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Abstract  

The aim of this thesis is to apply a particular category of machine learning and 

pattern recognition algorithms, namely the kernel methods, to both functional and 

anatomical magnetic resonance images (MRI). This work specifically focused on 

supervised learning methods. Both methodological and practical aspects are described 

in this thesis. 

Kernel methods have the computational advantage for high dimensional data, 

therefore they are idea for imaging data. The procedures can be broadly divided into 

two components: the construction of the kernels and the actual kernel algorithms 

themselves. Pre-processed functional or anatomical images can be computed into a 

linear kernel or a non-linear kernel. We introduce both kernel regression and kernel 

classification algorithms in two main categories: probabilistic methods and 

non-probabilistic methods. For practical applications, kernel classification methods 

were applied to decode the cognitive or sensory states of the subject from the fMRI 

signal and were also applied to discriminate patients with neurological diseases from 

normal people using anatomical MRI. Kernel regression methods were used to predict 

the regressors in the design of fMRI experiments, and clinical ratings from the 

anatomical scans. 
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1.1 Motivation and Aims 

The initial objective of my PhD was to develop robust machine learning systems, 

which are capable of classifying anatomical brain scans into different disease (or other) 

categories, using state of the art supervised learning techniques. The aim was to use 

kernel methods to represent patterns of similarity among brains, the basic idea being 

that similar brains are more likely to be in the same group. The majority of this work 

involved collaborations with neurologists and neuroscientists. The Pittsburgh brain 

activity interpretation competition (PBAIC) in both 2006 and 2007 was an ideal 

opportunity to compare my machine learning strategies with those of others, and 

broadened my research interests into the field of “brain decoding” for functional 

imaging. 

The thesis is written for both methodological and general readers. For those who 

understand neuroimaging methodology, it should contain sufficient mathematical 

detail to replicate our results. For those who are less interested in technical detail, it 

also contains intuitive explanations of the algorithms and procedures. 

1.1.1 Diagnoses of Neurodegenerative Diseases 

The idea of Evidence-based medicine (EBM) was introduced in the early 1990s 

(1992; Sackett, 1997), before the prevalence of the Internet and Google. The main 

objective of EBM was to promote the practice of searching published work, and 

making effective diagnoses and decisions based on the latest evidence. Generally 

speaking, the framework proposed in my PhD can be interpreted as a form of EBM, by 

constructing models from existing data, which can make predictions about new cases. 

Peer reviewed publications only report highly simplified characterisations of data. 

Much of the relevant information has to be discarded in order to present a few salient 

results on the printed page.  Also, as the number of medical publications grows, new 
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and more efficient strategies will be needed for encoding medical knowledge.  In 

terms of making diagnoses and clinical decisions, a pattern recognition procedure, 

optimally trained using relevant data, may eventually prove to be more useful than the 

entire collection of publications written about those same data. 

Neurological diseases and psychiatric disorders are associated with anatomical 

and functional changes in the brain. For example, Alzheimer’s disease involves grey 

matter loss in the temporal lobe. There is currently great interest in finding markers 

that may guide the early diagnosis of neurodegenerative disorders, based on 

anatomical and functional MR images. Such research is sometimes impoverished by a 

lack of the necessary engineering and statistical expertise. As a result, the end product 

of such work is often a simple table of manually derived average measurements, along 

with their standard deviations, and perhaps a few p values relating to group 

differences. A much more useful solution would be to model the data using state of 

the art pattern recognition and machine learning techniques. The basic idea of my 

project was to develop classification systems that can be trained with existing images of 

known labels (disease states or clinical outcomes). The simplest case involves images 

from a group of patients and a group of controls, whereby the algorithm would learn the 

pattern in the images that differentiates between the groups. Then, when a new subject’s 

image is presented to the trained algorithm, it should be able to determine how likely it 

is that the subject is a control or a patient. 

Voxel-Based Morphometry (VBM) (Ashburner and Friston, 2000), is often used to 

make voxel-wise comparisons of regional volumes of grey matter, among populations 

of subjects. This could be considered as one way of identifying markers of 

neurodegenerative disorders. Other methods involve analyzing shape representations 

of anatomical structures, such as hippocampus. Although those techniques can 

characterize local differences between patients and controls, they were not designed to 
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classify new subjects and perform diagnosis. This project will try to parameterize and 

quantify all these differences observed among subjects, and put them into a machine 

learning framework. The Support Vector Machine (SVM) (Cristianini and 

Shawe-Taylor, 2000) is one of the most popular supervised learning algorithms, and is 

employed in various fields with promising results and reasonable computing time. It’s 

potential had already been demonstrated by identifying subjects’ genders from their 

structural MRI scans (Lao et al., 2004). Besides SVM, there are many other related 

kernel algorithms. The PhD research focused on implementing some of those 

algorithms, using simple measurements of brain similarity. There was a specific focus 

on differentiating Huntington’s Disease (HD) and Alzheimer’s disease (AD) from 

healthy controls. Patients who will manifest HD can easily be diagnosed from genetic 

information, so HD patients can be used for testing models for classifying 

neurodegenerative diseases. Unlike HD, there are no biomarkers that guarantee 100% 

accurate diagnosis of AD, other than post mortem examinations. Therefore, there is 

growing interest in early detection of AD. To accelerate scientific advances in 

improving the detection of AD from imaging modalities, the “Alzheimer’s Disease 

Neuroimaging Initiative” (ADNI) Database was launched (Mueller et al., 2005). This 

database allows people to access AD images freely, and apply their algorithms to the 

dataset. Although the neuroimaging field is a long way behind the geneticists in terms 

of sharing primary data, a number of other publically available neuroimaging datasets 

are also beginning to emerge. 

During the period of my PhD, several others have also shown interest in applying 

pattern recognition methods to brain images, for the purpose of making diagnoses. 

These have involved both structural and functional MRI (Davatzikos et al., 2008; 

Demirci et al., 2008; Fan et al., 2007a; Fan et al., 2008b; Fan et al., 2005; Fu et al., 

2008; Vemuri et al., 2008). Most of the works showed promising results, which may 
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indicate that this research area has a certain importance to the field. With the increase 

of data sharing, and computational power continuing to grow exponentially 

(multi-core processors, cloud computing, etc), automatic diagnostic/screening tools 

will become applicable in clinical environments. When large training datasets become 

available, pattern recognition methods will probably become as robust as experienced 

clinicians. With aging populations, and hints that effective treatments may soon 

emerge, new developments in the computer aided diagnosis (CAD) of 

neurodegenerative disease are set to become increasingly important for clinical 

decision making. 

1.1.2 Prediction Based Functional Images Analysis 

Conventionally, functional imaging studies mainly focus on finding regions 

showing variation under controlled experimental stimuli. The most well-known 

technique is Statistical Parametric Mapping (SPM) (Friston et al., 1995). Under the 

assumptions of the general linear model (GLM), the time series at each voxel is 

modelled by a linear combination of experimental conditions and confounds (e.g. low 

frequency drifts).  The statistical tests are later applied to the weighting of each 

experimental regressor, to infer where the contrasts of experimental conditions have 

significant effects on the pattern of brain activity. In other words, the objective is to 

detect regions of activation in the brain during tasks. Three dimensional statistical 

maps would be generated, showing activation patterns that relate to contrasts of 

experimental conditions. The location of activation patterns provides insight into 

brain function. This is also called an encoding model in the sense that the brain 

responses are encoded the experimental factors. 

In recent years, pattern recognition and machine learning methods have been 

used to predict, or decode, an experimental variable from high-dimensional functional 

imaging data. Not all methods are truly multivariate, as some still assume 
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independence among voxels (Shinkareva et al., 2008). In general, these studies have 

well-controlled experimental stimuli, and the number of conditions are limited. 

Measures of predictive accuracy are determined by cross-validation, which involves 

partitioning the data into training and testing sets. The discriminating machine, or 

classifier, is trained using the functional images, and labels indicating the 

corresponding experimental conditions. In the testing phase, the classifier returns the 

predicted experimental conditions using test images as input. Because the true 

experimental conditions are known, the predictive accuracy can be calculated. This is 

also called a decoding model in the sense that it models the decoding of neuronal 

activity that causes a percept or behaviour. In most studies, the design involved block 

stimuli with categorical conditions, such as observing different categories of image 

stimuli or performing different tasks (Carlson et al., 2003; Cox and Savoy, 2003b; 

Haxby et al., 2001; Haynes and Rees, 2005, 2006; LaConte et al., 2005; 

Mourao-Miranda et al., 2005). 

Scientific theories are essentially models. Within a Bayesian framework, the 

objective is to determine the model (from a number of candidates) that best describes 

the observed distribution of data in the most parsimonious way. Such a model 

essentially says something about what could be expected from unobserved data. If 

only parts of such data are presented to the model, then it should be possible to use the 

model to make an informed estimate about the missing information. In other words, it 

is able to predict what is unknown, from known facts. Models are generally 

considered "better" if they can be used to make more accurate predictions about 

unknown data. The real benefit of using Bayesian approaches is that they allow us to 

determine the structure of the most accurate model (from among the candidates), 

through the process of Bayesian model comparison. Many scientists take the realist 

view, which considers the structure of the model to be of most scientific interest, 
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ignoring the actual probability density that is encoded. Unfortunately, most biological 

systems are extremely complex. If more and more data are collected, or the quality of 

the data is improved, then increasingly complex models can be supported (Morch et 

al., 1997). The actual complexity of the model that is deemed to be "best" is largely a 

function of data quality. A report describing the model structure with the highest 

evidence may tell us more about the quantity and quality of data, than it does about 

the biological system itself. Most neuro-imagers prefer to treat estimates of model 

parameters as the important findings (e.g. SPM maps). Such studies generally involve 

simplified models, as these allow findings to be more easily visualised and explained. 

It is acknowledged that the models may depend on unlikely assumptions, but the 

benefits of adopting them should be evident from the literature. For example, 

mass-univariate statistical testing in SPM has proven to be a very powerful tool for 

visualising differences, despite the fact that it usually ignores the possibility of 

connections among different brain regions.  

The instrumentalist view of science is that it is the predictions themselves, or the 

ability to make such predictions, that are of interest (Forster, 2002). Scientific 

research is sometimes funded according to the contribution it can make (or potentially 

make) to society. Some of the benefits of neuroimaging may come from its potential 

to make predictions, rather than from the actual models or parameter estimates. It is 

difficult to anticipate all the benefits from such predictions, just as it is difficult to 

anticipate the ultimate utility of any area of research. 

Predictive models may also allow different forms of questions to be posed. For 

example, it becomes possible to estimate whether task C activates a network that is 

more similar to that activated by task A, or that activated by task B. By accurately 

characterising the pattern of difference between A and B, it becomes possible to 

formulate questions in terms of this difference. More accurate characterisations of 
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differences may also lead to tests with greater sensitivity. This has been demonstrated 

in studies that applied pattern recognition approaches to particular brain regions (Eger 

et al., 2008; Haynes and Rees, 2005). Such work has allowed differences to be 

detected that could not be found by mass-univariate approaches (Kriegeskorte et al., 

2006). 

1.2 Overview of Chapters 

Because I was involved in multiple projects using similar methods, this thesis is 

mainly divided into technical and application sections. In the technical sections, 

equations and algorithms are introduced with sufficient details for them to be 

implemented. The application sections will state which algorithms were used, and the 

reader should then refer to the appropriate technical section. Specifically, this thesis is 

largely about kernel pattern recognition approaches, which can be roughly divided 

into kernel generation and the kernel algorithms themselves. Methods of kernel 

generation are described in chapter 3, and the algorithms are described in the first half 

of chapters 4 and 5. The remaining chapters are organised as follows. 

 

Background of Machine Learning Theories and Methods 

For readers with a less methodological background, this chapter explains basic 

concepts of pattern recognition and machine learning, with some practical examples 

using AD data. The chapter begins with probability theory in the Bayesian framework, 

which is used throughout the thesis. The notation and equations commonly used in 

Bayesian methods are described. Only two probability distributions are mentioned, 

because all the probabilistic algorithms used for this thesis are based on either 

Gaussian or Bernoulli distribution. A section introduces decision theory, which is 

essential for classification. Generative and Discriminative models are compared. For 
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classification problems, a generative model would describe the entire probability 

distribution of each of the classes of data. The alternative is to use a discriminative 

model, which only needs to model the probability density of the differences between 

the classes. Generative models are not usually the most accurate approach for 

predicting, as they require more hidden variables, so marginalisation over higher 

dimensional probability densities is needed. Empirical evidence shows that 

discriminative pattern recognition models usually outperform generative models in 

terms of their predictive accuracy. That is also the reason why the applications did not 

use generative models for classification. Simple regression and classification 

algorithms are illustrated in this chapter, to assist readers to understand the more 

advanced models described in later chapters. Cross-validation is often used to 

evaluate the performance of different models. Some models can also be compared 

using criteria based on the Bayesian evidence framework, which measures the 

goodness of models in terms of their trade-off between fitting the data and their 

complexity. In this framework, integrating out the parameters can lead to the 

conditional probability of data given the model ( | )p D M or the “evidence for the 

model”. 

Kernel Methods and Kernel Construction from Neuroimaging Data 

The first part of this chapter describes mathematical definitions and properties of 

kernels. Because most algorithms applied in this thesis are kernel methods, it is 

essential to understand the constraints and limits of kernel methods. Unlike common 

pattern recognition models, kernel methods take “kernels” as the input rather than 

features of the data. Intuitively, kernels encode measures of pair wise similarity 

between all the data points. Information, describing patterns in the training set, is 

encoded in the kernel. The kernel trick also allows efficient construction of various 

kernels, which are the equivalent of input features projected into higher dimensions. 
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This can enable non-linear patterns in the original space to appear linear or separable 

in the new feature space. 

To construct a kernel from imaging data (either functional MRI or structural 

MRI), we have to establish a measure of similarity. Ugly Duckling Theorem (Duda et 

al., 2000; Watanabe, 1970) tells us that measures of similarity between things can not 

exist without prior assumptions. From our knowledge of the physiological basis, we 

can extract meaningful information that is more related to the conditions we intend to 

characterise. For example, we know that neurodegenerative diseases would cause grey 

matter changes more than white matter changes, or we know that low frequency drift 

in the fMRI time series is more likely to be noise than informative signal (Henson, 

2004). To extract the useful “features”, both structural and functional MRI has to be 

pre-processed. The pre-processing procedures are introduced in this chapter, along 

with a description of information that may be encoded in the outputs, which are later 

used to generate the kernels. It is also possible to apply operations that can efficiently 

remove the confounding factors, such low frequency drifts, ages or genders, directly 

from the kernel. Temporal compressing techniques for fMRI data are also introduced. 

The last part of the chapter mentions some basic kernel algorithms, for example 

kernel principal component analysis, kernel K-nearest neighbour classification, a 

simple novelty detection method and some clustering methods. These simple 

algorithms sometimes allow useful visualization of the structure of the patterns.  

Kernel Regression Methods and their Application in Functional and 

Structural MRI 

Following the basic regression method introduced in chapters 2 and 3, more 

advanced kernel regression methods are described in this chapter. These algorithms 

are Support Vector Regression (SVR), which is a non probabilistic model, together 

with two probabilistic models, which are Relevance Vector Regression (RVR) and 
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Gaussian Process Regression (GPR). The first half of the chapter is about the 

technical details of these three algorithms, whereas the second half describes 

applications of those methods. Two of the projects are work for the “Pittsburgh Brain 

Activity Interpretation Competition” (PBAIC) of 2006 and 2007. The competitions 

were open globally, enabling teams from around the world to test their algorithms on 

the same dataset. The competition allowed a comparison among a diverse range of 

approaches for making predictions from brain imaging data.  As in any model 

comparison problem, it allowed the most accurate approach to be selected from a 

range of candidates. We achieved 5th place in 2006 and 1st place in 2007. Details of 

how we tackled the tasks are described in the chapter. Another application concerns 

predicting clinical scores from structural MRI. Unlike conventional correlation 

analysis, this analysis was based on “predictive power” and we demonstrated that by 

using RVR, it is possible to achieve good predictive accuracies. The framework also 

involves a comparison among different clinical scores, as some clinical scores could 

be more accurately predicted, from the structural images, than others.  

Kernel Classification Methods and their Application in Functional 

and Structural MRI 

 In the chapter 5, support vector classification (SVC), which is one of the most 

popular classification algorithms for practical applications, is explained in detail. Two 

Bayesian classification algorithms, namely Relevance Vector Classification (RVC) 

and Gaussian Processes Classification (GPC) are described. These two algorithms 

have similar forms to regularised logistic regression, and the corresponding 

hyper-parameters can be optimised via marginal likelihood maximisation. A novel 

multi-class classifier, which utilises the temporal information of fMRI data, is also 

present. Another classification method introduced is called the one-class classifier, 

which is based on smallest hypersphere enclosing all the training data. Like chapter 4, 
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the first half of the chapter is about the technical details of these three algorithms, 

whereas the second half describes applications of those methods. Three applications 

are about classification between patients and controls using anatomical MRI data for 

Alzheimer’s disease (AD), Huntington’s disease (HD), and major depressive disorder 

(MDD). Some methods of feature selection are also mentioned. Two applications 

involved fMRI decoding, one was applied with the novel multi-class classifier, and 

another one was applied with standard SVC in a searchlight fashion. The novel 

multi-class classifier demonstrated high predicting accuracy in single subject. The 

searchlight SVC revealed regions in the hippocampus which are relevant to 

navigation tasks. 
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Chapter 2  

Background of machine learning theories and 

methods 
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This Chapter will describe the basic probability tools and simple algorithms, 

which will lead to the advanced algorithms in the later chapters.  

2.1 Basic Probability Theory 

Probability theory provides a quantitative framework to measure and manipulate 

uncertainty. In the context of pattern recognition and machine learning, probability 

rules also enable us to use mathematical language to abstract the practical problems into 

models and equations.  

The commonly used examples to introduce probabilities are either flipping coins 

or drawing coloured balls from a box. These examples have discrete events over 

repeatable trials. For instance, we can toss a coin 100 times, and measure the number of 

times the coin faces up with heads or tails. We introduce the “random 

variable” {' ', ' '}X head tail∈ , which means it can take the condition of either “head” 

or “tail”. Then we define the probability of having a head as p(X=head)=Number of 

heads/number of tosses. However, as the topic of this thesis focuses on applications of 

pattern recognition on neuroimaging, we will use practical examples from 

neuroimaging.  

In the context of imaging data, most of the measurements and observations are 

continuous variables rather than discrete ones. To demonstrate the rules of probability 

with meaningful examples, we use the left and right hippocampal volumes from 91 

control subjects and 99 patients with clinically confirmed Alzheimer’s disease as two 

random variables, L and R. 
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Figure 2.1 Histogram of hippocampal volume 

Histogram of the volume of both left and right hippocampi in cubic millimetres. 

 

We present the distribution of the volume for both left and right hippocampus in 

figure 2.1, using histograms with intervals of 400 cubic millimetres. A histogram is a 

method of representing the distribution of a sampled population using bins. The 

horizontal axis is usually specified as non-overlapping intervals of the random 

variable. The height of each particular bin indicates the frequency or number of 

samples that lie in the interval. Histograms provide simple ways to discretise 

continuous variables into frequencies over different intervals. However, because the 

number of counts depends on the total sample size, to generalize the representation, 

the heights of each bin are be normalized into “portions” or “percentage” of the 

population. This is achieved by applying the rule that the probability sums to one over 

the viable: ( ) 1
x X

p x
∈

=∑  for a discrete variable, and ( ) ( ) 1p x d x
∞

−∞
=∫  for a 

probability density over a continuous variable. In our histogram example, the heights 

of each bin are simply divided by the total number of samples to represent the 

probability. For example, ( 4300 4700) 41/190 0.2158p L l= ≤ < = = , means if a 

random subject is selected form the sample set, the probability of observing a left 

hippocampal volume of between 4300mm3 and 4700mm3 is around 22%, or 0.22. 

2.1.1 Probability densities 

By discretising a continuous variable over a series of intervals (bins), and using  

normalized histograms to represent probability distributions, this leads to the 
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mathematical abstraction of “probability density function” (pdf). Assuming we have 

infinite samples and infinite bins, of which have infinitesimal range over a continuous 

variable, such as the volume of hippocampus, i.e. 

( ( / 2) ( / 2)) ( )P X x x x p x xδ δ δ= − ≤ < + =  for 0xδ → , then ( )p x  is called the 

probability density function (pdf) over x. The equation to calculate the probability that 

x will lie within an interval is given by 

( ) ( )
b

a
P a x b p x dx< < = ∫                            (2.1) 

By definition, the probability density is non-negative ( ) 0,p x x≥ ∀ , but it can have 

values larger than one, as the definition only bounds the total integral ( ) ( ) 1p x d x
∞

−∞
=∫ , 

to be one. 

The “cumulative distribution function” (cdf) of a particular probability density 

function is defined by the probability that x falls in the interval from minus infinity to 

a particular value.  

( ) ( )
a

P a p x dx
−∞

= ∫                              (2.2) 

The derivative of a cdf equals the pdf, ( ) / ( )dP x dx p x= . Notice the cumulative 

distribution function or cdf, is symbolized by the capital P. Some texts use capital P to 

denote probability mass function (pmf) for discrete events. Readers should be aware 

that p(x) may indicate a pdf, cdf or pmf, depending on the context.  

2.1.2 Joint probability and conditional probability 

Returning to the example of hippocampal volumes represented by histograms, 

when we consider more than one variable, we can also calculate the joint histogram or 

joint probability. For example,(4300 4700,4000 4300) 9 /190 0.0474p l r≤ < ≤ < = = , 

means there are 9 subjects, or around 5% of the samples, that satisfy both conditions 

that the left hippocampal volume is between 4300 mm3 and 4700 mm3 and the right 

hippocampal volume is between 4000 mm3 and 4300 mm3. 
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Figure 2.2 Joint histogram of hippocampal volume 

Joint histogram of the volume of both left and right hippocampi in cubic millimetres. 

