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Abstract
Background: Many biological processes involve the physical interaction between protein
domains. Understanding these functional associations requires knowledge of the molecular
structure. Experimental investigations though present considerable difficulties and there is
therefore a need for accurate and reliable computational methods. In this paper we present a novel
method that seeks to dock protein domains using a contact map representation. Rather than
providing a full three dimensional model of the complex, the method predicts contacting residues
across the interface. We use a scoring function that combines structural, physicochemical and
evolutionary information, where each potential residue contact is assigned a value according to the
scoring function and the hypothesis is that the real configuration of contacts is the one that
maximizes the score. The search is performed with a simulated annealing algorithm directly in
contact space.

Results: We have tested the method on interacting domain pairs that are part of the same protein
(intra-molecular domains). We show that it correctly predicts some contacts and that predicted
residues tend to be significantly closer to each other than other pairs of residues in the same
domains. Moreover we find that predicted contacts can often discriminate the best model (or the
native structure, if present) among a set of optimal solutions generated by a standard docking
procedure.

Conclusion: Contact docking appears feasible and able to complement other computational
methods for the prediction of protein-protein interactions. With respect to more standard docking
algorithms it might be more suitable to handle protein conformational changes and to predict
complexes starting from protein models.

Background
Physical interactions between proteins are central to many
cellular processes [1]. For example they are crucial to the
functioning of the immune system and are involved in the
regulation of enzyme activity. In order to understand how
these interactions are related to biological and biochemi-
cal processes, structural information about the complex

are essential as they reveal the underlying molecular
mechanisms [2,3]. Experimental studies, though, are
faced with remarkable technical difficulties and the
number of solved complexes deposited in the Protein
Data Bank (PDB) [4] is still relatively small. Computa-
tional methods, if accurate and reliable, could therefore
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play an important role, both to infer functional properties
and to guide new experiments [5,6].

Docking algorithms attempt to predict the native three-
dimensional (3D) structure of a complex starting from the
atomic coordinates of its constituent proteins, solved in
isolation ("unbound") [7]. It is a challenging problem
which has attracted a great deal of interest in view also of
its potential biomedical applications (e.g rational drug
design and protein engineering [8]). A related problem of
considerable importance is domain docking where the
aim is to predict the structure of a multi-domain protein
from the structures of its component domains. As domain
interactions often determine protein function (e.g. by cre-
ating a binding site), an understanding of how domains
combine and assemble is clearly necessary [9-12]. Moreo-
ver, with the progress of structural genomics it can be
expected that this question will acquire even more rele-
vance. Structural genomics projects are in fact determin-
ing a large number of structures, but focusing primarily at
the level of individual domains. The structure of most
domains will soon be known either directly from experi-
ments or through accurate homology modeling. The chal-
lenge will then be to use them to model large, multi-
domain proteins [13].

Most docking procedures treat the individual proteins (or
protein domains) as rigid bodies and try to orient them so
as to optimize their shape and/or chemical complementa-
rity [14]. Surface side-chain rearrangements and possibly
some backbone flexibility are introduced only at a final
refinement stage. This strategy can be effective in predict-
ing the structure of the complex in cases where proteins
undergo limited conformational changes upon binding. It
is clearly inadequate in cases with substantial backbone
displacement between bound and unbound forms. As
highlighted in recent Critical Assessment of PRedicted
Interactions (CAPRI) blind trials [15], this is one of the
major limitations of present docking algorithms [16].

In general, docking methods greatly benefit from some
biological indications on the likely regions or residues
involved in the interaction [17]. This information can be
used to guide docking calculations, restricting the search
of allowed complex configurations or filtering out wrong
solutions [18]. Information about interaction sites can
sometimes be available from experiments, e.g. site-
directed mutagenesis. Alternatively, one can resort to
computational methods. These methods are based on
structural, physicochemical and evolutionary properties
that distinguish binding sites from the rest of the protein
surface (e.g. amino acid composition and residue conser-
vation) [19]. Although no single property is able to relia-
bly locate the interface region in an unbound protein, a

number of studies have obtained promising results by
combining different features [20-23].

It is known that some residues within the binding inter-
face make a dominant contribution to the stability of pro-
tein complexes [24]. These residues can be identified
experimentally by alanine scanning mutagenesis and have
been named "hot spots". When hot spots are mutated a
significant drop in binding affinity is observed whereas
the effect is negligible for other residues [25]. Their impor-
tance is also confirmed by an evolutionary analysis which
shows that hot spots tend to be more conserved [26,27].
It has been observed that hot spots are preferentially
located either on protrusions ("knobs") or in depressions
("holes") of the protein surfaces and they are coupled
across the interface in tight fitting regions that exclude sol-
vent molecules [28,29]. Interestingly, hot spot residues
appear to undergo little conformational changes upon
binding [29], a property that might facilitate their identi-
fication in the unbound state [30,31].

The picture that emerges from previous experimental and
theoretical studies is that protein-protein interfaces are
highly heterogeneous: they have many packing defects
and are locally optimized at just few critical positions
[32]. Statistical analysis of entire interfaces might there-
fore be unable to capture significant differences between
binding sites and the rest of the surface [19]. Analysis
focused on the residues important for binding might
instead be more discriminating. These considerations sug-
gest an alternative strategy to the docking problem: rather
than considering the full three dimensional structure of
the complex, it might be more effective to predict just few
key contacts across the interface. These could then be used
to infer the correct relative orientation of proteins.

