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Abstract 

This paper develops a new method for estimating the demand function for gasoline and the 
deadweight loss due to an increase in the gasoline tax.  The method is also applicable to other 
goods.  The method uses shape restrictions derived from economic theory to improve the 
precision of a nonparametric estimate of the demand function.  Using data from the U.S. National 
Household Travel Survey, we show that the restrictions are consistent with the data on gasoline 
demand and remove the anomalous behavior of a standard nonparametric estimator. Our approach 
provides new insights about the price responsiveness of gasoline demand and the way responses 
vary across the income distribution.  We reject constant elasticity models and find that price 
responses vary non-monotonically with income. In particular, we find that low- and high-income 
consumers are less responsive to changes in gasoline prices than are middle-income consumers. 
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1.  Introduction 

 This paper describes a new method for estimating a demand function for gasoline and the 

welfare costs of changes in gasoline prices.  The method is also applicable to other goods.  In the 

U.S., as in many other countries, the price of gasoline rose rapidly from 1998 until mid 2008.  

Figure 1 shows the how the average price of gasoline in the U.S. has varied over the last three 

decades.  Prices began rising steeply in about 1998 following a period of price stability that began 

in about 1986.  Between March 2007 and March 2008, the average gasoline price increased by 

25.7 percent in nominal terms.1   In real terms, gasoline prices reached levels similar to those seen 

during the second oil crisis of 1979-1981.  Although prices have decreased since mid 2008, due at 

least in part to the global economic downturn, many observers expect prices to rise again in the 

future as economic activity increases. 

 The measurement of the welfare consequences of price changes begins with estimating 

the demand function for the good in question.  This is often done by using a linear model in 

which the dependent variable is the log of demand and the explanatory variables are the logs of 

price and income.  This model is easy to interpret because it gives constant income and price 

elasticities, but it is rejected by our data.  Table 1 presents the results of estimating a constant 

elasticity model of gasoline demand for a class of households in the U.S.  The data are from the 

National Household Travel Survey (NHTS).  We describe the NHTS further in Section 3.  

RESET specification tests reject the constant-elasticity model.  Further analysis that is described 

in Section 4 reveals that adding an interaction term to the constant elasticity model does not 

correct the specification error.  This motivates us to use nonparametric estimation methods.  

Hausman and Newey (1995) also used nonparametric methods to estimate gasoline demand.  

 Deviations from the constant-elasticity model are not simply a technical concern.  It is 

likely to matter greatly how peoples’ responses to prices vary according to the price level and 

over the income distribution.  Therefore, a flexible modeling approach such as nonparametric 

regression seems attractive.  However, nonparametric regression can yield implausible and erratic 

estimates.  Figure 2 shows nonparametric estimates of gasoline demand as a function of price at 

three points across the income distribution.  The estimates are obtained from the NHTS data.  

Details of the estimation method are presented in Section 2 of this paper.  The figure gives some 

overall indication of downward sloping demand curves with slopes that differ across the income 

distribution but there are parts of the estimated demand curves that are upward sloping and, 

therefore, implausible.  We interpret the implausible shapes of the curves in Figure 2 as indicating 

                                                      
1 Own calculation based on EIA (2008b, Table 9.4). 
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that fully nonparametric methods are too imprecise to provide useful estimates of gasoline 

demand functions with our data.   

One way of dealing with this problem is to impose a parametric form such as log-log 

linearity on the demand function.  But any parametric form is essentially arbitrary and, as will be 

discussed further in Section 4, may be misspecified in ways that produce seriously erroneous 

results.  As a compromise between the desire for flexibility and the need for structure, one may 

use a semiparametric model, such as a partially-linear or single-index model.  These impose 

parametric restrictions on some aspects of the function of interest but leave other parts 

unrestricted.  In this paper, we take a different approach and impose structure through shape 

restrictions based on economic theory.  Specifically, we impose the Slutsky restriction of 

consumer theory on an otherwise fully nonparametric estimate of the demand function.  We show 

that this approach yields well-behaved estimates of the demand function and price responsiveness 

across the income distribution while avoiding the use of arbitrary and possibly misspecified 

parametric or semiparametric models.  We implement our approach by making use of a kernel-

type estimator in which observations are weighted in a way that ensures satisfaction of the 

Slutsky restrictions.  This maintains the flexibility of nonparametric regression while using 

restrictions of economic theory to avoid implausible estimation results.  The constrained 

nonparametric estimates are consistent with observed behavior and provide intuitively plausible, 

well-behaved descriptions of price responsiveness across the income distribution. 