 

Conditional probability is defined by the fraction of particular instances, given 

the condition of some other instances. For example, 

(4300 4700 | 4000 4300) 9 / 26 0.34624p l r≤ < ≤ < = = , means there are 26 subjects 

that satisfy the condition that the right hippocampal volume is between 4000 mm3 and 

4300 mm3, and out of those 26 subjects, there are 9 subjects who also satisfy the 

condition that the left hippocampal volume is between 4300 mm3 and 4700 mm3. The 

relationship between joint probability and conditional probability is given by 

( , )
( | )

( )

p x y
p x y

p y
=    or ( , ) ( | ) ( )p x y p x y p y=                  (2.3) 

We can also marginalise the joint probability with respect to one of the variables to 

obtain the marginal probability. 

( ) ( , )p y p x y dx
∞

−∞
= ∫   or ( ) ( , )p x p x y dy

∞

−∞
= ∫                (2.4) 

In plain English, we say “the probability of x and y is the product of the 

probability of y and the probability of x given y”. The principles of joint probability, 

conditional probability, and marginalisation can all generalise to more than two 

variables. In addition, if ( , ) ( ) ( )p x y p x p y=  or ( | ) ( )p x y p x= , we say that both 

variables are independent. 

co
u

nt
s 
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2.1.3 Bayesian probability 

By rearranging equations 2.3 and 2.4, we can reverse the conditional dependence 

between two variables 

( | ) ( )
( | )

( )

p x y p y
p y x

p x
=  or 

( | ) ( )
( | )

( | ) ( )

p x y p y
p y x

p x y p y dy
=
∫

              (2.5) 

The relationship above, between two conditional probabilities, is called Bayes’ 

theorem. Bayes’ rule plays a major role in decision theory, as well as being the 

foundation for the advanced machine learning methods that will be introduced in later 

chapters. The general Bayesian view further provides the framework to formulate the 

calculation of belief using Bayes’ rule. As mentioned by Cox (Cox, 1946 ), there are 

two ways to conceptualize probability. One is the idea of frequency in a group of 

ensemble, such as the frequency of drawing coloured balls from a large number of 

boxes (or repeated trials) with the same contents. The other idea is the reasonable 

expectation. For example, probability would represent the strength of belief that a white 

ball will be drawn from a box containing two black balls and one white ball, in a single 

trial. Using reasonable expectation as probability would make more sense when terms 

like “probability of raining tomorrow” and “probability of getting elected” are in use, 

as not all events can be repeated multiple times. In the frequentist (also known as 

“sampling theory”) approach (MacKay, 2002), one calculates the estimators from the 

samples of interest, and then uses some criterion to select between those estimators. In 

contrast, we only need to make assumptions on the form of the models and 

distributions for Bayesian inference, and can rely on the rules of probability and 

Bayes’ theorem to return the quantitative degree of belief.  

One practical example of the utility of Bayes’ rule is the chance of having HIV 

when a test shows a positive result (Gigerenzer, 2002; Hunt, 2003). Today’s blood test 

for HIV offers the sensitivity of 99.9% and specificity of 99.99%. That means if 
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someone is HIV positive, the test will have a probability of 99.9% of giving a positive 

result, and for a person who does not have HIV, the probability of the test giving a 

negative result will be 99.99%. In a probabilistic representation, 

( | )p test HIV= + = + = 0.999 and ( | )p test HIV= − = − = 0.9999, and the quest is to 

find ( | )p HIV test= + = + . Despite hearing propaganda about HIV all the time, the 

virus infects a very low percentage of the general population in developed countries. 

For example, only 0.01% of the US population not belonging to a high-risk group has 

HIV. Therefore we can say( )p HIV = + = 0.0001. Sometimes, people call this  

( )p HIV  the prior, which means the prior knowledge, or belief, before observing any 

data. The probability ( | )p test HIV  is called the likelihood, and expresses how 

probable the observed data is for different conditions. In fact, what we are interested 

is the posterior term( | )p HIV test , which gives us the probability of having HIV 

given the test result. Often people state Bayes’ theorem in words 

prior likelihood
posterior

evidence

×=  or  posterior prior likelihood×      (2.6) 

The “evidence” is the probability of observing this particular data given all possible 

conditions. In our example, both the test result and HIV status each have only two 

states, namely positive or negative. Therefore, the evidence is formulated as 

{ , }

( ) ( | ) ( )
HIV

p test p test HIV p HIV
∈ + −

= ∑ and we can represent the solution as 

 

( | ) ( )
( | )

( | ) ( ) ( | ) ( )

p test HIV p HIV
p HIV test

p test HIV p HIV p test HIV p HIV

= + = + = += + = + =
= + = + = + + = + = − = −

 (2.7) 

0.999 0.0001
( | ) 0.4998

0.999 0.0001 0.0001 0.9999
p HIV test

×= + = + = =
× + ×

       (2.8) 

This calculation shows that for someone, not from a high risk group, who has a 

positive blood test result, the actual probability of having HIV is only 0.5. If the 
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person takes another blood test, then we can rely on Bayes’ theorem to calculate the 

new probability from the additional observed evidence. By assuming both blood test 

results are independent, if the second test still shows positive, then this person will 

now have a 99.99% probability of having HIV. 

In practice, the Bayesian formulation provides an elegant way to aggregate all 

known information. One example is in the context of tissue segmentation (Ashburner 

and Friston, 2005). The unified segmentation approach combines many components, 

from the intensity distribution of tissues, the inhomogeneity field of the scanner, to 

image normalization. By defining a prior distribution for the models, such as the 

spatial prior of tissue classes and regularization for the image registration, the 

optimization can be solved on the integrated equation to obtain the posterior 

probability of each tissue class at each voxel. 

2.1.4 Mean and covariance 

Simplification is essential to characterize particular samples from a population. 

The most intuitive way to generalize a particular group is by averaging the 

observations. For example, it is said that Germans are tall and Japanese are short, and 

this conception is mainly based on the average heights in both populations. The 

average, or the mean, of the variable is often denoted as 
1

1 n

ii
x x

n =
= ∑ , where n is the 

number of samples. To describe how variable each sample is in the observations, 

another measurement called variance can be calculated by 2

1

1
var( ) ( )

n

ii
x x x

n =
= −∑ . 

This is often called the biased estimate of the variance. An alternative is the unbiased 

variance estimate, which is defined by 2

1

1
var( ) ( )

1

n

unbiased ii
x x x

n =
= −

− ∑ . This gives a 

slightly higher measure, especially when the sample size is small. The sample mean 

x is estimated from the samples, and is further used to calculate the variance. Hence 

the estimate of the variance should have one less degree of freedom. That is where the 
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n-1 term comes from. A different proof can be found in Appendix A. 

Here, we assume equal probabilities for the variable, but a more generalized 

formulation can be given for some function ( )f x  with probability ( )p x . We call this 

average, weighted by its probability, the expectation of ( )f x . It is often denoted as 

following: 

E( ) ( ) ( )f f x p x dx= ∫     or 
1

E( ) ( ) ( )
n

i ii
f f x p x

=
=∑             (2.9) 

The variance of ( )f x  is defined as 

2var( ) E[( ( ) E[ (x)]) ]f f x f= −                         (2.10) 

By expanding the square, we can write the variance in another form 

2 2var( ) E[ ( ) ] E[ (x)]f f x f= −                         (2.11) 

There is an advantage of using this formulation when the variance is calculated online 

or when memory is an issue to store all the observations. Notice that the equation in 

(2.10) requires the expectation to be computed before the variance can be calculated, 

whereas equation (2.11) can be used to update the variance and expectation iteratively 

when a new observation is measured. 

In cases when there are more than one variable, another measurement called 

covariance is computed from pairs of variables: 

1

1
cov( , ) ( )( )

n

i ii
x y x x y y

n =
= − −∑  or cov( , ) E[ ] E[ ]E[ ]x y xy x y= −      (2.12) 

Notice that variance is non-negative, but that covariance can be negative. Commonly, 

with multivariate data, the covariance between each pairs of variable is represented as 

a covariance matrix. If we define the matrix T[ ]n= 1 2X x x x⋯ , d∈ℜx , where each x 

is a column vector of one observation or sample with d number of variables 

(sometimes called the dimension). If we use the hippocampal volume mentioned in 

previous section as an example, then d=2, and n will be 190. To calculate the 

covariance matrix, we first remove the mean over the observations from each variable. 
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1,1 1 1,

,1 1 ,

d d

n n d d

µ µ

µ µ

 − −
 =  
 − − 

x x

X

x x

⋯

ɶ ⋮ ⋱ ⋮

⋯

, where ,1

1 n

d i di
x

n
µ

=
= ∑ , then the covariance matrix is 

computed by  

1

1 1
( )( )

n

i i
in n=

= − − =∑ T T
Σ x µ x µ X Xɶ ɶ                   (2.13) 

and the size is d by d. The matrix is a symmetric positive semi-definite matrix. Notice 

that the diagonal of the covariance matrix is the variance of each variable. When two 

variables have positive covariance, it implies these two variables tend to vary in the 

same direction, i.e. if one variable is very large in one particular observation, the other 

variable is also likely to be large in the same observation. If the variables have 

negative covariance, they would be likely to vary in the opposite direction. The 

covariance matrix plays an important role in linear regression, and also principle 

component analysis, which will be explained in a later chapter. 

In order to provide a standardized measurement describing the co-variation 

between two variables, Pearson’s correlation coefficient is defined as the normalized 

covariance ranging from -1 to 1.  

cov( , )
corr( , )

var( ) var( )

x y
x y

x y
=                          (2.14) 

The correlation matrix can be computed from the covariance matrix by: 

,
,

, ,

i j
i j

i i j j

Σ
=

Σ Σ
R                               (2.15) 

 

2.2 Probability Distributions 

We have defined the concept of probability density function in section 2.1.1. In 

the statistics literature; there are many forms of parametric distributions, of which the 
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probability distribution varies by adjusting the parameters. Each distribution has its 

applications and theories associated. In the context of this thesis, we are mainly 

concerned with the two common distributions used in machine learning: the Normal 

distribution (also known as the Gaussian distribution), and the Bernoulli distribution. 

2.2.1 Gaussian distribution 

The Gaussian distribution is probably best known for its bell shape. In the 

simplest case of a single variable, the probability density function of a Gaussian 

distribution is defined by 

2
2

2

1 ( )
( | , ) exp

22

x
N x

µµ σ
σσ π

 −= − 
 

                 (2.16) 

There are two parameters controlling the shape of this distribution: µ is the mean, 

and σ is the standard deviation, which is the square root of the variance. In other 

words, the expectation of x equals the mean, E( )x µ= , and 2var( )x σ= . The inverse 

of the variance, 
2

1

σ
, is called the precision, which will be mentioned often in later 

chapters. Recalling the probability rule that the total integral of any distribution is one, 

we can utilize this property to derive the following equation (it can also be derived 

from a general method). 

2

2
exp 2

2

x
dx σ π

σ

∞

−∞

 
− = 
 

∫                          (2.17) 

Sometimes in the context of neuroimaging, the spread of a Gaussian distribution is 

specified by the full width at half maximum (FWHM), rather than the variance. The 

FWHM is defined by the width of the distribution between the points having half the 

value at the peak. (See Fig 2.3) 
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Figure 2.3 Univariate Gaussian 

Illustration of the univariate Gaussian distribution with 0 mean, and 1 standard deviation. The 

FWHM is also shown, and is slightly larger than two standard deviations. 

In a Gaussian distribution, both variance and FWHM can be directly calculated from 

each other. Notice the peak of the Gaussian distribution appears at its mean, hence 

FWHM is invariant to the mean of the distribution, and we can simplify the equation 

to  

 

2

2

2

2

2 2

( ) exp(0) 1
exp

2 2 2

( )
ln 2

2

( ) 2 ln 2

2ln 2

FWHM= 2 2ln 2 2.3548

half

half

half

half

half half

x

x

x

x

x x

σ

σ
σ

σ

σ σ+ −

  − = = 
  

− = −

=

= ±

− = ≈

         (2.18) 

The multivariate Gaussian distribution is defined by 

1
1/ 2 / 2

1 1
( | , ) exp

| | (2 ) 2D
N

π
− = − 

 

Tx µ Σ (x -µ) Σ (x -µ)
Σ

             (2.19) 

where D refers to the dimension, or length, of the vector x, the µ is the vector of 

means, and Σ  is the D by D covariance matrix. The multivariate version of equation 

(2.17) is given by 

1 1/ 2 / 21
exp | | (2 )

2
Dd π

∞
−

−∞

 − = 
 

∫
T(x -µ) Σ (x -µ) x Σ              (2.20) 

This equation is particularly useful when marginalizing over a square exponential 
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function, such as a Gaussian distribution, is required. 

 

 

 

 

 

 

Figure 2.4 Two dimensional Gaussian 

Illustration of a two dimensional multivariate Gaussian distribution. The coloured contour 

shows an elliptical shape, the major and minor axes of the ellipse are the corresponding 

eigenvectors of the covariance matrixΣ . The major axis is the eigenvector with the highest 

eigenvalue. 

 

One reason that Gaussian distributions are commonly used in the field of statistical 

modelling is its simplicity, as it has only two parameters. The reason that Gaussian 

distributions are so prevalent and widely observed in nature may be the consequence 

of the central limit theorem, which states that the sum of a set of random variables, 

which are not necessarily Gaussian distributed, would approach a Gaussian 

distribution when the number of terms in the sum increases. For example, roll a dice a 

hundred times and sum up the numbers, then repeat this multiple times, the 

distribution of the sum of the numbers will approach a Gaussian with mean at 350. 

However, not everything in the real world follows the Gaussian distribution. Some 

events have distributions with heavier tails than the Gaussian, such as the chance of 

economic crises (Buchanan, 2007; Gopikrishnan et al., 1998). For those cases, power 

law distribution may be more suitable. In this thesis, for the simplicity of most 

algorithms, only Gaussian distributions are considered for modelling populations and 

noise.    

2.2.2 Parametric models and maximum likelihood (ML) estimates 

In the probabilistic framework of machine learning, one main task is to model 
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the distribution of the population given some samples, such as the hippocampal 

volumes shown in figure 2.1. Having a nearly infinite number of samples is unlikely, 

so fully characterising a population density function using histograms, with minimum 

precision of the observations (i.e. very narrow bins) becomes more difficult. For cases 

when the sample size is too small to fully cover all possible measurement points, 

parametric models may provide a more robust way to characterize the distribution of 

the population - providing the true distribution of the population is not too far from 

the model assumptions. Usually, parametric models only require a few parameters to 

fully describe the distribution. For instance, a Gaussian distribution only needs the 

mean and the covariance. An approach called “maximum likelihood estimation” can 

be used to estimate model parameters from collected observations. In this formulation, 

the model parameters that yield the highest likelihood of the observed data would be 

determined as the solutions. Mathematically, we can define a set of observed data 

1 2{ , ,..., }ND = x x x  drawn from the same distribution independently. In other words, 

the observed samples are “independent and identically distributed” (i.i.d.). The 

maximum likelihood estimates of the parameters is defined by  

arg max ( | )ML p D=
θ

θ θ                            (2.21) 

When estimating parameters for a Gaussian distribution, we can firstly define the 

likelihood function of the observed data as 

1

( | , ) ( | , )
N

n
n

p D N
=

= ∏µ Σ x µ Σ                            (2.22) 

Because each observation is assumed to be independent, the likelihood of the dataset 

is the product of the likelihoods of each observation. The objective is to determine the 

parameters MLµ and MLΣ  that give the highest value of the likelihood function. Since 

the logarithm is a monotonically increasing function, the parameters that maximize 

the likelihood function are equivalent to those that maximize the log likelihood 
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function. The log likelihood for a Gaussian is given by 

1

1

1

1

ln ( | , )

ln ( | , )

1
{ ln(2 ) ln | | ( ) ( )}

2

N

n
n

N

n
n

N

n n
n

N

N

ND Nπ

=

=

−

=

=

= − + + − −

∏

∑

∑ T

x µ Σ

x µ Σ

Σ x µ Σ x µ

         (2.23) 

By setting the derivative of the log likelihood with respect to µ  and Σ to zero, we 

obtain the solutions for the maximum likelihood of the parameters (Bishop, 2006a; 

Magnus and Neudecker, 1999)  

1

1 N

ML nnN =
= ∑µ x                                       (2.24) 

1

1
( )( )

N

ML n ML n MLnN =
= − −∑ T

Σ x µ x µ                        (2.25) 

These solutions are exactly the same as the definition of mean and covariance 

mentioned in section 2.1.4. 

2.2.3 Mixture of Gaussians (MoG) 

The simplicity of the Gaussian distribution explains its popularity for modelling 

probability distributions. However, not all distributions have the same “bell shape”. 

For example, some distributions may be skew or non-symmetrical. Some distributions 

may have heavy tails, and some may have multiple peaks. It is possible to model 

those distributions using other mathematical representations of probability 

distributions, and one commonly used approach is to model them by linear 

combinations of K Gaussian distributions.  

1
( ) ( | )

K

MoG k k kk
p N ,π

=
=∑x x µ Σ                      (2.26) 

Here, kπ is the mixing portion of each of the K Gaussians, which must have a value 

between zero and one inclusively, (0;1)kπ ∈ . Also, these mixing proportions must 

sum to one, 
1

1
K

k k
π

=
=∑ .  
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Figure 2.5 Mixture of Gaussians 

Illustration of mixtures of two Gaussians. The left figure shows a combination of two Gaussians, 

with different means and variances, that model a skew distribution. The right figure shows a 

heavy tailed distribution modelled by two Gaussians with the same mean but different 

variances. 

 

A mixture of Gaussians can also be used as a clustering technique. By adopting 

the maximum likelihood approach, we can find the mixing portions, means, and 

covariances that maximize the log likelihood given by 

{ }1 1
ln( ( | , , ) ln ( | )

N K

k n k kn k
p D N ,π

= =
=∑ ∑π µ Σ x µ Σ                (2.27) 

This optimization problem could be solved by a gradient decent approach, but usually 

it is solved by an “Expectation Maximization” or EM procedure (Dempster et al., 

1977). EM algorithms never decrease the likelihood, but EM converges to only a local 

maximum rather than the global maximum. Therefore, initializing the parameters to 

reasonable estimates of the optimal values is important. The EM algorithm divides the 

iterative procedure into two stages (Bishop, 2006a; Ghahramani and Sahani, 2005). 

The first stage is called the “E step”, which fills in values of latent variables according 

to posterior given data and the current estimate of the parameters. In the context of a 

mixture of Gaussians, the latent variables are the responsibilities, nkr , of each data 

point to all K Gaussians. 



 41 

1

( | )

( | )

k n k k
nk K

i n i i
i

N ,
r

N ,

π

π
=

=
∑

x µ Σ

x µ Σ

                        (2.28) 

The responsibilities can be seen as the belonging probability of a particular sample to 

a particular Gaussian. In the case of hard classification or clustering, the cluster 

(Gaussian) to which the sample belongs, is chosen by the cluster k with the highest 

responsibility, ˆ arg max( )nk
k

k r= . After updating the latent variables in the E step, the 

next stage is the “M step”, which re-estimating the parameters using current estimates 

for the responsibilities. 

1

1

1

1

1

( )( )

N

nk nn
k N

nkn

N

nk n k n kn
k N

nkn

N

nkn
k

r

r

r

r

r

N
π

=

=

=

=

=

=

− −
=

=

∑
∑

∑
∑

∑

T

x
µ

x µ x µ
Σ                  (2.29) 

By iterating between the E step and M step, the parameters should converge to a local 

maximum of the likelihood function. 

Because the parameters in a MoG are determined by maximizing likelihood, 

introducing more Gaussians into the model will always increase the likelihood, which 

may result in over-fitting of the data. The problem of over-fitting will be described in 

more detail in later chapters. The choice of the optimum number of Gaussians should 

be based on model selection criteria (Lee et al., 2006; McKenzie and Alder, 1994).  

We applied the MoG and EM algorithm to the dataset of hippocampal volume 

(Figure 2.6), where the only prior knowledge we provided was the number of 

Gaussians, K=2. The algorithm had no further information about the controls and 

patients, yet the groups seemed to be separated quite successfully. If we set the 

threshold at 0.5 for the responsibilities as the classification boundary, the algorithm 
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had 96.7% of specificity and 70.7% of sensitivity. However, when the dimensionality 

is high, the size of the covariance matrix grows quadratically with the number of 

dimensions. A related issue is the “curse of dimensionality”, which occurs when the 

number of samples is less than the number of dimensions, and the sample covariance 

matrix will be non-invertible. Although this problem can be resolved by adding a 

small constant in the diagonal terms of the covariance matrix, computationally the 

EM-MoG approach is still very expensive for high dimensional data. 

 

 

 

 

Figure 2.6 EM with a mixture of Gaussians 

The left figure shows the clustering result with two Gaussians of the left and right hippocampal 

volume dataset. The elliptical contours are the one standard deviation boundary for both 

Gaussian distributions. The crosses are the mean of both distributions. The right figure shows 

the same dataset and the same clustering results by revealing the identity of the patients and 

controls. The red colour indicates the controls and the blue indicates the patients. The MoG 

clustering seems to identify both populations well without any prior information about the 

patients and controls. An examination of the separation of patients from controls using the 

responsibilities shows that 96.7% of controls have responsibilities over 0.5 for the red 

Gaussian, and 70.7% of patients have responsibilities of over 0.5 for the blue Gaussian.  
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2.2.4 Bernoulli distribution 

The Bernoulli distribution is a distribution for binary measurements, the most 

commonly used example of which is coin flipping. We can define a variable {0,1}y∈ , 

which indicates head or tail in the coin flipping experiment. The probability of 

observing y=1 is defined by the parameterµ , so that ( 1| )p y µ µ= = , 

and ( 0 | ) 1p y µ µ= = − . Therefore, the probability distribution has the form 

1Bern( | ) (1 )y yy µ µ µ −= −                         (2.30) 

The above formulation is derived from the fact that y is a binary variable, so it acts as 

a switch. When we observe a dataset of binary outcomes, 1 2{ , ,..., }ND y y y= , the 

likelihood function of observing all those outcomes can be defined as 

1

1

( | ) (1 )n n

N
y y

n

p D µ µ µ −

=

= −∏                         (2.31) 

The parameter that maximizes the likelihood of the above equation can be derived by 

setting the derivative to zero, so that
1

1 N

ML nn
y

N
µ

=
= ∑ . Here, we can further extend 

the formulation of maximum likelihood estimation into the general framework on 

which logistic regression, relevance vector classification, and Gaussian process 

classification are based. We may have a dataset 

1 1 2 2{( , ), ( , ),..., ( , )} ( {1,0})d
N ND y y y= ⊆ ℜ ×x x x , for example, where x is a two 

dimensional vector containing both left and right hippocampal volumes, and y is a 

binary variable indicating whether the subject is a patient or not. In this general 

formulation, the likelihood function can be written as  

1

1

( | , ) ( , ) (1 ( , ))n n

N
y y

n n
n

p y f f −

=

= −∏θ x θ x θ x                  (2.32) 

The function ( , ) (0;1)f ∈θ x  has the range between 0 and 1, and in practice, it 

may be a logistic function or a probit function, parameterised by the vector of 

parameters, θ . Often, we are interested in MLθ , which are the values of θ  that 
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maximize the likelihood. 

