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1. Introduction

This paper describes a new method for estimating a demand function for gasoline and the
welfare costs of changes in gasoline prices. The method is also applicable to other goods. In the
U.S., as in many other countries, the price of gasoline rose rapidly from 1998 until mid 2008.

Figure 1 shows the how the average price of gasoline in the U.S. has varied o

decades. Prices began rising steeply in about 1998 following a period of price s

with estimating

ar model in

su@s of estimating a constant
ih

¢ U.S. The data are from the

us u l )
W; C e NHTS further in Section 3.

enpy to the constant elasticity model does not

s
el. Further analysis that is described

nates. Figure 2 shows nonparametric estimates of gasoline demand as a function of price at
three points across the income distribution. The estimates are obtained from the NHTS data.
Details of the estimation method are presented in Section 2 of this paper. The figure gives some
overall indication of downward sloping demand curves with slopes that differ across the income
distribution but there are parts of the estimated demand curves that are upward sloping and,

therefore, implausible. We interpret the implausible shapes of the curves in Figure 2 as indicating

! Own calculation based on EIA (2008b, Table 9.4).



that fully nonparametric methods are too imprecise to provide useful estimates of gasoline
demand functions with our data.

One way of dealing with this problem is to impose a parametric form such as log-log
linearity on the demand function. But any parametric form is essentially arbitrary and, as will be

discussed further in Section 4, may be misspecified in ways that produce seripusly erroneous

results. As a compromise between the desire for flexibility and the need for struc one may

parametric restrictions on some aspects of the function of ingerest

unrestricted. In this paper, we take a different approach an ctu
restrictions based on economic theory. Specifically, we impose y restriction of

ate of the dem function. We show

that this approach yields well-behaved estimates of the d
across the income distribution while avoiding the\use of arhitr misspecified

parametric or semiparametric models. We im r approach se of a kernel-

a@vay théi en satisfaction of the
non etQ egression while using
ion results. The constrained

nd provide intuitively plausible,
venes %? income distribution.
S is to compute deadweight loss (DWL)

SO terventions, we show that reliance on the

type estimator in which observations a
Slutsky restrictions. This maintains
restrictions of economic theory to
nonparametric estimates are co

well-behaved descri

in, DWL estimates that have incorrect signs and are,

timator deals with this problem in a way that is

ndicate that households at the median of the income distribution respond more strongly to an
incredse in prices than do households at the lower or upper income group. We do not speculate
on why this is the case, but we show that it implies that our DWL measure is typically higher at
the median of the income distribution that in the lower or upper income group.

Section 2 explains our approach to nonparametric estimation of demand functions and
DWL subject to the Slutsky shape restrictions. Section 3 describes the NHTS data. Section 4

presents the estimates of the demand function and shows how price responsiveness varies across



the income distribution. Section 4 also presents the DWLs associated with several price changes

and shows how they vary across the income distribution. Section 5 concludes.

2. Shape Restrictions and the Estimation of Demand and Deadweight Loss

We begin this section by describing our approach to estimating the and function
subject to the Slutsky shape restriction. Then we describe how we estimate th of a tax-
induced price increase. <

The Slutsky condition is an inequality constraint on the rmethod

a
for estimating the demand function nonparametrically subject is constraint dapted from

Hall and Huang (2001), who present a nonparametric kernel estimatok of a“eonditional mean

function subject to a monotonicity constraint. We rep their monotoni constraint with the

Slutsky condition. To describe our estimator, let Q, P, a ectively, denote the quantity
of gasoline demanded by an individual, the price paid, and th idual@ We assume
that these variables are related by S @

1) Q=g(P.Y)+U, @

where g is a function that satisfies mnditi %@ Slutsky restriction but is

otherwise unknown, and U is a aridom_aviable satisfying E(U |[P=p,Y =y)=0

forall p and y. ametrically subject to the Slutsky

constraint

estimator are summarized in Hardle (1990). We call it the unconstrained nonparametric

wator, denoted by g, , because it is not constrained by (2). The estimator is

) 1 4 P-h y-Yi
3 ) =—F—>'QK K ’
@ Gulpy) nhphyf(p,y); { o J ( " j

~ n — . —_— .
fpy)=—— Y k| R | X2
nhph, = hp hy

where




K is a bounded, differentiable probability density function that is supported on [-1,1] and is
symmetrical about 0, and h, and h, are bandwidth parameters.

