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It is shown that the Cox modified likelihood-ratio statistic for testing partially 
non-nested hypotheses Ho and H1 is asymptotically equivalent to a bilinear 
form in nondegenerate asymptotically normal random vectors for sequences 
of data-generating processes converging to the intersection of Ho and H1 but 
not necessarily belonging to either Ho or H1. One of the asymptotically nor- 
mal vectors is the complete parametric encompassing vector of Mizon and Rich- 
ard, while the other is a close relative. The results are valid regardless of whether 
or not the data-generating process is exponential and imply that the Cox sta- 
tistic is not generally asymptotically locally normal. This corrects an assump- 
tion made in recent literature. 

1. INTRODUCTION 

The purpose of this paper is to derive the asymptotic local structure of the 
Cox [1,2] modified likelihood-ratio statistic for testing a hypothesis Ho ver- 
sus a non-nested alternative H1. By "asymptotic local" we mean "along a se- 
quence, indexed by sample size, of true data distributions (data-generating 
processes) approaching some data distribution that lies in the intersection of 
H1 and Ho." The special case where the sequence lies entirely within the 
originally defined Ho or H1 is of particular interest as these are the very hy- 
potheses for which the Cox statistic is constructed. For such an analysis to 
be possible, we have to assume that the hypotheses Ho and H1 are partially 
non-nested in the sense of Pesaran [14]. The distribution of the Cox statis- 
tic for sequences of data-generating processes whose limit lies outside the in- 
tersection of the originally defined Ho and H1 is, in fact, less problematic 
than the distribution for limits within that intersection. It is for limits within 
the intersection that nonstandard issues of non-normality arise. These are the 
focus of the present paper. 
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In the light of the analyses of Cox [1, pp. 118-119] and Gourieroux, Mon- 
fort, and Trognon [7], it would appear that the Cox statistic will usually be 
asymptotically linear in the complete parametric encompassing (CPE) test 
vector of Mizon [12] and Mizon and Richard [13] under Ho for a fixed data 
distribution of the exponential family. However, Kent [10, pp. 338-339] has 
shown that there exist certain degenerate cases in which the Cox statistic is 
asymptotically equivalent to a quadratic form in the CPE vector under Ho 
for a fixed data distribution of the exponential family. Kent's demonstration 
made use of the special assumption that the distribution in HI nearest to 
any true distribution in Ho always lies in the intersection of Ho and H1. 
Vuong [15] showed that the asymptotic distribution of the basic likelihood- 
ratio, as distinct from the Cox centered likelihood-ratio, is that of a quadratic 
form in normal variates whenever the distribution in HI nearest to a fixed 
true distribution (not necessarily belonging to Ho or HI) is observationally 
equivalent to the distribution in Ho nearest that true distribution. In the 
present paper, we will prove that the asymptotic local structure of the Cox 
statistic itself is bilinear in asymptotically normal vectors, regardless of 
whether or not the data distribution itself is exponential. One of these vec- 
tors is the CPE vector, while the other is a close relative of it. 

The analysis of the paper is of potential use as a first step toward a cor- 
rect assessment of the asymptotic local power of the Cox test. In seeking to 
derive that power, Pesaran [14, p. 83, Theorem 3.1] appeared to show that 
the asymptotic local distribution of the Cox statistic under HI is normal. 
His proof was ingeniously arranged to take advantage of the very tempting 
assumption that the asymptotic distribution of the Cox statistic along a lo- 
cal sequence of data-generating processes under Ho is normal just as it is for 
a fixed data-generating sequence under Ho (but lying outside the intersection 
of Ho and H ). The results of the present paper imply that this assumption 
is false. The asymptotic local distribution of the Cox statistic is not normal 
either under Ho or under H1. 

The plan of the paper is as follows. In Section 2, we set out the framework 
of analysis. In Section 3, we present and discuss the main result. This is 
proved in Section 5, following a careful listing of technical regularity con- 
ditions in Section 4. 

2. THE FRAMEWORK OF ANALYSIS 

Let y denote an np-dimensional vector of n observations (not necessarily 
i.i.d.) on p variables. Let fn (Y I), g (y I ), k, (y I ) denote density func- 
tions for y with respect to some underlying measure v, on IR", where 0, X, 4 
are parameter vectors belonging to the closed subsets 0 C IRdim() , c 
IRdim(?), ? C IRdim(?), respectively. These density functions are assumed to 
have a common support on IRn. They may be conditional on a common set 
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of exogenous variables, but for simplicity such variables are notationally sup- 
pressed. 

