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Abstract

This paper studies the identifying power of conditional quantile restrictions
in short panels with fixed effects. In contrast to classical fixed effects models
with conditional mean restrictions, conditional quantile restrictions are not pre-
served by taking differences in the regression equation over time. This paper shows
however that a conditional quantile restriction, in conjunction with a weak con-
ditional independence restriction, provides bounds on quantiles of differences in
time-varying unobservables across periods. These bounds carry observable impli-
cations for model parameters which generally result in set identification. The
analysis of these bounds includes conditions for point identification of the param-
eter vector, as well as weaker conditions that result in identification of individual
parameter components.
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1 Introduction

This paper studies the linear panel data model

Yit = Xitβ + αi + Uit, (1)

with conditional quantile restrictions on Uit, where the time dimension is t = 1, ..., T <

∞, and i subscripts observations of individuals in the population. αi denotes a time-

invariant unobserved effect for the ith individual, and Uit a time-varying unobservable.

The analysis is of the “fixed effect” variety in the sense that the conditional distribu-

tion of αi is left unrestricted. It is well known that the conditional mean restriction

E [Uit|xi1,..., xit] = 0 enables application of linear mean regression to the difference of

(1) over any two periods for N−1/2-consistent, asymptotically normal estimation of β.

Yet when the conditional mean restriction is replaced with a conditional quantile re-

striction QUit
(τ |xi1,..., xit) = 0 for some τ ∈ (0, 1), this approach is no longer justified.

The non-linearity of the quantile function and in particular its lack of commutativity

with subtraction is a substantial complication. As stated by Koenker and Hallock

(2000), “Quantiles of convolutions of random variables are rather intractable objects,

and preliminary differencing strategies familiar from Gaussian models have sometimes

unanticipated effects.” Indeed, in his book on quantile regression, Koenker (2005) places

the section on quantile regression with penalized fixed effects in the chapter titled the

“Twilight Zone of Quantile Regression.”

This paper provides novel set identification results for the linear fixed effects model

with a single conditional quantile restriction QUit
(τ |xi) = 0, and finite T , where xi ≡

(xi1, ..., xiT ). With cross-section data and no fixed effect, conditional quantile restric-

tions yield point-identification, and corresponding estimators often possess advantages

relative to those that employ conditional mean restrictions. In particular, when errors

are non-Gaussian, these estimators are often more efficient than those obtained by least

squares, see Koenker and Bassett (1978). Yet the analysis of such restrictions with

panel data and finite T has so far remained elusive. Again, the complication is that

first-differencing does not preserve the quantile restriction in the differenced equation,
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as it does with conditional mean restrictions. In this paper it is shown however that

conditional quantile restrictions can provide observable implications for model parame-

ters. In particular, I show that in conjunction with a weak conditional independence

restriction on time-varying unobservables given xi, such restrictions provide bounds on

the quantiles of differences in the regression errors across periods. These bounds carry

observable implications for model parameters, yielding the derived identification results.

The prior literature on panel data with unobserved effects has not considered con-

ditional quantile restrictions such as QUit
(τ |xi) = 0 in isolation, although a number of

related models have been studied. First, there are models that do not impose quantile

restrictions directly, but whose assumptions imply quantile restrictions on the differ-

enced equation. The semi-parametric binary-response model of Manski (1987) shows

that if the idiosyncratic errors Uit are stationary conditional on ci, xi1, xi2, the difference

sgn (yi2) − sgn (yi1) has conditional median (xi2 − xi1) β, and the maximum score esti-

mator can be employed for consistent estimation of β. Abrevaya (2000) uses a similar

rank-based approach in models with non-binary outcomes. In models with censored or

truncated data, Honore (1992) shows how an assumption that errors are conditionally in-

dependent and identically distributed implies symmetry of the distribution of observed

outcomes, which he uses to identify and consistently estimate the parameters of his

model. In the models considered by Geraci and Bottai (2007) and Graham, Hahn, and

Powell (2008), where Uit are independent of Xi with the Laplace distribution, the likeli-

hood for ∆Yi given Xi is the negative of the least absolute deviations criterion, thereby

justifying application of median regression to first differences in that particular context.

While the approach taken in this paper is similar in nature to that from the semi-

parametric panel data literature, e.g. Manski (1987), Honore (1992), and Abrevaya

(2000), among others, the assumptions invoked on the unobservables in this paper are

comparatively weak. First the marginal distribution of Uit, conditional on covariates,

need not be identical across t. Indeed, if that were imposed then prior methods could be

used to achieve point-identification.1 Rather, all that is required is that the conditional

distribution of Uit have the same τ -quantile for all t. This is a much weaker restriction

than full stationarity, allowing for more flexible patterns of unobserved heterogeneity

than just those embodied by the fixed effect. Second, full conditional independence of

Uit and Uis, s 6= t, is not required. Instead I employ a weaker restriction on the stochas-

1If fact, if the distribution of unobservables were integrable, the usual first-differencing approach
would apply.
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tic relation between time-varying unobservables. Specifically, as laid out in Assumption

WCI of Section 2, what is required is that, conditional on covariates, the event that Uit

falls below its τ -quantile is independent of the event that Uis falls below its τ -quantile.

This allows for the possibility of some forms of stochastic dependence between Uit and

Uis.