 

2.3 Decision Theory 

An essential aspect of machine learning and pattern recognition is not just to 

learn the pattern and distribution of the observed data, but to make predictions about 

new data. In the context of clinical diagnosis, it is important to be able to make a 

decision about the group membership of a subject who underwent some tests, hence 

classify the subject into either the diseased or non-diseased group.  

2.3.1 Bayesian Decision Theory 

In the probabilistic framework, we can use the Bayesian probability in equation 

2.5 to make the decision based on posterior probability. We can continue to use the 

Alzheimer’s dataset as an example, and define two classes 1C  for patients and 2C  

for controls; x would still be the volume of hippocampus. What we are interested in 

are the probabilities of both classes, given the measurements of hippocampus, 

( | )kp C x . Intuitively, we would like to classify a person into the class with the 

highest posterior probability, ( | )kp C x . We can show indeed that this intuition is 

correct mathematically if we want to minimize the misclassification rate. We can 

define the probability of making a mistake by the following 

1 2

2 1

( | ) if we decide  
( | )

( | ) if we decide 

p C C
p mistake

p C C


= 


x
x

x
               (2.33) 

The average probability of mistake is given by 

( ) ( | ) ( )p mistake p mistake p d
∞

−∞
= ∫ x x x                      (2.34) 

To minimize the p(mistake), we come up with the Bayesian decision rule for 

minimizing the probability of a mistake: Decide 1C  if 1 2( | ) ( | )p C p C>x x ; 
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otherwise decide 2C . In binary classification, since 1 2( | ) ( | ) 1p C p C+ =x x , the 

decision criteria would be to decide the class that satisfies ( | ) 0.5kp C >x . At the 

border, where 1 2( | ) ( | ) 0.5p C p C= =x x , it is called the decision boundary. 

2.3.2 Loss function and Utility function 

For many practical situations, the objective is not simply to merely reduce the 

misclassification rate. In many real world situations, often the penalties of 

misclassifying class 1 as class 2 are not the same as misclassifying class 2 as class 1. 

For example, the cost of erroneously misclassifying a patient as healthy, hence 

delaying the treatment, will certainly result in a higher loss (for the subject) than 

misclassifying a healthy subject as a patient. Therefore, the optimal decision should 

be the one that minimizes the expected loss when a misclassification occurs. 

Sometimes, a utility function, which is the inverse of the loss function, is considered, 

and the objective would be to make decisions that maximise the expected utility, 

rather than minimise the expected loss. For instance, the loss from classifying an 

Alzheimer’s patient as normal may be 5, and the loss of classifying a normal into a 

patient may be 2. When we observe the posterior probability ( | ) 0.6p normal =x , 

without the penalty of loss, the optimal decision should be put the subject into the 

normal group. However, when the loss is multiplied by the probability of mistake, 

based on equation (2.33), the expected loss of classifying the subject as normal 

is ( | ) 5 (1 0.6) 5 2p patient × = − × =x , and the expected loss from classifying the 

subject as a patient is( | ) 2 1.2p normal × =x . In order to minimize the expected loss, 

the optimal solution should be to treat the subject as a patient. 

2.3.3 Discriminative models vs. Generative models 

There are commonly two approaches to solve decision problems, the generative 

methods and the discriminative methods (Bishop, 2007; Ulusoy and Bishop, 2005a; 

Ulusoy and Bishop, 2005b). The generative method requires the learning of class 
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conditional probabilities ( | )kp Cx . The name “generative” comes from the fact that 

when re-sampling from the joint distribution, it is possible to generate synthetic 

examples of the input feature x. To solve the inference problem, we can apply Bayes’s 

theorem to calculate the posterior probability 

( | ) ( )
( | )

( )
k k

k

p C p C
p C

p
= x

x
x

                       (2.34) 

 

 

 

 

 

 

 

 

 

Figure 2.7 Class-conditional densities and correspo nding posterior probabilities 

Illustration for one dimensional class-conditional density of two classes and their 

corresponding posterior probabilities, The prior probabilities for both classes are 

assumed to be the same. Notice both class-conditional density and the posterior 

probabilities intercept at the value x, at which both posterior probabilities are 0.5.  

 

An alternative approach is to find the conditional distribution ( | )kp C x  directly. In 

practice, discriminative models generally perform better than generative models. The 

complexity of generative methods is usually much higher than that of discriminative 

methods. Taking an naïve example of distinguishing spoken words between German 

and English, if we take the generative approach, we will have learn both German and 

English well. However, if our only purpose is to discriminate between German and 
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English, it will be more efficient to learn the differences between German and English. 

We can especially concentrate on the difficult words and pay less attention to the 

trivial words. However, the problem will arise when someone speaks Dutch. If we 

take the generative approach, we will realize it is neither German nor English, but 

with the discriminative approach, we may misclassify Dutch as German. This may be 

the reason why a lot of westerners tend to mis-identify Korean as Japanese. The 

advantages of the generative approach will arise when we want to further distinguish 

between German, English, Dutch, and French. If we take discriminative approaches, it 

will require us to learn the new discriminative functions each time we want to identify 

a new language, but with the generative approach, we will only need to learn the new 

language (the class conditional distribution of the new language), then we can 

distinguish all the languages we have learnt.  

In the context of neuroimaging, because the input features generally have high 

dimensionality, it is nearly impossible to learn the class conditional distribution from 

limited samples. However, when people start pooling datasets together, the generative 

modelling approach should become more and more accurate.  

There are some commonly used generative methods. For example, the Naïve 

Bayes classifier, which assumes independence between input features, is equivalent to 

sum of the mass univariate log likelihoods (Hirata et al., 2005). The linear 

discriminant analysis (LDA) (Sato et al., 2008b) and quadratic discriminant analysis 

(QDA) assume Gaussian distributions for the class conditional densities. Both LDA 

and QDA consider covariance structures between features, and LDA makes the further 

assumption that the within group covariance is the same for all classes. 

The common discriminative models, which are also the main focus of this thesis 

are logistic regression, the support vector classifier (SVC), the relevance vector 

classifier (RVC), and the Gaussian processes classifier (GPC). 
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2.4 Basic Machine Learning Algorithms 

Before introducing more advance methods, this section will show some basic and 

prevalent algorithms. There are two main categories in supervised learning. As 

mentioned in the previous chapter, a supervised learning method requires training 

from obtained training data. A training set contains input/output pairs, 

1 1 2 2{( , ), ( , ),..., ( , )}N NS y y y= x x x . If the target variable y comes form a set of discrete 

labels 1 2{ , ... }ky C C C⊆ , then it is a classification problem (e.g. y is the label for 

patients or normal). If y is a continuous numbery ⊆ ℜ , then it is a regression problem 

(e.g. y is the age). 

2.4.1 Linear least squares regression 

The history of least squares fitting goes a long way back, and it is one of the 

most popular methods in the world. When people refer to regression, by default, they 

usually mean least squares regression. The basic linear regression models the output 

as a weighted linear combination of the input features, with an offset term. 

01

D

d dd
y w x w

=
= +∑                        (2.35) 

Where 0w is a constant to model the bias or offset. We can also write this in a matrix 

form, 0y w= +Tx w , or we can further simplify by adding a constant element in the x, 

so that * 1

 
=  
 

x
x  and *

0w

 
=  
 

w
w , * *y = Tx w . For simplicity of notation, we will 

assume the feature vector x contains the constant element by default. Recall the 

notation in section 2.1.4, where we define a data matrix, T[ ]n= 1 2X x x x⋯ , of input 

features. To estimate the weight vector w, we set up a least squares cost function, so 

that the optimum weight vector would minimize the sum of squares between the 
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observed target variables t and the predicted outputXw .1  

2

=1

arg min ( ) ( ) ( )
N

n n
n

t− =∑ T T

w
x w Xw - t Xw - t                 (2.36) 

To find the optimum parameters, w, we set the derivative with respect to w to 0, 

which yields the following equation 

 
=1

0= ( )
N

n n n
n

t−∑ T Tx w x                        (2.37) 

This can be written in the matrix notation as 

1

0= ( )

( )−

−

=
=

T

T T

T T

X Xw t

X Xw X t

w X X X t

                        (2.38) 

This is often referred to as estimating parameters by ordinary least squares (OLS), and 

the data matrix X is sometimes known as a design matrix (Friston et al., 2007c; 

Friston et al., 1995). The OLS solution can also be framed as a maximum likelihood 

estimate with Gaussian noise. 

=t ε+Tw x                        (2.39) 

The error, ε , is a zero mean Gaussian random variable with variance 2σ . Therefore, 

we can express the likelihood function as 

2 2

1

( | , , )= ( | , )
N

n n
n

p N tσ σ
=

∏ Tt X w w x              (2.40) 

Then we obtain the log likelihood function 

2 2 2 2

=1

1
ln ( | , , )= ln ln(2 ) ( )

2

N

n n
n

p N N tσ σ π σ− − − − − 
 

∑ Tt X w x w        (2.41) 

If we set the derivative of the log likelihood function to 0, and solve, then we obtain 

expressions (2.37) and (2.38). 

                                                 
1 Although the output/target variable was loosely defined in the previous sections, to 

avoid further confusion in the equations, we will use t to refer to the observed target 

vector in the training set, and y to refer to the predicted output vector from the model. 

 



 50 

2.4.2 Regularized least squares regression 

When the sample size is limited, in order to solve ill-posed problems (i.e. TX X is 

non-invertible (Tarantola, 2004)) or to prevent over-fitting, some form of 

regularization is often introduced into the model. The most common regularizer 

involves also minimising the sum of squares of the parameters. This is also known as 

“ridge regression”. 

2 2

=1

arg min ( ) || || ( ) ( )
N

n n
n

t λ λ− + = +∑ T T T

w
x w w Xw - t Xw - t w w        (2.42) 

The regularization parameterλ , also called the decay or shrinkage term, controls the 

amount of regularization. Whenλ is large, the weight vector w will shrink toward zero, 

and whenλ approaches zero, the estimated w will have a nearly identical solution to 

that obtained by OLS. To find the optimal solution, we set the derivative of equation 

with respect to w (2.42) to zero. 

=1

0= ( )
N

n n n
n

t λ− +∑ T Tx w x w                       (2.43) 

Which can be written in matrix notation as 

1

0= ( )

( )

( )

λ
λ

λ −

− +

+ =
= +

T

T T

T T

X Xw t w

X X I w X t

w X X I X t

                      (2.44) 

In the Bayesian view of ridge regression (Hsiang, 1975), the regularization can be 

viewed as priors on the weight vector. The prior is often modelled by zero mean 

Gaussian with the hyper-parameter, α, which denotes the precision (the inverse of the 

variance) of the prior distribution. 

1( | ) ( | 0, )p Nα α −=w w I                     (2.45) 

The resulting posterior distribution is proportional to the product of the prior (2.45) 

and the likelihood (2.40) 

2 2( | , , , ) ( | , , ) ( | )p p pα σ σ α∝w t X t w X w            (2.46) 
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The log of the posterior distribution  

2 2 2

=1

1
ln ( | , , , )=- ( ) constant

2

N

n n
n

p tα σ σ α− − + + 
 

∑ T Tw X t x w w w        (2.47) 

Now we can see the similarity between the objective function in ridge regression 

(2.42) and the log of the posterior (2.47) .The maximum posterior weight is 

2 2 1( )σ σ α− − −= +T T
MAPw X X I X t                       (2.48) 

If we take the ridge regression view, the regularization parameter is equivalent to the 

product of the variance of the noise and the precision of the prior 

distribution 2λ σ α= (Bishop, 2006a; Hsiang, 1975). 

In practice, the optimal regularization parameter could be learnt empirically through 

cross validation, which will be explained in later sections. However, we can also take 

the Bayesian approach, which is to marginalize with respect to the weight vector and 

find the hyper-parameters that can maximize the evidence function 2( | , )p σ αt . This 

will lead to the Bayesian learning of relevance vector machines in chapter four.   

2.4.3 Logistic least squares regression 

Least squares regression tries to minimize the mean squared difference between 

the predicted and observed variables. In the framework of a generalized linear model, 

it is possible to apply a non-linear function ( )f Tx w  and convert the linear 

combination of the input features into non-linear outputs. Many different link 

functions could be used, but in this thesis only the logistic function will be considered. 

A logistic function is one type of squashing function, which constrains the output 

between the range of zero and one. The Probit function is also another squashing 

function. The definition of the logistic function is 

1 exp( )
( )

1 exp( ) exp( ) 1

x
f x

x x
= =

+ − +
                      (2.49) 

This leads to an interesting property of the logistic model that f(x)+f(-x)=1 
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Figure 2.8 Logistic function 

The logistic function constrains the output range between 0 and 1. Notice the regions around 

the middle of the function, where x=0, is approximately linear, with a gradient of 0.25. 

The derivative of the logistic function also has a unique property  

( ) 1 exp( )
( )(1 ( ))

1 exp( ) 1 exp( )

df x x
f x f x

dx x x

−= ⋅ = −
+ − + −

          (2.50) 

This equation implies ( ) / ( ) /df x dx df x dx= − . To obtain the weight vector of the 

logistic regression, we first define a least squares error function. 

2

=1

( ) ( ( ) )
N

n n
n

E f t= −∑ Tw x w                 (2.51) 

Since f(x) is no longer a linear function, it is not possible to obtain a closed-form 

solution similar to equation (2.44). Therefore, estimating w requires iterative methods, 

such as the Newton-Raphson optimization: 

( ( )) ( )new old E E−= − ∇∇ ∇1w w w w                 (2.52) 

Please refer to the Appendix B for details of the derivatives and the implementation of 

least squares logistic regression. To demonstrate the application of logistic regression, 

we applied the algorithm to a subset of the hippocampal dataset, containing 179 

subjects, and apply the regression to the hippocampal volumes and the Mini-Mental 

State Examination (MMSE) scores (Fuller et al., 1975; Perneczky et al., 2006) 
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Figure 2.9 Linear regression versus logistic regres sion 

The left figure shows a linear regression of the hippocampal volumes and the MMSE scores. 

The right figure shows a logistic regression. The maximum scores of MMSE is 30.  

Because the MMSE scores range from 0 to 30, it would make sense to use a logistic 

regression to avoid the capping effect from linear regression. We also scale down the 

MMSE to between 0 and 1 before applying the logistic regression. The results are 

shown in Figure 2.8. 

 

2.4.4 Linear discriminant methods for classification 

In section 2.3, we described both the generative and discriminative approaches to 

the classification problem. In this section, we focused on the binary discriminant 

function, which requires a weighted linear combination of input features, as in 

equation (2.35). If we define the labels by { 1,1}y∈ − , then binary discriminant 

functions should have the form 

 

0

0

1 + >0
=

1 <0

w
y

w


− +

T

T

w x

w x
                        (2.53) 
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The simplest method to determine the weight vector could be just treating the labels 

as the target variables in a regression problem, and solving this using least squares. 

The solution in this formulation will minimize the square of the distance between 

each sample to the decision boundaries.  

Another approach would be to use the perceptron algorithm (Rosenblatt, 1962), 

which is the primitive version of the artificial neural network. It usually uses a 

gradient based optimization to minimize the misclassification errors iteratively. The 

perceptron algorithm can guarantee a solution which has no classification error if the 

classes are separable, however, there are an infinite number of possible solutions, and 

the final solution would rely on the initial conditions and learning rate of the 

perceptron algorithm. Neither least squares, nor the perceptron methods, are based on 

a probabilistic framework.  

For linear discriminant models, the decision boundary is defined by the subspace 

of the input space that satisfies 0+ 0w =Tw x . The decision boundary is orthogonal to 

the weight vector w, hence it has one less dimension than w (and w0). When the input 

space is two dimensional, the decision boundary is a line, and in three dimensional 

input space the boundary would be a plane. When the input space is high dimensional, 

then the decision boundary is sometimes referred to as a “hyper-plane”.  

 

2.4.5 Fisher’s linear discriminant analysis (LDA) 

Fisher’s linear discriminant method, also known as linear discriminant analysis 

(LDA), is the most well known linear discriminant algorithm. This comes from its 

simplicity and robustness when the distributions of the two classes are Gaussian. LDA 

projects all the data points to a one dimensional space and aims to maximize the 

inter-group separation, as well as minimize intra-class variation. Because the 
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magnitude of the projection vector is not important, we can calculate the vector 

-1
w 2 1( )= −w S µ µ                         (2.54) 

Where 1 2,µ µ are the mean vectors of both classes, 

1 2

1 n 2 n

1 1
,

n C n CN N∈ ∈
= =∑ ∑µ x µ x                  (2.55) 

and wS is the within class covariance, given by 

 
1 2

w 1 1 2 2( )( ) ( )( )n n n n
n C n C∈ ∈

= − − + − −∑ ∑T TS x µ x µ x µ x µ          (2.56) 

The bias term, 0w , is commonly defined in the way that the average of the means of 

both classes would lay on the boundary in the projected space. 0 2 1

1
( )

2
w = − + T

µ µ w  

We can also take a generative approach by assuming both class conditional 

probabilities are Gaussian distributed with equal covariances (Li, 2008) 

1 1 2 2( | ) ( | , ), ( | ) ( | , )p C N p C N= =x x µ Σ x x µ Σ          (2.57) 

 

 

 

 

 

 

Figure 2.10 Two Gaussians with equal covariance  

The left figure shows two Gaussian distributions with equal covariance, and the right figure 

shows their corresponding contours. The boundary, which is defined by having the same class 

conditional probabilities for both classes, is shown in the red line. 

If we assume both classes have equal priors, then the decision boundary will be the 

subspace that satisfies 1

2

( | )
1

( | )

p C

p C
=x

x
 or 1 2log( ( | )) log( ( | ))p C p C=x x . Therefore, the 

x in the space of the decision boundary must satisfy the condition that 
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2 2 2 2=T -1 T -1(x -µ ) Σ (x -µ ) (x -µ ) Σ (x -µ ) . Expanding both sides we can derived the 

following equation 

1 1 1 2 2 2

2 1 2 1 2 1

0

1
( ) ( ) ( ) 0

2

+ − =

− − + − =

T -1 T -1 T -1 T -1

T -1 T -1

-2x Σ µ +µ Σ µ 2x Σ µ µ Σ µ

x Σ µ µ µ µ Σ µ µ
         (2.58) 

If we reformulate the second equation in (2.58) into the linear discriminant equation, 

0= +y wTw x , then we can derive the identical solution 2 1= -1w Σ (µ -µ ) , and 

0 2 1

1
( )

2
w = − + T

µ µ w as in (2.54). Different priors on the classes would be equivalent 

to changing the offset term0w .  

LDA generally yields good performance in low dimensional data. With 

high-dimensional imaging data, LDA has the drawback that the within-class 

covariance matrix, wS , is often non-invertible when the number of samples is lower 

than the number of dimensions. This usually can be resolved by regularization 

methods (Chen et al., 2000; Thomaz and Gillies, 2005) to ensure that wS is invertible. 

   

2.4.6 Logistic regression 

We mentioned the least-square logistic regression model with a continuous target 

variable in 2.4.3. In this section, we introduce a logistic model with a different 

objective function to solve the linear classification problem. The logistic model for 

binary classification arises from the assumption that the log of the ratio of both 

posterior probabilities has a linear relationship. 

1
0

2

( | )
log

( | )

p C x
w

p C x
= Tw x +                        (2.59) 

Then we can derive the logistic model for the posterior probability. 
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          (2.60) 

 

Because it is a binary classification, we can apply the Bernoulli distribution discussed 

in section 2.2.4 for assembling the likelihood function. For the convenience of the 

mathematical formulation, we changed the label from -1 and 1 to 0 and 1, {0,1}t ∈ .  

1

1

( | ) ( ) (1 ( ))n n

N
t t

n n
n

p f f −

=

= −∏ T Tt w w x w x                 (2.61) 

The function f is the logistic function defined in (2.49). For the sake of clarity, we also 

take the augmented feature vector x to incorporate the constant offset in the feature set. 

The log-likelihood function is  

1

ln ( | ) { ln ( ) (1 ) ln(1 ( )}
N

n n n n
n

p t f t f
=

= + − −∑ T Tt w w x w x           (2.62) 

As in the case of least squares logistic regression, there is no closed form solution to 

the log-likelihood function. Therefore, an iterative method such as the 

Newton-Raphson update method (2.52) is required. The gradient of the log-likelihood 

function is 

1 1

ln ( | ) ( ) ( ) ( )
N N

n n n n n n
n n

p t f f t
= =

∇ = − = − − = − −∑ ∑ T
w t w x x X f t          (2.63) 

where ( )n nf f= Tw x . The second derivatives of the log-likelihood function, also 

know as the Hessian matrix, are 

1

ln ( | ) (1 )
N

n n n n
n

p f f
=

∇∇ = − − = −∑ T Tt w x x X RX            (2.64) 

where the R is a diagonal matrix with elements(1 )n nf f− , which is also the gradient 

of the logistic function (2.50). Therefore, the update equation for the logistic model is 
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simply 

1( ) ( )new old
−= − −T Tw w X RX X f t                   (2.65) 

See Appendix B for an implementation in MATLAB. 

