After all, living longer 

will not improve human lives if this meant the probability of contracting terminal 
                                                
1 Institute national d’études démographiques, www.ined.fr 
2 National statistics online,  www.statistics.gov.uk/cci/nugget.asp?ID=168 
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illnesses is increased or if the length of time humans endure these illnesses is 

prolonged. Hence interventions that can extend lifespan whilst improving health 

during ageing become invaluable.  

Figure 1.1: UK life expectancy at birth from period life tables, 1980-82 to 2005-2007: 

Taken from National Statistics online2 

 

1.1.2 Demographic measurements of ageing 

Gerontologists characterise ageing in a population by measuring the rate of mortality. 

The mortality rate is defined as the probability of an individual who is alive at a 

given age to die during the following age interval. Mortality can be represented 

either by the fraction of a population surviving at a particular age or the as the 

mortality rate at a particular age (Figure 1.2). In most species, mortality rate 

increases exponentially with increasing time, a phenomenon known as the law of 

mortality (Gompertz 1825). As an individual gets older the probability of dying in 

the next time-frame increases. The gradient of the slope of log mortality against age 

is representative of rate of acceleration of mortality (Figure 1.2), also known as the 

Gompertz parameter.  

 

Figure removed due to copyright conflict 
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The time required for the mortality rate to double is known as the mortality rate 

doubling time (MRDT), and can be used as an indicator of how fast a population 

ages. The smaller the MRDT, the faster organisms in the population are ageing. For 

example, humans have an MRDT of approximately eight years in contrast to 

laboratory mice which have an MRDT of three months and fruit flies whose 

mortality rate doubles every five to ten days (Ricklefs and Finch 1995). Interestingly, 

in humans above 90 years of age, the slope of the Gompertz curve decreases, 

indicating that the mathematical risk of dying may actually decrease when an 

individual reaches a certain, extremely high age (Ricklefs and Finch 1995; Vaupel 

1997; Vaupel et al. 1998; Vaupel et al. 2004). A similar pattern is observed in 

Mediterranean fruit flies (medflies), where the mortality rate slows down drastically 

to a constant when around 90% of the population have died (Carey et al. 1992).  

 

 

Figure 1.2: A diagram of typical survival (left) and mortality curves (right) over time of 

populations in protected environments.  
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1.2 Evolution of ageing / Evolutionary theories 

The phenomenon of ageing has posed a paradox to evolutionary biologists. How is it 

that a process has evolved, which causes intrinsic decline in function leading to 

reduced survival and / or reduced fecundity, thereby reducing the ability of an 

individual to make a genetic contribution to the next generation? Ageing appears to 

be a disadvantageous trait, and natural selection should act to remove unfavourable 

genes that cause ageing. For over a century, biologists have been intrigued by this 

question and have formed various hypotheses as to why ageing may have evolved.  

 

Theories of ageing primarily fall into two categories, the “how” and the “why” 

theories. The “how” theories (or mechanistic theories of ageing) try to explain the 

mechanisms that are causing ageing in organisms and will be discussed in more 

detail in section 1.3. The “why” theories (or evolutionary theories) try to account for 

the existence and prevalence of ageing in populations and will be discussed in the 

following sections.  

 

1.2.1 Ageing for the good of species 

The first evolutionary theories of ageing were proposed by scientists including 

August Weismann, Peter Medawar, J.B.S. Haldane, George Williams, William 

Hamilton and Ronald Fisher, amongst others. Over a century ago, it was believed 

that ageing may have evolved to benefit the group or population rather than to 

benefit the individual itself (so called ageing for the good of species). Alfred Russel 

Wallace suggested that ageing has evolved to prevent individuals that have already 

reproduced from consuming the resources of others, hence increasing the overall 

fitness of their successor(s) (published as footnote in Weissmann 1989). Later, 
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August Weismann proposed that ageing evolves to remove old and worn out 

individuals from populations to make way for the young. Weismann suggested that 

worn out individuals are not only valueless to the species, but can be harmful 

because they take the place of sound individuals (Weismann 1889). Upon first 

glance, the idea that ageing acts to remove older individuals in order to make way for 

new ones seems logical. However there are some flaws in this proposal. Firstly, both 

Weismann and Wallace’s theories assume that ageing already exists. If ageing did 

not exist then there would be no advantage for older individuals to make way for new 

ones because the older individuals could continually reproduce. Therefore the idea of 

the old making way for the new does not serve as the original cause of ageing, but 

instead acts as a side-effect of the original cause, making the argument somewhat 

circular (Kirkwood 2005). Secondly, both hypotheses are confined to species living 

in family groups.  

 

 In 1941, J.B.S Haldane made a breakthrough in the understanding of why ageing 

exists by focusing on the prevalence of Huntingdon’s disease. Huntingdon’s is a late-

onset neurodegenerative disease caused by a dominant mutation that exerts its 

phenotypes after the age at which most people have reproduced, usually between 30 

and 50 years of age3. Haldane questioned why natural selection had not acted to 

remove this mutation from the population. His hypothesis was that ageing occurs as a 

result of late-acting deleterious mutations, and that the selection pressure to remove 

these mutations is weak because the effects are observed predominantly after 

reproduction (Haldane 1941).  

 

 

                                                
3 The Huntingdon’s disease association, www.hda.org.uk 
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1.2.2 Mutation accumulation theory 

The mutation accumulation (MA) theory was first proposed by Peter Medawar in 

1952 (Medawar 1952), and followed on from Ronald Fisher’s observations that the 

chance of individuals to contribute to the future ancestry of the population declined 

with age. Medawar suggested that ageing evolves as a side-effect of mutation 

pressure because of reduced force of natural selection to counteract its effects later in 

life. The force of natural selection is weak later in life because fewer bearers survive 

long enough to express late-acting mutations. Medawar demonstrated that even in a 

so called non-ageing population, death will still occur through extrinsic hazards such 

as disease, predation and accidents. Death rates will be constant with age and 

therefore the number of individuals alive will show a negative exponential decline 

(Figure 1.3). It has previously been argued that senescence is rarely observed in wild 

populations due to the high levels of extrinsic hazard (Comfort 1979). However, 

many studies have since reported ageing in nature, for example in mammals (Austad 

and Fischer 1991; Bronikowski et al. 2002) and also birds (Gustafsson and Part 

1990).  

 

Despite the mutation accumulation theory being an attractive hypothesis for the 

evolution of ageing, few experimental studies currently support it (Hughes and 

Reynolds 2005). However, there is some evidence for the existence of mutations 

with age-specific effects, as the MA theory would predict. In Drosophila, 

accumulation of mutations has been shown to have age-specific effects on lifespan, 

mating ability and fecundity, e.g. (Mack et al. 2000; Borash et al. 2007). 

 

The MA theory makes two predictions about genetic variation in natural populations. 

Firstly, additive genetic variance (heritability) for survival and fecundity will 



Chapter 1 

 26 

increase with age. This means that the parents and offspring should resemble each 

other more closely for survival and fecundity when they are both old compared to 

when they are both young because of an increase in genetic variants that they hold in 

common affecting later ages. However evidence from studies in Drosophila does not 

generally support this (Hughes and Charlesworth 1994; Promislow et al. 1996; Shaw 

et al. 1999). The second prediction is that inbreeding depression, which is the 

reduction in fitness of offspring of two parents that are more closely related than 

average for the population, will increase with age because more deleterious genetic 

variants are shared during later stages of life. Generally, experimental evidence from 

studies in Drosophila has supported this prediction (Charlesworth and Hughes 1996; 

Hughes et al. 2002); however an alternative explanation is that older individuals are 

weaker and more fragile, thus are likely to be more susceptible to the effects of 

inbreeding depression (Charlesworth and Hughes 1996). Furthermore, allowing real 

germ line mutations to accumulate over time, whilst protecting them from being 

removed by natural selection, revealed that most new mutations impair fecundity 

and/or survival and do so at several age-intervals;  there is little evidence for specific 

mutational effects later in life (Pletcher et al. 1998; Pletcher et al. 1999).  
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Figure 1.3: Diagrammatic representation of the force of natural selection on deleterious 

mutations over time in wild populations. Survival probability decreases exponentially with 

age. Early in life natural selection will act strongly to remove deleterious mutations from the 

population. However, later in life when there are fewer bearers the force of natural selection 

becomes weaker.  

 

 

1.2.3 Antagonistic pleiotropy 

In 1957, George Williams put forward the pleiotropy theory of ageing. The term 

antagonistic pleiotropy (AP) refers to expression of a gene which causes multiple 

competing effects, some which are negative and some which are positive. Williams 

proposed that due to the declining force of natural selection with age, gene mutations 

that are beneficial early in life but become costly later in life will be favoured by 

natural selection, because more individuals will survive to express the early benefit 

than will survive to experience the detrimental effects (Williams 1957). For example, 

in male humans the production of high levels of testosterone early in life can increase 

reproductive fitness, whereas later in life it can lead to increased risk of prostate 

cancer (Gann et al. 1996). Another example of AP might be the expression of the 
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P53 gene, which can help suppress cancer early in life, but also suppresses stem cells 

preventing efficient replacement of old, worn-out tissues (Rodier et al. 2007).  

 

Additional support for the AP theory comes from the discovery of single gene 

mutations that extend lifespan. For example, the majority of Drosophila mutations 

that extend lifespan also cause a severe reduction in fecundity or even sterility (Lin et 

al. 1998; Rogina et al. 2000; Clancy et al. 2001; Tatar et al. 2001). However there 

are some exceptions, particularly in C. elegans where animals with specific 

mutations in Age-1 (PI3K) or Daf-2 (insulin receptor) display normal fecundity 

(Johnson et al. 1993; Kenyon et al. 1993; Gems et al. 1998).  

 

1.2.4 Disposable soma theory 

The disposable soma theory was proposed by Thomas Kirkwood and is a specific 

case of the antagonistic pleiotropy theory of ageing. This theory assumes that there 

are limited resources that can be allocated between somatic maintenance and repair 

on one hand and reproduction on the other (Kirkwood 1977; Kirkwood and Holliday 

1979). Therefore the body must budget the amount of energy available to it. Natural 

selection will favour investing more heavily in reproduction to enhance the overall 

fitness of the individual. However, in times of food scarcity, the strategy changes and 

in such circumstances it is more optimal to invest the limited resources to somatic 

maintenance, thus extending the individual’s chance of surviving until the food 

supply becomes more abundant and reproduction can successfully commence. The 

disposable soma theory thus predicts that the principal cause of ageing is a result of 

the accumulation of cellular and molecular damage, which arises due to evolved 

limitations in somatic maintenance and repair functions (Kirkwood 1977; Kirkwood 

and Holliday 1979). In the wild, 90% of mice are expected to live only one year due 
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to high extrinsic mortality rates (Berry and Bronson 1992) hence investing resources 

in somatic maintenance for the slim chance of living slightly beyond a year is not 

favoured (Kirkwood 2005).  

 

Evidence for a lifespan / reproduction trade-off is strong. Data from historical 

records suggests that human life histories involve a trade-off between longevity and 

fertility whereby longevity is negatively correlated with the number of offspring but 

positively correlated with the age at first childbirth (Westendorp and Kirkwood 

1998). In laboratory experiments, using Drosophila, selecting for increased longevity 

results in reduced fecundity and vice versa (Rose and Charlesworth 1981; Rose 

1984; Fowler and Partridge 1992; Sgro and Partridge 1999). Furthermore, 

differences in mortality between lines selected for early and late reproduction are 

diminished in sterile flies (Sgro and Partridge 1999). In addition, dietary restriction, 

which robustly extends lifespan in diverse organisms, also causes reduced or delayed 

fertility (section 1.5). Hence dietary restriction could elicit an evolved response to 

food shortage, with a metabolic shift of resources away from reproduction to 

investment in repair and maintenance, thus increasing the probability of survival 

until the food supply becomes more abundant (Williams 1966; Kirkwood and 

Holliday 1979; van Noordwijk and de Jong 1986; Kirkwood and Shanley 2005) 

(section 1.5.5.1).  
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1.3 Mechanistic theories of ageing 

Evolutionary theories attempt to explain why the phenomenon of ageing exists. 

However, a second group of theories has emerged, which try to explain the 

mechanisms behind the ageing process at the organismal level. It is thought that the 

number of proposed mechanistic theories of ageing has amassed to over 300 

(Medvedev 1990). These range from primitive theories including, for example, Élie 

Metchnikoff’s intestinal bacteria theory (which suggests that ageing occurs as a 

result of intestinal bacteria producing toxins that poison the body) through to more 

popular theories such as the oxidative theory of ageing (which predicts that the 

proximal cause of ageing is a build up of free radicals which cause oxidative damage 

to macromolecules) (Harman 1956). The lack of one universally agreed theory of 

ageing is not surprising because of the complex nature of this biological process. 

Ageing does not simply occur at the level of DNA, RNA or protein, nor does it occur 

solely at the level of tissues or organs. In fact ageing can occur at every level of 

organisation from the level of DNA all the way through to the organismal level. 

Another reason for the lack of a universal theory of ageing is the difficulty in 

experimentally testing theories and separating cause from effect. Hence, ageing is 

likely to be the result of a combination of several of the processes postulated by these 

theories, whilst many of these theories may simply describe by-products of ageing 

rather than the cause of the damage and loss of function that is ageing itself. 

 

“The scientific study of ageing has been an odd mix of the accumulation of mountains of 

dismal evidence that shows that almost anything you can think of goes wrong with age and 

proposals of simplistic theories that try to explain ageing in terms of single processes, 

ranging from defective testicles to shortened telomeres.”  

Brian Charlesworth, Evolutionary biologist 
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Whilst there is no central theory of ageing, a collection of damage-based theories 

have emerged that suggest ageing occurs as a result of the continuous accumulation 

of damage due to by-products of metabolism or inefficient repair mechanisms. The 

scope of this work does not allow an evaluation of the hundreds of theories proposed 

so the following sections will try to address some of the more plausible damage-

based theories of ageing. 

 

1.3.1 Rate of living theory 

Live faster, die younger: This hypothesis states that smaller organisms have higher 

metabolic rates per unit mass than larger organisms and hence will die more rapidly 

(Figure 1.4). Ageing is inversely related to metabolic rate, as was demonstrated by 

Max Rubner in 1908 who studied five different mammalian species that had had a 

range of different lifespans but similar total metabolic output (energy consumed over 

a lifetime) per unit body mass (cited from Vijg 2007). In 1928, Raymond Pearl put 

forward the rate of living theory of ageing which states that “in general, the duration 

of life varies inversely with the rate of energy expenditure during its continuance. In 

short, the length of life depends on the rate of living” (Pearl 1928). This theory 

suggests that each organism has fixed energy expenditure per unit mass over lifetime 

and hence the longevity of the organisms can be determined by how quickly this 

energy potential is used up. Pearl’s theory was proposed following Rubner’s 

observations and work on Drosophila demonstrating that increasing the surrounding 

temperature resulted in reduced lifespan (Loeb and Northrop 1916; Loeb and 

Northrop 1917). In conjunction with another study in Drosophila (Miquel et al. 

1976) these results demonstrated that higher temperature acted to accelerate all 

biological processes including ageing. Moreover, flies exposed to high temperatures 
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exhibit increased metabolic rate. Recent work assessing the mortality of flies 

exposed to higher temperatures confirms that the reduced lifespan is a result of 

accelerated ageing (Mair et al. 2003). Further support of the rate of living theory has 

come from evidence that short-lived shaker mutant Drosophila also have increased 

metabolic rates (Trout and Kaplan 1970). 

 

Nonetheless, although there is a strong correlation between metabolic rate / body 

mass and lifespan (thereby supporting the rate of living theory) there are some 

exceptions including birds and bats, which exhibit remarkable longevity relative to 

their body size (Figure 1.4). One possible explanation for the long lifespans of bats 

and birds could be due to their ability to fly, making them well-equipped to avoid 

predation and disease, and subsequently experiencing reduced extrinsic hazard 

(Brunet-Rossinni and Austad 2004). Furthermore, tortoises, which are also very 

long-lived, have a thick shell to protect themselves from danger thus reducing risk of 

extrinsic hazard (Rose 1991). However, it is important to consider that birds, bats 

and tortoises are all long-lived in captivity as well as in nature.   
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Figure 1.4: A schematic of the correlation between body mass and lifespan. The majority 

of mammals tend to conform to a strong positive correlation between increased body size 

and increased lifespan. However, birds and bats are exceptions to the correlation exhibiting 

remarkable lifespans relative to their body mass. Adapted from: Aging: a natural history 

(Ricklefs and Finch 1995). 

 

1.3.2 Somatic mutation hypothesis 

The somatic / spontaneous mutation hypothesis was first proposed by Leo Szilard in 

1959. Szilard postulated that ageing was caused by accumulation of mutations 

leading to changes in the DNA of cells, which are passed on to the next generation of 

cells during cell division. Changes in DNA, as a result of somatic mutations can 

cause errors in protein structure and function, causing detrimental effects. This 

theory partially stemmed from observations that exposing mice to radiation results in 

somatic mutations, thereby causing phenotypes of ageing such as the premature 

appearance of grey hair. Furthermore, exposure to radiation shortens lifespan in both 

Drosophila (Lamb 1963; Lamb and Smith 1969) and mice (Lindop and Rotblat 

1961). There also appears to be a general correlation between longevity and DNA 

repair, best illustrated by the enzyme poly (ADP-ribose) polymerase-1 (PARP-1), 
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which is involved in the cellular response to stress-induced DNA damage (Burkle 

2001). Both longer-lived species and the longest lived individuals within the same 

species exhibit a positive increase in levels of PARP-1 (Grube and Burkle 1992). 

 

In contrast, other studies have found little support for the somatic mutation 

hypothesis. One such study was conducted on haploid and diploid strains of the male 

parasitoid wasp Habrobracon (Clark and Rubin 1961). As would be expected, the 

lifespan of haploid males was significantly reduced compared to diploid males 

following exposure to radiation. Radiation caused a greater number of lethal 

mutations in the haploid species, which could not be rescued due to the lack of a 

second non-mutant copy, which is found only in diploid species. However, when no 

radiation was applied, negligible differences between the lifespans of haploid and 

diploid males were reported (Clark and Rubin 1961).  

 

1.3.3 Oxidative damage / free radical theory of ageing 

One of the most accepted theories of ageing to date is the free radical theory of 

ageing (also referred to as the oxidative damage theory), which was proposed by 

Denham Harman in 1956. Harman suggested that ageing was caused by free radicals 

formed as a by-product of oxidative phosphorylation (Harman 1956). Free radicals 

are molecules, ions or atoms that have one or more unpaired electrons. This makes 

them highly reactive species, with the ability to engage in a range of chemical 

reactions. Reactive oxygen species (ROS), which include free radicals, peroxides 

such as hydrogen peroxide, and oxygen ions, are produced predominantly in the 

mitochondria and can cause oxidative damage to DNA, RNA, lipids and proteins. 

Approximately 1% of the oxygen used for mitochondrial respiration forms 

superoxide radicals (O2
.-) (Boveris 1984). Naturally, the body is well equipped to 
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defend against ROS production with antioxidants such as superoxide dismutases 

(SOD), catalases and glutathione peroxidases in addition to non-enzymatic defences 

such as vitamin C and coenzyme Q. 

 

Numerous experiments have been conducted to test the oxidative damage theory of 

ageing by looking at correlations between lifespan and oxidative stress as well as 

directly manipulating antioxidant defences, and have yielded conflicting evidence. 

The theory would predict that delayed senescence occurs as a result of reduced ROS 

production or an increased ability to remove ROS. It has been demonstrated that 

oxidative damage increases with age in different tissues and in different species 

(Sohal and Weindruch 1996). Furthermore, resistance to oxidative stress (in this case 

the chemical paraquat) was shown to be greater in Drosophila that had been selected 

for delayed ageing (Arking et al. 1991). In a study comparing ROS levels of seven 

different mammalian species, shorter-lived organisms exhibited higher levels of ROS 

production compared to longer-lived organisms (Ku et al. 1993). Moreover, pigeons, 

which are of a similar size to rats but live six times longer, display lower levels of 

ROS production than do rats (Ku and Sohal 1993). However, it is important to 

consider that these studies were performed using isolated mitochondria, which may 

not reflect the true situation in vivo (where making these measurements is extremely 

difficult).  

 

Female mice that are heterozygous for a disruption in IGF-1 and Ames dwarf mice 

are both long-lived and have increased resistance to oxidative stress (Sanz et al. 

2002; Holzenberger et al. 2003), whilst Ames dwarfs also exhibit higher levels of 

antioxidants (Brown-Borg et al. 1999; Brown-Borg and Rakoczy 2000). However, 

long-lived ant queens that can live up to 28 years were reported to have lower levels 
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of an antioxidant enzyme, CuZnSOD, than males (which live only a few weeks) or 

workers (which live between 1-2 years), indicating that SOD is not required for 

increased longevity (Parker et al. 2004). Furthermore, over-expression of different 

isoforms of SOD in C.elegans protected against oxidative damage, but had no effect 

on lifespan (Doonan et al. 2008). In general, long-lived species produce less ROS 

and have lower antioxidant defences (Barja 2002); however, fascinatingly, naked 

mole rats, which are extremely long-lived, show remarkably high levels of oxidative 

damage (Andziak et al. 2006).  

 

Other studies have directly manipulated antioxidant defences, again yielding mixed 

results. Over-expression of antioxidant enzymes including superoxide dismutase 

(CuZnSOD) and catalase has been shown to increase lifespan in Drosophila (Orr and 

Sohal 1994; Parkes et al. 1998; Sun and Tower 1999). However, it was proposed that 

the lifespan extension reported in Drosophila may be as a result of artificially short-

lived stocks (Spencer et al. 2003). Subsequently over-expression of CuZnSOD was 

performed in long-lived backgrounds and, although lifespan was still increased, the 

magnitude was significantly smaller than originally reported and was sex and 

genotype dependent (Spencer et al. 2003). Furthermore, the lifespan of long-lived 

Drosophila was not further extended by over-expression of antioxidant enzymes (Orr 

et al. 2003; Orr and Sohal 2003).  

 

In mice, mitochondrial over-expression of human catalase increases lifespan 

(Schriner et al. 2005), whereas ubiquitous over-expression of SOD has no effect 

(Huang et al. 2000). In contrast, no lifespan extension was seen upon ectopic 

expression of catalase in Drosophila mitochondria (Mockett et al. 2003). However, 

the lifespan extension attributable to over-expression of human catalase in mice 
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mitochondria was reportedly diminished after back-crossing for nine generations and 

moving the mice to a new facility (Schriner et al. 2005), so this result should be 

treated with caution. C.elegans fed antioxidant mimetics were also thought to have 

increased lifespan (Melov et al. 2000). However, this observation could not be 

supported by a second study using C.elegans (Keaney and Gems 2003) or similar 

studies using mice (Perez et al. 2008) , the housefly Musca domestica  (Bayne and 

Sohal 2002) or Drosophila (Magwere et al. 2006), which all reported no lifespan 

extension.  

 

1.3.4 Mitochondrial damage theory 

Mitochondria function as the powerhouse of all cells, providing the primary source 

of energy in the form of ATP. The production of free radicals during oxidative 

phosphorylation, coupled with the lack of defence mechanisms in the mitochondria, 

make this organelle highly susceptible to damage. The mitochondrial damage theory 

postulates that ageing results from a build up of damage to the mitochondria causing 

the organelles to lose their function. Once their function is lost, mitochondria cannot 

be replaced. Hence damage to mitochondria leads to gradual loss of energy and 

function in cells over lifetime. Indeed, evidence suggests a positive accumulation of 

mitochondrial DNA mutations with age (Wallace 1999), likely resulting in impaired 

ATP synthesis.  

 

1.3.5 Error catastrophe theory 

Leslie Orgel proposed that cellular ageing might occur through accumulation of 

defective proteins as a result of inherent inaccuracies in the protein translation 

machinery (Orgel 1963). The formation of defective proteins would result in positive 
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feedback leading to a further increase in translational errors and eventual catastrophe, 

namely breakdown of cellular information transfer. The theory predicts that there is 

an increase in the amount of defective proteins with age. Theoretical and 

experimental studies reveal evidence both for, e.g. (Holliday 1969; Lewis and 

Holliday 1970; Holliday and Tarrant 1972; Kirkwood 1977; Kowald and Kirkwood 

1994) and against Orgel’s theory, e.g. (Edelmann and Gallant 1977; Gallant and 

Palmer 1979; Harley et al. 1980; Mori et al. 1983; Goldstein et al. 1985).   

 

One study in the fruit fly Drosophila sought to test the error catastrophe theory by 

examining whether feeding flies amino acid analogues, which inhibit protein 

function, could reduce lifespan. However, no effect on lifespan was reported 

(Dingley and Maynard Smith 1969). In contrast, artificially increasing translational 

errors in micro-organisms leads to the eventual death (after many cell generations) of 

the entire population (Holliday 1969; Lewis and Holliday 1970). Whilst the error 

catastrophe theory originally proved to be popular because it could be experimentally 

tested and verified, the theory now appears to have been widely disregarded. 

 

1.3.6 Waste accumulation theory 

The waste accumulation theory points to the fact that normal metabolic processes 

inevitably produce waste products. The build up of waste products will eventually 

interfere with the normal cell function and lead to cell death. Whilst it is evident that 

waste products do accumulate with age, not all waste products are likely to be 

harmful to cells. The most common waste product that accumulates in the cytoplasm 

is the yellow-brown granular pigment lipofuscin. Lipofuscin is found in almost all 

cells, although it is most abundant in cells which cannot divide or replicate, such as 

heart muscle and brain cells. Several studies have reported a direct correlation 
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between the accumulation of lipofuscin and ageing, e.g. (Reichel et al. 1968) and 

reviewed in (Gray and Woulfe 2005). The key to longevity may lie in the ability of 

cells to retain their capacity to repair DNA damage and reduce the rate of 

accumulation of waste products such as lipofuscin.  

 

1.3.7 Cross-linking theory / glycosylation theory  

The glycosylation theory was proposed by Johan Bjorksten in 1941, when he 

suggested that ageing was caused by intramolecular cross-links between proteins, 

nucleic acids and other molecular constituents of the cell, causing them to function 

less efficiently (Bjorksten 1941). The most common cross-links occur as a result of 

binding between proteins and glucose in the presence of oxygen (glycosylation), 

leading to the formation of advanced glycation end-products (AGE). Recently, 

treatments including aminoguanadine and carnosine have been reported to slow the 

formation of cross-links and even break existing cross-links (reviewed in (Hipkiss et 

al. 2002)).  

 

Diabetics have been shown to exhibit an increase in the number of cross-linked 

proteins compared with non-diabetics of the same age, suggesting that diabetes may 

induce accelerated ageing (Sensi et al. 1995). Furthermore, glycation of collagen, the 

main protein of connective tissue in mammals, has been shown to increase with age, 

with diabetics showing a greater rate of increase in glycosylated collagen (Reiser 

1991). Glycation of collagen can lead to a range of problems associated with age, 

including osteoarthritis and hardening of the arteries, thereby causing poor 

circulation, e.g. (Aronson 2003; DeGroot et al. 2004). 
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1.3.8 Hayflick’s limit / replicative senescence theory 

Prior to 1961, it was widely believed that all cells were potentially immortal. 

Evidence came from Alexis Carrel’s experiments showing that chicken heart cells 

could be kept alive for almost 30 years in vitro (Carrel 1912), which is considerably 

longer than chickens themselves live, although this was never repeated. In 1961, it 

was shown that normal human fibroblast diploid cells lose the ability to divide after 

approximately 50 divisions, before entering a non-growth period (Hayflick limit or 

replicative senescence) (Hayflick and Moorhead 1961). The Hayflick limit of cells 

can vary both between species and differently aged cells of the same species. 

Furthermore, in a range of species, a strong positive correlation has been reported 

between lifespan and the Hayflick’s limit of the species’ cells cultured in vitro 

(Rohme 1981). Hayflick’s limit is thought to be determined by the length of 

telomeres. Telomeres are specialised repetitive DNA sequences located at the end of 

chromosomes, which compensate for incomplete semi-conservative DNA replication 

and protect chromosome ends from recombination and fusion to other chromosomes. 

During each cell division, telomere length shortens due to a lack of telomerase 

activity, an enzyme which acts to maintain telomere length (Harley et al. 1990). 

However, despite telomere length decreasing with age, mice, which are considerably 

shorter-lived than humans, possess longer telomeres and unlike humans possess 

telomerase activity in somatic cells (Blasco et al. 1997).   

 

Interestingly, the longevity of human fibroblast cells can be further extended by up to 

10 divisions in the presence of the nutrient carnosine (McFarland and Holliday 

1999). Furthermore, several studies have reported an even greater number of cell 

divisions in a range of cells in the presence of telomerase, e.g. (Bodnar et al. 1998). 

However, increasing the replicative capacity of cells beyond Hayflick’s limit could 
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potentially lead to the development of cancer, which arises due to uncontrolled cell 

division. Hence Hayflick’s limit may act as a barrier to enhanced longevity, but at 

the same time acts to increase fitness by reducing the likelihood of developing cancer 

(Campisi 2005). Until recently, the effects of telomerase on ageing had not been 

studied, primarily due to the cancer-promoting activity of telomerase. However, a 

recent study showed that the expression of telomerase reverse transcriptase (a 

component of telomerase) could extend the lifespan of cancer-resistant mice (Tomas-

Loba et al. 2008). 

 

In conclusion, it is evident that some of the more recent theories that have been 

proposed to explain how we age (mechanistic theories) have shown considerable 

development in logic and reasoning compared to some of the earlier theories. To 

date, perhaps the most popular single theories of ageing in the field are the free 

radical and the replicative senescence theories, both of which have received a lot of 

support from experimental studies. The difficulty in ascertaining the cause from 

effect of ageing means that finding one universal mechanistic theory of ageing is 

unlikely. Whilst the theories proposed differ from one another in terms of the exact 

cause of ageing, it is clear that the more popular and accepted theories of ageing are 

consistent with the notion that ageing is caused by the accumulation of cellular 

damage throughout life, coupled with the reduced efficiency of repair and cellular 

defence mechanisms over time. In my opinion, ageing occurs as a result of a 

combination of many of these theories due to the complex nature of ageing occurring 

at the level of macromolecules through to whole organs, although I believe 

production of free radicals is the most prominent contributor to ageing.  
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1.4 Using Model organisms to study ageing 

Choosing a model organism to study a biological process such as ageing requires 

similar consideration to choosing a model to understand other biological processes 

such as development or physiology. The more related an organism is to humans, the 

more likely it is that the mechanisms uncovered will also be applicable to humans. 

However, a particularly important consideration when choosing an organism to study 

ageing is the length of time that it takes to perform a lifespan experiment. Primates 

such as rhesus monkeys may be one of the most evolutionarily related organisms to 

humans, making them ideal to study; however they can live around 40 years 

(Weindruch 2006), which makes lifespan studies extremely difficult and time 

consuming. Consequently, the majority of ageing studies are typically performed on 

four, fairly short-lived model organisms: budding yeast, nematode worms, fruit flies 

and mice, all of which have recently had their genomes fully sequenced. Although 

they are very different in complexity and lifespan, these organisms all exhibit similar 

survival kinetics to humans, whereby mortality of the population increases 

exponentially over time (Sinclair et al. 1998; Tissenbaum and Guarente 2002). 

Naturally, studying ageing in each model organism has advantages and 

disadvantages. Some of these strengths and weaknesses will be discussed below.   

 

1.4.1 The budding yeast Saccharomyces cerevisiae 

Budding yeast Saccharomyces cerevisiae are single-celled eukaryotes, measuring 

approximate 5-10µm in diameter. They have a very short generation time (1.5 – 2 

hours at 31oC) and are easily and economically cultured. In addition, S. cerevisiae 

are one of the most extensively studied eukaryotic models. They can grow and 

survive as diploid or haploid cells and can be easily genetically manipulated. 
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Budding yeast cells divide asymmetrically, resulting in a large mother cell and a 

smaller daughter cell. Yeast go through three distinguishable stages when cultured 

(Longo et al. 1999). The first stage is a period of logarithmic growth in which 

metabolism is predominantly glycolytic. The second stage commences when glucose 

becomes limiting, causing yeast cells to switch to respiratory growth. The final stage 

is called the stationary phase where cells stop dividing and become highly stress 

resistant (Tissenbaum and Guarente 2002).  

 

Lifespan of yeast can be measured in two alternative assays: replicative and 

chronological lifespan. Replicative lifespan is a measure of the number of cell 

divisions a mother cell can undergo until it can no longer divide (Mortimer and 

Johnston 1959). In contrast, chronological lifespan is measured by the length of time 

non-dividing cells remain viable during the stationary phase (MacLean et al. 2001). 

Both methods are commonly adopted to determine whether a specific intervention 

can extend lifespan (Fabrizio et al. 2001; Kaeberlein et al. 2004a; Lin et al. 2004; 

Powers et al. 2006).   

 

1.4.2 The nematode worm Caenorhabditis elegans 

C.elegans were first used to study molecular and developmental biology by Sydney 

Brenner in the 1970s, and have since become a very popular model organism to work 

with (Brenner 1974). C. elegans are free-living nematodes, around 1mm in length 

that live in the soil and feed almost exclusively on bacteria (Caswell-Chen et al. 

2005). Their short development time (egg to adult in 3 days) and short lifespan (18 

days at 20oC) make them an extremely useful model organism to study ageing  

(Vanfleteren and Braeckman 1999; Tissenbaum and Guarente 2002). In addition, C. 

elegans are extremely cheap and easy to maintain, whilst mutant stocks can be frozen 
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for long periods and remain viable when thawed. They exist as either males or self-

fertilising hermaphrodites, allowing for simple genetics without the problems of 

inbreeding. A further advantage of using C. elegans is they are ideal for performing 

genetic screens and can be used simply and efficiently to perform RNA interference 

(RNAi) to knockdown expression of genes of interest. RNAi can be achieved by 

feeding the worms genetically transformed bacteria expressing double-stranded RNA 

(dsRNA) complimentary to the gene of interest (Carthew 2001) or injecting / soaking 

worms in a solution of dsRNA. 

 

The life-cycle of C. elegans is divided into four post-embryonic larval stages of 

development. During stressful conditions such as nutrient deprivation or over-

crowding, larvae can enter a separate stage called dauer larva (Cassada and Russell 

1975). This is a non-ageing stage where larvae become highly stress resistant and can 

remain in this state for several months (Klass and Hirsh 1976). When environmental 

conditions return to being more favourable, dauer larvae resume the normal life-

cycle and exhibit a normal lifespan. After development, nematodes undergo no 

further cell division; hence the ageing worm is post-mitotic. Interestingly, several 

gene mutations that have been shown to extend lifespan were first identified because 

of their role in development. Furthermore, the first single gene mutations to extend 

lifespan in any model organism were reported in C. elegans, originally screened by 

Michael Klass (Klass 1977). These findings contributed to the observation that a 

mutation in age-1 (PI3 kinase) extended the lifespan in both males and 

hermaphrodites (Friedman and Johnson 1988).  
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1.4.3 Rodents 

Studies on rodents have typically been confined to rats (Rattus norvegicus) and mice 

(Mus musculus), which are both commonly used laboratory animals whose genomes 

have been sequenced (Mouse sequencing consortium 2002 and Rat sequencing 

consortium 2004). In contrast to the invertebrate models discussed, rodents are more 

expensive to maintain and handle and require a large amount of space to house. More 

importantly, the typical lifespan of rodents is somewhere between three to five years 

(Weindruch and Walford 1988), resulting in lifespan experiments that take 

significantly longer than experiments in invertebrates. In addition, although rodents 

are fast reproducers, the sample sizes used in lifespan experiments are typically 

smaller than in invertebrate studies because of the expense and difficultly in 

producing large numbers, particularly of transgenic lines. However, studying ageing 

in rodents is important as a key to understanding mammalian ageing and hence 

human ageing, because almost all mouse genes have human homologues and their 

biology is more similar to that of humans. The use of rodents is essential when trying 

to confirm whether a single mutation that has been reported to extend lifespan in 

yeast, worms and flies is evolutionarily conserved in mammals and may therefore 

play an important role in human ageing (Partridge and Gems 2002; Tatar et al. 

2003).  

 

1.4.4 The fruit fly Drosophila melanogaster 

Drosophila melanogaster are the most commonly used species of Drosophila in the 

laboratory. Drosophila are a useful model organism for ageing studies because they 

are cheap, easy to culture, they have a short generation time (10 days at 25oC) and a 

short lifespan (2-3 months) relative to rodents. In addition, genetic manipulation of 

fruit flies is easy and there are a wide range of mutant stocks readily available. 
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Furthermore, their tissues are similar to mammals. They possess a heart, kidney and 

fat body (which is the fly equivalent of mammalian liver), and have a fully 

differentiated brain. Drosophila has been used extensively as a model organism since 

the pioneering genetic experiments of Thomas Morgan in the 1900s. 

  

The main disadvantages of using Drosophila as a model organism are firstly, unlike 

C.elegans, the mutants stocks can not be frozen and hence require regular stock 

maintenance, which is time consuming. Moreover, performing homologous 

recombination and ubiquitous RNAi in flies is extremely difficult, whilst ubiquitous 

RNAi is toxic. In addition, although Drosophila have a short lifespan relative to mice 

and rats, they are considerably longer-lived than worms and yeast. In addition, 

Drosophila are commonly infected with the intracellular bacterium Wolbachia, 

which is maternally inherited and thought to have infected around 30% of the strains 

in the Bloomington stock centre (Clark et al. 2005). The presence of some 

Wolbachia strains has previously been reported to have effects on mutant phenotypes 

and fitness-related traits, including lifespan (Min and Benzer 1997; Fry and Rand 

2002; Clark et al. 2005; Toivonen et al. 2007). 

 

1.4.4.1 Drosophila life history 

Drosophila life history is divided into four distinct morphological stages, hence 

periods of growth and development can be easily distinguished from sexual maturity 

and the adult phase (Figure 1.5). The development time from egg to adult is 

approximately 10 days at 25oC. Once fertile eggs are laid, larvae start to emerge 

around 24 hours later and then enter three stages of growth or instars (L1, L2 and 

L3). L1 and L2 stages last for 24 hours each whereas the L3 stage lasts for 48 hours. 
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During the L2 stage, larvae start to become larger in size and switch from feeding on 

the surface of the food to burrowing down into the food. Feeding can last around 110 

hours proceeded by the “wandering stage”, during which larvae leave the food 

medium and crawl up the vial or bottle to find a suitable place to pupariate. 

Pupariation takes approximately four days, during which time pupae undergo 

metamorphosis before eclosion into adult flies. Adult flies consist almost entirely of 

post-mitotic, fully differentiated cells, with the exception of cells in the gonad and 

some cells in the gut which continue to divide (Bozuck 1972).  

 

Freshly eclosed flies have shrivelled wings and have a pale complexion with a dark 

spot on their abdomen as a result of their last feed as L3 larvae (Greenspan 2004). 

Wings become expanded within an hour and pigmentation occurs shortly after this. 

Female flies will not mate within the first eight hours post-emergence (Greenspan 

2004). After mating, females commence a heavy egg-laying period which peaks at 

around five days post-copulation. Virgin flies do lay eggs, although significantly less 

and in a different pattern from mated flies. Virgins are thought to live twice as long 

as continuously mated females (Smith 1958), potentially due to higher egg 

production and cost of mating in mated flies, both from physical damage and the 

transfer of seminal fluid from males which has been reported to reduce lifespan 

(Chapman et al. 1995) 
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Figure 1.5: The Drosophila life cycle. The development of a fertile egg to an adult fly over 

a 10 day period at 25oC. Following hatching of an egg, larvae go through three instars before 

reaching pupariation at which time metamorphosis takes place resulting in the emergence of 

an adult fly. Taken from: The Cell Cycle: Principles of Control: Online Resources by David 

Morgan (New Science Press)4. 

 

1.4.4.2 Nomenclature  

Gene names are often descriptive of the gene function or mutant phenotype such as 

Curly (curly winged flies) or chico (“little boy” in Spanish), the latter describing the 

dwarf phenotype of a mutant in a gene encoding the insulin receptor substrate 

protein. Where a gene is an orthologue of a gene previously discovered in another 

organism, a “d” is added to the front of the gene name, for example dFOXO is an 

orthologue of the human FOXO transcription factor. The genotype, mutant and gene 

                                                
4 The cell cycle: Principle of control by David Morgan, www.new-science-
press.com/info/illustration_files/nsp-cellcycle-2-4-2_13.jpg 

Figure removed due to copyright conflict 
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name are always italicised. If the mutant phenotype is dominant to the wild-type then 

the first letter is capitalised, but not when it is recessive. If more than one mutant 

allele exists for a given gene then the gene name is followed by superscript numbers 

or letter, for example dSir24.5 and dSir25.26, describing two different alleles of dSir2, 

the Drosophila orthologue of mammalian SIRT1, a histone deacetylase. Protein 

products are written with the same name of the gene that encodes them (in capital 

letters), but are not italicised.   

 

1.4.4.3 Potential pitfalls when using Drosophila for ageing studies 

As is the case with all model organisms, along with the many advantages there are 

also some disadvantages that need to be considered when using Drosophila as a 

model for ageing studies. In Drosophila, inbreeding can be a problem, increasing the 

likelihood of the stock becoming homozygous. Fly stocks can accumulate deleterious 

mutations, which can result in artificially shortened lifespan. Using such an 

artificially short-lived stock can particularly be problematic when studying a specific 

mutation, because it could simply recover the artificially shortened lifespan back to 

normal, and hence be mistaken for a mutation that extends lifespan (Helfand and 

Rogina 2003). Therefore it is important to test the same mutation in an outbred stock 

or several other inbred stocks to determine whether lifespan extension is still 

observed. This problem was addressed by using the wild-type stock Dahomey for the 

majority of the experiments in this thesis. Dahomey is an outbred strain of 

Drosophila, maintained in population cages, resulting in adult survival rates 

comparable to those of stocks that had been freshly collected from the wild (Sgro and 

Partridge 2000; Sgro and Partridge 2001). 
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1.4.4.4 The importance of backcrossing 

When assessing the effect of a single gene mutation on lifespan it is essential to 

perform a back-crossing regimen whereby the mutant is backcrossed for several 

generations into an outbred wild-type back ground (e.g. Dahomey). This ensures that 

the genetic background of the mutant is identical to the genetic background of the 

wild-type with the exception of the mutated gene of interest. Failure to backcross 

could result in an unclear lifespan effect if the mutant has come from a different 

background to the control because any lifespan difference could be associated with 

the genetic background as opposed to the mutation in question. It is preferable to 

backcross to an outbred strain because using an inbred strain, which can accumulate 

deleterious mutations, might lead to the false result of a mutation that is thought to 

extend lifespan but is simply recovering the artificially shortened lifespan of the 

inbred stock (Helfand and Rogina 2003). The longevity of Drosophila is reduced by 

inbreeding depression, but extended by heterosis (hybrid vigour) when separate 

inbred strains are crossed together (Swindell and Bouzat 2006). A recent study 

reported that heterosis was responsible for the originally reported long-lifespan of 

Drosophila Indy mutants because the lifespan extension phenotype diminished 

following extensive backcrossing to an outbred Dahomey strain (Toivonen et al. 

2007). 

 

In Drosophila, an extremely commonly used genetic tool is the GAL4/UAS system 

for targeted gene expression (Brand and Perrimon 1993; Duffy 2002). The system 

consists of two parts, the GAL4 gene, which encodes the yeast transcription factor 

(Gal4) and UAS (upstream activating sequence), a promoter region which Gal4 binds 

to and activates transcription of the gene of interest. Activation of transcription 

occurs when UAS flies carrying the gene of interest are crossed with flies carrying 
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the GAL4 gene. It is important, when using this system, to backcross both the GAL4 

and UAS lines because failure to do so will likely result in an artificially long 

lifespan of the progeny due to heterosis (as opposed to the effect of the gene of 

interest). The short generation time of flies makes back-crossing easier and less time 

consuming than in, for example, rodents.  

 

1.4.4.5 Measuring ageing in model organisms 

Another problem, applicable to all model organisms, is how to measure a process 

like ageing, when it is already difficult to define (section 1.1). Typically one aspect 

of ageing is measured, for example lifespan. However measuring lifespan can create 

potential problems particularly when studying genetic interventions. For example, a 

mutation that reduces lifespan could do so through pathological reasons, unrelated to 

ageing itself (Helfand and Rogina 2003). Therefore the optimal approach is to look 

for interventions that extend lifespan rather than reduce it. However, an intervention 

that extends lifespan alone is not sufficient. If the same intervention results, for 

example, in flies becoming sick or incapacitated in some form (e.g. through 

immobility), then the intervention does not truly reflect a delay in the rate of ageing 

(Helfand and Rogina 2003). Therefore it is important to assay a secondary measure 

of health such as fecundity, metabolism or physical activity.  
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1.5 Dietary restriction 

Dietary restriction (DR), a reduction in food intake that falls short of starvation or 

malnutrition, has been shown to be the most robust and reproducible intervention to 

extend lifespan in a diverse range of organisms (Mair and Dillin 2008). These 

include model organisms such as rodents (Yu et al. 1982; Bonkowski et al. 2006), 

Drosophila melanogaster (Chapman and Partridge 1996; Libert et al. 2007), 

Caenorhabditis elegans (Klass 1977; Panowski et al. 2007), Saccharomyces 

cerevisiae (Jiang et al. 2000; Kaeberlein et al. 2006b) and many organisms that are 

not commonly used in the laboratory including spiders (Austad 1989), medflies 

(Davies et al. 2005), grasshoppers (Hatle et al. 2006), rotifers (Fanestil and Barrows 

1965), fish (Comfort 1960), dogs (Kealy et al. 2002), hamsters (Stuchlikova et al. 

1975), and water fleas (Ingle 1933).  

The first DR studies on non-human primates (rhesus monkeys and squirrel monkeys) 

commenced in the 1980s and are still ongoing. Although it is still too early to 

definitely tell whether DR will extend lifespan in monkeys, the DR cohorts are 

exhibiting many of the classical phenotypes associated with DR in rodents, including 

lower body weight and body fat and reduced blood glucose levels (Ramsey et al. 

2000; Lane et al. 2004; Messaoudi et al. 2006; Mattison et al. 2007). Early 

indications of lifespan data have revealed only 13% of the DR-fed rhesus monkeys 

have died compared with 23% of the ad libitum-fed group (Lane et al. 2002). 

Another report looking at the effect of DR in squirrel monkeys has reported that the 

DR cohort had an extended median lifespan of up to seven years (Bodkin et al. 

2003). However, these data should be considered preliminary because out of the 117 

monkeys studied only 8 were dietarily-restricted (3 of which had died) compared 
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with 109 ad libitum-fed monkeys (of which 49 had died), making conclusions 

difficult because of the small sample sizes used in the DR cohort.  

Although there is little evidence to date, it has been proposed that DR may have 

beneficial effects on humans (Fontana et al. 2004; Holloszy and Fontana 2007). 

Indeed, several ongoing studies are investigating biomarkers of DR in people 

partaking in strict caloric restriction diets (e.g. CALERIE5, Biosphere 26 and the 

Calorie restriction society7). Additional support for the concept of dietary restriction 

also working in humans comes from the inhabitants of Okinawa, an island close to 

Japan. Okinawans not only have the greatest number of centenarians per 100,000 of 

the population compared with anywhere else in the world, but also remain 

remarkably healthy in their old age. These effects are thought to be accounted for by 

undergoing a mild form of prolonged DR for half their lives (Willcox et al. 2006; 

Willcox et al. 2007).  

In this section, the effects of DR on four of the most commonly used model 

organisms for ageing studies will be discussed: the budding yeast S. cerevisiae, the 

nematode worm C. elegans, the fruit-fly D. melanogaster and the rodent models Mus 

musculus and Rattus norvegicus. These model organisms have been predominantly 

used to try and address the potential mechanisms involved in mediating lifespan 

extension by food restriction.  