In this paper we focus on the (intra-molecular) domain
docking problem and present a method to predict con-
tacting residues between domain pairs. The method is
based on a pairwise contact function (score) that com-
bines structural, physicochemical and evolutionary infor-
mation. We use a contact map representation to search for
the configuration of contacts that maximizes the score.
We show that the approach leads to some contacts cor-
rectly predicted and that predicted residues tend to be sig-
nificantly closer to each other than other pairs of residues
in the same domains. Moreover we find that predicted
contacts can often be used to discriminate the best model
(or the native structure, if present) among a set of 10 opti-
mal solutions generated by a standard docking procedure.
In the next paragraph we discuss our results, leaving tech-
nical details in the Methods section, after the Conclu-
sions.
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Results and discussion
Contact maps are convenient representations of protein
structures that can also be used to describe the interaction
between two protein domains (see Fig. 1). In this imagi-
nary example, filled circles correspond to residue pairs in
contact across the interface. Within our framework, each
contact is assigned a score and the score of a configuration
is the sum over all contacts. For simplicity and because we
are looking for a few important contacts, we consider
maps with a fixed number of contacts, nc = 10. The work-
ing hypothesis is that the map configuration that maxi-
mizes a suitable scoring function corresponds to the
correct interacting residues.

There are a number of advantages in working with con-
tacts maps: it is a simple representation and it should be
possible to search the contact space in an efficient man-
ner; a small number of changes on a map may correspond
to substantial changes in three dimensions, therefore
reducing computational times; in principle any interac-
tion pattern can be represented even allowing for back-
bone flexibility upon docking. On the other hand, there
are some difficulties and limitations: it does not produce
directly a 3D complex and more than one structure may
correspond to a given contact configuration; if precau-
tions are not taken, many maps do not even correspond
to a physically realizable conformation.

Docking methods are generally tested on their capacity to
predict the protein complex starting from the unbound
components [7]. It is simpler but biologically less relevant

to reconstruct a complex using the bound structures. The
latter are in fact artificially biased toward the native solu-
tion. To address this issue, we have selected multi-domain
proteins that have been solved experimentally in two con-
formations which differ for the significant displacement
of one of the domains. One conformation can be denoted
as "closed", the other as "open" (see Fig. 2). Our data set
consists of 20 non redundant domain pairs and the aim is
to predict a subset of the contacts in the closed conforma-
tion starting from the structure in the open one (in the fol-
lowing we use the PDB code in the closed conformation
to identify a protein).

As detailed in the Methods section, the scoring function is
constructed from five different terms: shape complemen-
tarity, residue pair potentials, interface propensity, residue
conservation and correlated mutations. We have analyzed
each scoring component individually and assessed its effi-
cacy in discriminating native contacts from random con-
tacts. In Fig. 3 we report the z-score for each component
averaged over the data set, together with the standard
deviation (a plot detailing the contributions of each pro-
tein can be found in Additional File 2, Figure S1). The z-
score and standard deviation of the combined scoring
function is also plotted.

Residue conservation provides the strongest signal. This is
in agreement with a recent study reporting that the
number of conserved positions at the interface is signifi-
cantly higher than on the rest of the protein surface [33].
It should be remarked that statistical analysis performed
on the entire interface instead show marginal differences
in average conservation between interface and non-inter-
face residues [34]. This apparent discrepancy is likely to
derive from the hot-spot organization of interfaces: the
few residues important for binding are evolutionary con-
served but when averages are taken over the whole inter-
face their distinctive character does not emerge [19,33]. In
our approach we consider only the top scoring contacts
and this possibly explains the agreement with ref. [33].

The five different components are combined linearly into
a unique scoring function. The parameter space of weights
has been explored "semi"-exhaustively, i.e. weights are
iteratively varied by a factor 2. Given a set of weights, a z-
score can be evaluated for each protein in the dataset. We
use a leave-one-out cross validation strategy: in turn one
protein is singled out (test protein) and the remaining
ones are used as the training set. The optimal weights are
selected as those that maximize the average z-score on a
training set. In Fig. 3 we report the mean and standard
deviation of z-scores of the combined (optimal) scoring
functions, calculated on test proteins. The average value is
larger than for individual components although the
improvement appears limited e.g. with respect to residue

Contact mapFigure 1
Contact map. Schematic representation of a contact map 
for two interacting domains. Amino acid sequences of the 
two domains are reported along the axis, in red and blue 
respectively. Filled circles represent residues in contact.
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conservation. As a term of comparison we have tested the
method with just the residue conservation term in the
scoring function.

Weights calculated for different proteins are consistent:
the dominant contribution derives from evolutionary
information (see Table 4 in the Methods section). Inter-
estingly, correlated mutations have the lowest average z-
score when considered individually (see Fig. 3) but play
an important role in combination with other terms. The
weight of residue interface propensity turns out to be neg-
ligibly small and accordingly set to zero in our calcula-
tions. It is likely that its contribution is already accounted
for by the pair potential term. For 15 of the 20 proteins we
obtain the same set of parameters: if surface complemen-
tarity is given a weight of 1, pair potential, residue conser-
vation and correlated mutations are weighted respectively
2, 8 and 4. These weights are also obtained if the z-score
average is taken over the whole data set (i.e. no cross vali-
dation). Parameters differ in the remaining cases but con-
firm the importance of evolutionary information.

The scoring function is maximized directly in contact
space using a simulated annealing algorithm. Some con-
straints are set on the allowed configurations to avoid
unphysical conformations (see Methods for more
details). In Fig. 4 we report the result for a specific exam-
ple (ribose-binding protein, PDB code 2dri). Of the 10
predicted contacts, 2 are correct (i.e. within 5 Å), 4 are
within 8 Å and 5 are within 12 Å. The number of correct
contacts expected by chance can be estimated from the

number of real of contacts, 75, and surface residues (103
and 118 for the two domains respectively). The result is ~6
× 10-2. Another quantity of interest is the number of resi-
dues that are correctly predicted to be at the interface even
if the predicted contact is wrong. In the case of 2dri, 5 out
of 7 residues are correctly at the interface in both domains
1 and 2 (note that in general the number of predicted res-
idues at the interface varies because a residue might be be
involved in more than one contact).