Another important area of related research is the recent literature on quantile re-

gression with panel data, where the goal is to estimate the conditional quantiles of Yit

given xit at many quantiles. To date, much of this literature has focused on the pure

location-shift model, first considered by Koenker (2004), who provides a penalized quan-

tile regression estimator. The task at hand in this paper is related, but the focus is on

identification of the parameters of a single equation, rather than at many different quan-

tiles. Thus, independence is only required for a single quantile. Moreover, the analysis

of this paper is for small T , whereas the asymptotic results for the pure location shift

model require both N and T going to infinity. In that model, for each τ , the τ quantile

of Yit conditional on xit is given by xitβ (τ) + αi. The present context is related, al-

though the fixed effect plays a different role. Specifically, in this paper the τ conditional

quantile of Yit given xit need not be additively separable in the fixed effect, since the

conditional quantile restriction on Uit gives QYit
(τ |xit) = xitβ + Qαi+Uit

(τ |xit), which is

only equivalent if Qαi+Uit
(τ |xit) = αi for all i, t

A number of additional papers provide further results in the context of the pure loca-

tion shift and closely related models. Lamarche (2006) provides additional asymptotic

results and an optimal choice for the regularization parameter. Subsequently Lamarche

(2008) develops an alternative estimator that allows the fixed effect to be a linear func-

tion of xi. Canay (2008) shows how a simple transformation can be used to eliminate

the fixed effect from the pure location shift model, motivating a simple and easily com-

puted two-step asymptotically normal estimator. Galvao (2008) considers a dynamic

panel data model where the fixed effect is a pure location shift, but where lagged depen-

dent variables in the conditional quantile specification cause bias. He shows how the

instrumental variable quantile regression estimator of Chernozhukov and Hansen (2006)

and Chernozhukov and Hansen (2008) can be used to alleviate the bias. The related

paper by Harding and Lamarche (2008) shows how instrumental quantile regression can

be employed in panel data models with endogenous regressors, demonstrating favorable

performance in a Monte Carlo study and application. Asymptotic analysis in all of
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these models, where provided, is conducted with both N and T going to infinity.

Recently, additional approaches to the analysis of quantiles in panel data models

have been proposed. For example, Abrevaya and Dahl (2008) employ a correlated ran-

dom effects approach in the spirit of Chamberlain (1982) in order to estimate condi-

tional quantile functions. The nature of the correlated random effects approach differs

fundamentally from that considered here by imposing additional structure on the rela-

tionship between the unobserved effect and covariates. Also related are recent papers

by Graham and Powell (2008), Graham, Hahn, and Powell (2009), and Arellano and

Bonhomme (2009). These papers employ random coefficient approaches that extend

the correlated random coefficients framework of Chamberlain (1982) and Chamberlain

(1992) to identify and consistently estimate various distributional features of outcomes

given covariates. Although these models, and thus the subsequent identification results,

are quite different than the model considered here, the restrictions in these papers are

also of the fixed effects variety. Other papers that derive bounds on parameters in panel

data models under different restrictions than those considered here include Honore and

Tamer (2006) and Chernozhukov, Fernandez-Val, Hahn, and Newey (2008).

The rest of the paper proceeds as follows. Section 2 provides the formal model and

the identification results. The results are constructive in the sense that the identified set

is characterized by a set of inequality restrictions that can provide a basis for estimation

and inference. Section 3 briefly discusses how methods from the prior literature on

set identification obtained from inequality restrictions can thus be used for consistent

estimation of the identified set. Section 4 provides examples, and section 5 concludes.

Proofs are collected in the Appendix.

2 The Model and Observable Implications

Let the data consist of observations {(yit, xit) : i = 1, ..., N ; t = 1, ..., T} from the model

Yit = Xitβ + αi + Uit, (2)

where Yit and Uit are random variables for each i, t, and Xit is k × 1 random vector.

Let Yi ≡ (Yit, ..., YiT )′, and Xi ≡ (X ′
i0, ..., X

′
iT )′ denote the T × 1 and T × k matrices of

outcomes and covariates for given i across t. Similarly define Ui ≡ (Uit, ..., U
′
iT ), as the
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vector of time-varying unobservables for individual i over all values of t. Bold font is

used throughout to explicitly denote collections of variables across all t. For simplicity

it is assumed that the panel is balanced, so that there are observations of (y,x) for

each of N individuals for each period t = 1, ..., T , but this is easily relaxed. Following

standard convention, capital letters are used to denote random variables and lower case

letters particular realizations. The following assumptions are employed.

Assumption A1 (random sampling): {(Yi,Xi) : i = 1, ..., N} are iid P. The param-

eter β belongs to the compact parameter space B.

Assumption A2 (continuity at 0): Uit|xi is continuously distributed a.e. Xi and

ft (0|xi) ≥ ε, for some ε > 0, where ft (·|xi) denotes the conditional density of Uit given

Xi = xi.

Assumption CQR (conditional quantile restriction): Quit
(τ |xi) = 0 with probability

1 for all t ∈ {0, ..., T}.
Assumption WCI (weak conditional independence): For all (s, t) ∈ {0, ..., T}2 such

that s 6= t, the events {Uis ≤ 0} and {Uit ≤ 0} are conditionally independent given xis

and xit.

Assumption A1 is a standard assumption of random sampling in the cross-section

dimension of the observations and also requires compactness of the parameter space.

Assumption A2 is a regularity condition that guarantees uniqueness of the τ conditional

quantile of Uit given xi. The restriction CQR is the conditional quantile restriction,

which replaces the standard conditional mean restriction E (Uit|xi) = 0 in classical fixed

effects models, e.g. Wooldridge (2002). Condition WCI is a restriction on the stochastic

relationship between Uis and Uit conditional on observed covariates. It specifies that

the events that each of them exceeds their τ -quantile are conditionally independent. As

noted in the introduction, this is a weaker restriction than full conditional independence.

In section 2.2 below I provide sharp bounds on β under CQR and WCI. These bounds

remain valid under conditional stochastic independence, though sharper bounds may be

obtainable. One advantage of condition WCI is that it does not altogether rule out

serial dependence. It is also worth repeating that none of these assumptions require

Uis and Uit to be identically distributed conditional on the covariates. Were that the

case, identification of β could be shown by consideration of the usual first-differenced

mean regression if their distribution were integrable, and otherwise by approaches from

the semiparametric panel data literature, e.g. Honore (1992) and Abrevaya (2000). No
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further assumptions are made regarding the distribution of the fixed effect conditional

on xi or Uit.