Letting d (y) denote a density with respect to vn for the "true" distribu- 
tion of y, we consider the following hypotheses: 

Ho: dn(y) =fn,(yI) a.s. (dn) for some 0 E 0, (2.1) 

H1: d,(y) = gn (y I) a.s. (dn) for some 0 E I. (2.2) 

We assume that the hypotheses are partially non-nested in the sense that nei- 
ther does Ho imply H1 nor does HI imply Ho, but Ho and HI can both be 
true. Thus there exist parameter values 0* and 0* such that 

fn(Y0 *) = gn(Y\I *) a.s. (fn). (2.3) 

Let 0* and 4* denote the sets of all 0*-values and +*-values, respectively, 
for which equation (2.3) holds. Furthermore, let I,* denote the set of all A/*- 
values such that 

kn(y I \*) =fn(Yl*) = gn(Y?{*) a.s. (kn) (2.4) 

for some 6* G O* and some 0* E 4*. For further discussion of the notion of 
partial non-nesting, the reader may refer to Pesaran [14] and Vuong [15]. 

The Cox [1] modified likelihood-ratio statistic for testing Ho versus H1 is 
given by the expression 

log[fn(Yf6)] -log[g,(y[ )] - Eo[log[f,(y[f )] -log[g,(y\()]] (2.5) 

where 6 and 4 denote maximizers of log[fn(y|0)] and log[gn(y| )], re- 
spectively. The term beginning with Eo in (2.5) represents the "best esti- 
mate" of the value we would expect the log-likelihood to take under Ho 
(Cox [1, p. 114]). Of the various possible versions of such a best estimate, 
we focus here on the following form: 

Eo[log[fn(yl 0)] -log[g,(y )]] 

= f[log[fn(y O)] -log[gn(y k)]Jfn(yI )dvn . (2.6) 
_J _ o=0, ~,=,3 

This form, specialized to the case of i.i.d. observations, was used by White 
[17] and Pesaran [14]. 

It is important to know the asymptotic (n -> oo) distribution of expression 
(2.5), suitably scaled, under the following possible specifications for dn(y). 

Specification 1. dn(y) = f, (y I 0) for some fixed value 0 independent of 
n and lying in the set 0\0* where 0* is defined after equation (2.3). 

Specification 2. dn(y) =fn(y 6On) for some sequence of values ( n C 0 
such that 

On = O* + n-1/2 (2.7) 
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where 0* and ~ are finite vectors having some fixed values independent of 
n, with 0* satisfying equation (2.3). 

Specification 3. dn(y) = gn (y I) for some fixed value 0 independent of 
n and lying in the set 4\4* where ,* is defined after equation (2.3). 

Specification 4. dn (y) = gn (v | ,n) for some sequence of values n, I C 4 
such that 

On = d* + n-1/2r (2.8) 

where ?* and ' are finite vectors having some fixed values independent of 
n, with O* satisfying equation (2.3). 

Specifications 1,3 and 2,4 are particular cases of the following more gen- 
eral Specifications 5 and 6, respectively, where the parametric density func- 
tion k (y I 4) need not necessarily belong to either of the families Ho or H1. 

Specification 5. dn (y) = k (y I ) for some fixed value 4/ independent of 
n and lying in the set T \ * where T* is defined between equations (2.3) 
and (2.4). 

Specification 6. dn(y) = k (y I An) for some sequence of values ( n } C 'I 
such that 

n = 4'* + n-1/2X (2.9) 

where 4/* and X are finite vectors having some fixed values independent of 
n, with /* satisfying equation (2.4). 

Under Specification 1 and suitable regularity conditions, the expression 
(2.5) appropriately scaled is distributed asymptotically as a unit normal var- 
iate (Cox [1], Mizon and Richard [13], and White [17]). Under Specification 
3 and suitable regularity conditions, the probability limit of n-' times ex- 
pression (2.5) is finite and nonzero, thus essentially making the Cox test con- 
sistent against H1. 