To show the classification capability, we applied both LDA and logistic regression to 

the Alzheimer’s dataset. The decision boundaries determined by both methods are 

similar. In a simulation study (Pohar et al., 2004), it was found that when the 

normality assumption of both classes were not too badly violated, both LDA and 

logistic regression yield nearly identical solutions. However, when the assumption of 

normality fails, logistic regression would perform favourably compared with LDA. 

This is because logistic regression does not have the assumption of normality, and 

does not require the estimation of a covariance matrix. Logistic regression does still 

assume symmetry of the posterior distributions for both classes, and extension of 

logistic regression will be described in the section 5.1.2.  
 

 

 

 

Figure 2.11 Fisher’s linear discriminant 

The figure shows the decision boundaries determined by both fisher’s linear discriminant 

analysis (LDA) (Black line) and logistic regression (Magenta dashed line) for the Alzheimer’s 

dataset, blue indicates the patient population, red indicates the controls. Since both 

populations satisfy the Gaussian distribution, and have similar covariance, the boundaries 

computed by both methods are also similar. The right figure zooms in closely to the decision 

boundary. 
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2.5 Cross validation and Model Comparison 

In the context of machine learning and pattern recognition, the predictive ability 

(empirical success) of a model is essentially the measure of goodness for a particular 

problem. Different models and learning algorithms have different assumptions and 

learning strategies. Unbiased determination of prediction accuracy is crucial to 

selecting a desirable model for a specific pattern.  

 

2.5.1 Cross validation and overfitting 

When a model is trained, the accuracy with which it explains the training data 

does not necessarily reflect the true generalization error that would occur when it is 

used to make predictions - especially when the training set is small. Often, when an 

algorithm is finely tuned to minimize training errors, a phenomenon called 

“overfitting” would occur. Although training errors may be very small for an overly 

complex model, the generalization performance may be poor. Therefore to validate 

the performance of a learning algorithm, we sometimes use cross validation to 

provide an empirical measure of the generalization performance. Cross validation is 

not only used to estimate the performance of an algorithm, it is also often applied to 

tune parameters, such as the regularization parameter in ridge regression. 

Cross validation techniques involve splitting the full dataset into a training set 

and a test set, repetitively. At each repetition, the algorithm is trained using the 

training set, and the trained model is applied to the test set. The average error over all 

the iterations, between the predicted outcome of the test set and the real target 

outcome, gives the test error. 
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Figure 2.12 Risks of overfitting and underfitting 

The above figure illustrates overfitting and underfitting. The three figures at the bottom 

demonstrate three possible models of binary classification with the same data points. Red and 

blue regions are learnt by the models after training. The left one is a linear model which 

under-fits the data, and the right model has no training errors, but it exhibits a complicated 

decision boundary. The middle figure is a compromise between training accuracy and the 

flexibility of the boundary, hence it may be the optimal model for this particular dataset. (The 

lightness of the colour indicate the strength to the classification likelihood, the darker the colour, 

the more likely that regions belong to the particular class.) 

The most common method is called K-fold cross-validation. The procedure 

works by partition the dataset into K equal size subsets. For each validation, K-1 

subsets (folds) are trained and the remaining fold is used for testing. The procedure 

will loop K times. At each iteration, a different subset will be chosen as the new 

testing set. This ensures all the samples will be including in the testing set at least 

once. If K equals the size of the training set, then at each validation run, only one 

sample will be left out, hence it is called the leave-one-out cross-validation (loocv). 
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Finding a desirable K involves a compromise between computational time and the 

training set size. If K is too small, the training set will be relatively small at each run. 

In practice, the choice of the number of folds depends on the size of the dataset. 

In cases when a model has free parameters, or the training procedure includes 

feature selection, in order to estimate the true testing error, a three way split (Cheng et 

al., 2008; Ritchie et al., 2003; Su et al., 2007) should be employed. The data needs to 

be partitioned into three sets, namely the training set, the validation set, and the test 

set. The procedure works as following. First, the model is trained using a training set 

with specific parameters, and the prediction accuracy is evaluated using the validation 

set. This procedure is repeated for all the choices of parameters and models. The best 

model (and associated parameter set) is selected, and trained using the combination of 

training and validating set. The trained model is then applied to the test set to evaluate 

its testing accuracy. It is also possible to apply K-fold cross-validation for both 

validation and testing. K-fold three way splits will be a double layered loop, where the 

inner loop runs over a subset of data to select the best model and parameters, and the 

outer loop evaluates the testing error. The test set should always be intact when 

computing the performance of different models in the validation phase. Some 

published experiments did not use a full three way split. These papers reported only 

the best validating accuracy of the best model, which may be too optimistic and under 

estimate the generalization error.      

2.5.2 Evaluating performance 

After performing cross-validation, we can obtain predicted labels (for 

classification) or values (for regression). For regression algorithms we often evaluate 

the performance using root mean square error (RMSE) or correlation. RMSE is 

defined as  
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2

1

1
( )

N

n n
n

RMSE t y
N =

= −∑                    (2.66) 

where t are the observed, or true, values in the dataset, and y are the predicted values 

estimated by the model. If we are not interested in the offset and scale between the 

true values and the predicted value, we can take the correlation (2.14) of both as the 

measure of performance. 

For evaluating classification results, the simplest measurements would be the 

classification accuracy rate, which is calculated from the number of correctly 

predicted samples divided by the total number of predicted samples. Often, a single 

measurement is not sufficient, especially in the cases of disease diagnosis, when the 

costs of classifying patients into normal and the reverse are not the same. To present 

more information, we often create a confusion matrix or table of confusion (Hastie et 

al., 2003). 

 

 

 

 

 

 

The sensitivity of the classifier is the number of true positives divided by the 

total number of real positives. In our example, it will be the number of patients. The 

specificity of the classifier is the number of true negatives divided by the total number 

of real negatives (controls). 

Tp Tn
sensitivity= , specificity=

Tp+Fn Tn+Fp
            (2.66) 

In our example, sensitivity is the accuracy of detecting patients of the given test, and 

Predicted outcome  

True label Positive (patient) Negative (normal) 

Positive (patient) True positive (Tp) False negative (Fn) 

Negative (normal) False positive (Fp) True negative (Tn) 
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the specificity will be the accuracy of classify a non-diseased subject as normal. If we 

recall the decision function for the linear classifier (2.53), it is possible to adjust the 

bias, hence to trade between specificity and sensitivity. Considering figure 2.10, if the 

decision boundary is shifted orthogonally to the right, then more patients will be 

classified correctly, but some normal subjects will be classified as patient (false 

positive). To visualize the trade-off between sensitivity and specificity, we can plot the 

receiver-operating characteristic (ROC) curve, and use the area under the curve (AUC) 

as a measure of classifier performance (Huang and Ling, 2005).  

 

 

  

 

 

 

 

Figure 2.13 Receive-operating characteristic curve 

The above figure illustrates the Receiver-Operating Characteristic (ROC) curve of the logistic 

regression classifier applied to the Alzheimer’s dataset. The corresponding accuracy is 0.8158 

and the area under the curve is 0.8939.  

The ROC curve normally plots sensitivities along the vertical axis and 1-specificity 

along the horizontal axis. A random classification should yield a 45 degrees line from 

bottom left to the up right with an AUC of 0.5. A system that is better than random 

should have its ROC curve above the 45 degrees line with an AUC greater than 0.5.   

2.5.3 Model selection 

Good generalization performance involves a balance between model complexity 

and training accuracy. A complex model, such as one with little regularization and 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1-specificity

S
en

si
tiv

iti
es

AUC=0.8939 



 64 

many parameters, will yield low training errors. In the extreme case, the number of 

input features or basis functions may equal or exceed the number of training samples, 

and the model will explain the training data perfectly. Such a model is unlikely to 

make accurate predictions. To avoid overfitting, it is usually suggested to use models 

with less complexity. People often refer to Occam’s razor (Domingos, 1998) to 

support the idea preferring simpler models2. However, Occam’s razor did not 

specifically state sophisticated models should be avoided, but rather people should 

prefer the simpler model than the complex model when both have the same 

generalization performance. If a more complex model achieve better generalization 

performance than a simpler one, people should favour the model with better 

performance. In practice, cross-validation can provide empirical estimation of the 

generalization performance, but when the model has multiple complexity parameters, 

cross validating all the combinations of settings may be impractical. Therefore, it is 

necessary to find a measure of performance which depends on the training set only. 

One of the famous information criteria is the Akaike information criterion (AIC) 

(Akaike, 1974). It simply measures model complexity by the number of parameters 

and penalize it from the maximum likelihood estimates of the model.   

AIC ln ( | )MLp D Mθ= −                       (2.67) 

whereln ( | )MLp D θ is the maximum log likelihood of the model, and M is the number 

of adjustable parameters. For regression, M could be the number of input features. It 

is often combined with principal component analysis (PCA) to orthogonalize the input 

features and rank them based on their contribution to total variance. Model selection 

based on AIC will try to achieve a compromise between the fitting of the regression 

and the number of principal components (Brickman et al., 2007). Another similar 

                                                 
2
 The original quote states “Nunquam ponenda est pluralitas sin necessitate”, which is translated into 

“Entities should not be multiplied beyond necessity” 



 65 

criterion is the Bayesian information Criterion (BIC), which penalizes model 

complexity more heavily 

1
BIC ln ( | ) ln

2MLp D M Nθ= −                   (2.68) 

Here the N is the number of samples.  

We can also take the Bayesian approach, of which algorithms in the later 

chapters are based, to marginalize over the parameters and obtain the evidence 

function (2.5). Recall the Bayesian view on ridge regression in section 2.4.2. Because 

both the prior and the likelihood function are model by Gaussians, it is possible to 

find the analytic form of the marginal likelihood function 

       
2 2( | , ) ( | , ) ( | )

( | 0, )

p p p d

N

α σ σ α=

=
∫t t w w w

t C
            (2.69) 

Here, 2 -1I+σ α= TC XX is the covariance of the marginal likelihood. Therefore, we 

can estimate the hyper-parameters by maximizing the evidence function without 

dividing the data into training and validating sets. More details are in chapter 4 on the 

topic of Relevance Vector Regression (RVR). For cases when the integration cannot 

be achieved analytically, approximation methods such as Laplace’s method and 

variational Bayes can be applied (Friston et al., 2007a; Mackay, 1992). 
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This Chapter will describe the foundation of kernel methods, data preprocessing, 

kernel construction, and basic kernel algorithms. Kernel methods are a specific 

category of machine learning algorithms. The procedures can be broadly divided into 

two components: the construction of the kernels and the actual kernel algorithms 

themselves. The two parts are mostly independent, so kernel algorithms are not 

constrained to particular data types or input features. The same kernel algorithms can 

be used with kernels generated from images, but also many other types of data, such 

as documents, genetic data, etc. One of the advantages of kernel methods is that 

kernel functions take care of the conversion from raw data into the desirable kernel 

matrix. When the input features are in a high dimensional space, such as with image 

data, the kernel algorithms work in the dimensionality of the input kernel. This 

dimensionality is the number of training samples, rather than the number of 

dimensions in the original high dimensional samples. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 The pipeline of kernel methods 

The different stages of standard procedures for pattern analysis with kernel methods 
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The general pipeline for pattern analysis using kernel methods involves five 

stages: 

1. Extract measurements from the observed data, for instance, by converting 

magnetic resonance images (MRI) into tissue class images. 

2. Select the most relevant features for pattern analysis. 

3. Choose the desired kernel function to convert the input features into the 

kernel space. 

4. Train the kernel algorithm with the kernel or kernels. 

5. Obtain the pattern function and apply the function to predict the new data.  

Unlike most of the memoryless algorithms mentioned in chapter 2, kernel 

methods require the training data to be retained after training. Exceptions to this 

rule include algorithms that require only a sparse subset of the training data to be 

retained, or algorithms using linear kernels. The pattern recognition algorithms 

themselves will be described in chapters 4 and 5, whereas this chapter will 

concentrate on kernel generation procedures. 

3.1 Introduction to Feature Projection and Kernels 

Chapter 2 introduced linear methods for classification and regression. Linear 

methods make predictions using weighted linear combinations of input features. 

However, data may exhibit non-linear patterns in the input space. To characterize such 

patterns, kernel methods use the approach of mapping the input space into a higher 

dimensional feature space, via a mapping functionφ .  

: ( )D MFφ φ∈ℜ → ∈ ⊆ ℜx x                      (3.1) 

Nonlinear characterizations in the input space are achieved by linear characterizations 

in the new space. Theoretically, if the mapped space has equal or higher dimensions 



 69 

0 2 4 6 8 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

input features

f(
x)

 

 
observation

input feature fitted
basis function fitted

than in number of training samples, the algorithm can find an exact linear fit. 

Although such solutions may explain the training data exactly, they may not 

generalize well for making predictions based on new data. A simple example of a 

mapping is the polynomial mapping function. For a one-dimensional input 

space 1X ⊆ ℜ , a third order polynomial mapping will result in the new feature 

set 2 3 3: ( ) ( , , )x x x x xφ φ→ = ∈ℜ . Such polynomial basis functions are often used in 

least squares regression, to fit non-linear patterns in data.   

 

 

 

 

 

 

Figure 3.2 Feature projection with basis functions 

This figure illustrates possible feature mappings to resolve classification and regression 

problem for non-linear patterns in the original input space. The top row shows how a non-linear 

decision boundary, between two classes in the input space, may appear linear after mapping 

to a new space. For illustration purposes, the data points are projected into a two-dimensional 

subspace for both input and feature space. The bottom row shows a regression example, 

using cosine basis functions to fit one-dimensional sinusoidal data. The input features were 

mapped into a five dimensional space shown at the bottom left. At the bottom right, the black 

line is the linear fit through the input features. The red line shows the fit from the five 

dimensional functions. 

Mℜ  
Dℜ  φ

 

Discrete Cosine Basis 
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Given a feature mapφ , its associated kernel function is: D DK ℜ ×ℜ → ℜ as 

( , ) ( ), ( ) , , DK φ φ=< > ∈ℜx z x z x z                 (3.2) 

Here ,< ⋅ ⋅ > symbolizes the dot-product operation, or the sum of the element-wise 

products. 
1

, , ,
D D

i ii
x z

=
< >= ∈ℜ∑x z x z .Such a kernel function is symmetric, so that 

K(x,z)=K(z,x). Notice that the feature map can also be an identity map :x xφ → . In 

such cases, the kernel is called a linear kernel and ( , ) ,K =< >= Tx z x z x z. For each 

input feature pair and the corresponding mapping function, there is a unique value 

determined by the kernel function. However, the feature space defined by the 

mapping function is not uniquely determined by the kernel function. For example, the 

feature mapping defined by 2 2
1 2 1 2 1 2: ( , ) ( ) ( , , 2 )x x x x x xφ φ= → =x x yields the inner 

product 2 2 2 2 2
1 1 2 2 1 2 1 2( ), ( ) 2 ,x z x z x x z zφ φ< >= + + =< >x z x z , which is identical to the 

inner product generated from the mapping function defined by 

2 2
1 2 1 2 1 2 2 1: ( , ) ( ) ( , , , )x x x x x x x xφ φ= → =x x . Strictly defined, the kernel is in a 

reproducing kernel Hilbert space (RKHS), which is an inner product space with 

additional properties. For mathematical details, please refer to the textbooks (Schlkopf 

and Smola, 2001; Shawe-Taylor and Cristianini, 2004). Linear kernels were mostly 

used for this thesis, with only limited exploration of non-linear kernels. For 

simplification, the thesis will refer to the kernel in the inner produce space.  

We define the input matrix X, where T
1 N[ , , ]= 2X x x x⋯ , and each row of X is 

one vector of input features with D elements. We also define the feature matrixΦ from 

a particular mapping functionφ , where 1 2( )= =[ , , ]Nφ TX Φ φ φ φ⋯ . Each row of Φ is a 

vector of mapped features with M elements. The gram matrix, or kernel matrix, is 

defined as the N by N matrix K,  whose entries are ( ), ( )ij i jφ φ=< >K x x and = TK ΦΦ . 
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The kernel matrix is a symmetric positive-semi-definite matrix, which means that for 

any non-zero vector x, 0≥Tx Kx . This implies that all the eigenvalue of the matrix 

are non-negative. 

Intuitively, the kernel matrix can be conceptualized as a matrix of similarity 

measures between each pair of input training points. The kernel contains all the 

information available about the relative positions of the inputs in the feature space. In 

other words, if we rotate and translate the data points in the feature space, the 

information contained in the kernel matrix will not change, although the values of the 

kernel matrix may change. Most learning algorithms use only information about 

relative positions. It should be noted that although most kernel algorithms will 

maintain identical solutions after rotating and translating the data points in feature 

space, some of them (such as Gaussian process models) may not.    

 

3.1.1 Dual representation 

Many linear classification or regression algorithms can be formulated into either 

primal or dual forms. In the primal form, we seek the linear weights for each feature, 

whereas in the dual form, we try to find the weights for each training point. Both 

weights are interchangeable. The commonly used example to illustrate the dual 

representation is ridge regression (Bishop, 2006b; Shawe-Taylor and Cristianini, 

2004). The primal form was described in section 2.4.2, where we derived the primal 

weights 1( )λ −= +T Tw X X I X t . Alternatively, we can rewrite the second line in 

equation (2.44) to obtain 1 ( )λ −= − =T Tw X t Xw X a . This shows that w can be written 

as a linear combination of the training points,
1

N

i
i

a
=

=∑ iw x , with 1( )λ −= −a t Xw . By 

substituting w into this new dual representation, it can be shown that 
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λ −

= −

+ =
= +
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T

a t XX a

XX I a t

a K I t

                         (3.3) 

Here = TK XX is the linear kernel matrix, mentioned in an earlier section of this 

chapter. This formulation makes the computation much easier when the input features 

are high dimensional, as K  is only N by N. Ridge regression can be extended into a 

high dimensional feature space by apply a mapping functionφ . Hence this 

formulation is also called “kernel ridge regression” (KRR). 

To make a prediction (y) from a new data point 

          * *
1

( , )
N

i i
i

y a K
=

= = =∑T T
*w x x x a k                   (3.4) 

The vector * 1 * 2 * *[ ( , ), ( , ), ( , )]NK K K= Tk x x x x x x⋯ is the kernel of the new input 

point *x with all the training points in the training set. In the dual formulation, the 

algorithms do not need the input features or the mapped features. Only the kernel is 

needed, which describes the relative positions within the feature space. This can be an 

advantages of kernel methods when the input space or feature space is very large 

D>>N or M>>N . Utilizing the kernel formulation also implies that it is not necessary 

to compute the features mapped by the functionφ . Because only the kernel function is 

needed, it is even possible to use mapping functions with infinite dimensions. 

 

3.1.2 Constructing kernels 

The beginning of this chapter showed the construction of a kernel matrix by a 

pair-wise dot product = TK ΦΦ . In practice, it is often not necessary to compute the 

mapped feature matrix, because the new kernel matrix can be computed from a linear 

kernel. There are a number of rules to describe the construction of valid kernel 

matrices. Here, only those rules are listed that are most relevant to this work. 
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A kernel, 1 1 2( , )K x x , scaled by a positive constant is also a valid kernel. 

1 2 1 1 2( , ) ( , ), 0K cK c= >x x x x                  (3.5) 

The sum of two valid kernels, 1 1 2( , )K x x  and 2 1 2( , )K x x , is also a valid kernel. 

1 2 1 1 2 2 1 2( , ) ( , ) ( , )K K K= +x x x x x x                   (3.6) 

Combining both rules (3.5) and (3.6), it can be shown that a positive linear 

combination of valid kernels is also a valid kernel. The element-wise product of valid 

kernels is also a valid kernel 

1 2 1 1 2 2 1 2( , ) ( , ) ( , )K K K=x x x x x x                     (3.7) 

The polynomial kernel can be derived by applying the above rule (3.7)  

( , ) , d
poly i j i jK =< >x x x x                           (3.8) 

The polynomial kernel can be further generalized to include a non-negative constant c 

( , ) ( , )d
poly i j i jK c= < > +x x x x                       (3.9) 

Expansion of the kernel (3.9) using the binomial theorem 

gives
0

( , ) ,
d d i i

poly i j i ji

d
K c

i
−

=

 
= < > 

 
∑x x x x . The constant term works as a control of 

the relative weighting of the different degree monomials. Increasing c decreases the 

relative weighting of the higher order polynomials.  

A very popular non-linear kernel is the radial basis function (RBF) kernel, which is 

sometimes called the squared exponential kernel.  

   

2( , ) exp( || || )

exp{ ( , 2 , , )}

exp( , )exp(2 , )exp( , )

rbf i j i j

i i i j j j

i i i j j j

K γ
γ
γ γ γ

= − −

= − < > − < > + < >

= − < > < > − < >

x x x x

x x x x x x

x x x x x x

     (3.10) 

Recalling the Taylor expansion of the exponential function,
0

1
exp( )

!
i

i
x x

i

∞

=
=∑ , we 

see that the RBF kernel is a valid kernel with infinite features. 

Another commonly used kernel is the normalized kernel, also known as the Cosine 
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similarity. 

,
( , )

, ,
i j

norm i j
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                      (3.11) 

Because the normalization in (3.11) depends on the origin in the feature space, we 

often centre the data and set the origin in the feature space to the mean of the training 

set. By defining an N element column vector of ones, l, the centred kernel matrix can 

be computed by3 

2

1 1 1
( )centered N N N

= − − +T T T TK K ll K Kll l Kl ll            (3.12) 

If we recall the definition of the covariance matrix of the features in section 2.1.4, the 

centred kernel can also be viewed as a covariance matrix of the data points. Hence, a 

centred and normalized kernel is also the correlation matrix between data points of a 

particular feature space. For the above non-linear kernel, centring, and normalization 

can be done without directly computing the data in the feature space. All of these new 

kernels can be computed from linear kernels generated from dot product pairs of 

training data points. However, there are a number of other popular non-linear kernels, 

which are not mentioned or applied in this thesis, and not all of them can be computed 

directly from linear kernels. So far, most investigators have used either linear or RBF 

kernels for neuroimaging data (Fan et al., 2007a; Fan et al., 2008b).  

