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ABSTRACT 

 

The advantages of using the fundamental topographic features of a surface namely the peaks, pits, 

passes, ridges and channels as the observers (viewpoints) in visibility computation is presented. 

Considerable time can be saved without any significant information loss by using the fundamental 

topographic features as observers in the terrain. This optimisation is achieved because of a reduced 

number of observer-target pair comparisons thus establishing the Reduced Observers Strategy. The 

method has been demonstrated for a gridded digital elevation model. Due to this selected sampling 

of observers in the terrain, there is an under-estimation of the viewshed of each point. Two simple 

methods for assessing this uncertainty have been proposed.  

 



1. Introduction 
Visibility analysis of terrains is perhaps a unique geographic information science operation, which 

continues to find new practical applications in a wide variety of fields. Visibility remains an 

important terrain parameter because, intrinsically, it is an indicator of the visual accessibility, which 

is one of the determining factors in the overall accessibility of a location. Applications of the 

visibility analysis have varied from the planning of defence installations (watch towers, troupe 

movements, flight paths, air defence missile battery - e.g., Franklin et al., 1994), 

communication/facilities allocation (TV/Radio Transmitters – e.g., Lee, 1991; De Floriani et al., 

1994; Kim and Clarke, 2001), landscape analysis (visibility graphs – e.g., O’Sullivan and Turner, 

2001) and environmental modelling (terrain irradiation – e.g., Wang et al., 1999).  

 Besides the applications, the computation time and the accuracy of the viewshed 

computation are the two actively discussed issues in visibility analysis. For simplicity, if we ignore 

the algorithmic and implementational dependencies of the visibility analysis then the computation 

time of a visibility analysis is proportional to O(o*t), where o is the number of observers 

(viewpoints) and t is the number of targets. Therefore, most optimised visibility computation 

methods try to reduce the observer-target pair comparisons by choosing a polyhedral terrain model 

(e.g., Triangulated Irregular Network (TIN) – De Floriani and Magillo, 1994) instead of a grid, and 

by using algorithmic heuristics (Franklin et al., 1994; Wang et al., 2000). A few works have also 

focussed on using parallel computing for visibility computation (Teng et. al, 1997, Ware et al., 

1998). We regard all optimisation approaches to reduce the Observer (o) part of the computational 

load as the Reduced Observers Strategy. Similarly, the optimisation approaches aiming to reduce 

the number of Targets (t)(e.g., limiting the maximum visibility distance as in horizon culling) can 

be regarded as the Reduced Targets Strategy. One of the drawbacks of the above optimisation 

methods is that they introduce a certain level of uncertainty in the viewshed size, as not all the 

targets (or observers) on the terrain are used to compute the intervisibility. It is unlike the 

exhaustive and time-consuming “Golden Case”, in which all the points on the terrain are used as 

observers and targets. In addition, there are uncertainties in the viewshed due to the subjectivity of 

the visibility algorithm (Fisher, 1991) and the elevation errors in the digital elevation models 

(DEMs) (Fisher, 1993) and TINs. In general, there is a compromise between performance and 

accuracy (Franklin et al., 1994).  

 While the methods for handling the viewshed uncertainty, particularly arising from the 

elevation errors, are perhaps well established (Fisher, 1991, 1992, 1993; Crocetta et al., 1998), the 



search for the optimisation of the visibility computation time still goes on apace (e.g., latest work by 

Franklin, 2000; Wang et. al., 2000). In this article, we exploit and extend the observations of Lee 

(1992) about the significance of fundamental topographic features (Peucker and Douglas, 1975), 

namely the peaks, pits, passes, ridges and channels of a surface, as suitable candidates for viewpoint 

sites. We suggest that since, conceptually, the fundamental features provide an exhaustive and yet 

optimal (i.e., keeping in consideration that they’re are generally fewer in number and have an 

objective definition) coverage for most terrains, therefore their use as observers would be an ideal 

way of decreasing the Observers (o) part of the visibility computational load. In other words, we 

employ the Reduced Observers Strategy, using the topographic features as observers. For brevity, 

we will use the term “topographic features” in place of the “fundamental topographic features”. 

 
2. Experiment 
In traditional visibility analysis, a target is considered visible if a Line of Sight (LOS) can be drawn 

from an observer to it without any obstruction by an intermediate point (An exception is by Wang, 

2000, who used reference planes to establish the visible areas). The number of targets visible to an 

observer is called its visibility index. The viewshed of the observer is the size of the physical visible 

area. Previously, the observers could be a random set of points on the terrain or, in exhaustive cases, 

all the points on the terrain (Figure 1a). In the current work, we propose that a target is considered 

visible only if a LOS can be successfully drawn to it from a topographic feature (Figure 1b). 