The asymptotic distribution of expression (2.5) under Specification 4 with 
' non-null is required as a preliminary to a correct analysis of the local power 

of the Cox test against distributions within the original class (2.2). As we will 
show, this asymptotic distribution is not normal. This finding appears to con- 
flict with that of Pesaran [14]. The conflict is easily explained: Pesaran's der- 
ivation of the asymptotic distribution of the scaled Cox statistic under 
Specification 4 was so constructed as to exploit the premise that the asymp- 
totic distribution of that statistic under Specification 2 is unit normal just as 
it is under Specification 1. The premise is given as Assumption 3 on page 81 
of Pesaran [14]. The statement of that assumption makes no distinction be- 
tween Specifications 1 and 2, yet the statement and proof of Theorem 3.1 
on page 83 of Pesaran [14] implicitly takes Assumption 3 to be valid under 
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Specification 2. By writing the Cox statistic for Ho versus H1 as a function 
of the Cox statistic for H1 versus Ho and then invoking his Assumption 3 
for the latter, Pesaran [14, pp. 83-84] appears to obtain the asymptotic lo- 
cal distribution of the Cox statistic for Specification 4. As we will show, how- 
ever, Pesaran's Assumption 3, while correct for Specification 1, is invalid for 
Specification 2. The asymptotic distribution of the basic Cox statistic (2.5), 
hence that of the scaled Cox statistic, is not even normal under Specifica- 
tion 2, let alone unit normal. This result is in keeping with the practical 
finding that the unit normal distribution does not always appear to be an ad- 
equate representation of the empirical distribution of the Cox statistic (as, 
for example, in the Monte Carlo studies of Godfrey and Pesaran [6] and oth- 
ers reported in McAleer [11, pp. 179-183]). 

For Specifications 2, 4, 6 with 4 = 0, ' = 0, X = 0, the asymptotic distri- 
bution of just the likelihood-ratio itself (as distinct from Cox's centered ver- 
sion) can be obtained from Theorem 3.3 of Vuong [15, p. 313] as that of a 
weighted sum of central chi-square variates. Equation (A.7) of Vuong [15, 
Appendix, p. 327] shows that the simple likelihood-ratio is asymptotically 
equivalent to a quadratic form in (0 - 0*) and ($ - 4*), in the notation of 
the present paper. The additional contributions of the present paper could 
be viewed as: (1) attending to the complications introduced by Cox's center- 
ing of the basic likelihood-ratio, (2) allowing i, A, and X to be nonzero, and 
(3) revealing the local connection with complete parametric encompassing. 
While our analysis holds good for a sequence of data densities not necessar- 
ily belonging to the intersection of Ho and HI, we do require that the se- 
quence be local to that intersection. Thus, 0* and 0* must index densities 
lying within that intersection. In Vuong's analysis, the parameter values 0* 
and 0* are those associated with data densities of Ho and H1 closest (in an 
information-theoretical sense) to some "true" data density not necessarily be- 
longing to the intersection of Ho and H1. 

A fully general analysis under Specification 5 and its nonparametric ex- 
tensions is outside the scope of this paper. Vuong [15, p. 318, Theorem 5.1(i)] 
has noted that, under his version of our Specification 5, the basic uncentered 
(but scaled) likelihood-ratio would be asymptotically unit normal if Ho and 
H1 were not even partially non-nested but strictly disjoint and if the data 
densities of Ho and HI closest to k,(y ) were in fact equally close to 

kn(y 4 ). For some further ideas pertaining to general analysis under Spec- 
ification 5, see the papers by Davidson and MacKinnon [3,4,5], Mizon and 
Richard [13], and Vuong [15]. 

3. THE MAIN RESULTS 

For each fixed 0 E 0, let us define the vector a(0) as 

a(0) = probability limit of o under Ho (equation (2.1)). (3.1) 
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For each fixed 4 E 4), let us define the vector b({) as 

b(o) = probability limit of 6 under H1 (equation (2.2)). (3.2) 

We now define vectors S and h as 

S = - a(0), (3.3) 

h= - a(b(o)). (3.4) 

S may be recognized as the complete parametric encompassing test vector of 
Mizon and Richard [13]. In practice, of course, the function a(.) might not 
be precisely known and some estimate of it would have to be used in order 
to implement the CPE test, but this issue is not our concern here. The core 
theorem of the present paper shows that the Cox statistic (2.5) is locally bi- 
linear in the asymptotically normal vectors n /2S and n 2h. To state the 

theorem, we need first to introduce some definitions. We define the matri- 
ces Jo(0), Jo, J1 (?), Ji, M(O, 0), M, Co(O , Co , , C (, ,), CO , Vs, Vh, V, 
Q, and the vectors a and t as follows: 