2.1 Identification Without Conditional Independence

Before considering the full identifying power of all of the assumptions, I first consider

the identifying power of A1, A2, and the conditional quantile restriction alone. There

is the following result.

Theorem 1 Assume A1, A2, and CQR. Then every b ∈ B is observationally equivalent

to β.

By itself, i.e. without imposing the conditional independence restriction WCI, the

conditional quantile restriction has no identifying power, as every element of the pa-

rameter space is observationally equivalent to β. This is in fact the case for any finite

T . The underlying reason is that the conditional quantile restriction does very little to

restrict the distribution of the idiosyncratic shocks Uit across t. The location restric-

tion that it does imply is sufficiently weak that it can be effectively counter-balanced

by appropriate choice of the fixed effect αi, whose conditional distribution has been

left completely unrestricted. Thus, for any observed distribution of (Y,X) and any

conjectured parameter value b there exists a conditional distribution of αi such that,

conditional on any realization of Xi, Yit −Xit − αi ≤ 0 for all t with probability τ . As

the proof shows formally, precisely such a latent conditional distribution for αi can be

constructed by requiring that αi be sufficiently small with probability τ , and sufficiently

large for with probability 1 − τ . It follows that for non-vacuous set identification of

β, additional restrictions are needed. The conditional independence restriction WCI is

considered below. Additional restrictions on the distribution of αi given xi, i.e. “ran-

dom effects” analysis, could of course also have identifying power, but are not pursued

here.

2.2 Adding Conditional Independence Restrictions

When Assumption WCI is imposed jointly with the conditional quantile restriction,

observable implications can be derived from differences in (2) across t, as done with
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classical fixed effects, albeit in a different manner. To see how, restrict attention to the

case where T = 2 and consider the following observation.

Ui2 ≤ 0 and Ui1 ≥ 0 ⇒ ∆Ui ≤ 0, (3)

Ui2 > 0 and Ui1 ≤ 0 ⇒ ∆Ui > 0, (4)

where ∆Ui ≡ Ui2−Ui1. By first Assumption WCI and then Assumption CQR we have

that

P {Ui2 ≤ 0 ∧ Ui1 ≥ 0|xi} = P {Ui2 ≤ 0|xi}P {Ui1 ≥ 0|xi} = τ (1− τ) .

P {Ui2 > 0 ∧ Ui1 ≤ 0|xi} = P {Ui2 > 0|xi}P {Ui1 ≤ 0|xi} = τ (1− τ) ,

where ∧ denotes the logical “and” operator. Combining this with (3) and (4), it follows

that

P {∆Ui ≤ 0|xi} ≥ τ (1− τ) ,

P {∆Ui > 0|xi} > τ (1− τ) ,

or equivalently,

τ (1− τ) ≤ Pr {∆Ui ≤ 0|xi} ≤ 1− τ (1− τ) . (5)

The quantity ∆Ui is a function of observable quantities and the parameter β from which

the fixed effect αi is absent. (5) thus provides bounds on an identified function of β,

namely P {∆Ui ≤ 0|xi}. This quantity may vary with xi but must lie between τ (1− τ)

and 1− τ (1− τ) for all xi, delivering the following theorem.

Theorem 2 Let Assumptions A1, A2, CQR, and WCI hold, and assume T = 2. Define

the set

S (b) ≡ {xi : ∆xib < Q∆Yi
(τ (1− τ) |xi) ∨∆xib > Q∆Yi

(1− τ (1− τ) |xi)} , (6)

where ∨ denotes the logical “or” operator. Then b is identified relative to β if and only

if P {S (x; b)} > 0. Equivalently the sharp identified for β is

BI ≡ {b ∈ B : Q∆Yi
(τ (1− τ) |xi) ≤ ∆xib ≤ Q∆Yi

(1− τ (1− τ) |xi) a.e. Xi } . (7)
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Corollary 1 BI is non-empty and convex.

Theorem 2 provides observable implications that can be used to distinguish some

values of b ∈ B from the true parameter value β. Equivalently, it provides bounds on

the parameter vector β, namely the convex set BI . This set is sharp. That is, for every

b ∈ BI , and any value of the covariates xi, there exists a conditional distribution of the

unobservables given xi, such that (2) with β = b generates the observed distribution of

(Y,X).

When T > 2, it is straightforward to generalize these bounds by considering the set

of parameter values that satisfy the derived inequality restrictions across all time period

pairs s 6= t, {s, t} ∈ {1, ..., T}2. An immediate corollary of Theorem 2, provided below,

is that the intersection of the bounds BI taken across all such pairs provides bounds on

β. For the statement of the result, define ∆tsYi ≡ Yit − Yis, ∆tsXi ≡ Xit − Xis, and

∆tsUi ≡ Uit − Uis.

Corollary 2 If T > 2, then β ∈ BI , where

BI ≡ ∩
1≤s<t≤T

Bst
I ,

and

Bst
I ≡ {b ∈ B : Q∆stYi

(τ (1− τ) |xis, xit) ≤ ∆tsxib ≤ Q∆stYi
(1− τ (1− τ) |xis, xit) a.e. Xis, Xit } .

(8)

Returning to the case where T = 2 for ease of notation, it is useful to consider what

factors contribute to the size of the set BI (or each of the sets Bst
I when T > 2). To

this end, it is useful to re-write the inequality restrictions that define BI as

Q∆Ui
(τ (1− τ) |xi) ≤ ∆xi (b− β) ≤ Q∆Ui

(1− τ (1− τ) |xi) a.e. Xi, (9)

which follows from substituting ∆xiβ + ∆Ui for ∆Yi. From this it can first be seen

that the closer are the τ (1− τ) and 1− τ (1− τ) conditional quantiles of ∆Ui given xi,

the more tightly concentrated is the set BI around β. Since the τ conditional quantile

of Uit is zero, the lower bounding quantile cannot exceed zero, and the upper bounding

quantile can be no less than zero. All else equal, the closer is either bounding quantile
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to zero for any xi the tighter is the implied bound on β. A second factor that affects the

size of BI is the magnitude of ∆xi. For any constant c > 1, if the bounding conditional

quantiles were equal when conditioned on either xi or cxi, then fewer values of b satisfy

the inequality restrictions at Xi = c · xi than at Xi = xi.