 One important use of demand function estimates is to compute deadweight loss (DWL) 

measures of tax policy interventions.  For some interventions, we show that reliance on the 

unrestricted nonparametric estimate results in DWL estimates that have incorrect signs and are, 

therefore, nonsensical. Our constrained estimator deals with this problem in a way that is 

consistent with economic theory.   

 We find that there is substantial variation in price sensitivity across both price and 

income.  In particular, we find that price responses are non-monotonic in income.  Our estimates 

indicate that households at the median of the income distribution respond more strongly to an 

increase in prices than do households at the lower or upper income group.  We do not speculate 

on why this is the case, but we show that it implies that our DWL measure is typically higher at 

the median of the income distribution that in the lower or upper income group. 

 Section 2 explains our approach to nonparametric estimation of demand functions and 

DWL subject to the Slutsky shape restrictions.  Section 3 describes the NHTS data.  Section 4 

presents the estimates of the demand function and shows how price responsiveness varies across 
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the income distribution.  Section 4 also presents the DWLs associated with several price changes 

and shows how they vary across the income distribution.  Section 5 concludes. 

2.  Shape Restrictions and the Estimation of Demand and Deadweight Loss 

 We begin this section by describing our approach to estimating the demand function 

subject to the Slutsky shape restriction.  Then we describe how we estimate the DWL of a tax-

induced price increase. 

 The Slutsky condition is an inequality constraint on the demand function.  Our method 

for estimating the demand function nonparametrically subject to this constraint is adapted from 

Hall and Huang (2001), who present a nonparametric kernel estimator of a conditional mean 

function subject to a monotonicity constraint.  We replace their monotonicity constraint with the 

Slutsky condition.  To describe our estimator, let Q , P , and Y , respectively, denote the quantity 

of gasoline demanded by an individual, the price paid, and the individual’s income.  We assume 

that these variables are related by 

(1) ( , )Q g P Y U= + , 

where g  is a function that satisfies smoothness conditions and the Slutsky restriction but is 

otherwise unknown, and U  is an unobserved random variable satisfying ( | , ) 0E U P p Y y= = =  

for all p  and y .  Our aim is to estimate ( , )g p y  nonparametrically subject to the Slutsky 

constraint 

(2) ( , ) ( , )( , ) 0g p y g p yg p y
p y

∂ ∂
+ ≤

∂ ∂
. 

The data are observations { , , : 1,..., }i i iQ P Y i n=  for n  randomly sampled individuals.  A fully 

nonparametric estimate of g  that does not impose the Slutsky restriction can be obtained by 

using the Nadaraya-Watson kernel estimator (Nadaraya 1964, Watson 1964).  The properties of 

this estimator are summarized in Härdle (1990).  We call it the unconstrained nonparametric 

estimator, denoted by ˆUg , because it is not constrained by (2).  The estimator is 

(3) 
1

1ˆ ( , ) ˆ ( , )

n
i i

U i
p yp y i

p P y Y
g p y Q K K

h hnh h f p y =

⎛ ⎞ ⎛ ⎞− −
= ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ , 

where 

 
1

1ˆ ( , )
n

i i

p y p yi

p P y Y
f p y K K

nh h h h=

⎛ ⎞ ⎛ ⎞− −
= ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ , 

PDF Crea
te! 

5 T
rial

www.nu
anc

e.c
om



 4

K  is a bounded, differentiable probability density function that is supported on [ 1,1]−  and is 

symmetrical about 0, and ph  and yh  are bandwidth parameters.   

 Owing to the effects of random sampling errors, ˆUg  does not necessarily satisfy (2) even 

if g  does satisfy this condition.  Following Hall and Huang (2001), we solve this problem by 

replacing ˆUg  with the weighted estimator 

(4) 
1

1ˆ ( , ) ˆ ( , )

n
i i

C i i
p yp y i

p P y Yg p y w Q K K
h hh h f p y =

⎛ ⎞ ⎛ ⎞− −
= ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ , 

where { : 1,..., }iw i n=  are non-negative weights satisfying 
1

1n
ii

w
=

=∑  and the subscript C  

indicates that the estimator is constrained by the Slutsky condition.  The weights are obtained by 

solving the optimization problem 

(5) 
1

1
,...,

minimize : ( ,..., )
n

n
w w

D w w  

subject to 

 
ˆ ˆ( , ) ( , )

ˆ ( , ) 0; 1,..., ;C j j C j j
C

g p y g p y
g p y j J

p y
∂ ∂

+ ≤ =
∂ ∂

, 

 
1

1
n

i
i

w
=

=∑ , 

and 

 0; 1,...,iw i n≥ = , 

where { , : 1,..., }j jp y j J=  is a grid of points in the ( , )p y  plane.  The objective function is the 

following measure of the “distance” of the weights from the values 1/iw n=  corresponding to the 

Nadaraya-Watson estimator: 

 1/ 2
1

1
( ,..., ) ( )

n

n i
i

D w w n nw
=

= −∑ . 