Jo(6) = im - o f (y I )dv . (3.5) 
n-+oo n J dtO d 

Jo= J0(*) (3.6) 

J1(i lim - gn(y[?) dvn (3.7) ( m) li I d-a lg[g(y |)] d-alog[g?(y1 )]g(,|) (3. 7) 
n-oo n J d d( 

Jl = J(*) (3.8) 

M(O, l) =m1 l[fn( )] l[gn( fn(yI0)dvn 
n-oo n d 

(3.9) 

M=M(0*, O*) (3.10) 

Co() = l im 1 -a log[fn(ylO)] - log [kn(Y )] (yl) d 
co ( 

= liim fJ(YI0 ) dPn 
n-oo n l/ 

(3.11) 

Co= Co(O*, t*) (3.12) 

C( ) = 1log[gn (yl )] 
- 

log [k,( (Yl )]g-' 
n--oo n gn(y dv 

(3.13) 

C = Cl(*, *) (3.14) 

V= J1 - J-IM'J-'MJ-' (3.15) 

Vh = [I-Ji lM'JolM]J1 [I-M'Jo1MJ1 ] (3.16) 
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V * Vh 
= ...... (3.17) 

Vh Vh 

Jo1 :JolMJ71 . = .............. . (3.18) 
J- M'J-l J- 

a = [(Jol'Co)'(J1-lC1)']'X (3.19) 

= [(C1 - M'JolCo)'J , C Vs]'X. (3.20) 

The core results of this paper are given by the following theorem. 

THEOREM. Take as given the technical regularity conditions set out by 
Assumptions 1-11 in Section 4 of this paper. Then, under Specification 6 with 
equation (2.9) (which includes Specifications 2 and 4 with equations (2.7) 
and (2.8) as special cases), the Cox statistic (2.5) is asymptotically (as n 
oo) equivalent in probability to the negative of the random quantity 

(n1/2)' Vs+(n 1/2S), (3.21) 

which in turn converges in probability to the random variable 

n(( - 0*)'[Ji ( - 0*) - M'(0 - 0*)], (3.22) 

where V+ is any positive semidefinite matrix satisfying VsV+ Vs = Vs. 
Moreover, 

n 2(S h')' N(tt, V) (3.23) 
and 

n /2[(O - 0'*),(/ - ?*)T]' d N(ao, ) (3.24) 

where a,pi and V,Q are the partitioned vectors and matrices given by equa- 
tions (3.17)-(3.20). a 

The proof of the above theorem is presented in Section 5. Here we point 
out some of the important features of the theorem. First, we look at the spe- 
cial forms which emerge for the mean vectors A and a appearing in the limit 
distributions of (3.23) and (3.24) under Specifications 2 and 4. When Spec- 
ification 2 is in force as a particular case of Specification 6, we can replace 
the general density function k, (y\ i) by f, (y 0), the density function char- 
acterizing Ho. We also replace the X in equation (2.9) of Specification 6 with 
the ~ in equation (2.7) of Specification 2. With these replacements and given 
equation (2.3), we see in formulae (3.9)-(3.20) that Co = Jo, C1 = M', and 
that 

4tS~~ Odim(4) 
Ca = . 

, 

(3.25) 
J, M't vsM' 
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where Odim(,) denotes a null column vector of dimension dim(+). On the 
other hand, when Specification 4 is in force as a particular case of Specifi- 
cation 6, we find by analogous replacements that 

Jo MI V,sJ v 
a= . , / ..... . (3.26) 

r _VsJI v' 

It is important to distinguish the structure (3.25) of the vector /u under 
Specification 2 from its structure (3.26) under Specification 4. It is this dif- 
ference which potentially gives the Cox test nontrivial local power against 
H,. Heuristically, using (3.25) and (3.26) in (3.21) and (3.23), we see that, 
in its asymptotic local distribution, the Cox statistic has an expected value 
equal to -trace[Vs Vh] under Specification 2 but equal to -{ 'J1VsJ1 ' + 
trace [ V Vh] under Specification 4. The latter expected value is strictly 
smaller than the former provided only that VsJ\ 