 

3.2 Pre-processing and Generating Kernels from Imaging 

Data 

The previous section introduced theoretical aspects of kernel methods and some 

mechanisms to compute non-linear kernels from linear kernels. This section will 

                                                 
3
 This will be generalized later, by using a residual forming matrix. 
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describe practical aspects of generating kernels, from either structural or functional 

MRI data. From Ugly Duckling theorem (Watanabe, 1970), prior knowledge is still 

required to define the similarity measure. With background knowledge about the task 

of pattern recognition, for instance, discriminating patients with Alzheimer’s disease 

and normal controls, one may be in favour of kernel generated from grey matter 

density map than kernel generated from raw T1-image. 

3.2.1 Data pre-processing for structural MRI data 

Briefly speaking, MRI techniques utilize the properties of the nuclear spin of 

protons in water molecules, to create contrast among different body tissues 

(McRobbie et al., 2007). A variety of sequences of radiofrequency pulses and 

magnetic field gradients, produced in the MR machine, make it is possible to create 

different types of images with different tissue contrasts. Structural (or anatomical) 

MRI scans are often acquired using T1-weighed sequences, but it is important to note 

that many pulse sequences can also be used to image brain structure. T1-weighted 

sequences have relatively short TR (repetition time) and short TE (echo time), and are 

often used to image brain structure because they give reasonable separation between 

the intensities of grey and white matter (GM and WM), as well as between grey 

matter and cerebro-spinal fluid (CSF). T2-weighted images are often used to detect 

brain lesions. To most users, the main distinction between T1-weighted and 

T2-weighted images are their intensity distributions for GM, WM and CSF. In 

T1-weighted images, the intensity of CSF is less than that of GM, and GM is less 

intense than WM. In T2-weighted images, the order is reversed. The work in this 

thesis mostly concerns degenerative diseases, so the focus is on GM. 

Although images may be acquired using the same modality, each sequence and 

machine may still have some variations. This may result in different baseline 

intensities and intensity scaling of the same tissues in the raw MRI data. Therefore, it 
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may not be feasible to use the raw MRI intensities as input features for the machine 

learning algorithms. A more reliable measure, which is invariant to the intensity 

distribution given the same tissue type, should be used. The procedure called “tissue 

classification” or “segmentation” is applied to generate tissue class images from the 

original scans. 

Besides variability among the intensity distributions of tissues, different brains 

have different shapes and sizes. Theoretically, given a large training set containing all 

possible variations of patient and control brains, we could still learn the pattern of 

difference; with minimum noise induced by inter subject variability. This would 

require a nonlinear kernel to accurately encode the complicated shape variability that 

may be encountered. In practice, available datasets tend to be rather small, so it is 

necessary to reduce inter subject variability and increase the with-in group similarity. 

To achieve this goal, images would be warped into a standard space. This procedure is 

often called “spatial normalisation”, and has the effect of modelling out much of the 

shape variability. 

There are many publicly available packages to do segmentation and spatial 

normalisation, but the current work uses SPM5 (http://www.fil.ion.ucl.ac.uk/spm/), 

which the well-known package developed in our lab. Pre-processing of images prior 

to using pattern recognition can be done in a similar way to pre-processing for Voxel 

Based Morphometry (VBM) (Ashburner and Friston, 2000, 2001).  

The first stage of the pre-processing is to segment the original MRI data into 

tissue class images of GM and WM. In these tissue class images, the voxel values 

range between 0 and 1 to represent the probability of a voxel belonging to a particular 

class. In principle, the “unified segmentation” function in SPM5 (Ashburner and 

Friston, 2005) works for different modalities, so it is also possible to segment 

T2-weighted or proton density-weighted images. T1-weighted images normally give a 
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reasonable estimation of the GM tissue map. The new segmentation routine (which is 

part of SPM8) could also be used to achieve multi-channel segmentation. 

Segmentation in SPM is based on a mixture of Gaussians clustering method 

(introduced in section 2.2.3), which is guided by tissue probability maps representing 

the prior probability of encountering various tissue types at each voxel. The algorithm 

incorporates some nonlinear registration so that the tissue probability maps can be 

overlaid, and also models out a smooth intensity inhomogeneity artefact. 

Because registration is built into the segmentation model, the output of the 

routine can include spatially normalized versions of the tissue class images. To 

preserve the tissue volumes, an additional scaling (by the Jacobian determinants of the 

nonlinear deformation) is applied to the normalized images (Davatzikos et al., 2001; 

Good et al., 2001a; Good et al., 2001b). This is colloquially known as “modulation”. 

The integral of the values from a GM tissue class image in the native space, should 

equal the integral of the modulated normalized image. Theoretically, if the registration 

was perfect, all the spatially normalized images would be identical without the 

modulation. In practice however, because there is regularization imposed on the 

registration, the normalization is not perfect and the residual differences between the 

non-modulated normalized image and the template are a function of the regularization 

parameters. From the pattern recognition perspective, we could use either the 

Jacobian determinants or the residuals as input features for kernel constructions. 

However, using Jacobian determinants as the input features often yields similar results 

to those obtained using the modulated images. 

One slight drawback is that the nonlinear deformations in the segmentation 

routine are based on a model with only about 1,000 parameters. Another is that only a 

small-deformation approximation is used (Ashburner and Friston, 1999), so the 

registration is only approximately invertible. The template space (MNI space) (Chau 
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and McIntosh, 2005; Evans et al., 1993 ), is also known to be slightly larger than 

brains from the general population (Lancaster et al., 2007). To decrease the within 

group variability, an iterative template generating method was used (Ashburner and 

Friston, 2008) from the “DARTEL” (Ashburner, 2007) toolbox of SPM5/SPM8. The 

processing works as follows. Firstly, the segmented GM and WM tissue class images 

of each subject in the native space are rigidly aligned using a Procrustes method. 

Initial template data are generated by averaging the GM over all subjects, and doing 

the same for the white matter. The individual GM and WM maps are then 

simultaneously registered with their corresponding templates, and their respective 

weighted averages are recomputed. This iterative warping and averaging procedure is 

repeated 18 times. The regularization of the warping is reduced slightly at each 

iteration. The outputs of this procedure are the population templates of GM and WM 

and the deformation parameters of each individual to this template. The deformation 

parameters are used to generate the modulated and normalized images, which serve as 

features for the subsequent pattern recognition. 
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Figure 3.3 Normalised brain by conventional SPM and  DARTEL 

The above figures show the results of two subjects with two different normalization methods. 

The left figure shows the normalization using about a thousand discrete cosine transform basis 

functions to parameterize the warp to the MNI template. The right figure shows the spatial 

normalization using the DARTEL toolbox, with iterative registration and template generation. 

The conventional SPM normalization clearly resulted in larger brains than the DARTEL 

normalization due to the larger MNI template. The DARTEL normalization also performed 

more accurate registration. The hippocampus shown at the bottom left of the figure is clearly 

mis-registered 

There are a number of other outputs generated by the DARTEL toolbox, which 

could also be used as data for generating kernel matrices. Each of them conveys 

slightly different information about the shape and local density. The Jacobian 

determinants of the nonlinear spatial transforms may reflect most information on 

global and local shape differences. Alternatively, the parameterisations of the 

deformations could be used as features. There is not yet an established strategy to 

determine which of those feature sets are most salient to tissue degeneration in the 

context of multivariate pattern recognition.  The “Ugly Duckling” Theorem explains 

why prior knowledge of the data should really be used to formulate the similarity 

measures. 
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The current implementation of the DARTEL toolbox is based on generating 

diffeomorphic mappings via a constant velocity framework.  It is fast because it 

allows a larger one-to-one mapping to be generating by repeatedly composing a very 

small deformation with itself, using a scaling and squaring procedure. From a 

theoretical perspective, a variable velocity approach, such as that used by the Large 

Deformation Diffeomorphic Metric Mapping (LDDMM) algorithm (Miller, 2004; Qiu 

et al., 2007; Wang et al., 2007), would be superior. LDDMM tries to minimize the 

difference between the source and the template images as well as minimize the 

geodesic distance of the deformation. It can also be shown, through the conservation 

of momentum, that knowledge of the initial conditions (initial velocity) is sufficient to 

derive the entire deformation trajectory. Such a “geodesic shooting” method is 

currently being developed for inclusion within the SPM software. The variable 

velocity framework has some unique mathematic properties that make it a good 

metric system. The initial momentum, which can be computed by a linear operator 

from the initial velocity, can encode the information of the full deformation in a 

spatially compact fashion (Ma et al., 2008). 

The pre-processing pipeline is often finished by a spatial smoothing step. The 

idea is to suppress higher spatial frequency signal, which is more likely to be 

uninformative for the pattern recognition (ie noise). Conventionally, people doing 

VBM analysis convolve their images with Gaussian kernels of between about 8 and 

12mm FWHM. The aim is to reduce the errors induced by mis-registration, and also 

to satisfy the assumptions of Random Field Theory. After the more accurate 

inter-subject alignment of DARTEL, the data would typically be convolved with 

Gaussians of 6mm FWHM or less. For pattern recognition, the optimal amount of 

smoothing is an empirical problem, and requires cross-validation to justify.        

To generate a linear kernel matrix of the cohort, we simply treat each image as a 
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long one dimensional vector, and compute dot products between each pair of images. 

As when fitting a mass-univariate general linear model (GLM) through the data, it is 

sometimes desirable to remove some of the confounding inter-subject variability that 

could be explained by variables such as sex, education, gender and a constant term. 

We can apply the same method used by the GLM to remove the linear effects of the 

confounding factors at each voxel across subjects. Here, we take the same definition 

of X as in the previous section, where T
1 N[ , , ]= 2X x x x⋯ and each row of X is one 

vector of input features with D voxels. We can define an N by K matrix of confounds, 

C, where each column is one covariate to remove from the data, and K is the number 

of covariates. From the general equation of ordinary least squares (2.38), we can 

compute the contribution of each confound at each voxel by 1( )−= T TW C C C X , where 

W is a K by D matrix. The input data with the confounds removed is computed by 

 1( ) ( )− += − = − = −T TX X CW X C C C C X I CC Xɶ               (3.12) 

where 1( )+ −= T TC C C C is the pseudo-inverse. We often define a residual forming 

matrix as 

( )+= −R I CC                           (3.13) 

 

 

 

 

 

 

 

Figure 3.4 Output images from DARTEL 

The three images show different maps generated from registration by the DARTEL toolbox. 

Each of these maps encodes the information about shape and GM density in a different way. 
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Recalling that the linear kernel is calculated as= TK XX , a linear kernel from data with 

confounds removed can be computed by 

= ==T T T TK XX RXX R RKRɶ ɶ ɶ                   (3.14) 

This shows that it is not necessary to directly remove the confounding covariates at 

each voxel, especially when the images having millions of voxels. We can simply 

compute a kernel using the original data, and then factor out the confounds from it. 

This proves to be computationally efficient, and also adds flexibility when we may 

want to remove different numbers of covariates. In addition, centering the kernel 

using (3.12) can also be achieved by factoring out a covariate consisting in a column 

of ones, [1,...,1]= TC .  

 

 

 

 

 

 

 

 

 

Figure 3.5 Pipeline of structural MRI pre-processin g  

The pipeline of pre-processing for structural MRI data.  

In practice, the size of X is sometimes beyond the allowable memory. Therefore, 

kernel construction involves loading only part of the field of view of all subjects’ 

images into memory at a time. Because dot products are linearly additive, the sum of 

the kernels generated from each part is equivalent to the kernel generated from the full 
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field of view. 

 

To summarize the pre-processing and kernel generation for structural MRI data, 

we firstly segment the raw MRI data into tissue class images in the cohort. Secondly, 

the GM and WM maps are iteratively registered to the population template. The 

deformation parameters are then used to generate the modulated and normalized GM 

maps, which are in a standard space, and conserve global GM volumes. Sometimes 

spatial smoothing is applied to remove image noise and registration error. The most 

common input features for pattern analysis are the smoothed modulated normalized 

images. The linear kernel is computed first, and residual forming matrices are later 

applied to remove the confounding covariates. For non-linear patterns, conversion to 

an RBF kernel (3.10) or polynomial kernel (3.9) may be done. The final kernel is then 

used by kernel methods, such as the support vector machine. 

 

3.2.2 Data pre-processing for functional MRI data 

Functional imaging generally refers to imaging modalities that are capable of 

measuring regional neuronal activity, and includes electroencephalography (EEG) and 

magnetoencephalography (MEG). When referring to functional magnetic resonance 

imaging (fMRI), people often mean Blood Oxygenation Level Dependent (BOLD) 

imaging, which is an MR-based non-invasive technique to measure signals related to 

brain activity. The most recognized theory about the origin of the BOLD signal is 

based on changes to concentrations of deoxygenated-hemoglobin in the draining veins 

(McRobbie et al., 2007). When regions in the brain are invoked in cognitive tasks, in 

order to provide the energy for local action potential and synapse activity, the local 

blood flow will increase to bring more oxygenated blood (Attwell and Iadecola, 2002; 

Logothetis, 2008; Logothetis et al., 2001). Because the fully oxygenated blood and 
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deoxygenated blood have different magnetic susceptibilities, higher concentrations of 

oxygenated blood will increase the BOLD signals. Physiological constraints also 

induce delay and dispersion into the measured signals. In other words, a response at 

the neuronal level does not cause immediate BOLD signal changes, but changes that 

are often characterized by a hemodynamic response function (HRF). The HRF peaks 

about 5 seconds after the stimulation, and may reach an undershoot after about 15 

seconds. The overall duration of the response function is around 30 seconds, and 

sometimes a initial dip can be observed (Malonek and Grinvald, 1996), which may be 

due to initial increase of deoxygenated blood. In SPM, a “canonical HRF” is modelled 

by two Gamma functions, with seven parameters to control the overall form (Friston 

et al., 2007c) (figure 3.6). The precise shape of the HRF has been shown to vary 

across different regions in the brain as well as vary across different people (Aguirre et 

al., 1998; Schacter et al., 1997). However, for the convenience of modelling, we often 

use the canonical HRF or sometimes vary the delay of the onset, but maintain the 

shape of canonical HRF. 
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Figure 3.6 Hemodynamic response function 

The canonical hemodynamic response function (HRF) of the BOLD signal modelled in SPM5. 

The delay of the peak is 6 seconds, and the delay of the undershoot is 16 seconds,   
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Echo planar imaging (EPI) is the usual imaging strategy to measure BOLD 

signal, as it provides relatively strong signal to noise ratio with short acquisition times. 

However, EPI suffers from susceptibility-induced image distortion and several 

artifacts. In the imaging field, the majority of investigators use gradient-echo echo 

planar imaging (GE-EPI) , which has a T2* weighted contrast (Logothetis, 2008). 

In fMRI studies, sequences of EPI are acquired for each subject in a particular 

experiment. The first stage in pre-processing is realignment and re-sampling of 

images to remove movement artifacts. This procedure rigidly transforms the images to 

match the template, which can be the first image in the sequence or the average of the 

images. Rigid-body transforms in 3D are parameterised by translations in all x, y and 

z directions and rotation around all x, y and z axes. From the perspective of pattern 

recognition, the variability arising from rigid body motion lies on a six-dimensional 

manifold embedded within a space having the same dimensionality as the number of 

voxels. Therefore, removing motion effects can be seen as a form of dimensionality 

reduction, and increases the within group similarities. 

To further reduce dimensionality, those brain regions that are, a priori, 

considered non-informative to the pattern recognition should be masked out (or at 

least down-weighted relative to more informative regions). BOLD signal change is 

generally believed to occur mainly in grey matter, as its major cause should be the 

local neuronal activity. Masks defining grey matter can be generated for each subject 

by segmenting one of the EPIs using (for example) the unified segmentation approach 

implemented in SPM5. A practical reason for masking out non-grey matter tissue is 

that it accelerates the speed of kernel generation. By masking out other tissues, only 

20% of the whole image is used. It may also have been possible to coregister the 

anatomical image with the fMRI, and identify grey matter from this. Nevertheless, 

functional images tend to suffer from spatial distortions, especially in the frontal 
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region due to the air in the frontal sinus, so it may not have been possible to 

accurately overlay grey matter masks derived from the anatomical scans. 

If the aim is to apply pattern analysis methods across subjects, we will have to 

spatially normalize the fMRI data to minimize dissimilarity due to inter-subject 

variation. There are three commonly used ways to spatially normalize fMRI series 

using the SPM5 software. 

1. Match the fMRI data to an EPI template image, by minimising the mean 

squares difference of the intensities. 

2. Coregister the functional images to a structural image of the same subject, 

and apply the normalization parameters estimated during the unified 

segmentation routine in SPM5 to the functional data. 

3. Coregister the functional image to the structural image, apply DARTEL 

to the structural images and use the estimated velocity fields mentioned 

in 3.2.1 to warp the functional data. 

There is a less common way to normalize the fMRI data (figure 3.6), which has 

been shown to perform slightly better in our empirical results of pattern predictions. 

This is to segment the EPI using unified segmentation, and later apply DARTEL to 

the tissue class images segmented from the EPI. The estimated deformation fields can 

then be used to spatially normalise all the functional data. 

Usually, when fMRI data are spatially normalised, investigators do not adjust the 

data to account for the relative expansion or contraction incurred by the warping. 

However, incorporating such a Jacobian scaling step may prove useful, although we 

have not yet collected empirical evidence to test this idea. 
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Figure 3.7 Pipeline of spatial normalisation for fM RI data 

The pipeline shows the unconventional way to spatially normalize fMRI data. The EPI of each 

subject are segmented into tissue probability maps. Those maps are used to create the 

population template using DARTEL toolbox. The normalization parameters are then applied to 

the original fMRI data. 

Signal changes in fMRI that are due to brain activity tend to be slightly lower 

frequency over space than the much of the noise. From a Wiener filtering perspective, 

the signal to noise ratio can be increase by spatially smoothing the images. 

Empirically, we found that accuracy could often be increased by convolving the scans 

with a 6mm FWHM Gaussian Kernel. Another reason for applying spatial smoothing 

was to suppress interpolation errors from fMRI time series realignment (Grootoonk et 

al., 2000).  

3.2.3 Temporal modelling for functional MRI data 

Low frequency drift has often been reported in fMRI time series. This drift has 

been attributed to physiological noise or subject motion, but few studies have been 

done to test this assumption (Smith et al., 1999). The drift models currently 

dominating fMRI analysis are linear subspaces spanned by a set of polynomial or 
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discrete cosine transform (DCT) basis functions (Friman et al., 2004; Tanabe et al., 

2002). In the context of fMRI decoding, low frequency drift affects the prediction 

accuracy significantly. The optimal amount of low frequency component to be 

removed sometimes varies from experiment to experiment, and can only be 

determined empirically. Often, for event related stimuli with short durations, the 

cut-off frequency can be set at higher value for the high-pass filtering. In contrast to 

this, removing only the linear and quadratic drift is often sufficient for block design 

experiments. 

In SPM, the low frequency drift is removed by including DCT basis function as 

confounding variables in the design matrix, and the default cut-off frequency is 1/128 

Hz. DCT is an invertible frequency transform for discrete data. Mathematically, for 

each voxel v, the time series 1
0{ } N

n nv −
==v  is collected from N time points and can be 

transformed into a frequency sequence 1
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==f   

 

1

0

1

0

1
0

2 1
cos[ ( ) ] 1,..., 1

2

N

n
n

l
N

n
n

v l
N

f

v n l l N
N N

π

−

=

−

=


=

= 
 + = −

∑

∑
         (3.15) 

After pruning the low frequency drift terms (i.e. frequency components less than 

or equal to a particular number of minimum basis sets, say L) in the original 

voxel-time series, the detrended sequence 1
0{ } N

n nv −
==vɶ  is obtained by the inverse 

transforms  
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Note that the DCT can be represented as a matrix multiplication. Let G be the N by L 

matrix with ,

2 1
cos[ ( ) ] 1,...

2n lg n l l L
N N

π= + = , ,1

1
ng

N
= , where L denotes the 

number of the minimum DCT basis which are meant to be removed. It can be shown 
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that the detrending operation is 

)= − = − =T Tv v G(G v) (I GG v Rvɶ            (3.17) 

The R matrix is the residual forming matrix mentioned in section 3.2.1. Notice in 

(3.17) we use the transpose of the G matrix rather than the pseudo-inverse in the 

equation (3.13). This is because G is an orthonormal basis set =TG G I . Since this 

procedure is equivalent to removing confounding covariates, we can generalize matrix 

G with any basis functions that model the drift. For example a quadratic basis set will 

be 

2

2

1 1 1

1N N

 
 =  
 
 

G ⋮ ⋮ ⋮ and we can apply (3.13) to calculate the residual forming 

matrix. 

To compute the linear kernel from the fMRI data series, we can take the same 

definition of X as for structural MRI, where T
1 N[ , , ]= 2X x x x⋯ and each row of X is 

one vector of input features with D voxels at one time point. Conventionally, we use 

ascending order for the order of the row i.e. the first row in X is the first image in the 

fMRI time series, and the last row in X is the last image in the series. The linear 

kernel is then computed by= TK XX . Recall equation (3.14), we can apply this 

equation to detrend the linear kernel and avoid the expensive computation of 

detrending all the voxels. 

Researchers often apply additional pre-processing for block design experiments 

in fMRI pattern classification, so there would be only one representative image per 

block. The most common pre-processing strategies include averaging the image 

volumes over the duration of the block (Cox and Savoy, 2003a; Mourao-Miranda et 

al., 2005). This can be generalized to the more elegant approach of obtaining the “beta 

map” (parameter image) for each block, which are the regression parameters from a 

general linear model (GLM) (Eger et al., 2008; Kriegeskorte et al., 2008).  
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Both approaches are linear operations, so it is possible to formulate them as 

matrix operations. In fact, both “average maps” and “beta maps” are a weighted linear 

combination of the images in the time series. So far, a square residual forming matrix 

has been described for removing uninteresting signal from the kernel. Such a 

procedure does not necessarily require the matrix to be a square residual forming 

matrix. Instead, it could be one for converting a kernel generated from the original 

data, into a kernel that would be obtained by generating dot products from the 

parameter images. 