Common sense dictates that this is a fair assumption except in the completely topographic features-

less terrains (e.g., plateaus) although in which case the viewshed is likely to be a constant over large 

areas. However, since the topographic features form only a subset of the entire set of terrain 

therefore the visibility index and viewshed are likely to be underestimated by our approach. Two 

simple methods for assessing this uncertainty are presented later in the §2.1.  

 
2.1 Methodology 
The proposed methodology for the visibility analysis using topographic features consists of three 

steps. (1) Extract the topographic features, (2) Compute the visibility index of each point using the 

topographic features as observers, and (3) Assess the uncertainty in the visibility index.  

 
Step 1: Extraction of Fundamental Topographic Features 
Many approaches have been proposed for the automated extraction of the topographic features from  



DEM and TIN (e.g., Greysukh, 1967; Peucker and Douglas, 1975; Evans, 1979; Wood, 1998; 

Takahashi et. al, 1995). A detailed treatment of this topic is beyond the scope of this work. We 

decided to use the extraction method of Wood (1998) based on the advantages advocated by Wood 

(1998) against the other methods and partly due to its easy availability in the user-friendly freeware 

software LandSerf (Wood, 1998). 

 It is clear that the success of our Reduced Observers Strategy depends upon the accuracy of 

the topographic feature classification. It is well known that most automated topographic feature 

extraction methods are vulnerable to the noise in the DEM (Jenson and Domingue, 1988) and, most 

importantly, have scale dependency limitation (Wood, 1999). While, smoothing the DEM before 

extracting the features can eliminate the first limitation, the latter seems to remain a difficult 

intrinsic problem yet to be completely solved. Due to the scale dependency, the automated feature 

extraction identifies features only at a certain scale (e.g., features of a fixed geographic extent) 

while features at other scales remain undetected. This aspect of the current approach could be 

described as the subjectivity of the visibility analysis. It would therefore generally require iterating 

through a number of “feature extraction scales” (e.g., in LandSerf, we could do with this by 

iterating with a different window or kernel sizes for the feature extraction and visual verification, to 

ascertain an appropriate scale for the particular DEM. Many researchers in the field of geographic 

information science (Montello and Golledge, 1998; Quattrochi and Goodchild, 1996), computer 

science (Lindeberg, 1994) and social science (Gibson et. al., 1998) have addressed the concept of 

scale in digital images and physiography but a unified and unanimous treatment of the issue is still 

to be proposed.   

 Although we have reduced our observers significantly with the use of fundamental 

topographic features, there may still be too many to avoid long visibility computation time, 

especially for large desiccated terrains. Two possible solutions are - (1) Resample the topographic 

features set by a certain skip interval or some other criteria (e.g., selecting features of more regional 

scales), and (2) Limit the maximum visibility distance, R, i.e., combining with the Reduced Targets 

Strategy. 

 
Step 2: Visibility Analysis 
The study area is a 5548 cells - 100m resolution gridded DEM of the Cairngorm Mountain Area in 

Scotland (Figure 2).  It is located between the British National Grid Coordinates 285876E, 793813N 

and 293476E, 786513N. This methodology can also be easily applied to an irregular terrain models 

such as TIN. Visibility analysis was carried in the ArcView software developed by ESRI. The 



details of the intervisibility computation algorithm used by ArcView are not available in the public 

domain. Therefore, they could not be described in the article. We assume that ArcView’s algorithm 

heuristics do not affect the result of our optimisation. 

The visibility function in ArcView requires us to specify the following six sets of parameters 

for the visibility computation  (Figure 3). For the complete description, please refer to the ArcView 

Help on the Visibility Request: 

(i) SPOT – This is the elevation of the observer. We use the elevation of the terrain at the 

observer as SPOT. It could also be set to a different value other than the terrain of the 

observer. 

(ii) OFFSETA, OFFSETB – OFFSETA is the vertical distance in surface units (meters in 

this case) to be added to the elevation of the observer. OFFSETB is the vertical distance 

in surface units to be added to the elevation of the target. In this case, OFFSETA = 1m 

and OFFSETB = 0 m. 