The results for each protein in our database are reported
in Table 1. The average number of correct predictions is
1.8 which should be compared with an average random
expectation of ~5 × 10-2 (the corresponding value for the
residue conservation term alone is 1.2). In 14 cases at least
one correct contact is identified; in one case (PDB code
8atc) 4 correct contacts are predicted. In general, predicted
residues tend to be near the interface and often the bind-
ing site is reasonably well located. To illustrate this point
we have calculated the average distance of the predicted
contacts in the native (closed) configuration, Dpred. Fig. 5
reports Dpred for each protein (red stripes bars) and com-
pare it with the expected average distance of 10 pairs of
residue (one for each domain) picked randomly. If all the
predicted contacts were correct then by definition Dpred <
5 Å. In our case we obtain that in 15 cases Dpred < 15 Å (in
12 cases Dpred<12 Å) with a significant improvement with
respect to random predictions. Fig. 5 also reports the val-
ues of Dpred for predictions obtained with just the residue
conservation term (black stripes bars). It can be noted that
in most cases the results are acceptable but worst than
those obtained with the combined scoring function.

A second more stringent test is to assess the predicted con-
tacts in relation to the best solutions generated by a stand-
ard docking algorithm rather than a set of random
contacts. The server GRAMM-X [35] returns 10 possible
models of a complex, corresponding to local optima of
surface and chemical complementarity. The aim is to ver-
ify if the predicted contacts are useful to discriminate the
native structure and/or the best available solution in the
decoy set (the best model is defined as the one that iden-
tifies the largest fraction of native contacts, fnc). To this
end, given a prediction of contacts, we have calculated the
average distance Dpred on each model (besides the native
structure) and ranked the solutions in increasing order of
Dpred. The results for all the proteins in the data set are
given in Table 2. The native structure has the lowest Dpred
in 13 cases out of 20; in 3 cases (PDB codes luae, 9aat and
1h9m) it is ranked second; in 1 case (PDB code 2dri) it is
ranked third. For luae and 9aat the structures with lowest
Dpred correspond to the best models produced by
GRAMM-X, which identify a consistent fraction of native
contacts (fnc = 0.15 and 0.84 respectively). For 1h9m
instead the model ranked first has fnc = 0 but identifies cor-

Open and close conformationFigure 2
Open and close conformation. Ribose-binding protein in 
its open (left, PDB code 2dri) and close (right, PDB code 
1urp) conformation. Domains are identified by different 
colors.
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rectly 35% and 40% of interface residues in the two
domains; for 2dri the model with lowest Dpred has fnc =
0.09 (the best model has fnc = 0.12 and is ranked second).

For 17 targets out of 20 it is possible to define the best
GRAMM-X model according to the parameter fnc (in the 3
remaining cases fnc = 0 for all models). For 15 of these tar-
gets both the native structure and the best model are
ranked within the first three positions in terms of Dpred.
This suggests that even if the right solution is not present
in the decoy set, a solution close to it should be identifia-
ble. In 16 of the 17 cases our contact prediction improves
or confirms the GRAMM-X ranking; in the case that is
worsened (PDB 1l7p), the best model is re-ranked to sec-
ond best. We report in Additional File 3 the plot of Dpred
for each decoy set (Figure S2).

There are cases for which our method does not provide
satisfactory results. Two clear examples are PDB codes
1jmc and 1dpp. In the first case, none of the properties we
consider or the combined scoring function are able to dis-
tinguish clearly between real and random contacts (see
Figure S1 in Additional File 2). As a consequence, real
contacts do not have particularly high scores and in the
search for the maximum are ignored. In the second case,
instead, there are correct contacts with relatively high-
scores and it is harder to understand the causes of the poor
result. One possible explanation is that 1dpp is composed
of 3 domains and in our approach we completely ignore
one of them, more precisely the intermediate one con-
necting the N to the C terminal domains. This might

introduce some spurious effects as additional interface
residues (which in reality are buried) become effectively
available for binding. Indeed the predicted contacts
appear clustered on the wrong interface. It should be
underlined that both 1jmc and 1dpp are likely to be diffi-
cult targets. Indeed also GRAMM-X does not perform well:
none of the models generated for them has fnc> 0.

There are other cases where the contact prediction method
encounters difficulties, e.g. for 1a8e and 1ex7. It is inter-
esting though that in both cases the predictions, although
inaccurate, provide useful indications for selecting an
acceptable model among those generated by GRAMM-X.
For 1a8e the native structure and the best available model
have respectively the lowest and the second lowest value
of Dpred. For 1ex7, the model ranked second according to
Dpred has fnc = 0.28 with 75% and 42% of interface residues
predicted correctly on the two domains respectively.

Conclusion
In this work we have presented a novel method to infer
contacting residues at domain-domain interfaces. The
method attempts to dock protein domains in contact
space finding the best configuration of contacts that suits
an objective scoring function. It differs and it is comple-
mentary to other computational approaches for the pre-
diction of physical protein interactions. In fact it works at
an intermediate level between binding site predictions
and standard docking algorithms. The former methods
attempt to identify the interface residues on a protein
without specifying the contacts they actually form, the lat-
ter aim to provide a detailed atomic model of the putative
complex. Combining and integrating these methods is
likely to lead to effective prediction tools. For example, we
have shown in this paper that contact predictions can be
used in conjunction with the GRAMM-X docking server to
discriminate acceptable models. Other methods have also
used physicochemical and evolutionary information to
improve the ranking of docking solutions [33,36-38]. The
emphasis of our work, though, has been more on produc-
ing a direct list of putative contacts (and then in case use
these to re-rank models). An interesting development
would be to guide docking calculations by including from
the start the predicted contacts. Provided the predictions
are reliable, this would significantly reduce the number of
possible complex configurations to be sampled, with clear
advantages e.g. in the case of large systems and genome-
wide studies. A conceptually similar scheme has been
recently proposed [39], in which predicted interface resi-
dues (rather than predicted contacts) are used to drive
docking calculations.