Owing to the effects of random sampling errors, g, does not necessarily satisfy (2) even
if g does satisfy this condition. Following Hall and Huang (2001), we solve this problem by

replacing g, with the weighted estimator

. 1 “ p-R | [y-Y <
4 YY) =m———— = IQIK K y
R G e
) 1 angk t

where {w;:i=1,...,n} are non-negative weights satisfying = he¥’subscript C

indicates that the estimator is constrained by the Slutskycondition. Thewsights are obtained by

solving the optimization problem

(5) minimize: D(w,...,W,)
W, .., W,

subject to

ag (pyy) ~
T G (p.y)

Whetr w; =1/n for all i=1...n, dc(p;.y;)=0y (pj.y;) forall j=1..,J. Thus, the weights

minimize the distance of the constrained estimator from the unconstrained one. The constraint is

not binding at points (p;,y;) that satisfy (2). In the empirical application described in Section 4,

we solve (5) by using the nonlinear programming algorithm E04UCF from the NAG Library.

The bandwidths are selected using a method that is described in Section 4. In some applications,



it may be desirable to impose the restriction that the good in question is normal. This can be done

by adding the constraints a(jc(pj ,Y;j)/8y =0 to (5), but we do not take this step here.

We now describe our method for estimating the DWL of a tax. Let E(p) denote the

expenditure function at price p and some reference utility level. The DWL of a tax that changes
the price from p° to p! is

®)  L(p% ph)=E(P)-E(P°)-(p"' - p®)alp", E(pH)].

S
We estimate this by X
@ L% ph)=E(P)-E(°) - (p* - p)dlp" E(PH)],

where E is an estimator of the expenditure function and, 4> may be either g, or §c. We obtain

E by solving the differential equation

dE) _ ~r v 2oy IR
8 —= t), E()]—-,
® EU-gp0em® X ®®
where [p(t),é(t)] (0<t<1) is a price-(esti e e@iture p@z solve this equation
her’and !@% ). We have found this
‘s} icult because the estimator’s

where (2) is a binding constraint (strict

along a grid of points by using Euler’

e phenomenon, and we can use §,, to carry out

h% bootstrap to obtain asymptotic joint confidence

replacement.

2. Use this sample to estimate g(p,y) on a grid of (p,y) points without imposing the

Slutsky constraint. Also, estimate L. Denote the bootstrap estimates by @G and L .

3. Form percentile confidence intervals for L by repeating steps 1-2 many times. Also,

use the bootstrap samples to form joint percentile-t confidence intervals for g on the grid of

points {p;,y;:j=1..,J}. The joint confidence intervals at a level of at least 1—« are

©)  Gu(pjY) -2, (Pj YIS (P ) <9(Pj Vi) < Gu (P, Vi) + 2, (P} Yo (P, Yj) s



where

- B AN p-P y-Y,
(10) & (py)=— X UiZK[ 'JK( 'J,
[nhyh, T (p, y)I° é hp hy

with B, = [K(v)?dv and U; =Q; - 6y (R.Y) |
is a consistent estimate of Var[§y (p,y)]. The coefficient z,(pj,y;) is chosen following the

approach in Hardle and Marron (1991) for computing joint confidence in@rval i 0se,

we partition the grid into intervals of 2h,. Within each of these M>nei N PjYj)
is the solution to

p* |Qa(pjryj)_QU(pj’yj)|
5'*(pj'Yj)

SZoz(pjay]')]_

where P” is the probability measure induced by bodtstrap sa is the version

£10) by tr

ultaneous size h neighborhood equals

@ &
1—%. As Hardle and Marron (1991) @ ng thni inequality, the resulting
ous co %ervals at a level of at least 1—« .

nsisten tes the asymptotic distribution of the

u ooth ¢, and QG (that is, use smaller than
) step 2 of the bootstrap procedure to obtain a

e discuss bandwidth selection in Section 4.

of &(p,y) that is obtained by replacing analogs, and S

is a parameter. We then choose g such

intervals over the full grid

Hall (1992) shows

It
tra

ponsored by the Bureau of Transportation Statistics and the Federal Highway Administration.
The “data were collected through a telephone survey of the civilian, non-institutionalized
population of the U.S. The survey was conducted between March 2001 and May 2002 (ORNL
2004, Ch. 3). The telephone interviews were complemented with written travel diaries and
odometer readings.

The variables used in our study are annual gasoline consumption, the gasoline price, and
household income. Gasoline consumption is derived from odometer readings and estimates of the

fuel efficiencies of vehicles. Details of the computations are described in ORNL (2004,



Appendices J and K). The gasoline price for a given household is the average price in dollars per
gallon, including taxes, in the county where the household is located. This price variable is a
county average, rather than the price actually paid by a household. It precludes an intra-county
analysis (see Schmalensee and Stoker 1999) but does capture variation in prices consumers face
in different regions.