(iii) AZIMUTH1, AZIMUTH2 – These are the horizontal angle limits to the scan. The 

sweep proceeds in a clockwise direction from AZIMUTH1 to AZIMUTH2. Values are 

given in degrees from 0o to 360o, with 0o oriented to the north. In this case, AZIMUTH1 

= 0o and AZIMUTH2 = 360o.  

(iv) VERT1, VERT2 – These are the vertical angle limits to the scan. The VERT1 and 

VERT2 are respectively the upper limit and lower limit of the scan. The VERT1 and 

VERT2 angles are expressed in degrees between 90o and –90o. Positive angles are 

above the horizontal plane; negative angles are below. The horizontal plane (0o) is 

defined by the z value of the observation point plus the value of OFFSETA. In this 

case, VERT1 = 90o and VERT2 = -90o. 

(v)  RADIUS1, RADIUS2 - The RADIUS1 and RADIUS2 are the limits of the search 

distance when identifying areas visible from each observer. Points beyond the 

RADIUS2 search distance are not considered as potential targets and are thus excluded 

from the analysis. Targets closer than the RADIUS1 search distance are similarly 

ignored but they can still block the visibility of targets between RADIUS1 and 

RADIUS2. In this case, RADIUS1= 0 m and RADIUS2 = ∞. 

(vi) Observers and Targets – These are specified by a Point or Line Theme and the Grid 

Theme respectively, which in this case were the sets of the fundamental topographic 

features and the Cairngorm DEM respectively. 

 



Most of the parameters used by us are the defaults of the Visibility Request in ArcView, as our 

interest is primarily to study the potentials of Reduced Observers Strategy. Franklin (2000) found 

that the OFFSETA and OFFSETB have almost no effect in his visibility algorithm. 

The experiments were done on an Intel-Pentium processor based personal computer, with 

256 MB RAM and a 1 GHz processor speed. We recorded the CPU time taken by ArcView for each 

visibility computations. The computation time depends upon the time-keeping method (i.e., whether 

CPU time or algorithm time) and the external load on the CPU. Therefore, the computation time in 

our work should only be taken as applicable to the current study. However in order to maintain 

consistency, we ensured that our CPU usage was solely dedicated to this experiment.  

 
Step 3: Uncertainty Assessment 
As explained at the beginning of this section, by testing the visibility of the targets (each point in 

the DEM) from the topographic features only, we have reduced the viewshed of each point by an 

amount approximately equal to the non-topographic features, potentially visible to the points. This 

kind of uncertainty, arising due to our sparse observers set, is closely similar to the uncertainties 

related to “Object Generalisation” (Weibel and Dutton, 1999). To our knowledge, this kind of 

uncertainties has not been addressed in the visibility studies literature. 

However, finding out the identity of the, relatively, most visible observers is of more 

interest than their exact visibility indices (Franklin, 2000). Even so, the reliability of the visibility 

method is critical and we have to ensure that the overall visibility pattern is realistic albeit 

abstracted.  

 Franklin et al. (1994) compared the visibility indices of an arbitrary set of spatially 

distributed points in the terrain, computed from his exhaustive R2-visibility algorithm (similar to 

our Golden Case), with his optimised methods. Although the results are very encouraging, we 

believe that his sampling methods, i.e., the selection of the test points, could not be regarded as 

formal and objective. Since there is no prior-knowledge about the distribution of the visibility 

pattern, it is not possible to estimate the number of random points required to fully capture the 

sensitivity of the visibility index distribution of a terrain. The choice of the number of random 

points is critical, as it will dictate our computation time. Later we will provide examples that 

suggest that the visibility pattern is highly dependent upon the spatial distribution and magnitude of 

the observers. 

 We propose the following two methods for the uncertainty assessment based on a slight 

modification of the Franklin et al. (1994) methods: 



Method 1:  Absolute vs. Estimated visibility indices of the topographic features –  

(i) Compute the visibility indices of the topographic features by drawing the LOS from 

each topographic feature to all the points in the terrain (Absolute visibility index). 

(ii) Compute the visibility indices of the topographic features by drawing the LOS between 

topographic features (Estimated visibility index).  

(iii) Calculate the correlation coefficient between Absolute- and the Estimated- visibility 

indices. The correlation coefficient should suggest the similarity between the two 

visibility patterns. This method is similar to Franklin et al. (1994) except that the 

definition of our test-points is objective and perhaps more natural. However 

statistically, it remains only an approximate test especially for exceptional terrains, 

where the topographic features are not distributed uniformly across the terrain.  