When 1/iw n=  for all 1,...,i n= , ˆ ˆ( , ) ( , )C j j U j jg p y g p y=  for all 1,...,j J= .  Thus, the weights 

minimize the distance of the constrained estimator from the unconstrained one.  The constraint is 

not binding at points ( , )j jp y  that satisfy (2).  In the empirical application described in Section 4, 

we solve (5) by using the nonlinear programming algorithm E04UCF from the NAG Library.  

The bandwidths are selected using a method that is described in Section 4.  In some applications, 
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it may be desirable to impose the restriction that the good in question is normal.  This can be done 

by adding the constraints ˆ ( , ) / 0C j jg p y y∂ ∂ ≥  to (5), but we do not take this step here.   

 We now describe our method for estimating the DWL of a tax.  Let ( )E p  denote the 

expenditure function at price p  and some reference utility level.  The DWL of a tax that changes 

the price from 0p  to 1p  is 

(6) 0 1 1 0 1 0 1 1( , ) ( ) ( ) ( ) [ , ( )]L p p E p E p p p g p E p= − − − . 

We estimate this by  

(7) 0 1 1 0 1 0 1 1ˆ ˆ ˆ ˆˆ( , ) ( ) ( ) ( ) [ , ( )]L p p E p E p p p g p E p= − − − , 

where Ê  is an estimator of the expenditure function and ĝ  may be either ˆUg  or ˆCg .  We obtain 

Ê  by solving the differential equation 

(8) 
ˆ ( ) ( )ˆˆ[ ( ), ( )]dE t dp tg p t E t
dt dt

= , 

where ˆ[ ( ), ( )]p t E t  ( 0 1t≤ ≤ ) is a price-(estimated) expenditure path.  We solve this equation 

along a grid of points by using Euler’s method (Ascher and Petzold 1998).  We have found this 

method to be quite accurate in numerical experiments. 

 Inference with the constrained estimator ˆCg  is difficult because the estimator’s 

asymptotic distribution is very complicated in regions where (2) is a binding constraint (strict 

equality).  However, if we assume that (2) is a strict inequality in the population, then violation of 

the Slutsky condition by ˆUg  is a finite-sample phenomenon, and we can use ˆUg  to carry out 

asymptotically valid inference.  We use the bootstrap to obtain asymptotic joint confidence 

intervals for ( , )g p y  on a grid of ( , )p y  points and to obtain confidence intervals for L .  The 

bootstrap procedure is as follows. 

 1.  Generate a bootstrap sample * * *{ , , : 1,..., }i i iQ P Y i n=  by sampling the data randomly 

with replacement. 

 2.  Use this sample to estimate ( , )g p y  on a grid of ( , )p y  points without imposing the 

Slutsky constraint.  Also, estimate L .  Denote the bootstrap estimates by *ˆUg  and *L . 

 3.  Form percentile confidence intervals for L  by repeating steps 1-2 many times.  Also, 

use the bootstrap samples to form joint percentile-t confidence intervals for g  on the grid of 

points { , : 1,..., }j jp y j J= .  The joint confidence intervals at a level of at least 1 α−  are 

(9) ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )U j j j j j j j j U j j j j j jg p y z p y p y g p y g p y z p y p yα ασ σ− ≤ ≤ + , 
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where 

(10) 2 2
2

1

ˆˆ ( , ) ˆ[ ( , )]

n
i iK

i
p yp y i

p P y YBp y U K K
h hnh h f p y

σ
=

⎛ ⎞ ⎛ ⎞− −
= ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑  ,

 

with 2( )KB K v dv= ∫  and ˆ ˆ ( , )i i U i iU Q g P Y= −  , 

is a consistent estimate of ˆ[ ( , )]UVar g p y .  The coefficient ( , )j jz p yα  is chosen following the 

approach in Härdle and Marron (1991) for computing joint confidence intervals. For this purpose, 

we partition the grid into intervals of 2 ph . Within each of these M  neighborhoods, ( , )j jz p yα  

is the solution to 

 
*

*
*

ˆ ˆ| ( , ) ( , ) |
( , ) 1

ˆ ( , )
U j j U j j

j j
j j

g p y g p y
P z p y

p y α β
σ

⎡ ⎤−
⎢ ⎥≤ = −
⎢ ⎥⎣ ⎦

, 

where *P  is the probability measure induced by bootstrap sampling, and *ˆ ( , )p yσ  is the version 

of ˆ ( , )p yσ  that is obtained by replacing ˆ
iU , iP , and iY  in (10) by their bootstrap analogs, and β  

is a parameter.  We then choose β  such that the simultaneous size in each neighborhood equals 

1
M
α

− . As Härdle and Marron (1991) show using the Bonferroni inequality, the resulting 

intervals over the full grid form simultaneous confidence intervals at a level of at least 1 α− .  