Overall, contact docking appears feasible and worth con-
sidering further. The accuracy of the method is still some-
what limited but amenable to improvements. At present

Average z-scoresFigure 3
Average z-scores. Average and standard deviation of z-
scores for the individual scoring components and for the 
combined scoring function, calculated over the data set of 20 
proteins (z-score values corresponding to each single protein 
are reported in Fig. S1 of Additional File 2).
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the scoring function is a simple linear combination of five
different terms. It is generally recognized that non-linear
machine learning algorithms (e.g. neural networks or sup-
port vector machine) are more effective in combining het-
erogeneous sources of information achieving a far higher
overall discriminative power. At the same time, some of
the individual scoring components might be improved or
additional terms included. For example, the description of
the energetics of binding is far from adequate as it is based
on statistical potentials derived from analysis of entire
interfaces and does not include any characterization of
binding hot-spots.

We have further shown that contact maps are convenient
representations for the docking problem. Contact maps
have long being used in the context of single proteins,
mainly for structure comparison purposes [40,41]. Some
partial success has also been obtained in applying contact
maps to predict protein folds [42]. One of the main diffi-
culties in using contact maps for protein folding is to
restrict the search to physical maps, i.e. maps that can
indeed be reproduced by a 3D protein structure. The same

problem recurs in the context of docking as well, i.e. not
all maps correspond to a 3D complex, but it is likely to be
less severe. In fold prediction, one deals with the protein
chain which is quite flexible and in principle can take
many different conformations. In docking, although the
two domain structures have some degree of plasticity, it is
certainly more limited and some geometrical constraints
on the allowed contact are easier to introduce. It is clear,
though, that the more stringent the constraints the more
limited the method will be in handling conformational
changes. On the other hand, one can hope that by
improving the scoring function, the geometric constraints
can be relaxed.

In future work it is our aim to extend the contact docking
approach beyond the modeling of multi-domain pro-
teins. We plan to apply the method to the problem of
docking two different proteins, though some additional
issues will need to be addressed in this case. The correlated
mutations analysis, for example, rely on the multiple
sequence alignment of co-evolved proteins and on the
identification of the correct interacting orthologs. This is a
non trivial problem which will require careful considera-
tion. In general, we expect the scoring function will need
to be re-adjusted (e.g. the weights). It is also likely that
protein conformational changes (upon binding) will be
more pronounced. Another direction we plan to explore is
the docking of protein models [43]. As the majority of
individual protein structures in a genome are going to be
models, docking methods will need to be able to handle
structural inaccuracies. Contact docking is essentially a
low resolution approach and does not depend heavily on
structural details. It might therefore be an ideal method
for this task. Interestingly, similar considerations could
lead to reconsider some of the early docking algorithms
[44,45] which, contrary to subsequent developments,
were not based on stringent steric match criteria.

Methods
Data
Our data set consists of multi-domain proteins that have
been solved experimentally in two conformations which
differ in the relative orientation of one of the domains.
The conformational change brings the domain in closer
contact with the rest of the protein. Accordingly, one con-
formation is denoted as "open", the other as "closed".
Proteins have been selected from the Database of Macro-
molecular Movements [46] and from an analysis of the
structural classification database CATH [47]. We have
found 20 non redundant examples for which a number a
sequence homologs are known. The list is reported in
Table 3: 18 are two-domain proteins and 2 are three-
domain proteins. In the latter case, only the two domains
most affected by the conformational change have been
selected. These are domains that are distant in the open

Contact predictionFigure 4
Contact prediction. An example of the prediction for 
ribose-binding protein (PDB code 2dri). Predicted residues 
are displayed as spheres. Correctly predicted contacts are 
indicated by a green line joining the residues.
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configuration and become more strongly interacting in
the closed conformation.

The dataset thus comprises 40 domain pairs (20 pairs in
the closed conformation and a corresponding set in the
open conformation). Ideally, the amino acid sequence of
a given domain in the open and closed conformations
should be identical. In practice, this is too restrictive and
therefore the condition is relaxed to requiring at least 90%
sequence identity. Domain definitions and boundaries
are taken from CATH which assigns a number to each
homologous superfamily. The data set is non-redundant
in that no two pairs of interacting domains have the same
CATH numbers (at the H-level). Domains from the same
superfamily can be present more than once but their
domain partners must belong to different superfamilies.
Within each superfamily, CATH identifies sequence fami-
lies (S-level) with a threshold at 35% identity. In our data-
set no two domains belong to the same sequence family,
i.e. there are no domains sharing more than 35%
sequence identity. We report in Additional File 1 the
CATH identification numbers (up to the S-level) for the
proteins in the dataset.

Table 2: Results for the decoy set. 

PDB code native structure best model

rank Dpred rank Dpred fnc

1d4f 1 8.20 2 12.72 0.05
1jmc 9 31.74 -
1uae 2 10.92 1 10.89 0.15
1a8e 1 22.10 2 23.45 0.17
1arz 1 8.16 2 18.98 0.02
2dri 3 10.67 2 10.35 0.12
1tfb 1 10.81 3 19.37 0.11
13pk 1 10.35 2 11.72 0.05
2nad 1 11.69 3 21.31 0.13
1ex7 6 18.50 2 16.10 0.28
1tde 1 17.24 -
9aat 2 10.23 1 10.12 0.84
6adh 1 12.57 2 12.69 0.81
1h9m 2 12.72 5 17.27 0.13
8atc 1 6.55 2 8.29 0.82
1l7p 1 8.26 3 8.75 0.82
1njf 1 9.70 2 16.41 0.03
4cts 1 14.64 2 15.17 0.90
1dpp 8 35.12 -
1dv2 1 11.80 2 15.89 0.08

The decoy set comprises 10 GRAMM-X solutions plus the native 
structure. The decoys have been ordered in increasing values of Dpred. 
The rank and the corresponding Dpred of the native structure are 
reported. Similarly for the best model generated by GRAMM-X, for 
which fnc is also shown (fnc ½ 1 for the native structure). In 3 cases 
(1jmc, 1tde and 1dpp) is not possible to identify a best model.