 Mathematically, we can define a vector of weighting coefficient, p, which has 

the same number of elements as the number of images in the time series. This 

weighting vector is generated by taking the pseudo-inverse of the regressor in the 

design matrix of the corresponding block. Usually, the regressor is the HRF 

convolved block (See figure 3.8) or a boxcar functions with 6 seconds delay after the 

onset of the stimulus. The 6 seconds delay comes from the delay of the peak of the 

HRF (figure 3.6). We can also take a more general approach by including the 

confounding covariates in the design matrix, and take the pseudo-inverse of the 

design matrix (all the regressors) corresponding to the specific block. The p is the 

transpose of the row of the pseudo-inversed matrix corresponding to the specific beta 

values (parameters of the regressors) in which we are interested. If every block has 

the same length, we can use the Kronecker product to generate the “average forming 

matrix” or “beta map forming matrix” (temporal compressing matrix) by = ⊗ TP I p , 

where I  is the number of blocks by number of blocks identity matrix. This approach 

can be extended to event related fMRI as well. If each event is modeled as a separated 

regressor in the design matrix, the temporal compressing matrix P is simply the 

pseudo inverse of the design matrix. The new data matrix can be evaluated by  

=X PXɶ  and the compressed kernel can also be evaluated directly from the original 
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linear kernel generated from all the image volumes, = ==T T T TK XX PXX P PKPɶ ɶ ɶ . 

The dimension of this new kernel will be the number of blocks or events, rather than 

number of fMRI volumes in the series.    

 

 
Figure 3.8 Temporal compression using matrix operat ion 

This figure illustrates the matrix operation to compress the original kernel into the reduced 

kernel whose dimension is the number of blocks. The experiment in the example had a total of 

252 image volumes, with 3 different types of stimuli using the block design. Each condition has 

6 repeats, and each block contains 14 volumes (7 volumes of active condition, followed by 7 

volumes of resting). The averaging operation computes the kernel by averaging the 3rd to the 

9th image volumes in each block. And the operation to generate the equivalent kernel from 

beta maps can be realized as a weighted averaging by the mean removal HRF (see the profile 

of p at the lower left corner in the figure) 

There is also another formulation called “spatial-temporal” (Mourao-Miranda et 

al., 2007)”. In this formulation, images in each block are concatenated into one long 

vector, hence the input features contain both spatial and temporal information, i.e. the 

temporal information is not averaged. Unfortunately, this formulation cannot be 

arranged into the same matrix operation. Therefore, we express each element in the 

condensed kernel as a sum of weighted kernel elements in the original kernel (figure 
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3.9) 

( 1) , ( 1)
1 1

n n

kl ij n k i n l j
i j

k a k − + − +
= =

=∑∑ɶ                     (3.18) 

where klkɶ is the element at row k and column l in the condensed kernel, n is the number 

of image volumes in each block. A is the n by n weighting matrix containing the 

coefficients kla  for each of the elements in the original kernel. Because the kernel 

matrix K  is symmetric, the weighting matrix is also symmetric.  

 

Figure 3.9 Temporal compression using generalised o peration 

This figure illustrates the generalized operation to compress the original kernel into the 

reduced kernel whose dimension is the number of blocks. The experiment is the example used 

in figure 3.8. The new elements in the compressed kernel matrix are the sum of the weighted 

elements in the original kernel, computed using equation (3.18). The weighting matrix is shown 

on the second column of the figure. Brighter colours indicates higher values.  

The weighting matrix for the beta map can be computed directly from their weighting 

vector p, by = TA pp . For the spatial-temporal operation, the weighting matrix is a 

partial diagonal matrix, such that,
0

1i i
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=  ∈
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concatenated in the block, and it is often selected to be the same set as the averaging 

operation. Generally speaking, the full kernel matrix from the entire time series is 

often utilized in the kernel regression framework, whereas the condensed kernel 

matrix is used in classification problems, where the objective is to categorise events. 

3.3 Introduction to Basic Kernel Algorithms 

Before going into more sophisticated kernel algorithms in chapters 4 and 5, this 

section introduces some basic algorithms for clustering and classification. Data 

decomposition methods will also be introduced, such as singular value decomposition 

(SVD), principal component analysis (PCA), as well as the more general kernel 

principal component analysis (KPCA). 

 

3.3.1 Singular Value Decomposition and dimensionality reduction 

In linear algebra, Singular Value Decomposition (SVD), is a factorization to 

decompose an N by D matrix X, into an N by N unitary matrix U, an N by D 

rectangular diagonal matrix S, and a D by D unitary matrix V (Lay, 1997; Moler, 

2006). 

TX = USV                        (3.19) 

U is often called the matrix of left singular vector vectors, and contains orthonormal 

basis set 1{ ,..., }nu u , so =TU U I . Similarly, V is called the matrix of right singular 

vectors, containing the orthonormal basis sets1{ ,..., }dv v , where =TV V I . The 

diagonal entries in S are the first r singular values of X, 1 2 ... 0rs s s≥ ≥ ≥ > , where r 

is the rank of the matrix X. If we define the linear kernel as= TK XX , then it can be 

represented by = T TK USS U . If we recall the definition of eigenvalue and eigenvector, 

=λXu u , we can realize that the orthonormal vectors 1{ ,..., }nu u  are actually the 
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eigenvectors of the linear kernel, and the square of the singular values 2 2
1{ ,..., }rs s  are 

the eigenvalues. 

Section 3.1.1 mentioned that one advantage of working in the dual form is the 

computational efficiency when the number of dimension is much higher than the 

number of samples, D N>> . In fact, the data points do not span across the whole 

feature dimension D, but rather span the subspace that is bound by the rank of the data 

matrix, ( )r rank N= ≤X . Therefore, we can reduce the data matrix X, while still 

maintaining all the information regarding the relative distance between data points. In 

other words, we can reduce the N by D data matrix into an N by N matrix  

 1, { ,..., }N= = =X US XV V v vɶ ɶ ɶ                   (3.20) 

This often reduces the computation in the primal form to be the same as that in the 

dual form. However, this technique of dimensionality reduction still has a 

shortcoming compared with when dealing with high dimensional data in the dual form. 

The drawback appears when we want to preserve the full information and maintain a 

lossless dimensionality reduction while additional data points are added. If we apply 

SVD on the initial training set, the effective dimension is bounded by the number of 

training points. When new training points arrive, we can still apply the first N right 

singular vectors to project the new data points into the subspace defined by the 

original training set. Unfortunately, this will reduce the information carried in the new 

data. If we want to preserve the information, we would have to apply SVD every time 

new data arrives. In practice, if the initial training set is sufficiently large, we can be 

quite confident of obtaining adequate information after dimensionality reduction is 

applied. Hence we can fix the number of singular vectors to a desirable value.  

For memory reasons, it is usually impractical to decompose the huge matrix X. 

To overcome this issue, we can generate the linear kernel K  by sequentially summing 



 95 

up kernels computed from subsets of the full data, and then apply SVD to the matrix 

K . The SVD can decompose the matrix into its eigenvectors and eigenvalues, 

2
, ,= , , i i i i= =T TK UλU λ SS λ S . After obtaining the left singular vectors, and the 

eigenvalues we can compute successively to find the right singular 

vectors 1 1,i i is
− −= =T Tv X u V X USɶ . Because it is a linear operation, part of the columns 

in the data matrix can be sequentially loaded to compute the corresponding elements 

in the right singular vectors. The reduced matrix of right singular vectorsVɶ is N by N . 

SVD can be applied not only to dimensionality reduction, but also if there is 

enough redundancy in the data matrix (i.e. only relatively few singular vectors can 

represent the original data matrix adequately), incremental SVD can be employed to 

estimate missing entries (Brand, 2002; Kurucz et al., 2007 ). In the context of imaging 

data, we can use this method to replace voxels in image volumes containing artifacts, 

by treating those entries as missing in the full data matrix X.  

 

3.3.2 Principal Component Analysis and Kernel Principal 

Component Analysis 

Principal Component Analysis (PCA) is a very popular unsupervised learning 

method for data visualization, lossy dimensionality reduction, and feature selection. 

Intuitively, PCA can be understood as a technique to rotate and sometimes flip the 

data points, without translation and scaling such that the data points in the new 

coordinate system are orthogonal, i.e. there are no off-diagonal components in the 

sample covariance matrix of this new coordinate system. This leads to the maximum 

variance formulation of PCA (Bishop, 2006b; Jolliffe, 2002). To simplify the notation, 

we assume the means in each dimension of data matrix X have been removed, as 

described in section 2.1.4. We can define a projection unit vector 1v , such that 1 1 1=Tv v . 
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The projected data points in this one dimensional space are computed by 1Xv , so the 

variance of the projected data is1 1 1 1=T T Tv X Xv v Σv , whereΣ is the data covariance 

matrix defined in equation (2.13). The objective will be to maximize 1 1
Tv Σv  with 

respect to 1v , under the constraint1 1 1=Tv v . To solve this optimization problem, we 

introduce a Lagrange multiplier1λ  to convert into the unconstrained optimization 

of 1 1 1 1 1(1 )λ+ −T Tv Σv v v . Setting the derivative with respect to 1v  to zero, and solving, 

leads to the characteristic equation 

1 1 1λ=Σv v                            (3.21) 

This means that1v and 1λ are the eigenvector and eigenvalue of the sample covariance 

matrix. We often define the largest eigenvalue and its corresponding eigenvector as 

the first principal component. The additional principal components are the rest of the 

eigenvectors and eigenvalues, ordered such that the eigenvalues are decreasing. 

Because the covariance matrix is positive definite, the eigenvectors are orthonormal to 

each other. In fact, PCA can be implemented by SVD. When SVD is applied to the 

covariance matrix, the singular vectors are the essentially the eigenvectors, and the 

singular values are the eigenvalues. When the dimensionality is very large, computing 

the sample covariance matrix is infeasible. We often first generate the linear kernel, 

and apply equation (3.12) to centre the data, and then apply SVD to the centred kernel. 

The data projected to the principal components can be evaluated using equation (3.20). 

Notice that the projected data points will be different if the kernel is not centred. 

Sometimes, investigators remove the projected components with lower eigenvalues, 

and retain only those principal components that contribute most (e.g. 96%) of the total 

variance (Ashburner et al., 1998). A related technique, called Principal Component 
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Regression (PCR), selects a few principal components with high eigenvalues as the 

regressors in the model to avoid over-fitting. However, sometimes the low variance 

components may be important (Jolliffe, 1982). PRC can also be combined with model 

selection criteria introduced in section 2.5.3. We can use AIC (2.67) or BIC (2.68) to 

select a desirable number of principal components (Brickman et al., 2007). 

 

  

Figure 3.10 Principal component analysis 

The left figure is the original plot of right hippocampal volume versus left hippocampal volume, 

and the right figure is the data project to the first and second principal components. The 

relative distance between each data points in both figures is the same, however, the data 

points were mean removed, rotated and flipped.  

Because the projected data can be computed by equation (3.20), and the left 

singular vectors, U, computed without needing to work on the original input features, 

we can apply the kernel trick to project the data into a higher dimensional space.  

Typically, an RBF kernel function would be used, and the principal components 

computed in the high dimensional projected feature space. This is called Kernel PCA, 

and is a technique that may sometimes reveal interesting structure among the data 

points.  
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Figure 3.11 Kernel Principal component analysis 

The left panel shows the first two principal projections of the implicit feature space of the RBF 

kernel with the parameter value γ =2.5e-6, using the same data as in figures 2.6 and 3.10 

(hippocampal volumes). The circular shape is due to the property of RBF kernels. Notice that 

the diagonal elements in the RBF kernel are all one, which implies that the data points are 

projected on to a hyper-sphere. The right panel shows the principal projections of a fifth order 

polynomial kernel. The red colour indicates controls and blue indicates patients. 

3.3.3 Basic kernel algorithms 

This section introduces some elementary algorithms, which sometimes assist the 

visualization or analysis of data. The first would be using kernels to calculate the 

distance to the group average in the kernel space. To simplify the notation, we 

replace ( )φ x byφ  as the features of one data point in the projected feature space. The 

distance between any two data points can be calculated by 

 
2|| || , , 2 , ,

( , ) ( , ) ( , )
i j i j i j i i i j j j

i i j i j jK K K

− =< − − >=< > − < > + < >

= − +

φ φ φ φ φ φ φ φ φ φ φ φ

x x x x x x
     (3.22) 

This leads to the equation for computing the distance of any point from the mean of a 

particular set of samples. 2
* * *|| || , 2 , ,m m m m m− =< > − < > + < >φ φ φ φ φ φ φ φ , where 

mφ  is the centre of mass of the set, and the norm is given by 

2
21 1 , 1

1 1 1
|| || , ( , )

N N N

m i i i ji i j i
K

N N N= = =
=< >=∑ ∑ ∑φ φ φ x x . Therefore, the distance to the 

centre of mass is given by  
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2
* * * *2 , 1 1

1 2
|| || ( , ) ( , ) ( , )

N N

m i j ij i i
K K K

N N= =
− = + −∑ ∑φ φ x x x x x x        (3.23) 

This is often useful when the aim is to detect outliers in the training groups, and 

removing those that are more than (say) three standard deviations away from the 

mean. 

Another simple classification algorithm is called K-Nearest Neighbour 

classification (KNN). In KNN classification, the class of a new data point is 

determined according to the majority class membership of the K closest training data 

points (Bishop, 2006b; Duda et al., 2000). For binary classification, K is typically an 

odd number to avoid equal numbers of neighbours in both classes. Because the 

distance between any data points can be calculated using (3.22), this algorithm is very 

easy to implement. Another advantage of this algorithm is that it does not require any 

training. However, cross validation may be needed to determine a suitable setting for 

K. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12 K-near neighbour classification 

This figure shows the leave one out cross-validation accuracy with different K for the K nearest 

neighbour classification. The left panel shows the accuracies using a linear kernel generated 

from the left and right hippocampal volumes, and the right panel shows the accuracies with 

fifth-order polynomial kernel. The maximum accuracy of 83.68% is achieved with k=7 using the 

non-linear kernel in this example. 
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The distance matrix, computed with equation (3.22), can also be used for 

clustering. The hierarchical clustering method and the dendrogram can reveal hidden 

structures of similarities among subjects or conditions. For example, if we have 

several experimental stimuli in an fMRI experiment, we can use hierarchical 

clustering to group similar conditions together automatically. This may tell us which 

conditions are similar in terms of their BOLD patterns. Hierarchical clustering works 

by initially assuming that there are as many clusters as data points. Then each cluster 

will merge with the nearest cluster until only one cluster remains, or when the 

minimum number of clusters is reached. The dendrogram, which is the visualization 

tool for the hierarchical clustering tree, consists of many upsides down U-shape lines 

connecting different clusters. The height of each reverse U represents the distance 

between the two clusters being connected (see Figure 3.13). 

    

 

 

 

 

 

 

 

Figure 3.13 Cluster analysis using dendrogram 

This is an example of a dendrogram applied to the fMRI experiment mentioned in figure 3.8. 

We used the volume averaging kernel introduced in section 3.2.2, so each label represents 

one type of experimental stimulus. Label ‘1’ represents unpleasant stimuli, label ‘2’ represents 

neutral stimuli, and label ‘3’ represents pleasant stimuli. From this dendrogram, we can see 

unpleasant stimuli (label 1) are quite distinctive from the neutral stimuli (label 2), and that the 

unpleasant stimuli seem to be less dispersed. 

 For the current example, we used the Matlab function ‘linkage’ and 
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‘dendrogram’ in the statistics toolbox. The only required input is the pair-wise 

distance, which can be computed using equation (3.22). There are various methods to 

evaluate the distances between clusters. The common ones are: 

• ‘Single-linkage’, which measure the distance between clusters by finding the 

distance between the closest points in both clusters. i.e. the shortest possible 

distance between members in cluster one to members in cluster two. 

1 2 1 2( , ) min( ( , )), ,dist C C dist i j i C j C= ∈ ∈ . 

• ‘Complete-linkage’, which is the opposite of the Single-linkage, finds the 

furthest points in both clusters. 1 2 1 2( , ) max( ( , )), ,dist C C dist i j i C j C= ∈ ∈ . 

• ‘Average-linkage’ evaluates the overall average of the distances between all 

possible pairs in both clusters. 
1 2

1 2
,1 2

1
( , ) ( ( , ))

| || |i C j C

dist C C dist i j
C C ∈ ∈

= ∑ . 

• ‘Centroid-linkage’ measures the distance between the centroids of the clusters.  

 

Besides hierarchical clustering, there is a well-known clustering algorithm called 

“K-means” clustering which is famous for its simplicity. The algorithm is a greedy 

method; hence it only guarantees to find a local optimum, so the solution may change 

with different initial estimates. The algorithm works by iteratively evaluating the 

distance of all data points to the cluster centres, and assigning cluster membership 

according to which centre is closest. This scheme is iterated until convergence. The 

free parameter K, which is the number of clusters, has to be specified before running 

the algorithm. From equation (3.23), we can directly utilize the kernel formulation 

and calculate the distance to the cluster centres without explicitly evaluating the 

cluster centres in the feature space. We first initialize an N by K indicator matrix A, 

which specifies the membership of each data point, so that 

1 if  is in cluster 

0 otherwise              
i

ik

k
= 


x
A  . We can compute the cluster centre byTX AD , where 
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X is the data matrix, and the D is K by K diagonal matrix having the inverse of the 

column sums of A in the diagonal entries. The distance of all data points to the cluster 

centres can therefore be computed by  ( ) 2diag −T Tl DA KAD KAD , where l is an N 

element column vector, and diag() indicates the diagonal entries of the matrix. Once 

the distances to cluster centres has been evaluated, the cluster memberships in A can 

be reassigned based on the shortest distance. This procedure is iterated until 

convergence, when no element in A is reassigned.  
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This chapter will introduce the methodological aspects of kernel regression 

methods, namely Relevance Vector Regression (RVR), Support Vector Regression 

(SVR), Gaussian Processes Regression (GPR), and the Kernel Ridge Regression 

(KRR) mentioned in section 3.1.1. Projects employing these methods to both fMRI 

and structural MRI data will be presented in detail. The fMRI related works are the 

“Pittsburgh Brain Activity Interpretation Competition 2006 (PBIAC)”, in which we 

achieved 5th place, and the “PBIAC 2007”, in which we came first (Carlton Chu et al., 

2009; Ni et al., 2008). The project using structural MRI is on “Regression analysis for 

clinical scores of Alzheimer’s Disease using multivariate machine learning method”. 

It is a collaborative work with Drs. Stefan Klöppel and Cynthia Stonnington, using 

data from Dr. Clifford Jack at the Mayo Clinic. I presented this work as both a poster 

and an oral presentation at the Organisation for Human Brain Mapping (OHBM) 

conference in 2007. 

The general regression framework was introduced in section 2.4, and assumes 

that a training set containing input/output pairs, 1 1 2 2{( , ), ( , ),..., ( , )}N NS t t t= x x x , where 

t is a continuous numbert ⊆ ℜ . The general model for a linear regression problem is 

1

D

d dd
t w x offset error

=
= + +∑ , which means that the output is a weighted linear 

combination of input features, plus a constant offset and noise. The general model for 

a kernel regression is 
* *( , )i i

i training

t K offset errorβ
∈

= + +∑ x x , which means the output is a 

weighted linear combination of the kernel generated from the input sample, with all 

the training samples - plus offset and error. Some models may not include an offset 

term.  Both SVR and RVR are in the category of sparse kernel machines, which 

implies that some of the kernel weights, β , are zero. In other words, not all training 

samples contribute to the prediction of the testing samples. One advantage of kernel 

methods is that the kernel algorithms are invariant to the type of kernels used. 
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Therefore, all the issues relating to non-linear patterns were previously encapsulated 

in Chapter 3 (kernel construction). However, if a linear kernel is used, we can obtain 

the weights in the input feature space by 
1

N

i
i

β
=

=∑ iw x , which can be useful for 

gaining insight into which features are informative. 

4.1 Introduction to Kernel Regression Algorithms 

KRR was previously described in section 3.1.1, so no more needs to be said 

about it here. RVR and GP both use a Bayesian framework. SVR will be introduced 

first. Usually when describing the Support Vector Machine (SVM), the classification 

form is introduced first and the regression form afterwards. Classification is directly 

linked to the fundamental core of SVM (Vapnik, 1998), and is also the most popular 

form. In fact, SVM is often used to refer only to Support Vector Classification (SVC). 

SVR is often viewed as a regression model motivated by the philosophy of SVC. 

Because of the structure of this thesis, SVR is described prior to SVC, but it is 

advisable to read about SVC first in Chapter 5. 

4.1.1 Support Vector Regression 

In the SVM framework, the optimisation problem is convex, so the solution it 

finds is the global optimum. Another feature of SVM is its property of sparseness 

(Vapnik, 1998). To achieve both sparseness and the global optimum, SVR is 

motivated by defining a loss function, which ignores errors within a certain range 

between the predicted and the true (target) values. This is called anε -insensitive loss 

function (Bishop, 2006b; Cristianini and Shawe-Taylor, 2000; Schlkopf and Smola, 

2001; Smola and Olkopf, 2003). A typical linear loss function 

is 1( , ) | |,L t y t y b= − = +Tx w x and a quadratic loss function is 2
2( , ) ( )L t y t= −x , where 

t is target, or true value, and y is the predicted value. The linearε -insensitive loss is 
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defined by 

1 ( , ) max(0,| | )L t y tε ε= − −x                       (4.1) 

and the quadraticε -insensitive loss is defined by   

 2
2( , ) (max(0,| | ))L t y tε ε= − −x                     (4.2) 

This means that if the conventional linear loss is below a threshold valueε , the loss is 

ignored. If we adapt the regularised linear regression in (2.42), the objective function 

for SVR with quadraticε -insensitive loss is given by 

2
2

1

( , ) || ||
N

i i
i

L yε λ
=

+∑ x w                       (4.3) 

Figure 4.1 e-insensitive loss function 

Both linear and quadratic ε -insensitive loss functions with the value of ε  set to 2. 