Hall (1992) shows that the bootstrap consistently estimates the asymptotic distribution of the 

Studentized form of ˆUg .  It is necessary to undersmooth ˆUg  and *ˆUg  (that is, use smaller than 

asymptotically optimal bandwidths) in (9) and step 2 of the bootstrap procedure to obtain a 

confidence interval that is centered at g .  We discuss bandwidth selection in Section 4. 

3.  Data 

 Our analysis is based on the 2001 National Household Travel Survey.  The NHTS was 

sponsored by the Bureau of Transportation Statistics and the Federal Highway Administration.  

The data were collected through a telephone survey of the civilian, non-institutionalized 

population of the U.S.  The survey was conducted between March 2001 and May 2002 (ORNL 

2004, Ch. 3).  The telephone interviews were complemented with written travel diaries and 

odometer readings. 

 The variables used in our study are annual gasoline consumption, the gasoline price, and 

household income.  Gasoline consumption is derived from odometer readings and estimates of the 

fuel efficiencies of vehicles.  Details of the computations are described in ORNL (2004, 
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Appendices J and K).  The gasoline price for a given household is the average price in dollars per 

gallon, including taxes, in the county where the household is located.  This price variable is a 

county average, rather than the price actually paid by a household.  It precludes an intra-county 

analysis (see Schmalensee and Stoker 1999) but does capture variation in prices consumers face 

in different regions. 

 Household income in dollars is available in 18 groups.  In our analysis, we assign each 

household an income equal to the midpoint of its group.  The highest group, consisting of 

incomes above $100,000, is assigned an income of $120,000.2  To investigate how price 

responsiveness of gasoline demand varies across the income distribution, we focus on three 

income levels of interest: a middle income group at $57,500, which corresponds to median 

income in our sample, a low income group ($42,500), which corresponds to the first quartile and 

a high income group ($72,500)3.  To obtain gasoline demand at the household level, we aggregate 

vehicle gasoline expenditure in dollars and gasoline consumption in gallons over multi-car 

households.  We divide the household gasoline expenditure by the quantity of gasoline consumed 

to obtain the household’s gasoline price.  We do not investigate the errors-in-variables issues 

raised by the use of county-average prices or the interval censoring issues raised by the grouping 

of household incomes in the data.  These potentially important issues are left for future research. 

 We exclude from our analysis households where the number of drivers is zero or whose 

income, gasoline cost, or annual gasoline consumption is not reported.  We also exclude 

households that are located in Hawaii.  In addition, we restrict our sample to households with a 

white respondent, two or more adults, and at least one child under 16 years of age.  We take 

vehicle ownership as given and do not investigate how changes in prices affect vehicle purchases 

or how vehicle ownership varies across the income distribution (Poterba 1991; West 2004; Bento, 

Goulder, Henry, Jacobsen, and von Haefen 2005; Bento, Goulder, Jacobsen, and von Haefen 

2009).  The results of Bento, et al. (2005) indicate that over 95 percent of the reduction in 

gasoline demand in response to price changes is due to changes in miles traveled rather than fleet 

composition.  We limit attention to vehicles that use gasoline as fuel, rather than diesel, natural 

                                                      
2 Assuming log-normality of income, we have estimated the corresponding mean and variance by using a 
simple tobit model, right-censored at $100,000. Excluding households with very high incomes above 
$150,000, the median income in the upper group corresponds to about $120,000. 
3 The income point $72,500 occupies the 59.6-63.3th percentile. This point was chosen to avoid the 
problems created by the interval nature of the income variable which becomes especially important in the 
upper quartile of the income distribution: income brackets are relatively narrow (with widths of $5,000) up 
to $80,000, but substantially wider for higher incomes.  However, estimates using higher quantiles yielded 
similar results and did not change our conclusions on price responsiveness across the income distribution. 
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gas, or electricity.  The resulting sample consists of 5,257 observations.  Table 2 shows summary 

statistics.   

4.  Estimates of Demand Responses 

 a.  The constant elasticity model 

 We begin by using ordinary least squares to estimate the following log-log linear demand 

model: 

(11) 0 1 2log log log ; ( | , ) 0Q P Y U E U P p Y yβ β β= + + + = = = . 