These observations motivate the following theorem, which provides sufficient condi-

tions for point-identification. The theorem makes use of the following large support

condition on the k-th component of ∆Xi, used previously in a number of papers to

establish identification in semiparametric models, for example Manski (1985) and Han

(1987).

Assumption C1 (support): The distribution of th kth component of ∆Xi, denoted

∆Xi,k conditional on any realization of all other components, denoted ∆xi,−k, is abso-

lutely continuous on R with respect to Lebesgue measure and βk 6= 0.

Theorem 3 Let Assumptions A1, A2, CQR, WCI, and C1 hold, and let T = 2. Sup-

pose that (i) for any set Xi,−k on the support of Xi,−k,

lim
c→∞

Q∆Ui
(τ (1− τ) |∆xi,k > c,Xi,−k ∈ Xi,−k) = 0, (10)

and

lim
c→∞

Q∆Ui
(1− τ (1− τ) |∆xi,k > c,Xi,−k ∈ Xi,−k) = 0. (11)

and (ii) that the support of ∆Xi is not contained in any proper linear subspace of Rk.

Then BI = {β}.

The above theorem relies on an identification at infinity argument. Condition (i)

states that for any fixed xi,−k, as ∆xi,k is made arbitrarily large, the bounding conditional

quantiles of ∆Ui approach zero. Thus, the inequality conditions (9) essentially provide

a moment condition for ∆x (b− β) in the limit as ∆xi,k → ∞. Condition (ii) then

provides a rank condition that guarantees sufficient variation in covariates to achieve

point identification. These conditions may be feasible in some contexts, though they

are admittedly strong. Nonetheless, the theorem serves the purpose of illustrating when

the identified set shrinks to a single point, thereby helping to illustrate the nature of

these bounds.
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2.3 Point-Identification of Individual Components

This section considers conditions more widely-applicable than those of Theorem 3 under

which a particular component of the parameter vector, βk, is point-identified. The

required conditions are the support condition C1 already stated, and condition C2,

provided below. For ease of exposition the conditions and subsequent theorem are

again provided for the case T = 2, but are easily generalized to cover arbitrary T .

Assumption C2 (thin tails): There exist constants C0 and C1 such that for almost every

xi on the support of Xi, Q∆Ui
(τ (1− τ) |xi) ≥ C0 > −∞ and Q∆Ui

(1− τ (1− τ) |xi) ≤
C1 < ∞.

Assumption C2 bounds the tails of the conditional distribution of ∆Ui given xi.

The condition requires that there exists some finite values C0 and C1 such that for all

xi, the τ (1− τ) conditional quantile of ∆Ui is no lower than C0 and its 1 − τ (1− τ)

conditional quantile is no greater than C1. Note that the magnitudes of C0 and C1 may

be arbitrarily large. The assumption guarantees that one can not select a sequence of

xi for which either tail of the conditional distribution of ∆Ui escapes to infinity.

With the addition of conditions C1 and C2 to those of Theorem 2, βk is point-

identified, as formalized by the following theorem.

Theorem 4 Let A1, A2, CQR, WCI, C1 and C2 hold. Let b ∈ B with bk 6= βk. Then

β is identified relative to b, so that βk is point-identified.

The intuition behind this theorem is as follows. Suppose b and the true parameter

β differ in their kth component. Then, under the support condition C1 on ∆Xik, it

follows that conditional on any value for all covariates excluding k, there exists a positive

measure set of values on which ∆xik is sufficiently large that ∆xi(b − β) lies outside

the interval [C0, C1]. Under assumption C2 this implies a violation of the inequality

restrictions that define the identified set given in Theorem 2.

3 Estimation and Inference

As shown in Theorem 2, the identified set BI is by definition the set of b such that

∆xb satisfies a pair of inequality restrictions for almost every Xi. Estimation of sets

defined by inequality restrictions is well-studied in the recent econometrics literature
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on set identification, and results from papers such as Manski and Tamer (2002) and

Chernozhukov, Hong, and Tamer (2007) (henceforth CHT) apply here. In this section, I

show how a criterion-based estimator analogous to one previously used for set estimation

with conditional moment inequalities can be used to consistently estimate the identified

set BI . I then briefly discuss possible approaches for inference.

Specifically, for each pair s 6= t, {s, t} ∈ {1, ..., T}2, let Q̂L
st (xis,xit) and Q̂U

st (xis,xit)

be consistent nonparametric estimators for the τ (1− τ) and 1 − τ (1− τ) conditional

quantiles of ∆stY given (xis, xit),

Q̂L
st (xis, xit)

p→ Q∆stYi
(τ (1− τ) |xis, xit) , (12)

and

Q̂U
st (xis, xit)

p→ Q∆stYi
(1− τ (1− τ) |xis, xit) . (13)

Nonparametric conditional quantile estimation can be implemented by local polynomial

approximation as in Chaudhuri (1991) or with smoothing splines as in Koenker, Ng, and