Household income in dollars is available in 18 groups. In our analysis,

vehicle gasoline expenditure in dollars and g%

households. We divide the household gasoline line consumed
to obtain the household’s gasoline price) %n@stigate% -in-variables issues
raised by the use of county-average pri censorng is raised by the grouping

i
athyimpor are left for future research.

<
e ber of drivers is zero or whose

is not reported. We also exclude
restrict our sample to households with a

one child under 16 years of age. We take

Qraposition. We limit attention to vehicles that use gasoline as fuel, rather than diesel, natural

2 Assuming log-normality of income, we have estimated the corresponding mean and variance by using a
simple tobit model, right-censored at $100,000. Excluding households with very high incomes above
$150,000, the median income in the upper group corresponds to about $120,000.

® The income point $72,500 occupies the 59.6-63.3th percentile. This point was chosen to avoid the
problems created by the interval nature of the income variable which becomes especially important in the
upper quartile of the income distribution: income brackets are relatively narrow (with widths of $5,000) up
to $80,000, but substantially wider for higher incomes. However, estimates using higher quantiles yielded
similar results and did not change our conclusions on price responsiveness across the income distribution.



gas, or electricity. The resulting sample consists of 5,257 observations. Table 2 shows summary

statistics.

4, Estimates of Demand Responses

a. The constant elasticity model
We begin by using ordinary least squares to estimate the following log-log.li demand
model:

(1) logQ =y + plogP + p,logY +U; EU|P=p,Y=y)=

This constant elasticity model is one of the most frequently e

ah™1879; Hughes,
Knittel, and Sperling 2008). It has been criticized on man eaton and Muellbauer
1980) but its simplicity and frequent use make it a us
this section, we compare the estimates obtained from mo

nonparametric analysis.

The estimates of the coefficients of

elasticity of demand of -0.88 and an inc f 0.29
those reported by others. Hausman’ @nd 95) r s@imates of -0.81 and 0.37,
respectively, for price and inco S. collected between 1979 and
port priee elastigjties between -0.72 and -1.13 and
dependi «. the survey year and control variables, in

tchew and No (2001) estimate an income
3 1994-1996 and a model that does not include the price

) 'c@elasticity of -0.89 using 1997 data.

@ RE . is test\sonsists of adding powers of the predicted values of logQ to the
odel, re-estimating the resulting augmented model, and testing the hypothesis that the

coefficients of the additional regressors are zero. Rejection of this hypothesis indicates that the
original model is misspecified. We carried out this test twice, once with the squares and cubes of
the predicted logQ values added to the model (RESET3 in Table 1) and once with the squares,
cubes, and fourth powers of the logQ ’s added (RESET4). As can be seen from Table 1, both

versions of RESET reject model (11) at the 0.05 level. Thus, we conclude that model (11) is

misspecified.



West (2004) found evidence for dependence of the price elasticity on income.

Accordingly, we added the interaction term (logP)(logY) to model (11). The resulting

augmented model is also rejected at the 0.05 level by the RESET tests. Conceivably adding
further powers and interactions of logP and logY would yield a model that is not rejected by

nt estimators

RESET. However, this kind of informal specification search leads to incons

whose properties are unknown. Nonparametric estimators, by contrast, are consistent:

b. Unconstrained nonparametric estimates
Our unconstrained nonparametric estimates of the deman
Figure 2. They were obtained by using the Nadaraya-Watson“ker i with a biweight

Ieast-sq uares Cross-

influenced by low-density regions. To avoid th

choose h, and hy, . We are interested in g(p,

O

groups and price levels between the 5th ard 95 rcentiles of the

grel'!:
eparatély to obtain bandwidth estimates
. p ,hy)=(0.0431,0.2143) for the lower

group, and (0.0210, 0.2878) for the upper

three price-income rectangles consis

incomes within 0.5 of each incopne

squares cross-validation to e

haIIian) demand function is upward sloping. This anomaly is also present in the results of
Hausman and Newey (1995). The theory of the consumer requires the compensated demand
function to be downward sloping. Combined with a positive income derivative, an upward-
sloping Marshallian demand function implies an upward-sloping compensated demand function
and, therefore, is inconsistent with the theory of the consumer. At the median income, our

nonparametric estimate of og/dy is positive over the range of prices of interest except for the

two lowest grid points. Therefore, the nonparametric estimates are inconsistent with consumer

theory. As is discussed in more detail in Section 4c, we believe this result to be an artifact of



random sampling errors and the consequent imprecision of the unconstrained nonparametric
estimates. This motivates the use of the constrained estimation procedure, which increases

estimation precision by imposing the Slutsky condition.