Table 1: Results. 

PDB code c5 c8 cl2 I1 I2  (× 10-2)

1d4f 2 7 9 3/6 6/7 3
1jmc 0 0 0 0/7 1/8 3
luae 3 3 6 7/7 5/9 2
1a8e 0 0 1 3/7 0/7 5
larz 2 6 8 5/7 6/8 3
2dri 2 4 5 5/7 5/7 6
1tfb 1 4 6 5/7 3/6 9
13pk 0 4 7 5/8 6/7 2
2nad 1 4 7 3/5 2/5 2
1ex7 0 0 0 1/6 0/6 6
ltde 1 1 2 2/8 4/6 2
9aat 3 4 5 6/6 5/8 3
6adh 1 3 6 3/6 3/6 3
1h9m 3 4 7 4/6 4/6 12
8atc 4 8 9 6/6 5/8 6
1l7p 1 4 9 5/7 3/5 12
1njf 2 4 8 3/5 2/6 3
4cts 0 3 5 5/7 6/8 4
1dpp 0 0 0 0/7 2/8 3
1dv2 1 2 4 1/5 4/6 2

Results of contact predictions for the protein in the data set. c5 is the 
number (out of 10) of predicted contacts that are within a distance of 
5 Å (i.e. correctly predicted contacts); c8 and c12 are the numbers of 

predicted contacts within respectively 8 Å and 12 Å. I1 and I2 are the 

fractions of correctly predicted residues at the interface in the two 

domains.  is the expected number of randomly predicted correct 

contacts.

c r
5
( )

c r
5
( )

Average distance of predicted contactsFigure 5
Average distance of predicted contacts. In (a) the aver-
age distance of predicted contacts in the native structure is 
reported as obtained for the combined scoring function (red 
stripe bars) and for the residue conservation term alone 
(black stripe bars). They are compared to the average and 
standard deviation of 10 random contacts. In (b) the corre-
sponding z-scores are plotted.
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Interacting domains in the closed configuration must
form more than 30 contacts, with each domain having at
least 10 residues at the interface (for a definition of inter-
domain contacts and interface residues see below).
Domains structures generally display some flexibility. In
Table 3 we report the Cα-root mean square deviation
(RMSD) of the two domains between the open and close
configurations. The Cα-RMSD of interface residues is also
reported. For these calculations we have used the program
ProFit [48]. Domain structures in the open conformations
are used as input in our docking calculations. Domains
are separated and treated as independent units, disregard-
ing any knowledge of the chain connectivity or on their
relative orientation in the open configuration. No prior
information on the binding area is assumed. The results
are then compared with the protein structures in the close
configuration.

Of the 40 protein structures, one has been determined by
NMR spectroscopy (PDB code 1tfb). The best model in
the ensemble as defined by the NMRCLUST procedure has
been selected as the representative [49]. The remaining
structures have been solved by X-ray diffraction with a res-
olution better than or equal to 3.2 Å (the 20 protein struc-
tures in the open configuration have been solved with a
resolution below 3 Å). For data uniformity, only heavy
atoms are considered and no hydrogen atom included.
Missing residues and atoms have been modeled with
ModLoop [50]. Ligands (cofactors and/or substrates),
which are often the cause for the domain motion, are
removed for simplicity.

Surface, interface and contact definitions
Following the convention established at CAPRI [51], two
residues in different domains are considered to be in con-
tact if any of their heavy atoms are within 5 Å. Interface
residues are defined as those that are involved in at least
one contact [52]. Just for the purpose of calculating the
interface RMSD, the contact threshold is set to 10 Å and
interface residues identified accordingly [51].

The program MSMS is used for molecular surface compu-
tations [53]. Given an atomic protein structure, MSMS can
produce a triangulated representation of the solvent
excluded surface. For each vertex the normal vector to the
surface is also calculated. Default values for the radius of
the (solvent) probe sphere (1.5 Å) and triangulation den-
sity (1.0 vertex/Å2) have been used.

Surface atoms are atoms with at least one vertex generated
on their van der Waals surface. Residues with one or more
surface atoms are surface residues. We have defined a rep-
resentative point and a representative normal vector for
each surface residues. The representative point is given by
the geometric average of all vertices generated for that res-

idue (strictly speaking, it might therefore not lie on the
protein surface). The representative normal vector is
obtained by averaging over all normals associated to that
residue.

Scoring function

The scoring function  is defined at the amino acid level
and assigns a value to each set of 10 contacts. It is a sum
of a pairwise contact function Sij,

where indices in and jn refer to residues in the first and sec-

ond domain respectively. The pairwise contact function Sij

is a linear combination of five different contributions
(shape complementarity, residue-residue pair potential,
residue interface propensity, residue conservation and
correlated mutations), which are described below. Since

the five components ( ), k = 1,..., 5), have different

orders of magnitude, they have been rescaled by their
standard deviation such that Sij can be written as:

where w(k) are appropriate weights, <S(k)> and σ(k) are
respectively the average and standard deviation (over all
possible contacts) of the components. In general, several
different methods are available for scoring each individ-
ual component. Our preference has gone to simple, fairly
established methods which have possibly been already
tested on docking applications.