' is non-null. Under the 
more general Specification 6, the expected value of the asymptotic local dis- 
tribution of the Cox statistic is equal to - X'( C - M'Jo1 Co)'J1 1 Vs+ VsC X + 
trace[ V+Vh^]. While the first term in parentheses may well be nonzero 
when Specification 2 does not hold, its sign is unknown. So a one-sided test 
based on the Cox statistic could have very poor power properties. Interest- 
ingly, however, when the models Ho and H1 are (locally) orthogonal in the 
sense that the matrix M given by equation (3.10) is null, the first term in pa- 
rentheses reduces to the non-negative quantity X'C J l Cl X. In this case, it 
can be seen from (3.15), (3.16), (3.17), (3.20), and (3.23) that the probabil- 
ity limit of n /2(S - h) degenerates to a zero vector, hence expression (3.21) 
becomes asymptotically equivalent to the CPE test quantity nS'V+S. 

Turning now to a second important feature of the above theorem, we 
note that expressions (3.21) and (3.22) are bilinear forms in limiting normal 
vectors. Consequently, the asymptotic local distribution of the Cox statistic 
is not standard, let alone normal. Moreover, we have seen above that the 

expected value of this distribution equals -trace[Vs+ h^] under Specifica- 
tion 2. Thus, not only is the asymptotic local distribution of the Cox statis- 
tic non-normal, but it is also noncentral even for data densities belonging to 
Ho and local to the intersection of Ho and HI. These facts are not inconsis- 
tent with widely obtained results in Monte Carlo studies (see, for example, 
Godfrey and Pesaran [6] and McAleer [11]) showing a tendency for the em- 

pirical size of the Cox test to exceed its nominal size. 
A third interesting feature of the theorem is the form (3.17) of the vari- 

ance matrix V in (3.23). Kent [10, p. 335] has observed a similar structure 
for the joint distribution of his versions of our 0 and a(0). The form (3.17) 
implies that 

Vs = Vh + V(S-h) (3.27) 
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where V(S-h) denotes the variance matrix of the asymptotic distribution of 
n /2(S - h). The rough intuition behind result (3.27) comes from equations 
(3.3) and (3.4), where it can be seen that the "estimator" h is in the nature 
of a "restricted" version of the "estimator" S, obtained by applying the 
"constraint" 0 = b (4) in a certain way. Thus one might expect the variance 
matrix of S to exceed that of h. These observations suggest the possibility 
of a Hausman [9] test of H1 (rather than Ho) based on checking the statis- 
tical significance of the difference (S - h). But, by (3.3) and (3.4), (S - h) = 
[a(b(4)) - a(0)]. Therefore a Hausman test using (S - h) could not be lo- 
cally more powerful than the CPE test of H, based on [b(S) - 0]. 

We end this section by noting that, in practical applications, the Cox sta- 
tistic (2.5) is scaled by some estimate of its asymptotic standard error. While 
different estimates may well be asymptotically equivalent under the fixed data 
distributions of Specifications 1 and 3, they will generally have different as- 
ymptotic structures along the sequences (2.7), (2.8), and (2.9) of Specifica- 
tions 2, 4, and 6. These structures are beyond the scope of the present paper, 
but they would certainly need to be investigated before one could draw any 
final definitive conclusions about the asymptotic local size and power of the 
Cox test as implemented in practice. 

4. TECHNICAL REGULARITY CONDITIONS 

In all that follows, 0*, ?*, and b* denote values interior to the sets 0, D, 
and I such that equation (2.4) holds. The functions a(0), 0 E 0, and b(0), 
O E 4, are given by equations (3.1) and (3.2). In stating the definitions and 
assumptions of this section, we will take kn(y I l) to be the "true" density 
with respect to which probability statements are made, unless otherwise 
stated. This involves no loss of generality since kn (y /) and A can always 
be specialized to (read as) fn(y 0) and 0, respectively, if Ho is "true," or to 

gn,(y I() and 0, respectively, if H1 is "true." The definitions and assump- 
tions of this section allow the "true" value of f/ to follow the sequence (2.9) 
(which specializes to (2.7) or (2.8), respectively, if Ho or H1 is "true"), but 
amount to little more than restatements in convenient form of assumptions 
and basic ideas that have been thoroughly discussed by Cox [1,2], Gourie- 
roux, Monfort, and Trognon [7,8], Mizon and Richard [13], and White 
[16,17]. We therefore state the definitions and assumptions without further 
comment. 