Portnoy (1994), for example. Define the loss function

GN (b) ≡ 1

N

∑
1≤s<t≤T

N∑
i=1

{∥∥∥Q̂L
st (xis, xit)−∆tsxib

∥∥∥
2

+
+

∥∥∥Q̂U
st (xis, xit)−∆tsxib

∥∥∥
2

−

}
,

where ‖z‖2
+ ≡ z21 [z > 0] and ‖z‖2

− ≡ z21 [z < 0]. This function falls within the class

of objective functions considered by Manski and Tamer (2002) and CHT, among others,

when identified sets are defined by a set of moment inequalities. The quantity GN (b)

measures the degree to which any value b violates the inequality restrictions defining BI

when the population distribution of Y given X is replaced with the observed empirical

distribution. It is straightforward to show that GN (b) converges uniformly in probability

to a population criterion function G (b) which attains its minimum only on values of

b ∈ BI . From application of Theorem 3.1 of CHT it then follows that the identified set

BI is consistently estimated by the set estimate

B̂I ≡ {b ∈ B : GN (b) ≤ cn} ,

where supb∈BI
GN (b) = Op (1/an) and cn is a sequence of positive constants converging

to infinity such that cn/an → 0, e.g. cn = log n, when an is polynomial in n. In some
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cases it may also be feasible to show that CHT’s degeneracy property holds, for example

when there is point identification, in which case one can select cn = 0.

A variety of approaches may also be used for inference, although the validity of

each method will depend on the precise context. When covariates are discrete, the

number of inequality restrictions that define the identified set are finite, and potentially

applicable methods include those of Andrews and Soares (2007), Beresteanu and Molinari

(2008), Bugni (2007), Canay (2007), CHT, Galichon and Henry (2009), Romano and

Shaikh (2008), and Rosen (2008). When the covariates are continuous, the restrictions

defining the identified set embody uncountably many conditional inequality restrictions.

Inference that incorporates infinitely many conditional inequalities is an ongoing area

of research. Recent work focuses on conditional moment inequalities, e.g. Andrews

and Shi (2009), Chernozhukov, Lee, and Rosen (2009) and Menzel (2009), and under

suitable conditions variants of these methods are likely to apply in the present context.

In what follows, I consider the applicability of the method of Chernozhukov, Lee, and

Rosen (2009), henceforth CLR.

To illustrate the possibility for application of the inferential method of CLR, note

that the identified set BI can be re-written as the set of b that satisfy

sup
xi

{QL
st (xis, xit)−∆stxib} ≤ 0 ≤ inf

x
{QU

ts (xis, xit)−∆tsxib},

where the supremum and infimum are taken over the support of Xi. Let

θu (x, b) ≡ QU
st (xis,xit)−∆tsxib,

and

θl (x, b) ≡ QL
st (xis,xit)−∆tsxib,

and furthermore

θ∗u (b) ≡ inf
x

θu (x, b) , θ∗l (b) ≡ sup
x

θl (x, b) .

Then the hypothesis b ∈ BI is equivalent to the hypothesis 0 ∈ [θ∗l (b) , θ∗u (b)]. Pro-

vided sufficient conditions for strong approximation or majorization of the suprema of

studentized versions of θ̂l (x, b) and θ̂u (x, b),2 one can use the results of CLR to estimate

2This is easily established with discrete covariates, but is more challenging in the continuous case.
Under suitable conditions Haerdle and Song (2008) establish strong approximation of the quantile
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a 1− α confidence interval [θ∗l (b) , θ∗u (b)] denoted
[
θ̂l (b) , θ̂u (b)

]
such that for any fixed

b,

inf
θ∈[θ∗l (b),θ∗u(b)]

P
{

θ ∈
[
θ̂l (b) , θ̂u (b)

]}
≥ 1− α + o (1) .

As a consequence, the hypothesis H0 : b ∈ BI , H1 : b /∈ BI can be conducted by

rejecting if 0 /∈
[
θ̂l (b) , θ̂u (b)

]
and failing to reject otherwise. The set of b such that

0 ∈
[
θ̂l (b) , θ̂u (b)

]
then provides a 1− α confidence set for β.

4 Examples

This section considers some examples to illustrate the nature of the bounds BI . I first

consider examples with T = 2 where the conditional distribution of the unobservables

Ui1 and Ui2 given xi is Cauchy with location parameter zero. The Cauchy distribution

is particularly convenient for computing the conditional quantiles of ∆Ui|xi necessary

for construction of the identified set. Specifically, ∆Ui|xi is then also Cauchy with scale

parameter the sum of those of the conditional distributions of Ui1 and Ui2. In addition,

the Cauchy distribution is a leading example of a distribution without moments, so that

conditional mean restrictions do not hold. The identified sets illustrated make use of

the assumption QUi1
(τ |xi) = QUi2

(τ |xi) = 0 for τ = 1/2, in addition to Assumption

WCI, but nothing more. In the figures that follow, I plot the identified set BI derived

in Theorem 2. I consider alternative specifications for the scale parameters of the

conditional distributions of Ui1 and Ui2 given xi, denoted γ1 (xi) and γ2 (xi), respectively,

and investigate their effect on the size and shape of the resulting identified set.3 I

then consider a setting in which Ui1 is again Cauchy, but where Ui2 follows a shifted

exponential distribution, in which case the distribution of ∆Ui is asymmetric.

Recall that two factors play a key role in determining the size of the identified

set. These are the scale of the observed covariates Xi and the magnitudes of the

conditional quantiles Q∆u (τ (1− τ) |xi) and Q∆u (1− τ (1− τ) |xi). For illustration

regression process obtained from kernel estimation with a univariate conditioning variable. In the
present context conditioning variables are necessarily multivariate, so that one would need to either
generalize this result to the multivariate case, or adopt a semi-parametric approach for estimation, such
as the partially linear estimator considered by Haerdle, Ritov, and Song (2009).