 

 

                                                
5 Comprehensive assessment of long-term effects of reducing energy intake (CALERIE), 
http://calerie.dcri.duke.edu/ 
6 Biosphere 2, www.b2science.org 
7 Calorie restriction society, www. calorierestriction.org 
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1.5.1 Investigating potential mechanisms / mediators of dietary 

restriction 

Although many experiments have been conducted to try and assess whether specific 

components of various signalling pathways are required to observe the lifespan 

extension effects of DR (i.e. DR mediators), it is important to consider that many of 

interaction studies (between two interventions that extend lifespan) have been 

performed under a range of different experimental conditions and have largely shown 

confusing and conflicting data (Gems et al. 2002). Subsequently, several 

mechanisms proposed need to be interpreted with caution.  In order to determine 

mechanistically whether a genetic mutation can cause an additive effect of lifespan to 

DR or blocks lifespan extension by DR, the responses of controls and mutant lines to 

a range of food concentrations need to be assessed (Figure 1.6) (Mair and Dillin 

2008).  

 

Figure 1.6: The response of lifespan to dietary restriction. Under normal circumstances 

(i.e. control or wild-type organisms), lifespan shows a tent-shaped response to changing 

nutritional levels (green line). Disabling a mediator or master regulator of DR will act to 

block the response of lifespan to changing nutrition, resulting in a flattening of the bell-

shaped curve (blue line). An intervention which extends lifespan in a parallel pathway to DR 

will result in an additive increase in lifespan at all food concentrations. Adapted from (Mair 

and Dillin 2008). 
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1.5.2 Dietary restriction in rodents 

The first reported study demonstrating lifespan extension by food restriction was 

performed by Clive McCay in 1935, where he showed that reducing the normal diet 

fed to rats by 60% increased lifespan by approximately 30% (McCay 1935). Since 

then, a whole range of studies has been performed on rodents documenting the 

effects of DR on lifespan and physiology (reviewed in (Weindruch and Walford 

1988; Masoro 2002)). Whilst the majority of mice and rat studies have consistently 

reported lifespan extension by DR, a few reports suggest that not all laboratory 

strains show a lifespan response to DR, e.g. (Forster et al. 2003). In addition, no 

lifespan extension was reported in a study assessing the effect of DR in wild mice, 

despite the dietary restricted mice exhibiting other characteristic phenotypes of DR 

including reduced cancer incidence (Harper et al. 2006). This section will address 

some of the key findings of the numerous dietary restriction studies performed on 

rodents to date. 

 

1.5.2.1 Methods of applying DR in rodents  

DR in rodents is typically achieved through two different methods, both of which 

have been shown to extend the median and maximum lifespan of the DR cohort. The 

first and most common method of applying DR in rodents is by reducing the quantity 

of the chow diet given to the DR group. This is typically imposed by feeding the 

animals around 60-70% of the food they would normally eat if given unrestricted ad 

libitum access (Yu et al. 1985; Masternak et al. 2005; Bonkowski et al. 2006). 

Lifespan extension using this method of DR has also been reported by feeding the 

restricted cohort anywhere between 33 to 80% of the ad libitum control fed group 

(Weindruch and Walford 1988). Alternatively, as a variation to this method, the DR 
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group can be fed a smaller weight percentage of food than the control group (Merry 

and Holehan 1985).  

 

The second method for achieving DR in rodents is through intermittent feeding, 

predominantly exercised in the form of every other day (EOD) feeding (Goodrick et 

al. 1982; Anson et al. 2005). DR though intermittent feeding can also be applied by 

feeding the restricted group 50% DR for three weeks followed by ad libitum feeding 

for three weeks. By alternating between these two feeding cycles, mice have been 

shown to adopt some of the phenotypes such as reduced tumour formation, shared 

with those seen using more common methods of DR (Cleary et al. 2007).  

 

It had been believed for a long time that lifespan extension by DR in rodents is 

directly related to caloric intake and independent of the nutrients being restricted 

(Iwasaki et al. 1988; Weindruch and Walford 1988; Masoro et al. 1989; Masoro 

2005). However, this view has since been challenged by several studies 

demonstrating that restriction of specific nutrients can also extend lifespan. For 

example, reducing the protein component of the diet has been shown to extend rat 

longevity (Yu et al. 1985). Lifespan extension has also been achieved by the 

restriction of either tryptophan (De Marte and Enesco 1986) or methionine 

(Orentreich et al. 1993; Richie et al. 1994; Zimmerman et al. 2003; Miller et al. 

2005), which are both essential amino acids for mammals. Moreover, reducing the 

protein concentration but not the fat or carbohydrate concentration in the diet 

reduced ROS production and oxidative damage, similarly to the effects of whole-

food DR. These effects are believed to be the result of reduced methionine intake 

(Ayala et al. 2007). The term dietary restriction (DR) as opposed to the commonly 
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used terms caloric or calorific restriction (CR) will be used throughout this thesis 

because DR encompasses lifespan extension by reduced caloric and nutrient intake.  

 

1.5.2.2 Biomarkers of DR in rodents 

In addition to extending lifespan, DR induces several other phenotypes in rodents 

including a reduction in fecundity, body temperature, blood plasma glucose levels, 

insulin levels, body fat and weight (Holehan and Merry 1986; Weindruch and 

Walford 1988; Masoro 2002; Koubova and Guarente 2003; Selesniemi et al. 2008). 

In addition, DR-fed rodents appear leaner and younger for longer compared with 

age-matched ad libitum-fed controls (Masoro 2002). This has led to the suggestion 

that DR in rodents causes a reduced rate of ageing (delayed ageing), leading to a 

reduction in the trajectory of mortality slope (Figure 1.2). This hypothesis has been 

supported by analytical work on previous rodent studies (Holehan and Merry 1986; 

Pletcher et al. 2000). Holehan and Merry (1986) showed the mortality rate doubling 

time (MRDT; section 1.1.2) based on several DR experiments was 102 days for ad 

libitum groups and 203 days for DR groups. However, work on one strain of mice 

did not find a difference in the rate of age specific mortality between DR and ad 

libitum-fed cohorts (Weindruch et al. 1986). Weindruch et al. (1986) found that 

although DR delayed the start of senescence, it did not slow the process once it had 

begun. It remains unclear whether DR does slow ageing because there are a lack of 

mortality data available for different mice and rat strains, hindered in part because 

age-specific mortality data requires at least 100-500 individuals per treatment 

(Pletcher 1999), which is a difficult number of rodents to breed and maintain. 

 

 



Chapter 1 

 58 

1.5.2.3 DR and metabolic rate  

It was originally proposed that DR extended lifespan as a result of reduced metabolic 

rate (Sacher 1977)8. Sacher’s hypothesis was based on observations that reduced 

food intake in humans lowered metabolic rate. This was an attractive mechanism, 

which fitted in with the oxidative damage theory of ageing and the hypothesis that 

metabolic rate strongly correlates with ROS production. Preliminary evidence 

suggested that DR may induce a lower metabolic rate (Weindruch and Walford 

1988). However, when normalised for lean body mass, no differences in metabolic 

rate between DR and control-fed animals were detected (Masoro et al. 1982; 

McCarter et al. 1985). On the contrary, a slight increase was observed in the DR 

group (McCarter and Palmer 1992; Selman et al. 2005). Furthermore, a positive 

correlation between oxygen consumption (metabolic rate) and lifespan has been 

reported, and long-lived strains were also shown to have more uncoupled 

mitochondria (Speakman et al. 2004), which has been hypothesised to cause reduced 

ROS production and enhanced longevity (Brand 2000). This study argues against the 

likelihood that DR extends lifespan through reduced metabolism or through a 

reduced “rate of living” (Pearl 1928). However, controversy still remains as to what 

the best method for accurately measuring metabolic rate is (Greenberg and Boozer 

2000), so that the possibility of a reduced metabolism in DR- treated organisms can 

perhaps not be discounted completely.  

 

 

 

 

 

                                                
8 Cited from Masoro 2005 
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1.5.2.4 DR and stress resistance 

Another common phenotype coupled with lifespan extension under DR is increased 

resistance to different stresses, particularly heat and oxidative stress (Sohal and 

Weindruch 1996). In both rats and mice, DR results in decreased production of ROS 

(Sohal et al. 1994; Lopez-Torres et al. 2002). Furthermore, microarray analysis 

revealed a down-regulation of genes encoding inflammation and stress resistance in 

the brains of DR-fed rodents (Lee et al. 2000).  

 

1.5.2.5 DR delays the onset of multiple ageing-related pathologies 

The pioneering studies of Clive McCay showing that DR could extend the lifespan of 

rats, also revealed that this intervention could delay the onset of several ageing-

related pathologies (McCay 1935). To date, beneficial effects of DR have been 

reported to postpone the effects of numerous pathologies (Weindruch and Walford 

1988; Masoro 2002). These include, amongst many others, neuro-degenerative 

diseases (Mattson et al. 2001), cancer (Yu et al. 1982; Hursting et al. 1994; Berrigan 

et al. 2002; Cleary et al. 2007), auto-immune diseases (Fernandes et al. 1976; Kubo 

et al. 1984a; Kubo et al. 1984b), kidney diseases (Yu et al. 1982; Maeda et al. 1985), 

cataracts (Taylor et al. 1989), strokes (Stevens et al. 1998), and cardiovascular 

diseases (Koletsky and Puterman 1976; Maeda et al. 1985).  

 

1.5.2.6 Does DR increase lifespan by retarding growth? 

Clive McCay formulated the retardation of growth hypothesis, which suggests that 

DR extends lifespan by retarding growth (McCay 1935). This view became 

favourable and was modified to include the retardation of development because of 

the proposal that ageing is simply a continuation of development. However, this 
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hypothesis has been challenged by several studies showing that DR can extend 

lifespan when applied after the rapid growth phase (between 6 weeks and 6 months), 

but to a lesser extent than when initiated during or immediately after weaning. For 

example, male rats exhibit a 10-20% increase in lifespan when DR is applied at one 

year of age (Weindruch and Walford 1982). Furthermore, applying DR at 19 months 

has also been reported to extend the lifespan of one mouse strain (Dhahbi et al. 

2004), although no lifespan extension was observed in a strain of rats when DR was 

applied at 18 or 26 months (Lipman et al. 1995). Another study has reported that 

when DR is applied after the rapid growth period, maximum lifespan (age of last 

10% of population) was extended almost to the same degree as when DR was 

initiated at 6 weeks (Yu et al. 1985). 

 

1.5.2.7 Does DR extend lifespan due to reduced body fat? 

Another hypothesis proposed that DR extends lifespan due to a reduction in body fat, 

based on the assumption that increased body fat caused premature death in humans 

(Berg and Simms 1960). Indeed, DR has been shown to decrease body fat (Harrison 

et al. 1984; Weindruch et al. 1986; Masoro 2002), particularly visceral fat (Barzilai 

and Gupta 1999). However; no correlation was detected between body fat and 

lifespan of an ad libitum-fed rat strains (Bertrand et al. 1980). Moreover, the lifespan 

of a genetically obese mouse strain, ob/ob, could be extended despite these mice 

having more fat than shorter-lived ad libitum control-fed mice (Harrison et al. 1984). 
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1.5.2.8 Genetics of dietary restriction in rodents 

Reports of single gene mutation that have extended lifespan in rodents have 

generally been restricted to one diet, usually ad libitum. However, lifespan studies 

involving mice with a mutation in the pituitary gland (prop1df; Ames dwarf mice) or 

growth hormone receptor knockout (Ghr/bp-/-; Laron dwarf or GHRKO) were 

conducted on four different diets (Bartke et al. 2001; Bonkowski et al. 2006). These 

diets included a standard lab diet, a casein diet with soy-derived components, and 

two soy-based diets (with high and low isoflavone content). Both Ames and Laron 

dwarfs lived longer than genetically-matched controls on all diets; however the 

magnitude of lifespan extension dramatically varied, indicating some interaction with 

nutrition. Interestingly, the long-lifespan of Ames dwarfs could be further extended 

by DR when applied at two months of age (Bartke et al. 2001). In contrast to work 

on Ames dwarfs, more recent work with Laron dwarf mice revealed no further 

increase in median lifespan when these mice were subjected to DR, and only a small 

increase in the maximum lifespan of females was detected (Bonkowski et al. 2006). 

These data suggest that the increased lifespans of Laron and Ames dwarf mice are 

mediated by different pathways. Alternatively, the dietary restriction regimen used in 

Laron mice may not have been sufficient to extend lifespan if for example these mice 

have different nutritional requirements. This could be tested by examining the 

response of Laron mice on a greater range of DR diets.  

 

More recently, insulin receptor substrate 2 (IRS2) mutants have been reported to 

exhibit extended lifespan when fed a 9% fat diet (Taguchi et al. 2007), but not when 

fed a 5% fat diet (Selman et al. 2008). Furthermore, lifespan extension of growth 

hormone-deficient mice (Snell dwarf) is dependent on a 4% fat diet as opposed to a 

7% fat diet (Flurkey et al. 2001). These results highlight an interesting interaction 
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between longevity, genotype and diet, with the majority of mutations having a 

greater effect on lifespan when mice are fed high calorie diets.  

 

1.5.3 Dietary restriction in Saccharomyces cerevisiae 

Yeast is commonly grown on a medium containing a relatively high concentration of 

glucose (2%) and a plentiful supply of amino acids. Reducing either the 

concentration of glucose (to 0.5% or even 0.05%) or the concentration of amino 

acids (or both simultaneously) extends both replicative and chronological lifespan of 

yeast (Jiang et al. 2000; Lin et al. 2000; Jiang et al. 2002; Anderson et al. 2003; 

Kaeberlein et al. 2004b; Reverter-Branchat et al. 2004; Fabrizio et al. 2005; Powers 

et al. 2006). In addition to inducing DR environmentally, two genetic models have 

been created to explain how glucose reduction could extend lifespan by blocking the 

uptake or metabolism of glucose. The first model emerged from data on gene 

mutations that reduce signalling through the cAMP-dependent protein kinase, PKA, 

which is activated by high levels of glucose (Lin et al. 2000). These include deletion 

of genes encoding the glucose sensing proteins GPA2 or GPR1, and temperature-

sensitive alleles of adenylate cyclase (cdc35–1) or the RAS-associated GTPase 

(cdc25–10) (Lin et al. 2000). The second model highlights that DR is achieved by 

deletion of HXK2, a gene encoding hexokinase, an essential enzyme for the initial 

utilisation of glucose by the yeast cell (Lin et al. 2000). 

 

The extension of lifespan by glucose reduction was originally thought to occur 

through an increase in respiration (Lin et al. 2002) because deletion of CYT1, a gene 

encoding cytochrome C1, prevented these cells from exhibiting lifespan extension by 

DR (Lin et al. 2002). However, more recently it has been reported that by using a 

lower glucose concentration (0.05%) to induce DR, lifespan can be extended in 
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respiratory-deficient yeast (Kaeberlein et al. 2005a), thereby highlighting that other 

mechanisms may mediate the effects of lower glucose availability on lifespan in 

yeast.  

 

1.5.3.1 Genetics of dietary restriction in yeast cells 

The SIR2 (silent information regulator 2) gene was first identified as a mediator of 

gene silencing in yeast (Rine and Herskowitz 1987). It has since been shown that 

SIR2 encodes an NAD-dependent histone deacetylase (Imai et al. 2000). In yeast, 

Sir2 has been shown to be important in ageing because deletion of SIR2 reduces 

replicative lifespan (Kennedy et al. 1995; Jiang et al. 2002), whereas over-expression 

of SIR2 has been shown to extend lifespan (Kaeberlein et al. 1999). The absence of 

other members of the sirtuins, SIR3 and SIR4, was also reported to shorten replicative 

lifespan (Kaeberlein et al. 1999).  

 

The work on sirtuins has prompted investigations into whether dietary restriction is 

mediated by Sir2 in yeast (Guarente 2000; Guarente and Kenyon 2000). However, 

these experiments have yielded conflicting evidence (Lin and Guarente 2006; 

Kaeberlein et al. 2007; Kaeberlein and Powers 2007). It was first reported that 

certain strains of yeast did not respond to DR when SIR2 had been deleted (Lin et al. 

2000), and that DR extends lifespan by lowering levels of NADH, which is known to 

be a competitive inhibitor of Sir2 (Lin et al. 2004). This finding was supported by a 

genetic mimetic model of DR, whereby mutants with reduced PKA activity required 

the presence of Sir2 to extend lifespan (Lin et al. 2002). Moreover, the chemical 

compound resveratrol, which increases activity of the human homologue SIRT1 in 

vitro, could increase lifespan of yeast but had no additive effect on lifespan when 
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simultaneously applied with DR (Howitz et al. 2003). Furthermore, deletion of 

another histone deactylase, RPD3, extends the replicative lifespan of yeast (Kim et 

al. 1999; Jiang et al. 2002), but when RPD3 mutants were subjected to DR no further 

lifespan extension was observed. These data suggest that in addition to Sir2, Rpd3 

may be important in mediating the DR response in yeast cells (Jiang et al. 2002).  

 

In contrast, other laboratories have provided evidence that deletions in SIR2, which 

normally shorten lifespan, can result in normal lifespan extension under conditions of 

reduced glucose (DR) (Jiang et al. 2002; Kaeberlein et al. 2004b; Fabrizio et al. 

2005; Tsuchiya et al. 2006; Smith et al. 2007a). Kaeberlein et al. (2004) not only 

demonstrated that lifespan extension could still be achieved in yeast cells lacking 

SIR2, but also found that yeast cells with extra copies of SIR2 showed an additive 

increase in replicative lifespan when subjected to DR, indicating that DR and Sir2 

may in fact be acting in parallel pathways. One suggestion is that Sir2-independent 

lifespan extension by DR may be mediated through Hst2 (Lamming et al. 2005), a 

SIR2 homologue that promotes the stability of repetitive ribosomal DNA (rDNA). 

However, more recent studies have shown that HST2 mutants together with 

mutations in a range of other sirtuins still display extended lifespan in response to 

reduced glucose concentrations (Kaeberlein et al. 2006a; Tsuchiya et al. 2006; Smith 

et al. 2007a). An increase in rDNA circles, associated with lack of SIR2, has been 

shown to reduce the lifespan of wild-type yeast cells (Sinclair and Guarente 1997). 

The presence of these rDNA circles is exclusive to yeast and may be of limited 

importance when considering the role of Sir2 in terms of evolutionary conservation 

across a range of organisms.  
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The controversy surrounding DR in yeast has been source to great debate, firstly as 

to whether lifespan extension by DR is dependent on increased respiration and 

secondly whether the effects of DR are mediated by sirtuins, and particularly Sir2 

(Lin et al. 2000; Lin et al. 2002; Fabrizio et al. 2005; Lamming et al. 2005; 

Kaeberlein et al. 2006a; Kaeberlein et al. 2006b; Lin and Guarente 2006; Sinclair et 

al. 2006; Tsuchiya et al. 2006; Smith et al. 2007a). Alternative pathways have been 

suggested to mediate the lifespan extension by DR. These include the Tor (target of 

rapamycin) and Sch9 pathways, both of which are involved in nutrient sensing 

(Kaeberlein et al. 2005b). The fact that two different main pathways (namely 

pathways via Sir2 or Tor/ Sch9) have been suggested as mediators of DR could be 

explained by differences in glucose concentrations used to implement DR by the 

Guarente (0.5%) and Kaeberlein / Kennedy laboratories (0.05%; Figure 1.7). This 

idea was proposed by Su-Ju Lin who suggested that the differences in glucose 

concentration may be prompting either fermentation or oxidation to take place. 

However, this model has been challenged by a recent independent study performed 

by another laboratory which showed that lifespan could be extended in SIR2 mutant 

yeast cells when DR was applied using a 0.5% glucose medium (Smith et al. 2007a). 

In addition, the Kaeberlein / Kennedy laboratories have reported Sir2-independent 

lifespan extension using both 0.05% and 0.5% glucose concentrations (Tsuchiya et 

al. 2006).  
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Figure 1.7: A model explaining potential mechanisms involved in lifespan extension of 

yeast using two concentrations of glucose. Su-Ju Lin’s proposed model explaining 

differences seen between the Guarente and Kennedy laboratory for yeast cells lacking SIR2 

in response to DR (J.Toivonen personal communication adapted from Su-Ju Lin’s 

presentation at the Gordon Biology of Aging conference Jan - Feb 2006). This model has 

since been disproved by two independent studies (Tsuchiya et al. 2006; Smith et al. 2007a). 

 

 

1.5.4 Dietary restriction in the nematode worm Caenorhabditis 

elegans 

Methods for applying DR in C. elegans are more diverse than in the budding yeast or 

rodents. There are thought to be up to 12 different methods of applying DR, adopted 

by laboratories (W. Mair, personal communication), many of which are small 

variations of more traditional DR protocols. It is thought that C. elegans in the wild 

feed exclusively on bacteria (Caswell-Chen et al. 2005). Indeed, in a laboratory, C. 
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elegans can be successfully maintained on a bacterial lawn (E. coli) layered on agar 

plates containing minerals, cholesterol and peptones (Brenner 1974).  

 

 DR in C. elegans is typically achieved through serial dilution of a bacterial source, 

usually E. coli on plates or liquid culture (Klass 1977; Houthoofd et al. 2003), which 

extends lifespan and reduces fecundity (Klass 1977; Bishop and Guarente 2007b; 

Bishop and Guarente 2007a). However, other methods that extend lifespan include 

complete removal of bacterial food (Kaeberlein et al. 2006b; Lee et al. 2006; Smith 

et al. 2008), altering the strain of bacteria in the worm diet (Garsin et al. 2001; 

Garsin et al. 2003) or using a synthetic axenic media in the absence of bacteria 

(Vanfleteren et al. 1998; Vanfleteren and Braeckman 1999; Houthoofd et al. 2005; 

Walker et al. 2005). Another DR method commonly adopted is through a genetic 

mutation called eat-2, which causes a defect in pharyngeal pumping and is thought to 

mimic DR (Lakowski and Hekimi 1998; Wang and Tissenbaum 2006; Hansen et al. 

2008). However, eat-2 mutants cultured on bacterially-diluted plates (DR) display a 

further extension of lifespan compared with wild type worms subjected to DR, 

suggesting that eat-2 may extend lifespan through a different mechanism  to DR 

itself ((Hansen et al. 2007); A.Brunet, personal communication). Finally, similarly to 

some of the genetic manipulations in yeast, lifespan can be extended by inhibiting 

specific nutrient transporters located in the gut of nematodes (Fei et al. 1998; Fei et 

al. 2004; Meissner et al. 2004).  

 

Despite bacterial dilution being one of the most common methods of applying DR, it 

is complicated by the problem that E. coli is mildly toxic to nematodes (Gems and 

Riddle 2000; Garigan et al. 2002; Walker et al. 2005). This was demonstrated by 

growing nematodes on bacteria that had been killed by ultra violet (UV) radiation or 
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antibiotics, which was shown to extend lifespan (Gems and Riddle 2000; Garigan et 

al. 2002). Furthermore, wild-type nematodes exhibited extended lifespan when fed 

the Gram-positive bacterium Bacillus subtilis compared with E. coli, and the lifespan 

of daf-2 (insulin receptor) mutants relative to controls was only fractionally extended 

when propagated on B. subtilis, which was in contrast to the remarkable lifespan 

extension observed when propagated on E. coli (Garsin et al. 2003). 

 

1.5.4.1 Genetics of dietary restriction in C. elegans 

Several studies in worms suggest that DR extends lifespan independently of the 

insulin / insulin-like signalling (IIS) pathway. Daf-2 (insulin receptor) mutants fed a 

DR regimen exhibit a further extension of lifespan compared with Daf-2 mutants fed 

a control diet (Lakowski and Hekimi 1998; Houthoofd et al. 2003; Wolff and Dillin 

2006). Furthermore, DR has been shown to extend lifespan independently of the 

FOXO transcription factor DAF-16 (Lakowski and Hekimi 1998; Houthoofd et al. 

2003; Kaeberlein et al. 2006b; Lee et al. 2006). However, using a similar method of 

bacterial dilution to extend lifespan, a recent report revealed that DAF-16 is required 

to observe the longevity phenotype under DR (Greer et al. 2007). Moreover, both 

lifespan extension by both reduced IIS signalling and DR (food deprivation method) 

appear to be dependent on the presence of heat shock factor 1 (Hsu et al. 2003; 

Steinkraus et al. 2008).  

 

As is the case with yeast, numerous mechanisms have been proposed to explain 

lifespan extension by DR. One view was that DR extends lifespan by inducing a 

lower metabolic rate and hence reduced ROS production (Lakowski and Hekimi 

1998). However direct measurements of the rate of oxygen consumption suggest that 

metabolic rate is similar between dietary-restricted and control-fed nematodes 
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(Houthoofd et al. 2002a; Houthoofd et al. 2002b). The C. elegans homologue of 

Sir2, Sir-2.1 has also been investigated for its role in lifespan extension by DR. As is 

the case in yeast (Kaeberlein et al. 1999), over-expression of Sir-2.1 also increases 

the lifespan of worms (Tissenbaum and Guarente 2001), and it had previously been 

suggested that SIR-2.1 is required for lifespan extension under DR (Wang and 

Tissenbaum 2006). However, more recent studies have failed to support this role for 

SIR-2.1 in mediating the response to DR (Kaeberlein et al. 2006b; Lee et al. 2006; 

Hansen et al. 2007). It is possible that the different methods of applying DR may 

explain differences in the proposed mechanisms mediating it.  

 

Recently, a group of sirtuin activating compounds (STACs), which include 

resveratrol, a plant polyphenolic phytoallexin (anti-fungal defence compound) 

commonly found in the skin of grapes, were identified after they were found to 

activate production of the Sir2 protein (Wood et al. 2004). In C. elegans, resveratrol 

extends lifespan (Wood et al. 2004) and is thought to do so in a Sir-2.1-dependent 

manner (Viswanathan et al. 2005). However, more recent work has reported a 

negligible or no lifespan extension when feeding worms resveratrol in the diet (Bass 

et al. 2007b).  

 

Another potential mechanism regulating the effects of DR is the TOR (target of 

rapamycin) pathway, which is involved in nutrient (particularly amino acid) sensing. 

Lifespan can be extended in mutants where TOR activity has been reduced (Vellai et 

al. 2003; Jia et al. 2004; Meissner et al. 2004; Henderson et al. 2006). Although little 

work has been carried out to date on the interaction between TOR and DR in worms, 

one study has reported that RNAi against TOR caused a further extension of lifespan 

of eat-2 mutants, a genetic mimetic of DR (Henderson et al. 2006). In contrast, a 
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second study reported no further lifespan extension of eat-2 mutants subjected to 

TOR RNAi (Hansen et al. 2007). Since it is still unclear whether DR and eat-2 

mutations extend lifespan through the same or alternative mechanisms, these results 

have to be interpreted carefully ((Hansen et al. 2007); A. Brunet, personal 

communication). It has also been proposed that autophagy is required for lifespan 

extension by DR. However, in these experiments DR was induced via the eat-2 

mutation, which also makes the results difficult to interpret (Jia and Levine 2007; 

Hansen et al. 2008).  

 

Other notable genes and pathways that have been proposed to mediate the effects of 

DR include the energy sensing AMP-activated protein kinase (AMPK; (Greer et al. 

2007), the mammalian orthologue of the Foxa family of transcription factors (PHA-

4; (Panowski et al. 2007) and a homologue of the NF-E2-related transcription factors 

(SKN-1), which mediates DR in two neurons (Bishop and Guarente 2007b). The 

different mechanisms proposed may be the effect of a variety of DR protocols 

chosen. Nonetheless, PHA-4 appears to be a good candidate for the mediation of DR 

in C. elegans, since it mediates the response of lifespan to both bacterial dilution 

(tested over a range of concentrations) and eat-2 mutations (Panowski et al. 2007).  

 

 

1.5.5 Dietary restriction in the fruit fly Drosophila melanogaster 

In the wild, Drosophila is commonly thought to feed on yeast and fungus growing on 

rotten and fermenting fruits (Spieth 1974). When maintained in a laboratory, 

Drosophila can be fed a range of diets varying from banana molasses, e.g. (Rose 

1984) to a simple agar-based diet enriched with different nutritional components, e.g. 

(Mair et al. 2005). Perhaps the most commonly used diet is comprised of sucrose and 
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autolysed yeast powder dissolved in an agar gel, occasionally supplemented with 

cornmeal (Kapahi et al. 2004a). In contrast to methods of applying DR in rodents, 

Drosophila requires constant ad libitum access to food. DR is typically achieved in 

two ways. The most commonly used method involves the simultaneous dilution of 

sugar and yeast in an agar-based gel (Chapman and Partridge 1996; Mair et al. 

2003). Alternatively, DR can be achieved by altering the availability of live yeast on 

the surface of the food (Chippindale 1993; Libert et al. 2007). More recently, it has 

been reported that the magnitude of lifespan extension observed when 

simultaneously diluting both sugar and yeast can be achieved solely by the reduction 

of the yeast component of the diet, whilst keeping the sucrose concentration fixed 

(Mair et al. 2005; Lee et al. 2008). Both methods of DR have been shown to be 

effective in extending the median and maximum lifespan of Drosophila. Attempts to 

reproduce the lifespan extension seen in rodents through intermittent feeding 

(Goodrick et al. 1982) in Drosophila have to date not been successful (Kopec 1928; 

Le Bourg and Medioni 1991), again indicating that Drosophila require constant 

access to food during DR studies. 

 

1.5.5.1 Dietary restriction and reproduction 

Lifespan extension by DR in many organisms is commonly expected to trade-off 

with reduced reproduction (Partridge et al. 2005a), and Drosophila is no exception 

(Chippindale et al. 1993; Chapman and Partridge 1996; Libert et al. 2007; Lee et al. 

2008). As the concentration of food is increased, daily and lifetime fecundity 

increases progressively (Figure 1.8). In contrast, lifespan is reduced at high food 

concentrations. As the food becomes more dilute, lifespan is extended at an 

intermediate food concentration (DR) in conjunction with reduced fecundity (Figure 
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1.8). A more severe dilution of the food medium results in a further reduction in 

fecundity and a sharp decline in lifespan, indicating a starvation threshold. Egg 

production can be rapidly (within two days) induced / reversed with a change of 

nutritional intake (Chippindale 1993; Good and Tatar 2001). 

 

The interaction between diet, reproduction and lifespan has formed the foundations 

of evolutionary hypotheses as an explanation for the mechanism(s) underlying 

lifespan extension by DR. These hypotheses predict that lifespan and fecundity are in 

competition with at least some of the same, limiting, nutrients (Charlesworth 1980) 

and DR regulates certain pathways causing a shift or resource allocation from 

reproduction and growth towards somatic maintenance and repair (Williams 1966; 

Kirkwood and Holliday 1979; van Noordwijk and de Jong 1986; Holliday 1989; 

Kirkwood et al. 2000; Kirkwood and Shanley 2005). The effects observed under 

conditions of DR could thus be an evolved response to food shortages in nature 

(Williams 1966; Kirkwood and Holliday 1979; van Noordwijk and de Jong 1986). 

However, a previous study has reported that DR also extends longevity of flies that 

have vitellogenesis blocked by the ovoD1 mutation and flies that have had their germ 

line removed by X-radiation (Mair et al. 2004). This suggests that reduced fecundity 

may not be essential for lifespan extension by DR or that the relevant aspects of 

reproduction lie further upstream of the interventions targeted (Mair et al. 2004).  
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Figure 1.8: The response of lifespan and egg production to a range of food 

concentrations in Drosophila. Open circles represent egg production and closed circles 

represent median lifespan. Increasing the concentration of sugar / yeast medium results in a 

continuous increase in lifetime fecundity. Lifespan peaks at an intermediate food 

concentration and is reduced at high concentrations as well as very low concentrations 

(starvation). Figure taken from (Chapman and Partridge 1996). 

 

 

1.5.5.2 The importance of performing DR experiments in single-sex groups 

As previously described, there is a strong interaction between diet, reproduction and 

lifespan whereby high food concentration causes increased fecundity, but reduced 

survival in female Drosophila. In addition, an interaction between diet and re-mating 

frequency in fruit flies has been reported (Harshman et al. 1988; Chapman and 

Partridge 1996), whereby an increase in the food concentration is directly correlated 

with an increase in re-mating frequencies (Figure 1.9). Furthermore, an increase in 

mating frequency has a knock on effect and reduces longevity in both males and 

females (Chapman and Partridge 1996; Partridge and Prowse 1997). Consequently, it 

Figure removed due to copyright conflict 
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is imperative that lifespan experiments involving dietary manipulations are 

performed in single-sex groups, although this is not followed in all experimental set-

ups (Chippindale 1993; Bradley and Simmons 1997; Rogina and Helfand 2004; 

Wood et al. 2004; Min and Tatar 2006b; Min and Tatar 2006a). Failure to control for 

mating status is also a problem when trying to indentify candidate genes or drugs 

treatments that mediate the response to of lifespan to diet (Piper and Partridge 2007).  

 

 
Figure 1.9: The relationship between food concentration and re-mating frequency in 

female Drosophila. The re-mating frequency (% mating opportunities taken) of flies 

increases proportionally with increasing concentration of sugar / yeast diet. The data are 

representative of combined results of females that were continuously exposed or 

intermittently exposed to mating males. (Figure taken from (Chapman and Partridge 1996)  

 

 

1.5.5.3 Compensatory feeding on DR diets? 

 Applying DR by food dilution, when the food in excess, has led to the suggestion 

that flies on a DR diet could compensate to lower nutrition levels by altering their 

feeding behaviour and increasing food intake (Cooper et al. 2004; Carvalho et al. 

2005). The uptake of radio-labelled food was found to be higher in DR flies than 

fully-fed flies (Carvalho et al. 2005). However, by measuring steady state feeding 

Figure removed due to copyright conflict 
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behaviour through proboscis extension (Mair et al. 2005) and calibrating these data 

with food intake of blue dye-labelled food (Wong et al. 2008), it has been argued that 

DR-fed flies and fully-fed flies consume a similar amount of food (Bross et al. 2005; 

Wong et al. 2008). In contrast, another study has reported that food uptake is up to 

four times greater in fully-fed flies than DR flies, providing further evidence that DR 

flies do not compensate by eating more (Min and Tatar 2006a). Furthermore, if 

compensatory feeding on a DR diet did occur and flies were ingesting a similar 

concentration of nutrients to full-fed flies, then one would expect differences in daily 

and lifetime fecundity to be negligible between the two groups, which is not the case 

(e.g. Figure 1.8).  

 

1.5.5.4 Sex differences in response to DR 

As well as extending the lifespan of female Drosophila, DR has also been reported to 

extend the lifespan of males (Magwere et al. 2004). However, the magnitude of the 

response appears to be much greater in females, which exhibited a 60% increase in 

lifespan relative to fully-fed controls, compared to a 30% increase in males 

(Magwere et al. 2004). Interestingly, in the same study, male lifespan was shown to 

peak at a lower food concentration than the peak lifespan of females. The 

explanation for the different responses of males and females to DR is not clear; 

however it is likely that females show a stronger response to nutrition due to high 

nutritional demands for egg production, supported by data suggesting that females 

exhibit higher feeding rates than males (R. Wong, unpublished data).  
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1.5.5.5 Dietary restriction and mortality rates 

Analysing age-specific mortality allows for independent comparisons of 

vulnerability of death at different ages (Vaupel et al. 1998). Inducing chronic DR has 

been shown to cause a delay in the onset of a detectable ageing-related increase in 

mortality. However, once the increase has been detected, fully-fed and DR flies 

exhibit a similar rate of increase in mortality (Pletcher et al. 2002; Mair et al. 2003) 

(Figure 1.10). In contrast, reducing the temperature at which Drosophila are 

maintained, also extends lifespan but causes a reduction in the slope of mortality 

(Loeb and Northrop 1916; Loeb and Northrop 1917; Miquel et al. 1976). This 

indicates a slower accumulation of irreversible ageing-related damage (Pletcher et al. 

2000; Mair et al. 2003; Magwere et al. 2004) (Figure 1.10). Mair et al. demonstrated 

that DR extends lifespan entirely by reducing the short-term risk of death as opposed 

to slowing the accumulation of ageing-related damage. By switching flies from a DR 

diet to a fully-fed diet (and vice versa) at different intervals throughout life; Mair et 

al. revealed that flies have no memory of their past feeding. Fully-fed flies switched 

to a DR diet within 48 hours are no more likely to die than aged-matched flies that 

have been exposed to DR throughout their entire lives (Mair et al. 2003). A similar 

shift in mortality was observed when DR flies were switched to full feeding within 

48 hours.  
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Figure 1.10: Different effects on mortality of dietary restriction and reduced 

temperature. (a) DR (green) induces a shift in the mortality trajectory and lowers the 

baseline mortality rate compared with full feeding (red). (b) Reducing the temperature (blue) 

lowers the mortality trajectory and delays the accumulation of irreversible ageing-related 

damage.  

 

1.5.5.6 Genetics of dietary restriction in Drosophila 

Studies over the last decade have attempted to shed light on the potential 

mechanisms underlying lifespan extension by DR in Drosophila, some of which 

appear to be conserved amongst yeast, worms, flies and mice. The insulin / IGF-like 

signalling pathways (IIS) and target of rapamycin (TOR) pathway are two of the 

most likely candidates to be involved in mediating the response to DR, 

predominantly due to their roles in insulin signalling and nutrient sensing 

respectively, in addition to growth and development.  

 

Mutations in various components of the IIS signalling pathway have been shown to 

extend lifespan in mice, flies and worms (see Partridge et al. 2005 for detailed 

review). In Drosophila, a null mutation in the insulin receptor substrate protein 

CHICO, results in developmentally delayed dwarf flies which are sterile, long-lived 

and exhibit a range of stress resistant phenotypes (Bohni et al. 1999; Clancy et al. 

2001). In a follow-up study, when subjected to a range of food concentrations, chico 
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homozygotes showed peaks in lifespan of similar magnitude to wild-type controls, 

but the lifespan of chico homozygotes peaked at a higher food concentration than 

that of control flies (Figure 1.11) (Clancy et al. 2002). Furthermore, the lifespan of 

chico homozygotes was reduced compared with controls at lower food 

concentrations. The fact that lifespan extension by DR could not be further increased 

by loss of CHICO indicates that lifespan extension by DR and reduced insulin 

signalling may be acting in the same pathway. In addition, this right-shift in the 

relationship between lifespan and nutrition (Figure 1.11) supports the idea that these 

two mechanisms may act in the same pathway, and suggests that the CHICO 

mutation induces a state similar to mild dietary restriction. However, an alternative 

explanation is that chico homozygotes eat less than controls, which is a distinct 

possibility due to their reduced body size and sterility. 

 

 

Figure 1.11: The right-shift response of chico homozygotes to changing nutrition. chico 

homozygotes exhibit an increase in lifespan at higher food concentrations but reduced 

lifespan at lower food concentrations compared with control flies. Taken from (Clancy et al. 

2002). 

 

 

Figure removed due to copyright conflict 
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More recently, other long-lived Drosophila mutants have been tested for a possible 

interaction between DR and the IIS pathway. Over-expression of dFOXO in the fat 

body (Giannakou et al. 2004) and head fat body (Hwangbo et al. 2004) extends 

lifespan of flies fed a standard laboratory medium. Similarly to general consensus 

that DAF-16 is not required in worms (Mair and Dillin 2008),  the presence of 

dFOXO is not required for lifespan extension by DR (Giannakou et al. 2008; Min et 

al. 2008). However, over-expressing dFOXO in the adult fat body (the fly equivalent 

of the mammalian liver) resulted in lifespan extension at high food concentrations 

(right-shifted response to nutrition), similarly to observations in chico homozygotes, 

that was not attributable to reduced food intake (Giannakou et al. 2008). In contrast, 

conflicting evidence suggests that only dFOXO over-expression in the adult fat body 

results in lifespan peaking at low food concentrations (left shift in response to 

nutrition), whereas over-expression of dFOXO in the head fat body resulted in 

lifespan peaking only at high food concentrations (Min et al. 2008). Min et al. also 

report that reduction in mRNA levels of one of the Drosophila insulin like peptides 

(Dilps), Dilp5, was associated with lifespan extension by DR, although knocking 

down expression of Dilp5 with RNAi did not block the response to DR.  

 

Components of the TOR pathway, including TOR, S6K, TSC1 and TSC2 play an 

important role in growth and body size in Drosophila (Montagne et al. 1999; 

Marygold and Leevers 2002). The TOR pathway is often viewed as a pathway 

parallel to the IIS pathway, although the two pathways are known to interact with 

each other (Marygold and Leevers 2002; Colombani et al. 2003). Similar to the 

deficiency of TOR activity in C. elegans (Vellai et al. 2003; Jia et al. 2004; Meissner 

et al. 2004; Henderson et al. 2006) and yeast (Kaeberlein et al. 2005b), reduced TOR 

signalling through over-expression of dTsc1, dTsc2 or dominant negative forms of 
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dTOR / dS6K extends lifespan in Drosophila (Kapahi et al. 2004a). It was initially 

thought that down-regulation of dTOR activty solely in the adult fat body was 

sufficient to observe a longevity phenotype. However this claim has since been 

withdrawn (Kapahi et al. 2004b). Interestingly, flies over-expressing dTsc2 show 

similar responses to nutrition as previously observed in chico homozygotes (Clancy 

et al. 2002) and flies over-expressing dFOXO in the fat body (Giannakou et al. 

2008). In these flies, lifespan extension is greatest at the highest food concentrations, 

but is reduced at the lowest food concentration tested (Kapahi et al. 2004a). This 

again suggests that the TOR and IIS pathway interact closely with one another and 

may mediate lifespan extension by DR.  

 

As previously reported in yeast and worms, over-expression of the Drosophila 

homologue of the histone deacetylase Sir2, dSir2, has also been shown to extend 

lifespan in both male and female Drosophila (Rogina and Helfand 2004). However, 

lifespan could not be further extended in dSir2 over-expressers upon implementing 

DR. Furthermore, it was also reported that trans-heterozygous null mutations in 

dSir2, which lead to normal fecundity and normal or slightly reduced lifespan 

relative to controls (Newman et al. 2002; Astrom et al. 2003), abolish lifespan 

extension by DR. This suggests that dSir2 mediates the responses of DR in 

Drosophila (Rogina and Helfand 2004). This is supported by work involving sirtuin 

activating compounds (STACs), including resveratrol, which activate Sir2-like 

proteins and extend lifespan in Drosophila without the cost of reduced fecundity 

(Bauer et al. 2004; Wood et al. 2004). Moreover, STACs did not extend lifespan of 

dSir2 null mutants and no further lifespan extension was seen in flies fed STACs and 

a DR diet, again suggesting dSir2 may mediate lifespan extension by DR (Wood et 

al. 2004). However, a more recent report has failed to support these findings, 
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demonstrating no lifespan extension with the addition of resveratrol in seven 

independent experiments, varying wild-type strain, diet and mating status of males 

and females (Bass et al. 2007b).  

 

Deletion of dRPD3, a histone deactylase, which extends lifespan and mediates 

lifespan extension by DR in yeast cells (Kim et al. 1999; Jiang et al. 2002), has also 

been investigated in Drosophila (Rogina et al. 2002). Male and female flies 

heterozygous for a mutation in dRpd3 exhibit an increased lifespan (Rogina et al. 

2002). When subjected to DR, these flies showed no further extension of lifespan, 

suggesting that Rpd3 and DR mediate lifespan extension through the same pathway 

(Rogina et al. 2002). However, it is important to consider that Rogina et al. (2002) 

only tested two food concentrations representing their DR and fully-fed conditions. It 

is possible, that the lifespan of Rpd3 mutants may peak at a different DR 

concentration to controls, as seen with males (Magwere et al. 2004), chico 

homozygotes (Clancy et al. 2002) and flies with dFOXO over-expressed in the fat 

body (Giannakou et al. 2008). This is also a consideration when determining whether 

dSir2 mediates the response of DR, as this study was limited to testing two food 

concentrations only (Rogina and Helfand 2004). It is therefore important to test the 

response of these mutants to a range of food concentrations before concluding 

whether dRpd3 blocks lifespan extension by DR (Figure 1.12).  
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Figure 1.12: Choosing only two food concentrations for DR and fully-fed conditions. An 

illustration of the potential problems when choosing only two food concentrations to test 

whether DR extends lifespan, particularly when testing whether a specific pathway mediates 

the response to DR. * Condition that may have been chosen to represent DR. 

 

Lifespan extension has also been reported in males and females heterozygous for a 

mutation in Indy (“I’m not dead yet”), which encodes a protein that is closely related 

to a mammalian sodium dicarboxylate co-transporter, involved in transporting 

Krebs’ cycle intermediates (Rogina et al. 2000). Indy has been shown to be 

expressed in oennocytes, the fat body and the mid-gut, the latter two being the fly 

equivalent of the mammalian liver and white adipose tissue. In contrast to DR, 

mutations in Indy appear to extend lifespan by decreasing the slope of mortality 

(Figure 1.10), indicating a slower rate of ageing than control flies (Marden et al. 

2003). Interestingly Indy mutants show normal or slightly elevated fecundity when 

fed a normal diet, but exhibit reduced fecundity when fed a low food diet, suggesting 

a conditional trade-off between lifespan fecundity dependent upon levels of nutrition 

(Marden et al. 2003). However, a more recent study has demonstrated that the 
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original extension of lifespan of Indy mutants diminished following extensive 

backcrossing into several different genetic backgrounds. (Toivonen et al. 2007).  

 

Partial-loss-of function mutation in methuselah was the first gene mutation to be 

shown to extend lifespan in Drosophila (Lin et al. 1998). Similarly to the earlier 

reports on Indy mutants, methuselah appears to extend lifespan by lowering the slope 

of mortality trajectory, suggesting that this mutation is reduces the rate of ageing, 

although no interaction with diet has been tested to date. Lifespan can also be 

extended by two dominant negative forms of the Drosophila homologue of the 

mammalian tumour suppressor p53 (Dmp53), but the lifespan of Dmp53 is not 

further extended by DR (Bauer et al. 2005).  

 

Another pathway that has been proposed to be important in regulating lifespan is the 

olfactory pathway. Microarray analysis of dietary restricted flies compared with 

fully-fed flies has previously revealed changes in expression levels of genes 

encoding odourant-binding proteins both with nutrition and age (Pletcher et al. 

2002). Furthermore, flies that were exposed to the odour of live yeast, without 

actually being able to feed on it, showed a significant reduction in lifespan when fed 

a DR diet but not a fully-fed diet, without any clear effect on fecundity or feeding 

behaviour (Libert et al. 2007). This led to the suggestion that certain sensory 

receptors may be involved in mediating lifespan in Drosophila, as previously 

observed in C.elegans, via mutations in the sensory cilia or sensory-signal 

transduction, which both significantly extend lifespan (Apfeld and Kenyon 1999). 

Libert et al. targeted one of the 62 proposed odorant receptors in Drosophila, Or83b, 

which is highly conserved between insect species and ubiquitously expressed in 

olfactory neurons (Neuhaus et al. 2005). Previous work has demonstrated that loss of 
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function of Or83b disrupted several behavioural and physiological responses to 

odours (Larsson et al. 2004). Libert et al. showed that flies either heterozygous or 

homozygous for Or83b2 exhibit extended lifespan in both sexes. However, the 

magnitude of lifespan extension was greatest in homozygous females, again with no 

noticeable effects on fecundity or feeding. Furthermore, lifespan of Or83b2 mutants 

could be extended on a range of food concentrations, indicating that Or83b is not 

required for lifespan extension by DR (Libert et al. 2007).  