This optimisation problem can be reformulated by introducing slack variables. Two 

slack variables are required for each data point, such that 0iξ ≥  corresponds to the 

point where i it yε> +  (the predicted value is more thanε below the target) and 

ˆ 0iξ ≥  corresponds to point where i it y ε< −  (the predicted value exceeds the target 

value by more thanε ). In addition, the slack variables satisfy the condition 

that ˆ 0i iξ ξ = . This implies that for each point, either both slack variables are zero 

(when the data point is within the insensitive zone), or one of the slack variables is 
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zero. In the one dimensional regression example (figure 4.2), if the data point is 

outside the insensitive zone,iξ  indicates the error from the data point to the upper 

boundary of the insensitive zone, and îξ  indicates the error from the data point to the  

lower boundary of the insensitive zone. 

Figure 4.2 1D Support Vector Regression 

Illustration of a one dimensional Support Vector Regression problem, with a linear 

ε -insensitive loss function. The left panel shows the solution with a linear kernel and the right 

panel shows the result of a RBF kernel with the same data points. The dotted lines indicate the 

insensitive “tube”, defined by theε parameter. The data points are indicated by crosses, and 

the circles are the so called “support vectors”, which are the data points defining the solution. 

In other words, they are the data points with non-zero kernel weights. Data points within the 

insensitive tube do not contribute to the solution. 

The primal objective function of the regularised SVR with quadraticε -insensitive loss 

function is given by 

2 2 2

1

ˆminimize || || ( )

ˆsubject to ( ) , 1,...,

               ( ) , 1,...,

ˆ               , 0, 1,...,

N

i i
i

i i i

i i i

i i

C

b t i N

t b i N

i N

ξ ξ

ε ξ
ε ξ

ξ ξ

=

+ +

+ − ≤ + =

− + ≤ + =

≥ =

∑
T

T

w

w x

w x

                (4.4) 

The C and ε  settings are often chosen using cross validation. If 0ε = , this objective 

function is equivalent the ridge regression in (2.42). Notice the difference between the 

free parameter C and the λ  used in conventional ridge regression. In ridge 
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regression, λ  controls the amount of regularisation. In SVR, the regularisation is 

fixed and C controls the amount of penalty from the training errors. Therefore higher 

C indicates less regularisation, and lower C indicates stronger regularisation. The dual 

problem can be derived by introducing the Lagrange multipliers, ,i ia a
⌢

. 

,
1 1 , 1

1

1 1
maximize ( ) ( ) ( )( )( , )

2

subject to ( ) 0, 0, 0, 1,...,

N N N

i i i i i i i j j i j i j
i i i j

N

i i i i
i

t a a a a a a a a
C

a a a a i N

ε δ
= = =

=

− − + − − − < > +

− = ≥ ≥ =

∑ ∑ ∑

∑

x x
⌢ ⌢ ⌢ ⌢

⌢ ⌢

 (4.5) 

where ,i jδ  is the delta function, having a value of 1 only if i=j , and zero otherwise. 

We can then substitute i ia aβ = − ⌢ , and use the relation 0i ia a =⌢
, which is inherited 

from the corresponding slack variables. We can simplify (4.5) to the following 

,
1 1 , 1

1

1 1
maximize | | ( , )

2
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N N N

i i i i j i j i j
i i i j

N

i
i
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C

i N

β ε β β β δ

β

= = =

=

− − < > +

= =

∑ ∑ ∑

∑

x x

        (4.6) 

This is essentially a quadratic programming problem. This equation 

,
, 1

1
( , )

N

i j i j i j
i j C

β β δ
=

< > +∑ x x , can also be reformulated into the matrix form 

1
( )

C
+T

β K I β , where K  is the N by N kernel matrix, and I  is an identity matrix of the 

same dimensions. We can see the similarity between this formulation and KRR (3.3): 

both methods adjust the regularisation by adding diagonal entries to the kernel. After 

fitting, predictions can be made by  

    * 1 *
( ) ( , )

N

i ii
f K bβ

=
= +∑x x x                         (4.7) 

where b is chosen so that ( ) /i i if t Cε β− = − −x  for any i that 0iβ >  or 

( ) /i i if t Cε β− = +x  for any i that 0iβ < . In practice, b is chosen by averaging the 

solution of b , for data points satisfying 0iβ ≠ . This reduces numerical rounding 

errors.  
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Although the quadratic loss function is more closely related to ridge regression, 

the linear ε -insensitive loss function is more popular for SVR. The primal objective 

function of the regularised SVR with a quadraticε -insensitive loss function is given 

by 

2

1

1 ˆminimize || || ( )
2

ˆsubject to ( ) , 1,...,

               ( ) , 1,...,

ˆ               , 0, 1,...,

N

i
i

i i i

i i i

i i
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b t i N

t b i N

i N

ξ ξ

ε ξ
ε ξ

ξ ξ

=

+ +

+ − ≤ + =

− + ≤ + =

≥ =

∑
T

T

w

w x

w x

                (4.8) 

The corresponding dual form can be derived by introducing Lagrange multipliers 
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1
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We can also substitute i ia aβ = − ⌢  to derive  

1 1 , 1

1

1
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i i i i j i j
i i i j
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i i
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C C i N
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∑
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        (4.10) 

In the linear loss function model, b is chosen so that ( )i if t ε− = −x  for any i that 

satisfies 0 i Cβ< < , or ( )i if t ε− =x for any i satisfying 0iC β− < < . These data 

points are right on the boundary of the insensitive “tube”. The data points with 0iβ =  

are inside the insensitive “tube” (see figure 4.2), and the data points with 

either  or i iC Cβ β= = −  are outside the tube. Notice that both (4.6) and (4.10) are 

very similar. For the formulation of quadratic loss, the only difference is the extra 

diagonal elements added to the kernel. Therefore, when third party SVR software 

does not explicitly support the quadratic loss function, which is often the case, we can 

simply use an implementation of the linearε -insensitive SVR to compute the kernel 

weights iβ  for the quadraticε -insensitive SVR. This is achieved by setting C to 

infinity and adding regularisation to the diagonal elements of the kernel, prior to 
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passing it as an argument to the algorithm. If this strategy is adopted, it is essential to 

note that the offset term, b, is calculated differently for both formulations. 

If training samples with zero weights are removed from of the original training 

set, the new result will yield an identical solution. This means that any additional 

training samples, which locate in the insensitive tube of a previously trained solution, 

will not benefit the training. However, in practice, a cross validation using the 

extended training dataset may suggest a different “width” for the insensitive tube. 

Generally speaking, training SVR is very fast, and the solution is also guaranteed to 

be globally optimal. The sparse solution suggests that SVR is faster when predicting 

new data points, than is KRR - especially when the training set is very large. However, 

the two free parameters (C and ε ) in SVR increase the computation time by 

requiring cross-validation to optimise them. In practice, the solutions obtained using 

SVR are not very sparse for fMRI data. A larger insensitive parameter can increase the 

sparsity, but it may also harm the performance. 

For this thesis, SVR was performed by passing a pre-computed kernel matrix to 

the LIBSVM toolbox (http://www.csie.ntu.edu.tw/~cjlin/libsvm/). 

4.1.2 Relevance Vector Regression 

Relevance Vector Regression (RVR) is also a sparse kernel method, but it is 

formulated in a Bayesian framework. While the general expression takes the form of a 

dual formulation, RVR treats the kernel as a set of linear basis functions in order to 

obtain the form of equation (4.7). * * * 1 *: ( ) ( ( , ),...., ( , ))D N
Nk x k xφ φ∈ℜ → = ∈ℜx x x x . 

RVR is not strictly a kernel algorithm because its input is not required to be a kernel 

satisfying Mercer’s condition. In other words, the kernel need not be symmetric and 

positive definite (Tipping, 2000, 2001). In fact, we could also use input features for 

RVM rather than kernels, and enabling sparsity in the feature space to be achieved 
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(Peng et al., 2008). It is also possible to take only a few “representative samples”, and 

use the similarity measures, i.e. kernel values, or dissimilarity measures of those 

samples for the basis functions (Pekalska and Duin, 2005). In such a case, the input 

will be the N by M matrix, where N>M. The general RVM takes the full kernel for the 

input, and prepends a column of ones to model the offset. We will denote the N by 

N+1 basis functions by [ , ]=Φ l K , where l is an N element column vector of ones. The 

likelihood function of the data set can be modeled by a Gaussian distribution, 

2 2( | , ) ( | , )p Nσ σ=t β t Φβ I . Similar to the Bayesian view of ridge regression, each of 

the weights, β , are assigned a unique zero mean Gaussian prior. This differs from 

ridge regression, where all the elements of the weight have the same variance, 1−α . 

The RVR models the prior of β  with independent variance, 

),0|()|( 1

0

−

=
∏= ii

N

i

βNp ααβ . This formulation is similar to the Bayesian view of ridge 

regression mentioned in section 2.4.2, so the posterior distribution is also similar to 

equation (2.46). It is given by 2( | , , ) ( | , )p Nσ =β t α β µ Σ , where 

2 1( )σ − −= +TΣ Φ Φ A  is the posterior covariance and 0 1( , ,..., )Ndiag α α α=A is the 

diagonal matrix with the precision or the inverse of the variance for each weight. 

2 2 1( )σ σ− −= = +T T Tµ ΣΦ t Φ Φ A Φ t  is the maximum posterior weight. This is nearly 

identical to the maximum posterior solution for ridge regression, except the diagonal 

matrix does not have identical diagonal elements. Intuitively, this can be viewed as 

using different amounts of regularisation for each of the “training samples”, where the 

amount of regularisation is controlled by the hyper-parameters. In the Bayesian 

framework, finding an optimum solution involves maximising the marginal likelihood 

(type-II maximum likelihood) with respect to the hyper-parameters αand a noise 

variance 2σ . Because both the likelihood and the prior are modeled by Gaussian 

distributions, it is analytically feasible to derive the marginal likelihood function by 
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integrate over the parameters. The marginal likelihood is also a Gaussian 

 2 2( | , ) ( | , ) ( | ) ( | 0, )p p p d Nσ σ β= =∫t α t β β α t C            (4.11) 

where 2 1σ −= + TC I ΦA Φ  is the covariance of the marginal likelihood. The objective 

of the optimisation is to find the hyper-parameters, 2,σA , which maximise the 

“evidence” of the data (Mackay, 1992; Tipping, 2001). This is closely related to 

restricted maximum likelihood (ReML) and estimation of covariance components in 

the statistical literature. (Friston et al., 2002; Harville, 1977; Henderson, 1953). The 

covariance matrix that maximises the marginal likelihood can be obtained by iterative 

re-estimation or expectation maximisation (EM). For optimising the hyper-parameters, 

we can differentiate (4.11) and set the derivative to zero, based on the approach in 

(Mackay, 1992). The update is given by 

2
2

2

|| ||
, ( )new newi

i
i i

i

N

γα σ
µ γ

−= =
−∑

t Φβ
                  (4.12) 

where 1i i iiγ α= − Σ represents a measure of how well the corresponding parameter iβ  

is determined by the data, and 2 T 1( )ii i i iσ α− −Σ = +φ φ is the ith diagonal element of the 

posterior covariance. When iα  is large, iβ  is heavily regularised, so ii iαΣ ≈ , and 

it follows that 0iγ ≈ . This indicates that the corresponding weight is less well 

determined by the data. When maximising the marginal likelihood, some of the α  

will grow very large, implying a small prior variance. Because the prior is zero mean, a 

parameter with an extremely small variance results will have its posterior probability 

sharply peaked at zero. This property allows irrelevant columns of the basis functions 

to be pruned out, and is known as automatic relevance determination (ARD)(MacKay, 

1995). Because the solution is sparse, it means that only some of the training scans are 

used for prediction. Those scans are called “relevance vectors”, and are analogous to 

“support vectors” in the SVM framework. 
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Figure 4.3 1D Relevance Vector Regression 

Illustration of a one dimensional Relevance Vector Regression with an RBF kernel (the free 

parameter 0.3γ = ). In the top plot, the solid line is the mean of the predictive distribution, and 

the grey stripe has the width of two standard deviations. The data points are shown as crosses, 

and the relevance vectors as circles. The bottom plot shows the variance of the predictive 

distribution. Notice that the variance estimate from RVR is actually higher around the 

relevance vectors, and smaller away from them. 

When making the prediction, RVR has a similar form to other kernel methods, 

except that the test point is augmented as * * 1 *( ) [1, ( , ),...., ( , )]Nk kφ = Tx x x x x , where 

, 1,...,i i N=x are the data points in the training set. The prediction is given by 

* 0 *
( ) ( )

N

i ii
f φ β

=
=∑x x                      (4.13) 

with a predictive variance of 2 2
* * *( ) ( )σ σ φ φ= + Tx Σ x . This is the variance in the data 

plus the uncertainty of the predicted maximum posterior weights. Unfortunately, there 

is a property of the predictive variance estimates from RVM, which is that if the test 

point *x is far away from the centres of all relevance vectors, the values of the basis 

function *( )φ x become small. This formulation results the second term in the 

predictive variance going to zero, * *( ) ( ) 0φ φ ≈Tx Σ x . Therefore if the test points are 

far from the training points, their estimated predictive variances are actually smaller 
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(Rasmussen and Quiñonero-Candela, 2005)(see figure 4.3). This behaviour is 

undesirable, and is not shared with Gaussian Process methods. 

Although both SVR and RVR are sparse kernel methods, they exhibit different 

sparsity properties. Section 4.1.1 mentioned that removing non-support vectors from 

the training set will result the same training result for SVR, but this is not the case for 

RVR. Removing any non-relevance vectors from the training set may result in a 

different solution, and even a different set of relevance vectors. 

Work in this thesis used in-house RVR code written in MATLAB ® 

(http://www.mathworks.com/). 

4.1.3 Gaussian Processes Regression 

A Gaussian process is defined by a collection of random variables, any finite 

number of which is normally distributed (Rasmussen and Williams, 2006).  Gaussian 

process approaches for machine learning were introduced relatively recently (MacKay, 

1998, 2002; Williams, 1999). There are usually two views of Gaussian Process 

Regression (GPR): the weight-space view and the function-space view. 

The weight-space view is from a similar perspective to the description of RVR 

and ridge regression, where a standard linear regression model with Gaussian noise is 

used, 2( | , ) ( , )p N σ=t Φ w Φw I . This is a more general formulation than (2.40), 

where ( )φ=Φ X  encodes the projected features, and has dimensions of N by M. The 

weights are modelled by a zero mean Gaussian prior, ( ) (0, )priorp N= Σw . By 

applying the Bayes’ rule (2.5) we can obtain the following relationship 

( | , ) ( )
( | , ) ,  where ( | ) ( | , ) ( )

( | )

p p
p p p p d

p
= = ∫

t Φ w w
w t Φ t Φ t Φ w w w

t Φ
  (4.14) 

The posterior distribution is given by 2( | , ) ( , )post postp N σ −= Tw t Φ Σ Φ t Σ , where 

2 1 1( )post priorσ − − −= + ΣT
Σ Φ Φ . To make a prediction of a test sample, *t , we integrate 
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over all parameter values, which are weighted by the corresponding posterior 

probability.  

* * * *

2 2
* * * *

( | ( ), , ) ( | ( ), ) ( | , )

( ) ( | , ) ( ( ) , ( ) ( ))post post

p t p t p d

p d N

φ φ

φ σ φ σ φ φ−

=

= = +

∫

∫
T T T T

x t Φ x w w t Φ w

x w w t Φ w x Σ Φ t x Σ x
 (4.15) 

All of the formulations above are identical to those for RVR. We can also re-write the 

equation using the kernel formulation by 

2 1
* * *

2 2 1
* * * *

( | ( ), , ) ( ( ) ,

                      ( ) )

prior

prior prior prior

p t Nφ σ

σ σ

−

−

= Σ +

Σ + − Σ + Σ

T T

T T T

x t Φ φ Φ K I t

φ φ φ Φ K I Φ φ
   (4.16) 

where prior= Σ TK Φ Φ , and *( )φ x  is denoted by *φ  for convenience. We often 

assume 1Iprior α −Σ = , so 
1

α
= TK ΦΦ , which is a scaled kernel matrix, also known as 

the covariance function in the context of Gaussian Processes. Further details of the 

derivation can be find in the text book (Rasmussen and Williams, 2006), which is 

freely available online at http://www.gaussianprocess.org/gpml/chapters/. 

In the function-space view of GPR begins with the definition of a simple 

Bayesian linear regression model, =y Φw , with the prior ( ) (0 | )priorp N= Σw . 

Because y is a linear combination of Gaussian distributed variables, it is itself also 

Gaussian distributed, and defined by the following mean and covariance.   

E[ ] E[ ] 0

cov( ) E[ ] prior

= =
= = Σ =T T T

y Φ w

y Φ ww Φ Φ Φ K
          (4.17) 

For the regression model with Gaussian noise, the likelihood probability is given 

by 2( | ) ( | )p N σ=t y y I , and the marginal distribution is( ) (0, )p N=y K . Integration 

over y gives the marginal distribution 

 ( ) ( | ) ( ) ( | 0, )p p p d N= =∫t t y y y t C             (4.18) 

where the covariance matrix C is defined by 



 116 

2σ= +C K I                        (4.19) 

This equation resembles the covariance matrix for the marginal likelihood for RVR in 

(4.11). In fact, RVR is a special case of GPR. The covariance matrix in RVR is 

defined by 1 1 1 2
1 1 1 2 2 2 .... N N Nα α α σ− − −= + + +T T TC φ φ φ φ φ φ I , where iφ is the ith row in 

the feature matrix Φ . A simple covariance matrix with a linear kernel, a constant and 

the noise term is given by 1 2 3+θ θ θ= +TC XX I , where 0iθ ≥ models the weighting 

for each component. More generally, we can define the kernel matrix by 

1 1 2 2 3 3( , ) ( , ) ( , ) ( , )...i j i j i j i j kK K K Kθ θ θ θ= + + +x x x x x x x x          (4.20) 

For example, the kernel matrix K  can be a positive weighted combination of an RBF 

kernel, a linear kernel, a polynomial kernel and a constant. Here we take advantage of 

the kernel trick without needing to explicitly define the feature matrixΦ .  

For N training samples, we denote the distribution of the training data plus a new 

test data point by 1 1( ) (0, )N Np N+ +=t C , where 1 1 *[ ,..., , ]N Nt t t+ = Tt  and 1N+C is an N+1 

by N+1 covariance matrix  

1N c+
 

=  
 

T

C k
C

k
                        (4.21) 

Covariance matrix C is defined by (4.19), the vector k has elements 

*= ( , ), 1,...,i iK i N=k x x , and the scalar value 2
* *( , )c K σ= +x x . Using the properties 

of conditional Gaussian distributions, we can compute the conditional distribution of 

*( | )p t t  by 

1 1
*( | ) ( , )p t N c− −= −T Tt k C t k C k                 (4.22) 

This is equivalent to (4.16) by defining 2
* *= priorc σΣ +T
φ φ and * prior= ΣT Tk φ Φ . 

However, the formulation in (4.22) does not require the feature space to be specified 

directly. Note that the mean of the predictive distribution can be included in the 
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general kernel regression equation
* *1

( , )
N

i ii
y Kβ

=
= =∑ Tx x k β , where 1−=β C t . Because 

C is the combination of the kernel matrix and a diagonal matrix, this resembles the 

kernel ridge regression (3.3), where the kernel weights are given by 1( )λ −= +β K I t . 

However, in the usual ridge regression framework, the free parameters are often 

determined by cross validations. In the Bayesian framework, those free parameters, or 

hyper-parameters, can be learned by maximising the marginal likelihood (4.18). This 

is also known as the “model evidence”, whose log likelihood function is given by  

2 11 1
ln( ( | , )) ln | | ln(2 )

2 2 2

N
p θ σ π−= − − −Tt C t C t               (4.23) 

It is therefore possible to optimise the evidence in order to find the optimum 

regularisation for a ridge regression, without resorting to cross validation. This 

framework has many other uses, for example, it could be used to find the optimum 

threshold for high-pass filtering of fMRI time series. Furthermore, the evidence 

framework can allow comparisons among different pattern mapping models (Friston 

et al., 2008). In this work, which I am a co-author of, we mapped input voxels into 

different linear pattern spaces. This included the use of linear kernels, principal 

components, and spatially smoothed input data. A greedy search was applied to find 

sparse solutions that maximise the model evidence in those pattern spaces. Instead of 

making predictions, we made inferences based on the model evidence from different 

pattern spaces, and compared the models this way. 

The major advantage of using model evidence to select hyper-parameters is its 

computational efficiency. When the number of free parameters increases, the 

computation for cross validation grows exponentially. In practice, hyper-parameters 

learned through maximising marginal likelihood often provide reasonably good 

performance, but they are not always better than hyper-parameters learned by 

cross-validation. Examples will be described in the next section on practical 
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applications.  

Figure 4.4 1D Gaussian Process Regression 

Illustration of a one dimensional Gaussian Process Regression using a RBF kernel. The 

hyper-parameters of the RBF kernel and the data noise were learnt through maximising 

marginal likelihood or the “model evidence”. The input data features are the same as in figure 

4.3. In the top plot, the solid line is the mean of the predictive distribution, and the grey stripe 

has a width of two standard deviations. The data points are shown by crosses. The bottom plot 

shows the variance of the predictive distribution. Notice that the variance is actually lower 

around the data points and higher away from them. This property is the converse of RVR, and 

is more accurate. 

For the implementation, we used the GPML Matlab toolbox 

(http://www.gaussianprocess.org/gpml/code/matlab/doc/) with some modifications to 

allow the use of pre-computed kernel. We also add some codes to enable generating 

linear combination of kernels. There is another in house implementation by Dr. 