c. Nonparametric estimates under the Slutsky condition

Figure 3 shows the nonparametric estimates of the demand function, g\ at each of the

three income levels of interest (solid dots). These estimates are constrained to sati Slutsky
condition and were obtained using the methods described in Section ? , the
figure also shows the unconstrained nonparametric estimates, g, encoats) id lines in
Figure 3 connect the endpoints of joint 90% confidence intefvals:or g ).” These were

obtained using the bootstrap procedure described in Sectj

with the theory of the consumer and eve
of DWL. The 90% confidence ban

unconstrained estimates. This is co
unconstrained estimates is due ed estimator. It also indicates

that the Slutsky cons

icate that

e

ti
forthe other groups. This, in turn, suggests that the

The results\in Figure 3 income group is more sensitive to price

the slope of the constrained estimate of g is

rease is larger iddle income group than for the others. We investigate

We how investigate the DWLs associated with several increases in gasoline taxes. The
pases considered in the literature typically are quite large and often out of the support of the
data. We start with an intervention that moves prices from the 5th to the 95th percentile of the
price distribution in our sample. Historically observed tax changes in the U.S. tend to be much
smaller than this, possibly due to the political difficulty of implementing large tax increases. To
reflect the kind of intervention a legislature might actually consider, we also look at smaller
interventions in which the price increases by $0.05. As is well known, DWL increases with the
square of the tax rate (e.g., Auerbach 1985), so the DWL estimates are very different for the two
types of interventions.

10



We compute DWL as follows. Over the range of the intervention, we evaluate the
Marshallian demand estimates presented in the previous section for the three estimators
(parametric, unconstrained nonparametric, and constrained nonparametric) on a grid of 61 points.
We then use this demand estimate and the corresponding derivatives to compute the expenditure
function and DWL by following the methods described in Section 2.

price percentile in our data. The differences in the demand

indicate that

ort groups. This
result is consistent with our earlier finding-tt 'd@incom@more responsive to
price changes than are the other group e also i ateQ w the functional form

ates of@% behavior and the effects of
%

hat increase the price by $0.05 from

assumptions of the parametric model\affégt\esti

taxation.
We also esti h$\assogiated

h
several different initial valuess\Interventi

Intervention

] onstrained nonparametric model yields DWL estimates that are positive and, in some cases,
more“than double those obtained from the parametric model.

One can also study DWL relative to income so as to reflect the household's utility loss
relative to available resources. The results for this analysis are shown in Table 4. The estimates
from the parametric model and constrained nonparametric model give different indications of the
effects of the tax increase across income groups. The parametric estimates indicate that the

relative utility loss increases as income decreases. However, the constrained nonparametric

* Confidence intervals for the unconstrained and the parametric model are reported in Table 5.
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estimates indicate that the relative utility loss is greater for the middle income group than for the

other groups.

5. Conclusions
Simple parametric models of demand functions can yield misleading egtimates of price

monotonicity. This paper has shown that these problems c me onstraining
nonparametric estimates to satisfy the Slutsky condition of economi . is stabilizes the

that have no basis in

economic theory.

We have implemented this approach by r that weights

To illustr thod, we have
i % We find that some
icati est, whereas a fully
%ontrast, the estimate that is

Moreover, the constrained

ry non-monotonically with income. In
sumers are less responsive to changes in

Is.

different from those obtained with the parametric model. Mirroring the results on price
responsiveness, the DWL estimates are highest for middle income groups. These results illustrate

the usefulness of nonparametrically estimating demand functions subject to the Slutsky condition.
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FIGURES

Figure 1: Retail Motor Gasoline Price 1976-2007 (Unleadgj Re
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Table 1: OLS regression and specification test

dependent variable: log gasoline demand

log price -0.885
[0.157]**

log income 0.292
[0.015]**

constant 4.2265>
[0.166]**

Observations /3{257@(
22

RESET3: F-stat )
RESET3: p-value 0.004**

RESET4: F-stat 4.034
RESET4: p-value 0.007**

the F-test of two Ramsey RESET specification T3 refers to second and third
polynomials of the predicted values of t ént varfable, an refers to including
second to fourth polynomials. See text for

=
S
Pl

log ipe\démand 7.168
[0.679]

| 0.287
[0.057]
g income 10.954
[0.613]

Observations 5,257

NS
Note: Dependent variable is log of annual housebeld gasoli@}nand i s. * indicates
significance at 5%, ** indicates significance at 1% I. The om eparts results from

Note: Table shows means and standard deviations.
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Figure 2: Unconstrained nonparametric dema es@\

Unconstrained gasollne demaﬁ/
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: Income groups correspond to $72,500, $57,500, and $42,500.