Shape complementarity
Shape complementarity rewards a contact between pro-
trusions (knobs) and depressions (holes) at domain-
domain interfaces. Our approach to locate knobs and
holes on domain surfaces is based on a shape function
[54] and it is similar in spirit to other methods described
in literature [55,56]. Domains are mapped onto a 3D grid,
with lattice constant of 0.25 Å. Occupied grid points are
defined as those inside the protein domains. They are
identified by constructing a set of spheres, one at each pro-
tein atom. For surface atoms the sphere radius is the the
van der Waals radius of the atom. For interior atoms, the
sphere has a radius which is equal to the sum of the
atomic van der Waals radius and the probe radius. Grid
points that lie inside one of the spheres are considered to
be interior points.
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To define the shape function, a sphere of radius 6 Å is con-
structed at each MSMS vertex of the triangulated surface.
The shape function at a vertex is then the volume of the
sphere that is within the protein domain. The intersection
volume is estimated by counting the number of interior
grid points. The shape function measures the local con-
vexity of the surface: small values corresponds to knobs,
large values to holes. Knobs and holes are identified as

vertices at which the shape function is respectively < V

and > V, where V is the volume of the 6 Å radius sphere.

Moreover, a knob (hole) is selected only if it is a local
minimum (maximum). To this end, the shape function at
vertices within a distance of 4 Å is checked. A residue is
designated as a knob or a hole if one of the vertices on its
surface is respectively a knob or a hole. Note that as a con-
sequence of this coarse-grained assignment a residue can
carry both labels at the same time. A match between a

knob and a hole is rewarded, i.e.  = 1 if i is a knob

and j a hole (or viceversa),  = 0 otherwise.

Pair potentials
Residue-residue pair potentials are taken from the RPSs-
core matrix [57]. They are empirical potentials derived
from a library of protein-protein interfaces. They have
been estimated by comparing the observed to the
expected frequencies of residue-residue pairs across the
interface and therefore represent the likelihood of two res-
idues type to be in contact (potentials of mean force). The
matrix favors certain type of contacts (e.g. Trp-Tyr or I1e-
Phe) while disfavoring others (e.g. Lys-Lys or Ser-Ser). The
potentials have been derived using a distance cut-off for a
contact of 4.5 Å rather than 5.0 Å used in this work.

Interface propensity
This term represent the propensity of some amino acid
types to be at the interface rather than on the rest of the
protein surface. A study by Chakrabarti et al [58] based on
known protein complexes has identified two distinct
regions at the interface: a core of buried residues and a rim
of solvent accessible residues. The rim has similar amino
acid composition to the rest of the protein surface whereas
the core has distinctive composition. The latter for exam-
ple has an excess of aromatic residues such as Trp and Tyr
and a deficit in charged residues such as Glu and Lys. In
our work we have used the core residue propensities. The
score of a contact has been defined as the sum of the pro-
pensities of the two amino acids involved.

Residue conservation
Surface residues that are important for binding are often
conserved within a protein family. The evolutionary infor-
mation can be derived from multiple sequence align-
ments and quantified by a conservation score. We have
used the Variability scale provided in the HSSP database
[59]. Variability ranges from zero (perfectly conserved
positions in the multiple sequence alignment) to 100
(highly variable positions). For homogeneity with the
other scoring terms, we have used the negative value of the
Variability (ranging therefore from -100 to 0) so that the
higher the score the more conserved is the position. The
score assigned to a contact is obtained by adding the (neg-
ative) Variability scores of the two positions.

Correlated mutations
Correlated mutation analysis identifies sequence posi-
tions that tend to evolve in a coordinated manner; The
rationale is that if two residues are interacting across the
domain interface, changes in one of the two will affect the
other so that in turn it will be more likely to mutate to
compensate. Correlated mutations are detectable in mul-
tiple sequence alignments and we have followed the
approach introduced in [60] which has later been
extended to domain interactions in [61].

1
3

2
3

Sij
s c( . .)

Sij
s c( . .)

Table 3: Data set of protein domains. 

close conf open conf RMSD1(Å) RMSD2(Å) IRMSD (Å)

1d4f A1-A2 1b3r A1-A2 0.76 0.45 0.67
1jmc A1-A2 1fgu A1-A2 1.47 2.18 0.93
1uae O1-O2 1ejd A1-A2 0.45 2.34 2.65
1a8e O1-O2 1bp5 A1-A2 0.54 1.24 1.27
1arz C1-C2 1dru O1-O2 1.12 0.35 0.66
2dri O1-O2 1urp A1-A2 0.50 0.82 0.81
1tfb O1-O2 1c9b A1-A2 3.22 3.21 3.67
13pk A1-A2 16pk O1-O2 0.54 1.37 1.71
2nad A1-A2 2nac A1-A2 0.41 0.40 0.41
1ex7 A1-A2 1ex6 A1-A2 0.96 0.83 0.94
1tde O1-O2 1f6m E1-E2 0.68 1.03 0.71
9aat A1-A2 lama O1-O2 0.90 0.33 0.77
6adh A1-A2 8adh O1-O2 0.80 0.86 0.91
1h9m A1-A2 1h9k A1-A2 0.34 0.60 0.40
8atc A1-A2 5atl A1-A2 1.25 2.25 1.09
1l7p A1-A2 1l7o A1-A2 0.56 2.82 2.00
1njf A1-A2 1njg A1-A2 0.28 0.57 0.63
4cts A1-A2 1cts O1-O2 1.14 1.71 1.19
1dpp A1-A3 1dpe O1-O3 0.53 0.62 0.78
1dv2 A2-A3 1bnc A2-A3 0.51 2.55 2.05

PDB codes and domain numbers (according to CATH) of the proteins 
in the close and open configurations. RMSD1 and RMSD2 are the 
Ca-RMSD respectively of domain 1 and 2 between the open and close 
configurations; IRMSD is the Cα-RMSD of interface residues. The last 
two entries in the table are 3-domain proteins, all others are 2-
domain proteins.
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Multiple sequence alignments have been taken from the
HSSP database and subsequently filtered. A protein
sequence has been retained in the alignment only if: (i)
the percentage identity is greater than 30% to the seed
protein; (ii) it is alignable over at least 80% of the length
of the seed protein; (iii) it is less than 95% identical to any
other protein in the alignment. Sequences have been ana-
lyzed individually in decreasing order of sequence similar-
ity to the seed protein. They have been added to the
filtered alignment only if the above conditions are met.
Only proteins with at least 40 homologous sequences in
the filtered alignment were included in the data set and
considered for the correlated mutations analysis.