This constant elasticity model is one of the most frequently estimated (e.g., Dahl 1979; Hughes, 

Knittel, and Sperling 2008).  It has been criticized on many grounds (e.g., Deaton and Muellbauer 

1980) but its simplicity and frequent use make it a useful parametric reference model.  Later in 

this section, we compare the estimates obtained from model (11) with those obtained from the 

nonparametric analysis.   

 The estimates of the coefficients of (11) are shown in Table 1.  They imply a price-

elasticity of demand of -0.88 and an income elasticity of 0.29.  These estimates are similar to 

those reported by others.  Hausman and Newey (1995) report estimates of -0.81 and 0.37, 

respectively, for price and income elasticities based on U.S. data collected between 1979 and 

1988.  Schmalensee and Stoker (1999) report price elasticities between -0.72 and -1.13 and 

income elasticities between 0.12 and 0.33, depending on the survey year and control variables, in 

their specifications without regional fixed effects.  Yatchew and No (2001) estimate an income 

elasticity of 0.27 using Canadian data for 1994-1996 and a model that does not include the price 

of gasoline.  West (2004) reports a mean price elasticity of -0.89 using 1997 data.   

 Although the estimates we obtain from model (11) are similar to those reported by others, 

there is evidence that (11) is misspecified.  We tested (11) for misspecification with Ramsey’s 

(1969) RESET test.  This test consists of adding powers of the predicted values of logQ  to the 

model, re-estimating the resulting augmented model, and testing the hypothesis that the 

coefficients of the additional regressors are zero.  Rejection of this hypothesis indicates that the 

original model is misspecified.  We carried out this test twice, once with the squares and cubes of 

the predicted logQ  values added to the model (RESET3 in Table 1) and once with the squares, 

cubes, and fourth powers of the logQ ’s added (RESET4).  As can be seen from Table 1, both 

versions of RESET reject model (11) at the 0.05 level.  Thus, we conclude that model (11) is 

misspecified. 
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 West (2004) found evidence for dependence of the price elasticity on income.  

Accordingly, we added the interaction term (log )(log )P Y  to model (11).  The resulting 

augmented model is also rejected at the 0.05 level by the RESET tests.  Conceivably adding 

further powers and interactions of log P  and logY  would yield a model that is not rejected by 

RESET.  However, this kind of informal specification search leads to inconsistent estimators 

whose properties are unknown.  Nonparametric estimators, by contrast, are consistent. 

 b.  Unconstrained nonparametric estimates 

 Our unconstrained nonparametric estimates of the demand function, ˆUg , are displayed in 

Figure 2.  They were obtained by using the Nadaraya-Watson kernel estimator with a biweight 

kernel.  In principle, the bandwidths ph  and yh  can be chosen by applying least-squares cross-

validation (Härdle 1990) to the entire data set, but this yields bandwidths that are strongly 

influenced by low-density regions.  To avoid this problem, we used the following method to 

choose ph  and yh .  We are interested in ( , )g p y  for y  values corresponding to our three income 

groups and price levels between the 5th and 95th percentiles of the observed prices.  We defined 

three price-income rectangles consisting of prices between the 5th and 95th percentiles and 

incomes within 0.5 of each income level of interest (measured in logs).  We then applied least-

squares cross-validation to each price-income rectangle separately to obtain bandwidth estimates 

appropriate to each rectangle.  This procedure yielded ( , ) (0.0431,0.2143)p yh h =  for the lower 

income group, (0.0431, 0.2061) for the middle income group, and (0.0210, 0.2878) for the upper 

income group.  The estimation results are not sensitive to modest variations in the dimensions of 

the price-income rectangles.  As was discussed in Section 2, ˆUg  and *ˆUg  must be undersmoothed 

to obtain properly centered confidence intervals.  To this end we multiplied each of the foregoing 

bandwidths by 0.8 when computing confidence intervals. 