DEFINITION 1. For each fixed A E I, the vectors q( t) and r(1) are de- 
fined as 

q(? ) probability limit of 0 when d (y) = kn(y\ ?,), (4.1) 

r(?i) = probability limit of 4 when d (y) = kn (y I 1). (4.2) 



562 JERZY SZROETER 

Note that the pair q(4A), r ({) specializes to the pair 0, a () or to the pair 
b (0), c according as the pair kn (y \/), A specializes to the pair fn (y I 0), 0 
or to the pair gn (y I k), I. 1 

DEFINITION 2. For each 4, qn (4) and rn (O) will denote values of 0 E 
O and 0 E 4,, respectively, which maximize the expectations 

flog[fn(y O)] kn(y l) dmn and flog[gn(y )] k(y\i)d vn 

respectively, and are such that the functions qn ( ) and rn ( ), 4 E I, satisfy 
the regularity conditions set out in Assumptions 1 and 2 below. a 

Assumption 1. There exists an open neighborhood of 4* in which the 
functions qn ( ) and rn () are unique and continuous, and in which the val- 
ues qn (), rn( ) converge uniformly to q (4), r( (), respectively. 

Assumption 2. There exists an open neighborhood of 4/* in which the 
functions qn(.) and rn(.) have continuous first-order partial derivatives 
aq,n ()/a;/' and arn (4)/3a 

' which converge uniformly to the continuous 
first-order partial derivatives aq(4)/34' and ar(4)/4/', respectively, of the 
function q(.) and r(.). 

Assumption 3. For 0 and 0 in some open neighborhoods of 0* and o*, 
respectively, 

f l log[fn(y6o)]/alJf(yl) dv, = 0, 

[f log[gn(Y?)]/al}gn(Y ) dvn = 0O 

DEFINITION 3. Let the vectors Dn (0, d) and Dn be defined as 

D, (0, ) = n -/2{ 1 g[f,(y 0)] /,', alog[gn ((y )] /O', 

Dn = Dn(q(,n), r,n(n)), 

where n, is as given by equation (2.9). 

DEFINITION 4. Let the matrix VD be defined as 

VD = lim [Dn(*,o*)][Dn,(*,*)]Yk,(y \*)dn. 
n---* 0 

Assumption 4. 

VD = lim f [Dn,] [Dn,]'kn(Y In) dvn = lim D n [D, DnD knk(yIy *) dvn. 
n--oo n->oo 

Assumption 5. Along the sequence (2.9) under Specification 6, the asymp- 
totic distribution of the vector D, is N(0, VD). 
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Assumption 6. The matrices Jo and J1 defined by equations (3.5)-(3.8) 
satisfy the information matrix equalities 

- n-oon _ J oa0' _ Je=* 

and 

J,- J ( gn (y ,) d j 

Assumption 7. The matrices Jo and J1 defined by equations (3.5)-(3.8) 
satisfy the conditions 

1 'a2log [fn (YI)]- 
Jo = -plim - 

n-Xoo n a0 00' 

and 

1 -2log[g (Yl)]- J1 = -plim - 
n-_oo n - 0' 

where 0 and 0 may be evaluated along any sequence of points converging 
mathematically or in probability to the points 0* and ?*, respectively, and 
where the probability limits are taken along the sequence (2.9) under Speci- 
fication 6 (of which sequences (2.7) and (2.8) under Specifications 2 and 4 
are special cases). 

Assumption 8. The quantities 

n-1 lfog[fn (y0)] fn (y ) dn, n- flog[gn(y l )fn (yl0) dvn 

and, for each y, the quantities 

n-1 log[fn,(y )], n-I log[gn(y $ )] 
have continuous partial derivatives up to the third order with respect to (0, 4) 
in some open neighborhood of (0*, )*). The third-order partial derivatives 
are of probability order unity as n -+ oo with (0, /) evaluated along any se- 
quence of points converging mathematically or in probability to (0*, O*). 

Assumption 9. Differentiation up to the second order, with respect to 
(0, 6) in some open neighborhood of (0*, O*), of the quantities 

flog[fn(y 0)]fn(y j ) dVn, Jlog[gn(y |)]f,f(y ) dvn 

may be carried out under the integral. 
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Assumption 10. Given (3.5)-(3.14), the continuous partial derivative ma- 
trices aq(p)/Oa' and ar(O)/aO' satisfy 

aq() -lar() 
a- -= - a;" .= * 

I i = Jo-?iC 
= 
JllCo, 

In particular, by the note after (4.1) and (4.2) in Definition 1 and the remarks 
in the first paragraph of Section 4, the continuous partial derivative matri- 
ces ab(k)/ao' and aa(0)/e0' satisfy 

ab(<) J-M aa(0) , 
b)= Jo'a(OM, = JiM,. 