 

Method 2: Absolute vs. Estimated visibility indices of the pseudo-random points –  

This method is simple and exhaustive but time-consuming. In this method, we have tried to apply 

the Monte-Carlo style iterative comparisons between the Absolute and the Estimated visibility 

indices of a set of pseudo-random points. Our proposed methodology has the following five steps: 

(i) Estimate a number of random points to be spatially distributed on the terrain. As 

mentioned before, we do not have a prior knowledge about the Absolute visibility index 

distribution. Thus, it is not trivial to determine the number of random points sufficient 

to capture the visibility pattern. We suggest the following informal and approximate 

method of determining the number of random points. If we assume that, 

(a) the topographic features abstract (or partition) the visibility pattern of the terrain 

into unique viewsheds completely, and 

(b) the viewsheds are uniformly distributed on the terrain,  

then the number of unique viewsheds, estimated by the Reduced Observers Strategy 

could be an ideal measure for the optimal number of random points. In other words, 

with these assumptions, we suppose that each viewshed will be assigned at least one 

observer.  

(ii) Distribute a number of random points equal to the number of unique viewsheds, found 

in step (i), spatially across the terrain. We used the Random Point Generator ArcView 

Extension developed by Jeff Jennes (Jennes, 2001). It is clear that the effectiveness of 

our assumptions in (i) above depends upon our ability to distribute the random points 

randomly across the terrain.  



(iii) Compute the Estimated visibility indices of the random points computed by drawing 

the LOS to the topographic features. 

(iv) Compute the Absolute visibility indices of the random points by drawing the LOS to all 

the points in the terrain.  

(v) Calculate the correlation coefficient between the Absolute- and the Estimated- visibility 

indices of the random points. 

(vi) Repeat steps (ii) – (v) a number of times. Due to the lack of any prior information about 

the statistical distribution of the Absolute visibility indices, it is difficult to decide 

formally a specific number of iterations. We suppose that it would ultimately depend 

upon the amount of time available to the researcher for the experiment.  

(vii) Choose the lowest and highest correlation coefficient as indicators for the worst- and 

the best- case scenarios.   

 

2.2 Significance of the Topographic Features  
In order to verify the uniqueness and benefit of our choice of observers, we wanted to ensure that 

they would be better than the same number of random observers spatially distributed across the 

terrain. One of the ways of verifying the significance of the topographic features would be to 

compare the accuracy of the visibility pattern produced by decreasing the number of topographic 

feature observers and the random observers. We suggest that with a larger number of observers, 

there may not be a big difference in the qualitative accuracy (especially for small areas) but for a 

smaller number of observers, the topographic features are likely to yield better results. In this work, 

we used the skip interval method of generalising our topographic feature set. We gradually kept 

increasing the skip interval. Some suitable guides for the minimum number of observers could be 

the number of point topographic features (peaks, pits, passes), a satisfactory level of accuracy, and 

the maximum permissible computation time. In this work, we arbitrary selected 10 values for the 

percentage of preservation, P, desired in the topographic feature set. They are P = 99%, 49%, 33%, 

25%, 16%, 12%, 10%, 8% and 5%. In all the cases of P, R = ∞.  
 
3. Results 
 
3.1 Automated extraction of the Topographic Features  
After iterating with few window (kernel) sizes combined with visual inspection, we found that a   



9 X 9 (450 m X 450 m) window is suitable to extract most linear (ridge, channel) and point (peak, 

pit, pass) topographic features, present in the terrain (Figure 4). 910 topographic features have been 

extracted as our optimal observers. However, note that as mentioned previously, the number of 

topographic features depends upon the size of the window. Therefore, different window sizes will 

produce different number of topographic features. It would be interesting to investigate the change 

in the estimated visibility indices pattern and its correlation with the absolute visibility indices, with 

varying extraction scales.  

 

3.2 Visibility Analysis and Uncertainty Assessment 
For brevity, we have shown the figures for uncertainty estimation methods for the combination of P 

= 100%, R = ∞ only. 

 Since, our study area is small, we are able to obtain the Golden-case visibility pattern of our 

study area (Figure 5a). This pattern is now our ideal standard. The visibility indices have been 

stretched between 0–1 in order to assess the relative dominance of the points in the visibility 

pattern. Figure 5b shows the pattern of the estimated visibility indices over the terrain, measured 

using the topographic features as observers. It is clear from the figure that the overall pattern of the 

visibility indices is similar to what we would have obtained in the Golden Case. The ridges and 

peaks have high visibility indices compared to the passes, channels and pits. However, as evident 

from the range of the Estimated visibility index, our optimised approach has significantly under-

estimated the visibility indices. 