3Specifically, Uit|xi ∼ Cauchy (0, γt (xi)), with density gt (u|xi) =
(

πγt (xi) ·
[
1 +

(
u

γt(xi)

)2
])−1

.
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I fix the support of the covariates and consider alternative specifications for the scale

parameters γ1 (xi) and γ2 (xi), which in turn yield different values for Q∆u (τ (1− τ) |xi)

and Q∆u (1− τ (1− τ) |xi). Specifically, for each period t ∈ {1, 2}, it is maintained

throughout that Xit is bivariate with finite support

Xt = {0, 0.5, ..., 4} × {−2,−1.75, ..., 2} ,

and that the support of Xi is Xt × Xt. The set BI is thus of a convex polytope in R2

determined as the intersection of 46,818 (i.e. 2 times the cardinality of the support of

Xi) linear inequality constraints on β.4 The true parameter value is set at β = (1, 1)′ in

all examples. Note that the conditional distribution of αi has no effect on the identified

set, and is therefore left unspecified.

The first set of examples specifies that Ui1|xi and Ui2|xi each have constant scale

parameters with respect to xi, i.e. γ1 (xi) = σ1 and γ2 (xi) = σ2. Figure 1 depicts

identified sets obtained from all combinations with σ1 and σ2 each equal to either 1/2 or

1. As the figure illustrates, this is a particularly simple case. In this case all but 4 of

the inequalities defining BI are redundant, so that the identified set is the region whose

boundary is given by four lines in R2. The larger the scale parameters, the larger is the

identified set. This illustrates in a particularly simply setting the more general point

that the less disperse the distribution of the unobservables, the smaller is the identified

set. Identical figures could also be obtained by re-scaling the support points of the

covariates and keeping the scale parameters of the distribution of unobservables fixed.

Figures 2 through 4 depict more complex examples, where the scale parameters are

non-trivial functions of covariates. In Figure 2 the scale parameter for the distribu-

tion of Ui1 is given by γ1 (xi) = log (2 + |xi,11 + xi,12|), and the scale parameter for

the distribution of Ui2 is given by γ2 (xi) = log (2 + |xi,21 + xi,22|) + σ1 log (1 + |xi,11|) +

σ2 log (1 + |xi,12|). The four panels of Figure 2 depict identified sets corresponding to all

possible values of (σ1, σ2) ∈ {0, 1}2. Note that when (σ1, σ2) 6= (0, 0), the conditional

distribution of Ui2 is a function of not only xi2, but also xi1. The figure illustrates that

a variety of shapes are possible, depending on the conditional distribution of Ui1 and Ui2

given Xi. These sets are larger than those of Figure 1 for the simple reason that the

scale parameters are both greater than or equal to 1 for all covariate values.

4These inequalities were used in conjunction with the Multi-Parametric Toolbox software of Kvas-
nica, Grieder, and Baotić (2004) to plot the resulting identified sets.
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In Figure 3 the scale parameters are specified as γ1 (xi1) = 100·exp
(−

∣∣xi1,1 + x2
i1,2

∣∣),
and γ2 (xi2) = 100 · exp

(−
∣∣σ1xi1,1/4 + xi2,1 + σ2x

2
i1,2/10 + x2

i2,2/3
∣∣). Again, identified

sets are shown for all possible values of (σ1, σ2) ∈ {0, 1}2, and σ1 and σ2 govern whether

or not the scale of Ui2 varies with xi1,1 and xi1,2, respectively. The identified sets are

smaller than in the previous figures, driven by the fact that for some values of the

covariates, the scale parameters γ1 (xi1) and γ2 (xi2) are much smaller than in the prior

examples. For example, when xi1,1 = 4 and xi1,1 = 2, γ1 (xi1) ≈ 0.0335. On the other

hand, for some values of the covariates, the scale parameters are also much larger, e.g.

when xi1,1 = xi1,2 = 1, γ1 (xi1) ≈ 13.5. However, there are enough values of xi for which

the scale of the distribution ∆Ui|xi is smaller than that of the previous examples so that

when all the inequalities defining BI are taken together, the resulting identified set is

smaller. This illustrates that the scale of ∆Ui|xi need not be uniformly small over all

possible xi in order to obtain tighter identified sets, but can in fact be be quite large for

many covariate values.

Figure 4 illustrates a similar specification to that of Figure 3, but where the func-

tions determining γ1 (xi1) and γ2 (xi2) are no longer scaled by a factor of 100. The

result is much smaller identified sets. Specifically, the scale parameters are γ1 (xi1) =

exp
(− ∣∣xi1,1 + x2

i1,2

∣∣) and γ2 (xi2) = exp
(− ∣∣σ1xi1,1 + xi2,1 + σ2x

2
i1,2/10 + x2

i2,2

∣∣).
Figure 5 presents a setting in which Ui1|xi is again distributed Cauchy, but where

Ui2|xi is exponential with parameter λ (xi), shifted down by ln 2/λ (xi) in order to have

conditional median 0.5 As a consequence neither the distribution of Ui2|xi nor the

distribution of ∆U |xi are symmetric. To compute the identified set, I solve for the

characteristic function of ∆Ui|xi and then numerically compute its 1/4 and 3/4 quantiles

for each xi. In the two panels on the left side of the figure, the distribution of Ui2|xi

varies with xi, with exponential parameter λ (xi) = (xi,21 + 1) /5, while in the right

hand panels λ (xi) = 1/2. In the top panels the scale parameter for the distribution

of Ui1|xi is γ1 (xi1) = exp
(−

∣∣xi1,1 + x2
i1,2

∣∣), while in the bottom panels it is γ1 (xi1) =

exp (− |xi1,1 + xi1,2/3|). Unsurprisingly, the resulting identified sets are asymmetric.

5Specifically, Ui2|xi has pdf f (u; λ (xi)) = λ (xi) exp
{
−λ (xi) ·

(
u + ln(2)

λ(xi)

)}
.
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5 Conclusion

This paper provided novel results on the identifying power of conditional quantile restric-

tions in finite-T panel data models with fixed effects. The first result showed that the

conditional quantile restriction by itself carries no identifying power whatsoever. I then

considered the addition of a weak conditional independence restriction, and provided

informative bounds on the parameter of interest when these restrictions were imposed

jointly. The resulting identified set was shown to be sharp when T = 2, and condi-

tions were provided that resulted in point identification of the parameter vector or some

of its components. The identified set was characterized by a set of linear inequality

restrictions, amenable to estimation with recently developed approaches from the set

identification literature. A variety of examples were used to illustrate the nature of the

identified set.