 

1.5.5.7 Phenotypes of DR  

In addition to extending lifespan and reducing fecundity, DR causes several other 

physiological changes and induces some of the stress resistance phenotypes 

previously observed in rodents. One of the most prominent stress resistant 

phenotypes is increased resistance to starvation in dietary-restricted flies (Bradley 

and Simmons 1997; Burger et al. 2007). However, the starvation resistance of DR 

flies was only observed early in life, whilst later in life DR induced starvation 

sensitivity (Burger et al. 2007). Flies, similarly to mammals, have the ability to store 

excess nutrients predominantly in the form of glycogen and triglycerides (TAG). 

Interestingly, fat storage (TAG) was shown to be inversely related with increased 

yeast concentration, but positively correlated with increased sucrose concentration in 

the diet (Bradley and Simmons 1997; Skorupa et al. 2008). In contrast, protein 

storage is increased as a result of increased dietary yeast but not sucrose (Skorupa et 

al. 2008). Activity levels (fly movements) have also been shown to vary with 

nutrition levels, whereby reduced activity appears to correlate with increased food 

concentration (Bross et al. 2005).  
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Microarray analysis of wild-type flies has revealed a correlation between increased 

age and elevated expression of numerous innate immunity-related transcripts, which 

become delayed in dietary restricted flies (Pletcher et al. 2002). However, despite 

this finding, the same group reported no increase in pathogenic resistance in dietary-

restricted flies; but enhanced pathogenic resistance was detected in long-lived chico 

mutants (Libert et al. 2008). In contrast, another study has reported that DR causes 

some positive effects on immunity later in life but not early in life when flies are 

challenged with different strains of bacteria (Burger et al. 2007).  

 

As is the case in rodents (Masoro et al. 1982; Selman et al. 2005) and worms 

(Houthoofd et al. 2002a; Houthoofd et al. 2002b), DR also has no effect on oxygen 

consumption and heat production, suggesting that DR does not extend lifespan by 

lowering metabolic rate (Hulbert et al. 2004). Furthermore, DR flies do not exhibit 

increased resistance to oxidative stress, providing evidence against the oxidative 

damage theory of ageing (Burger et al. 2007). 

 

1.5.6 A role for protein synthesis in ageing 

Over the last 20 years, research on model organisms has demonstrated that mutations 

in certain components of the insulin /insulin-like signalling (IIS) and target of 

rapamycin (TOR) pathways can extend the lifespan of yeast, worms, flies and mice 

(Partridge et al. 2005a; Mair and Dillin 2008). These pathways are also involved in a 

whole range of biological processes including growth, reproduction, metabolism and 

stress response. Protein synthesis is a regulated cellular process that links nutrients in 

the environment to growth and development of an organism. Protein synthesis is 

essential for all biological processes and it is unsurprising that it plays an important 

role in ageing. Activity of key mRNA transcription factors has been shown to 
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decrease with age, resulting in a reduction in total protein synthesis (Makrides 1983). 

Until recently, few studies have tested a direct role for protein synthesis in ageing 

because protein synthesis is essential for growth and development, hence 

manipulating general mRNA translation is likely to have widespread effects which 

are difficult to dissociate from the effects on ageing.  

 

Three recent reports in C.elegans have highlighted a specific role for protein 

synthesis in ageing, by demonstrating that inhibition of different genes encoding 

translation-initiation factors can extend lifespan (Hansen et al. 2007; Pan et al. 2007; 

Syntichaki et al. 2007a). These include depletion or inhibition of the eukaryotic 

mRNA initiation factor 4E (eIF4E), ifg-1 and rsks-1 the worm homologues of eIF4G 

and S6 kinase respectively. Interestingly, of the five C.elegans isoforms of eIF4E, 

which are predominantly expressed in germline, only depletion of IFE-2 (which is 

expressed in the somatic cells) reduced protein synthesis, extended lifespan and 

protected against oxidative damage (Syntichaki et al. 2007a). These data suggest that 

reduction of protein synthesis specifically in the soma is required for lifespan 

extension.  Furthermore, the IFE-2 mutants exhibited an additive increase in lifespan 

when crossed with long-lived eat-2 mutants (which induces DR), indicating that eat-

2 and ife-2 mutants extend lifespan by different mechanisms. Similarly, despite 

reduced TOR activity causing a general decrease in protein synthesis and up-

regulation of autophagy, long-lived TOR mutants also showed a further increase in 

lifespan when crossed with ife-2 mutants. In addition to work in C.elegans, the 

lifespan of yeast cells can be extended following treatment with the antibiotic 

erythromycin, which decreases protein synthesis (Holbrook and Menninger 2002). 
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1.5.6.1 Methionine restriction extends lifespan and reduces oxidative 

damage in rodents 

In addition to lifespan extension by whole food DR, restriction of the protein portion 

of the diet has been shown to extend median and maximum lifespan of rats (Yu et al. 

1985). Furthermore, restriction of the essential amino acid methionine can extend the 

lifespan of both mice and rats and lead to other characteristic phenotypes of whole 

food DR including lowered body mass, glucose, insulin and IGF-1 levels and a 

reduction in some ageing-related pathologies including some cancers and cataracts 

(Orentreich et al. 1993; Richie et al. 1994; Zimmerman et al. 2003; Miller et al. 

2005; Komninou et al. 2006).  

 

Methionine is one of two sulphur containing amino acids, the other being cysteine, 

which is a non-essential amino acid. Methionine constitutes 2% of amino acid 

residues in proteins (McCaldon and Argos 1988) and is the start codon for all 

protein-encoding mRNA sequences. It is readily converted to methionine sulfoxide 

by physiological oxidants (Vogt 1995), which is thought to interfere with the 

biological activity of proteins. However, methionine sulfoxide can be converted back 

to methionine by the enzyme methionine sulfoxide reductase (Brot and Weissbach 

2000). Furthermore, reduced levels of methionine sulfoxide reductase are associated 

with reduced lifespan in rats (Moskovitz et al. 2001), whilst over-expression of this 

enzyme in the nervous system extends Drosophila lifespan and increases resistance 

to oxidative damage (Ruan et al. 2002), thus highlighting a potentially important role 

for methionine in the ageing process.   

 

Inadequate dietary methionine slows growth and development in young mammals 

(Galiani et al. 2006). The importance of methionine in the diet early in life is 
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supported by the finding that methionine restriction in the first year of life caused a 

large number of deaths in mice (Miller et al. 2005). However, excessive levels of 

methionine have been shown to be extremely toxic in both young and old mammals, 

more so than any other amino acid (Harper et al. 1970). For example, doubling the 

concentration of methionine causes growth retardation, anaemia, vascular damage 

and kidney and liver damage (see Troen et al. 2007). Furthermore, some sulphur 

containing intermediates of methionine metabolism e.g. homocysteine are reactive 

and potentially toxic.  

 

A few studies have recently set out to determine the mechanism of lifespan extension 

by methionine restriction. One of the most attractive candidates is through a 

reduction in oxidative damage and a suppression of ROS production. Reducing the 

concentration of protein and not fat or carbohydrates decreased ROS production and 

oxidative damage, which was attributed to reduced methionine intake (Ayala et al. 

2007). Long-term dietary restriction of rats reportedly decreased oxidation of protein 

and DNA damage (Lopez-Torres et al. 2002), whilst methionine restriction reduced 

mitochondrial ROS production as well as oxidative damage to mitochondrial DNA 

and caused a marked reduction protein oxidation similarly to whole food DR (Sanz et 

al. 2006). Moreover, methionine restriction caused an elevation in antioxidant 

defences, for example an increase in glutathione levels, and increased the efficiency 

of mitochondrial respiration (Richie et al. 1994; Zimmerman et al. 2003; Pamplona 

and Barja 2006).  
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1.5.6.2 Why might reduced protein synthesis extend lifespan?  

Inhibition of genes encoding translation initiation factors can extend the lifespan and 

reduced oxidative damage in the nematode worm C.elegans. Likewise, methionine 

restriction has also been shown to decrease oxidative damage, increase antioxidant 

defences and increase lifespan in rats and mice. Due to methionine encoding the start 

codon for all mRNA protein sequences, these results may suggest that extension of 

lifespan in by methionine restriction may be partially explained by reduction in 

protein synthesis, similarly to the effects of inhibiting translation machinery (Hipkiss 

2007; Hipkiss 2008).  Messenger RNA translation is the most error prone step in 

gene expression, with approximately 3 in 10,000 codons being mis-translated 

(Kirkwood et al. 1984), resulting in the production of erroneous proteins which are 

normally rapidly degraded by intracellular proteases. One suggestion is that severe 

methionine restriction leads to a reduction in mRNA translation initiation, as 

observed with the C.elegans mutants with depleted eIF4E, and subsequently a 

decrease in overall protein synthesis. A reduction in protein synthesis is thus likely to 

reduce the amount of erroneously produced proteins, potentially freeing-up more 

proteases and chaperones to break down polypeptides that have been modified by 

ROS and glycosylation (Hipkiss 2008).  

 

Another explanation for why a reduction in protein synthesis may extend lifespan is 

because mRNA translation is one of the most energy consuming cellular processes 

(Proud 2002). Hence reducing protein synthesis will inevitably reduce energy 

expenditure and will also lower the production of toxic metabolic derivatives 

(Syntichaki et al. 2007b). The excess energy conserved by reducing protein synthesis 

could then be allocated towards somatic maintenance and repair, contributing to 

extended longevity (Kirkwood 1977; Kirkwood and Holliday 1979). 
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1.6 Thesis outline 

Dietary restriction (DR) has been shown to robustly extend lifespan in a diverse 

range of organisms, from yeast to mammals (Mair and Dillin 2008). However, 

despite over 70 years of research, the mechanisms underlying lifespan extension by 

DR in any organism remain to be fully elucidated. Despite the majority of DR studies 

having been carried out in rodents, invertebrate model organisms including yeast, 

flies and worms have recently been adopted to try and uncover the genetics of DR. 

An important recent discovery has been that the mechanisms that influence lifespan 

are conserved during evolution over great evolutionary distances between yeast, 

multicellular invertebrates and mammals (Partridge and Gems 2002; Tatar et al. 

2003; McElwee et al. 2007). Using Drosophila melanogaster as a model organism, 

this thesis sets out to highlight the need for optimisation of DR protocols for studies 

using Drosophila. Further, it highlights the roles of individual nutrients in the diet in 

mediating the effects of DR as well as the potential mechanisms involved.   

 

1.6.1 Chapter 3: Factors affecting the responses to dietary 
restriction in Drosophila 

In all model organisms, the beneficial effects on lifespan can be achieved through 

multiple methods of applying DR. However, subtle differences in specific nutrients 

can lead to discrepancies between potential candidate pathways that mediate the 

effects of DR, pointing to a need for laboratories to work with a common DR 

protocol particularly when working with the same model organism. In Drosophila, 

DR is typically implemented by the dilution of sucrose and yeast in an agar-based 

gel. However, different laboratories use different sources of yeast and different 

concentrations of ingredients, which can potentially result in conflicting results. As  
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part of a larger study of optimising dietary restriction and lifespan protocols in 

Drosophila (Bass et al. 2007a), chapter 3 sets out to investigate different factors 

affecting the responses of lifespan and fecundity during Drosophila DR. This 

includes testing whether intermittent feeding can extend Drosophila lifespan, as 

observed in rodents (Goodrick et al. 1982). In addition, the responses of a range of 

commonly used wild-type strains to DR will be investigated, with particular 

emphasis on the possible role of the intracellular bacterium Wolbachia in mediating 

the effects of DR.  

1.6.2 Chapter 4: Identifying specific nutrients mediating the 

responses of lifespan and fecundity in Drosophila dietary 
restriction 

Lifespan extension by DR is commonly expected to trade-off with a reduction in 

fecundity / reproduction (Partridge et al. 2005a), prompting the suggestion that DR is 

an evolved response to food shortages in nature (Williams 1966; Kirkwood and 

Holliday 1979; van Noordwijk and de Jong 1986; Holliday 1989; De Jong 1993). 

This prediction assumes that both reproduction and somatic maintenance are in 

competition for at least some of the same limiting nutrients (Charlesworth 1980), and 

thus DR induces a metabolic shift of resources away from reproduction and towards 

somatic maintenance and repair. In Drosophila, dilution of the yeast component of 

the diet alone is sufficient to account for almost the entire lifespan extension 

observed when simultaneously diluting yeast and sucrose, suggesting that specific 

nutrients as opposed to calories may be mediating the responses to DR in flies (Mair 

et al. 2005). The work presented in Chapter 4 investigates the role of different 

nutritional groups present in dietary yeast, using an optimised DR protocol (Bass et 

al. 2007a), to determine whether the increased fecundity and reduced lifespan with 

full feeding are regulated by the same or different nutrients.  
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1.6.3 Chapter 5: Uncoupling the responses of lifespan and 
fecundity in Drosophila dietary restriction 

Despite the classical view in rodents that DR extends lifespan as a result of reduced 

caloric intake independent of nutrients, several studies have reported lifespan 

extension of a similar magnitude to whole food DR when either the protein portion 

of the diet (Yu et al. 1985) or specific essential amino acids such as methionine are 

restricted (Orentreich et al. 1993; Richie et al. 1994; Zimmerman et al. 2003; Miller 

et al. 2005). The data shown in Chapter 5 follow on from the findings presented in 

Chapter 4 and discusses whether specific amino acids are also important in 

regulating Drosophila lifespan. Furthermore, this chapter investigates two candidate 

pathways, the IIS and TOR pathways, which may potentially mediate the effects of 

DR in flies.  
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2.1 Drosophila melanogaster stocks 

2.1.1 Dahomey wild-type flies 

The majority of experiments were performed using the wild-type, outbred strain 

Dahomey unless otherwise stated. Flies were originally collected in 1970 from 

Dahomey (now Benin) and have since been maintained in stock cages at 25°C at 

65% humidity under a 12 hour light / 12 hour dark cycle with overlapping 

generations. Cages contained around 12 bottles of the standard sugar yeast food 

medium (section 2.2.1), which were replaced periodically. This method of stock 

culturing ensures that adult survival rates are comparable to those of stocks that had 

been freshly collected from the wild (Sgro and Partridge 2001).  

 

2.1.2 Other wild-type stocks 

Other wild-type stocks included: white Dahomey (wDahomey), Oregon-R, Canton-S, 

W1118 and yellow-white (yw). wDahomey were produced by backcrossing the white 

gene from W1118 into the Dahomey background, and these stocks were maintained 

in population cages as described for Dahomey (section 2.1.1). All other stocks were 

maintained at 18°C in glass vials or bottles containing the standard sugar yeast 

medium (section 2.2.1) or a cornmeal-based diet (section 2.2.2) and were transferred 

to fresh medium every generation.  

 

2.1.3 Insulin receptor dominant-negative flies (dUAS-InRDN) 

The dUAS-InRDN transgene has an amino acid substitution in the kinase domain 

(arginine 1409 replaced by alanine, R1409A) of the insulin receptor (InR). This 

results in dominant negative behaviour of the protein (Wu et al. 2005). Expression of 
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dUAS-InRDN was driven by the ubiquitous and constitutive driver 

daughterlessGAL4 (daGAL4). Both the dUAS-InRDN and daughterlessGAL4 lines 

were obtained from the Bloomington stock centre9 and were extensively backcrossed 

into wDahomey background10. Flies were maintained in vials containing a cornmeal-

based diet at 25°C (section 2.2.2) and transferred to fresh medium approximately 

every two weeks.  

 

2.1.4 S6 kinase dominant negative flies (dUAS-S6KKQ) 

The dUAS-S6K dominant-negative (dUAS-S6KKQ) line was a kind gift from Mary 

Stewart, North Dakota State University, USA. The dUAS-S6KKQ flies were 

generated by mutating a conserved lysine (K100) in the ATP binding site of S6K1 and 

replacing it with glutamine (Q) (Barcelo and Stewart 2002). Expression of dUAS-

S6KKQ was driven by the ubiquitous daughterlessGAL4 driver (daGAL4). Both lines 

were backcrossed into wDahomey background11. Flies were maintained in vials 

containing a cornmeal-based diet at 25°C (section 2.2.2) and transferred to fresh 

medium approximately every two weeks.  

 

2.2 Drosophila food media 

2.2.1 Sugar yeast medium (SY) 

Standard SY medium (Ashburner 1989) comprised 967ml of distilled water, 100g 

autolysed Brewer’s yeast powder, 50g sucrose, 15g agar , 30ml nipagin (100 g/L 

methyl 4-hydroxybenzoate in 95% ethanol), 3ml propionic acid  per litre of prepared 
                                                
9 Bloomington stock centre, http://flystocks.bio.indiana.edu/ 
10 daGAL4 and dUAS-InRDN lines were backcrossed at least five times prior to the start of lifespan 
experiments. Backcrossing was performed by T. Ikeya 
11 dUAS-S6KKQ and daGAL4 lines were backcrossed by C. Slack for at least five times prior to the 
start of lifespan experiments. 
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food. Nipagin and propionic acid were added as preservatives and anti-fungal 

reagents.  

 

For preparation of the medium, 700ml of distilled water was poured into a saucepan 

in addition to the agar. The agar was brought to the boil at which point the yeast and 

sucrose were added and the mixture was stirred thoroughly. The medium was left to 

cool and the remaining 267ml of water were added to the food. The medium was 

allowed to cool to 60°C before the nipagin and propionic acid were added. The 

medium was dispensed into vials or bottles in aliquots of 7ml or 60ml respectively 

using a liquid dispenser and left to air overnight before being plugged with cotton 

wool and stored at 4°C. Fresh food was prepared approximately every three weeks.   

 

2.2.2 Cornmeal-based medium (ASG) 

All stocks were maintained on an ASG medium consisting of yeast, sugar and maize, 

supplemented with some live yeast granules. This medium has a softer texture than 

SY medium, which can aid development of mutant stocks that show high larval 

lethality. The ASG medium was prepared by combining 10g agar, 85g sucrose, 20g 

autolysed yeast, 60g maize and 1000ml distilled water in a saucepan and bringing the 

mixture to the boil, stirring regularly. The ingredients were allowed to simmer for 

five minutes and were then returned to the boil, before being taken off the heat. The 

medium was allowed to cool to 60°C at which point 25ml nipagin (100 g/L) was 

added. Food was dispensed into glass vials in 7ml aliquots and left to air overnight 

before each vial was plugged with cotton wool prior to storing at 4oC.  
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2.2.3 Grape juice medium 

Grape juice medium consisted of 500ml distilled water, 25g agar, 300ml grape juice, 

50ml extra water and 21ml nipagin (100 g/L). Water and agar were brought to the 

boil, at which point the grape juice was added and the mixture was returned to the 

boil. The medium was then taken off the heat and allowed to cool to 60°C, at which 

point the extra water was added. The nipagin was stirred in when the medium had 

cooled to below 60°C and the medium was poured into large plastic Petri dishes to 

set. This volume was sufficient to fill around 18-20 large dishes.    

 

2.2.4 Starvation medium  

To test the response of flies to starvation, a 1% agar medium was prepared (Clancy et 

al. 2001; Broughton et al. 2005). This contained 10g agar and 1000ml of distilled 

water. No nipagin or propionic acid was added. 1% agar medium was chosen, as 

opposed to an empty vial, because it provides flies with a water source and therefore 

avoids the problem of desiccation. Due to the absence of antifungal agents, fresh 

starvation medium was prepared every week.  
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Ingredient     Supplier 

 

Brewer’s yeast     MP Biomedicals, Solon, OH (USA) 

Sucrose     Tate and Lyle sugars, London, UK 

Agar      Sigma, Dorset, UK 

Nipagin     Clariant UK Ltd., Pontypridd, UK 

Ethanol      Sigma, Dorset, UK 

Propionic acid     Sigma, Dorset, UK 

Cornmeal     B.T.P Drewitt, London, UK 

Live yeast granules    DCL Yeast Ltd, Alloa, UK 

Concentrated Grape juice   Solvino Ltd. UK 

Baker’s yeast     B.T.P Drewitt, London, UK 

All nutrient add-back reagents (Table 4.1) Sigma, Dorset, UK 

 
Table 2.1: Supplier names for ingredients used to make different types of food media 

throughout this thesis. 

 

2.3 Fly husbandry and culturing 

2.3.1 Separating males and females 

The sex of flies can be easily distinguished, whilst anaesthetised with CO2, under a 

light microscope. Males are typically much smaller than females and possess tarsal 

sex combs on their front pair of legs, which are used during courting. Males also 

possess a much rounder abdomen that has a darker pigmentation on the posterior 

portion of the dorsal side (Greenspan 2004). Sex determination can be more difficult 

within the first few hours of emerging as adults, and the presence of sex combs in 

males is perhaps the most reliable marker of successfully sexing Drosophila 

(Greenspan 2004). Males and females were carefully sorted using a very fine 

paintbrush do avoid causing any damage to the flies. 
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2.3.2 Virgin collection  

Female Drosophila will not mate within eight hours of emerging as adults at 25°C 

(Greenspan 2004). Therefore, to ensure only virgin flies were collected, all adult flies 

were removed from the bottles or vials and any emerging flies within a six hour 

window were collected as virgins. Female virgins were separated from males during 

this time frame using ice anaesthesia and a very fine paintbrush. CO2 anaesthesia 

should be avoided where possible because flies are very sensitive to gas within the 

first few hours of emergence. Excess CO2 exposure at a young age can cause bloated 

abdomens, resulting in flies dying within a few days. Virgin females were 

maintained in glass vials containing standard SY medium (refer to section 2.2.1) at a 

density of 20 females per vial for 48 hours, to ensure that no larvae appeared on the 

medium. The appearance of larvae would indicate that one or more of the females 

had mated and the vial of flies should be discarded. To further identify that flies had 

not mated, virgins can be distinguished under a light microscope by their pale 

complexion and a dark spot on their abdomen from their last feed as L3 larvae 

(Greenspan 2004). Freshly eclosed virgins also develop shrivelled wings, which 

expand out within a couple of hours. 

 

2.3.3 Standard larval density 

2.3.3.1 Preparing the larvae 

Maintaining standard density in larvae is extremely important particularly when 

studying fitness-related traits such as longevity (Zwaan et al. 1991; Priest et al. 

2002). Throughout this thesis, all experiments were performed with flies that had 

been cultured at standard density for two generations (parental and experimental). 

The most accurate method of standardising density is to pick 1st instar larvae into 
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culture vials (section 2.3.3.2); however, this can be extremely time consuming 

especially when experiments require large numbers of flies to be reared. An 

alternative method for achieving constant larval density was described by Clancy and 

Kennington and was used for almost all experiments described in this thesis (Clancy 

and Kennington 2001). Parental flies in population cages were allowed to lay eggs on 

Petri dishes containing grape juice medium (refer to section 2.2.3) supplemented 

with a globule of live yeast paste for a maximum of 22 hours, but ideally for a four to 

eight hour period during the day. The collection of eggs over a shorter time frame 

ensured that the majority of flies emerged at the same time, which is an important 

aspect to consider when collecting virgins.   

 

After a sufficient number of eggs were laid, the yeast paste was removed from the 

grape medium and eggs were washed off with phosphate buffer saline (PBS) into a 

50ml Falcon tube with the aid of a soft brush to carefully dislodge the eggs from the 

surface of the medium. Eggs were allowed to settle for a few minutes and the excess 

supernatant was poured away. If any yeast paste had dissolved in the PBS a series of 

washes would be performed until the solution was clear. Finally, 18µL of eggs were 

aspirated from the solution using a 200µL Gilson pipette with a cut pipette tip to 

allow the maximum number of eggs to be taken up. Eggs were squirted into 200ml 

bottles containing 70ml standard SY medium, resulting in a standard density of 

approximately 300-350 eggs per bottle. 

 

2.3.3.2 Picking individual larvae 

The standard larval density technique is ideal for culturing large numbers of flies, 

particularly wild type flies. However, from previous experience in the laboratory, 

some of the dwarf mutants, for example the insulin receptor substrate protein mutant 
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chico, do not have optimal viability when using this culturing technique. To increase 

viability of such mutants, 1st instar larvae (L1) can be individually picked one day 

after eggs have been laid on grape plates and transferred carefully onto fresh 1.0 SY 

media at a density of 40 larvae per vial until adults emerge.  

 

2.4 Experimental procedures 

2.4.1 Once-mated females 

All experiments throughout this thesis (unless otherwise stated) were conducted on 

females that had been allowed to mate with males for a period of 48 hours after 

eclosion, ensuring that all females had mated at least once. This was achieved by 

transferring newly emerged flies to bottles containing fresh SY medium and allowing 

them to mate, before discarding the males. These flies will be referred to as once-

mated flies from hereon.  

 

2.4.2 Lifespan assays 

Experimental flies were reared at standard density (Clancy and Kennington 2001); 

section 2.3.3) in glass bottles containing 70ml of the standard SY medium. Emerging 

flies were transferred without CO2 anaesthesia into bottles containing fresh medium 

and were allowed to mate for a period of 48 hours. Females were separated from 

males under light CO2 anaesthesia and placed into glass vials containing 4ml of food 

medium at a density of 10 females per vial. All lifespan experiments were performed 

with 100 flies per genotype or treatment, unless stated otherwise. Flies were 

transferred to fresh medium at least three times per week and the number of deaths 

was recorded on these days. Deaths were recorded when flies were motionless and 
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had their legs curled and their bodies shrivelled. A fly was censored from the 

experiment in the event it had escaped from a vial, had been accidentally damaged 

during the transfer to fresh media or was stuck to the food despite clearly moving. 

 

2.4.3 Fecundity assays 

Experimental flies were maintained in their vials for between 18-24 hours and then 

transferred into fresh vials. The number of eggs in the vacated vials were counted by 

hand under a light microscope and calculated as the number of eggs laid per female 

over a 24 hour period. Deaths and censors occurring throughout the duration of the 

experiments were taken into account when calculating the mean number of eggs laid 

per female during this time frame. Fecundity measurements were performed at 

regular intervals throughout life until egg-laying reached a minimum later in life. The 

data represents an index of lifetime fecundity, which is the sum of eggs laid by an 

average female during 24 hours on the days the assay was performed. Assays were 

carried out during the period of heaviest egg-laying, which provides an indication of 

relative lifetime fecundity (Chapman and Partridge 1996).  

 

2.4.4 Feeding assays  

Once-mated female flies were randomly assigned to different dietary treatments at a 

density of five flies per vial (10 vials per treatment) and maintained at 25°C 

throughout life. To ensure steady state observations of feeding , flies were transferred 

to fresh food the evening before the assay and vials were then coded by another lab 

member and placed in a randomised order in rows on viewing racks at 25°C 

overnight to avoid any bias (Wong et al. 2008). Observations were carried out the 

next day, starting one hour after lights-on for a period of 90 minutes. In turn, each 
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vial was observed for no longer than one second during which the number of flies 

feeding was noted. Feeding behaviour was scored when a fly had its proboscis 

extended and touching the food surface while performing a bobbing motion. Once all 

vials in the experiment had been scored in this way, a second round of observations 

was carried out in the same order as the first. Repeated observations were made 

every five minutes, allowing for 19-20 observations to be made for each vial during 

the 90 minute period. At the end of the assay, the vial labels were decoded and the 

data was presented as the proportion of flies feeding on a specific diet on a given day 

This was calculated as the sum of scored feeding events divided by total number of 

feeding opportunities, where 

Total feeding opportunities = number of flies in vial x number of vials in the group. 

 

2.4.4.1 Calibration of feeding behaviour 

In order to determine whether the feeding observations correspond to actual food 

consumption, the feeding behaviour of flies on different diets had to be calibrated. 

This was achieved by transferring seven-day-old flies to their respective diets, 

containing 2.5% blue dye (FD&C Blue No.1 (Wong et al. 2008)) at a density of five 

flies per vial and 10 vials per treatment. Proboscis extension on blue-labelled food 

was examined over a 30 minute period, at which point the amount of dye 

accumulated in the fly reflects feeding rate alone. Following a longer time frame of 

feeding, blue dye is already excreted in the faeces (Wong et al. 2008). After 30 

minutes, flies were immediately transferred without CO2 to Eppendorf tubes and 

frozen in liquid nitrogen. Samples were then homogenised in 1ml of distilled water 

using a pestle before being filtered through a 0.22µm Millipore filter in order to 

remove any debris and lipids. Absorbance of the liquid sample was measured using a 
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Hitachi U-2001 spectrophotometer (Lambda Advanced Technology Ltd., UK; 

629nm). Readings for flies in all 10 vials on each treatment were taken and the 

amount of food ingested was calculated from a standard curve. Background 

absorbance was corrected for by measuring absorbance of extracts of control flies not 

exposed to blue-labelled food.   

 

2.4.5 Removal of Wolbachia from wild-type populations 

In chapters 3 and 5, the effects of the intracellular bacteria Wolbachia in response to 

different food treatments are examined. Wolbachia infection was removed by 

treating wild-type populations for three generations with food medium containing 

25µg/ml of the antibiotic tetracycline. Experimental flies were obtained more than 10 

generations after tetracycline treatment to allow sufficient time to recover from the 

treatment.  

 

2.4.6 Polymerase chain reaction (PCR) 

Polymerase chain reaction (PCR) is an invaluable molecular technique in molecular 

biology which allows to the amplification of specific regions of DNA. PCR was used 

to detect the presence or absence of Wolbachia in Drosophila populations by using 

primers to detect and amplify the gene for Wolbachia surface protein (wsp) in 

Drosophila (Braig et al. 1998; Zhou et al. 1998; Toivonen et al. 2007).  

 

2.4.6.1 DNA extraction 

Genomic DNA was isolated from single flies according to a standard protocol (Gloor 

and Engels 1992). Flies were anaesthetised under light CO2 and placed individually 

into 0.5ml Eppendorf tubes. 50µl of “squishing buffer” (10mM Tris-HCL (pH 8.3), 
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1mM EDTA, 25mM NACL, 200µg/ml proteinase K) was drawn up into a pipette tip 

and the fly was squashed thoroughly, without expelling the liquid. After squashing 

the fly, the squishing buffer was expelled from the pipette tip. The resulting mixture 

was incubated in a 37°C water bath for 30 minutes, followed by an incubation of 90 

seconds at 95°C to inactivate the proteinase K. The extracted DNA was stored at -

20°C until used in a PCR reaction. 

 

2.4.6.2 PCR reaction 

The PCR reaction mixture consisted of forward and reverse primers, Milli Q water 

(MilliporeTM), DNA and a PCR mastermix (2.5x, Eppendorf®). The Eppendorf® 

mastermix contains Taq DNA polymerase (62.5 U/ml), 125mM KCL, 75mM Tris-

HCL (pH 8.3), 3.75mM Mg(OAc)2, 0.25% lgepal® –CA630, 500µM of each dNTP 

and stabilisers. The primers used to amplify the wsp gene were wsp81F (5'TGG TCC 

AAT AAG TGA TGA AGA AAC) and wsp691R ((5' AAA AAT TAA ACG CTA 

CTC CA)  as previously described (Braig et al. 1998; Zhou et al. 1998). Wsp primers 

were a kind gift from Greg Hurst.  

 

A single PCR reaction contained 1µL forward primer (20µM), 1µL reverse primer 

(20µM), 11µL MilliQ water, 10µL Eppendorf® mastermix and 1µL DNA extract. 

When multiple reactions were performed, a large volume of PCR stock including all 

components but the different DNA extracts was prepared. Subsequently 24µL of the 

PCR mix were added to 1 µL of the respective DNA extracts. In all PCR experiments 

a negative control lacking any DNA was included. The PCR tubes were gently 

vortexed and centrifuged briefly before being placed into the PCR machine (Gene 

Amp PCR System 2700, Applied Biosystems).  
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The following cycling conditions were used for the PCR reaction: 

Initial melting step:     95oC for 15 minutes          (1 cycle) 

 

Melting step:   95oC for 30 seconds 

Annealing step:      55oC for 30 seconds            (30 cycles) 

Elongation step:  72oC for 2 minutes 

 

Final elongation step: 72oC for 7 minutes              (1 cycle) 

 

Completed PCR reactions were stored at -20°C. 

 

2.4.6.3 Agarose gel electrophoresis 

A 1% agarose gel was prepared by dissolving 1g agarose in 99ml of 1x TAE buffer 

and heating the mixture. Once the agarose (Sigma, UK) had fully dissolved and the 

solution had cooled slightly, 1µL of ethidium bromide (Sigma, UK) was added. The 

gel was poured into a prepared gel tank and an appropriate comb was inserted. 

Bubbles on the surface of the gel were removed using a pipette tip. The gel was 

allowed to set for between 30 minutes or one hour depending on the size. 

Once the gel had set, the comb was removed and the gel was covered in 1x TAE 

buffer. 3µL of O’GeneRuler™ 100bp DNA ladder (Fermantas) were used as a 

molecular weight marker. The PCR samples, loading dye (6x loading dye: 60% 

glycerol (w/v), 0.05% bromophenol blue (w/v)) and ladders were kept on ice during 

this time. 2µL aliquots of loading dye were mixed with 10µL of each PCR sample. 

10µL of the mixture were loaded onto the gel. Electrophoresis was carried out at 80-
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100V for approximately 40 minutes, depending on the size of the gel. Following 

electrophoresis, DNA bands were visualised using a UV transilluminator (Syngene) 

and the Gene Snap imaging program. Images were printed using a Sony Digital 

Graphic Printer (UP-D895). 

 

2.5 Statistical analysis 

2.5.1 Median lifespan 

The median lifespan refers to the age of the cohort when the population has reached 

50% of its original size. Gerontologists tend to use median lifespan as opposed to 

mean because it is less sensitive to highly skewed distributions.  

 

2.5.2 Maximum lifespan 

The term maximum lifespan refers to the 95th percentile of the surviving population. 

This definition of maximum lifespan is used as opposed to the longest lived 

individual because the latter is highly dependent on the sample size (Masoro 2005). 

Furthermore, the longest-lived individual could be an anomalous result that does not 

reflect the longevity of the population as a whole.  

 

2.5.3 Survivorship analysis 

Survivorship (Lx) refers to the probability at birth of an individual surviving to a 

given age (x). Lx can be simply calculated by dividing the number of individuals 

alive at time x (Nx) by the number of individuals that were alive at the start of the 

experiment (No). However, when individuals are censored from a population, Lx 

should be calculated using the following formula:     
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   x 

          Lx = ∏ px 
    o 

where px is the probability of surviving from age tx-1 to age tx   (=1 – qx) 

where qx = (number of deaths recorded between tx-1 and tx)/Nx-1 

 

Statistical differences in survivorship between two groups were analysed using the 

non-parametric Log-rank test (Mantel-Cox test) (Mantel 1966; Peto and Peto 1972).   

 

2.5.4 Fecundity analysis 

The non-parametric Wilcoxon test was used to analyse differences in egg-laying 

between genotypes or treatments. This non-parametric test was used because egg-

laying data is not normally distributed.  

 

2.5.5 Feeding analysis  

Feeding behaviour was analysed using a generalised linear model with quasibinomial 

error distribution to compare the range of values for the proportion of flies feeding in 

each vial during the assay on a given day. Differences in the uptake of food (blue 

dye) were analysed using the non-parametric Wilcoxon test.  

 

2.5.6 Statistics software 

All statistical analyses on survivorship and fecundity data were performed using JMP 

5.0 JMP (version 5.1) software (SAS institute, Cary, NC). Feeding data were 

analysed using R, v2.2.1 (Gentleman and Ihaka 2005). 
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3.1 Introduction 

Lifespan extension by some form of food restriction has been known about for over 

70 years; however the mechanisms which regulate this process in any organism 

remain unclear. During the last 10 years, research has focused in particular on using 

model organisms such as yeast, worms, flies and mice to try and understand the 

genetic and molecular mechanisms leading to lifespan extension by dietary 

restriction (DR). The IIS pathway, TOR pathway, SIR2, PHA4 and AMPK are all 

candidates that have been reported to mediate lifespan extension by DR (section 1.5). 

However, several reports have shown conflicting evidence, even within the same 

species. 

 

One of the major problems when determining whether DR acts through evolutionary 

conserved pathways is the variability in how DR is defined and applied. For 

example, in rodents, DR is typically achieved through either a reduction in the 

quantity of chow diet fed to the calorically-restricted cohort (usually between 60-

70% of the ad libitum cohort) (Merry and Holehan 1985; Yu et al. 1985; Weindruch 

and Walford 1988; Masternak et al. 2005; Bonkowski et al. 2006) or through an 

intermittent feeding regimen, usually implemented through every other day feeding 

(EOD) of the calorically-restricted group (Goodrick et al. 1982; Anson et al. 2005). 

Both methods have been shown to extend the medium and maximum lifespan of 

rodents (Piper and Bartke 2008).   

 

In the nematode worm C. elegans, methods for applying DR are more diverse. There 

are thought to be up to 12 different methods of applying DR, adopted by various 

laboratories (W. Mair personal communication). DR in C. elegans is typically 
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achieved through serial dilution of a bacterial source, usually E.coli (Klass 1977; 

Houthoofd et al. 2003). However, other methods that extend lifespan include; 

complete removal of bacterial food (Kaeberlein et al. 2006b; Lee et al. 2006), 

altering the strain of bacteria in the worm diet (Garsin et al. 2001; Garsin et al. 

2003), using a synthetic axenic medium (Vanfleteren et al. 1998; Vanfleteren and 

Braeckman 1999; Walker et al. 2005), or a genetic mimetic of DR induced by a 

mutation in the eat-2 gene, which causes a defect in pharyngeal pumping (Lakowski 

and Hekimi 1998). In worms, strong evidence suggests that DR extends lifespan 

independently of the IIS pathway, because daf-2 mutants fed a DR regimen showed a 

further extension of lifespan than mutants on a control diet (Lakowski and Hekimi 

1998; Houthoofd et al. 2003; Hansen et al. 2005b). Additionally, DR has been shown 

to extend lifespan independently of the FOXO transcription factor DAF-16 

(Houthoofd et al. 2003); however, DAF-16 was required for lifespan extension when 

DR was induced using a slightly different bacterial dilution protocol (Greer et al. 

2007). The conflicting results of Greer et al. point to the need for a standardised 

protocol when using the same model organism for dietary restriction studies.  

 

Drosophila DR is typically implemented by reducing all the ingredients present in a 

gelled medium containing predominantly sucrose and yeast, occasionally 

supplemented with cornmeal (Kapahi et al. 2004a), with the food always in excess. 

Dilution of these nutrients to a DR level causes an increase in median and maximum 

lifespan coupled with a reduction in daily and lifetime reproduction in females 

(Chapman and Partridge 1996). However, it has been reported that lifespan extension 

by DR can be achieved almost entirely by reducing only the yeast component of the 

diet to a DR level (Mair et al. 2005).  
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Although, lifespan extension under DR is thought to occur as a result of reduced 

nutrition, it is equally possible that the explanation could simply be through a relief 

from toxicity (Longo and Finch 2003; Prentice 2005; Piper and Partridge 2007). 

Elements of the food could be toxic and hence diluting the food could extend 

lifespan by diluting potential toxins. Determining whether DR extends lifespan 

through reduced toxicity or due to reduced nutrition is difficult; however looking at 

parallel effects of the diet such as reproductive output can give an indication of 

health and nutritional status (Piper and Partridge 2007). Increasing nutrition has been 

shown to have a positive effect on both mating rates and egg production 

(Chippindale et al. 1993; Chapman and Partridge 1996). Hence, a reduction in 

lifespan as a result of increased nutrition should be coupled with an increase in both 

daily and lifetime fecundity as observed in rodents (Holehan and Merry 1986; 

Weindruch and Walford 1988), Drosophila (Chippindale et al. 1993; Chapman and 

Partridge 1996; Libert et al. 2007) and C. elegans (Klass 1977; Bishop and Guarente 

2007b). If higher food concentrations contain a higher concentration of toxins, it is 

likely that lifespan would decrease in conjunction with no increase in fecundity or 

even reduced fecundity. It is therefore essential when performing DR experiments 

with new ingredients and protocols to fully establish whether fully-fed diets cause an 

increase in fecundity as well as a decrease in lifespan relative to DR diets.  

 

Different fly ageing laboratories use different sources of yeast and different 

concentrations of sucrose, yeast and agar (Chippindale et al. 1993; Chapman and 

Partridge 1996; Kapahi et al. 2004a; Bross et al. 2005), hence it is difficult to 

determine whether all laboratories are studying the same DR effects, particularly 

when trying to determine the mechanisms involved. Not all laboratories have tested 

reproductive output as a measure of nutrition in response to their food, thus it 
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remains unclear whether different diets may reduce lifespan through toxicity. 

Furthermore, it is essential to perform lifespan and fecundity experiments over a 

range of food concentrations, using the chosen fly diet, in order to determine the food 

concentration that gives rise to the DR and fully-fed conditions respectively (Clancy 

et al. 2002; Gems et al. 2002). Graphical representation of the lifespan response to 

changing food levels results in a tent shape (Chapman and Partridge 1996; Magwere 

et al. 2004). The potential problem with choosing only two food concentrations 

(Rogina et al. 2002; Rogina and Helfand 2004) for DR and fully-fed conditions is 

that these may represent two points at opposite sides of the tent, and hence not 

accurately reflect lifespan changes in response to variation in the diet (Figure 1.12).  

 

These differences in DR methods and the proposed mechanisms mediating DR even 

within one model organism highlight the absolute requirement for standardised DR 

protocols to be established and applied. As part of a larger study of optimising 

dietary restriction and lifespan protocols in Drosophila (Bass et al. 2007a), this 

chapter sets out to investigate different factors affecting the responses to DR in 

Drosophila. These include testing whether intermittent feeding can be utilised as a 

method of DR in Drosophila, as previously shown in rodents (Goodrick et al. 1982; 

Anson et al. 2005), and whether variation in genetic background and culturing 

conditions cause commonly-used laboratory wild-type populations to respond 

differently to changing nutrition levels. Finally, the role of the intracellular 

cytoplasmic bacterium Wolbachia, which is thought to have infected anywhere 

between 25-70% of insects (Kozek and Rao 2007), will be investigated to determine 

if Wolbachia infection partially mediates the phenotypic effects observed during DR. 

Although the relationship between Wolbachia and Drosophila is thought to be 
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symbiotic, some strains of Wolbachia have been reported to effect fitness-related 

traits including lifespan (Min and Benzer 1997; Fry and Rand 2002).  
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3.2 Methods 

3.2.1 Testing a range of food concentrations 

For the wild-type comparison and Wolbachia / tetracycline treatment experiments, 

the response of flies to a range of food concentrations was examined. Five food 

concentrations (0.1 – 2.0 SY) were tested whereby only the concentration of yeast 

was varied, whilst the sucrose and agar concentrations were kept constant (Table 

3.1). The concentrations of sucrose and agar, in addition the source of yeast 

(Brewer’s yeast), had previously been optimised for lifespan extension by DR and 

high fecundity with full feeding (Bass et al. 2007a).  Food media were prepared as 

outlined in section 2.2.1. Flies were transferred to fresh medium every two days and 

the number of deaths was scored on these days.   

 

Treatment (SY) Agar (g) Sucrose (g) Yeast (g) 

0.1 
0.5 
1.0 
1.5 
2.0 

15 
15 
15 
15 
15 

50 
50 
50 
50 
50 

10 
50 

100 
150 
200 

 
Table 3.1: Food recipes used for experiments involving a range of food concentrations. 

Only the concentration of dietary yeast was manipulated. All quantities represent the number 

of grams added to distilled water to produce a final volume of one litre of food medium. 

30ml nipagin and 3ml propionic acid were added once the food had cooled to 60oC. Media 

were prepared as described in section 2.2.1.  

 

3.2.2 Vial orientation experiment 

Once-mated males and females were separated under light CO2 anaesthesia and 

allocated into vials containing 4ml of 1.0 SY medium (Table 3.1). Vials were 
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orientated either horizontally or vertically in plastic trays throughout the duration of 

the lifespan. Deaths and censors were recorded at least every two days. 

 

3.2.3 Testing the effect of providing flies with a separate water 
supply 

One possible explanation for the detrimental effects on lifespan of high food 

concentrations could be due to water availability, because the food is the only source 

of water for flies. The effect of providing a separate water supply in the vials was 

tested to establish whether the addition of water can overcome the adverse effects of 

high nutrition. A solution of 1% agar was made up with the addition of 30ml nipagin 

and 3ml propionic acid (preservatives). The agar solution was poured into 200µl 

pipette tips and allowed to set. The pipette tips were trimmed to a length that brought 

the agar close to the surface of the food once the tips had been inserted into the food. 

Pipette tips with no agar were placed in the food as a control. To avoid trapping of 

flies, the opening of the tip was filled with cotton wool. Tips were replaced with 

fresh ones every two days when flies were transferred to fresh medium.  

 

3.2.4 Testing Intermittent feeding as a method of DR in Drosophila 

Experiments were performed in one litre population cages that had been modified to 

have two horizontal openings for vials to be securely placed. One vial contained 

fresh water, plugged with cotton wool, used as a water supply. The second vial 

contained 2.0 SY medium that had been dispensed horizontally into the vials to 

enable flies to have easier access to the food medium. Since the aim was to 

investigate intermittent feeding as a possible method of applying DR without an 
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interaction with a known DR protocol, 2.0 SY medium was chosen as opposed to 1.0 

SY because the latter represented our standard DR treatment.  

 

Dahomey wild-type flies were cultured at standard density (see section 2.3.3) for 

parental and experimental generations. Females from the experimental generation 

were separated under light CO2 anaesthesia and were randomly allocated to 

population cages for three different dietary regimens (see section 3.2.4.1) at a density 

of 100 flies per cage (n = 500 per treatment). The experiment was set-up in the 

afternoon and flies on all treatments were provided with food for the first 18 hours of 

the experiment, until the following morning when the intermittent feeding treatments 

commenced (see section 3.2.4.1). Flies in all cages had constant access to a water 

supply. 

 

3.2.4.1 Experimental treatments:   

The following treatments were used during this experiment.  

1) No starvation / continuous access to food: - Flies had constant access to 

food throughout life with no periods of starvation 

2) Three hours starvation: - Flies had access to the food for a period of 21 

hours per day, with a starvation period lasting three hours. 

3) Six hours starvation: - Flies had access to the food for a period of 18 hours 

per day, with a starvation period lasting six hours.  

 

The flies on the non-starvation treatment were provided with fresh medium at the 

same time each morning. At this time, the food vials in the cages containing flies on 

both the three and six hour starvation regimen were replaced with an empty vial 

containing no food, the start of the starvation period. The empty vials were replaced 
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with vials containing fresh food medium after three and six hours respectively. This 

procedure was applied seven days a week throughout life. Dead flies were counted 

daily and carefully removed from their cages.  

 

3.2.5 Comparing the response of different wild-type laboratory 
strains to DR 

The response to DR of six different Drosophila wild-type strains commonly used in 

laboratories was assessed. These included: Dahomey, white Dahomey (wDahomey), 

Oregon-R, Canton-S, W1118 and yellow-white (yw). Dahomey and wDahomey 

stocks were maintained in population cages at 25oC with overlapping generations and 

fed the standard 1.0 SY laboratory diet (section 2.2.1). wDahomey stocks were 

produced by backcrossing the white gene from W1118 flies into a Dahomey 

background. Oregon-R, W1118, Canton-S and yw flies have been maintained in the 

laboratory for several years under a range of different culturing conditions. More 

recently, these fly stocks have been maintained at 18oC in several glass bottles or 

vials containing 1.0 SY medium or a cornmeal-based diet (ASG, section 2.2.2) and 

transferred to fresh medium every generation. 

 

For all wild-type strains with the exception of yw, the responses of lifespan and 

fecundity in once-mated females were assessed on 0.1, 0.5, 1.0, 1.5 and 2.0 SY diets 

(see Table 3.1). Due to difficulties in culturing yw stocks, resulting in limited 

numbers of female adults, experiments were only performed on 0.5, 1.0 and 2.0 SY 

diets with this strain.  
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3.2.6 Removal of Wolbachia infection 

Wolbachia was removed from the infected populations through tetracycline 

treatment, as described in section 2.4.5. All strains were allowed to recover for at 

least 10 generation on standard food (without tetracycline) before lifespan 

experiments commenced. Removal of Wolbachia was verified by PCR using primers 

to detect the gene for Wolbachia surface protein (wsp) (Braig et al. 1998; Zhou et al. 