We use the McLachlan substitution matrix to quantify
amino-acid changes in the multiple alignment [62]. The
McLachlan matrix assigns similarity values (≥ 0) between
residues. Each column in the alignment is therefore char-
acterized by a set of similarity values, representing all
amino-acid pairs observed at that position (a similarity of
zero is assigned if a gap is involved). A correlation coeffi-
cient between similarity sets at different positions can be
calculated. This correlation value ranges from -1 to +1
with a score of +1 indicating highly co-varying positions.
As in [63], the correlation value is set to -1 if one of the
two positions analyzed has a percentage of gaps > 10%; it

is set to 0 if one position is perfectly conserved (and the
other has not more than 10% gaps).

Weight optimization and cross validation

Given a set of weights, {w(k)}, the z-score for each domain
pair can be calculated. The score of the 10 best contacts

among real contacts, , is compared to the expected
score of 10 random contacts,

where < > is the average random score and  its

standard deviation (both < > and  can be calculated

from the pairwise contact function, Sij).

Our criterion for weight optimization has been to maxi-
mize the average z-score over the protein dataset. The
weight for the shape complementarity term is set arbitrar-
ily to 1 without loss of generality. The search for the best
weights is then carried out combinatorially, sampling the
parameter space in the form w(k) = 2n with n integer
number (-9 ≤ n ≤ 8). In practice, the range of values con-
sidered for each term is more limited, e.g. n = 1,..., 8 for
the residue conservation component, as one can locate
the important region through preliminary searches.

A leave-one-out cross validation strategy is used. This
implies removing one protein from the data set and calcu-
lating the optimized weights based on the reduced data
set (having 19 proteins). These are then used in the scor-
ing function to predict inter-domain contacts in the
selected protein. In Table 4 we list the 20 sets of optimal
weights so obtained. The weight for the interface propen-

sity component turns out to be negligible, i.e. w(3) = 

or  and therefore set to zero and not reported.

Contact map representation
Contact maps are two dimensional plots that report con-
tacting residues. In the case of inter-domain contacts
between two protein domains, having respectively n and
m residues, the contact map is an n × m matrix. The matrix
cell (i, j) is occupied if residue i in the first domain and res-
idue j in the second one are in contact, empty otherwise
(see Fig. 1). Each matrix cell is assigned a score and the
score of a configuration of contacts is given by their sum.
We considered configurations with a fixed number of con-
tacts, nc = 10 and with no more than two contacts per res-

 (max)

z score− = − < > 


(max)
,

σ

 σ
 σ

1
128

1
256

Table 4: Optimized weights. 

PDB code w2 w4 w5

1d4f 2 8 4
1jmc 2 8 4
1uae 2 8 4
1a8e 2 8 4
1arz 16 32 32
2dri 2 8 4
1tfb 2 8 4
13pk 16 32 32
2nad 2 8 4
1ex7 2 8 4
1tde 1 4 2
9aat 2 8 4
6adh 2 8 4
1h9m 2 8 4
8atc 2 8 4
1l7p 2 8 4
1njf 2 8 4
4cts 16 32 32
1dpp 8 32 16
1dv2 2 8 4

Linear weights of the scoring function obtained with a leave-one-out 
cross validation. The first column reports the PDB codes; w2, w4 and 
w5 are respectively the weights associated with pair potential, residue 
conservation and correlated mutations. The weight of surface 
complementarity has been set arbitrarily to w1 = 1; the weight for 
interface propensity is negligible and therefore ignored (i.e. w3 = 0).
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idue. Only surface residues are considered as potentially
interacting and included in the contact map.

Distances and orientations of contacting residues on the
two domains should be compatible. As discussed above,
we assign to each residue a representative point and a nor-
mal. We then introduce some geometrical constraints on
pairs of contacts, adapted from [55]. Let p1 and q1 be two

residues on domain 1 in contact respectively with p2 and

q2 on domain 2. We denote with d(1) the Euclidean dis-

tance between p1 and q1. The angles formed by the line

connecting p1 and q1 and each of the respective normals

are denoted with  and ; the torsion angle between

the two normals with Ω(1). Similar notations with super-
script (2) refers to residues p2 and q2 on domain 2. Abso-

lute values of differences between quantities are denoted

with a ∆, e.g. .

Two pairs of contacts, (p1, p2) and (q1, q2), are considered
compatible if:

• d(1), d(2) ≤ 20 Å,

• ∆ d ≤ 8 Å,

• ∆αp, ∆αq ≤ 1 radian,

• ∆ w ≤ 1 radian,

• ∆αp, + ∆αq+ ∆ w ≤ 2 radians.

Compared to ref [55], these thresholds are more permis-
sive, reflecting the fact that we are working at an amino-
acid level and therefore at a lower resolution. They are
introduced to filter out pair of contacts that are clearly non
geometrically compatible.

Simulated annealing and Monte-Carlo moves

The total number of configurations to be searched in con-
tact space is potentially vast. As we are looking for the
maximum of the scoring function, the configurational
space can be significantly reduced by considering only
high scoring contacts. These are defined as those with a

score , where <S> is the average contact

score evaluated over all entries in the contact map and σ S
is the standard deviation. This corresponds roughly to
consider the top 32% contacts.