 Using the Method 1 for uncertainty estimation, Figure 6a shows the relation between the 

Absolute- and Estimated- visibility indices of the topographic features. The surprisingly strong 

correlation coefficient of 0.99226 suggests that the optimisation has successfully achieved to 

represent the overall visibility pattern. But in order to find out the magnitude of estimation, we 

calculated the average deviation of the Estimated visibility Index from the Absolute visibility index 

as follows: 

Average Deviation = 
n
x

xxn

i i

ii∑
=

−
1

'

 

Where '
ix = Estimated visibility index, ix = Absolute visibility index and n = number of points. The 

average deviation is 0.18 that suggests that the on an average the estimated visibility indices have 

%18± error, which affirms our previous suggestion that this optimisation approach is best used 



only to find out the relative visibility dominance of the points on the terrain. Figure 6c shows the 

deviation of individual Estimated visibility index decreases gradually with an increasing Absolute 

visibility index. This result suggests that the uncertainty is largest for small viewsheds.  

The residuals vs. the predicted absolute visibility indices plot (Figure 7) shows that the 

residuals are uniform and not extreme. Again note the magnitude of the residuals would make it 

difficult to estimate the Absolute visibility indices based on although a strong linear regression. 

This leads to the preliminary conclusion that though we have a very good global correlation with 

the Absolute visibility indices, i.e., an overall similarity, but an estimation of the Absolute visibility 

indices is theoretically implausible. In fact, it can be easily argued that it is impossible to pre-

estimate the Absolute visibility index of a point. The reason is that it is theoretically not possible to 

model the LOS from a point, based on the properties of a point itself but can only be derived by 

actually drawing the LOS across the space. Therefore, the visibility index and viewshed are 

examples of the global properties of a point in contrast to the focal properties (e.g. elevation, slope 

etc.).  

 In the Method 2 for uncertainty estimation, we first generated 16 sets of 414 (the unique 

number of viewsheds based on Estimated visibility indices) spatially distributed random points. We 

then calculated the correlation coefficient between the Absolute- and Estimated- visibility indices 

for each of these sets of random points. The correlation coefficients are almost uniform averaging at 

0.988540, with the exception of one case (0.990112), and an insignificant standard deviation of 

0.001 (Figure 6b). The low standard deviation supports our earlier conclusion that our optimisation 

approach has reproduced the global pattern of the absolute visibility. However, dissimilarity with 

the Method 1 based correlation coefficient suggests that significant local variations would still exist. 

 In both cases, the Estimated visibility indices based on our simple approach have a much 

higher correlation coefficient than reported by Franklin et al. (1994) using his sophisticated 

algorithmic heuristics.  

 
3.3 Significance of the Fundamental Topographic Features  
Figure 8 shows the comparison between the correlation coefficients of the Absolute- and Estimated- 

visibility indices calculated with the topographic feature observers and the random observers, with 

various observer numbers. The figure shows that at high observer numbers even a set of random 

observers could provide a satisfactory (could be even better than the topographic features) idea and 

of the visibility pattern however at low observer numbers the topographic features are a more 

superior set of observers. Basically this suggests that, at high observer numbers, the extent of 



correlation between the Absolute- and Estimated- visibility indices is dependent upon both the 

spatial distribution and the topographical significance of the reduced number of observers but at low 

observer numbers, the topographical significance is a more useful basis. Thus, one could reduce the 

number of the topographic features for the visibility computation for large terrains with large 

number of topographic features, without the fear of losing any significant visibility information. 

 We believe that the divide between the topographic feature observers- and random 

observers- curves is likely to vary according to the characteristics of the each terrain, particularly 

large terrains will show a relatively wider separation between the curves than smaller terrains. 

An interesting aspect of the Figure 8 is the overlap of the topographic feature observer- and 

random observer- correlation coefficient curves. It may indicate that in each terrain, there are 

observer densities at which both the topographic feature observers and random observers could 

provide an equal level of spatial optimisation. If this is proven, then it could be used as an indicator 

for the number of random observers selected to solve the time consuming minimum number of 

watchtowers problem (Lee, 1991). In hindsight, this overlap can also be an indicator for the optimal 

number of random points required in the method 2 for uncertainty estimation (see §2.1). 