1998; Toivonen et al. 2007) (section 2.4.6).  
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3.3 Results 

3.3.1 Effects of vial orientation on female and male Drosophila 

Based on previous observations, it was clear that the texture of the fly food becomes 

stickier as flies get older. Subsequently, flies begin to stick to the food. This results 

in flies having to be censored from the experiment despite being alive or not having 

died of natural causes. The severity of this problem appeared to be greater in males 

and some of the known long-lived insulin signalling pathway mutants, such as chico 

homozygotes, that are both small and either infertile or less fecund. When flies begin 

to age they tend to reduce their activity and spend large proportions of time standing 

on the food, hence later in life flies maintained in vertical-orientated vials will 

always be exposed to the food surface and often stick to it. To try and overcome this 

problem, it was chosen to investigate whether males and females that were 

maintained in vials with a horizontal orientation would be less prone to sticking to 

the food later in life than flies in vials orientated vertically. By orientating the vials 

horizontally, flies will be able to stand on the side of the glass and can access the 

food by walking to it. However, the possible beneficial effects of reducing the 

number of flies sticking to the food when orientating the vials horizontally may be 

cancelled out by potential adverse effect on lifespan or fecundity due to difficulty in 

accessing the food later in life. 

 

In agreement with a previous study (Magwere et al. 2004), female Drosophila were 

significantly longer lived than males, independent of vial orientation (Figure 3.1a). 

Females maintained in vials orientated horizontally (median, 64 days) showed no 

significant differences in lifespan compared with females maintained in vertically-

orientated vials throughout life (median, 64 days) (Figure 3.1a). In addition, both 
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daily and lifetime fecundity of females remained unaffected by horizontal vial 

orientation (Figures 3.1b and c). In contrast, males maintained in horizontally- 

orientated vials exhibited a longer lifespan (median, 53 days) than males maintained 

in vertically orientated vials (median, 46 days; Figure 3.1a). Furthermore, the vial 

orientation had a large effect on the number of males that had to be censored as a 

result of sticking to the food during this experiment. Almost half of the initial 

population of males (46) were censored in the vertically-orientated vials, whereas 

considerably fewer (29) had to be censored in the horizontally-orientated vials. 

Hence, orientating vials horizontally resulted not only in an extended lifespan 

compared to males maintained in vertically-orientated vials but also, as a result of 

fewer censors, produced considerably smoother survival curves (Figure 3.1a).  
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Figure 3.1: The effects of vial orientation on fecundity and lifespan of Drosophila. (a) 

Maintaining vials on their side (horizontal) throughout the course of the experiment resulted 

in a significant increase in male lifespan (blue) compared with males maintained in 

vertically-orientated vials (P = 0.006, log-rank). Lifespan of females (green) was unaffected 

by vial orientation (P = 0.69, log-rank). (b) No clear differences were observed between the 

average numbers of eggs laid on any given day by females maintained in horizontal 

compared with vertical vials. (c) Furthermore, no significant differences were observed in 

cumulative fecundity throughout life as a result of vial orientation (P = 0.76, Wilcoxon). 

Fecundity assays were performed on days: 5, 12, 19, 33 and 43 of treatment. Error bars 

represent ± s.e.m. 
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3.3.2 An optimised dietary restriction protocol for Drosophila 
(Bass et al. 2007a) 

The experiments conducted throughout this thesis were performed using a dietary 

restriction protocol optimised for Drosophila in our laboratory (Bass et al. 2007a). 

The experiments in this study were designed and analysed by Richard Grandison, 

Tim Bass, Matthew Piper, Richard Wong and Linda Partridge. The majority of 

experiments were performed by Tim Bass, with the exception of the experiment 

investigating the effect of water on the response to dietary restriction, which was 

performed by Richard Grandison and has been included in this thesis (Figure 3.2). 

The findings and implications of the paper by Bass et al. are briefly summarised 

below.  

 

The study by Bass et al. firstly investigated the effect of a range of sucrose 

concentrations on lifespan and fecundity of Dahomey flies. Although it has 

previously been reported that reducing the yeast component of the diet extends 

lifespan to a greater magnitude than reducing the concentration of sucrose in an 

otherwise iso-caloric diet  (Mair et al. 2005), it is possible that higher sucrose 

concentrations (than those previously used by Mair et al.) may reduce lifespan and 

affect fecundity. Keeping the concentration of yeast (Baker’s yeast) fixed at 150 g/L, 

Bass et al. demonstrated that increasing the concentration of sucrose beyond 50 g/L 

had a detrimental effect on both daily and lifetime fecundity. Interestingly, 

Drosophila had no dietary requirement for sucrose in terms of fecundity; however, 

the presence of sucrose was essential for healthy lifespan. 

 

It has previously been suggested that DR might extend lifespan simply by a reduction 

of toxicity as opposed to a reduced nutrition (Longo and Finch 2003; Prentice 2005). 
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It is possible that the reduced lifespan observed when increasing the concentration of 

dietary yeast could be caused by reduced availability of the nutrients in the food 

(increased food density) or as a result of reduced water availability. To test this 

hypothesis, Bass et al. investigated the effect of increasing the agar concentration, 

whilst keeping sucrose and yeast concentrations fixed at 50 g/L and 200 g/L (2.0 SY; 

Brewer’s yeast) respectively. This work demonstrated that increasing the agar 

concentration mimics to some extent the effect of reducing the concentration of 

dietary yeast (DR). Generally, increasing the concentration of agar extended median 

lifespan, but reduced fecundity. These data are consistent with agar controlling food 

availability in a non-detrimental way and therefore the reduction in lifespan with full 

feeding cannot be explained by reduced availability of nutrients on high food.   

 

Finally, Bass et al. studied the effects of dietary restriction using four commonly-

used yeast sources (obtained from different yeast suppliers). The source of yeast and 

the variability in yeast quality is likely to be an important consideration for DR 

experiments because dietary yeast has been shown to be the key component of the 

diet influencing Drosophila lifespan (Mair et al. 2005). Keeping the sucrose fixed at 

50 g/L, Bass et al. demonstrated that of the four yeast diets tested, only one yeast 

source (Brewer’s yeast) was suitable to use for DR experiments. Flies fed a Brewer’s 

yeast diet exhibited elevated fecundity with each increase of yeast concentration 

tested. Furthermore, median lifespan peaked at an intermediate food concentration 

(1.0 SY) and was reduced at higher concentrations (coupled with increased 

fecundity) and lower concentrations (presumably through malnutrition). In contrast, 

the Baker’s yeast and Torula yeast appeared optimal in terms of lifespan, 

characterised by the tent-shaped graphs; however fecundity did not increase beyond a 

plateau reached at 1.5 SY, despite lifespan showing a further decline beyond this 
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point. Yeast extract appeared to be the least optimal diet for DR studies due to the 

detrimental effects of both lifespan and fecundity at higher food concentrations, 

indicating dose-dependent toxicity. 

 

As a result of this study (Bass et al. 2007a), Brewer’s yeast was chosen as the yeast 

source to be used for all experiments throughout this thesis. Furthermore, having 

ascertained the responses of female Drosophila to a range of yeast concentrations 

using Brewer’s yeast (Bass et al. 2007a), 100 g/L (1.0 SY) yeast will be used as the 

DR condition and 200 g/L (2.0 SY) will be used for the fully-fed condition for all 

experiments (refer to Table 3.1). These concentrations were chosen because median 

lifespan showed the greatest peak on this yeast at 1.0 SY, coupled with reduced 

fecundity, whereas 2.0 SY caused maximised fecundity in conjunction with reduced 

lifespan. The agar and sucrose concentrations for 1.0 SY and 2.0 SY were fixed at 15 

g/L and 50 g/L respectively.  

 

3.3.3 Reduced water availability does not explain life-shortening 
effects associated with increased nutrition 

The sugar yeast medium not only provides a food source to flies, but is also the only 

source of available water. Therefore, a potential explanation for the life-shortening 

effects associated with more concentrated yeast diets could be as a result of reduced 

water availability, potentially due to the more dense texture of these diets. To rule 

out the possibility that the fully-fed condition (2.0 SY, Brewer’s yeast) shortens 

lifespan due to reduced water availability, a separate water supply in form of an agar-

filled pipette tip was provided (section 3.2.3). The addition of a separate water 

supply to the food did not affect the response of flies to DR (Figure 3.2). In the 
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presence or absence of a separate water supply, flies exhibited increased fecundity 

coupled with reduced lifespan on a high yeast diet (2.0 SY, fully-fed) compared with 

the lower fecundity but extended lifespan of flies fed a DR diet (1.0 SY). 

Furthermore, no significant effect on lifespan or fecundity was detected in either DR 

or fully-fed flies in the presence of a water supply. This result indicates that 

accessibility to water cannot explain the life-shortening effects associated with 

higher levels of nutrition.  

 

 

Figure 3.2: The effect of water addition on the response of females to dietary restriction 

using Brewer’s yeast. Free access to water was provided by inserting a pipette tip 

containing 1% agar into the food medium. Flies exhibited increased fecundity and reduced 

lifespan on a fully-fed diet (2.0 SY) both in the presence or absence of a separate water 

supply. The addition of water had no effect on fecundity at an intermediate (1.0 SY; P = 0.7, 

Wilcoxon) or high concentration of yeast (2.0 SY; P = 0.65). Median lifespan was also 

unaffected by the presence of water on both yeast diets. Fecundity assays were performed on 

days: 3, 6, 10, 13, 17, 26, 31 and 38 of treatment. Error bars represent ± s.e.m. Adapted from 

Bass et al. 2007a, experimental work performed by R. C. Grandison.  
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3.3.4 Testing intermittent feeding as a method of applying DR in 

Drosophila 

In rodents, intermittent feeding is used as a DR method, resulting in an extension of 

lifespan (Goodrick et al. 1982; Anson et al. 2005). In order to assess whether it can 

also be used as a suitable method to extend lifespan in Drosophila, the effect of 

restricted access of females to food for three or six hours per day throughout life was 

examined12. Interestingly, reducing the length of time flies had access to food 

throughout life had no effect on lifespan in the intermittent feeding regimens tested 

(Figure 3.3). Flies with continuous access to food throughout life (0 hours starvation; 

median, 51 days) had almost identical lifespans compared with flies that had no 

access to food for either a three hour (median, 51 days) or a six hour period per day 

(median, 51 days), throughout the duration of their lives. 

 

Figure 3.3: An intermittent feeding regimen that does not extend lifespan in Drosophila. 

Female flies were given access to either a continuous food supply (no starvation), or a 

continuous food supply for 21 or 18 hours each day (3 or 6 hour starvation) daily. Applying 

either 3 or 6 hour periods of starvation each day throughout life had no significant effect on 

lifespan compared with the continuously fed control group (P ≥ 0.38, log rank). Figure 

adapted from (Grandison et al. 2009). 

 

                                                
12 Experimental work investigating intermittent feeding was equally contributed to by R. C. 
Grandison, M. W. Piper, R. Wong and T. Bass 
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3.3.5 Comparison of the DR responses between different wild-type 
laboratory strains of Drosophila 

Previous experiments in this chapter have been performed using the outbred 

laboratory strain Dahomey. This strain has been maintained on an SY diet for over 

30 years in large population cages with overlapping generations; a culturing method 

which ensures that adult survival rates are comparable to those of stocks that had 

been freshly collected from the wild (Sgro and Partridge 2000; Sgro and Partridge 

2001). The majority of other wild-type laboratory strains are housed in small 

numbers in individual containers and fed a cornmeal-based diet. Maintaining stocks 

in this way can select for early reproduction and reduced adult lifespan (Luckinbill et 

al. 1984; Rose 1984; Sgro and Partridge 1999). As a result, it was of interest to test 

whether different wild-type laboratory strains would respond to the optimised 

Brewer’s yeast diet. If different responses are detected between some of the strains, 

this may provide further insight into potential mechanisms involved in DR and 

highlight whether DR studies in different strains can be compared13.  

 

By examining the response of lifespan and fecundity to a range of food 

concentrations, it was evident that all wild-type strains exhibited a classical DR 

response, whereby lifespan peaked at an intermediate food concentration and 

decreased at very low and higher food concentrations (Figure 3.4a). Due to the 

limited number of adult females available for the yw strain, resulting in only three 

concentrations being tested, the response was less clear, although lifespan was 

extended at 0.5 SY and significantly reduced at 1.0 SY. Furthermore, all strains 

displayed a progressive increase in fecundity with each increase in food 

                                                
13 Experimental work on the effect of dietary restriction on a range of wild-type strains was equally 
contributed to by R. C. Grandison, R. Wong and M. D. Piper. PCR analysis was performed by R. C. 
Grandison 
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concentration, with the exception of Oregon-R. Fecundity increased in the Oregon-R 

strain when the food concentration was increased from 0.1 to 1.5 SY; however, 

fecundity showed a small decline at the highest food concentration (2.0 SY), despite 

lifespan being decreased at this concentration. Hence the associated lifespan decrease 

from 1.5 to 2.0 SY was not accompanied by increased intake of biologically valuable 

nutrition and therefore could be due to a non-specific detrimental effect of high food 

affecting this strain. 

 

Despite all strains generally showing a classical DR response, the exact nature of 

these responses varied amongst strains (Figure 3.4a). The median lifespan peaks 

differed between the various wild-type strains. Dahomey (73 days), wDahomey (73 

days) and yw (69 days) all peaked at 0.5 SY whereas Canton-S (57 days) and W1118 

(57 days) peaked at a slightly higher food concentration (1.0 SY). Oregon-R 

appeared less sensitive to intermediate levels of nutrition because they exhibited the 

same median lifespan at 0.5 and 1.0 SY (53 days). Dahomey and wDahomey showed 

similar peaks in fecundity (Dahomey compared with wDahomey, P = 0.97, 

Wilcoxon) and displayed the highest egg-laying capacity of all strains, peaking at 2.0 

SY (Figure 3.4a; P ≤ 0.003, Wilcoxon, relative to the peak fecundity of any other 

strain). In contrast, Oregon-R and yw appeared to exhibit the lowest egg production 

overall. 
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Figure 3.4: Comparing the responses of different wild-type laboratory strains to DR. 

(a) The responses of lifespan and fecundity in five different wild-type strains to a range of 

yeast concentrations. All strains generally exhibited a classical response to changing 

nutrition levels: fecundity increased at higher food concentrations, whereas lifespan peaked 

at an intermediate food concentration and was reduced at high and very low food 

concentrations. (b) PCR analysis revealing the presence or absence of the intracellular 

bacterium Wolbachia. Dahomey, wDahomey, yw and Canton-s strains were all found to be 

infected with Wolbachia whereas W1118 and Oregon-R were not infected. Fecundity assays 

were performed on days 4, 11, 18, 33 and 45 of treatment. Error bars represent ± s.e.m. 

Figure adapted from (Grandison et al. 2009). 
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3.3.6 Testing the effects of tetracycline treatment on DR 
responses 

Drosophila play host to a range of bacteria and microbes. One of the most well 

known is the intracellular cytoplasmic bacterium Wolbachia, which is thought to 

have infected around 30% of the strains in the Bloomington Stock centre (Clark et al. 

2005). The interaction between Wolbachia and host species is thought to be 

symbiotic; however, a virulent strain of Wolbachia has been shown to reduce 

Drosophila lifespan (Min and Benzer 1997) whereas another strain of Wolbachia 

caused positive and negative effects on lifespan depending on the genetic 

background of the flies used (Fry and Rand 2002). More recently, it was shown that 

extensive backcrossing and removal of Wolbachia by tetracycline treatment entirely 

abolished the lifespan extension phenotype of an Indy mutant stock (Toivonen et al. 

2007). Moreover, interactions between Wolbachia and viability of the chico2 mutant 

stocks have been uncovered, whereby the viability of chico2 was reduced upon 

Wolbachia removal (Clark et al. 2005). However, the effect on viability of the chico2 

stock was later found to be linked to another, unmapped locus rather than chico 

itself. Based on these observations, it was important to determine whether Wolbachia 

or other bacterial infections may be partially mediating the effects of DR in 

Drosophila14.  

 

Firstly, PCR analysis with primers encoding stretches of Wolbachia surface protein 

(wsp) cDNA was performed on all wild-type strains to test for the presence or 

absence of Wolbachia infection (Braig et al. 1998; Zhou et al. 1998; Toivonen et al. 

2007). PCR analysis revealed that all strains with the exception of W1118 and 

                                                
14 Experimental work investigating the effect of dietary restriction on tetracycline-treated wild-type 
strains was contributed to equally by R. C. Grandison, R. Wong and M. D. Piper. PCR analysis was 
performed by R. C. Grandison.  
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Oregon-R were infected with Wolbachia (Figure 3.4b). The fact that all strains 

exhibited a DR response suggested that Wolbachia infection per se cannot account 

for the lifespan and fecundity responses to changing levels of nutrition (Figure 3.4a). 

However, wild-type strains could be infected with different strains of Wolbachia or 

other bacteria which may cause an interaction with DR. To test this possibility, three 

different strains (the Wolbachia-infected Dahomey and Canton-S strains and the non-

infected Oregon-R strain) were treated with tetracycline for two generations, before 

recovering for at least 10 generation on standard SY food without tetracycline. PCR 

analysis on the experimental generation confirmed that the tetracycline treatment had 

been effective in removing Wolbachia from the originally infected strains, Dahomey 

and Canton-S (Figure 3.5a).  

 

All three tetracycline-treated strains retained their response to changes in food 

concentration (Figures 3.5b-d). Median lifespan for Dahomey (70 days), Oregon-R 

(67 days) and Canton-S (57 days) all peaked at 1.0 SY and decreased with increasing 

food concentration. Fecundity for each strain peaked at 2.0 SY. Interestingly, in the 

Oregon-R strain, tetracycline treatment resulted in a progressive increase in fecundity 

at each increasing food concentration including from 1.5 SY to 2.0 SY, which had 

not been evident in the untreated line (Figure 3.4a). Furthermore, the fecundity of 

tetracycline-treated Oregon-R (Figure 3.5d) appeared universally higher at all food 

concentrations compared with the non-tetracyline-treated strain (Figure 3.4a), whilst 

our laboratory control strain Dahomey retained a similar magnitude of fecundity 

before and after tetracycline treatment. Again, lifespan and fecundity were greatest in 

the Dahomey strain.  
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Figure 3.5: Response of tetracycline-treated wild-type strains to changing levels of 

nutrition. (a) PCR analysis confirming the removal of the intracellular bacterium Wolbachia 

from the infected Dahomey and Canton-S lines following tetracycline treatment (+ refers to 

non-tetracycline treatment and – refers to lines that had been treated with tetracycline 

treatment). (b, c and d) The responses of median lifespan and fecundity to changing food 

concentration of three wild-type strains following tetracycline treatment. Wild-type strains 

were allowed to recover for at least 10 generations before lifespan experiments were 

performed. All strains exhibited a DR response following tetracycline treatment. Fecundity 

assays were performed on days 5, 15, 22, 29, 36 and 43 of treatment. Error bars represent ± 

s.e.m. Figure adapted from (Grandison et al. 2009). 
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3.4 Discussion 

3.4.1 Vial orientation affects male but not female lifespan 

When choosing a model organism to study biological processes such as ageing, 

behaviour or development it is important to ensure that the experimental set-up has 

been optimised. In Drosophila, lifespan experiments are typically performed in three 

different environments; cages, vials or bottles. The majority of experiments in our 

laboratory are currently performed in glass vials containing between 4-7ml of a sugar 

yeast medium, with the vials orientated vertically in plastic trays. However, one 

problem when performing lifespan experiments under these conditions is that when 

flies age they have reduced mobility and are likely to become susceptible to bacterial 

infection, a hypothesis that is supported by microarray analysis showing an increase 

in numerous innate immunity-related transcripts with increasing age of wild-type 

flies (Pletcher et al. 2002). Furthermore, older flies exposed to a septic bacterial 

challenge exhibit a higher level of anti-microbial peptides than younger flies; 

however, when challenged with killed bacteria older flies show reduced efficiency in 

producing anti-microbial peptides (Zerofsky et al. 2005). This suggests that flies, like 

mammals, show signs of immunosenescence, as evident by reduced functional 

capacity of the innate immune system with age (Zerofsky et al. 2005). The bacterial 

infection present in older flies appears to spread onto the food causing it to become 

moist and sticky. Consequently, older flies are susceptible to stick to the food, 

despite still being alive, resulting in these flies being censored from the experiment. 

This is particularly an issue in experiments involving males, where the food becomes 

sticky due to bacterial presence. Females are less prone to this, likely as a result of 

the antibiotic effects of their eggs. 
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In an attempt to try and alleviate the problem with censoring flies toward the end of 

the experiment due to stickiness, vials were orientated horizontally (as well as 

vertically) in plastic trays. The results shown demonstrate that orientating vials 

horizontally instead of vertically presents a better solution to this problem. In 

experiments involving male Drosophila, optimisation of lifespan and survival curves 

was achieved when vials were kept horizontally. In the case of females, neither 

lifespan nor fecundity was affected by vial orientation, so that negative effects of 

changes in vial orientation can be ruled out. Consequently, experiments should be 

carried out in vials orientated horizontally to obtain ideal survival curves particularly 

for male flies and when comparing differences between the two sexes. 

 

3.4.2 The importance of optimising ingredients used for dietary 
restriction experiments 

Drosophila in the wild are thought to consume fungi and yeast growing on rotten 

fruits (Spieth 1974). In the laboratory, they can be maintained on a diet comprising 

water, sucrose and autolysed yeast in an agar gel. Previous work has demonstrated 

that dietary yeast as opposed to sucrose is the key ingredient in the diet influencing 

the lifespan of Drosophila (Mair et al. 2005). However, DR experiments in 

Drosophila are often still applied by the simultaneous dilution of both the sucrose 

and yeast in the diet. This does not take into account the possibility that sucrose may 

influence lifespan if the concentration is high enough. Moreover, dietary yeast can be 

produced in many different ways and from different sources. Several different types 

of yeast are utilised for Drosophila dietary restriction experiments in laboratories 

around the world. Dietary restriction in multiple organisms conforms to the paradigm 

that lifespan and fecundity should trade-off with one another. Hence reduced lifespan 
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with full feeding should be accompanied by increased fecundity as a result of greater 

nutrition (Partridge et al. 2005a; Mair and Dillin 2008; Piper and Bartke 2008). This 

has been reported in rodents (Holehan and Merry 1986; Weindruch and Walford 

1988; Selesniemi et al. 2008), flies (Chippindale et al. 1993; Chapman and Partridge 

1996; Libert et al. 2007; Lee et al. 2008) and worms (Klass 1977; Bishop and 

Guarente 2007b). 

 

Work carried out in our laboratory investigated the responses of Dahomey wild-type 

flies to a range of food concentrations using four different commonly-used yeast 

diets (Bass et al. 2007a). Flies fed three of the four yeast diets (Baker’s, Brewer’s or 

Torula yeast) exhibited a classical tent-shaped response to increasing nutrition, 

whereby lifespan peaked at an intermediate food concentration and decreased at 

higher concentrations or at the lowest concentration (starvation). However, only one 

yeast diet, Brewer’s yeast, caused a progressive increase in fecundity with each 

increasing concentration tested (Bass et al. 2007a). These data suggest that Torula 

and Baker’s yeasts could be mildly toxic at higher concentrations or that the 

nutritional composition of these yeasts at this concentration could account for 

detrimental effects to lifespan, for example through reduced access to food. 

Furthermore, a fourth yeast diet (yeast extract) tested by Bass et al. (2007a) caused 

lifespan to peak at the lowest concentration tested and progressively decreased with 

each increase in concentration. In contrast, fecundity peaked at an intermediate yeast 

concentration and was reduced at higher concentration. As opposed to lifespan 

extension through reduced nutrition, it appears flies fed this yeast source display 

extended lifespan due to relief from a dose-dependent toxicity at higher yeast 

concentrations. 
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The study by Bass et al. also investigated the effect of a range of sucrose 

concentrations on lifespan and fecundity, increasing sucrose to a higher 

concentration  than had previously been used (Mair et al. 2005). In agreement with 

Mair et al. (2005), the level of sucrose in the diet had a negligible effect on lifespan, 

although the absence of sucrose shortened lifespan. However, Bass et al. reported 

that the presence of sucrose was not required for maximum fecundity and increasing 

the concentration of sucrose beyond 50 g/L had detrimental effects on fecundity, 

potentially due to unfavourable effects on fly physiology. These data suggest that 

Drosophila generally have a low requirement for dietary sucrose, which is supported 

by evidence in the wild that rotting bananas contain sugar levels of no more than 20 

mM or 4.5 g/L sucrose (Omura and Honda 2003).  

 

These observations highlight the importance of measuring fecundity in addition to 

lifespan before choosing the food conditions on which to perform DR experiments. 

The concentration of sucrose and source of yeasts may also be an important 

consideration when studying Drosophila physiology and behaviour, since they may 

be influenced by different dietary conditions. As a result of the study by Bass et al., 

all experiments presented in this thesis were performed using the optimised Brewer’s 

yeast and a concentration of sucrose fixed at 50 g/L. Hence for DR experiments, only 

the concentration of yeast was varied.  

 

3.4.3 Reduced lifespan on fully-fed diets cannot be explained by 
food hardness or water availability 

It is generally assumed that lifespan extension of Drosophila under DR conditions is 

as a result of reduced nutrient intake following food dilution (Piper and Partridge 

2007). However, it could also be that the shortened lifespan of flies on food 



Chapter 3 

 138 

containing higher yeast concentrations is due to increased density and thus hardness 

of the food, thereby limiting availability. Alternatively, because the food medium 

provides the only source of water to flies, the increased yeast concentration with full 

feeding may restrict access to water, thereby causing a detrimental effect on survival.  

 

Dehydration or restricted availability of water could not explain the reduced lifespan 

with full feeding (using Brewer’s yeast). Providing flies with a separate, excess, 

water supply in the form of a pipette tip containing 1% agar did not rescue the 

reduced lifespan of fully-fed flies. In addition, the study by Bass et al. (2007a) 

examined the effects of manipulating the concentration of agar (to test food 

hardness) used in the fully-fed diet (2.0 SY). Increasing the agar concentration 

resulted in decreased lifetime fecundity but increased median lifespan, mirroring to 

some extent the typical DR response observed when reducing the yeast concentration 

(Bass et al. 2007a). In conjunction, these results confirm that DR extends lifespan in 

Drosophila through reduced nutrient availability. They also demonstrate that DR 

does not lead to longer lived flies by rescuing them from detrimental or toxic effects 

of full feeding, a view which had previously been put forward (Longo and Finch 

2003; Prentice 2005).  

 

3.4.4 Lifespan is not affected by an intermittent feeding regimen in 
Drosophila females 

In rodents, DR is typically achieved by feeding the restricted group around 60-70 % 

of the food that they could eat if given ad libitum access (Yu et al. 1985; Weindruch 

and Walford 1988; Masternak et al. 2005; Bonkowski et al. 2006). However, another 

method which has been shown to extend lifespan is through intermittent feeding, 

whereby the DR group is given ad libitum access to food but only on every other day 
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(EOD) (Goodrick et al. 1982; Anson et al. 2005). Two previous studies have tested 

whether a similar regimen can extend lifespan in Drosophila (Kopec 1928; Le Bourg 

and Medioni 1991). The results of the first study suggested that there may be a 

beneficial effect on lifespan when flies are given access to food for only 18 hours, 

followed by 6 hours with only water (Kopec 1928), although overall there was no 

clear correlation between intermittent feeding and lifespan extension. Le Bourg and 

Medioni reported no positive effect on lifespan when assessing several different time 

periods of feeding / starvation regimens (Le Bourg and Medioni 1991). However, it 

is important to consider that the regimens used by Le Bourg and Medioni were only 

implemented on five out of seven days of the week. The two days of the week where 

flies were provided constant access to food may have masked any beneficial effects 

the periods of intermittent feeding had.  

 

In the current study, a food source optimised for fecundity with full feeding was used 

(Bass et al. 2007a) to assess whether the laboratory wild-type strain Dahomey would 

respond to an intermittent regimen applied every day throughout the duration of the 

lifespan. In agreement with the previous studies (Kopec 1928; Le Bourg and Medioni 

1991), no effect on lifespan was observed when applying either a three or six hour 

starvation period daily. In rodents, lifespan extension can also be achieved by 

feeding animals a measured amount of food that is completely consumed before the 

next meal. However, similar studies on house flies and medflies indicate that lifespan 

extension using this method of DR may also be unique to rodents (Carey et al. 2002; 

Cooper et al. 2004). One explanation for these differences in the ways that lifespan 

extension can be achieved in rodents and flies could be that the fly DR protocols are 

simply not optimised to achieve the same outcome observed in rodents. 

Alternatively, it is also possible the mechanisms of lifespan extension by DR in 
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mammals and flies may be different. Differences in body size and the ability to store 

energy in tissues may account for the differences observed between species. 

However, before it is possible to conclude whether or not intermittent feeding 

extends lifespan in Drosophila, a greater range of starvation intervals would need to 

be studied, including a pre-longed starvation interval that shortens lifespan. The 

longest starvation period tested in the current study was only six hours, which did not 

prove to be either beneficial or detrimental to lifespan.  

 

Neither the studies of Kopec, Le Bourg and Medioni or this current study have 

examined the effect of intermittent feeding on daily or lifetime fecundity. Lifespan 

extension by DR should be accompanied by a reduction in fecundity (Partridge et al. 

2005a; Piper and Partridge 2007) and it would be interesting to see whether flies 

exposed to periods of starvation display reduced fecundity or similar fecundity to 

continuously-fed flies. If lifetime fecundity was similar between continuously and 

intermittently-fed groups this may help to explain why no lifespan extension was 

observed. Another possibility of why this method of applying DR may not extend 

lifespan is because flies on intermittent feeding regimens could compensate by eating 

more upon return of the food supply, a hypothesis that has been put forward upon 

applying DR by food dilution (Carvalho et al. 2005). However, difficulties in 

ascertaining feeding rates and direct food intake make this hypothesis a difficult one 

to test (Carvalho et al. 2005; Wong et al. 2008). Unfortunately, the experimental set-

up discussed did not allow accurate measurements of fecundity for two reasons. 

Firstly, the experiments were performed in one litre cages containing 100 females 

and one vial of food, which can result in over 20,000 eggs in one vial during the start 

of a new experiment. Such numbers cannot be counted accurately, so that false 

results would have been generated. Secondly, during the starvation period of three or 
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six hours, flies not only had no food supply but also no egg-laying site. Flies will 

refrain from egg-laying when there are no appropriate sites to lay eggs and will select 

for optimal egg-laying sites (Richmond and Gerking 1979; Yang et al. 2008). This 

results in the intermittently-fed group having a significantly shorter time frame in 

which they can lay eggs compared with the continuously-fed cohort.  

 

A perhaps more suitable experimental protocol would therefore be to set-up a smaller 

scale experiment in vials, at a density of 10 females per vial, where flies are 

transferred to vials containing starvation medium (1% agar; section 2.2.4) during the 

periods of starvation. This would not only make egg counts more manageable, but 

would also provide flies on intermittent regimens a suitable, moist, egg-laying 

surface during periods of starvation.   

 

3.4.5 DR extends lifespan of five different wild-type populations 

Fly stocks in laboratories tend to be maintained in small numbers in vials or bottles 

containing a sugar/yeast medium or a cornmeal-based diet, and are transferred to 

fresh medium every generation. For ease of handling, stocks are often stored at lower 

temperatures, usually 18oC, to reduce development time and hence reduce the 

frequency that flies are transferred to fresh medium. These environmental conditions 

can exert strong selection pressures that may subsequently affect fitness-related traits 

such as lifespan and fecundity. One example of such mechanisms is the fact that 

rearing flies at lower temperatures can lead to selection for larger body size (e.g. 

(Anderson 1966; Partridge et al. 1994). Another problem is that frequent transfer of 

stocks to fresh medium every generation potentially leads to selection for early 

reproduction. This in turn has been shown to correlate with reduced lifespan of adult 

Drosophila (Fowler and Partridge 1992), and hence can severely affect lifespan 
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studies. Furthermore, it has been reported that flies maintained under routine 

conditions (i.e. flies maintained in relatively low numbers) exhibit reduced lifespan 

similarly to flies that have been selected for early reproduction (Linnen et al. 2000). 

In contrast, flies collected from the wild exhibit significantly longer lifespans, 

similarly to flies that had been maintained in the laboratory and selected for late 

reproduction (Linnen et al. 2000).  

 

The wild-type stock Dahomey is an outbred stock, and has been maintained in the 

laboratory for several in large population cages at 25oC with overlapping 

generations. Maintaining flies in large population cages appears to result in similar 

adult survival rates to flies that have been freshly caught from the wild (Sgro and 

Partridge 2000; Sgro and Partridge 2001). The data from the current DR experiment 

support this notion because Dahomey and wDahomey flies were not only the most 

fecund but also exhibited the longest lifespans compared with other wild-type flies 

that had been maintained using routine stock handling conditions (Figure 3.4a). 

These data imply that some of the life-history characteristics of wild-flies can be 

preserved by maintaining flies in large population cages, because this method of 

culturing does not select for early reproduction. Differences in fecundity between the 

wild-type strains are likely to be explained by the different genetic backgrounds, 

body and ovary sizes and culturing conditions. 

 

Despite differences in stock handling conditions and feeding regimens between the 

different wild-type stocks, potentially leading to different selection pressures, 

importantly all wild-type flies displayed a characteristic response to DR in terms of 

lifespan and fecundity. Interestingly, lifespan and fecundity peaks for the different 

wild-type populations were not all the same, again indicating that differences in stock 
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culturing or genetic background may cause differences in fitness-related traits.  

Previous work on long-lived mutants has already highlighted that genotype can affect 

the interaction between lifespan and diet (Clancy et al. 2002; Giannakou et al. 2008; 

Min et al. 2008). Oregon-R flies appeared to behave slightly differently from the 

other groups because in this experiment fecundity showed a small decrease from 1.5 

SY to 2.0 SY, coupled with a decrease in lifespan. This was in contrast to all other 

groups which displayed a progressive increase in fecundity with increasing food 

concentration. One possibility is that Oregon-R flies are more sensitive to certain 

nutrients (found in higher concentrations in 2.0 SY) than other wild-type flies. 

Alternatively, Oregon-R may have difficulty in extracting nutrients from the food, 

particularly at the highest food concentration. The second explanation may be 

supported by the fact that Oregon-R generally exhibited the lowest fecundity of all 

groups, indicating that their efficiency of food uptake could be lower. This 

hypothesis could be investigated by measuring feeding behaviour and food uptake of 

Oregon-R flies compared to other wild-type populations on several different food 

concentrations, although as previously discussed feeding can be difficult to measure 

accurately. 

 

A recent study reported that wild mice when subjected to DR did not exhibit an 

increase in median lifespan compared with a continuously-fed cohort, leading to the 

suggestion that DR could be an artefact of laboratory selection (Harper et al. 2006). 

In contrast, another study showed that by using bacteria deprivation as a method of 

applying DR (Kaeberlein et al. 2006b; Lee et al. 2006; Smith et al. 2008), the 

lifespan of five independent wild-derived C.elegans could be extended (Sutphin and 

Kaeberlein 2008). In Drosophila, the response of wild-caught flies to DR has yet to 

be investigated; however the strong response of our wild-type strain Dahomey, 
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which is maintained in population cages with overlapping generations producing 

similar lifespans to wild flies (Sgro and Partridge 2000; Sgro and Partridge 2001), 

suggests that wild-caught Drosophila are also likely to respond to DR. A possible 

explanation for the failure to detect lifespan extension in wild mice (Harper et al. 

2006) is that the authors of this study only implemented two levels of feeding 

regimens, ad libitum and DR (60% of ad libitum). It is possible that wild mice, due to 

their lower body mass compared with laboratory-reared mice (Harper et al. 2006), 

have different energy or feeding demands, and would therefore respond differently to 

the standard laboratory food concentrations used. 

 

3.4.6 Lifespan extension by DR not mediated by Wolbachia 

The presence of Wolbachia is unique to arthropods and nematodes and anywhere 

between 25-70% of insects are thought to be infected with this bacterium (Kozek and 

Rao 2007). The interaction between Wolbachia, genotype and lifespan in Drosophila 

appears to be a complicated one. For example, evidence from a recent study suggests 

that the lifespan extension of an originally long-lived male Indy mutant line is 

abolished after backcrossing and removal of Wolbachia infection (Toivonen et al. 

2007). Furthermore, insulin receptor (InR) dominant-negative flies display a 

significant extension of lifespan compared with controls in a Wolbachia background; 

however this appears to be completely diminished upon curing the lines of 

Wolbachia with tetracycline treatment (Ikeya et al. unpublished data). If Wolbachia 

and Dahomey have been co-evolving for a long time, one distinct possibility is that 

removing Wolbachia makes the flies sick to some extent. Future work will also need 

to examine whether the lifespan extension reported in other known long-lived 
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mutants including chico, InR, TOR, etc, is repeatable when differences in 

cytoplasmic background have been corrected for. 

 

It has been proposed that increased nutrition may be associated with higher 

proliferation rates of bacteria, which in turn might explain the reduced survival rates 

of fully-fed flies (Cooper et al. 2004). Based on this hypothesis and the findings that 

at least part of the lifespan extension phenotype of a long-lived Indy mutant line and 

InR dominant-negative flies is attributable to Wolbachia infection, it was chosen to 

investigate whether lifespan extension by DR is simply a phenomenon caused by the 

presence of Wolbachia. If this were the case, then tetracycline treatment of flies to 

remove the Wolbachia infection should block any DR effect observed. Importantly, 

following tetracycline treatment of two infected populations, Dahomey and Canton-

S, and a non-infected population (Oregon-R), all three strains retained their response 

to DR. Interestingly, however, the fecundity of tetracycline-treated Oregon-R flies 

showed a marked increase at all food concentrations compared with the non-

tetracycline-treated line, suggesting that another bacterial infection other than 

Wolbachia may be present in Oregon-R flies, which acts to restrict their egg-laying 

capacity. These results demonstrate that Wolbachia infection and/or other bacterial 

infections removed by tetracycline cannot account for the effects of DR. Our data is 

also in agreement with previous work that demonstrated that DR still extended 

lifespan when experimental flies were exposed to tetracycline treated food to remove 

bacterial infection (Mair et al. 2005).  

 

Interestingly, lifespan for all three wild-type populations following tetracycline 

treatment peaked at 1.0 SY; however, in the non-tetracycline treated Dahomey 

population, lifespan peaked at 0.5 SY (Figure 3.4a). This raises the possibility of a 
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small interaction between Wolbachia and nutrition in certain genotypes. However, a 

more likely explanation is that there is seasonal variation in the nutritional content of 

yeast due to differences in production and the quality of its feedstock. Indeed, the 

experiments conducted by Bass et al. (2007a), where lifespan was measured over a 

range of concentrations using Brewer’s yeast, yielded a lifespan peak of 1.0 SY. 

Ideally, it would have been optimal to perform parallel experiments investigating the 

effects of DR on Wolbachia infected strains compared with the same strains that had 

been cured of Wolbachia infection. The differences in lifespan peaks due to seasonal 

variation also point to the need for a standard defined diet, particularly when 

assessing lifespan extension by DR and potential mechanisms regulating this process.  

 

 

3.4.7 Concluding remarks 

The short lifespan and generation time, in conjunction with the ability to use and 

large population sizes make Drosophila a commonly used model organism for 

ageing studies. However, experimental conditions often vary greatly between 

different laboratories and even individual researchers within the same group. The 

results of this chapter in conjunction with a recent paper by Bass et al. (2007a) 

highlight the need to use optimised DR and lifespan protocols, to achieve consistent 

and more importantly comparable results.  

 

In addition, the work reported here reveals that DR can extend lifespan in Drosophila 

independent of the presence of Wolbachia infection or the type of wild-type strain 

used. Furthermore, the data highlight the importance of measuring the response of 

fecundity and lifespan over a range of food concentrations. Although all wild-type 

strains exhibited a strong response to DR, the food concentration which lifespan 
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peaked at differed, suggesting a possible interaction between genotype and nutrition. 

In contrast to rodents, evidence appears to suggest that intermittent feeding may not 

extend lifespan in Drosophila. However, future work on intermittent feeding, using a 

wider range of starvation intervals, will prove more conclusive.  
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4.1 Introduction 

Chapter 3 together with the recent report by Bass et al. (2007a) discussed the 

importance of a common dietary restriction (DR) protocol being used by different 

laboratories working with the same model organism for studies investigating the 

effects of diet on ageing. Over the last ten years, several different mediators or 

master regulators of DR have been discovered; however, the lack of a common 

protocol or defined diet makes it difficult to draw comparisons between the results of 

the different laboratories.  

 

One of the major questions when addressing lifespan extension by some form of food 

restriction is whether it is independent of or dependent on caloric intake. In rodents, 

DR is often referred to as caloric or calorific restriction (CR) because it was thought 

that a reduction in calories alone can account for the extension of lifespan 

independent of which nutrients are being restricted (Iwasaki et al. 1988; Weindruch 

and Walford 1988; Masoro et al. 1989). Masoro et al. (1989) suggested that lifespan 

can be extended by restricting calories without reducing protein intake; hence 

concluding that protein restriction does not play a significant role in lifespan 

extension by CR. However, the conclusions of this study do not appear to fully 

support the results because protein restriction almost totally prevented the 

progression of chronic nephropathy and extended lifespan to a similar magnitude 

observed with regular CR (without protein restriction). Hence, the role of protein 

does appear to be important in accounting for some of the effects of CR. The same 

group also reported that the lifespan of rats cannot be extended by a reduction of 

either fat or minerals in an otherwise iso-caloric diet. Nonetheless, the onset of 

chronic nephropathy was retarded by fat restriction (Iwasaki et al. 1988). Other 
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studies have since reported strong evidence that restriction of specific nutrients can 

indeed cause an extension of lifespan in rodents. For example, the lifespan of rats can 

be extended by a reduction of the protein concentration in the diet (Yu et al. 1985). 

Moreover, the restriction of methionine, one of the essential amino acids, was shown 

to increase the lifespan of both rats and mice (Orentreich et al. 1993; Richie et al. 

1994; Zimmerman et al. 2003; Miller et al. 2005). In addition, mice fed a restricted 

diet containing reduced amounts of another essential amino acid, tryptophan, showed 

increased longevity compared with control-fed mice (De Marte and Enesco 1986), 

thereby further highlighting a possible role for specific individual nutrient 

components in mediating dietary restriction.  

 

In Drosophila it appears that lifespan extension by DR is independent of caloric 

intake (Mair et al. 2005; Bass et al. 2007a). Mair et al. independently varied the 

sucrose and yeast concentration from a control (fully-fed) level to a DR level. 

Reducing either the sucrose or yeast concentration resulted in an increase in lifespan. 

However; reducing the yeast concentration increased lifespan to a greater magnitude 

than reducing sucrose, despite the relative caloric content of autolysed yeast powder 

and sucrose being almost identical (4.02 kcal/g autolysed yeast versus 4.0 kcal/g 

sucrose) and feeding rates of flies being similar on all diets (Mair et al. 2005). These 

data suggest that specific nutrients in dietary yeast are likely to play an important 

role in Drosophila ageing, as opposed to caloric intake per se. A study by Min and 

Tatar (2006) investigated caloric flux in Drosophila fed different diets. Caloric flux 

relates to the energy in the diet that is physiologically utilised by the organism during 

a given period of time (Piper et al. 2007). Min and Tatar  proposed a strong 

correlation between reduced caloric flux and increased lifespan, leading to their 

conclusion that calorie intake could be important for lifespan extension by DR (Min 
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and Tatar 2006a). However; the authors measurements were only performed on the 

first five days of adulthood and no measurements were made on respiration (a key 

energy expenditure effecting caloric flux) because dietary-restricted and fully-fed 

flies had previously been reported to have similar metabolic rates (Hulbert et al. 

2004). An important consideration is that Hulbert et al. measured resting metabolic 

rates as opposed to energy expenditure under experimental conditions. Energy 

expenditure through respiration is likely to differ between flies on different dietary 

treatments, for example through differences in physical activity, which has been 

previously been shown to be greater in dietary restricted Drosophila (Bross et al. 

2005). Hence, the measurements of caloric intake or caloric flux by Min and Tatar 

were not sufficient for the authors to conclude that DR extends lifespan because flies 

on DR diets assimilate fewer calories (Piper et al. 2007).  

 

Despite early work in the mid 1900s on characterising nutritional requirements of 

Drosophila larvae (Sang 1956; Sang 1959) and female adults (Sang and King 1961), 

the roles of different nutrient components on lifespan in Drosophila have been less 

well documented than in rodents. Previous studies have shown that reducing the 

concentration of the phosphoprotein casein causes an extension of lifespan in adult 

flies (Hollingsworth 1970; Van Herrewege 1974). However these studies did not 

measure the response of mortality or fecundity to varying casein diets as parallel 

measures of health (Piper and Partridge 2007). Hence reduced toxicity cannot be 

ruled out as an explanation for lifespan extension at lower casein concentrations.  

 

In addition to extending lifespan, DR generally lowers fecundity, for instance in 

Caenorhabditis elegans, Drosophila and rodents (Partridge et al. 2005a). This 

finding has led to the suggestion that DR elicits an evolved response to food 
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shortages in nature, with reallocation of nutrients away from reproduction to somatic 

maintenance and repair, thus increasing probability of survival until reproduction can 

be recommenced more successfully with the return of the food supply (Williams 

1966; Kirkwood and Holliday 1979; van Noordwijk and de Jong 1986; Holliday 

1989; De Jong 1993; Kirkwood and Shanley 2005). When food is abundant (full 

feeding), an organism will favour maximising its fitness by investing resources 

heavily in reproduction. This hypothesis thus predicts that survival and reproduction 

are in competition with each other for at least some of the same limiting nutrients 

(Charlesworth 1980) and that the DR responses occur because high survival and high 

reproductive rate are mutually exclusive (Figure 4.1). This trade-off is partially 

supported by previous work in Drosophila, which revealed that increasing the 

concentration of live yeast reduced both lifespan and somatic storage (in terms of 

carbohydrate and lipid storage), but increased fecundity (Bradley and Simmons 

1997). However, an important consideration is that this study was conducted in 

mixed sex groups. Re-mating frequency has previously been shown to increase with 

higher nutrition levels (Chapman and Partridge 1996) (Figure 1.9), thus the reduced 

lifespan of mixed sex flies maintained on concentrated live yeast diets could partially 

be explained by increased mating frequency as opposed solely to effects on ageing 

caused by increased nutrition.  
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Figure 4.1: A trade-off model of lifespan extension under DR as a result of reduced 

reproduction. When provided with a nutrient rich diet (full feeding), an organism is likely 

to invest resources more heavily in reproduction to increase its fitness. As a consequence, 

fewer resources are directed towards somatic maintenance and repair and subsequently 

lifespan. In contrast an organism provided a DR diet displays reduced reproduction and is 

predicted to invest limited resources more heavily into repair and maintenance, extending 

lifespan until a more plentiful food supply returns. Adapted from (Partridge et al. 2005a). 

 

 

This chapter sets out to test the reallocation hypothesis in Drosophila DR in more 

detail using a semi-defined diet approach to determine which specific nutrients 

present in dietary yeast might account for the reduced lifespan but increased 

fecundity of fully-fed female Drosophila compared with flies fed a restricted diet. 