The problem can be mapped on a random graph: nodes
represent contacts, with an associated weight equal to the
contact score; edges between nodes connect pairs of com-
patible contacts. Typically, 3 – 6% of all possible edges are
present in a graph. A clique is a set of nodes with edges
between any pair of nodes, i.e. it is a set of mutually com-
patible contacts. In order to limit the occurrence of non-
physical contact configurations we restrict to configura-
tions formed by a central clique of n nodes with each of
the remaining 10 – n nodes connected to at least one of
the nodes in the clique. As a convention, in the following
we refer to central and peripheral nodes respectively (see
Fig. 6). Typically we set n = 5 although in some cases we
use n = 4.

The search for the configuration that maximizes the score
is done through a stochastic simulated annealing algo-
rithm. For ease of calculation, we assign each peripheral
nodes to one central node (although in principle it might
be connected to more than one) and keep track of this
relation. We consider two set of Monte Carlo moves, local
and large scale, schematized in Fig. 6. Local moves consist
of selecting one of the peripheral nodes and replacing it
with another that is connected to the central clique (not
necessarily connected to the same node). Large scale
moves instead select one of the clique nodes and replace
it with another node such that the central nodes still form
an n-clique. The peripheral nodes attached to the old
clique node are also removed and replaced by nodes con-
nected to the new central node. In this manner the struc-
ture of a central clique of size n with attached peripheral
nodes is preserved.

The annealing schedule in the simulation is as follows.
Starting with 5-clique dynamics, we first run a cycle of
100Nnodes large-scale moves at infinite temperature
(Nnodes is the number of nodes in the graph). We monitor
the number of distinct nodes that are visited by the central
clique. If the graph coverage is below 70% we turn to 4-
clique dynamics and repeat the infinite temperature cycle.
This ensures that a consistent fraction of contacts are sam-
pled and that most contact patches are reachable through
the clique dynamics. In practice, 4-clique dynamics has
been used in 3 cases (PDB codes 1ex7, 1l7p and 1dv2).

The infinite temperature cycle is also used to estimate the
largest change in score following a Monte Carlo move,

∆ . The simulation proper is then started at an effec-

tive temperature T = 10∆ . Each cycle consist of

100Nnodes large-scale moves with 20(10 – n) local moves

within any two large-scale moves. Moves are accepted or
rejected according to the standard Metropolis test. At the
end of a cycle, the temperature is reduced by 10%. The

α p
( )1 αq
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simulation is stopped when no large-scale moves are
accepted. A final quenching for the peripheral nodes is
then performed. Each simulation is repeated at least 3
times to ensure we obtain consistent results (i.e. we find
the same global maximum).

Result analysis
For each prediction we report c5, c8, c12 which are respec-
tively the number of predicted contacts that are found

within 5, 8 and 12 Å in the native structure (c5 is therefore
the number of correct contacts predicted). A quantity of
interest is the average distance of predicted contacts in the
native structure, i.e.

where  is the distance between residue in and jn. Were

all the predictions correct then Dpred < 5 Å. In general, the

smaller Dpred the more accurate is the prediction.

Each set of 10 predicted contacts corresponds to two sets
of residues, one for each domain. These sets might com-
prise less than 10 residues because each residue is allowed
to have up to two contacts. We denote with I1 and I2 the
fraction of correctly predicted residues at the interface in
the two domains.

The results have been assessed against random predictions
of 10 contacts. The expected number of correct contacts

obtained by chance can be estimated as 

where nn.c is the number of native contact and s1 and s2

respectively the number of surface residues in domain 1
and 2. The expected average distance and standard devia-
tion of 10 random contact in the native structure can be
calculated from the known values of di, j. The z-score of

Dpred can then be evaluated and its statistical significance

assessed. A second test has been carried out with predic-
tions provided by a docking server, GRAMM-X [35]. For
each domain pair the server returns a ranked list of 10 pos-
sible models of the complex. We have assessed the quality
of the models on the basis of the fraction of native resi-
due-residue contacts identified, fnc, which is one the eval-

uation criteria at CAPRI. High-quality, good and
acceptable models have respectively fnc greater than 0.5,

0.3 and 0.1. Other parameters are also used in CAPRI to
define the three categories (e.g. backbone and interface
root mean square deviations). For simplicity and because
fnc is the most pertinent in our context, we have not

included them in the discussion.

For 17 of the 20 targets in our data set, GRAMM-X pro-
vides at least one model with some native contacts cor-
rectly identified; in 7 cases the best model (i.e. the one
with highest fnc) is ranked first. For 12 targets the server
returns at least one acceptable (fnc > 0.1) solution (5 times
the best model is ranked first) and for 5 targets it returns
high-quality models (4 times the best model is ranked

D dpred i j
n

n n
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=
∑1

10 1

10

,

di jn n,

c
n

s s
r n c
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Monte Carlo movesFigure 6
Monte Carlo moves. Contact configurations with 5 central 
nodes (shadowed circles) and 5 peripheral nodes (empty cir-
cles). In (a) is displayed a local move, in (b) a large-scale 
move. Thick lines represent internal connections before the 
move, thin lines are the new connections after it
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first). These numbers should not be considered an evalu-
ation of GRAMM-X performances but merely an indica-
tion of the non-triviality of our data set.

For each target we have a decoy set composed of the 10
models plus the native structure. Given a contact predic-
tion, the average distance Dpred can be evaluated for each
model and used to re-rank them. Ideally, the native struc-
ture should emerge with the lowest Dpred value. Moreover,
for the 17 targets which have at least one GRAMM-X
model with fnc > 0, the best model should be ranked just
after the native structure.
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components and of the combined scoring function for each protein in the 
data set.
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