 
3.4 Optimisation of computation time 
Figure 9 shows the relation between the CPU time usage vs. the various magnitudes of visibility 

computations performed in the work. Computations here represent the product of o*t. The plot 

expectedly shows a linear increase in the CPU time with an increase in the computations. If we 

assume that the DEM has a topographic feature density equal to the one in our study area, then the 

Table 1 shows the estimated time for the visibility computation for some popular DEM formats. As 

can be seen clearly the time saved is significant. However, the CPU time usage could be optimised 

even more by combining the current approach with the Reduced Targets Strategy such as done by 

Franklin et al. (1994).  

  
3.5 Generalisation of the visibility pattern 
An interesting observation worth noting, which emerged by studying the visibility indices pattern 

with varying topographic feature observers densities is that the visibility pattern undergoes 

generalisation over space and index types (Figure 10). Therefore, the variety in viewshed sizes is 

reduced but the viewsheds tend to be larger and more homogenous.  

 



4. Conclusion 
In this work, we have shown that the use of the fundamental topographic features as observers 

(viewpoints), as part of the Reduced Observers Strategy, can be used to significantly decrease the 

visibility computation time without any significant visibility information loss. The reduced 

sampling of the observers in the terrain, however, introduces an uncertainty in the visibility indices. 

Based on our investigation, the residuals between the Absolute- and the Estimated- visibility indices 

are found to be uniform and random but significantly large that limits our ability to model Absolute 

visibility indices accurately. 

 The current work has found a number of interesting questions, which would be investigated 

in future works: 

- The combination of the Reduced Observers Strategy and Reduced Targets Strategy will be 

investigated for the visibility computations on very large DEMs. 

- The effect of the feature extraction scale on the visibility pattern will be investigated. 

- The assumption that at certain observer densities, both a topographic features observers and 

random observers would produce similar quality of visibility estimation i.e., similar correlation 

coefficients between the Absolute- and the Estimated- visibility indices, will be validated. The 

relevance of this experiment for optimising accessibility analysis will be tested. 

- The correlation coefficient provides only a global pattern matching but the visibility is a 

directional property. We will explore ways in which we could estimate the visual integrity in 

our optimised approach. 
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Figure 2. Digital Elevation Model of the study area, in the SE Cairngorm 

Mountains, Scotland. Visualisation is based on the Natural Breaks

Classification (Jenks, 1963) and Vertical exaggeration = 1.4. 
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Figure 4. Fundamental topographic features of the study area draped over the DEM. The 

ridges originate at the peaks, the ridges and the channels meet at the passes, and the channels 

terminate at the pits. DEM visualisation is based on the Natural Breaks Classification (Jenks, 

1963) and Vertical exaggeration = 1.4.  
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Figure 7. Distribution of the residuals in the regression (Figure 6a)

between the Absolute- and Estimated- visibility indices of the

fundamental topographic features.  
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Figure 8. Comparison between the Absolute- and the Estimated- visibility 

indices correlation coefficients, for a decreasing number of topographic 

features- and random- observers.  
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Figure 9. Linear increase in the visibility computation time with varying 

topographic feature densities. 



 



 

 Study Area Interpolation 
Observers CPU Time ρ OS*- Panorama OS- Profile DTED Level 1 

Golden case 9 minutes 1 6 days 15 days 1 year 
P=100% (910) 2 minutes 0.989719831 23 hours 2 days 79 days 

P= 99% 2 minutes 0.990595436 23 hours 2 days 78 days 
P= 49% 47 seconds 0.987393735 12 hours 1 days 39 days 
P=33% 32 seconds 0.986793327 8 hours 19 hours 26 days 
P=25% 24 seconds 0.983408156 6 hours 14 hours 19 days 
P=16% 16 seconds 0.978540379 4 hours 9 hours 13 days 
P=12% 12 seconds 0.977172278 3 hours 7 hours 10 days 
P=10% 10 seconds 0.975588605 2 hours 6 hours 8 days 
P=8% 9 seconds 0.966840217 2 hours 5 hours 7 days 
P=5% 5 seconds 0.942986472 1 hour 3 hours 4 days 

 
 

Table 1. CPU usage times for the visibility computation in the study area and the

interpolation of the experiment’s time-observer density combinations to some

standard DEM formats. * OS – Ordnance Survey, UK, Landform data. In all cases,

the viewers can see to the infinity. All the durations have been rounded off to the

nearest seconds, minute, hour, day and year. 