Importantly, this approach enables flies to have access to a basal level of nutrients in 

the yeast that are essential for supporting and maintaining healthy lifespan (Sang and 

King 1961); M. Piper unpublished results), yet allows assessment of the effects that 

individual nutrients have on lifespan and fecundity. Experiments were performed 

initially on female flies because the magnitude of lifespan extension by DR appears 

to be greater in this sex (Magwere et al. 2004) and fecundity could be used as an 
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indicator of health on the different diets (Bass et al. 2007a; Piper and Partridge 

2007). Importantly, the yeast diet had previously been optimised for lifespan 

extension under DR and fecundity with full feeding (Bass et al. 2007a).  
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4.2 Methods 

4.2.1 Preparation of the add-back solutions 

 
In order to determine the concentration of nutrients to add-back to the DR diet (1.0 

SY) (Table 4.1) and to establish the ratios which the nutrients are present in yeast, a 

chemical analysis of the Brewer’s yeast was obtained from the supplier (Bass et al. 

2007a). Since the availability of free nutrients to the flies is likely to be greater than 

when they are present in larger molecules and in whole yeast, firstly the effect on 

fecundity of adding back all nutrients, in the ratio in which they occurred in yeast 

(determined by chemical analysis (Bass et al. 2007a)) at a few different 

concentrations was measured. The concentration of nutrients that gave rise to the 

same increase in fecundity observed with full feeding (2.0 SY) was used for further 

experiments (Figure 4.2a). Solutions containing vitamins, amino acids or 

carbohydrates were made up prior to media preparation. The individual ingredients 

were weighed out and dissolved in distilled water to make up a stock solution for 

each nutrient add-back group, as outlined (Table 4.1). The lipid add-back was 

prepared by dissolving 0.25g of phosphatidylcholine in 50ml of 100% ethanol. 

Phosphatidylcholine was chosen as the lipid source because it is the major 

phospholipid found in eukaryotic cells and contains choline and fatty acids, both 

thought to be essential for Drosophila. In addition it can be easily hydrolyzed by 

triglyceride lipase, found in the fat body of insects (Arrese et al. 2006).  
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Add-back group Individual nutrients added to 
make stock solution 

 

Quantity of 
nutrient used to 

make stock 
solution (g) 

Biologically-
available 
nitrogen 

concentration  
(mM) 

 
 

Amino acids (final 
volume of stock 

solution = 100ml) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Carbohydrates (final 
volume of stock 

solution = 600ml) 
 
 
 

   Vitamins (final    
   volume of stock  
  solution = 500ml) 

 
 
 
 

Folate (dissolved in 
500ml distilled 
water) 

 
 Lipids (dissolved in 
50ml Ethanol (100%) 

 
 

L-arginine HCL* 
L-histidine* 

L-isoleucine* 
L-leucine* 

L-lysine HCL* 
L-methionine* 

L-phenylalanine* 
L-threonine* 

L-tryptophan* 
L-valine* 

 
 

L-alanine 
L-asparagine 

L-aspartic acid 
L-cysteine HCL 
L-glutamic acid 

L-glutamine 
Glycine 

L-proline 
L-serine 

L-tyrosine 
 
 

                      Lactose 
Sucrose 

Glycogen 
Trehalose 

 
 

Biotin 
Ca pantothenate 
Nicotinic acid 

Pyridoxine 
Riboflavin 

Thiamine-HCl 
 

Folate 
 
 
 

Phosphatidylcholine 

 
 

0.85 
0.42 
0.68 
0.95 
1.03 
0.2 
0.52 
0.73 
0.18 
0.8 

 
 

0.85 
0.54 
0.54 
0.2 
0.83 
0.83 
0.67 
0.4 
0.58 
0.53 

 
 

            11.7 
1.6 

14.07 
9.38 

 
 

0.0021 
0.20 

0.067 
0.83 
0.04 
0.25 

 
            0.5 

 
 

              
            0.25 

 
 

4.0 
2.7 
5.2 
7.2 
5.7 
1.4 
3.1 
6.2 
0.9 
6.8 

Total = 43.2mM 
 

9.5 
4.1 
3.5 
1.3 
5.7 
5.7 
8.9 
3.5 
5.6 
2.9 

Total  = 50.6mM 
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Table 4.1: Preparation of nutrient add-back stock solutions. Individual nutrients for each 

diet were weighed out in the quantities indicated and dissolved in the specified volume of 

distilled water or ethanol (in the case of the lipid add-back) to make a stock solution. The 

biological available nitrogen concentration is based on the theoretical nitrogen yield that 

would be available if each amino acid was fully catabolised. This concentration represents 

the molar concentration of each amino acid, based on the quantities of each amino acid 

added back to the DR diet. * Denotes amino acids that are thought to be essential for 

Drosophila (Sang and King 1961). 

 

4.2.2 Starvation assays 

Once-mated females and males were divided by sex and allocated to their respective 

diets for a period of seven days prior to starvation. On day seven of treatment, flies 

were then transferred to a starvation media (1% agar, section 2.2.4) and deaths were 

scored 4-5 times per day.  
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4.3 Results 

4.3.1 Identifying the major nutritional group(s) regulating 
fecundity and lifespan 

The aim of this work was to determine which nutrients present in yeast contribute to 

the high fecundity of fully-fed flies in order to determine whether any of these same 

nutrients decrease lifespan, as predicted by the reallocation hypothesis (Figure 4.1). 

Initially four major nutritional groups: amino acids, vitamins, lipids and 

carbohydrates were targeted. These nutritional groups were individually added back 

to the DR diet, and the effects on lifespan and fecundity were measured in order to 

determine whether any of these nutrient groups can account for the increased 

fecundity when adding back all nutrients or with full feeding. Each nutrient addition 

will be referred to as an add-back.  

 

Adding back lipids, vitamins or carbohydrates to DR had no significant effect on 

fecundity, demonstrating that these nutrients are not limiting for fecundity in the DR 

diet (Figure 4.2a). In contrast, the addition of amino acids to the DR diet accounted 

for the entire increase in fecundity observed when either adding back all nutrients or 

with full feeding. Furthermore, adding back amino acids also caused a significant 

reduction in lifespan compared with DR, mirroring the effect of adding back the 

combination of all nutrients (Figure 4.2b). However, this reduction in lifespan was 

greater than the reduction observed with full feeding, potentially due to an increased 

availability of free amino acids in the add-back diets, compared with full feeding, 

which cannot be utilized for further increasing fecundity. Adding back vitamins, 

lipids or carbohydrates alone did not affect lifespan, thereby providing further 

evidence that lifespan extension by DR in Drosophila is independent of calories. 
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These data are in agreement with a reallocation of amino acids from reproduction 

towards somatic maintenance and repair. This model could hence provide a 

mechanism responsible for lifespan extension under DR. However, an alternative 

explanation could be that different amino acids mediate the lifespan and fecundity 

responses. Such a model would imply that the addition of all amino acids results in 

the up-regulation of fecundity and shortening of lifespan via independent pathways.     

 

Figure 4.2: Identifying the major nutritional groups that mediate the responses of 

lifespan and fecundity to DR. (a) Adding back all nutrients to DR caused an increase in 

fecundity, to a similar extent to adding back yeast itself (full feeding; P = 0.706, Wilcoxon). 

Furthermore, the increase in fecundity was entirely attributable to the amino acids added 

back (amino acids compared with all nutrients, P = 0.94, Wilcoxon). (b) Adding back amino 
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acids or all nutrients together significantly shortened lifespan compared with DR controls (P 

< 0.0001, log-rank). In contrast, no difference in fecundity or lifespan was detected when 

adding back vitamins, lipids or carbohydrates (P = 0.2-0.75, Wilcoxon; P = 0.1-0.7, log-rank 

for fecundity and lifespan respectively). Fecundity assays were performed on days 6, 9, 12, 

15, 18, 21, 28, 35 and 42 of treatment. Error bars represent ± s.e.m. * Indicates a significant 

increase in fecundity (P < 0.0001) when compared with DR (black) using the non-parametric 

Wilcoxon test.  

 

4.3.2 The life-shortening effect of amino acids is not due to a 
reduction in water availability or an increase in osmotic pressure 

In order to rule out the possibility that adding back amino acids was simply 

shortening lifespan either due to reduced water availability or due to an increase in 

osmotic stress, flies were provided with access to a separate water supply by placing 

an agar tip in the food (section 3.2.3). This method of providing water has previously 

been adopted to determine whether reduced lifespan with full feeding can be 

reversed upon providing flies with a separate water supply (section 3.3.3) (Bass et al. 

2007a). The life-shortening effect of amino acids was not reversed upon the addition 

of a water supply (Figure 4.3a). In addition, no effect of water itself was observed in 

DR control-fed flies as previously reported (Figure 3.2) (Bass et al. 2007a). To 

demonstrate the efficacy of using an agar tip, the effect of adding salt to DR, which 

is a known osmotic stressor, was investigated15. Supplementing the diet with 0.8% 

salt caused a significant shortening of lifespan (Figure 4.3b), similarly to the effect of 

adding back amino acids. However, this life-shortening effect was completely 

reversed upon the addition of an agar tip to the food. 

                                                
15 Experimental work investigating the effect of salt on lifespan in the presence or absence of an agar-
filled tip was performed by M. D. Piper 
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Figure 4.3: Amino acids do not reduce lifespan by reducing water availability. Free 

access to water was provided in the form of a 1% agar tip placed into the food. (a) The life 

shortening effect caused by adding back amino acids to DR was not rescued by the addition 

of a water supply (P = 0.37, log-rank) and no effect was observed in DR controls when water 

was provided (P = 0.28, log-rank). In contrast, adding 0.8% salt to dietary yeast (b) resulted 

in a significant shortening of lifespan (P < 0.0001, log-rank), which was completely rescued 

by water (DR + salt + water compared to DR, P = 0.16, log-rank), demonstrating the efficacy 

of this method of water supply. Experimental work for the salt addition experiment was 

performed by M. D. Piper. 
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4.3.3 Regulation of lifespan and fecundity independent of nitrogen 
concentration 

To determine whether the increase in fecundity and decrease in lifespan attributed to 

amino acids in the diet (Figure 4.2) were due to an increase in nitrogen concentration 

or due to the effect of specific amino acids, the amino acids were categorised into 

essential and non-essential, which are thought to be the same for Drosophila as they 

are for mammals (Sang and King 1961); Table 4.1). Adding back the 10 non-

essential amino acids (N-EAAs) had no effect on fecundity relative to the DR control 

treatment (Figure 4.4a). In contrast, adding back the 10 essential amino acids (EAAs) 

caused a significant increase in fecundity, accounting for the full effect observed 

with both full feeding and with adding back all 20 amino acids together. Despite 

having no effect on fecundity, adding back N-EAAs caused a small but significant 

decrease in lifespan later in life (Figure 4.4b). In contrast, adding back EAAs caused 

a much greater reduction in lifespan, decreasing it to a similar magnitude observed 

with full feeding. To determine whether the increase in fecundity and decrease in 

lifespan attributed to the EAAs could be explained by differences in the nitrogen 

levels in the diet, the relative nitrogen concentration provided by N-EAA and EAA 

add-back diets was calculated. The theoretical biologically available nitrogen was 

greater in the N-EAA (50.6mM) compared with the EAA add-back treatment 

(43.2mM, Table 4.1), suggesting that the concentration of available nitrogen cannot 

account for the differences.  

 

In order to ensure that the reduction in lifespan attributed to adding back essential 

amino acids (EAAs) was not simply due to extreme acidity or alkalinity, the pH of 

the EAA stock solution compared with distilled water alone (DR control) was 

measured. Although, the addition of EAAs increased the pH slightly from pH 5.8 
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(distilled water) to pH 6.9, this pH is neutral and hence is unlikely to be detrimental 

to flies.  

 

 
Figure 4.4: Distinguishing the effects of essential and non-essential amino acids. (a) 

Adding back the 10 essential amino acids (EAAs) accounted for the whole increase in 

fecundity observed in flies fed a DR diet supplemented with all 20 amino acids (10 EAAs 

compared with all 20 amino acids (all AAs), P = 0.05, Wilcoxon). (b) EAAs also decreased 

survival to a similar magnitude seen in fully-fed flies (EAAs compared with fully-fed, P = 

0.17, log-rank). Non-essential amino acid supplementation (N-EAAs) had no effect on 

fecundity, but caused a small, but significant decrease in lifespan compared with DR (P = 

0.011, log-rank). Fecundity assays were performed on days 5, 9, 12, 19, 26, 33 and 40 of 

treatment. * Denotes a significant increase in fecundity (P < 0.0002) when compared with 

DR (black) using the non-parametric Wilcoxon test.  
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4.3.4 Essential amino acids regulate the lifespan / fecundity trade-
off in virgin females 

To determine whether the response of lifespan and fecundity to EAAs is dependent 

upon mating status, the effect of adding back EAA and N-EAAs on non-mated virgin 

flies was assessed relative to the response of dietary-restricted controls. In virgins, 

adding back N-EAAs once again had no effect on fecundity (Figure 4.5a), and 

caused a small but significant decrease in lifespan compared with DR control-fed 

virgins, mirroring the effects observed in once-mated flies. Adding back all 20 amino 

acids caused a drastic increase in fecundity, which, as was the case in once-mated 

flies, was entirely attributable to the EAAs. Furthermore, the increase in fecundity 

associated with adding back EAAs caused a significant decrease in lifespan. 

However, in contrast to once-mated flies, no further reduction of lifespan was seen 

when adding back all AAs compared with adding back EAAs alone.  
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Figure 4.5: Essential amino acids mediate lifespan / fecundity trade-off in virgin 

females. (a) Supplementing the DR diet with non-essential amino acids (N-EAAs) had no 

effect on the fecundity of virgin females (P = 0.51, Wilcoxon). In contrast, adding back 

essential amino acids (EAAs) caused a significant increase in fecundity, similarly to adding 

back all 20 amino acids (all AAs; P = 0.51, Wilcoxon). (b) Adding back N-EAAs caused a 

subtle but significant decrease in lifespan (P = 0.03, log-rank), but not to magnitude seen 

with adding back EAAs (EAAs compared with N-EAAs, P < 0.0001, log-rank). No further 

reduction in lifespan was observed when adding back all 20 AAs (EAAs compared with all 

AAs, P = 0.1, log-rank). Fecundity assays were performed on days 5, 9, 12, 19, 26, 33 and 

40 of treatment. * Indicates a significant increase in fecundity (P < 0.0001) when compared 

with DR (black) using the non-parametric Wilcoxon test. 
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4.3.5 Examining the effects of increasing the concentration of 
essential amino acids in the diet 

EAAs have been shown to account for the entire increase in fecundity and a similar 

reduction in lifespan to full feeding (Figure 4.4). However, the question remains 

whether it is possible to observe a continual trade-off between lifespan and fecundity 

when increasing the concentration of EAAs added back to the DR diet beyond the 

concentration previously used (43mM). If EAAs are the only nutritional group that 

regulate fecundity in this context, one might predict that a further increase in the 

concentration of EAAs should result in a further increase in fecundity. To test this 

hypothesis, EAAs were added back to the DR diet at two and four times the original 

concentration used.  

 

Supplementing the DR diet with an increasing range of EAAs from 43mM to 

172mM resulted in a progressive increase in fecundity with each increasing 

concentration (Figure 4.6a). Adding back twice the concentration of EAAs (86mM) 

significantly increased fecundity compared with adding back the originally used 

concentration of 46mM. When adding four times this amount (i.e. 172mM) an even 

greater increase in fecundity was observed. As the reallocation hypothesis would 

predict, lifespan continued to trade-off with fecundity upon increasing the dose of 

EAAs added back (Figure 4.6b). Lifespan significantly decreased upon doubling the 

concentration of EAAs, and a further reduction was detected when quadrupling the 

concentration. These data further highlight that in Drosophila, essential amino acids 

play a major role in the regulation of both lifespan and fecundity. 
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Figure 4.6: Continual trade-off of lifespan and fecundity with increasing concentrations 

of essential amino acids. (a) Increasing the concentration of essential amino acids (EAAs) 

added-back caused a progressive increase in fecundity at each increasing concentration 

(43mM compared with 86mM EAAs, P = 0.0009; 86mM compared with 172mM EAAs, P = 

0.008, Wilcoxon). (b) In contrast, lifespan progressively decreased with each increasing 

concentration of EAAs added-back (43mM compared with 86mM EAAs, P = 0.009; 86mM 

compared with 172mM EAAs, P = 0.0015, log-rank). Fecundity assays were performed on 

days 6, 9, 13, 16, 20, 27, 34, 43 and 50 of treatment. Error bars represent ± s.e.m. * Denotes 

a significant increase in fecundity (P < 0.0002) when compared with DR (black) using the 

non-parametric Wilcoxon test. 
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4.3.6 Effects of manipulating larval diet on adult lifespan 

It has been suggested that the environment which Drosophila are exposed to as 

larvae can have dramatic effects on adult fitness (Luckinbill and Clare 1986; Zwaan 

et al. 1991; Zwaan et al. 1992; Sorensen and Loeschcke 2001; Tu and Tatar 2003; 

Zwaan 2003; Baldal et al. 2005). To determine whether the reduced lifespan 

observed with increasing the concentration of EAAs added back to the diet was 

solely confined to the adult diet, 1st instar (L1) larvae were individually picked and 

reared at standard density (see section 2.3.3.2) on either control DR and fully-fed 

diets or DR diets supplemented with 43, 86 or 172mM EAAs throughout their 

development until adults emerged. At this point the lifespan of once-mated females 

from all juvenile treatments was measured on a standard 1.0 SY diet.  

 

Exposure to different concentrations of EAAs as juveniles had no effect on the 

subsequent lifespan of adult flies (Figure 4.7). Larvae which had been reared under 

DR conditions had a similar adult median lifespan (62 days) as larvae reared on any 

of the EAA supplemented diets (62-65days). In addition, no effect on lifespan was 

observed in flies that had been reared on a fully-fed diet as larvae (median: 62 days; 

Figure 4.7)  
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Figure 4.7: Adult lifespan not affected by juvenile diets. L1 larvae were reared on five 

different diets until adults emerged and then all females were switched to a standard 1.0 SY 

medium for the duration of their lifespan. Larvae that had been exposed to a DR diet 

supplemented with either 43, 86 or 172mM showed no difference in lifespan compared with 

larvae reared on a DR control diet (P = 0.85 - 0.2, log-rank). In addition, no significant 

difference was observed in flies that had been subjected to a fully-fed yeast diet as larvae (P 

= 0.76, log-rank).  

 

 

4.3.7 Sex specific nutritional effects in adults 

In females, supplementing the DR diet with amino acids during adulthood accounted 

for the whole increase in fecundity seen with full feeding and also significantly 

shortened lifespan, suggesting that amino acids are the key component of the diet 

that regulate a trade-off between lifespan and fecundity. Although DR has been 

reported to extend lifespan in males, the magnitude of response is greater in females 

(Magwere et al. 2004). This raises the possibility that the nutrients that influence 

lifespan in females are not the same in males. 
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To establish whether amino acids had a similar effect on the lifespan of males or 

whether indeed other nutrients played a role, the effects of adding back the same 

concentration of nutritional groups previously applied to females (Table 4.1) were 

subsequently tested in males. Adding back yeast itself (full feeding) had no effect on 

male lifespan compared with DR control-fed flies (Figure 4.8). Furthermore, adding 

back all nutrients together or amino acids alone, both of which caused a significant 

reduction to female lifespan, had no significant effect on the lifespan of male flies. In 

addition, adding back neither vitamins nor lipids had any deleterious effects to male 

lifespan. Interestingly, supplementing the DR diet with carbohydrates caused an 

increase in the median lifespan of males compared with DR (57 and 51 days 

respectively), but the differences amongst the two populations were not statistically 

significant.  

 

Figure 4.8: The lifespan of male Drosophila is not mediated by amino acids in the diet. 

Dietary restriction did not significantly extend the lifespan of males compared with fully-fed 

controls (P = 0.15, log-rank). Supplementing the DR diet with amino acids had no effect on 

lifespan compared with DR (P = 0.62, log-rank). Furthermore, no differences in lifespan 

were observed when adding back lipids (P = 0.5, log-rank), carbohydrates (P = 0.27, log-

rank) or vitamins (P = 0.57, log-rank) compared with DR.   
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4.3.8 Effect of exposure to different add-back diets on subsequent 
starvation resistance 

In addition to lifespan extension and reduced fecundity, another phenotype 

commonly associated with DR in Drosophila is starvation resistance early in life 

(Chippindale et al. 1993; Burger et al. 2007). The fact that amino acids increase 

fecundity and shorten lifespan similarly to full feeding leads to the question whether 

the starvation resistance of DR flies can be explained by the presence of fewer amino 

acids in the diet. This hypothesis was tested by maintaining adult flies (males and 

females) on different add-back diets for seven days before being switch to starvation 

media of 1% agar. 

 

As previously reported (Chippindale et al. 1993; Burger et al. 2007) females 

subjected to a DR diet prior to starvation (section 2.2.4) proved to be starvation 

resistant compared to fully-fed controls (Figure 4.9a). The effect of adding back all 

nutrients appeared to mirror the starvation sensitivity of fully-fed flies, suggesting 

that one or a combination of nutrients may be responsible for starvation sensitivity 

caused by a fully-fed diet. Further analysis revealed that starvation sensitivity was 

attributable to amino acids only. Adding back amino acids reduced the starvation 

resistance of DR flies to a similar magnitude observed with full feeding or adding 

back all nutrients. Exposure to add-back diets containing vitamins, lipids or 

carbohydrates, prior to being switched to starvation medium, had no significant 

effect on starvation response compared to pre-treatment with DR.  

 

In contrast to female flies, males subjected to either full feeding or to an amino acid 

add-back diet did for seven days prior to being transferred to starvation media did not 

show any sensitivity to starvation (Figure 4.9b). Furthermore, DR did not induce 
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starvation resistance in male flies. Interestingly, males fed a DR diet supplemented 

with carbohydrates demonstrated a small but significant resistance to starvation 

compared with DR controls. No other single nutrient add-back diet affected the 

subsequent response of flies to starvation. 

 

Figure 4.9: Starvation responses of flies exposed to different nutritional diets for seven 

days prior to starvation. Flies were maintained on their respective diets for a period of 

seven days before being switched to a starvation media containing 1% agar. (a) Females 

previously fed a DR diet were more resistant to starvation than fully-fed flies (P < 0.0001, 

log-rank). Adding back all nutrients to DR reduced the starvation resistance seen with DR 

alone (P < 0.0001, log-rank), to a similar extent seen with full feeding (P = 0.72, log-rank). 

The starvation sensitivity of fully-fed flies and flies on a DR diet supplemented with all 

nutrients was entirely attributable to amino acids (P = 0.27 - 0.43, log-rank). No significant 

effects on starvation were observed when flies were previous fed DR diets supplemented 

with lipids, carbohydrates or vitamins (P = 0.31 – 0.58, log-rank). (b) In males, DR did not 
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increase starvation resistance compared with fully-fed males (P = 0.11, log-rank). 

Furthermore, no differences in starvation responses were observed in flies fed a DR diet with 

all nutrients (P = 0.58, log-rank) or only amino acids (P = 0.5, log-rank) added back 

compared with DR. Interestingly, flies fed an add-back diet containing carbohydrates 

displayed increased starvation resistance compared with DR controls (P < 0.002, log-rank). 

No effect was observed when adding back vitamins or lipids (P = 0.75 – 0.95, log-rank).  
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4.4 Discussion 

4.4.1 Amino acids and not calories regulate lifespan in Drosophila 

In contrast to the conflicting evidence for and against caloric intake regulating 

lifespan extension by DR in rodents (Yu et al. 1985; Iwasaki et al. 1988; Weindruch 

and Walford 1988; Masoro et al. 1989; Orentreich et al. 1993; Richie et al. 1994; 

Zimmerman et al. 2003; Miller et al. 2005), evidence based on experiments in 

Drosophila strongly suggests that restriction of nutrients as opposed calories regulate 

longevity (Mair et al. 2005; Bass et al. 2007a; Lee et al. 2008; Skorupa et al. 2008). 

A reduction in the concentration of yeast in the diet alone, whilst keeping the sucrose 

concentration fixed, is sufficient to extend lifespan of female Drosophila (Mair et al. 

2005; Bass et al. 2007a; Lee et al. 2008). By breaking down the different nutritional 

components of the yeast and assessing their effects on both lifespan and fecundity, 

the current study confirms recent reports that DR extends Drosophila lifespan 

independent of calories (Mair et al. 2005; Bass et al. 2007a; Lee et al. 2008; Skorupa 

et al. 2008). If an increase in calories accounted for a decrease in lifespan, 

supplementing the DR diet with any type of nutrients would decrease lifespan. 

Instead, only amino acids caused a significant reduction to lifespan, coupled with 

increased fecundity, when added back to the DR diet. Amino acids make up 

approximately 45% of the nutritional content of dry yeast (Bass et al. 2007a), hence 

the fact that they are the key component of the Drosophila diet to regulate lifespan 

and fecundity is perhaps not too surprising. Furthermore, the role of amino acids in 

the reduction of lifespan is supported by studies in flies, worms and yeast showing 

that reduced target of rapamycin (TOR) signalling can extend lifespan (Vellai et al. 

2003; Jia et al. 2004; Kapahi et al. 2004a; Meissner et al. 2004; Kaeberlein et al. 

2005b; Henderson et al. 2006). The TOR pathway is involved in nutrient 
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(particularly amino acid) sensing, hence reduced TOR activity to some extent mimics 

the effect of reduced intake of amino acids.  

 

Since the work presented in this chapter was performed, another study has also 

reported that restriction of amino acids can extend lifespan in Drosophila (Min and 

Tatar 2006b). Using casein as a source of amino acids, the authors of this study 

demonstrated that lifespan can be increased by decreasing casein concentration, a 

finding that had also been previously reported in earlier studies (Hollingsworth 1970; 

Van Herrewege 1974). However, in contrast to the effects of manipulating the 

concentration of dietary yeast (Chippindale et al. 1993; Chapman and Partridge 

1996; Bass et al. 2007a; Lee et al. 2008), no clear increase in fecundity was 

associated with increasing casein concentrations. Flies on the highest casein 

concentration had similar survivorships patterns to flies on 0% casein (starvation), 

but a drastic reduction in fecundity compared to the 10% yeast control-fed flies, 

which were significantly longer lived. This study by Min et al. does not reflect DR as 

observed when restricting dried yeast because the trade-off between lifespan and 

reproduction was not clearly observed (Partridge et al. 2005a; Piper and Partridge 

2007). Instead, their results are likely to be explained by toxicity or reduced 

accessibility to nutrients at higher concentrations due to the viscous nature of casein. 

Furthermore the diet used in the study by Min et al. comprised only casein and 

sucrose. This means that other nutrients essential for supporting healthy lifespan 

(Sang and King 1961) were missing, which might cause false results. The 

interpretation of the results of the casein study is further complicated by the fact that 

males and females were maintained in mixed sex groups throughout the course of the 

lifespan experiments. Although this approach attempts to mimic the situation in the 

wild, performing DR experiments with mixed-sexed groups should be avoided 
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because higher levels of nutrition result in increased re-mating frequencies (section 

1.5.4.2) (Harshman et al. 1988; Chapman and Partridge 1996). This in turn reduces 

lifespan, potentially due to a higher cost of mating or a cost of reproduction 

(Chapman and Partridge 1996; Partridge and Prowse 1997).  

 

In the current study, the negligible effects of supplementing the DR diet with 

vitamins, lipids or carbohydrates on lifespan and fecundity suggest that these 

nutrients are not important in influencing ageing or reproduction in the context 

examined. Previous work in Drosophila has shown that a deficiency of the vitamin 

biotin shortens lifespan and reduces fertility (Landenberger et al. 2004). However, a 

more recent study reported that culturing flies for multiple generations on a biotin-

deficient diet before being switched to a standard diet results in up to 30% lifespan 

extension (Smith et al. 2007b). It is unclear from the add-back studies whether 

biotin, which formed part of the vitamin add-back diet, would have any effect on 

lifespan because the DR diet itself contained basal levels of all nutrients, including 

biotin. Whether or not biotin plays a specific role in lifespan regulation would 

therefore have to be established in a food environment completely devoid of this 

vitamin. In addition to a potential role of biotin in the regulation of lifespan, vitamin 

E has been shown to have variable effects on Drosophila longevity. Intermediate 

concentrations of vitamin E lifespan resulted in lifespan extension, whereas high 

concentrations caused a reduction of lifespan (Driver and Georgeou 2003). As with 

biotin, the semi-defined diet used in this work is likely to contain sufficient amounts 

of vitamin E. The effects of individual vitamins would therefore have to be 

investigated in a defined diet where precise regulation of all nutrients present can be 

achieved.  
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In agreement with carbohydrate supplementation having no effect on lifespan, a 

recent paper has reported that glucose restriction in Drosophila using a defined diet 

approach has very little effect on lifespan (Troen et al. 2006). This is also consistent 

with other reports demonstrating that manipulating carbohydrate concentration in the 

form of sucrose only moderately affects longevity (Mair et al. 2005; Bass et al. 

2007a; Lee et al. 2008). 

 

4.4.2 Do amino acids shorten lifespan as a result of nutrition or 
toxicity? 

Chapter 3 together with the findings of Bass et al. (2007a) highlighted the 

importance of measuring fecundity when working with different diets, to ascertain 

whether the life-shortening effects of a given diet are not simply due to toxicity. A 

reduced lifespan as a result of increased toxicity would be expected to be 

accompanied by reduced fecundity. Hence, although directly testing toxicity is 

difficult, measuring fecundity throughout life is an important way of testing toxicity 

because it provides a parallel indicator of health and nutritional status (Piper and 

Partridge 2007). This means that if adding back amino acids (AAs) to the DR diet 

was simply resulting in a toxic effect and thereby shortening lifespan, one would 

expect to observe no increase or even a large decrease in fecundity. However, the 

fecundity of flies fed a DR diet supplemented with AAs was greatly elevated 

compared with DR controls.  

 

Further evidence that the addition of amino acids results in a nutritional as opposed 

to a toxic effect is demonstrated by the fact that providing flies with a separate water 

supply did not alter the effects observed. It might have been possible that reduced 

water availability or osmotic stress could cause or contribute to the reduction of 
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lifespan attributed to AAs. Providing excess water was not able to rescue the reduced 

lifespan caused by AAs. However, supplementing the DR diet with 0.8 % sodium 

chloride (salt), a known osmotic stressor, caused a similar reduction in lifespan to 

AAs. In contrast to the addition of amino acids, this effect could be completely 

reversed upon addition of a separate water supply. These data suggest that the life-

shortening effect of amino acids is unlikely to be a result of reduced water 

availability or increased osmotic stress.   

 

Indirect evidence which suggests that AAs are shortening lifespan due to nutritional 

and not toxic effects is the fact that females maintained on a DR diet supplemented 

with AAs for seven days before being switched to starvation media display starvation 

sensitivity similarly to flies previously exposed to a fully-fed diet. Adding back 

vitamins, lipids or carbohydrates did not cause subsequent starvation sensitivity, 

suggesting that AAs are mediating a specific nutritional response as opposed to a 

toxic one.  

 

The majority of the experiments to test the effects of nutrients on lifespan and 

fecundity were performed in female flies. However, the effect of adding back the 

major nutritional groups was also performed in male flies. If AAs were simply 

shortening lifespan as a result of increased toxicity in females, one might predict that 

the lifespan of males would also be reduced. However, supplementing the DR diet 

with the same concentration of AAs had no significant effect on male lifespan 

compared to DR.  

 

Whilst these data suggest that the supplementation of amino acids to the DR diet 

provide a nutritional explanation for reduced lifespan as opposed to a toxic one, the 
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further reduction of lifespan when adding back all AAs compared with full feeding 

(without a further increase in fecundity), suggest the increased availability of some of 

the nutrients in this diet may compromise survival without benefiting fecundity. In 

addition, the effect of adding back all AAs or all nutrients together appears to result 

in a slightly different shaped survival curve to that of the control groups (Figure 

4.2b), potentially due to some non-ageing related damage from excess nitrogen in the 

diet. The N-EAAs may account for a large part of this effect because, when added 

back separately from the EAAs, they caused a small but significant reduction in 

lifespan without any positive effect on fecundity. Future work on developing ageing 

markers in Drosophila will be required to shed further light on whether adding back 

amino acids to the diet is causing similar cellular and molecular phenotypes of 

ageing to full feeding.  

 

4.4.3 Essential amino acids mediate the lifespan / fecundity trade-
off 

The addition of amino acids to a DR diet proved to be the only single nutrient 

addition tested that caused an increase in fecundity. To establish whether nitrogen or 

specific AAs were important for the increase in fecundity, the 20 AAs were divided 

into AAs that are thought to be essential (EAAs) and non-essential amino acids (N-

EAAs) (Sang and King 1961). Interestingly, the biological available nitrogen 

concentration, based on the theoretical nitrogen yield that would be available if each 

amino acid was fully catabolised, was greater in the group of N-EAAs (50.6mM) 

compared with the group of EAAs (43.2mM). These differences suggest that 

nitrogen concentration is not important in the regulation of fecundity in this context 

because adding back N-EAAs had no effect on fecundity, despite providing more 



Chapter 4 

 180 

available nitrogen. Instead, the increase in fecundity observed when adding back all 

20 AAs or with full feeding was entirely attributable to the EAAs.  

 

The elevated fecundity of flies fed a DR diet supplemented with EAAs also resulted 

in a marked reduction in lifespan, mimicking fully-fed flies. This result suggests that 

the lifespan / fecundity trade-off under DR is mediated predominantly by EAAs in 

the diet. Hence, it is conceivable that DR extends lifespan through reallocation of 

EAAs away from reproduction and towards maintenance and repair mechanisms, 

with the reverse scenario occurring upon full feeding or an EAA-enriched diet. An 

alternative explanation for the observed effects could be explained by a direct cost of 

high reproductive output, for example through physiological damage to the fly 

(Barnes and Partridge 2003; Partridge et al. 2005b). These two mechanisms need not 

to be mutually exclusive and could thus occur simultaneously. Further evidence that 

either or both of these mechanisms may explain lifespan extension by DR or reduced 

lifespan with full feeding was seen when the concentration of EAAs added back to 

the DR diet was increased. Increasing the concentration of EAAs from 43mM to 

86mM caused an even greater increase in fecundity and decrease in lifespan. 

Furthermore, the fecundity of flies could be elevated even further when increasing 

the concentration to 172mM EAAs. This was accompanied by a further reduction in 

lifespan.  

 

The addition of N-EAAs to the DR diet caused a small, but significant decrease in 

lifespan but had no effect on fecundity, suggesting that adding back N-EAAs in this 

context may result in mild toxicity. The small life-shortening effects attributed to N-

EAAs might be explained by metabolic costs associated with removal of excess 

nitrogen or consequent damage, for instance to the excretory malphigian tubules, the 
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fly equivalent of the mammalian kidney (Wessing 1978). This may also be the cause 

of the further reduction in lifespan compared to full feeding when all 20 AAs were 

added back. 

 

Interestingly, the responses of virgin females to adding back EAAs and N-EAAs 

were almost identical to the responses of once-mated females. In virgins, EAAs 

caused an increase in fecundity coupled with a marked reduction in lifespan, where 

as N-EAAs had no effect on fecundity but caused a fractional decrease in lifespan. 

This would suggest that the nutritional requirements of females for increased egg 

production are independent of their mating status. The production of fertile eggs (in 

once-mated females) appeared to come at a negligible cost on lifespan when 

compared with the production of non-viable eggs (in virgin flies).  

 

4.4.4 Different nutritional demands of male Drosophila 

The dietary restriction protocols used throughout these experiments had been 

optimised for female flies in terms of their effects on lifespan and fecundity (Bass et 

al. 2007a). In our laboratory, no work had previously been carried out to investigate 

the response of male Drosophila to a range of yeast concentrations when using the 

optimised Brewer yeast. Previous work had used a Baker’s yeast diet (Magwere et al. 

2004). Using the same yeast concentration for DR and fully-fed conditions as for 

females, male flies did not exhibit a significant response to DR, which is in contrast 

to the results of the previous study using Baker’s yeast (Magwere et al. 2004). Such a 

result does not seem surprising, when taking into account that there are examples of 

several mutations in components of signalling pathways which robustly extend 

female lifespan but often have a negligible effect or even reduce the lifespan of 
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males. Examples include the insulin receptor (InR) and insulin receptor substrate 

(chico) mutants (Clancy et al. 2001; Tatar et al. 2001). 

 

Males portray a reduced feeding rate compared to females (R. Wong, unpublished 

data). This in turn may mean that males require a different nutritional range, and may 

therefore explain the lack of response to DR. The concentration chosen for DR may 

have been too high or alternatively the concentration chosen for full feeding was too 

low. Ideally, the response of male lifespan should be tested across a range of yeast 

concentrations because it is also possible that the two concentrations picked were to 

the left and right of the concentration at which male lifespan peaks (Figure 1.12). 

Another reason for the lack of a male response to DR may be that, in contrast to 

females, sucrose plays a role in regulating lifespan in males. In the previous DR 

study with males, both the concentration of Baker’s yeast and sucrose was 

simultaneously diluted (Magwere et al. 2004). Although sucrose has a negligible 

effect on female lifespan (Mair et al. 2005; Bass et al. 2007a; Lee et al. 2008), it is 

possible that it may be important in influencing male lifespan.  

 

Despite no evidence of lifespan extension in males when reducing the yeast 

concentration (DR), the effect of adding back amino acids (AAs), carbohydrates, 

vitamins or lipids on lifespan was tested to assess whether individual nutrients have 

any effect on male lifespan when added in isolation. In contrast to females, adding 

back AAs had no effect on male lifespan. Only carbohydrates showed any effect on 

lifespan. Fascinatingly, supplementing a DR diet with carbohydrates caused an 

increase in median lifespan compared with DR control-fed flies. This result would 

suggest that, similarly to females, male lifespan is not regulated by the caloric 

content of the diet. The carbohydrate add-back contained four different components; 
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glycogen, trehalose, lactose and sucrose, with the predominant carbohydrate present 

being glycogen and the least abundant being sucrose (Table 4.1). The addition of 

these carbohydrates to the food may have extended lifespan because they provide a 

plentiful energy supply, supporting the high physical activity of male flies. 

Dissecting the different components of the carbohydrate add-back diet may reveal 

whether specific carbohydrates account for the differences in lifespan observed.  

 

4.4.5 Increased starvation resistance under DR is attributable to 
fewer amino acids in the diet 

Previous reports have suggested that flies subjected to a low yeast diet (DR) show 

resistance to starvation when switched from their food media to a starvation media 

(Chippindale et al. 1993; Burger et al. 2007); however, the resistance to starvation of 

DR-fed flies is only evident early in life (Burger et al. 2007). In the current study, 

young dietary restricted flies also exhibited a stronger resistance to starvation 

compared with fully-fed flies. In order to try and understand the mechanisms behind 

starvation resistance in dietary-restricted flies, specific nutrients that may induce 

starvation resistance on DR food or starvation sensitivity with full feeding were 

tested. Female flies previously exposed to carbohydrate, vitamin or lipid add-back 

diets displayed no starvation sensitivity compared with DR controls. In contrast, 

females exposed to an amino acid add-back diet prior to starvation displayed 

starvation sensitivity that mimicked the response of flies previously exposed to full 

feeding. These results mirrored the lifespan effects observed with the add-back diets, 

where only the addition of amino acids led to a reduction in lifespan. It thus seems 

that amino acids can account for the full differences between DR and fully-fed 

conditions. One possible explanation for this is that flies on fully-fed or an amino 

acid add-back diet, allocate amino acids heavily into reproduction and not somatic 
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maintenance. Hence when a starvation period begins, DR flies are more resistant 

because they have been investing their resources into repair and maintenance and are 

more adapted to survive the starvation period. It was noticeable that up to the first 

two days on starvation media, fully fed flies and flies on the AA add-back diets 

continued to invest resources heavily into reproduction, despite being exposed to 

starvation media.  

 

The responses of males to starvation differed from the responses of females, and 

once again similar trends in results were observed to the lifespan effects of the 

different diets. Prior exposure to the amino acid add-back diet or full feeding had no 

effect on subsequent starvation response compared with the effect of DR. Only 

supplementing the DR diet with carbohydrates evoked a starvation response, 

whereby males subsequently displayed starvation resistance. Thus once again the 

increased lifespan is associated with an increased starvation resistance. The different 

responses of males and females to starvation suggest that different mechanisms may 

be involved. Females appear to be only sensitive to starvation when they have been 

fed a diet enriched with amino acids whereas males display starvation resistance 

upon supplementing the diet with carbohydrates. Another interesting consideration is 

that DR protects against starvation only early in life, and has a negative effect later in 

life (Burger et al. 2007). This aspect was not explored in these studies, but provides 

an interesting basis for further investigation of the effects of different individual 

nutrients on starvation resistance in flies. Fecundity is known to decrease with age 

(Hamilton 1966; Rauser et al. 2003; Burger et al. 2007), therefore fully-fed flies are 

unable to produce the quantities of eggs observed in the first few weeks and hence 

later in life may be able to invest more nutrients towards somatic maintenance and 
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repair than DR flies can, potentially increasing their resistance to starvation. These 

results further highlight the complex sex specific interaction with different nutrients.  

 

Similarly to DR extending lifespan and inducing starvation resistance, albeit in 

young flies, mutations in genes including chico (Clancy et al. 2001) and methuselah 

(Lin et al. 1998) both extend lifespan and increase starvation resistance. In addition, 

ablation of the Drosophila insulin-like peptide producing cells (Broughton et al. 

2005) and over-expression of the Drosophila homologue of apolipoprotein D 

(Walker et al. 2006) lead to similar lifespan extension and starvation resistant 

phenotypes. These data suggest that starvation resistance may serve as a good screen 

for detecting lifespan extending interventions or mutations, with the added advantage 

that starvation assays yield results in a very short time frame (Rose et al. 1992; Wang 

et al. 2004). However, an interesting exception to this hypothesis has been reported 

whereby a negative correlation between lifespan and starvation resistance in five 

wild-caught Drosophila simulans populations was reported (Ballard et al. 2008). 

Further work would be required to dissect further the fascinating interaction between 

longevity and starvation resistance.  

 

4.4.6 Regulation of lifespan by amino acids is confined to adult 
flies 

The environmental conditions in which larvae are reared are known to play a role in 

effecting development time, body size and adult longevity (Luckinbill and Clare 

1986; Zwaan et al. 1991; Zwaan et al. 1992; Sorensen and Loeschcke 2001; Tu and 

Tatar 2003; Zwaan 2003; Baldal et al. 2005). One intervention that delays 

development time and reduces body size is dietary manipulation (Zwaan et al. 1991; 
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Tu and Tatar 2003). However, the effects of manipulating juvenile diets on adult 

lifespan are less clear. Reports as to whether there is a correlation between reduced 

food intake as larvae and extended lifespan as adults are conflicting (Zwaan et al. 

1991; Tu and Tatar 2003). In this study, the effect of DR and in particular increasing 

concentration of amino acids added back to DR was investigated to determine 

whether extreme changes in diet which larvae are exposed to could cause changes to 

adult lifespan. In agreement with Tu and Tatar (2003), no effect on adult lifespan 

was seen when larvae were fed a dietary restricted diet. Furthermore, adult lifespan 

was unaffected by the exposure of larvae to an increasing concentration range of 

EAAs, suggesting that the regulation of lifespan by EAAs is confined solely by the 

adult diet.  

 

4.4.7 Concluding remarks 

The work carried out in this chapter set out to address which nutrients present in the 

dietary yeast can account for the high fecundity of flies maintained on a fully-fed 

diet, and whether some of these same nutrients reduce lifespan as predicted by the 

reallocation of resources hypothesis (Figure 4.1). By adding back different nutrient 

groups to a DR diet, it was shown that essential amino acids mediate the trade-off 

between lifespan and fecundity observed when manipulating the concentration of 

dietary yeast in the food, with other nutrient having negligible effects. Reallocation 

of essential amino acids away from reproduction and towards somatic maintenance 

and repair could hence be the mechanism that extends lifespan under DR in 

Drosophila. However, another explanation could be that a higher concentration of 

essential amino acids in the diet increases fecundity, which shortens lifespan due to 

damage inflicted by elevated fecundity. Alternatively, different essential amino acids 
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could be mediating the responses of lifespan and fecundity. The role of specific 

essential amino acids and possible signalling pathways involved in the response to 

these amino acids will be discussed in chapter 5.  
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5.1 Introduction 

In Drosophila, the effects of dietary restriction (DR) have been shown to be 

regulated by the concentration of the yeast in the diet as opposed to the concentration 

of sucrose, independent of caloric intake (Mair et al. 2005; Bass et al. 2007a; Lee et 

al. 2008). The data presented in chapter 4 clearly revealed that essential amino acids 

(EAAs) are the key component of dietary yeast mediating a direct trade-off between 

lifespan and fecundity. One interpretation of these data could be that DR induces a 

reallocation of EAAs from reproduction and towards somatic maintenance and 

repair, as an evolved response to food shortages in nature (Williams 1966; Kirkwood 

and Holliday 1979; van Noordwijk and de Jong 1986; Holliday 1989; De Jong 1993; 

Kirkwood and Shanley 2005). The observed reduction of lifespan by increasing the 

amount of EAAs present in the diet might also be explained by direct damage 

inflicted by higher reproductive output (Barnes and Partridge 2003; Partridge et al. 

2005a). However, an alternative hypothesis is that individual EAAs regulate lifespan 

and fecundity through independent mechanisms.  

 

To test which of these hypotheses may apply in Drosophila, the role of the individual 

EAAs in regulating lifespan and fecundity would need to be explored more carefully 

to test whether supplementing the DR diet with specific EAAs to the food can 

account for the phenotypes observed in flies fed a diet supplemented with all EAAs 

or with full feeding. In rodents, lifespan can be extended by the restriction of either 

methionine (Orentreich et al. 1993; Richie et al. 1994; Zimmerman et al. 2003; 

Miller et al. 2005) or tryptophan (De Marte and Enesco 1986), both of which are 

essential amino acids for mammals and Drosophila (Sang and King 1961). It is 

therefore important to determine whether extension of lifespan by methionine 
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restriction, for example, is evolutionary conserved between rodents and Drosophila 

or whether this is a “private” mechanism unique to mammals.  

 

The second part of this chapter will highlight the investigation of potential 

mechanisms involved in the responses of flies to EAA-supplemented diets. Some of 

the likely candidate pathways include the TOR/S6K pathway and the IIS pathway. 

Previous work has demonstrated that down-regulation of various components of the 

TOR pathway can extend lifespan in flies, worms and yeast (Vellai et al. 2003; Jia et 

al. 2004; Kapahi et al. 2004a; Meissner et al. 2004; Kaeberlein et al. 2005b; 

Henderson et al. 2006). The TOR pathway is involved in nutrient (particularly amino 

acid) sensing. Hence loss of TOR function may mimic amino acid deprivation. In 

mammals mTOR negatively regulates protein synthesis and positively up-regulates 

autophagy under conditions of reduced nutrients, such as amino acid limitation. In 

Drosophila it appears that the longevity of flies with over-expression of dTsc2 , a 

negative regulator of TOR, is dependent on the level of nutrition, with lifespan only 

being extended on higher food concentrations (Kapahi et al. 2004a).  

 

A second candidate pathway involved in the regulation of the effects of amino acids 

in the diet is the IIS pathway. The insulin receptor is activated by Drosophila insulin-

like peptides (DILPs), which in larvae are primarily secreted in response to increased 

food (particularly carbohydrates) uptake (Brogiolo et al. 2001; Colombani et al. 

2003). However, studies have shown that the IIS pathway plays an important role in 

regulating growth, development, stress resistance, lifespan and reproduction 

(Giannakou and Partridge 2007). The three latter phenotypes are also affected by 

EAAs in the diet, hence a connection between amino acids in the diet and the IIS 

pathway seems possible. In Drosophila, lifespan can be extended by ablation of the 
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median neurosecretory cells (mNSC) (Broughton et al. 2005) which produce DILPs, 

over-expression of dFOXO in the adult fat body (Giannakou et al. 2004) and the 

head fat body (Hwangbo et al. 2004), mutations in the insulin receptor substrate 

protein CHICO (Clancy et al. 2001; Libert et al. 2008), and a specific heteroallelic 

combination resulting in loss of the insulin receptor (Tatar et al. 2001). Furthermore, 

a complex interaction between diet and the longevity of IIS pathway mutants 

suggests that lifespan extension of some of these mutants is dependent on either 

higher levels of nutrition (Clancy et al. 2002; Giannakou et al. 2008; Min et al. 