O _f=<,* a' =0* 

Assumption 11. The maximum-likelihood estimators 0 and X converge in 
probability to 0* and %*, respectively, and satisfy the first-order conditions 
for maxima of their respective log-likelihood functions with probability tend- 
ing to unity as n -+ oo under Specification 6 (which includes Specifications 2 
and 4 as special cases). 

5. PROOF OF THE THEOREM OF SECTION 3 

It will be convenient first to prove statement (3.24) of the theorem. Accord- 
ingly, noting Assumptions 8 and 11, we may apply a mean-value theorem to 
the first-order conditions for maximizing log[f (y| 0)] and log[gn (y I )] to 
obtain 

_-1/2 alog[fn(ylq|n(n))] a2log[fn(y0)]l n 1e + n- . 

1/2 (5.1) x n /2(0 - qn (On)) = O (5.1) 
and 

-1/ 
a log[gn{(yIrn(n))] 

- 
-a2 log[g n(Yl )]-v n_ /2 + n-I 

x n/2( - rn (On)) = 0 (5.2) 

where the superscript V attached to the second derivative matrices denotes 
that, in each element of those matrices, the parameters 0 and X are evaluated 
at values lying between 0 and qn (n) and between 0 and r (n,), respec- 
tively. Given Definition 3, Assumptions 1, 5, 7, 11, and the sequence (2.9), 
the above equations imply that 

n /2[(0 - qn(On))',(q - rn(n))] 

is asymptotically equivalent in probability to 

? ?. ? .... Dn. 
o0 I - 
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Hence, by Assumption 5, Definition 4, and the definitions (3.5)-(3.18), 

n /2[(0 - qn(' ))' ( - rn (^))) ] - N(0, 0). (5.3) 

Note that, by Definition 2, Assumption 1, and equation (2.4), we may write 
qn(O*) = 0* and rn( *) = 4*. Therefore 

n l/2[qn()n) - 0'] = n /2[qn(n) -qn(*)], (5.4) 

nl/2[rn(n) - n *] = nl/2[r2n((n) -rn(*)]. (5.5) 

Applying Assumptions 2 and 10 along sequence (2.9), we easily obtain that 

nl/2[ qn(1n) - qn(l*)] - Jo- CoX, (5.6) 

nl/2[rn(t-n) -rn(* )] - Ji'Cl. (5.7) 

Using (3.19) and (5.4)-(5.7), we see that 

nl/2[(qn(On) - 0)', (rn(ln) - 0*)]I -+ a (5.8) 

Results (5.3) and (5.8) together imply that 

n -/2[( 0*)', (0 *)']' N(a,Q), (5.9) 

which is precisely statement (3.24) of the theorem. 
Note that expansions (5.1) and (5.2) continue to hold with qn(l,n) and 

rn(,n) replaced by 0* and )*, respectively, and with the matrices there su- 
perscripted by the symbol V accordingly reevaluated. Given result (5.9) and 
Assumptions 7 and 11, such expansions imply 

plim -^ 108^' 
-J n ( -60)] =0. (5.10) plim[n_/: 

A 
1 log[fn(y[O*)]-_ Jonl/2(00_ 0*)1 = 0, 

n-?oo ; 

plim n -1/2 Ji n1/2((yJ 0. (5.11) plimln_/2 'a1og[g.(Yl)*)] -_ jln/2(4 _ ?*)} = 0 . 
n-Xm a; 

We are now in a position to proceed to a proof of those parts of the theo- 
rem centered on (3.21), (3.22), and (3.23). 

Using Assumptions 7, 8, 11, and results (5.9)-(5.11), we obtain the follow- 
ing second-order expansions about 0* and )*: 

log[fn(yj )] = log[fn(yl|*)] + ?n(6 - *)'Jo(0 - 0*) + op(l), 

(5.12) 

log[gn(y|l)] = log[gn(y| )*) + \n( - ) J1( - *) + op(l). 