A limitation is that the assumptions of this paper did not allow for dynamics or

the presence of endogenous regressors, both important considerations. Future research

incorporating both of these would clearly be of interest. In principle, a similar strategy

providing bounds on the quantiles of differences in within-group unobservables condi-

tional on exogenous variables could also have identifying power in such settings.

Appendix A: Proofs

Proof of Theorem 1

Pick an arbitrary b ∈ B, and let xi ∈ X . It needs to be shown that there exist random

variables
(
α̃i, Ũi1, ..., ŨiT

)
with a joint distribution F̃ (·) conditional on xi such that (i)

QŨit
(τ |xi) = 0, and (ii) The joint distribution of

(
Ỹi1, ..., ỸiT

)
given Xi = xi is the same

as that of (Yi1, ..., YiT ) given Xi = xi, where for each t,

Ỹit = Xitb + α̃i + Ũit.

Define

Ũit ≡ Yit −Xitb− α̃i,

where the distribution of α̃i conditional on (yi,xi, α̃i) is such that:
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1. With probability τ , α̃i is continuously distributed with respect to Lebesgue mea-

sure on
[
max

t
{yit − xitb} ,∞

)
. In this case Ũit ≤ 0 for all t.

2. With probability 1 − τ , α̃i is continuously distributed with respect to Lebesgue

measure on
(
−∞, min

t
{yit − xitb}

)
. In this case Ũit > 0 for all t.

Then conditional on (αi,xi,yi), Ũit ≤ 0 with probability τ , and

Pr
{

Ũit ≤ 0|xi, αi

}
= Pr {Yit −Xitb− α̃i ≤ 0|xi, αi}
= Pr {α̃i ≥ Yit −Xitb|xi, αi}
=

∫
Pr {α̃i ≥ Yit −Xitb|xi, αi,yi} dP (yi|xi, αi)

= τ ,

so that (i) is satisfied. (ii) is immediately satisfied by the definition of Ũit.

Proof of Theorem 2

To show the “if ”part of the theorem begin with equation (5) and apply the conditional

quantile function for ∆U given xi to all terms, giving

Q∆U(τ(1− τ)|xi) ≤ 0 ≤ Q∆U(1− τ(1− τ)|xi).

Substituting ∆Y −∆Xβ for ∆U then gives

Q∆Yi
(τ (1− τ) |xi) ≤ ∆xiβ ≤ Q∆Yi

(1− τ (1− τ) |xi) ,

implying that β ∈ BI .

To complete the proof it must be shown that the identified set is sharp, i.e. that

all b ∈ BI are observationally equivalent to β. Consider the events D1 ≡ {∆Xb ≤ ∆Y }
and D2 ≡ {∆Xb > ∆Y }. To prove sharpness, conditional distributions of α̃i|xi,D1

and α̃i|xi,D2 are shown to exist such that (i) Pr
{

Ũi1 ≤ 0|xi

}
= Pr

{
Ũi2 ≤ 0|xi

}
= τ ,

where Ũit ≡ Yit − Xitb − α̃i, and (ii)
{

Ũi1 ≤ 0
}
⊥

{
Ũi2 ≤ 0

}
|xi. The distribution of(

α̃i + Xi1b + Ũi1, α̃i + Xi2b + Ũi2

)
given Xi = xi then matches that of Yi|xi by defini-

tion of Ũi.
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Pick b ∈ BI and xi ∈ X . Let γx ≡ Pr {∆Y ≤ ∆Xβ|xi}. γx is identified and by

virtue of b ∈ BI

γx ∈ [τ (1− τ) , 1− τ (1− τ)] . (14)

Suppose D1 obtains. Then −∞ < Yi1 −Xi1b ≤ Yi2 −Xi2b < ∞. Let the distribution

of α̃i|xi,D1 satisfy

Pr {α̃i ≥ Yi2 −Xi2b|xi,D1} = δ,

Pr {Yi1 − xi1b ≤ α̃i < Yi2 −Xi2b|xi,D1} =
τ (1− τ)

γx

,

Pr {α̃i < Yi1 −Xi1b|xi,D1} = 1− δ − τ (1− τ)

γx

,

for some δ ∈
[
0, min

{
τ 2

γx

, 1− τ (1− τ)

γx

}]
. Now suppose instead that D2 obtains.

Then −∞ < Yi2 −Xi2b < Yi1 −Xi1b < ∞. Let the distribution of α̃i|xi,D2 satisfy

Pr {α̃i ≥ Yi1 −Xi1b|xi,D2} =
τ 2 − δγx

1− γx

,

Pr {Yi2 − xi2b ≤ α̃i < Yi1 −Xi1b|xi,D2} =
τ (1− τ)

1− γx

,

Pr {α̃i < Yi2 −Xi2b|xi,D2} = 1− τ − δγx

1− γx

.,

Note that (14) implies that all six of the above probabilities are contained in the unit

interval. Then (i) holds since

Pr
{

Ũi1 ≤ 0|xi

}
= Pr {α̃i ≥ Yi1 −Xi1b|xi}
= γx Pr {α̃i ≥ Yi1 −Xi1b|xi,D1}+ (1− γx) Pr {α̃i ≥ Yi1 −Xi1b|xi,D2}
= (δγx + τ (1− τ)) +

(
τ 2 − δγx

)

= τ ,
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and

Pr
{

Ũi2 ≤ 0|xi

}
= Pr {α̃i ≥ Yi2 −Xi2b|xi}
= γx Pr {α̃i ≥ Yi2 −Xi2b|xi,D1}+ (1− γx) Pr {α̃i ≥ Yi2 −Xi2b|xi,D2}
= γxδ + (1− γx)

τ − δγx

1− γx
= τ .