2008) or lower levels of nutrition (Min et al. 2008). 

 

Both the TOR/S6K and IIS pathways will be investigated for their roles in the 

response to the presence of EAA-supplemented diets to determine whether the 

fecundity increase and lifespan shortening traits observed when adding back all 

EAAs are regulated by either of these pathways.  
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5.2 Methods 

5.2.1 Nutrient add-back diets 

All nutrient additions were prepared as described in chapter 4 (section 4.2.1). 

 

5.2.2 Removal of Wolbachia infection 

Wolbachia was removed from the infected Dahomey population through tetracycline 

treatment, as outlined in section 2.4.5, and was verified by PCR using primers to 

detect the gene for Wolbachia surface protein (wsp) (Braig et al. 1998; Zhou et al. 

1998; Toivonen et al. 2007). 

 

5.2.3 Direct feeding observations 

Feeding assays were performed on the following days: 6, 9, 16, 20, 28, 36 and 43. 

The data presented represents the proportion of flies feeding as a percentage of the 

total number of feeding opportunities (total observations) on each day the assay was 

performed. Detailed methods on feeding behaviour and calibration by measuring 

blue dye uptake are described in sections 2.4.4 and 2.4.5. 

 

5.2.4 Insulin receptor dominant negative flies (section 2.1.3) 

The dUAS-InRDN transgene has an amino acid substitution in the kinase domain 

(arginine 1409 replaced by alanine, R1409A) of the insulin receptor (InR). This 

results in dominant negative behaviour of the protein (Wu et al. 2005). Expression of 

dUAS-InRDN was driven by the ubiquitous and constitutive driver 

daughterlessGAL4 (daGAL4). Both the daGAL4 driver and the effector (UAS-

dInRDN) lines had previously been backcrossed extensively into the white Dahomey 
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(Wdah) background to avoid heterosis16 (section 1.4.4.4). Parental flies were reared 

for one generation at standard density (section 2.3.3) on 1.0 SY medium. Virgin 

females of the Wdah and daGAL4 lines were collected over ice. All lines were 

infected with the intracellular bacteria Wolbachia. The following crosses were setup: 

 

 

1) UAS– dInRDN ♂ x daGAL4 ♀ (virgins)  =  UAS– dInRDN / daGAL4 

2) Wdah ♂ x daGAL4 ♀ (virgins) = daGAL4 / + 

3) UAS- dInRDN ♂ x Wdah ♀ (virgins) = UAS- dInRDN / + 

4) Wdah ♂  x Wdah ♀ = + / + 

 

The cross for the experimental line (1) was set up two days prior to the other three 

crosses because, similarly to other insulin signalling pathway mutant flies (Bohni et 

al. 1999; Tatar et al. 2001), dInR dominant-negative flies are developmentally 

delayed by approximately two days. The first cross was performed with daGAL4 

femlaes and UAS- dInRDN males as opposed to the reciprocal cross to try and ensure 

that was no leaky expression of the driver. The second and third crosses (2 and 3) 

were performed because the driver and UAS lines are homozygous and hence need to 

be crossed to wild type flies (Wdah) to ensure they are heterozygous like the 

experimental line (1). Wild type controls (4) are required to ensure there are no 

insertional effects of the driver. In addition to being developmentally delayed, dInR 

dominant-negative flies are also small (dwarf flies) and have very low fecundity 

compared to controls. These phenotypes are also associated with other insulin 

pathway mutants, including chico homozygotes and some insulin receptor mutants 

(Bohni et al. 1999; Clancy et al. 2001; Tatar et al. 2001). 

                                                
16 Backcrossing of daGAL4 and UAS-dInRDN lines performed by T. Ikeya 
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All crosses were set up in small cages containing a grape plate supplemented with a 

spot of hydrated live yeast. Parents were allowed to lay eggs for a period of eight 

hours before being discarded. L1 larvae from each cross were picked 24 hours later 

and carefully placed into vials containing 1.0 SY medium at a density of 40 larvae 

per vial (section 2.3.3.1). Emerging experimental flies were tipped into fresh bottles 

of 1.0 SY medium and allowed to mate for 48 hours. Females were collected under 

light CO2 anaesthesia and allocated to either a DR control diet, a DR diet 

supplemented with 1.4mM methionine or a DR diet supplemented with all 10 EAAs.  

 

5.2.5 S6 kinase dominant negative flies (section 2.1.4) 

The dUAS-S6KKQ flies were generated by mutating a conserved lysine (K100) in the 

ATP binding site of S6K1 and replacing it with glutamine (Q) (Barcelo and Stewart 

2002). Expression of dUAS-S6KKQ was driven by the ubiquitous daughterlessGAL4 

driver (daGAL4). The daughterlessGAL4 driver (daGAL4) and effector (UAS-

dS6KKQ) lines had previously been backcrossed into white Dahomey17. All lines had 

previously undergone tetracycline treatment, at least five generations before 

experiments began, to remove the intracellular bacterium Wolbachia from the 

population (section 2.4.5). Parental flies were reared for one generation at standard 

density (section 2.3.3) on 1.0 SY medium. Wild type white Dahomey (Wdah) and 

daGAL4 female virgins were collected over ice. Crosses were set up as outlined 

below in 1 litre population cages. Eggs were laid over an eight hour period and 

reared at standard density in bottles containing SY medium. Emerging flies were 

transferred to fresh medium and allowed to mate for 48 hour. Females were collected 

over light CO2 anaesthesia and randomly allocated to either the control DR diet, a 
                                                
17 Backcrossing of daGAL4 and UAS-dS6KKQ performed by C. Slack 
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DR diet supplemented with 1.4mM methionine, or a DR diet supplemented with all 

10 EAAs.  

 

1) UAS–dS6KKQ ♂ x daGAL4 ♀ (virgins)  =  UAS– dS6KKQ / daGAL4 

2) Wdah ♂ x daGAL4 ♀ (virgins) = daGAL4 / + 

3) UAS– dS6KKQ ♂ x Wdah ♀ (virgins) = UAS– dS6KKQ / + 

4) Wdah ♂  x Wdah ♀ = + / + 

 

Ectopic expression of the wild-type UAS-dS6K in the dorsal compartment of the 

wing imaginal disc, under the control of ap-GAL4 driver, causes adult wings to bend 

downwards, suggesting that dorsal surface of the wing is increased due to increased 

growth (Montagne et al. 1999; Barcelo and Stewart 2002). In contrast, due to the role 

of S6K in growth, a dominant-negative form of dS6K when expressed in the dorsal 

wing should have the opposite effect and cause the wings to bend up due to 

decreased growth in the dorsal surface (Barcelo and Stewart 2002). Crossing dUAS-

S6KKQ flies with the ap-GAL4 driver caused the wings to bend upwards slightly, thus 

suggesting that these flies were dS6K dominant-negative18. 

 

 

 

 

 

 

                                                
18 Crossing of dUAS-S6KKQflies with ap-GAL4 flies to confirm dominant negative activity was 
performed by C. Slack. 
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5.3 Results 

5.3.1 Restriction of specific essential amino acids (EAAs) 

The results of chapter 4 highlighted a role for EAAs in mediating both the increase in 

fecundity and reduction in lifespan observed with full feeding. Two of the amino 

acids which make up the EAAs are methionine and tryptophan, which are 

particularly interesting because restriction of either of these two EAAs has been 

shown to extend the lifespan of rodents (De Marte and Enesco 1986; Orentreich et al. 

1993; Richie et al. 1994; Zimmerman et al. 2003; Miller et al. 2005). Using the same 

methodological approach adopted in chapter 4, the effect of adding back all EAAs 

with the exception of either methionine (methionine restriction) or tryptophan 

(trytophan restriction) was assessed to determine whether omission of these specific 

EAAs from the EAA add-back diet could recover the reduced lifespan observed 

when adding back all 10 EAAs. This study enables us to determine whether 

restriction of these amino acids can extend lifespan in Drosophila, as previously 

observed in rodents, hence establishing whether the lifespan extending phenotype of 

restricting these EAAs is evolutionary conserved between flies and rodents. In 

addition, the effect of methionine and tryptophan restriction on fecundity was tested 

to establish whether the presence of either of these two EAAs is essential for the 

increased fecundity observed on the all EAA add-back diet or under full feeding 

conditions. Adding back all EAAs except histidine (histidine restriction) was chosen 

as a control, because it is from a structurally different class of amino acids (basic 

polar) compared to methionine and tryptophan (neutral non-polar), yet forms part of 

the EAA pool.  
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As previously observed, flies fed a DR diet supplemented with all 10 EAAs showed 

a marked increase in fecundity compared with DR controls, similarly to the effects of 

full feeding (Figure 5.1a). In contrast, adding back all EAAs except methionine, 

tryptophan and histidine had no effect on fecundity, suggesting that a combination of 

these three EAAs was required for the increased fecundity observed with full 

feeding. Restriction of either tryptophan or histidine alone restored the full increase 

in fecundity seen when adding back all 10 EAAs. Surprisingly, restriction of 

methionine did not increase fecundity beyond the level seen with DR control flies. 

This suggests that the presence of methionine is essential for the elevated fecundity 

observed when adding back all EAAs together and with full feeding.  

 

The reduced lifespan observed when adding back all EAAs was partially rescued by 

removal of methionine, histidine and tryptophan simultaneously (Figure 5.1b). 

Removal of the amino acids individually showed that this effect was entirely 

attributable to methionine restriction. Removal of methionine alone extended 

lifespan to the same magnitude observed when restricting these three EAAs 

simultaneously. Interestingly, methionine restriction extended lifespan to the same 

extent as the DR control diet, indicating that methionine restriction produced a 

complete rescue in lifespan from the effects of adding back all EAAs. In contrast, 

removal of neither tryptophan nor histidine could rescue the life shortening effects of 

adding back all 10 EAAs.  
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Figure 5.1: Methionine restriction reduces fecundity and extends lifespan in 

Drosophila. (a) Adding back all essential amino acids (EAAs) again caused a significant 

increase in fecundity, to a similar level with full feeding (P = 0.2, Wilcoxon). Adding back 

all EAAs except methionine, tryptophan and histidine resulted in fecundity being reduced 

down to the level seen with DR alone. Furthermore, this reduction in fecundity was entirely 

attributable to methionine restriction (-met) which had no significant effect on fecundity 

compared with DR (P = 0.29, Wilcoxon). In contrast, adding back all EAAs except 

tryptophan (- trp) or histidine (- his) resulted in an increase in fecundity to the level seen with 

supplementation with all EAAs or full feeding (- trp compared with EAAs, P = 0.26; - his 

compared with EAAs, P = 0.65, Wilcoxon). Fecundity assays were performed on days: 6, 9, 

13, 16, 20, 27, 34, 43 and 50 of treatment. (b) Adding back all EAAs except methionine (- 
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met) rescued the reduction in lifespan caused by all 10 EAAs (- met compared with all 

EAAs, P < 0.0015, log-rank). Methionine restriction could fully recover lifespan to the same 

magnitude as DR flies (P = 0.088, log-rank). Conversely, tryptophan (- trp) or histidine (- 

his) restriction was not able to rescue the life shortening effects of adding back all EAAs (- 

trp or - his compared with all EAAs, P ≤ 0.29, log-rank).* Indicates a significant increase in 

fecundity (P < 0.0001) when compared with DR (black) using the non-parametric Wilcoxon 

test. Error bars represent ± s.e.m. 

 

5.3.2 Supplementing the DR diet with methionine 

Adding back all EAAs except methionine (methionine restriction) was shown to have 

no effect on fecundity and could rescue the lifespan shortening effects of adding back 

all 10 EAAs. These results imply that reallocation of methionine away from 

reproduction towards somatic maintenance and repair could be the mechanism 

behind lifespan extension by DR in Drosophila. To determine whether methionine 

alone was sufficient for the entire increase in fecundity seen with adding back all 10 

EAAs, the DR diet was supplemented with 1.4mM methionine (Table 4.1) in the 

absence of all other EAAs (other than those present in the yeast base diet).  

 

Methionine supplementation (1.4mM) caused a significant increase in fecundity 

compared to DR. This increase reached the same magnitude seen when adding back 

all 10 EAAs and under full feeding conditions (Figure 5.2a). Adding back a range of 

methionine concentrations (0.7mM to 13mM) revealed that methionine could 

increase fecundity at each concentration tested (Figure 5.2b). However, no clear 

trend of an additional increase in fecundity was observed with increasing methionine 

concentrations, as had been previously detected when the concentration of all 10 

EAAs was increased (Figure 4.6), suggesting a further increase in fecundity requires 

the addition of other EAAs that may at this point be limiting in the food. 

Interestingly, only 0.7mM, which represents half the concentration of methionine 



Chapter 5 

 200 

originally used, was required to produce the full increase in fecundity observed when 

adding back all 10 EAAs.   

 

 

Figure 5.2 Supplementation of the DR diet with methionine entirely accounts for the 

higher fecundity of fully-fed flies. (a) Adding back methionine (met) alone  at the 

concentration present in the all EAA add-back (1.4mM) increased fecundity to the levels 

seen with all EAAs and full feeding (+ met compared with all EAAs, P = 0.41; + met 

compared with fully-fed, P = 0.10, Wilcoxon). Fecundity assays were performed on days 6, 

9, 13, 16, 20, 27, 34, 43 and 50 of treatment. (b) Adding back methionine in a range of 

concentrations from 0.7 to 13mM caused a significant increase in fecundity at all 
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concentrations compared with DR. No further increase in fecundity was observed when 

adding back higher concentrations of methionine. Fecundity assays were performed on days 

5, 13, 20, 27, 34 and 41 of treatment. * Indicates a significant increase in fecundity (P < 

0.0001) when compared with DR (black) using the non-parametric Wilcoxon test. Error bars 

represent ± s.e.m. 

 

These data reveal that methionine supplementation is sufficient for the increase in 

fecundity observed with full feeding and therefore should trade-off with a reduction 

in lifespan. However, remarkably, the increased fecundity observed upon methionine 

supplementation did not come at a cost of reduced lifespan (Figure 5.3a). No 

differences in lifespan were observed between flies maintained on a DR diet 

supplemented with methionine and DR control-fed flies. In contrast, fully-fed flies or 

flies fed a DR diet supplemented with all 10 EAAs showed a marked reduction in 

lifespan, despite exhibiting an increase in fecundity to a similar magnitude observed 

with methionine supplementation alone. Furthermore, no significant decrease in 

lifespan was observed upon supplementing the DR diet with a range of methionine 

concentrations (Figure 5.3b), again despite these additions all significantly increasing 

lifetime fecundity. 
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Figure 5.3: Methionine supplementation has no effect on lifespan. (a) Adding back 

methionine (met) at the concentration found in the all essential amino acid (EAA) add-back 

diet (1.4mM) caused no significant effect on lifespan compared with DR (P = 0.89, log-

rank). As previously observed, adding back all essential amino acids (all EAAs) significantly 

reduced lifespan (P < 0.0001, log-rank) to a similar extent to full feeding (P = 0.63, log-

rank). (b) No significant decrease in lifespan was detected in flies fed DR diets supplemented 

with a range of methionine concentrations (0.7 to 13mM) compared with DR control flies (P 

≥ 0.25, log-rank). 
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5.3.3 A further increase in fecundity requires the presence of 
other EAAs 

Despite methionine supplementation alone causing a remarkable rise in fecundity, 

increasing the concentration of methionine further (than the initially used 

concentration) did not increase fecundity beyond a threshold (Figure 5.2a). This 

suggests that methionine is limiting in the DR diet for fecundity as opposed to acting 

as a signal regulating fecundity. In contrast, increasing the concentration of all EAAs 

added back was sufficient to cause a dose-response effect on both fecundity and 

lifespan (Figure 4.6). Therefore, the addition of other, now limiting EAAs should 

result in a further fecundity increase in flies fed methionine-supplemented diets, 

which proved to be the case. Increasing the concentration of all EAAs, whilst 

keeping the concentration of methionine fixed at 1.4mM, caused a further increase in 

fecundity (Figure 5.4a). However a plateau was reached at a higher concentration of 

EAAs (84mM) whereby methionine was once again limiting. Supplementing the DR 

diet with a higher concentration of methionine (6.5mM) followed by increasing the 

concentration of all other EAAs lead to a progressive increase in fecundity with each 

concentration increase. As previously observed, when increasing the concentration of 

all 10 EAAs (Figure 4.6), a further increase in fecundity was coupled with a greater 

decline in survival at both methionine concentrations tested (Figure 5.4b).  
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Figure 5.4: Increasing fecundity associated with higher concentrations of essential 

amino acids depends upon sufficient methionine concentration in the diet. (a) In the 

presence of a low concentration (1.4mM) of methionine (met), increasing the concentration 

of all other essential amino acids (EAAs) increased fecundity until a plateau was reached 

(84mM EAAs) after which no further effect on fecundity was observed upon the addition of 

increased concentration EAAs (84mM compared with 168mM, P = 0.82, Wilcoxon). Adding 

back a higher concentration of methionine (6.5mM) and increasing the concentration of all 

other EAAs to 168mM resulted in a further increase in fecundity compared with flies fed the 

same concentration of EAAs with only 1.4mM methionine added back (P = 0.0015, 

Wilcoxon). (b) Lifespan decreased with each increasing EAA concentration added back in 

the presence of low (triangles) and higher (circles) concentrations of methionine. Fecundity 

assays were performed on days 6, 9, 13, 20, 27, 37 and 41 of treatmen. Error bars represent ± 

s.e.m. 
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5.3.4 Methionine supplementation does not alter feeding 
behaviour 

One possible explanation for the increased fecundity of flies fed a DR diet 

supplemented with methionine could be elevated feeding in response to methionine. 

To test this hypothesis, direct feeding observations were performed by examining 

proboscis extension (Mair et al. 2005) at intervals throughout life (section 2.4.4). 

Direct feeding observations revealed that there was no trend towards elevated 

feeding of flies fed DR diets supplemented with either methionine or all EAAs on 

any given day the assay was performed (Figure 5.5). As previously reported using 

this method (Mair et al. 2005; Wong et al. 2008), DR control flies did not 

compensate by increasing their feeding rate compared with fully-fed yeast controls. 

 

In order to suitably calibrate feeding behaviour with the rate of food intake, the 

feeding behaviour of flies on blue dye labelled food was measured for a period of 

half an hour (on day seven on treatment) prior to measuring absorbance of blue dye 

in the flies (section 2.4.4.1). This method of calibration has previously been adopted 

in the assessment of the food intake of dietary-restricted and fully-fed flies (Wong et 

al. 2008). No significant differences were detected in feeding behaviour on DR diets 

supplemented with either methionine or all EAAs compared with DR and fully-fed 

controls on blue-labelled food (Figure 5.6a). In agreement with the assessment of 

proboscis extension, no significant differences were detected in blue dye uptake 

between DR control flies and fully-fed controls, or flies fed DR diets supplemented 

with either methionine or all EAAs (Figure 5.6b). These results imply that the 

differences in fecundity between DR control-fed flies and flies fed DR diets 

supplemented with methionine or all EAAs can not be attributed to an increase in 

feeding frequency or food uptake. 
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Figure 5.5: Feeding behaviour is unaffected by methionine supplementation. Adding 

back 1.4mM methionine to the DR diet had no significant effect on feeding behaviour, as 

assessed by proboscis extension assays, on any given day compared with flies maintained on 

DR diet (P ≥ 0.07). In addition, no significant differences were detected between fully-fed 

flies or flies fed a DR diet with all essential amino acids (all EAAs) added back compared 

with DR controls on any given day, with the exception of day 16 where a small but 

significant increase in feeding behaviour was detected (P = 0.036). Feeding assays were 

performed on days 6, 9, 16, 20, 28, 36 and 43 of treatment. Error bars represent ± s.e.m. 
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Figure 5.6: Methionine supplementation has no effect on food uptake. 

(a) To calibrate feeding behaviour by rate of dye uptake, flies were maintained on their 

respective food types for seven days and subsequently transferred to their respective diet 

containing 2.5% blue dye. Feeding behaviour was observed during a 30 minute assay. No 

significant differences were observed in feeding behaviour between flies fed the DR diet and 

DR diets supplemented with either methionine (P = 0.78), all essential amino acids (EAA; P 

= 0.42) or fully-fed control flies (P = 0.69). (b) Following the 30 minute feeding behaviour 

assay on blue labelled food, blue dye uptake was measured by homogenising the flies in 1ml 

distilled water and measuring the absorbance of the filtered liquid sample with a 

spectrophotometer (see supplementary methods). The amount of food ingested was 

calculated from a standard curve. No significant differences were detected in blue food 

uptake by flies fed the DR diet and DR diets supplemented with either methionine (P = 

0.34), all EAAs (P = 0.14) or fully-fed control flies (P = 0.39). Error bars represent ± s.e.m. 
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5.3.5 Effects of methionine supplementation cannot be explained 
by the presence of Wolbachia 

To assess whether Wolbachia, or another intracellular bacterium, may be mediating 

the increased fecundity associated with methionine supplementation in the diet, 

fecundity and lifespan were measured in Dahomey flies from which the Wolbachia 

infection had been removed by treatment with tetracycline (refer to section 2.4.5).  

 

Firstly, Wolbachia removal from the experimental generation was verified by PCR 

(Figure 5.7a) using primers to detect the gene for Wolbachia surface protein (wsp) 

(Braig et al. 1998; Zhou et al. 1998; Toivonen et al. 2007). As previously observed 

in a Wolbachia-infected background (Figure 5.2), adding back methionine resulted in 

an increase in fecundity mirroring the increased observed when adding back all 10 

EAAs (Figure 5.7b). Furthermore, the increase in fecundity with methionine 

supplementation was not accompanied by a decrease in lifespan (Figure 5.7c). In 

contrast, adding back all 10 EAAs once again resulted in a significant reduction in 

lifespan compared with DR control-fed flies. In conclusion, the presence of 

Wolbachia had no effect on the responses of flies to methionine or EAA add-back 

diets. 
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Figure 5.7: Longevity and fecundity phenotypes due to methionine supplementation not 

explained by presence of Wolbachia. Wolbachia infection was detected by using primers 

specific to Wolbachia surface protein (wsp). (a) The original Dahomey stock is infected with 

Wolbachia (left lane), which was removed permanently following two generations of 

tetracycline treatment (right lane). Adding back methionine resulted in a significant increase 

in fecundity compared with DR in Wolbachia-free flies (P < 0.0002, Wilcoxon), to a similar 

magnitude seen with the addition of all essential amino acids (EAAs) (P = 0.5, Wilcoxon). 

Fecundity assays were performed on days 6, 9, 13, 20, 27, 37 and 41 of treatment. (b) No 

decrease in lifespan was observed when methionine as added-back compared with DR (c; P 

= 0.67, log rank), but a significant reduction was detected in flies fed an add-back diet 

containing all EAAs (P < 0.0001, log-rank). Error bars represent ± s.e.m. 
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5.3.6 Assessing the effects of individual essential amino acids on 
lifespan 

Supplementing the DR diet with methionine alone caused elevated fecundity (up to 

the magnitude observed with full feeding and with adding back all 10 EAAs) without 

any detrimental effects to lifespan. This poses the question as to which EAAs are 

causing the life-shortening effects seen when adding back yeast itself (full feeding) 

or all 10 EAAs together. To address this question, each EAA was added back to DR 

individually at the same concentration that was present when adding back all 10 

EAAs together (Table 4.1).  

 

Flies showed no differences in fecundity in response to adding back any of the EAAs 

individually, with the exception of methionine as previously reported (Figure 5.8a). 

By plotting lifetime fecundity against the biologically available nitrogen added back, 

it is clear that the increase in fecundity associated with methionine supplementation 

can not be explained by an increase in available nitrogen concentration, relative to 

the other EAAs. Adding back leucine provided the highest concentration of 

biologically available nitrogen (7.2mM), whilst adding back tryptophan (0.9mM) and 

methionine (1.4mM) provide the least. Adding back each EAA individually also 

revealed no significant effect on lifespan compared with DR, indicating that none of 

the EAAs alone could be responsible for the life-shortening effects observed when 

adding back all 10 EAAs together (Figure 5.8b). Methionine supplementation once 

again revealed that fecundity can be increased without any detrimental effects on 

lifespan. These data suggest that the life-shortening effects of full feeding or adding 

back all 10 EAAs are attributable to an increase in the presence of several EAAs in  

the diet.  
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Figure 5.8: Effect of adding back individual essential amino acids on lifespan and 

fecundity. (a) Fecundity plotted against the concentration of biologically available nitrogen 

added-back to the DR diet arising from single EAA additions (see Table 4.1). Only 

methionine addition (+ met) significantly increased fecundity compared with DR (+ met 

compared with DR, P = 0.0001, Wilcoxon) and this was not attributable to a higher 

concentration of biologically available nitrogen compared with the addition of other EAAs. 

No other single EAA addition significantly increased fecundity compared with DR (P ≥ 

0.27, Wilcoxon). (b) Supplementation of the diet with each essential amino acid singly had 

no significant effect on lifespan (P ≥ 0.3, log-rank), whereas adding back all EAAs together 

significantly shortened lifespan (P < 0.0001). Fecundity assays were performed on days 6, 

10, 17, 24, 30, 37 and 44 of treatment.  
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Earlier in this chapter it was shown that adding back all EAAs except methionine 

(methionine restriction) rescues the reduced lifespan of adding back all 10 EAAs 

(Figure 5.1b). Although methionine supplementation alone does not reduce lifespan, 

it is apparent that, in the presence of an excess of other EAAs, methionine is playing 

a key role in regulating lifespan. To investigate this role further and to assess the 

effect of increasing the number of amino acids, EAAs were added back in groups of 

2, 4, 6, 8 and 10 with methionine always being present. The EAAs that made up each 

group were chosen alphabetically to ensure the groups consisted of random structural 

and functional amino acids. For example, the 2 EAA add-back contained arginine 

and methionine, the 4 EAA add-back contained arginine, histidine, isoleucine and 

methionine, the 6 EAA add-back contained arginine, histidine, isoleucine, leucine, 

lysine and methionine, etc.  

 

Adding back an increasing number of EAAs produced a partially graded response, 

whereby lifespan began to decrease upon adding back 6 EAAs (Figure 5.9). Lifespan 

decreased to a greater extent upon adding back 8 EAAs and a further decrease was 

seen with 10 EAAs. In contrast, no significant effect on lifespan was observed with 

the addition of 2 or 4 EAAs to the DR medium. These results suggest that the life-

shortening effects with full feeding are not attributable to specific amino acids, but 

are a result of a combination of all EAAs.  



Chapter 5 

 213 

 
Figure 5.9: Effect on female lifespan of increasing the number of EAAs added back to 

the DR diet. In the presence of excess methionine (1.4mM), increasing the number of EAAs 

added back to the DR diet produced a partially graded effect of lifespan, with lifespan being 

reduced upon the addition of 6 or more EAAs to DR (P ≤ 0.02, log-rank). No significant 

differences were observed between flies fed DR diets with 4 or fewer EAAs added back (P ≥ 

0.11, log-rank).  

 

 

5.3.7 Investigating potential mechanisms mediating responses to 
EAAs and methionine supplementation 

To investigate possible mechanisms involved in regulating the different responses of 

lifespan and fecundity to adding back all EAAs and methionine alone, two candidate 

pathways were targeted, the insulin / IGF-1 (IIS) signalling pathway and the TOR 

pathway. These pathways were chosen because down-regulation of several 

components of both the IIS and TOR pathway has been shown to extend lifespan in 

Drosophila and other model organisms (Friedman and Johnson 1988; Clancy et al. 

2001; Holzenberger et al. 2003; Vellai et al. 2003; Kapahi et al. 2004a; Kaeberlein et 

al. 2005b; Taguchi et al. 2007). Moreover, in Drosophila, lifespan extension of some 
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of these mutants is conditional on diet (Clancy et al. 2002; Kapahi et al. 2004a; 

Giannakou et al. 2008; Min et al. 2008).  

 

Insulin receptor dominant-negative flies (dInRDN) were chosen because although 

they exhibit reduced fecundity, they are not sterile like for example chico 

homozygotes (Bohni et al. 1999; Clancy et al. 2001) and some insulin receptor trans-

heterozygotes (Tatar et al. 2001). Therefore, dInRDN flies could be used to 

determine whether down-regulation of the IIS pathway can block the elevated 

fecundity caused by the adding back methionine or all 10 EAAs to the DR diet. 

Furthermore, dInRDN flies also exhibit a substantial and reproducible lifespan 

extension phenotype on standard food (T. Ikeya, unpublished data), characteristic of 

several other mutant flies with reduced IIS signalling (Clancy et al. 2001; Tatar et al. 

2001; Giannakou et al. 2004; Hwangbo et al. 2004; Broughton et al. 2005). To test 

the effect of mutants with reduced TOR signalling, dS6K dominant-negative flies 

were chosen. These have previously been reported to be long-lived (Kapahi et al. 

2004a), although no lifespan experiments have been performed in our laboratory 

using these flies on our optimised diet (Bass et al. 2007a). Kapahi et al. (2004) also 

reported lifespan extension in a range of other flies with down-regulated TOR 

activity; including dTsc1, dTsc2 over-expressers and dTOR dominant-negative flies. 

However, our laboratory has failed to confirm lifespan extension of any of these flies 

on a range of diets and hence these flies were not suitable for experiments assessing 

the role of the TOR pathway in the lifespan and fecundity effects mediated by amino 

acid add-back diets (T. Bass, unpublished data).  
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5.3.7.1 dS6 kinase dominant-negative flies exhibit increased fecundity in the 

presence of amino acids 

In conflict with a previously published study reporting that that dS6K dominant-

negative flies (UAS– dS6KKQ / daGAL4) are long lived (Kapahi et al. 2004a), no 

lifespan increase was detected on any of the diets tested (Figure 5.10a). Adding back 

all 10 EAAs shortened lifespan in the three control lines as well as the dS6K 

dominant-negative experimental line, all to a similar magnitude. As previously 

reported in Dahomey populations, supplementing the DR diet with methionine had 

no effect on the control lines or the experimental line.  

 

In contrast to the absence of lifespan effects of the add-back diets on dS6K dominant 

negative flies, interesting changes in fecundity were observed. Adding back 

methionine or all EAAs caused a significant increase in fecundity in all lines 

compared with the respective DR control lines (Figure 5.10b). However, the increase 

in fecundity from adding back methionine in this study was not quite to the same 

magnitude observed when adding back all EAAs, as had previously been observed in 

Dahomey flies (Figure 5.2a). Fascinatingly, the fecundity of the dS6K dominant-

negative flies fed an EAA add-back diet was significantly higher than any of the 

three control lines fed the same diet. 
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Figure 5.10: The effects of different diets on flies with reduced TOR activity. (a) The 

effect of fecundity of control lines and dS6K dominant-negative flies (UAS-dS6KKQ / 

DaGAL4) to a control DR diet and DR diets supplemented with either methionine (Met) or 

all EAAs. Fecundity was increased in all lines upon supplementation with methionine (P ≤ 

0.0012, Wilcoxon) or EAAs (P ≤ 0.0002, Wilcoxon), relative to DR. dS6K dominant-

negative flies fed EAA add-back diets exhibited an increase in fecundity to a greater 

magnitude compared to control lines fed the same diet (P < 0.0005, Wilcoxon when 

compared to the most fecund EAA control line). (b) No significant increase in lifespan was 

detected in dS6K dominant-negative flies on any food treatment, relative to controls (P ≥ 0.1, 

log-rank). The addition of EAAs to the DR diet significantly shortened lifespan in all lines 

compared with DR (P < 0.0001, log-rank for all comparisons). In contrast, methionine 

addition had no significant effect on lifespan in any of the lines (P ≥ 0.17, log-rank). 

Fecundity assays were performed on days 5, 13, 17, 24, 31, 38 and 45 of treatment. Error 

bars represent ± s.e.m. 
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5.3.7.2 Insulin receptor dominant negative (InRDN) 

As previously observed in other IIS pathway mutant flies including chico 

homozygotes, mNSC-ablated flies and some insulin receptor mutants (Clancy et al. 

2001; Tatar et al. 2001; Broughton et al. 2005), dInRDN  (UAS-dInRDN / daGAL4) 

flies also exhibited a severe reduction in fecundity on all diets, but were not 

completely sterile (Figure 5.11a). Supplementing the DR diet with all 10 EAAs or 

methionine alone was sufficient to cause a drastic increase in fecundity in all three 

control lines compared with DR. However, similarly to the effect in dS6K dominant-

negative experiment, the magnitude of fecundity increase in control lines was 

marginally greater in the presence of all EAAs compared with methionine. 

Interestingly, supplementation of methionine did not increase the low fecundity of 

dInRDN flies (P = 0.45, Wilcoxon), and only a small but significant increase in 

fecundity was observed when these flies were fed a diet supplemented with all 10 

EAAs (P = 0.004, Wilcoxon). Furthermore no significant differences were detected 

between fecundity of dInRDN on methionine and EAA-supplemented diets (P = 

0.07, Wilcoxon) suggesting that dInRDN can almost entirely block the increase in 

fecundity in response to methionine or all EAAs.  

 

Lifespan of all control lines fed diets supplemented with all EAAs was reduced 

(Figure 5.11b). Again, methionine supplementation, despite increasing fecundity in 

these lines, had no significant effect on lifespan (P ≥ 0.59, log-rank). dInRDN flies 

exhibited a further extension of lifespan on all three diet, although the magnitude 

observed differed dramatically. dInRDN flies fed a control DR diet displayed a 

further increase in lifespan compared to controls (16-33% extension of median 

lifespan; P < 0.0001, log-rank). A similar extension of lifespan was detected in 

dInRDN fed a methionine-supplemented diet (16-33% extension of median lifespan; 
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P < 0.0001, log-rank). However dInRDN flies fed a diet supplemented with all 10 

EAAs exhibited an extension of median lifespan between 67-95% compared with 

controls fed EAA-supplemented diets (P < 0.0001, log-rank), indicating that the life-

shortening effect of EAAs was at least partially rescued in dInRDN flies. However, 

the lifespan of dInRDN flies fed the EAA add-back diet was not quite extended to the 

magnitude seen with the even longer lived dInRDN flies on a DR diet or on a 

methionine-supplemented diet, with flies on these treatments being 9% longer-lived 

P < 0.0001, log-rank).  

 

Despite the fact that both the daughterless GAL4 and UAS-dInRDN lines had been 

extensively backcrossed into the white Dahomey wild-type background, the 

daughterless GAL4 heterozygous control line appeared to be slightly longer-lived 

than the wild-type and UAS-dInRDN control lines. However, importantly the 

dInRDN experimental lines were still significantly longer lived than the daughterless 

GAL4 (longest lived control) on all three diets tested, validating the lifespan 

extension of the dInRDN flies.  
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Figure 5.11: The effects of different diets on flies with reduced IIS signalling. (a) 

Fecundity of control lines and dInRDN flies (UAS- dInRDN / DaGAL4) fed a control DR 

diet or a DR diet supplemented with either methionine (Met) or all EAAs. All control lines 

exhibited elevated fecundity in response to adding back methionine (P ≤ 0.0002, Wilcoxon) 

or all EAAs (P ≤ 0.0001, Wilcoxon) compared to flies fed DR diets. dInRDN flies on all 

diets showed a marked reduction in fecundity relative to controls, and either no increase or a 

negligible increase in fecundity was seen in these flies upon supplementing the DR diet with 

methionine or EAAs. (b) dInRDN flies were longer lived on all diets compared with control 

lines; however, the magnitude of lifespan extension was greatest when dInRDN flies were 

fed a DR diet supplemented with EAAs (red triangle line). Fecundity assays were performed 

on days 4, 8, 15, 22, 24, 29 and 36 of treatment. Error bars represent ± s.e.m. 
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5.4 Discussion 

5.4.1 Extension of lifespan by methionine restriction might be 
evolutionary conserved 

In rodents, dietary restriction can extend lifespan through intermittent every other 

day (EOD) feeding and through a reduction in the quantity of food provided 

compared to ad libitum-fed cohorts. Despite earlier evidence suggesting that calories 

are the key component of the diet that regulate ageing in rodents (Iwasaki et al. 1988; 

Weindruch and Walford 1988; Masoro et al. 1989), other studies investigating the 

effects of specific amino acids have suggested this may not be the case.  For 

example, restriction of a single essential amino acid, methionine, can extend the 

median and maximum lifespan of both rats (Orentreich et al. 1993; Richie et al. 

1994; Zimmerman et al. 2003) and mice (Miller et al. 2005). In addition, maximum 

but not median lifespan of male mice can be extended by restriction of another 

essential amino acid, tryptophan (De Marte and Enesco 1986).  

 

Using the add-back approach, the data presented demonstrate that methionine 

restriction extends both median and maximum lifespan in Drosophila. Adding back 

all EAAs except methionine significantly rescued the reduced lifespan observed 

when adding back all ten EAAs, and resulted in a lifespan of similar magnitude as 

DR. Moreover, the mechanism of lifespan extension by methionine restriction in 

Drosophila might have been explained by the reallocation of resources hypothesis 

because methionine-restricted flies also displayed reduced fecundity, similarly to DR 

flies. In contrast flies fed an add-back diet containing all EAAs displayed 

significantly higher fecundity coupled with reduced lifespan, resembling fully-fed 

yeast control flies. Hence, from the results of this experiment, it appears that lifespan 
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extension under DR may occur due to reallocation of methionine from reproduction 

and towards somatic maintenance.  

 

In contrast, adding back all EAAs except tryptophan or histidine did not affect the 

high fecundity observed when adding back all 10 EAAs. Interestingly, early work 

from Sang and King (1961) on creating an axenically defined diet for Drosophila 

adults revealed that although omission of each individual EAA caused a significant 

reduction in egg-laying, removal of methionine, histidine or arginine for up to eight 

days did not completely arrest egg-laying. Conversely, removal of any of the other 

seven EAAs for this duration of time caused egg-laying to cease (Sang and King 

1961). Hence, the results from Sang and King (1961) would suggest that methionine, 

in the context of a defined diet, is not as important for egg-laying as several of the 

other EAAs. However, although methionine does not regulate egg-laying per se, its 

presence is clearly essential for elevated fecundity in the context of the Drosophila 

diet used in these experiments when adding back all other EAAs.  

 

Since performing these add-back experiments, another paper has also reported, using 

a defined diet approach, that Drosophila lifespan can be extended by methionine 

restriction (Troen et al. 2006). However, this study did not test the response of 

fecundity to the chemically defined diets. In addition, no dietary yeast control 

conditions were used, which their defined diets were based on, hence any potential 

differences in lifespan could have arisen as a result of toxicity. Excess methionine 

intake has been shown to be extremely toxic in mammals, with its toxicity being 

higher than that caused by excessive intake of any other amino acid (Harper et al. 

1970). The concentration of methionine used by Troen et al. (Troen et al. 2006) in 

the high methionine diet represented an extremely high concentration  at 4.05 g/L 
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(0.405%), and lifespan was shown to be extended when this concentration was 

reduced to 1.35 g/L (0.135%), but no further extension of lifespan was detected when 

methionine concentration was reduced to 0.45 g/L (0.045%). Using the add-back 

approach, the addition of the equivalent molar concentration of adding back all 10 

EAAs (43mM) suggests that reducing the concentration of methionine from 4.05g/L 

(Troen et al. 2006) could have extended lifespan through relief from toxicity. Adding 

back 43mM (equivalent to 6.433 g/L), which represented a higher dose than used by 

Troen et al., resulted in a drastic reduction in lifespan and decrease in fecundity 

(Figure 5.12), indicating severe toxicity at this level similar to the effect of excess 

methionine intake in mammals (Harper et al. 1970). It is possible that the toxic 

effects begin at 4 g/L or slightly lower, and only through measuring daily and 

lifetime fecundity would the nature of lifespan extension seen by Troen et al. (2006) 

be more conclusive.  

 

Figure 5.12: The adverse effects of high concentrations of methionine in the diet. 

Supplementing the DR diet with 6.4g (43mM) methionine (Met) results in a significant 

reduction in lifespan (P < 0.0001, log-rank), coupled with a marked reduction in fecundity 

(inset; P < 0.0001, Wilcoxon).  
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Lifespan extension as a result of methionine restriction in rodents and Drosophila 

may be explained by a reduction in protein synthesis, which is known to decline with 

age (Makrides 1983). The start codon of all protein-encoding mRNA sequences 

codes for methionine and hence reduced methionine intake could potentially cause 

either a slower turn over of proteins or simply reduced production of proteins. 

However, from extensive work, particularly on rats, unexpectedly protein synthesis 

and turnover appears to be greater in dietary/calorically-restricted animals (Lewis et 

al. 1985; Merry and Holehan 1985; Merry and Holehan 1991; Ward and Richardson 

1991). Nonetheless, support for the hypothesis that reduced protein synthesis can 

extend lifespan is evident in three recent studies on C.elegans (Hansen et al. 2007; 

Pan et al. 2007; Syntichaki et al. 2007a). These studies demonstrated that inhibition 

of different genes in the translation initiation complex, including the initiation factor 

eIF4E (IFE-2), a principle regulator of protein synthesis, and reducing the levels of 

S6K extended the lifespan of nematodes (Hansen et al. 2007; Pan et al. 2007; 

Syntichaki et al. 2007a). Further analysis into mechanisms underlying lifespan 

extension by methionine restriction in rodents and Drosophila should shed more light 

on whether reduced protein synthesis is responsible.  

 

In contrast to rodents (De Marte and Enesco 1986), no lifespan extension was 

detected when adding back all EAAs except tryptophan (tryptophan restriction). 

However, it is important to consider that the magnitude of lifespan extension 

observed in rodents by tryptophan restriction was negligible, with only the maximum 

lifespan being significantly extended (Figure 5.13a) (De Marte and Enesco 1986). 

This is in contrast to the magnitude of lifespan extension reported with methionine 

restriction in rodents, which extends both median and maximum lifespan (e.g. Figure 

5.13b) (Orentreich et al. 1993; Richie et al. 1994; Zimmerman et al. 2003; Miller et 
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al. 2005). Although tryptophan restriction cannot explain lifespan extension by DR 

when reducing the yeast concentration, the presence of tryptophan in the diet may 

influence ageing when found at higher concentrations. This could be tested by using 

a range of tryptophan concentrations in a synthetically defined diet.  

 

 

Figure 5.13: A comparison of the effects of tryptophan and methionine restriction in 

male rodents. (a) Restriction of tryptophan (trp rest.) causes negligible lifespan extension in 

male mice compared with a control-fed cohort (26% ptn). (Taken from De Marte and Enesco 

1986). (b) Methionine restriction (0.17%) in male rats causes a substantial increase in both 

median and maximum lifespan compared with mice fed control levels of methionine 

(0.86%). (Taken from Zimmerman et al. 2003). 

 

 

Histidine restriction, similarly to tryptophan restriction in this context, had no effect 

on lifespan. Although no previous work has pointed to a link between histidine 

Figure removed due to copyright conflict 
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restriction and lifespan extension in any organism, histidine was an interesting 

candidate not only because of its structural difference to methionine and tryptophan 

(Figure 5.14), but also because of previous work performed on slimfast, a known 

cationic amino acid transporter in insects (Bradley and Leevers 2003; Colombani et 

al. 2003; Attardo et al. 2006). Down-regulation of slimfast specifically in the larval 

fat body has been shown to cause a ubiquitous growth defect (Colombani et al. 

2003), similarly to rearing larvae in a nutritionally-poor environment. This makes 

slimfast a potential candidate to extend lifespan in Drosophila because mutations in 

several of the components of the IIS or TOR pathways also lead to growth defects 

and extend lifespan (Bohni et al. 1999; Clancy et al. 2001; Tatar et al. 2001; 

Marygold and Leevers 2002; Kapahi et al. 2004a).   
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Figure 5.14: Chemical structures of the essential amino acids. Methionine and tryptophan 

are both neutral and non-polar whereas histidine is structurally and chemically different 

(basic and polar). Methionine is notably the only sulphur-containing EAA. Figures adapted 

from: A review of amino acids19. 

 

 

 

 

                                                
19 A review of amino acids. Curtin University of Technology, 
http://www.biomed.curtin.edu.au/biochem/tutorials/AAs/AA.html 
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5.4.2 Lifespan extension by DR cannot be explained by 
reallocation of resources 

All previous experiments performed in chapters 3, 4 and 5 have pointed to a strong 

trade-off between lifespan and fecundity when applying DR in female Drosophila. 

By determining the nutrients that regulate lifespan and fecundity during DR, it was 

apparent that amino acids and particularly essential amino acids were mediating this 

trade-off. Furthermore, adding back all EAAs except methionine reduced fecundity 

to the level observed with DR-fed flies and extended lifespan compared with the high 

fecundity and reduced lifespan observed in flies fed a fully-fed yeast diet or an add-

back diet with all EAAs. These data suggest that reallocation of methionine from 

reproduction to lifespan may be the mechanism that extends lifespan by DR in 

Drosophila. However, addition of methionine alone to the DR diet could account for 

the entire increase in fecundity observed with full feeding and adding back all EAAs, 

but in contrast has no significant effect on lifespan. This was also observed when 

adding back a greater range of methionine concentrations to the diet which all caused 

a marked increase in fecundity without any cost in terms of reduced lifespan.  

 

These data not only suggest that methionine is limiting for fecundity in the DR diet, 

but more importantly highlight that high fecundity and extended lifespan need not be 

mutually exclusive. Furthermore, these results demonstrate that the reduction in 

lifespan upon full feeding is not the result of reallocation of nutrients from somatic 

maintenance to reproduction, because the only nutrient required for the increase in 

fecundity, in this case methionine, did not reduce lifespan. Additionally, the decrease 

in lifespan upon full feeding does not appear to be a consequence of damage inflicted 

by reproduction (Tatar and Carey 1995; Barnes and Partridge 2003; Partridge et al. 

2005a), since this hypothesis would also predict that high fecundity and increased 
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survival would be mutually exclusive. Support for this finding that DR does not 

extend lifespan either through reallocation of resources or due to reduced damage 

inflicted by reproduction is limited. However, DR has previously been reported to 

still extend lifespan in both flies that have vitellogenesis blocked by the ovoD1 

mutation and flies that have had their germ line removed by X-radiation (Mair et al. 

2004).  

 

Furthermore, a recent paper also suggests that DR in Drosophila not extend lifespan 

through reallocation of resources from reproduction towards somatic maintenance 

and repair (O'Brien et al. 2008). The authors labelled carbon and nitrogen in yeast 

with stable isotopes to try and determine how carbon and nitrogen are distributed 

upon DR and full feeding. As would be expected, more nitrogen, carbon and EAAs 

were allocated to eggs with full feeding. However, fully-fed flies also allocated more 

nitrogen, carbon and EAAs to somatic tissue than DR flies, although resource 

allocation to somatic tissue relative to eggs was greater with DR. O’brien et al. 

concluded that DR may extend lifespan through somatic investment relative to 

damage from increased reproduction. However, from the current add-back study, 

supplementing the DR diet with methionine resulted in elevated fecundity without 

any cost of lifespan. If increased nutrition shortens lifespan as a result of increased 

fecundity leading to reproductive damage (Tatar and Carey 1995; Barnes and 

Partridge 2003; Partridge et al. 2005b) then supplementing the DR diet with 

methionine should also shorten lifespan, which was not the case.  