 Figure 2 shows several instances in which the nonparametric estimate of the 

(Marshallian) demand function is upward sloping.  This anomaly is also present in the results of 

Hausman and Newey (1995).  The theory of the consumer requires the compensated demand 

function to be downward sloping.  Combined with a positive income derivative, an upward-

sloping Marshallian demand function implies an upward-sloping compensated demand function 

and, therefore, is inconsistent with the theory of the consumer.  At the median income, our 

nonparametric estimate of /g y∂ ∂  is positive over the range of prices of interest except for the 

two lowest grid points.  Therefore, the nonparametric estimates are inconsistent with consumer 

theory.  As is discussed in more detail in Section 4c, we believe this result to be an artifact of 
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random sampling errors and the consequent imprecision of the unconstrained nonparametric 

estimates.  This motivates the use of the constrained estimation procedure, which increases 

estimation precision by imposing the Slutsky condition. 

 c.  Nonparametric estimates under the Slutsky condition 

 Figure 3 shows the nonparametric estimates of the demand function, ˆCg , at each of the 

three income levels of interest (solid dots).  These estimates are constrained to satisfy the Slutsky 

condition and were obtained using the methods described in Section 2.  For comparison, the 

figure also shows the unconstrained nonparametric estimates, ˆUg  (open dots).  The solid lines in 

Figure 3 connect the endpoints of joint 90% confidence intervals for ( , )g p y .  These were 

obtained using the bootstrap procedure described in Section 2. 

 In contrast to the unconstrained estimates, the constrained estimates are downward 

sloping everywhere.  The constrained estimates are also less wiggly than the unconstrained ones.  

In contrast to ad hoc “ironing procedures” for producing monotonic estimates, ˆCg  is consistent 

with the theory of the consumer and everywhere differentiable.  This is important for estimation 

of DWL.  The 90% confidence bands shown in Figure 3 contain both the constrained and 

unconstrained estimates.  This is consistent with our view that the anomalous behavior of the 

unconstrained estimates is due to imprecision of the unconstrained estimator.  It also indicates 

that the Slutsky constraint is consistent with the data. 

 The results in Figure 3 indicate that the middle income group is more sensitive to price 

changes than are the other two groups.  In particular, the slope of the constrained estimate of g  is 

noticeably larger for the middle group than for the other groups.  This, in turn, suggests that the 

DWL of a tax increase is larger for the middle income group than for the others.  We investigate 

this further in Section 4d. 

 d.  Estimates of deadweight loss 

 We now investigate the DWLs associated with several increases in gasoline taxes.  The 

increases considered in the literature typically are quite large and often out of the support of the 

data.  We start with an intervention that moves prices from the 5th to the 95th percentile of the 

price distribution in our sample.  Historically observed tax changes in the U.S. tend to be much 

smaller than this, possibly due to the political difficulty of implementing large tax increases.  To 

reflect the kind of intervention a legislature might actually consider, we also look at smaller 

interventions in which the price increases by $0.05.  As is well known, DWL increases with the 

square of the tax rate (e.g., Auerbach 1985), so the DWL estimates are very different for the two 

types of interventions.  
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We compute DWL as follows.  Over the range of the intervention, we evaluate the 

Marshallian demand estimates presented in the previous section for the three estimators 

(parametric, unconstrained nonparametric, and constrained nonparametric) on a grid of 61 points.  

We then use this demand estimate and the corresponding derivatives to compute the expenditure 

function and DWL by following the methods described in Section 2.   

We study DWL relative to tax paid, which we interpret as a “price” for raising tax 

revenue.  We refer to this measure as relative DWL.  Results are shown in Table 3.4  Each panel 

of the table corresponds to one intervention.  Intervention I moves prices from the 5th to the 95th 

price percentile in our data.  The differences in the demand estimates between the different 

estimation methods translate into differences in relative DWLs.  Comparing across income levels, 

the log-log linear model estimates relative DWL to be almost identical for the three income 

groups and indicates that the cost of taxation is about 7.6% of revenue raised for intervention I, 

irrespective of income level.  In contrast, the constrained nonparametric estimates indicate that 

the cost of taxation is higher for the middle income group than for the other two groups.  This 

result is consistent with our earlier finding that the middle income group is more responsive to 

price changes than are the other groups.  The result also illustrates how the functional form 

assumptions of the parametric model affect estimates of consumer behavior and the effects of 

taxation. 

 We also estimate the DWLs associated with taxes that increase the price by $0.05 from 

several different initial values.  Intervention II increases the price from $1.22 to $1.27, 

Intervention III from $1.27 to $1.32, and Intervention IV from $1.32 to $1.37.  The results are 

shown in Table 3.  The DWLs obtained from the log-log linear parametric model of the demand 

function are virtually constant across incomes.  The DWLs obtained from the unconstrained 

nonparametric estimate of demand are sometimes negative.  This anomalous result occurs 

because, due to random sampling errors, the unconstrained estimate of the demand function does 

not decrease monotonically and does not satisfy the integrability conditions of consumer theory.  

The constrained nonparametric model yields DWL estimates that are positive and, in some cases, 

more than double those obtained from the parametric model. 