15



Figure 3: Demand estimates and simultaneous confidence intervals
at different points in the income distribution
a) upper income group

Demand estimates and confidence interval at upper income group
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Note: Income groups correspond to $72,500, $57,500, and $42,500. Confidence intervals shown
refer to bootstrapped symmetrical, studentized simultaneous confidence intervals with a
confidence level of 10%, based on 10,000 replications. See text for details.

6.7 L

16



Table 3: Relative Deadweight Loss estimates

Income DWL (as % of tax paid)
unconstrained constrained log-log
1) 2) 3)
$72,500 10.09 % 10.18 % .59 %
Intervention | $57,500 10.09 % 11.92 % %ﬁi
($1.215 - $1.436) $42,500 6.40 % 6.70 % 5
$72,500 4.20 % 3.27 %
Intervention I $57,500 3.08 % 4.50 %
($1.22 - $1.27) $42,500 -1.33% 0.7
$72,500 -1.06 %
Intervention 1l $57,500 6.42 %
($1.27 - $1.32) $42,500 3.86 %
$72,500 -3.02 %

Intervention IV $57,500 1.66 %

($1.32 - $1.37) $42,500 {((\Q\i\@e %

Note: For each intervention, the price change pred is_indicater brackets (in U.S.

dollars). Intervention | corresponds to MQVK r t 5th percentile in the
ice i S. Deadweight Loss is

Table 4: Deadwe@ ousehold income
A0 0 AN

/Amcoma N/ QA DWhrélative to income) * 10°

\\ uncw constrained log-log
X\ (2) 3)

$72500/ 4 4.14 3.01

Interventian $57,500 89 5.69 3.54
$42,50Q 3.80 3.97 4.37

$72,5000\  0.43 0.34 0.18

$5 0.41 0.59 0.21

$42,5 -0.20 0.11 0.26

$72,500 -0.11 0.09 0.17

$57,500 0.74 0.67 0.20

27-1.32) $42,500 0.54 0.40 0.24
$72,500 -0.32 0.05 0.16

Intervention IV $57,500 0.29 0.23 0.18
($ 1.32-1.37) $42,500 -0.32 0.11 0.23

Note: For each intervention, the price change considered is indicated in round brackets (in U.S.
dollars). Intervention | corresponds to moving prices from the 5th to the 95th percentile in the
data. Interventions Il, Il and IV each increase price by five U.S. cents. Deadweight Loss is
shown relative to baseline income. See text for details.

17



&
Table 5: Confidence intervals for DWL measures. Q

Income DWL (as % of tax paid) \QyVL (relative to income) * 10*
unconstrained log-log ur}sbnstrained log-log
lower upper lower /lc(pber \k\gvyer upper lower upper
1) (2) 3) (5) (6) () (8)
$ 72,500 1.24 % 23.03 % 4.81% 10%@@ 9.09 1.99 4.04
Intervention | $ 57,500 -1.50 % 17.69 % 4.82 % 0.17 8.69 2.35 4.70
($1.215-1.436) $42,500 -7.24 % 1521 % 4. 81/\ .28 % 9.54 2.90 5.88
$ 72,500 -5.34 % 16.39 % A3 % 1.63 0.11 0.25
Intervention I $ 57,500 -3.07 % 9.90 % 40 % O 37 1.36 0.13 0.28
($1.22-1.27) $ 42,500 -10.31 % 3.18 % Q/\ 7% -1.56 0.51 0.17 0.36
$ 72,500 -11.26 % 6 37 -1.14 0.74 0.11 0.23
Intervention Il $ 57,500 0.52 % (4 0.11 1.63 0.13 0.26
($1.27-1.32) $ 42,500 -1.99 %@2 .33 % -0.19 1.75 0.16 0.33
$ 72,500 -18.92 9 0. 87 ON2.25 % -2.11 0.32 0.10 0.21
Intervention IV $ 57,500 -1 81 % 7. 7 2.22% -0.17 0.86 0.12 0.24
($1.32-1.37) $ 42,500 29 % 2.24 % -1.20 0.41 0.15 0.30

Note: For each intervention, the price

18
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