 

One of the potential explanations why methionine supplementation could increase 

fecundity to the magnitude seen with full feeding or supplementation of all EAAs is 

as a result of increased feeding rate. However, through a combination of direct 
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feeding behaviour assays throughout life and calibration of food uptake using blue-

dye labelled food, it was apparent that flies fed DR diets supplemented with either 

methionine or all EAAs did not adjust their feeding behaviour or increase rate of 

food uptake. Hence increased feeding could not account for the fecundity increase on 

either of these diets. It is important to consider in this instance that even if flies had 

altered feeding behaviour in response to a methionine-supplemented diet, accounting 

for elevated fecundity, this cannot explain why the increased fecundity did not trade-

off with reduced lifespan.  

 

Measuring feeding behaviour accurately in Drosophila can be subject to many 

technical difficulties, especially because flies are thought to eat only around 5µl of 

food per day (Ja et al. 2007). Several different methods have been proposed for 

measuring behaviour, including labelling food with non-absorbable dyes (Edgecomb 

et al. 1994; Wood et al. 2004; Bross et al. 2005; Min and Tatar 2006a; Wong et al. 

2008) or radioactive isotopes (Brummel et al. 2004; Carvalho et al. 2005; Carvalho 

et al. 2006), or using a capillary feeder (CAFE) (Ja et al. 2007). Despite one study 

suggesting that DR flies might compensate by eating more food than fully-fed flies 

(Carvalho et al. 2005), greater evidence suggests that DR flies do not compensate 

(Bross et al. 2005; Min and Tatar 2006a; Wong et al. 2008). Furthermore, if flies 

were compensating by increasing feeding rate on DR then one would expect 

fecundity, a parallel measure of nutrition (Piper and Partridge 2007),  to also be 

increased on DR food, to a similar magnitude seen with full feeding; however, this is 

not the case (Chippindale et al. 1993; Chapman and Partridge 1996; Bass et al. 

2007a; Libert et al. 2007; Lee et al. 2008). The method used for measuring feeding 

in the current experiments was chosen as opposed to radio-labelling food because it 

allows steady-state feeding observations to be made in an undisturbed environment. 
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In chapter 3, it was shown that Wolbachia or other bacterial infections removed by 

tetracycline treatment could not account for the response of flies to DR. The striking 

phenotypes of long lifespan coupled with increased fecundity due to methionine 

supplementation could also not be explained by the presence of Wolbachia in the 

wild-type Dahomey strain. Flies which had been cured of Wolbachia infection also 

exhibited increased fecundity with no cost of reduced lifespan when methionine was 

added-back to the DR diet.  

 

Another possible explanation for the increased fecundity attributed to methionine in 

the diet is that methionine is one of two sulphur-containing amino acids (Figure 

5.14). The second amino acid which contains sulphur is the non-essential amino acid 

cysteine, which yields a very similar concentration of biologically available nitrogen 

to methionine (1.3mM and 1.4mM respectively). Although the addition of cysteine to 

the DR diet alone was not tested, no effect on fecundity was observed by the addition 

of all N-EAAs. If the presence of sulphur-containing groups was responsible for the 

fecundity increase observed with methionine supplementation then it is likely that 

adding back all N-EAAs would result in elevated fecundity, which was not observed. 

 

5.4.3 Decreased lifespan with full feeding may be caused by an 
imbalance of amino acids in the diet 

Supplementation of the methionine to the DR diet could account for the increase in 

fecundity but not the reduction of lifespan observed with full feeding. However, 

despite methionine alone not being important in regulating lifespan it clearly plays an 

influential role in conjunction with other amino acids because adding back all EAAs 

except methionine could almost entirely reverse the reduced lifespan when adding 

back all EAAs. The reduced lifespan with full feeding could also not be explained by 
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a single EAA because adding back each EAA individually caused no significant 

effect on lifespan compared with DR. Nor can it be attributed to unidentified toxins 

in the yeast because the yeast diet had previously been optimised for increased 

lifespan with DR and high fecundity with full feeding (Bass et al. 2007a). Instead, 

lifespan was reduced upon the addition of an increasing number of EAAs in the diet 

as long as methionine was present.  

 

The results of this study demonstrate that there is an imbalance in the ratio of amino 

acids present in the yeast diet compared with what is required for flies to achieve 

maximum fecundity. This imbalance of amino acids, particularly essential amino 

acids, is likely to account for the reduced lifespan associated with full feeding. All 

the amino acids with the exception of methionine contributed to the reduced lifespan 

without having any positive effect on fecundity. Reduced lifespan with full feeding 

could be caused by metabolic costs involved in removing these amino acids not 

required for reproduction, for example through damage inflicted to the excretory 

malphigian tubules, the fly equivalent of the mammalian kidneys (Wessing 1978). 

Nutrient imbalance in the diet may also account for the responses of lifespan and 

fecundity to DR in other organisms, including mammals, if specific nutrients in their 

diet are also limiting for full physiological function. An important recent discovery 

has been that the mechanisms that influence lifespan are conserved during evolution 

over the great evolutionary distances between yeast, multicellular invertebrates and 

mammals (Partridge and Gems 2002; Tatar et al. 2003; McElwee et al. 2007).  
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5.4.4 Uncoupling the lifespan / fecundity trade-off during dietary 
restriction  

Fecundity and lifespan are commonly expected to trade-off with one another. 

Examples from laboratory experiments using fruit flies have revealed that selection 

for high reproduction or early reproduction reduces lifespan (Rose and Charlesworth 

1981; Rose 1984; Fowler and Partridge 1992; Sgro and Partridge 1999). In addition,  

ablation of the germ line in the latter part of development or very early in adulthood 

can extend Drosophila lifespan (Flatt et al. 2008), replicating the findings of a 

similar, earlier study in C.elegans (Hsin and Kenyon 1999)  Furthermore, mutations 

which extend lifespan often impair, delay or abolish reproductive function in flies, 

worms and rodents (Klass 1983; Friedman and Johnson 1988; Brown-Borg et al. 

1996; Lin et al. 1998; Tissenbaum and Ruvkun 1998; Bohni et al. 1999; Rogina et 

al. 2000; Clancy et al. 2001; Flurkey et al. 2001; Tatar et al. 2001; Flurkey et al. 

2002; Giannakou et al. 2004; Broughton et al. 2005). However, some isolated 

examples have been reported whereby mutations that extend lifespan do not affect 

fecundity. For example, in C.elegans, mutations in certain components of the IIS 

pathway including age-1 (PI3K) and daf-2 (insulin receptor) give arise to worms 

with extended lifespan but normal fecundity (Johnson et al. 1993; Kenyon et al. 

1993; Gems et al. 1998). Moreover, it appears the timing requirements for IIS on 

fecundity and lifespan in C.elegans are different (Dillin et al. 2002). Dillin et al. 

(2002) demonstrated using RNAi that reducing the activity of daf-2 in the adult 

worm was sufficient to extend lifespan without a cost of fecundity. However, 

reduced daf-2 expression during the pre-adult period did not extend lifespan but 

caused a severe reduction in fecundity.  
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In Drosophila, Indy (“I’m not dead yet”) mutants are reportedly longer-lived and 

have normal fecundity or slightly elevated fecundity compared with controls on a 

standard food diets. Conversely, their fecundity is reduced when fed a low food diet 

(Rogina et al. 2000), suggesting a conditional trade-off between lifespan and 

fecundity (Marden et al. 2003). However, the originally reported lifespan extension 

phenotype of Indy mutants has since been negated by a recent study which found no 

lifespan extension when the genetic and cytoplasmic background effects had been 

corrected for (Toivonen et al. 2007). Over-expression of dFOXO in the fat body and 

head fat body has also been suggested to extend lifespan, without a reduction in 

fecundity (Hwangbo et al. 2004; Giannakou et al. 2007). Adding sirtuin activating 

compounds (STACs) to the fly diet also appears to represent an exception to trade-

off theory, since they extend lifespan without altering fecundity (Bauer et al. 2004; 

Wood et al. 2004). In rodents, long-lived IGF-1 receptor heterozygote-null mice and 

FIRKO mice (deletion of insulin receptor in the adipose tissue) exhibit normal 

reproductive phenotypes to control mice (Bluher et al. 2003; Holzenberger et al. 

2003; Partridge et al. 2005a).  

 

In contrast to a few examples of mutations which increase lifespan with no apparent 

cost of fecundity, dietary restriction consistently extends lifespan and reduces 

fecundity in flies, worms and rodents (Klass 1977; Holehan and Merry 1986; 

Weindruch et al. 1986; Chapman and Partridge 1996; Bishop and Guarente 2007b; 

Libert et al. 2007; Selesniemi et al. 2008). However, the results of the add-back 

experiments have revealed that the full benefits of lifespan extension by DR can be 

achieved, without any cost of reduced fecundity compared with full feeding, solely 

by supplementing the DR diet with methionine (Figure 5.15). The results of these 

experiments imply that in mammals it may also be possible to obtain the benefits of 
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DR for health and lifespan without impairing fecundity and without the need for DR 

itself, by a suitable balance of nutrients in the diet.  

 

 

Figure 5.15: Uncoupling the lifespan / fecundity trade-off during dietary restriction. DR 

flies exhibit extended lifespan coupled with reduced fecundity, which is reversed upon the 

addition of increased dietary yeast (fully-fed) or the addition of 10 EAAs leading to 

increased fecundity but reduced lifespan. However, adding methionine to the DR diet 

increases fecundity to the level of all EAAs / fully-fed but has no effect on lifespan compare 

to DR. 

  

5.4.5 dS6 kinase may negatively regulate high fecundity in 
Drosophila 

The TOR / S6 kinase pathway (Figure 5.16) has previously been shown to play an 

important role in regulation of growth, body size, development and longevity 

(Montagne et al. 1999; Barcelo and Stewart 2002; Marygold and Leevers 2002; 

Colombani et al. 2003; Kapahi et al. 2004a). Loss of function of dS6K results in 

around 75%  larval lethality whilst the remaining viable flies exhibit an extreme 
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developmental delay, severe growth reduction, female sterility and premature death, 

often within two weeks (Montagne et al. 1999).  

 

In contrast, the dS6 kinase dominant-negative females used in this study appeared 

normal in body size and were not developmentally delayed. Furthermore, these flies 

exhibited normal fecundity compared with controls lines when fed a standard DR 

diet. The dominant-negative activity of dS6K appeared to be verified by crossing 

dUAS-S6KKQ flies with the ap-GAL4 driver (refer to section 5.2.5) causing the wings 

to bend upward slightly (Barcelo and Stewart 2002), although, as previously 

published, the phenotype was quite weak (C. Slack, personal communication). 

Fascinatingly, despite exhibiting normal fecundity when fed a standard DR diet, 

dS6K dominant-negative flies fed a DR diet supplemented with all EAAs exhibited a 

significant increase in fecundity of beyond that observed in control lines fed an 

EAA-supplemented diet. The further increase in fecundity of dS6K dominant-

negative flies fed an EAA add-back diet did not result in a further reduction in 

lifespan compared with control lines fed the same diet. This provides further 

evidence that high fecundity and reduced survival do not always trade-off. These 

data suggest that under normal dietary conditions, the dominant-negative form of 

dS6K does not influence fecundity; however when flies are fed a higher 

concentration of EAAs, dS6K may act to buffer some of the EAAs being invested in 

reproduction.  

 

In mosquitoes, nutrient-dependent TOR and S6K signalling has been reported to 

control egg development (Hansen et al. 2005a). Hence dS6K appears to act as a 

negative regulator of high fecundity, with the excess amino acids potentially being 

utilised for production of other proteins. In Chinese hamster ovary (CHO) cells, S6K 
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has been shown to be directly regulated by amino acids in the cell medium (Wang et 

al. 1998). Furthermore, in CHO cells, amino acid deprivation causes inactivation of 

p70 S6 kinase and subsequently increased binding of the inhibitory protein 4E-BP1 

to cap-binding translation factor eIF4E (eukaryotic initiation factor), which can be 

reversed upon the return of an amino acid-enriched medium (Wang et al. 1998). 

Future work in Drosophila might focus on the interaction between EAAs and 

translation factors including 4E-BP (Thor), which has shown to play an important 

role in cell growth (Miron et al. 2001), immune response (Bernal and Kimbrell 2000; 

Levitin et al. 2007), and starvation and oxidative stress resistance (Tettweiler et al. 

2005).  

 

It had previously been reported that down-regulation of the TOR pathway through 

over-expression of dTsc1 and dTsc2 or dominant-negative forms of dTOR and dS6K 

flies extended Drosophila lifespan (Kapahi et al. 2004a), a finding which is 

supported by data in yeast and worms showing that mutations in genes that modulate 

TOR pathway activity can increase lifespan (Vellai et al. 2003; Jia et al. 2004; 

Meissner et al. 2004; Kaeberlein et al. 2005b; Henderson et al. 2006). However, in 

the current experiments, no extension in lifespan was observed in dS6K dominant-

negative flies on any of the three diets tested. One of the reasons for the lack of 

lifespan extension may be that S6K is not only regulated by TOR but also by other 

proteins such as the kinase PDK1 (Rebholz et al. 2006). Thus removing S6K 

function may result in more widespread effects that do not mimic those seen in 

mutations affecting solely the TOR pathway. 
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Kapahi et al. (2004) demonstrated that the longevity of flies over-expressing dTsc2 

was conditional on a high food concentration, similarly to observations in chico 

homozygotes and flies over-expressing dFOXO in the adult fat body (Giannakou et 

al. 2008) and head fat body (Min et al. 2008). However, this finding may be 

explained by dTsc2 over-expressing flies being more resistant to toxicity compared 

to controls at higher food concentrations because, as reported in Bass et al. (2007a), 

the diet used by Kapahi et al. (consisting of yeast extract supplemented with 

cornmeal) induces dose dependent toxicity in wild-type flies, causing reduced 

lifespan and reduced fecundity at higher food concentrations (Bass et al. 2007a). It is 

possible that the lifespan extension of dS6K dominant-negative flies may also be 

dependent on the diet. 

 

 An alternative explanation for the conflicting data may be the different temperatures 

that the lifespan studies were performed at. The current experiments were performed 

at 25oC whereas Kapahi et al. performed their experiments at 29oC. Although GAL4 

enhancer traps are thought to produce stronger effects at higher temperatures 

(Seroude et al. 2002), performing lifespan experiments at 29oC severely shortens 

lifespan (Miquel et al. 1976; Mair et al. 2003) and could be inducing thermal stress 

in flies. Therefore, any lifespan extension observed at 29oC could be as a result of 

increased resistance to thermal stress of dS6K dominant-negative flies, a phenotype 

previously observed in long-lived flies with over-expression of human superoxide 

dismutase (SOD) (Spencer et al. 2003) or apolipoprotein D (ApoD) (Walker et al. 

2006).  
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Figure 5.16: An overview of the Drosophila IIS / TOR pathway. Drosophila have a single 

insulin receptor (dINR) which is activated by Drosophila insulin-like peptides (DILPs). 

Upon activation, the dINR recruits the catalytic subunits of PI3 kinase (Dp110 –Dp60) 

directly or indirectly via the insulin receptor substrate protein CHICO. PI3 kinase converts 

phosphatidylinositol (4,5)-bisphosphate [PIP2] to phosphatidylinositol (1,4,5)-trisphosphate 

[PIP3]. dPTEN antagonises the actions of PI3K which degrades PIP3 to PIP2. PIP3 activates 

kinases including dPDK1 and PKB, which subsequently phosphorylate the transcription 

factor FOXO, causing it to become inactivated and migrate and translocate from the nucleus 

and into the cytoplasm. The TOR pathway is involved in amino acid sensing through the 

amino acid transporter slimfast. TOR kinase activates S6K which in turn phosphorylates the 

small ribosomal subunit S6. Phosphorylation by TOR inhibits 4EBP (eukaryotic initiation 

factor 4E-binding protein which causes mRNA cap-binding protein eIF4E (eukaryotic 

initiation factor 4E) to bind mRNAs, resulting in increased translation. The IIS and TOR 

pathways interact through PKB which can phosphorylate dTSC2 (in addition to FOXO), 

which negative regulates TOR. Green arrows represent activation, red lines represent 

inhibition. Figure adapted from (Giannakou and Partridge 2007). 

 

5.4.6 Down-regulation of IIS signalling partially blocks lifespan 
and fecundity effects of EAAs 

In Drosophila, studies assessing the effects of diet on the longevity of known long-

lived IIS mutants have revealed a complex interaction between nutrition and lifespan. 

Figure removed due to copyright conflict 
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Both chico homozygotes and flies with dFOXO over-expressed in the fat body have 

been reported to exhibit a right-shift response to nutrition (Figure 1.11). Thereby the 

lifespan of the mutants is increased at high food concentrations and decreased at 

lower food concentrations (Clancy et al. 2002; Giannakou et al. 2008). In contrast, 

another study has suggested that over-expression of dFOXO in the fat body only 

extends lifespan at low food concentrations (Min et al. 2008). Furthermore, studies 

involving rodents have shown conditional longevity of long-lived mutants on 

different diets (Bartke et al. 2001; Flurkey et al. 2001; Bonkowski et al. 2006; 

Taguchi et al. 2007; Selman et al. 2008). For example, the lifespan of long-lived 

Ames dwarfs could be further extended by DR (Bartke et al. 2001); however, the 

long-lived Laron dwarf mice do not exhibit a further extension when subjected to DR 

(Bonkowski et al. 2006). In addition, insulin receptor substrate 2 (IRS2) mutants 

have extended longevity when fed a 9% fat diet (Taguchi et al. 2007), but not when 

fed a 5% fat diet (Selman et al. 2008). Overall, the majority of growth hormone, 

insulin and insulin growth factor mutations extend lifespan on a high food / calorie 

diet.  

 

In the current study, the response of insulin receptor dominant-negative flies 

(dInRDN) was tested on three different diets; a control DR diet, a methionine-

supplemented diet and a DR diet supplemented with all EAAs, which had previously 

been shown in wild-type flies to cause almost identical fecundity and lifespan 

phenotypes to the effects observed with a high yeast diet (full feeding). Similarly to 

previous studies which have shown that mutations in various components of the IIS 

pathway can extend lifespan (Clancy et al. 2001; Tatar et al. 2001; Giannakou et al. 

2004; Hwangbo et al. 2004; Broughton et al. 2005), dInRDN flies also exhibited 

extended lifespan on all three diets. Interestingly the magnitude of lifespan increase 
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relative to controls was greatest when dInRDN flies were fed a DR diet supplemented 

with all EAAs. These data suggest that insulin receptor dominant-negative activity 

can partially block the life-shortening effect of the essential amino acids, although 

lifespan was not completely rescued since dInRDN flies were even longer-lived on 

DR and methionine-supplemented diets. Furthermore dInRDN flies fed all EAA or 

methionine supplemented diets displayed a negligible or even no increase in 

fecundity respectively, despite control flies on these diets showing a marked 

increased compared to control flies fed DR diets. Testing the effect of EAAs on 

dInRDN flies which have been cured or Wolbachia infection may reveal more about 

the capacity of dInR dominant-negative activity to block the life-shortening effect of 

EAAs because removal of Wolbachia seemingly causes these flies to exhibit normal 

lifespan on control diets (T. Ikeya, unpublished data). 

 

The IIS pathway is known to be important in controlling reproduction because 

mutations in several components of the pathway result in sterility or severely reduced 

reproductive output (Bohni et al. 1999; Clancy et al. 2001; Giannakou et al. 2004; 

Broughton et al. 2005). However, amino acids sensing occurs via the TOR / S6K 

pathway and the amino acid transporter slimfast as opposed to the insulin receptor 

which is activated by Drosophila insulin-like peptides (DILPs) (Figure 5.16). 

Therefore it is surprising that the dInRDN flies exhibit a robust lifespan extension in 

response to the EAAs and only a nominal increase in fecundity, whilst the effect of 

methionine supplementation on fecundity is entirely blocked. One possible 

explanation for these effects is that the dInRDN flies, due to their smaller body size 

and reduced fecundity, have lower nutritional demands and subsequently reduce their 

feeding activity. This could be investigated further by comparing feeding rates and 

food uptake at regular intervals throughout life to determine whether dInRDN flies 
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feed less. Moreover, the reduced body-size of dInRDN flies may limit their 

physiological reproductive capacity, hence the addition of methionine or EAAs 

would have negligible effects because their egg-laying capabilities are already 

maximised and restricted by the size of their ovaries for example.  

 

Future studies might investigate the response of other IIS pathway mutants including 

chico heterozygotes which are long-lived, but have normal body size and fecundity 

(Clancy et al. 2001) to determine whether elevated fecundity due to EAAs or 

methionine in the diet can also be (partially) blocked by these mutants. chico 

heterozygotes are also thought to have similar feeding behaviour to controls on DR 

and fully-fed diets (R. Wong, unpublished data), making them a suitable mutant line 

to use for future experiments. In addition, it would be interesting to establish whether 

IIS signalling is affected by methionine or EAA supplementation in specific tissues, 

particularly ovaries. This could be tested by dissecting ovaries of wild-type flies fed 

EAA or methionine supplemented diets and performing Western blots using phospo-

Akt (PKB) as an output of insulin signalling. Furthermore, an ovary specific GAL4 

driver, such as c323a or c825 (Manseau et al. 1997; Beaucher et al. 2007), could be 

used to express dInRDN or dS6K dominant-negative activity solely in the ovaries.  

 

 

5.4.7 Concluding remarks 

Previous dietary restriction (DR) studies in multiple organisms have revealed that the 

beneficial effects of lifespan extension are commonly traded-off with decreased 

fecundity. Furthermore, the results of chapter 4 suggested that the concentration of 

essential amino acids in the diet (EAAs) regulate a direct trade-off between high 

fecundity on one hand and reduced lifespan on the other, mimicking the effects of 
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full feeding. Fascinatingly, upon further dissection of the role of individual EAAs, it 

was demonstrated that the long lifespan of DR-fed flies and the high fecundity of 

fully-fed flies could be simultaneously achieved by supplementing the DR diet with 

methionine alone. Flies fed methionine-supplemented diets exhibited elevated 

fecundity, to a similar magnitude achieved with full feeding, whilst maintaining the 

lifespan extension observed with DR. Moreover, these extraordinary phenotypes 

could not be explained by increased feeding or Wolbachia infection in the wild-type 

population. The life-shortening effects of full feeding thus appear to be a 

consequence of an imbalance of the ratios of amino acids, particularly EAAs, in the 

diet compared with the ratio required to achieve maximized fecundity.  

 

Preliminary work investigating two potential pathways (TOR / S6K and the IIS 

pathways) mediating the effects of methionine and EAA supplementation suggests 

that dS6 kinase may be acting as a negative regulator of high fecundity because dS6K 

dominant-negative flies fed an EAA-supplemented diet exhibited a further increase 

in fecundity compared to the already high fecundity of control lines fed the same 

diet. In addition, reduced IIS signalling, through insulin receptor dominant-negative 

activity, partially blocked the reduced lifespan associated with adding back all EAAs 

and the high fecundity of flies fed DR diets with either methionine or all EAAs 

added back. The precise roles of the IIS and the TOR / S6K pathways in regulation 

of lifespan and fecundity in response to dietary amino acids would need to be 

investigated further.  
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6.1 Discussion 

The objective of the work presented in this thesis was to investigate factors affecting 

the responses of lifespan and fecundity to Drosophila dietary restriction (DR). The 

effects of DR appear to be evolutionary conserved across taxa, with organisms from 

unicellular yeast through to mammals, possible including primates, exhibiting 

lifespan extension. Despite a vast amount of literature on the effects of DR on 

rodents, shorter-lived model organisms including D. melanogaster, C. elegans and S. 

cerevisiae have emerged as powerful tools to try and establish the potential 

mechanisms involved in mediating DR. Drosophila was chosen as an ideal model 

organism for these studies primarily due to its short generation time, relatively short 

lifespan and the ability to culture large numbers of flies for lifespan experiments. 

Furthermore, previous studies have shown that Drosophila exhibit a robust response 

to DR and the mechanisms that influence ageing appear to be evolutionary conserved 

in mammals. 

 

The data presented in chapter 3 in conjunction with the recent work of (Bass et al. 

2007a) highlight the absolute requirement of optimising lifespan and DR conditions 

before performing experiments. In addition, the results further demonstrate the 

importance of performing DR experiments over a range of food concentrations. A 

comparative analysis of the responses of six different wild-type Drosophila strains to 

a range of food concentrations revealed that the peak extension of lifespan for DR is 

affected by genetic background. This finding has important implications for research 

with other model organisms and may explain why previously published work with 

wild mice (Harper et al. 2006) and some mouse laboratory strains (Forster et al. 

2003) failed to show a lifespan response to the DR regimens tested. These results 
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may also help to explain why no lifespan extension was reported in male flies 

(chapter 4) using the two concentrations that had been optimised for DR and full 

feeding in females. Moreover, studies testing the interaction between nutrition and 

genetic mutations that extend lifespan should also be conducted over a range of food 

concentrations. Choosing one DR and one fully-fed / ad libitum condition may 

produce misleading results as the lifespan of mutant lines may peak at different 

concentrations to controls. Additionally, although Wolbachia infection was shown 

not to mediate the responses to DR in Drosophila, its presence can potentially affect 

the food concentration at which lifespan is optimised. Hence, it is important when 

examining gene / nutrition interactions that both the genetic background and 

cytoplasm are standardised.   

 

In multiple organisms, reducing food intake (DR) causes an increase in lifespan 

coupled with a reduction in fertility. This has led to the suggestions that lifespan 

extension under conditions of DR are caused by an evolved response to food 

shortages in nature with reallocation of nutrients from reproduction and towards 

somatic maintenance. In chapters 4 and 5, the role of specific nutrients regulating the 

lifespan / fecundity trade-off during DR was investigated to determine whether the 

same nutrients that increase fecundity also reduce lifespan, as predicted by the 

reallocation hypothesis. Breaking down the nutritional components of dietary yeast, 

which had previously been shown to be the key determinant of lifespan (Mair et al. 

2005), revealed that of the four nutrient groups tested only amino acids and 

particularly essential amino acids regulate the effects of high fecundity and reduced 

lifespan with full feeding, whilst carbohydrates, vitamins and lipids had negligible 

effects. This work adds further support for the increasing evidence in both 
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invertebrate and rodent models that intake of specific nutrients, as opposed to 

calories, are as or more important in influencing lifespan.  

 

In chapter 5, the role of specific essential amino acids was investigated in more detail 

to determine whether individual amino acids mediate the lifespan / fecundity trade-

off. Adding back all EAAs except methionine was sufficient to rescue the reduced 

lifespan observed when adding back all EAAs together, whilst having no effect on 

fecundity compared with DR. However, fascinatingly, supplementing the DR diet 

with methionine alone could account for the full increase in fecundity with full 

feeding whilst increasing lifespan to a similar magnitude seen in dietary restricted 

flies. Lifespan of flies fed methionine-supplemented diets was reduced when the 

concentration of other EAAs in the diet was increased. The results of these 

experiments provide evidence that lifespan and fecundity need not trade-off, as has 

been revealed in some studies using longevity mutants. Consequently, DR in 

Drosophila does not extend lifespan either through reallocation of resources from 

reproduction to somatic maintenance and repair or due to reduced damage inflicted 

by lower egg production because these two hypotheses would predict that high 

fecundity and extended lifespan would be mutually exclusive.  

 

Experiments conducted investigating potential interactions of EAAs with the IIS and 

the TOR pathways revealed some fascinating results that would form the basis of a 

more detailed study trying to elucidate the mechanistic responses to EAAs in the 

diet. Reduced IIS signalling, using insulin receptor dominant-negative flies, appears 

to partially block both the effects of reduced lifespan and increased fecundity caused 

by EAAs in the diet. In addition, experiments involving dS6K dominant-negative 

mutants suggest that dS6K may be acting as a negative regulator of high fecundity in 
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Drosophila because these flies exhibited a further increase in fecundity in response 

to EAAs compared with the already high fecundity of control lines.  

 

6.2 Future work 

Having established that the beneficial effects of DR in Drosophila in terms of 

lifespan do not need to be compromised by reduced fecundity, it will be important to 

determine whether in other organisms, including mammals, the benefits of DR in the 

absence of DR itself, can be achieved by a suitable balance of nutrients in the diet. 

The results of this thesis emphasise the importance of using a standard DR protocol 

between laboratories using the same model organism because small changes in the 

concentration a single nutrient, e.g. methionine, can have dramatic effects on the 

interpretation of DR experiments. Potentially, future research on DR in model 

organisms should set out to use a standardised synthetic medium.  

 

In Drosophila, microarray experiments could be performed to determine whether 

particularly groups of genes are differentially regulated in flies fed a methionine-

supplemented diet compared with flies fed a DR diet supplemented with all EAAs or 

a control diet. This may provide some valuable mechanistic insight into why adding 

back methionine alone increases fecundity without a reduction in lifespan, in contrast 

to the effects of full feeding or when adding back all EAAs. Preliminary experiments 

in this thesis revealed that the reduced lifespan and high fecundity of flies fed the 

EAA add-back diet could be partially blocked in insulin receptor dominant-negative 

flies. However, additional experiments would be required to test whether mutations 

in other components in the IIS pathway also cause a similar response. Previous work 

in Drosophila has pointed to an interaction between genotype and nutrition, with 
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lifespan of IIS mutants peaking at a higher food concentration than controls, as 

observed with chico homozygotes and flies with dFOXO over-expressed in the fat 

body (Clancy et al. 2002; Giannakou et al. 2008).  

 

As methionine is the initiation codon for all protein sequences, further work might 

investigate the link between protein synthesis / protein turnover and lifespan in 

Drosophila, with particular focus on whether methionine supplementation is 

affecting protein translation in specific tissues. This could be tested by isolating 

polysomes (multiple ribosomes) over a sucrose gradient, to give an indication of the 

level of mRNA being translated (Monzo et al. 2006).   

 

The identification of essential amino acids as the key component of the diet 

influencing lifespan provides the foundation to investigate why EAAs specifically 

might be mediating the reduced lifespan associated with full feeding. As a starting 

point, the effects of EAAs on cellular and molecular processes including the 

production of reactive oxygen species (ROS), cell damage, and further work with 

TOR signalling and protein translation should provide valuable insight into the 

mechanistic effects of whole-food DR. Future work might also further explore the 

interesting pilot experiments performed in this thesis which indicated a potential role 

of dS6K as a negative regulator of high fecundity. 

 

The finding described in this thesis that adding back all EAAs with the exception of 

methionine (methionine restriction) is sufficient to recover the reduced lifespan when 

all 10 EAAs are added back to DR, suggests that lifespan extension by methionine 

restriction is evolutionary conserved with rodents. Whilst the mechanism of 

methionine restriction in Drosophila appeared to conform to a simple trade-off 
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between increased lifespan and reduced fecundity, mirroring the effects of whole-

food DR, supplementing the DR diet with methionine alone could increase fecundity 

without a reduction in lifespan, suggesting other mechanisms are in operation. In 

rodents, it has been reported that methionine restriction also increases some 

antioxidant defences and leads to a reduction in ROS production (Richie et al. 1994; 

Lopez-Torres et al. 2002; Zimmerman et al. 2003; Pamplona and Barja 2006; Ayala 

et al. 2007). Hence, it would be interesting to determine whether similar cellular 

phenotypes are also observed in flies during methionine restriction. Primary 

experiments could establish whether methionine-restricted flies are more resistant to 

paraquat treatment, which induces oxidative stress. However, first and foremost it 

will be important to develop reliable biomarkers of ageing in Drosophila, because 

similarly to other invertebrate models, there is currently a lack of specific ageing-

related markers. These markers will be paramount to understanding more about how 

ageing affects cellular and molecular damage in flies and to determine the specific 

effects of amino acids in the diet.  

 

In C.elegans, inhibiting translation initiation factors including eIF4E extends lifespan 

(Hansen et al. 2007; Pan et al. 2007; Syntichaki et al. 2007a), providing evidence 

that a reduction in protein synthesis may be the mechanism involved in the effects 

observed. In Drosophila, TOR and S6K mutants are reportedly long-lived (Kapahi et 

al. 2004a), whilst experiments on flies carrying a null mutation for the eIF4E 

inhibitory protein 4E-BP (Thor) has revealed that the presence of 4E-BP is essential 

for starvation and oxidative stress resistance (Tettweiler et al. 2005).  Future work 

should determine whether inhibition of eIF4E can extend lifespan in Drosophila as 

reported in C.elegans, and in the case that these Drosophila mutants are long-lived, 

whether methionine restriction can further extend their lifespan. If reduced protein 
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synthesis is the mechanism for lifespan extension by both inhibition of eIF4E and 

methionine restriction then no further lifespan extension should be detected. These 

proposed experiments should shed some light on the potential mechanistic actions 

upon methionine restriction and supplementation in Drosophila.  

 

A more detailed study into the role of specific nutrients influencing male Drosophila 

lifespan over a greater range of concentrations would also enhance our understanding 

of how DR extends lifespan. The data in this thesis suggest that the enhanced 

response to DR observed in female Drosophila relative to males can no longer be 

explained simply by the nutritional effects on egg production causing a trade-off 

between high fecundity and reduced lifespan during full feeding. Hence, it is of 

interest to investigate the different nutritional requirements of males and females 

further and whether the underlying mechanisms extending lifespan by DR differ 

between the two sexes.   

 

6.3 Final conclusions 

In conclusion, the work presented in this thesis sheds light on the nutrients and 

mechanisms mediating extension of lifespan by DR in Drosophila, by providing 

three key findings. Firstly, methionine restriction extends lifespan in Drosophila, as 

previously reported in mice and rats. Secondly, the effects of lifespan of DR in 

Drosophila are mediated by predominantly the concentration of essential amino 

acids in the diet. Finally, the positive effects of lifespan extension by DR in 

Drosophila need not trade-off with a cost in fecundity if the diet contains a suitable 

balance of nutrients, suggesting that lifespan extension by DR in Drosophila cannot 

be explained by the reallocation of resources hypothesis or by increased damage due 
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to elevated fecundity with full feeding. An imbalance in the proportions of amino 

acids present in food, compared with the ratio that is optimal for reproduction, both 

shortens lifespan during full feeding and limits fecundity during DR, and hence 

produces the DR responses. Whether this finding also plays a role in the extension of 

lifespan in mammals, including humans, remains to be determined. However, these 

findings suggest interesting roles for individual nutrients in the extension of lifespan 

without reproductive costs, which should form the basis of further studies in other 

organisms. 
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Optimization of Dietary Restriction
Protocols in Drosophila
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Dietary restriction (DR) extends life span in many organisms, through unknown mechanisms that
may or may not be evolutionarily conserved. Because different laboratories use different diets
and techniques for implementing DR, the outcomes may not be strictly comparable. This
complicates intra- and interspecific comparisons of the mechanisms of DR and is therefore central
to the use of model organisms to research this topic. Drosophila melanogaster is an important
model for the study of DR, but the nutritional content of its diet is typically poorly defined. We
have compared fly diets composed of different yeasts for their effect on life span and fecundity.
We found that only one diet was appropriate for DR experiments, indicating that much of the
published work on fly ‘‘DR’’ may have included adverse effects of food composition. We
propose procedures to ensure that diets are suitable for the study of DR in Drosophila.

D IETARY restriction (DR) refers to a moderate re-
duction of food intake that leads to extension of life

span beyond that of normal, healthy individuals. This inter-
vention has principally been studied in rodents, but it also
extends the life span of a wide range of organisms including
the fruit fly, Drosophila melanogaster (1–7). Although ex-
tension of life span in response to DR is taxonomically
widespread, it is unknown whether evolutionarily conserved
mechanisms are at work or, instead, whether this is a case
of evolutionary convergence (8). This issue is important,
because upon its resolution depends the utility of the
powerful invertebrate model organisms for understanding
the mechanisms of the response to DR in mammals.

Considerable attention has been paid to the dietary
components that are important for extension of life span
by DR in rodents, where reduction of whole food intake can
increase life span by approximately 40% (3). These studies
have shown that altering the ratio of nutritional components,
by reducing lipids, minerals, or vitamins in the diet, had no
effect on rat life span, although reduction of the protein
quantity or quality effected a relatively small increase (9–
13). More recent work has shown that specific reduction of
tryptophan (14) or methionine (15–17) can extend rodent
life span to a similar magnitude as whole-food DR. On the
one hand, these interventions with specific nutrients may
reveal useful information about the mechanisms of whole-
food DR; on the other hand, each intervention could operate
through different molecular pathways to extend life span,
thus revealing little or nothing about the mechanisms of
whole-food DR (18). Similar debate exists over the poten-
tially different mechanisms by which yeast replicative life
span is increased when glucose is reduced from 2% to
0.05% (19) or from 2% to 0.5% (20,21). In Caenorhabditis
elegans, several possible modes of life-span extension by
food reduction exist as life span can be extended by dilution

of the bacterial food source (22), complete removal of
the bacterial food source (23,24), altering the strain of bac-
terium used in the worms’ diet (25,26), or using synthetic
axenic media (27,28). To establish the mechanisms at work
for any particular method of DR in any model organism,
precise specification and, preferably, standardization of
DR methods is desirable as a basis for intra- and inter-
specific comparisons.

DR is usually imposed in Drosophila by dilution of an
agar-gelled food medium, which is always present in excess
(29). In general, as food is diluted from a high concentra-
tion, life span increases to a peak at intermediate nutrient
levels through DR, and then falls with further food dilution
through starvation. It is generally assumed that the increase
in life span with DR is a response to reduced nutrients.
However, logically, it could just as well be a response to
relief from a nonnutritional, toxic effect of the food (30).
This is not an easy issue to address empirically, but some
evidence can be drawn from parallel effects of diet on
reproductive output, which can provide an independent
indication of the effect of the diet on the organism’s
nutritional status. In a manner similar to that for DR in
worms and mice (22,31), a decrease in life span in response
to increased nutrition should be accompanied by increased
daily and lifetime fecundity (5,6). In contrast, increase in
the concentration of a toxin would be expected to cause life
span to decrease in parallel with a reduction or no increase
in fecundity.

DR in Drosophila usually involves reduction of the yeast
and sugar components of the diet (29), and yeast appears to
account for the majority of the DR effect on life span (5,32).
However, different laboratories use different sources of
yeast and different concentrations of sugar, yeast, and agar
for DR (5,6,33,34). Despite these differences, few labora-
tories have tested their diets to ensure that the effect of DR
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on life span in their experiments is a specific response to
nutrition as evidenced by reduced reproductive output. To
gauge the importance of these differences, and to establish
a validated DR diet that should be reproducible between
laboratories, we assembled a range of yeast-based diets and
directly compared the life span and fecundity of flies in re-
sponse to DR on each food type. Of the diets that we inves-
tigated, only one showed effects on survival and fecundity
that is suitable for DR studies in Drosophila.

METHODS

Fly Stocks, Maintenance, and Handling Procedures
All experiments were performed with the wild type,

outbred, laboratory strain Dahomey. The population is
maintained in large population cages with overlapping
generations on a 12-hour light/dark cycle at 258C and 65%
humidity.

Media
Rearing of flies and experiments were performed on

standard sugar/yeast (SY) food (35). The arbitrary standard
condition (1.0) is described in Table 1. In all cases, the food
was prepared by adding the agar to water and bringing to
a boil on a gas hob. At this point, the appropriate amounts
of sugar and yeast (and cornmeal where indicated) were
added with continuous stirring until the food was com-
pletely mixed. The food was then removed from the heat
and allowed to cool to 658C. At this point, preservatives
were mixed in, and the food was dispensed. For the sugar
range experiments, baker’s yeast (Table 1) was used. Media
for the comparison of dietary yeasts were based on that in
Table 1, with only the yeast component varied. For the
water add-back experiment, a 1% agar solution was made
(containing preservatives as for the SY media) and poured
into individual 200-lL pipette tips. These tips were trimmed
to a length that brought the agar solution close to the level of
the food surface after being inserted into the food. A pipette
tip filled with cotton wool, to prevent flies from crawling
into the pipette tip and becoming trapped, was added to the
control treatment.

Life Span and Fecundity Assays
For life-span experiments, larvae were reared at standard

density in 200-mL glass bottles containing 70 mL of 1.0 SY
food (36). Flies emerged over 24 hours, were tipped into
fresh bottles, and were allowed 48 hours to mate. Females
were then separated from males under light CO2 anesthesia
and randomly allocated to different food treatments at
a density of 10 females per vial. Flies were transferred to
fresh vials, and deaths were scored at least every 2 days. The
yeast comparison experiment was performed in two batches,
the first containing SYBaker’s, SYBrewer’s, and SYTorula,
and the second containing SYBaker’s, SYBrewer’s, SYEx-
tract, and CSYExtract. Due to the similarity between the two
trials of SYBaker’s and SYBrewer’s (Supplementary Figure
1 and Supplementary Table 1), the data were combined. For
each condition in each experiment, 100 flies were used.

For fecundity measurements, the same experimental flies
as those used for life spans were kept in the same glass vials
for between 18 and 24 hours; they were then transferred to
fresh food. The eggs in the vacated vials were counted
manually under a microscope. For the sugar concentration
experiment, egg counts were performed on days 3, 7, 10, 14,
and 21 of treatment. For the first yeast comparison exper-
iment (SYBaker’s, SYBrewer’s, and SYTorula), eggs were
counted on days 5, 9, 12, 16, 19, 23, 26, 30; for the second
experiment (SYBaker’s, SYBrewer’s, SYExtract and
CSYExtract), eggs were counted on days 4, 8, 11, 15, 18,
22, 25, and 29. Eggs were counted on days 3, 6, 10, 13, 17,
26, 31, and 38 for the water add-back experiment and on
days 4, 11, 18, 25, 32, 46, and 60 for the agar concentration
range experiment. As an index of lifetime fecundity, the sum
of eggs laid during 24 hours on the days of counting by an
average female was calculated. These sampling points cover
the period of heaviest laying, and are therefore indicative of
relative lifetime fecundity (6).

Data Analyses
Comparison of survivorship data was performed using

the log-rank test implemented in Excel. Values of p from
comparisons of fecundity data refer to the nonparametric
Wilcoxon rank sum test performed in R, v2.2.1 (37). For the

Table 1. Recipe Used to Make Food

Media Components Supplier Name

100 g Yeast* Baker’s (B.T.P. Drewitt, London, U.K.) SYBaker

Brewer’s (MP Biomedicals, Solon, OH) SYBrewer

Torula (Borregaard, Sarpsborg, Norway) SYTorula

Bacto Yeast extract (BD Diagnostics, Sparks, MD) SYExtract & CSYExtract

50 g Sucrose (Tate & Lyle Sugars, London, U.K.)

50 g Cornmealy (B.T.P. Drewitt, London, U.K.)

10 g Agar (Sigma, Dorset, U.K.)

3 mL Propionic acid (Sigma, Dorset, U.K.)

30 mL Nipagin Mz (Clariant UK Ltd, Pontypridd, U.K.)

1000 mL Made to final volume

with distilled water

Notes: The values in this table describe the arbitrary reference condition (1.0) used in dietary restriction (DR) experiments and for rearing flies. Where indicated in

the text, the yeast, sugar, and agar concentrations were varied.

*For yeast comparison experiments, the yeast concentration alone was varied from 10 g/L (0.1) to 200 g/L (2.0).
yCornmeal (organic polenta) was used for the CSYExtract medium only.
zSolution of 100 g/L methyl 4-hydroxybenzoate in 95% ethanol.
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more complex comparisons of fecundity data illustrated in
Figure 2, the nlme package in R was used (38), specifying
a mixed model with yeast type, yeast concentration, and the
quadratic function of concentration as fixed terms. Replicate
vials were included as a random variable to compensate for
multiple females per vial. To deal with the observed
increasing variance with increasing fitted values (hetero-
scedasticity), we modeled the variance as a power function
of the fitted values (such weighting of the variance structure
improved the fit of the model, although it did not change
the results). All factors and interactions were significant.
Modeled versus actual data are shown in Supplementary
Figure 2.

Nutritional Analysis of Yeast
Chemical analysis of a sample of baker’s yeast was per-

formed by Leatherhead Food International (Somerset,
U.K.).

RESULTS

High Levels of Dietary Sucrose Adversely Affect
Fecundity With Little Effect on Life Span

Although it has been shown that the yeast component of
an SY diet is critical for the response to DR in Drosophila,
sucrose could also produce life-shortening effects similar to

those of yeast if raised to sufficiently high concentra-
tions [i.e., higher than those used previously (32)]. To test
this, we looked at the effect of varying the sucrose
concentration in the diet while keeping all other ingredients
at a fixed level.

Interestingly, there was no requirement for dietary su-
crose for maximum fecundity and, surprisingly, addition of
sucrose at �100 g/L caused a decrease in female fecundity
(p , .00002, Wilcoxon rank sum test), indicating that it
had a detrimental effect on fly physiology and/or behavior.
To ensure that nutrition, and therefore DR, is the key
determinant of life span, fecundity should increase for
increases in nutrition that cause life span to decrease.
These data, therefore, show that sucrose concentrations .
50 g/L are not appropriate for DR studies. For optimum
longevity, the flies required the level of dietary sucrose to
be at least 50 g/L in an SY diet. This effect of sucrose is
shown in Figure 1 as a small, but significant, increase in
median life span when sucrose was added to a yeast-only
diet (50 g/L vs 0 g/L; p , .00001, log-rank test). Raising
the sucrose concentration further to 150 g/L caused no
decrease in median life span in this experiment, but it has
done so in other experiments that we have performed [data
not shown and (32)]. As a result, further experiments
reported herein used a fixed sucrose concentration of 50 g/
L as this was neither detrimental to life span nor inhibitory
to egg laying.

Figure 1. Effect of dietary sucrose concentration on life span and fecundity of mated Drosophila females. Increasing concentrations of sucrose were added to

a standard food background of 1.5 SYBaker’s (Table 1). Over the range of sucrose tested, very little change in life span was observed, whereas a significant decrease in

fecundity was observed between 50 g/L and 100 g/L sucrose. Gray bars: index of lifetime fecundity (sum of the eggs laid by an average female on the days counted) 6

standard error of the mean; connected black points: median life span. Representative data from one of two experiments are shown.

1073DIET OPTIMIZATION FOR DR IN DROSOPHILA



Varying the Quality of the Yeast Supply Produces a
Range of Effects on Life Span and Fecundity

The above data and (32) show that DR in Drosophila is
achieved solely by modulating the yeast component of the
diet. We next compared a variety of different yeasts to
determine their effects on life span and fecundity. These
experiments included four sources of inactivated yeast:
a baker’s yeast, a brewer’s yeast, a torula yeast, and a water-
soluble extract of baker’s yeast. The first three of these yeasts
are whole-cell lysates, whereas the fourth is a purified extract.
Each of the yeasts was used over a range of concentrations
from 10 g/L (labeled 0.1) to 200 g/L (labeled 2.0) while the
other media constituents were held constant (Table 1).

Comparison of the three whole-yeast food types (SYB-
aker’s, SYBrewer’s, and SYTorula) showed a similar
pattern for median life span, with a peak at 1.0 (100 g/L)
and a decline as food concentration was changed above or
below this point (top three graphs of Figure 2). SYBaker’s
and SYBrewer’s yielded the longest life spans (69- and 70-
day medians, respectively, on 1.0 food), whereas the longest
life span on SYTorula (63-day median at 1.0) was

significantly shorter (p , .0001 in both comparisons, log-
rank test). For each of these three yeasts, lifetime fecundity
increased with increasing food concentration to 1.5, above
which there was no further increase for SYBaker’s and
SYTorula, but there was for SYBrewer’s when the
concentration was raised from 1.5 to 2.0 (Supplementary
Figure 2). Furthermore, the level of egg laying on 2.0
SYBrewer’s was higher than the peak value for any of the
other food types tested. Thus, the observed limit to egg-
laying on the other food types was not intrinsic to the
physiology of the flies, but was restricted by some feature of
the foods. In other experiments we have also raised the yeast
concentration in SYBrewer’s medium to 300 g/L (3.0) and
saw a further life-span shortening from 2.0 (p , .05, log-
rank test). However, this was not accompanied by a further
increase in fecundity beyond the level in 2.0 (p ¼ .53,
Wilcoxon rank sum test; Supplementary Figure 3).