One can also study DWL relative to income so as to reflect the household's utility loss 

relative to available resources.  The results for this analysis are shown in Table 4.  The estimates 

from the parametric model and constrained nonparametric model give different indications of the 

effects of the tax increase across income groups.  The parametric estimates indicate that the 

relative utility loss increases as income decreases.  However, the constrained nonparametric 
                                                      
4 Confidence intervals for the unconstrained and the parametric model are reported in Table 5. 
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estimates indicate that the relative utility loss is greater for the middle income group than for the 

other groups.   

5.  Conclusions 

 Simple parametric models of demand functions can yield misleading estimates of price 

sensitivity and welfare measures such as DWL, owing to misspecification.  Fully nonparametric 

estimation of demand reduces the risk of misspecification but, because of the effects of random 

sampling errors, can yield imprecise estimates with anomalous properties such as non-

monotonicity.  This paper has shown that these problems can be overcome by constraining 

nonparametric estimates to satisfy the Slutsky condition of economic theory.  This stabilizes the 

nonparametric estimates without the need for parametric or other restrictions that have no basis in 

economic theory.   

We have implemented this approach by using a modified kernel estimator that weights 

the observations so as to satisfy the Slutsky restriction.  To illustrate the method, we have 

estimated a gasoline demand function for a class of households in the U.S.  We find that some 

simple parametric specifications are rejected by a specification test, whereas a fully 

nonparametric estimate of the demand function is non-monotonic.  In contrast, the estimate that is 

constrained to satisfy the Slutsky condition is well-behaved.  Moreover, the constrained 

nonparametric estimates show patterns of price sensitivity that are very different from those of the 

simple parametric model. We find price responses vary non-monotonically with income. In 

particular, we find that low- and high-income consumers are less responsive to changes in 

gasoline prices than are middle-income consumers.  

 We have also computed the DWLs of several increases in the price of gasoline.  We find 

that the unconstrained nonparametric estimates sometimes yield negative DWLs, which are 

inconsistent with economic theory and presumably caused by imprecision of the unconstrained 

estimates.  The constrained nonparametric estimates of DWL are positive and, in many cases, 

quite different from those obtained with the parametric model. Mirroring the results on price 

responsiveness, the DWL estimates are highest for middle income groups. These results illustrate 

the usefulness of nonparametrically estimating demand functions subject to the Slutsky condition. 

PDF Crea
te! 

5 T
rial

www.nu
anc

e.c
om



 13

 
 

FIGURES  
 
 
 
 
 

Figure 1: Retail Motor Gasoline Price 1976-2007 (Unleaded Regular) 
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Source: EIA (2008a, Table 5.24). Note: U.S. city average gasoline prices. Real values are in 
chained (2000) dollars based on GDP implicit price deflators. See source for details. 
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Table 1: OLS regression and specification test 

 
dependent variable: log gasoline demand 

log price -0.885 
 [0.157]** 
log income 0.292 
 [0.015]** 
constant 4.226 
  [0.166]** 
Observations 5,257 
RESET3: F-stat 5.522 
RESET3: p-value 0.004** 
RESET4: F-stat 4.034 
RESET4: p-value 0.007** 

 
Note: Dependent variable is log of annual household gasoline demand in gallons. * indicates 
significance at 5%, ** indicates significance at 1% level. The bottom panel reports results from 
the F-test of two Ramsey RESET specification tests. RESET3 refers to including second and third 
polynomials of the predicted values of the dependent variable, and RESET4 refers to including 
second to fourth polynomials. See text for details. 
 
 
 
 
 
 
 

Table 2: Sample descriptives 
 

log gasoline demand 7.168 
 [0.679] 
log price 0.287 
 [0.057] 
log income 10.954 
 [0.613] 
Observations 5,257 

 
Note: Table shows means and standard deviations. 
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Figure 2: Unconstrained nonparametric demand estimates 
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Figure 3: Demand estimates and simultaneous confidence intervals  
at different points in the income distribution 

a) upper income group 

 
 

b) middle income group 

 
 

c) lower income group 

Note: Income groups correspond to $72,500, $57,500, and $42,500. Confidence intervals shown 
refer to bootstrapped symmetrical, studentized simultaneous confidence intervals with a 
confidence level of 10%, based on 10,000 replications. See text for details. 
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Table 3: Relative Deadweight Loss estimates 
 

  Income DWL (as % of tax paid) 
  unconstrained constrained log-log 
    (1) (2) (3) 
  $72,500 10.09 % 10.18 % 7.59 % 

Intervention I  $57,500 10.09 % 11.92 % 7.58 % 
 ($1.215 - $1.436) $42,500 6.40 % 6.70 % 7.56 % 