Condition (ii) holds since

Pr
{

Ũi1 ≤ 0 ∧ Ũi2 ≤ 0|xi

}
=


 γx Pr

{
Ũi1 ≤ 0 ∧ Ũi2 ≤ 0|xi,D1

}

+ (1− γx) Pr
{

Ũi1 ≤ 0 ∧ Ũi2 ≤ 0|xi,D2

}



= γx Pr {α̃i ≥ Yi2 −Xi2b|xi,D1}+ (1− γx) Pr {α̃i ≥ Yi1 −Xi1b|xi,D2}
= γxδ + (1− γx)

τ 2 − δγx

1− γx

= τ 2.

Proof of Corollary 1

Convexity is immediate from the linearity of the inequality restrictions. Non-emptiness

follows from writing the identified set as in (9) and because Q∆Ui
(τ (1− τ) |xi) ≤ 0 ≤

Q∆Ui
(1− τ (1− τ) |xi).

Proof of Corollary 2

The proof is immediate by application of Theorem 2 to each s, t pair.

Proof of Theorem 3

Suppose that b 6= β, and consider first the case where bk 6= βk. Then for any positive

measure bounded set of values of xi,−k,

∆xi (b− β) = ∆xi,k (bk − βk) + ∆xi,−k

(
b−k − β−k

)
,
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diverges to positive or negative infinity as ∆xi,k →∞. Condition (i) and C1 then imply

that one of the inequalities of (9) is violated with positive probability conditional on

that set of xi,−k, from which it follows that b is identified relative to β.

Now suppose that b 6= β, but bk = βk. Then for all xi

∆xi (b− β) = ∆xi,−k

(
b−k − β−k

)
.

The support condition (ii) guarantees that for any b 6= β there exists some δ > 0 such

that Pr {xi : |∆xi (b− β)| > δ} > 0,implying that for this b in particular with bk = βk,

Pr
{∣∣xi : ∆xi,−k

(
b−k − β−k

)∣∣ > δ
}

> 0, (15)

for some δ > 0. Let Db denote the set of xi,−k such that
∣∣∆xi,−k

(
b−k − β−k

)∣∣ > δ. Con-

dition (i) together with the observation Q∆Ui
(τ (1− τ) |xi) ≤ 0 ≤ Q∆Ui

(τ (1− τ) |xi)

previously shown in the proof of Theorem 2 implies that there exists a constant C such

that

−δ < Q∆Ui
(τ (1− τ) |∆Xi,−k ∈ Db,∆Xi,k > C) ≤ 0,

and

0 ≤ Q∆Ui
(1− τ (1− τ) |∆Xi,−k ∈ Db,∆Xi,k > C) < δ,

Combined with (15) these inequalities imply a violation of the inequalities (9). Under

Assumption C1 the event {∆Xi,k > C} has positive probability conditional on ∆xi,−k ∈
Db. Since Pr {xi,−k ∈ Db} > 0 as well, it follows that (9) is violated with positive

probability and β is identified relative to b.

Proof of Theorem 4

Define the set

S̃ (b) ≡ {x : ∆x (b− β) < C0 ∨∆x (b− β) > C1} .

Suppose that x ∈ S̃ (b), so that either ∆x (b− β) < C0 or ∆x (b− β) > C1. If

∆x (b− β) < C0, then it follows by C2 that ∆x (b− β) < Q∆u (τ (1− τ) |xi). Adding

∆xβ to both sides of the inequality gives ∆xb < Q∆Y (τ (1− τ) |xi), implying that

x ∈ S (b) as defined in Theorem 2. By similar reasoning, if ∆x (b− β) > C1 then

∆x (b− β) > Q∆u (1− τ (1− τ) |xi) and x ∈ S (b). Therefore x ∈ S̃ (b) ⇒ x ∈ S (b).
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Now re-write the set S̃ (b) as

S̃ (b) =

{
x : ∆xk (bk − βk) < C0 −∆x−k

(
b−k − β−k

)

∨ ∆xk (bk − βk) > C1 −∆x−k

(
b−k − β−k

)
}

.

Under condition C1 it follows that conditional on any ∆x−k there exists a positive

measure set of ∆xk such that these inequalities hold. Therefore Pr
{

S̃ (b)
}

> 0 and

since x ∈ S̃ (b) ⇒ x ∈ S (b), βk is point-identified.
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Figure 1: The identified set when the conditional distributions of Ui1 and Ui2 are Cauchy
with scale parameters σ1 and σ2.
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Figure 2: The identified set when the conditional distributions of Ui1 and Ui2 are Cauchy
with scale parameters γ1 = log (2 + |xi1,1 + xi1,2|) and γ2 = log (2 + |xi2,1 + xi2,2|) +
σ1 log (1 + |xi1,1|) + σ2 log (1 + |xi1,2|).
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Figure 3: The identified set when the conditional distributions of Ui1 and Ui2

are Cauchy with scale parameters γ1 = 100 exp {− |xi1,1 + xi1,2|} and γ2 =

100 exp
{
−

∣∣∣σ1
xi1,1

4
+ xi2,1 + σ2

x2
i1,2

10
+

x2
i2,2

3

∣∣∣
}

.
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Figure 4: The identified set when the conditional distributions of Ui1 and Ui2

are Cauchy with scale parameters γ1 (xi1) = exp
(− ∣∣xi1,1 + x2

i1,2

∣∣) and γ2 (xi2) =

exp
(−

∣∣σ1xi1,1 + xi2,1 + σ2x
2
i1,2/10 + x2

i2,2

∣∣).
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Figure 5: The identified set when the conditional distributions of Ui1 and Ui2 are Cauchy
and shifted exponential, respectively.
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