The flies responded differently to the yeast-extract–based
media. The most obvious difference was that life span
decreased for each addition of yeast extract to the medium.
This was similar for CSYExtract and SYExtract (bottom

Figure 2. Effect of a range of concentrations of different commercially available yeasts on life span and fecundity. Five different yeast concentrations were prepared

for each of five different sugar/yeast (SY) recipes. SYBaker’s, SYBrewer’s, and SYTorula each refer to food made with different, inactivated whole-yeast preparations,

whereas SYExtract and CSYExtract refer to diets based on a water-soluble yeast extract. The nutritional components in each food type were sucrose and yeast or

yeast extract and cornmeal (for CSYExtract only). Bars: index of lifetime fecundity 6 standard error of the mean; connected black points: median life-span values.

We specified a linear model to describe fecundity (Materials and Methods), which found all factors and interactions to be significant. The predicted values are

plotted against observed values in Supplementary Figure 2. Each food concentration range was performed once, except for SYBaker’s and SYBrewer’s, which were

performed twice.
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two graphs of Figure 2), except for 0.1, at which level
cornmeal addition resulted in a significantly longer life
span (36 days on SYExtract vs 56 days on CSYExtract;
p , .0001, log-rank test). Because the positive effect of
cornflour on life span was only seen at the lowest concen-
tration of yeast extract (0.1) and the longest life span on 0.1
SYExtract was low compared with all other treatments,
the data are compatible with an argument that yeast extract
caused dose-dependent toxicity. The pattern of lifetime
fecundity was similar between SYExtract and CSYExtract,
increasing with yeast extract addition to a maximum at 1.0,
but decreasing at higher concentrations. Cornmeal addition
augmented egg laying, which peaked in 1.0 CSYExtract at
a level similar to that in 1.5 SYBrewer’s and higher than the
maxima for the other three food types. In both the presence
and absence of cornmeal, yeast extract was apparently more
nutritionally dense than whole-yeast powders, because egg
laying was greater on CSYExtract (up to 1.0) and SYExtract
(up to 0.5) than on the whole-yeast diets at corresponding
food concentrations. However, fecundity decreased for
additions of yeast extract higher than 100 g/L (1.0). Thus,
yeast extract at high concentrations is detrimental to fecun-
dity in addition to negatively affecting life span.

Is DR in Drosophila a Nutritional Response?
In order to fulfill the requirements for DR, it is necessary

that the longer-lived (restricted) animals are not simply less
sick than those with higher nutritional intake. One indication

of this comes from increased fecundity with increasing
nutrients. However, if the food delivers both nutrients to
benefit fecundity as well as a toxic effect that reduces life
span, the phenotype would be indistinguishable from a true
effect of DR (30). It is therefore important to try and
distinguish directly between a toxin-based and a nutrient-
based explanation for the life span–shortening effect of the
high nutrient concentration.

Increasing the food concentration could mimic a DR
effect by increasing the hardness of the food. To test this
possibility, we fixed the concentration of all food ingre-
dients (at 2.0 SYBrewer’s) and varied the agar concentration
on its own (Figure 3). For each increase in agar concen-
tration, there was a trend toward a decrease in lifetime
fecundity. However, this trend was only significant for the
increase from 10 g/L to 15 g/L (p , .0005, Wilcoxon rank
sum test). This reduction was accompanied by a significant
increase in life span when the agar concentration was raised
from 10 g/L to 15 g/L (p , .01, log-rank test) and a further,
nonsignificant (p ¼ .09, log-rank test) increase when agar
was raised to 20 g/L. These data are consistent with agar
controlling food availability in a nondetrimental way
between 10 g/L and 20 g/L agar, and is therefore explicable
as a DR effect. When the agar concentration was further
increased to 25 g/L there was no change in median life span
or lifetime fecundity, but maximum life span decreased from
a median of 76 days to 71 days (Figure 3). This result argues
that older flies do indeed differentially suffer if the food

Figure 3. Effect of varying agar concentration on life span and fecundity of females on SYBrewer’s medium. The effect of food hardness on life span and fecundity

was tested by altering the agar concentration while all other ingredients were held at fixed concentrations (Table 1). This medium contained Brewer’s yeast at 200 g/L

(2.0 level) (agar concentration ranges were also tested at two other SYBrewer’s concentrations; data not shown). Bars: index of lifetime fecundity 6 standard error of

the mean; connected black points: median life span; connected gray points: maximum life span (median of the last 10% survivorship).
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becomes sufficiently hard, but for agar concentrations
, 20 g/L food hardness does not on its own cause the
life-shortening (DR) effect seen in Figure 2. We also tested
the effect of agar concentration for 1.0 SYBrewer’s and 3.0
SYBrewer’s (data not shown). Although qualitatively simi-
lar, this experiment also revealed an interaction with the
yeast concentration, whereby flies were more sensitive to
higher agar concentrations at higher yeast concentrations.
This result indicates that the yeast content of the food
can contribute to overall food hardness and adversely affect
life span.

Another possible detrimental effect of high food concen-
trations concerns water availability, because the food is the
only source of water. We therefore tested if water addition
could overcome the adverse effects of high nutrition levels
on life span. Figure 4 shows that addition of a fresh source
of water to 1.0 and 2.0 SYBrewer’s could not rescue the
life-shortening effect of high nutrient concentrations and
had no effect on lifetime fecundity. Therefore, inability to
access sufficient free water does not explain the life span–
shortening effect accompanying high nutrient concentra-
tions in the food.

DISCUSSION

DR is a well-established intervention for extending fly
life span. Indeed, the interaction among diet, life span, and
fecundity has formed the basis for both practical and
theoretical investigations into the possible trade-offs be-
tween these life-history traits (39). Here we have inves-
tigated DR more closely and found that, without careful
attention to the food composition, studies that claim to be
examining extended life span due to DR may simply be
studying the rescue of normal life span from the effects
of inappropriate food types that prematurely shorten life. It
thus follows that any mechanistic conclusions drawn from
such studies are likely to be obscured by the detrimental
effects of the food and so would be inappropriate to address
questions of how DR operates to preserve life span for
Drosophila or other species.

Drosophila in the wild is thought to coconsume fruit
material and microbes from fermenting and/or rotting fruit
(40). In the laboratory, Drosophila can be maintained on
a combination of sugar, yeast, and water (35). We found that
addition of sugar . 50 g/L to the culture medium was
detrimental for egg laying and that variations from 0 to 150

Figure 4. Effect of water addition on the dietary restriction (DR) response of flies on SYBrewer’s medium. Free access to water was provided in the form of

1% agar in a pipette tip inserted into the food. Bars: index of lifetime fecundity 6 standard error of the mean; connected points: median life span. Experiment

was performed twice.
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g/L had little effect on life span (Figure 1). These data
indicate that Drosophila has a very low requirement for free
sugar for maximal life span and fecundity, consistent with
the finding that total sugar levels in rotting banana are no
more than 20 mM (equivalent to 4.5 g/L sucrose) (41).
Other experiments have shown that Drosophila modulate
their feeding behavior only slightly, or not at all, when
sucrose levels rise above 50 g/L (32,42,43). Thus, the
dramatically lowered egg laying observed with high sugar is
unlikely to be an effect of reduced feeding in response to the
altered sucrose concentration, and instead probably reflects
an adverse effect on physiology due to the presence of
unnaturally high sugar levels. These data show that high
sugar should be avoided in Drosophila DR experiments.

In contrast, increasing additions of one particular brewer’s
yeast caused lifetime fecundity to continually increase over
a concentration range that also decreased life span and so
conformed to the expectations of a DR treatment. When
recently changing our yeast supplier, we noted a shift in the
concentration at which life span peaked from 65 g/L yeast
[0.65 in (32)] to 100 g/L (1.0 shown here). Yeast quality is
thus highly variable. Furthermore, high yeast concentrations
that reduce life span are not always associated with in-
creasing fecundity. This fact is at odds with the recognized
effect of DR on fecundity in worms (22) and rodents (31),
and is consistent with an explanation that the life-span
decrease on high food concentrations is not an effect of
increased nutrition, but due to some detrimental effect of the
yeast composition. This could be caused by either a direct
effect of a specific toxic element whose increasing concen-
tration reduces life span and perhaps also fecundity or an
indirect effect of a nutritionally imbalanced diet that results
in ill health.

Under the first explanation, one would expect a pattern of
fecundity and life span similar to that seen for the flies fed
increasing concentrations of yeast extract. In this situation,
both nutrients and the toxin (e.g., a heavy metal) are deliv-
ered in the food. This situation results in increasing fecun-
dity as nutrients increase and toxicity remains below
a tolerable threshold (e.g., 1.0 in SYExtract and CSYExtract
in Figure 2), beyond which fecundity is reduced. For this
same concentration range, life span would be ever de-
creasing. This explanation is consistent with data for C.
elegans grown on different types of bacteria. It is currently
common practice to grow worms on Escherichia coli, which
can support growth and reproduction and upon dilution
elicit an apparent DR response (22). However, when the
worms are grown on the soil bacterium Bacillus Subtilis,
their life span is increased some 50% without changes in
development time or reproductive output (26). Thus, any
nutrient-dependent life-span shortening when increasing the
concentrations of E. coli for worms or yeast extract for flies
would be combined with the effects of food toxicity.

In contrast, nutritional imbalance would be expected to
yield a life-history pattern like that for SYBaker’s and
SYTorula, where the absence of a nutritional component
imposes a limit on egg-laying capacity due to depletion from
parental reserves. Previous data on the nutritional require-
ments of adult Drosophila showed that deficiencies for
essential amino acids, chloride, phosphorous, or calcium

reduced egg laying within 16 days, with little effect on the
short-term viability of the adult (44). Thus a trace element
shortfall may limit lifetime egg-laying capacity with little
effect on immediate risk of death. An example of this
phenotype is shown for flies on 1.5 and 2.0 SYBaker’s,
which have the same level of lifetime fecundity but
markedly different life spans (Figure 2). Because they both
experience the same limitation to lifetime fecundity, the
limitation in itself is not what causes shortened life span on
2.0. Rather, the increasing excess of other dietary compo-
nents, and so nutrient imbalance, is the most likely ex-
planation for the elevated mortality.

In an attempt to identify any such toxins or nutrient
imbalances, we have compared the available nutritional data
for each of the yeast types used (Supplementary Table 2).
Unfortunately, these analyses have a limited scope because
only standard nutritional constituents are measured; there-
fore, many potentially toxic compounds will be overlooked.
It is possible, however, to compare nutrient ratios among
yeasts. In this light it is notable that several vitamins are an
order of magnitude lower in concentration in SYBaker’s
than in SYBrewer’s. These vitamins include biotin, a de-
ficiency of which is thought to shorten Drosophila life span
(45). This could be tested by the addition of these vitamins
to the food to see if they rescue fecundity and affect life
span. As a note, it is possible that similarly subtle effects of
food type belie unknown nutrient imbalances in DR
experiments that have been performed in other model
organisms. For example, rescue from a nutrient imbalance
could explain the life-span extension found in rats when the
dietary protein source casein was replaced with soy protein
(12). Subtle differences in food affecting life span have also
been demonstrated by experiments on mice and rats
subjected to methionine restriction (15,17,46). Thus, diet
optimization is also an important consideration for DR
studies in rodents, in which food composition varies
depending on the particular commercially available chow
that is used.

Despite all these precautions to establish a diet suitable
for Drosophila DR, it is still possible that the food could
have a detrimental effect on life span unrelated to nutrition
and with no adverse effect on lifetime fecundity, thus
mimicking the DR effect. Because we use a food dilution
method for DR, the hardness of the food and water
availability are the most likely candidates to produce such
an effect. Our experiments showed that neither could
account for the life-span shortening seen when varying the
yeast concentration. We did note, however, a detrimental
effect on maximum life span when agar concentration was
raised to an extremely high level (25 g/L, more than twice
that used for our other experiments). This effect was
exacerbated when the yeast concentration was also raised to
300 g/L, showing that food hardness can reduce Drosophila
life span. This non-DR–based life-shortening effect of hard
food is likely to have contributed heavily to the life-span
shortening seen in studies when yeast and sugar are both
raised to 300 g/L and agar to 20 g/L (34,47) (Supplementary
Figure 3).

Based on the data presented above, we conclude that the
brewer’s yeast is the most suitable of those that we tested
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for DR studies and it now forms the basis for our labora-
tory recipes. This change has the additional advantage of
bringing the nutritional content of our fly diet in line with
that of two other laboratories studying fly DR using the
same yeast (Helfand and Pletcher laboratories, Scott
Pletcher, personal communication, 2005). We are now in
the process of extending this study by applying this DR
regimen to male flies as well as a variety of commonly used
laboratory strains of Drosophila. As there is an impact of
genotype on the fly response to DR (48), it will be
interesting to see if other laboratory strains (both inbred and
outbred) exhibit a similar response to these foods.
Modulations or even loss of the DR response in these lines
may be informative about the mechanisms of DR.

Conclusion
This work highlights the need for validated diets used for

DR as a step toward establishing some dietary uniformity in
the DR community to allow direct comparison of different
experiments with the same species and of different species.
For flies, the dramatic variability in quality of yeasts from
different suppliers, and presumably between seasons, points
to the need for a defined synthetic medium that would avoid
the potential problems of unwanted detrimental effects
being introduced into Drosophila experiments from the
yeast or its feedstock.
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SUPPLEMENTARY FIGURES AND TABLES

Supplementary Figure 1. Data for both trials run for SYBaker’s and SYBrewer’s. These are independently replicated data sets from nonoverlapping generations

of flies.
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Supplementary Table 1. Life Span and Fecundity Data for Survivorships Referred to in Figures

Condition Lifetime Fecundity* (SEM) Median LS Mean LS (SEM)

Figure 1

0 g/L sucrose 79.4 (4.3) 47 42.5 (1.4)

50 g/L sucrose 80.2 (4.6) 54 52 (1)

100 g/L sucrose 45.3 (3.3) 54 55 (1.1)

150 g/L sucrose 46.9 (3.5) 54 52 (1.3)

Figure 2 and Supplementary Figure 1

0.1 SYBaker’s – Trial 1 5.9 (0.6) 21 21.9 (0.5)

0.5 SYBaker’s – Trial 1 34.2 (1.4) 64 62.7 (1.1)

1.0 SYBaker’s – Trial 1 123.3 (4.6) 68 67.0 (0.8)

1.5 SYBaker’s – Trial 1 158.2 (3.7) 66 64.7 (0.9)

2.0 SYBaker’s – Trial 1 157.0 (5.9) 50 49.4 (1.6)

0.1 SYBaker’s – Trial 2 4.4 (0.5) 22 24.8 (1.2)

0.5 SYBaker’s – Trial 2 27.9 (1.5) 65 62.8 (1.3)

1.0 SYBaker’s – Trial 2 96.7 (3.3) 71 68.8 (1.2)

1.5 SYBaker’s – Ttrial 2 140.4 (4.5) 71 68.3 (1.1)

2.0 SYBaker’s – Trial 2 152.6 (5.7) 57 54.5 (1.4)

0.1 SYBrewer’s – Trial 1 2.4 (0.3) 19 21.0 (0.8)

0.5 SYBrewer’s – Trial 1 32.5 (2.0) 65 63.3 (1.2)

1.0 SYBrewer’s – Trial 1 126.8 (4.2) 69 67.8 (0.9)

1.5 SYBrewer’s – Trial 1 183.9 (7.4) 66 65.2 (1.2)

2.0 SYBrewer’s – Trial 1 219.5 (6.9) 63 62.2 (1.1)

0.1 SYBrewer’s – Trial 2 4.7 (0.2) 19 19.8 (0.4)

0.5 SYBrewer’s – Trial 2 39.8 (1.6) 66 62.8 (1.2)

1.0 SYBrewer’s – Trial 2 140.9 (4.0) 68 66.9 (0.5)

1.5 SYBrewer’s – Trial 2 174.2 (5.2) 68 67.1 (0.6)

2.0 SYBrewer’s – Trial 2 221.9 (5.4) 57 59.0 (0.8)

0.1 SYTorula 2.8 (0.3) 19 21.3 (0.8)

0.5 SYTorula 24.4 (1.1) 55 53.2 (1.2)

1.0 SYTorula 131.9 (4.2) 63 61.4 (1.0)

1.5 SYTorula 146.5 (6.1) 63 63.4 (1.1)

2.0 SYTorula 147.2 (7.6) 58 55.9 (1.4)

0.1 SYExtract 24.5 (1.3) 36 36.4 (1.4)

0.5 SYExtract 94.6 (1.9) 23 23.4 (0.6)

1.0 SYExtract 138.2 (5.4) 19 19.7 (0.3)

1.5 SYExtract 115.4 (3.0) 17 17.1 (0.2)

2.0 SYExtract 82.5 (2.9) 14 14.1 (0.2)

0.1 CSYExtract 27.8 (1.8) 56 54.4 (1.4)

0.5 CSYExtract 126.3 (4.2) 24 25.4 (0.7)

1.0 CSYExtract 188.1 (8.3) 25 25.2 (0.8)

1.5 CSYExtract 156.2 (6.5) 21 21.1 (0.4)

2.0 CSYExtract 91.8 (3.3) 16 16.0 (0.2)

Figure 3

10 g/L agar 191.6 (11.8) 51 50.8 (1.5)

15 g/L agar 136.3 (7.0) 55 55.3 (1.8)

20 g/L agar 123.2 (10.6) 59 58.8 (1.6)

25 g/L agar 121.8 (5.5) 59 59.8 (1.1)

Figure 4

1.0 SYBrewer’s – water 82.9 (3.9) 64 63 (1.1)

1.0 SYBrewer’s + water 84.8 (2.7) 63 61.2 (1.5)

2.0 SYBrewer’s – water 180.6 (6.6) 60 59 (1.3)

2.0 SYBrewer’s + water 177.8 (7.7) 58 53.9 (1.0)

Supplementary Figure 3

1.0 SYBrewer’s 57.9 (8.0) 67 66.4 (2.7)

2.0 SYBrewer’s 136.3 (7.0) 55 55.3 (1.8)

3.0 SYBrewer’s 141.6 (6.5) 53 51.5 (1.4)

Notes: *Lifetime fecundity is the sum of eggs laid by an average female on the days of counting.

SEM = standard error of the mean; LS = life span.
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Supplementary Figure 2. Model predictions versus actual egg-laying data

reported in Figure 2. Model predictions are represented by the lines and actual

data by symbols. All fixed terms (yeast type, concentration and the quadratic

term for concentration) and interactions were significant.

Supplementary Figure 3. Effect of raising yeast concentration in SYBrewer’s

above the range used for dietary restriction (DR). Yeast concentration was raised

to 300 g/L, and life span and egg laying were monitored. Whereas life span

showed a significant decline from that found at 2.0 SYBrewer’s, egg laying was

not further increased, indicating that the flies did not experience a higher level of

nutrition. Agar concentration was 15 g/L.

Supplementary Table 2. Nutritional Comparison of the Different

Yeasts Tested

Nutrient Composition (g/100 g dry weight)

Nutrient

Baker’s

Yeast*

Brewer’s

Yeast*

Torula

Yeast

Bacto Yeast

Extract*

Carbohydrates 39 35 28 y

Protein 45.7 45 58 51

Fat 5.8 1 7

Alaninez 3.97 7.3 5.6

Arginine 2.01 5.1 5.6 2.6

Asparagine/Aspartate 4.2 10.6 5.3

Cysteine (variable) 0.12 1.2 0.4 Destroyed§

Glutamine/Glutamate 9.1 13.6 9.4

Glycine 1.41 4 4.9 3

Histidine 0.89 2.5 2.2 1.3

Isoleucine 1.68 4.1 5.6 3

Leucine 2.52 5.7 8.4 4.1

Lysine 2.48 6.2 8.8 4.6

Methionine 0.5 1.2 1.7 0.8

Phenylalanine 1.48 3.1 5.1 2.6

Proline 1.41 4.2 2

Serine 1.9 5.7

Threonine 2.07 4.4 5.8 1.6

Tryptophan Destroyed 1.1 0.9 Destroyed

Tyrosine 0.99 3.2 4 1.2

Valine 1.89 4.8 6.1 3.5

Inositol 0.47

Choline 0.47

Cadmium 0.00004

Calcium 0.134 0.12 0.4 0.013

Chloride 1 0.38

Cobalt 0.00015

Copper 0.0002 0.0035 0.0008

Iron 0.0133 0.02 0.0125

Lead 0.00002

Magnesium 0.262 0.1 0.075

Manganese 0.00053

Phosphate 3.27

Phosphorous 1.603 1.5 0.9

Potassium 2.447 0.86 1.6 3.195

Sodium 0.041 0.02 1.49

Sulfate 0.09

Sulfite 0.018

Zinc 0.0062 0.00387 0.01

Biotin 0.0000236 0.000125

Ca Pantothenate 0.00211 0.0122

Folic Acid 0.000871 0.0005

Nicotinic Acid 0.0182 0.04

Pyridoxine 0.00046 0.005 0.0425

Riboflavin 0.00103 0.0045 0.006

Thiamine-Hcl (aneurin) 0.00067 0.015 0.0002

Notes: Each of the analyses above are provided by the manufacturers and

describes a typical batch, except for that of baker’s yeast, the nutritional

breakdown of which was not supplied by the manufacturer. This information

was gathered independently using a sample from a bag used in our laboratory for

these experiments.

*These yeasts are labeled Saccharomyces cerevisiae.
yMissing values are indicative of data not reported, not that the nutrients are

absent.
zAmino acids are reported as total amino acid content. Values for free

soluble amino acids are lower.
§Indicates components lost or destroyed by the detection/quantification

process.
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microbial infection on the ability of dietary restriction (DR) to extend life in the fruit fly Drosophila melanogaster. None of
these factors block the DR effect.

Conclusions: These data lend support to the idea that nutrient restriction genuinely extends lifespan in flies, and that any
mechanistic discoveries made with this model are of potential relevance to the determinants of lifespan in other organisms.

Citation: Grandison RC, Wong R, Bass TM, Partridge L, Piper MDW (2009) Effect of a Standardised Dietary Restriction Protocol on Multiple Laboratory Strains of
Drosophila melanogaster. PLoS ONE 4(1): e4067. doi:10.1371/journal.pone.0004067

Editor: Hiromu Tanimoto, Max-Planck-Institut fuer Neurobiologie, Germany

Received October 1, 2008; Accepted December 1, 2008; Published January 1, 2009

Copyright: � 2009 Grandison et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by Wellcome Trust Strategic Award (MP and LP); Medical Research Council (RW); Research into Ageing (RG); and the
Biotechnology and Biological Science Research Council (TB). The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: l.partridge@ucl.ac.uk

. These authors contributed equally to this work.

Introduction

In order to maximise its genetic contribution to posterity, an

organism must appropriately direct the use of nutrients to traits such

as growth, reproduction and repair. In some circumstances, this will

mean maximising one trait at the expense of another. This idea has

been used to explain the observation that relatively low food intake

can result in longer life, because it comes at the cost of reduced rates

of reproduction [1–4]. This particular trade-off phenomenon is

widespread and has been termed dietary restriction or DR.

Although extensively studied since its first description in 1935 [5],

very little is known about the molecular details of exactly what

resources are shared in this trade-off and how they are balanced

between the traits. Uncovering these mechanisms has now become

the holy grail of research into DR, with the aim of harnessing their

power for longer and healthier lives.

One of the promising advances towards the goal of uncovering

the mechanisms by which DR extends life was the discovery that

the effect is evolutionarily conserved [6–10]. However, even with

the use of short-lived model organisms for relatively rapid lifespan

experiments, the mechanisms remain elusive. This is likely to be

largely due to the complexity of physiology involved in

determining length of life, but may be also in part due to technical

issues in experimental design hampering a clear path of progress

[11]. The ease with which complexity can be introduced into these

studies can be illustrated by the large effects on fly lifespan caused

by very small changes in nutrition. For example, substituting one

source of the dietary yeast Saccharomyces cerevisiae, with another from

a different supplier in an otherwise identical diet can have large

effects on fly lifespan [12]. Similarly, lifespan differences have been

reported due to the use of different bacterial strains as food for

Caenorhabditis elegans [13] or by interchanging casein and soy

peptone as the source of dietary protein for rodents [14]. In fact, a

recent article has proposed that DR itself may have arisen as a by-

product of laboratory life as animals are unintentionally subjected

to selective breeding in the presence of an artificially rich

nutritional environment [15]. Clearly, these issues need to be

addressed if we are to uncover the molecular mechanisms of DR.

In our studies on DR in Drosophila, we have taken a systematic

approach to optimise dietary composition such that fecundity and

lifespan are maximised and any non-specific adverse effects of the

food are avoided [12]. In this article, we extend this work to

examine the effect of different techniques of long-term stock

maintenance and microbial infection on the responses of ‘wild-

type’ laboratory-maintained flies to DR. We have undertaken

these experiments in order to establish a working protocol that

avoids laboratory artefacts and will therefore aid studies seeking

the molecular mechanisms of DR. As a result of performing these

experiments with flies of different genetic backgrounds, we find

interesting differences in the interaction between diet and

genotype that form a solid basis for future work to uncover how

DR extends the lifespan of flies and other organisms.

Results

An intermittent feeding regime did not affect Drosophila
lifespan

We have previously published a description of the optimisation

of a sugar/yeast (SY) medium for DR studies in flies [12]. This
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study found that yeast dilution in an otherwise unchanged medium

effectively limits the flies’ nutrient intake, decreases their daily and

lifetime fecundity and increases their lifespan.

An alternative DR protocol that extends rodent lifespan is every

other day feeding (EOD) [16,17]. In these experiments, the EOD

cohort has alternating bouts of 24 h access to unlimited food

followed by 24 h starvation, while controls have continuous access

to unlimited food. Interestingly, this intervention extends lifespan

even though the EOD animals nearly fully compensated for the

periods of starvation by eating more. Thus, intermittent periods of

starvation could be equally as important as reduced nutrient intake

for extending lifespan.

Two Drosophila studies have attempted a similar regimen and one

reported a generally positive effect on lifespan when flies were

subjected to 18 h access to food and 6 h access to water only in every

24 h [18]. In contrast, a more recent study has reported no positive

effects of this treatment, or of any other treatments in which the

timing of the starvation/feeding periods was altered [19]. However,

in this latter study, the treatment was only implemented on 5 out of

every 7 days of adult life, making it possible that any beneficial effects

of the protocol were masked by the days without treatment. We

therefore decided to test this technique using our laboratory strain

Dahomey, applying daily bouts of either 3 h or 6 h starvation,

during which the flies had access to water only. We found that

neither treatment had a positive or negative effect on lifespan

(Figure 1). While this could be taken to mean that DR does not work

in flies, the lack of any effect on lifespan of the more severe restriction

makes it impossible to know to what extent the flies were nutrient

restricted or whether the periods of starvation were close to adequate

to elicit a protective effect. Without a more extensive set of starvation

periods, it is not possible to draw definitive conclusions about the

effectiveness of this intervention in Drosophila.

Comparison of the DR response between different
laboratory strains

In all of our DR optimisation experiments we have used our

outbred laboratory strain of Drosophila, Dahomey. This strain has

been maintained for many years on an SY diet in large population

cages with overlapping generations. In contrast, most laboratory

wild-type strains are largely inbred and maintained in relatively

small numbers in individual containers and may have a varied

nutritional history. Some of these housing conditions can easily

lead to selection for early reproduction, which is known to cause

shortened lifespan [20–22]. We therefore assayed the lifespan of

several commonly used wild-type Drosophila strains on our standard

SY food (16; Figure 2). In all cases, the lifespans were significantly

shorter than that of Dahomey and exhibited median lifespans from

53 days for OregonR to 65 days for Dahomey.

Next we asked what the effect of this variation was on the DR

response in these different strains. This was both to assess how our

DR protocol is likely to behave when implemented in other

laboratories that routinely use fly stocks other than Dahomey, as well

as to look for strains with altered DR responses that might provide

insights into its mode of action. The operational definition of DR is

the range of nutrition that causes lifespan to increase and fecundity to

decrease [23]. It should be noted that this definition excludes the

dilution from 0.56down to 0.16, as this caused the flies to become

malnourished and both lifespan and fecundity to decrease (Figure 3).

For Dahomey and wDahomey, the DR range was from 26 to 0.56
food, while for w1118 and CantonS it was from 26 to 16, and for

OregonR was from 1.56to 0.56 (Figure 3). For OregonR only, the

highest food concentration caused egg laying to decrease, which

indicated that the associated lifespan decrease from 1.56 to 26was

not accompanied by increased intake of biologically valuable

nutrition and therefore could be due to a non-specific detrimental

effect of high food. It was thus considered outside of the functional

DR range for this strain. Finally, for yw, there was a clear DR

response from 16 to 0.56 food but, owing to incomplete data, we

cannot report any possible broader DR effect. Thus in all cases, a

DR response was observed under these conditions although its exact

nature was different for different wild-type strains.

In all comparisons from all trials, Dahomey, wDahomey and yw

exhibited the longest lifespan (Table 1) with medians from 69 to 73

days over different trials on 0.56 food (Dahomey v wDahomey,

p = 0.69; Dahomey or wDahomey v highest median lifespan from

each other genotype, p,0.001, log-rank test). Dahomey and

wDahomey also exhibited higher reproductive output than the

other wild-types at each food concentrations except 0.16, as well

Figure 1. Intermittent exposure of flies to food does not increase their lifespan. Throughout adult life, Dahomey females were exposed to
daily cycles of starvation:feeding of either 3 h:21 h or 6 h:18 h. Neither treatment had any effect on lifespan. During the periods of starvation, flies
had access to water only.
doi:10.1371/journal.pone.0004067.g001

DR in Drosophila
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as the maximum reproductive output from all conditions (on 26
food) (Dahomey v wDahomey, p = 0.97; Dahomey or wDahomey

v highest reproductive output for each other genotype, p,0.003,

Wilcoxon rank-sum test).

Effect of tetracycline treatment on the DR effect
Drosophila are host to a range of microbes, and for many strains,

this includes a bacterium of the genus Wolbachia that resides in the

cytoplasm of reproductive tissues [24]. In some cases, the presence

of Wolbachia has been shown to alter lifespan [25]. Recently, a

vertically inherited factor that was curable by tetracycline

treatment was shown to account for at least part of the long

lifespan of a long-lived Drosophila mutant [26]. We decided it was

important to examine the effect of such infections on DR, because

if they account for the lifespan difference, it is unlikely DR in

Drosophila is useful as a model for higher organisms.

Figure 2. Different laboratory strains of wild-type Drosophila have different lifespans. Each genotype was raised in parallel under the
same conditions and assayed on 16 SY for lifespan. All strains that were tested exhibited a shorter lifespan than our outbred laboratory strain
Dahomey. The graph legend reports the strain name; median lifespan in days and; p-value from the log-rank test when compared to Dahomey.
doi:10.1371/journal.pone.0004067.g002

Figure 3. Different laboratory strains subject to DR. When tested in parallel under the same conditions, all wild-type strains tested exhibited a
DR response. This is defined as a simultaneous increase in lifespan and decrease in lifetime fecundity when nutrient availability was reduced. Bars:
index of lifetime fecundity6standard error of the mean; connected points: median lifespan in days; ND: not determined. Data shown are from a single
trial in which all lifespans were run simultaneously. They are representative of triplicate data sets for Dahomey, CantonS and OregonR and duplicates
for yw; w118 and wDahomey data are from a single trial.
doi:10.1371/journal.pone.0004067.g003

DR in Drosophila
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Upon testing our wild-type strains for Wolbachia we found all

except w1118 and OregonR were infected (Figure 4a). Therefore,

because all strains exhibited a DR response, Wolbachia infection per

se can not account for the full effect of nutrition on lifespan. To test

if tetracycline-treatment could eliminate the DR response by other

means, we selected three lines for treatment (Dahomey, CantonS

and OregonR). After two generations on tetracycline-containing

food, flies were subsequently maintained on normal food to

recover for at least five generations. PCR testing revealed that the

treatment was effective as both Dahomey and CantonS were

cleared of Wolbachia (Figure 4b). When subjected to different food

concentrations, all three tetracycline-treated lines retained their

DR response (Figure 4c). In the trial shown, the lifespan peak for

all three strains was at 16 food and fecundity increased to 26
food. While this was qualitatively different from that seen in the

previous trials with non-tetracycline-treated flies, a further trial

with these lines after an additional five generations on normal

food, revealed more similar data to that shown in Figure 3 (data

not shown). Thus, tetracycline-treatment may produce a transitory

alteration in the way flies respond to food, but its effects can not

account for the DR response.

Discussion

Intermittent feeding did not extend fly lifespan but does
not rule out DR in flies

There are several different ways to restrict the access of animals

to nutrition and thus extend lifespan by DR [27]. For flies, dilution

of the concentration of yeast in a diet that is provided in excess,

has proven to be practical and effective [12,28]. However, food

dilution methods are unique to the invertebrates and in

mammalian studies, periodic access to food is used. One such

Table 1.

Wild-type strain Food Conc (x) Median lifespans1
ave lifespan change due to DR2

Trial 1 Trial 2 Trial 3

Dahomey 0.1 17.1 18 ND

0.5 73 73.5 69.1

1 65 66.5 59.5 31%

1.5 63 64 48

2 57 55 52.5

yw 0.1 ND ND ND

0.5 69 ND 73.5

1 61 ND 66.5 12%

1.5 ND ND ND

2 61 ND 48

w1118 0.1 22 ND ND

0.5 53.1 ND ND

1 57 ND ND 36%

1.5 48.4 ND ND

2 42 ND ND

CantonS 0.1 15 18 ND

0.5 53.1 573 50

1 57 59.5 48 28%

1.5 55.1 52.5 38.5

2 46.1 45.5 38.5

OregonR 0.1 17 22 ND

0.5 53.1 45.5 66.5

1 53.1 52.5 59.5 15%

1.5 50.9 48 55

2 42 45.5 52.5

wDahomey 0.1 18.5 ND ND

0.5 73 ND ND

1 57 ND ND 66%

1.5 57 ND ND

2 44.1 ND ND

1bold numbers denote the greatest median lifespans and italicised numbers the shortest median lifespans, within the DR food range for that strain in that trial.
2For all DR ranges for each strain, the longest-lived condition was significantly different from the shortest-lived condition; percentages are derived from the average
lifespan difference due to DR.

3In cases where there was no significant difference between two food types for the longest or shortest-lived condition, two numbers are in bold or italicised.
doi:10.1371/journal.pone.0004067.t001
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protocol provides animals with a measured amount of food that is

completely consumed before the next meal. While effective for

extending rodent lifespan [7], it has been unsuccessful when used

on flies [29,30]. An alternative technique is EOD feeding, which

extends rodent lifespan by alternating periods of access to excess

food with periods of starvation. Importantly, the mice subjected to

this regime increased their feeding behaviour such that they

consumed nearly the same quantity of nutrients as controls. Thus,

regular periods without food maybe just as important as reducing

nutrient intake for extending rodent lifespan [16]. In contrast, this

protocol has had little or no success when adapted for flies [18,19].

In this study, we also found no extension of life using a similar

protocol on Drosophila (Figure 1). Thus, our results support the

previous invertebrate data and could be used to argue that periods

of starvation cannot extend the lifespan of flies [30,31] or that the

mechanism by which DR extends lifespan is different between flies

and mammals. While both of these explanations are possible, the

fact that lifespan was not shortened by the more severe of our

restriction treatments means we are unable to determine how

much nutrient intake may have been reduced, or exactly what

other periods of starvation could be protective for lifespan in our

flies. While a more extensive range of starvation periods would be

revealing, other factors such as the time of day at which food is

removed may also be important since feeding behaviour is

controlled by the circadian rhythm [32]. Thus, it is easy to

implement an inappropriate methodology when attempting to DR

flies in this way and the absence of a positive result does not rule

out the possibility of observing a positive effect if protocols were

optimised.

If nutrient restriction is the critical factor in these DR

experiments then intermittent feeding protocols that use different

dietary compositions would also be expected to vary lifespan

outcomes in different ways. Figure 5 illustrates how this is possible.

When given increasing doses of a relatively concentrated diet

(orange line), lifespan would increase as malnutrition lessens to a

peak at an intermediate level of food availability. As food

availability is increased beyond this point, lifespan decreases via

the DR response. At some point, no additional increase in food

availability will further shorten lifespan as the organism will reach

its limit to ingest more food (‘point of satiety’ and beyond). If,

however, the concentration of the food being provided is low

enough (represented by the ‘dilute’ and ‘very dilute’ diets in

Figure 5), lifespan will increase to a plateau whose onset occurs at

the point that the organism’s food intake limit is reached. If these

dilute food types are used in an intermittent feeding protocol, it

would be impossible to find an intermediate level of food exposure

which increases lifespan, falsely giving the impression that DR

does not exist. It is possible that this can explain why some studies

have been published that did not find a DR response (eg [33–35]).

As mentioned above, food dilution has proven to be the most

successful intervention to implement DR in flies [11]. The

connection between this intervention, where the food remains in

excess, and intermittent feeding can be found by taking the

lifespan values at any one level of food availability above the point

of satiety in the left panel of Figure 5. A cross-section of these

values is shown in the right panel of Figure 5; this represents the

standard DR effect in flies (eg Figure 2). It should be noted that in

reality, this illustration is somewhat simplistic in that the lifespan-

sensitive nutrients represented on the x-axis are unlikely to be

accurately represented by the term ‘food availability’. Further-

more, nutrient composition variations are likely to alter the point

of onset of satiety, which in turn changes the onset of the lifespan

plateau. Thus, although further work on diet composition, feeding

intervals and measured food availability may uncover an

Figure 4. Tetracycline treatment does not eliminate the DR response. (A) Gel showing diagnostic PCR for the presence of the intracellular
bacterium Wolbachia; (B) three strains were selected from the set of wild types for treatment with tetracycline, which was sufficient to clear Wolbachia
if present. (C) Each of the three strains was then allowed at least five generations to recover on non-tetracycline-containing food before being
assayed for lifespan and fecundity on different concentrations of food. Each of the three strains still exhibited a DR response after tetracycline
treatment. Bars: index of lifetime fecundity6standard error of the mean; connected points: median lifespan in days. Data shown are from one of two
trials in which all lifespans were run simultaneously.
doi:10.1371/journal.pone.0004067.g004
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alternative intermittent feeding regime suitable for flies, it is likely

to be a labour intensive process that may not provide any more

information about DR than dietary dilution.

DR in Drosophila does not appear to be a laboratory
artefact

For ease of handling and to extend generation times, fly stocks

in the laboratory are often kept in small numbers, under relatively

poor nutrient conditions and at low temperatures. Over time,

these factors are likely to exert selective pressures that could

influence lifespan. Importantly, when transferring stocks to fresh

food for maintenance, it is relatively easy to select for early age of

reproduction, which is known to reduce adult lifespan [36]. That

this happens in the laboratory has been demonstrated by

comparing the lifespans of flies maintained for years in the

laboratory under normal stock-handling conditions with others

selected for early or late reproduction as well as others freshly

caught from the wild [37]. This study showed that the laboratory

stocks were as short lived as those selected for early reproduction,

while the wild-caught lines had a much longer lifespan, similar to

flies selected for late reproduction and were much longer lived. In

our laboratory, we have maintained a wild-type outbred stock

(Dahomey) since 1970 in large population cages with overlapping

generations. When compared with other laboratory wild-type

strains that we have maintained using routine stock handling

techniques, we found that Dahomey demonstrated the capacity for

both the longest lifespan and the greatest lifetime egg laying output

(Figure 6). Thus, maintenance of flies using large population cages

with overlapping generations appears to preserve the life history

characteristics of wild-flies for long periods of time. This is in

agreement with previous work that demonstrated this fact for flies

maintained in the laboratory during a three year period [38].

Importantly, despite the differences between strains in their

selection histories, all exhibited a DR response (Figure 3). Recently, it

has been proposed from work with mice that lifespan extension by

DR could simply be an artefact of laboratory domestication because

a wild-caught strain was reported whose longevity was not increased

in response to a typical DR regime [15]. In contrast, a recent study of

several wild-derived strains of C. elegans showed that all exhibited a

DR response [39]. Although we have not directly tested DR using

flies recently caught from the wild, our study indicates that they

would exhibit a DR response because of the strong effect seen with

Dahomey (Figure 3 and Figure 4). It should be noted that the

invertebrate studies were conducted using a DR technique that

deprived worms of bacteria, while the rodent study used a food

restriction protocol with only one level of limitation. Thus, as

explained above, diet design and an incomplete range of food

concentrations could be important factors in explaining why the DR

effect was apparently absent from wild mice [15].

DR in Drosophila is not sensitive to tetracycline
treatment, but varies with diet quality and genotype

We show here that DR is not sensitive to infection with the

bacterium Wolbachia, or indeed any other tetracycline-sensitive

infection that may be present in flies (Figure 4). Interestingly, the

levels of fecundity at a given food concentration differed after

Figure 5. Model of the relationship between lifespan and DR protocols that reduce access to food either by intermittent exposure
(left panel) or nutrient dilution (right panel). These demonstrate how the composition of food used for intermittent feeding protocols could
lead to the false conclusion that DR does not exist for an organism. Three different diets are shown that vary in a given nutrient concentration from
‘very dilute’ to ‘concentrated’. In this example, increasing access to the concentrated diet causes lifespan to rise to a peak (DR) beyond which lifespan
decreases. At some point (marked here as the ‘point of satiety’) the animal will no longer be able to eat any more food, meaning the nutrition level it
experiences is capped and no further increase in availability will further decrease lifespan. For the dilute and very dilute diets, the point of satiety is
reached before the level of nutrients ingested has a chance to cause lifespan to reduce. Thus, there is no lifespan increase for any intermediate level
of food restriction, making it look like the organism does not exhibit a DR response. For flies, these problems can be avoided by assaying lifespan in
the presence of excess food that is diluted to differing extents. The relationship of this situation to DR by intermittent feeding is represented by
taking a cross-section through the graph on the left. The plot on the right shows the type of data presented herein and for other invertebrate studies.
doi:10.1371/journal.pone.0004067.g005
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tetracycline treatment (compare Figure 3 with Figure 4c). This

indicates that some tetracycline-sensitive microbes carried by some

flies might be involved in the control of fecundity. However, further

data would be required to validate this observation since a

subsequent trial with the tetracycline-treated flies saw fecundity

levels return to those previously observed (as for Figure 3; data not

shown). Together, these data extend previous work we have

performed to optimise a DR protocol to avoid lifespan variations

from non-nutrient dependent effects [12]. From this work, we have

sought to generate a standardised DR protocol to aid studies into the

mechanisms of DR. However, we here report that the food

concentration to yield the longest lifespan in Dahomey was at

0.56, which is less than the 16reported in [12]. This demonstrates

an inherent problem with using a natural ingredient like yeast whose

nutritional content varies seasonally due to production methodology

and the quality of its feedstock. In doing so, it also highlights the need

for a standardised synthetic defined medium to replace yeast-based

diets to study the details of how lifespan varies with food

composition. Interestingly, not all strains exhibited a lifespan peak

at the same food concentration as Dahomey (Figure 3). It is already

known that genotype can affect the interaction between lifespan and

food [27,40–42] and could indicate the breadth of the DR effect on

fly health. One interesting possibility from these data is that if flies of

different genotypes die from different pathologies, DR has the ability

to delay the onset of each of these causes of death, which agrees with

data from rodent studies [7,43]. Future work on the exact molecular

mechanisms of DR via interactions with different genotypes on

precise dietary manipulations will be key to exploring this further.

Materials and Methods

Fly stocks and maintenance
Dahomey: This strain has been in the laboratory since 1970,

having been collected in West Africa in what is now the Republic

of Benin. Four population cages (dimensions: 20 cm H621 cm

W630 cm D) have been maintained in parallel at 25uC on a 12-

hour light/dark cycle. At all times, 12 bottles of food are in each

cage, being replaced gradually. Each week, three half-pint bottles

containing 70 ml of food (16 SY) are supplied to each cage and

the three oldest bottles removed.

wDahomey was generated by backcrossing the white gene from

w1118 into the Dahomey genetic background. It has since been

maintained in one large population cage with a feeding regime as

described above for Dahomey.

w1118, yw, OregonR and CantonS have been maintained in

the lab for many years under a variety of conditions. Generally,

this involves transferring each new generation to a fresh set of

several half-pint bottles or vials of food. These are usually kept at

18uC to extend each generation’s lifecycle and are fed either 16
SY food or a cornmeal-based diet (see below).

Media
The SY food reported here is the same as SYBrewer’s in [12].

Standard (16) contains per litre: 100 g autolysed Brewer’s Yeast

(MP Biomedicals, Solon, OH), 100 g sucrose (Tate & Lyle sugars,

London, UK), 15 g agar (Sigma, Dorset, UK), 3 ml propionic acid

(Sigma, Dorset, UK), 30 ml Nipagin M solution (100 g/l methyl

4-hydroxybenzoate in 95% ethanol) (Clariant UK Ltd, Ponty-

pridd, UK), distilled water to 1 l. Cornmeal-based diet used in

stock keeping contains: 60 g cornmeal (organic polenta; B.T.P.

Drewitt, London, UK), 20 g autolysed Brewer’s yeast, 85 g

sucrose, 10 g agar, 25 ml Nipagin M and 1 l distilled water.

Tetracycline treatment was carried out by the addition of

25 mg/ml tetracycline to 16 SY food for two generations.

For stock maintenance, food was cooked in a 60 l Joni Multimix

food preparation kettle (Joni Foodline, Munkebo, Denmark),

while experimental food was prepared on a gas hob as described in

[12].

Figure 6. The Dahomey genetic background is capable of the longest lifespan and greatest reproductive output of the wild-type
strains tested. For median lifespan, the data are the averages from the longest lived conditions for each strain. For lifetime fecundity they are the
average of the condition producing the greatest lifetime reproduction. It should be noted that the conditions under which these occur is different for
the two traits, as predicted by the expectations of DR, and that they may be different for each different strain. Data from n independent repeats,
where n = 5 for Dahomey, CantonS and OregonR; n = 2 for yw, and; n = 1 for w1118 and wDahomey.
doi:10.1371/journal.pone.0004067.g006
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Lifespan and fecundity assays
Flies were reared at a standard density for at least two

generations before being used for lifespan experiments as

previously described [12,44]. All experiments were performed

with female flies that were allowed 48 h to mate after emerging as

adults. On the second day of adult life, flies were lightly

anaesthetized with CO2, sorted and counted at 10 per vial. The

minimum number of flies per condition was 100. For the

intermittent feeding experiment, five replicate 1 l cages, each

containing 100 flies was used for each condition. These cages have

two side-arm inlets that can each accommodate a food vial. The

periods of starvation were initiated at 10:00 (lights on), whereupon

the food vial (26SYBrewer’s) was replaced with an empty vial. In

all cages at all times, flies had constant access to a vial containing

water that was plugged with wet cotton wool. This was housed in

the side-arm not containing the food vial. In all cases, flies were

transferred to fresh food at least three times a week, at which point

deaths were scored.

For fecundity measurements, eggs were counted after the flies

had been in the vials for between 18 and 24 h. Generally, these

counts were performed once a week for the first six to seven weeks

of adult life. Importantly, the first egg count was only conducted

after at least four days exposure to the new food in order to allow

time to adjust to the new nutritional conditions.

PCR detection of Wolbachia infection
PCR for detection of Wolbachia was performed using primers

wsp81F and wsp691R (kind gift from G. D. D. Hurst) as described

in [45]. In each case, a sample of flies form the experimental

generation was used for PCR testing.

Data analyses
Lifespans were recorded and analysed using spreadsheets

created in-house in Excel. Comparisons using the Wilcoxon rank

sum test were performed in R, v2.5.1 [46].
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