  $72,500 4.20 % 3.27 % 1.80 % 
Intervention II  $57,500 3.08 % 4.50 % 1.80 % 

 ($1.22 - $1.27) $42,500 -1.33 % 0.72 % 1.79 % 
  $72,500 -1.06 % 0.84 % 1.73 % 

Intervention III  $57,500 6.42 % 5.74 % 1.73 % 
($1.27 - $1.32) $42,500 3.86 % 2.82 % 1.72 % 

  $72,500 -3.02 % 0.49 % 1.67 % 
Intervention IV $57,500 2.61 % 2.07 % 1.66 % 
($1.32 - $1.37)  $42,500 -2.23 % 0.77 % 1.66 % 

 
Note: For each intervention, the price change considered is indicated in round brackets (in U.S. 
dollars). Intervention I corresponds to moving prices from the 5th to the 95th percentile in the 
data. Interventions II, III and IV each increase price by five U.S. cents. Deadweight Loss is 
shown as percentage of tax paid after the (compensated) intervention. See text for details. 
 

Table 4: Deadweight Loss estimates relative to household income 
 

  Income   DWL (relative to income) * 104 
    unconstrained  constrained  log-log 
     (1) (2)  (3) 
  $72,500   4.11  4.14   3.01 

Intervention I $57,500  4.89 5.69  3.54 
($ 1.215-1.436) $42,500   3.80  3.97   4.37 

  $72,500   0.43  0.34   0.18 
Intervention II $57,500  0.41 0.59  0.21 
($ 1.22-1.27) $42,500   -0.20  0.11   0.26 

  $72,500   -0.11  0.09   0.17 
Intervention III $57,500  0.74 0.67  0.20 
($ 1.27-1.32) $42,500   0.54  0.40   0.24 

  $72,500   -0.32  0.05   0.16 
Intervention IV $57,500  0.29 0.23  0.18 
($ 1.32-1.37) $42,500   -0.32  0.11   0.23 

 
Note: For each intervention, the price change considered is indicated in round brackets (in U.S. 
dollars). Intervention I corresponds to moving prices from the 5th to the 95th percentile in the 
data. Interventions II, III and IV each increase price by five U.S. cents. Deadweight Loss is 
shown relative to baseline income. See text for details. 
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Table 5: Confidence intervals for DWL measures 

 
  Income   DWL (as % of tax paid)  DWL (relative to income) * 104 
   unconstrained  log-log  unconstrained  log-log 
   lower upper  lower upper  lower upper  lower upper 
   (1) (2)  (3) (4)  (5) (6)  (7) (8) 
  $ 72,500   1.24 % 23.03 %  4.81 % 10.33 %  1.36 9.09  1.99 4.04 

Intervention I $ 57,500  -1.50 % 17.69 %  4.82 % 10.17 %  0.02 8.69  2.35 4.70 
($ 1.215-1.436) $ 42,500   -7.24 % 15.21 %  4.81 % 10.28 %  -3.50 9.54  2.90 5.88 

  $ 72,500   -5.34 % 16.39 %  1.17 % 2.43 %  -0.50 1.63  0.11 0.25 
Intervention II $ 57,500  -3.07 % 9.90 %  1.17 % 2.40 %  -0.37 1.36  0.13 0.28 
($ 1.22-1.27) $ 42,500   -10.31 % 3.18 %  1.17 % 2.42 %  -1.56 0.51  0.17 0.36 

  $ 72,500   -11.26 % 6.37 %  1.13 % 2.34 %  -1.14 0.74  0.11 0.23 
Intervention III $ 57,500  0.52 % 14.40 %  1.13 % 2.30 %  0.11 1.63  0.13 0.26 
($ 1.27-1.32) $ 42,500   -1.99 % 12.78 %  1.13 % 2.33 %  -0.19 1.75  0.16 0.33 

  $ 72,500   -18.92 % 0.87 %  1.09 % 2.25 %  -2.11 0.32  0.10 0.21 
Intervention IV $ 57,500  -1.81 % 7.77 %  1.09 % 2.22 %  -0.17 0.86  0.12 0.24 
($ 1.32-1.37) $ 42,500   -8.29 % 2.45 %  1.09 % 2.24 %  -1.20 0.41  0.15 0.30 

 
Note: For each intervention, the price change considered is indicated in round brackets (in U.S. dollars). Intervention I corresponds to moving prices from the 
5th to the 95th percentile in the data. Interventions II, III and IV each increase price by five U.S. cents. Table shows confidence intervals corresponding to 
estimates reported in Tables 3 and 4. Confidence intervals are computed with an undersmoothed bandwidth, based on 5,000 replications. See text for details. 
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