(5.13) 

Using Assumptions 8, 9, and the result (5.9), we obtain also the following 
expansion: 
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flog[fn(yl0)]fn{(y\I) dvn 

= flog[fn(y|O*)]fn(yIO*) dvn 

+ sf-a log[L,(YO*)] 0*) d + 
fn00'*] (y IO) dPn 

^-2 I ) fn(Y1 02)dnafn *) 
+ flog f[( Y o*) ] dfn(yo* ) dO*) 

f'afn(y0fn*) ylog[fn{y\0*)dP 

+J log[fn(Yl9*)] - fn(YIO*) 

.;.0^afn ( a 109[fn f,(y|I>*)]- 

x (6 - *) + Op(n-2). 

By virtue of Assumptions 3 and 6, the result (5.9), and the definition of the 
matrix Jo by equations (3.5)-(3.6), the preceding expansion can be shortened 
to the following: 

logg[fn(Y )] fn(Y ) dvn 

= flog[fn(ylO*)]fn(yO*) )dv 

+ IJlog[fn(yfo*)] fny)-- dn(l8 ) 

+ 2 
+ 2 n(- ) Jo+n-lflog[fn(y 0*)] 'fpf(y IO)d] _ ~\V- V' JO aa a0 

x (- 0*) + op(1). (5.14) 

In a similar way to the expansion preceding equation (5.14), we obtain 
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flog[g,,((ly)]f),(yl d r,, 
_t/ _()=3, o =0 

= fiog[gn(yl0*)]fn(ylj*) dv, 

+ (-4*)fJ- a log[g (Y , )(y4*) 

- f(y[O*) dv 

+ (0- ' )T' log[g,(yl*)] af,(yI*)] d 

2logd[gn(Y3 ( *) ( ) + [ -J d (l ) fn.(y Io*) dP.n ($ - O*) 2 !" - W ! _ a)aq,' 

+ ,I - 
'J1-a?log[gn (Y| *)]--j 

f 
(Y*) adf. (0-0 ) 

1! If ;n\ 2n 0 + - ( - O*)y log[gn(yI4*)] 
2f"(Y6*V dPn (0 - 0*) 

+ Op(n-l/2). 

Using Assumptions 3 and 6, the result (5.9), the definition of the matrix M 

by equations (3.9)-(3.10), and noting equation (2.4), we can rewrite the above 

expansion as follows: 

flog[gn.(y\ )]fn.(y\ ) dP,n 

= log[g.n(yI *)]fn(yIo*) d 

+((-o*)'Jlog[g9n(Y| *-)] aol dv, 

- n({ -,*)'Jl (- - *) + n( - 0*)'M'(0-O*) 1 

1 (+ 6*^,(e-0 
f 1r(IA* a2fn(yIo dy I ](6-6)+o(*). 

+2 (0-V ) * J Ig[gn (Y I dvn (O-* )+op(. 

(5.15) 

Putting together the results (5.12)-(5.15), and using equation (2.4), we find 
that 

567 
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log[f (yN)] - log[gg(y," )] 

- flog[fn(YIo)] -log[gn(yj4)])fn(yI0) dPn 

= n(~ - k*)IM, (0 - 0*) - n(4o - 0*)'J1(0 - 4*) + op(l). (5.16) 

Now, by Assumptions 10, 11, the result (5.9), and equation (3.15), 

n1h2 n" 2bk-a(b(k))] = [I- JF'M'J6l'MInl/2(4 *)+oP(l) 

-VJ1 n f/2( *)+ O(l) (5.17) 

while 

n S5 _ nn~ a(0)] = n J/( ' - J'M'n 02( - 0*) + OPM.) 

(5.18) 

Using the results (5.9), (5.17), and (5.18), we find that 
/2 , ,, d 

(5.19) 

where ti and V are as given by equations (3.20) and (3.17) with (3.6)-(3.16). 
Now, since n I/2S is asymptotically normal with variance matrix V, we 

may write 

n S=n n1V VS + op(l), (5.20) 

where V7 is any positive semidefinite matrix such that Vs VS+ = V. 
Results (5.17), (5.19), and (5.20) imply that 

(n2h)'V1s+(n 2S) = nl/2(0 - 4*)1J (n112S) + Op(l). (5.21) 

From results (5.18) and (5.21), it is readily seen that 

-nh'Vs+S = n(4 - 0*)'M'((O - 0*) - n(c - 4*)'J1(4 - 4*) + o1(1). 

This finding, in conjunction with the result (5.16), completes the proof of 
the Theorem of Section 3. U 
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