Ashburner. In this implementation, Powell’s line search method (Press et al., 1992) is 

applied to optimize the marginal likelihood. 
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4.2 Application: Pittsburgh Brain Activity Interpre tation 

Competition 2006 

In the spring of 2006, the psychology department in the University of Pittsburgh 

held the international “Pittsburgh Brain Activity Interpretation Competition” (PBAIC), 

in conjunction with the Organization for Human Brain Mapping conference, which 

was held in Florence later that year. All details about the competition can be found at 

http://www.lrdc.pitt.edu/ebc/2006/competition.html. The competition was primarily 

organised by the “Experienced Based Cognition” (EBC) project, of which the 

principal investigator was Prof. Walter Schneider. The goal of the competition was to 

“challenge multiple groups to use state-of-the-art techniques to infer subjective 

experience from a rigorously collected set of fMRI.” In other words, the competition 

aimed to test the ability of different pattern recognition methods for mapping the 

BOLD patterns in fMRI data to the subjects’ experience during scanning. These 

techniques are often referred as “fMRI decoding”. There were 273 teams registered to 

take part in the competition and 40 teams submitted their results at the end. Our entry 

came 5th in the competition. The prize money was $10,000 for the first place, $5,000 

for the 2nd place, and $2,000 for the 3rd place. 

4.2.1 Overview of the competition: data, goals, and scoring system 

The fMRI data was provided by the competition organisers. Data were collected 

from three subjects viewing three 20 minute long videos, which were re-edited 

segments of the American comedy “Home Improvement”. There were also resting 

(blank) periods for each run of the video. Rating data were collected on 13 subjective 

features rated by each subject, plus seven actor ratings and seven location ratings. The 

subjective ratings were collected after the fMRI session from each subject separately, 

which means subjects watched the videos repeatedly to provide the 13 different 



 120 

ratings. Thirteen of the ratings were compulsory for the participants of the 

competition, and there were an additional 14 optional ratings, which would benefit the 

participant if they scored higher than the average of compulsory ratings. The ratings 

were named “amusement”, “attention”, “arousal”, “body parts”, “environmental 

sounds”, “faces”, “food”, “language”, “laughter”, “motion”, “music”, “sadness”, and 

“tools”. For further details, please refer to the competition websites. All the ratings 

were scaled between 0 and 1, and the baseline for most of the ratings was 0, except 

for arousal and attention, which had a baseline of 0.5. The organiser provided all the 

fMRI volumes for the three subjects viewing the three videos segments, but only the 

ratings for the first two videos were provided. The objective for each team was to  

use data collected from the first two movies in order to learn the mappings from fMRI 

volumes to the subjective ratings, and then apply the learnt mapping to predict the 

ratings from the third video. To resemble the more conventional GLM analysis, each 

rating was convolved by the canonical hemodynamic response function (HRF) (figure 

3.6). Instead of predicting the original ratings, the objective was to predict the HRF 

convolved ratings i.e. regressors in the design matrix.  

The fMRI volumes were acquired in a Siemens 3T Allegra scanner with 

TR=1.75s, TE=25ms, and flip angle=76 degrees. The slice thickness was 3.5mm and 

xy voxel size was 3.28mm. Each video was approximately 20 minutes, so there were 

858 volumes for the first run (corresponding to the first video), 868 volumes for the 

second run, and 900 volumes for the third run. The video and volumes were 

approximately synchronised across the three subjects. Additional structural data was 

also collected in the same scanner, using a MPRAGE sequence with 1mm slice 

thickness and 0.82 xy voxel size. The organisers kindly provided pre-processed data 

done using Brain Voyager. We chose to pre-process the raw data with SPM5 

ourselves. 
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The score for each rating was evaluated using Pearson’s correlation between the 

predicted rating and the true HRF convolved rating. To encourage participants to 

improve their predictions and achieve higher accuracy, the scores were converted into 

Fisher’s z score, 1 11
tanh ( ) log( )

2 1
xy

r xy
xy

r
z r

r
− +

= =
−

. In order to rank the performance from 

different teams, the competition committee developed a single “competition score” by 

averaging all the z scores for thirteen ratings of all three subjects, and then convert the 

averaged z scores back to correlation coefficients. Because z scores are non-linearly 

related to correlations, improving a correlation from 0.65 to 0.75 increases the scores 

by twice as much as improving a correlation from 0.1 to 0.2. Each team was allowed 

to submit their prediction of run three only three times. The best competition score 

among the three submissions was compared with the best scores of the other teams. 

4.2.2 Our approaches to tackle PBAIC 2006 

This competition was held less than six months after I began my PhD study. In 

addition, the release of the full dataset was delayed, so each team had only about five 

weeks to complete their entries. As I was very inexperienced, I teamed up with a 

senior researcher, Dr. Janaina Mourao-Miranda, from the Institute of Psychiatry, 

Kings College. At this stage, I still had much to learn, and spent more than a week 

pre-processing the dataset, using various SPM5 pre-processing options. I worked on 

RVR with my own pre-proceesed data, and Dr. Mourao Mirand worked on SVR with 

spatially normalised data pre-processed by the competition organisers. 

For our own pre-processing steps, all functional data was realigned and resliced, 

and the T1 structural image was coregistered with the fMRI data. The grey matter 

(GM) was segmented from the structural image, and then resampled to have the same 

dimension as the functional data. This GM map was used to mask out non-grey matter 

tissues. The time series of each voxel were detrended using a piecewise linear 



 122 

regression model. The breakpoints of each linear segment were set at the middle of 

each resting period. At this point, I had not realised that detrending could be done to 

the kernel using a residual forming matrix, as described in equation (3.14). I took an 

inefficient approach of detrending all voxels for all three runs of each user. Then 

different amounts of Gaussian smoothing were applied to the data. We also tried using 

the ROI time series provided by the competition committee as input features. 

Standard RVR was used to predict the subjective ratings. We used each rating as 

the target t and a kernel generated from the pre-processed fMRI volumes as the input. 

In this work, we treated each rating independently and trained them separately. The 

prediction accuracies for different settings, such as different spatial smoothing and 

different choices of input features, were determined by two fold cross validation i.e. 

train using ratings from run one, and then predict the ratings for run two, and vice 

versa. An interesting phenomenon was observed, in that we could actually predict one 

subject’s subjective rating using another subject’s fMRI data. We believed that this 

was due to synchronisation among the three subjects in terms of when the videos were 

viewed. Therefore, we also combined input features from different subjects when 

predicting the rating of one subject. i.e. summing up the three linear kernels generated 

from each individual. 

A further processing step was applied in order to improve their accuracy. In most 

cases, the range of the raw feature ratingsrawz , prior to convolution with the 

haemodynamic response function (HRF), was between zero and one. To utilise this 

prior knowledge, a constrained de-convolving strategy was applied. The “canonical 

HRF”, which the competition used to convolve the raw ratings with, was generated. 

The convolution can be implemented as a matrix multiplication of the raw rating by a 

toeplitz matrix, such that rawHzt = . The objective is to recover the raw rating rawz  

fulfilling the constraints by minimising the sum of square loss between the 
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re-convolves solution rawHz  and the predicted rating *t .  

 

Figure 4.5 Constrained deconvolusion 

Illustration of constrained deconvolution using quadratic programming. This was used because 

we know the original rating (before convolved by HRF) is between 0 and 1. Cross validation 

showed that this technique generally improved the prediction accuracy slightly. The additional 

temporal Gaussian smoothing also boosted the prediction accuracy. 

Quadratic programming (the same optimisation used by SVM) was used to deconvolve 

the HRF from the predictions (t*) by 

* *argmin{ } arg min{ }

subject to 0 1
raw raw

raw raw raw raw raw

raw

2− − = −

≤ ≤

T T T T

z z
(Hz t ) (Hz t ) z H Hz t Hz

z
 (4.24) 

The new predicted rating is then rawHzt = . Ideally, some sort of procedure such as 

Weiner filtering would have been used. Estimates of the expected temporal power 

spectrum of the predicted time course (derived from the smoothness of the scores 

used for training), and the power spectrum of the errors (obtained by making use of 

the probabilistic nature of the RVR), would have allowed more accurate 

deconvolution to be performed. As a compromise, we smoothed the reconvolved data 

slightly using a Gaussian smoothing kernel of 3 TRs FWHM. The FWHM was based 

on empirical testing. 
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4.2.3 Our result in PBAIC 2006 

Before we submitted our predictions for run three, we did some cross validations. 

The only variation in our attempts was the input features. For training and testing, we 

used SVR and RVR throughout the competition, and hence the results of each attempt 

will be listed here with four different ranks from poor (scores<0.3), neutral 

(0.3<scores<0.4), good (0.4<scores<0.45), to excellent (0.45<scores). These are based 

on the ranking results. Because of the time constraints, not all features were tested 

with all three subjects, for both video one and video two. The two free parameters for 

SVR were also selected empirically (Dr. Mourao-Miranda was responsible for all the 

SVR training) 

Input features type Learning methods 

(SVR or RVR or both) 

Subject Rank 

Individual pre-processed grey 

matter masked 

RVR All 3 Poor 

Individual Smoothed 

pre-processed grey matter 

masked 

RVR All 3 Neutral 

Individual normalised & 

pre-processed whole brain 

SVR & RVR 

(RVR slightly better) 

All3 Good for subject 

1,2, excellent for 

subject 3 

Individual ROI time series 

(ROI data was provided by 

the competition committee) 

RVR & SVR All 3 Neutral 

Combining ROI of 3 subjects RVR & SVR All 3 Good for subject 

1,2 Neutral for 

subject 3 

Combining normalised & 

pre-processed whole brain of 

3 subjects 

RVR Subject 1,2 Good  

Combining normalised & 

pre-processed whole brain of 

3 subjects 

SVR Subject 1,2 Neutral 
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Combining smoothed grey 

matter masked brain of 3 

subjects 

RVR Subject 1, 2 Excellent 

Combining smoothed grey 

matter masked brain of 3 

subjects 

RVR Subject 3 Neutral 

 

The finding was fairly interesting. In most cases, RVR seemed to perform better 

than SVR according to the cross validations. We found out that by adding the kernels 

of three subjects together, we could predict subject one and subject two better, but not 

subject three. The ratings could be modelled as a “true rating” with noise added. For 

subjects one and two, the variance maybe high compared with that from subject three. 

The optimal combination of data from several people may help RVR estimate the 

variance components better, but since the rating of subject three has lower variance 

already, this procedure may actually increase the variance of the prediction for subject 

three. Due to the time constraint, we did not predict any optional ratings. 

Because we had three chances to submit, we submitted the prediction from Dr. 

Mourao-Miranda’s work in the first attempt. For our second attempt, we submitted the 

predictions based on our cross-validation results, hence for subject one, the prediction 

was from “combining smoothed grey matter masked brain of three subjects” with RVR, 

for subject two, the prediction was from “combining smoothed grey matter masked 

brain of three subjects” with SVR, and for subject three, the prediction was using 

“Individual pre-processed whole brain” with RVR. For the first two submissions, the 

competition organiser returned our results within 24 hours. The results had shown that 

RVR was superior than SVR (perhaps we did not find the optimum parameters for 

SVR). Therefore in our final attempt, we submitted the same predictions as our 

second submission, except for subject 2, where the prediction was from “combining 

smoothed grey matter masked brain of 3 subjects” with RVR instead of SVR. We 
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achieved a competition score of 0.477 and ranked fifth place, which was higher than 

the first two submissions. The competition scores from the first place to the fourth 

place are as following, 0.515, 0.509, 0.493, and 0.484. Here we can see that the scores 

in the top five places are very close. The results for others teams can be found at 

http://www.lrdc.pitt.edu/ebc/2006/2006results.html. Figure 4.6 shows our final 

competition score relative to the other teams. Generally speaking, we did relatively 

well, and had four ratings predicted within the top 5%. Our work was also presented 

in the poster session of the 2006 OHBM conference. 

 

 

 

 

 

Figure 4.6 Our result of PBAIC 2006 

The figures show the summary of our competition scores across 13 compulsory ratings. The 

bottom plots show the maximum correlation from one of the subject at each feature rating for 

all the teams. Our team was shown with the black line with dots. Any feature in which the entry 

was within the top 5% of prediction is indicated as TOP at the top of this figure.  

4.2.4 Post-competition analysis 

A few months after the competition, the organising committee reopened their 

scoring system without disclosing the true ratings for run three. The system allowed 
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each registered user to submit one prediction every seven days. During the OHBM 

conference, the top three teams gave oral presentations as well as presenting their 

work by poster. Instead of pooling subject’s fMRI data to predict each subject’s 

ratings, all three teams averaged their prediction from three subjects. Inspired by this 

idea, I simply averaged our final submission and submitted the same averaged 

prediction for all three subjects. This achieved a score 0.497, which was higher than 

the team in third place (0.493). 

 Because we knew there would be another competition in 2007, we took the 

opportunity to test different algorithms and different input features. We submitted new 

predictions for run three every week, and the table below indicates the different trials 

we did. In the new trials, the predictions were averaged for three subjects by default. If 

not specified otherwise, the input used a linear kernel. 

Input feature and 

pre-processing 

Algorithm description Score 

Normalised, pre-processed 

by the organiser, whole brain 

 Modified RVR 

algorithm with single prior 

variance. The formulation is 

similar to GPR with a linear 

kernel.  

 0.485 

Normalised, pre-processed 

by the organiser, spatially  

smoothed with 6mm Gaussian, 

whole brain 

Modified RVR algorithm 

with single prior variance. The 

formulation is similar to GPR 

with a linear kernel. 

0.495 

Combining, normalised, 

spatially smoothed with 6mm 

Gaussian,  grey matter masked 

brains of 3 subjects (summation 

of three linear kernels from three 

subjects) 

Standard RVR 0.395 

Normalised, pre-processed 

by the organiser, spatially 

smoothed with 6mm Gaussian, 

Standard RVR 0.480 
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whole brain 

Normalised, pre-processed 

by the organiser, whole brain. 

Temporal smoothing by 2 TR 

Gaussian  

Standard RVR 0.472   

Normalised, pre-processed 

by the organiser, spatially 

smoothed with 6mm Gaussian, 

grey matter 

Standard RVR  0.491 

Normalised, pre-processed 

by the organiser, spatially 

smoothed with 6mm Gaussian, 

grey matter 

Standard RVR with RBF 

kernel (free parameter determined 

by peak histogram of RBF kernel 

matrix at 0.5)  

0.487 

Normalised, pre-processed 

by the organiser, spatially 

smoothed with 6mm Gaussian, 

grey matter 

Standard RVR with second 

order polynomial kernel 

( 6 2( 10 )poly = +K K ) 

0.483   

Normalised, pre-processed 

by the organiser, spatially 

smoothed with 6mm Gaussian, 

grey matter 

Modified RVR algorithm 

with single prior variance using 

second order polynomial kernel 

( 6 2( 10 )poly = +K K ) 

0.483 

Normalised, pre-processed 

by the organiser, spatially 

smoothed with 6mm Gaussian, 

grey matter 

SVR  with fixed free 

parameters (C= 0.00001, 

epsilon=0.1) 

0.479   

Normalised, pre-processed 

by the organiser, spatially 

smoothed with 6mm Gaussian, 

grey matter 

SVR free parameters 

optimised through cross 

validation 

0.472 

Normalised, pre-processed 

by the organiser, spatially 

smoothed with 6mm Gaussian, 

grey matter 

Standard RVR with linear 

kernel, except for “Attention”,  

“Environmental Sounds”, 

“Sadness“, and “Tools” we used 

RBF kernel (free parameter 

determined by peak histogram of 

RBF kernel matrix at 0.5) 

0.521 

Normalised, pre-processed Standard RVR with 0.486   
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by the organiser, spatially 

smoothed with 6mm Gaussian, 

grey matter 

normalised kernel 

Normalised, pre-processed 

by the organiser, spatially 

smoothed with 6mm Gaussian, 

grey matter 

KRR, regularisation 

determined through cross 

validation 

0.414 

 

From the table, it is clear that most of the results are better than our competition 

score. RVR seems to be slightly better than SVR, but the difference is tiny, and may 

not be statistically significant. Oddly, the free parameters of SVR optimised by cross 

validation for each rating and each subject did not work as well as the fixed 

parameters. It might due to the bias from two fold cross validation. Generally 

speaking, Gaussian smoothed and grey matter masked images were the most preferred 

input features. RVR was also favoured, not because its prediction accuracy was better, 

but because it did not require additional cross validation. Notice that when we 

combined the linear kernel and the RBF kernel, we achieved a score of 0.521, which 

was higher than the score achieved by first prize team (0.515). 

For the ratings predicted by a linear kernel, we can also compute “weighting 

maps”, which are the weights in voxel space. This enables visualisation of which 

regions contribute most to the prediction. 

*
1 1

,
N N

i i i i
i i

y b bβ β
= =

= + = + =∑ ∑T T
*x x w x w x               (4.25) 

The weighting in voxel space often resembles the maps generated from the 

conventional mass-univariate analysis; however, it is essential to understand the 

differences between mass-univariate and multivariate approaches. Regions with low 

p-values in a mass-univariate analysis should have high absolute weighting in the 

“weight map”, but this does not necessary apply the other way around. 
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Figure 4.7 Weight map of the rating “Music” 

The figure on the left shows the projected weighting in the grey matter masked voxel-space. 

This is referred to as the “weighting map”, computed from the RVR and equation (4.25). The 

right figure is the corresponding structural MRI. This is the predicted map of subject three 

training on “Music” with both runs one and two. We can see clearly that voxels in the right 

auditory cortex have high weights, indicating those voxels that contribute more in the 

prediction of the rating “Music”. 

4.3 Application: Pittsburgh Brain Activity Interpre tation 

Competition 2007 

In the spring of 2007, the same competition organisers which organised the 

PBAIC 2006 held the second PBAIC in conjunction with the Organization for Human 

Brain Mapping conference at Chicago later that year. This time we were much better 

prepared. After gaining experience from re-analyzing the dataset from PBAIC 2006, 

we had clear knowledge about which algorithms and pre-processing procedures are 

most suitable. I also invited a friend of mine, Mr. Yizhao Ni, who was a PhD 

candidate at the University of Southampton, specialising in kernel methods, into our 

team. In this competition, we won the $10,000 first prize. All the competition details 

can be found at http://www.lrdc.pitt.edu/ebc/2007/competition.html. 
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4.3.1 Overview of the competition 

The main difference of the competition in 2007, compared with that from 2006, 

was that most of the ratings in PBAIC 2007 were objective rather than subjective. The 

aim was to understand how the brain represents and manipulates information 

dynamically during real-world behaviour. The organisers developed a virtual reality 

(VR) system. Instead of receiving passive stimulation, as in the previous competition, 

subjects were asked to navigate freely around the VR environment. A few tasks were 

also given to the subjects (or players, since it is basically a video game). The players 

were asked to collect items on the ground or to take pictures of people with piercings. 

When subjects played the game in the MR scanner, the system could collect the 

activities of the players and the fMRI data synchronously. Eye trackers were also used 

to monitor the field of view of the players. This information was later converted into 

ratings related to what the players were seeing during the game. There were 11 

objective ratings, which are “hits” (collecting items), “search people”, “search 

weapons”, “search fruit”, “listening to instructions”, “dog barking”, “seeing faces”, 

“seeing fruit and vegetables”, “seeing weapons and tools”, “interior or exterior of the 

buildings”, and “velocity”. The two subjective ratings were “arousal” and “valence”, 

which were rated by reviewing the “game play” after the fMRI scanning of each 

subject 

The format of PBAIC 2007 was the same as that of PBAIC 2006. There were 

three subjects and three runs. The competition committee disclosed the ratings for 

runs one and two, and the objective was to predict the ratings for run three. The rating 

system (raw and HRF convolved), MRI scanner, MR sequence, scoring system, and 

data format were all the same as PBAIC 2006, except that all three runs had exactly 

the same length of 704 fMRI volumes. From the contestants’ point of view, PBAIC 

2007 is the same as PBAIC 2006. 
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4.3.2 Pre-processing and feature selection 

We initially tried various pre-processing options for subject two, and estimated 

prediction accuracies through two fold cross validation. The fMRI volumes in this 

competition had a higher level of non-linear drift in the signal intensities, but the 

pre-processed data provided by the organisers had only been linearly detrended. This 

may be the reason why some teams who performed well in PBAIC 2006 did not 

perform as well in PBAIC 2007. For example, the Italian group who won 1st place in 

PBAIC 2006 were not even among the top 10 of PBAIC 2007.  

 

 

 

 

 

Figure 4.8 Linear kernel with different level of de trending 

The images show the linear Kernel with raw data (no detrending) and different degrees of 

detrending. The raw kernel without temporal detrending and the linear detrended kernel have 

less uniform intensities than those kernels with more low frequency components removed. 

Visualisation of the linear kernel can provide rough guidance of the quality of the data. Ideally, 

the “grids” in the linear kernel should be prominent, as they indicate the resting or fixation 

periods in the scanning runs. (Notice: the raw data here was still motion corrected). 

Vsual inspection of the linear kernel (figure 4.8) shows a patchy looking effect, even 

after the linear detrending done by the competition organisers. Because of this, we did 

our own pre-processing using SPM5. All the scans were first realigned and resampled 

to remove the effects of subject motion. We did not attempt to correct for the fact that 

all slices of an fMRI volume are collected at different times, although some such 

adjustments had been made to the pre-processed dataset provided by the organisers.  

To further reduce dimensionality, those voxels that were, a priori, considered 
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non-informative were removed. Selecting informative voxels can be seen as a form of 

feature selection (Guyon and Elisseeff, 2003), which can often increase the signal to 

noise ratio. In the context of fMRI, BOLD signal change is generally believed to 

occur mainly in grey matter, as its major cause should be the local neuronal activities 

(Logothetis et al., 2001). Masks defining grey matter were generated for each subject 

by segmenting one of the fMRI scans (Ashburner and Friston, 2005). It may also have 

been possible to coregister the anatomical image with the fMRI, and identify grey 

matter from this. However, this was not done because EPI data tend to suffer from 

spatial distortions, especially in the frontal region due to the air in the frontal sinus.  

 

 

 

 

 

 

 

 

Figure 4.9 Prediction accuracy with different pre-p rocessing 

This figure shows the prediction accuracy of subject two for predicting the first run of the VR 

game by training the second run with different detrending settings. It is clear that the raw data 

without any detrending performed poorly. From our empirical results, removing the lower 8 

DCT components resulted the best cross validation accuracy. Spatial smoothing with 6mm 

FWHM Gaussian also boosted the prediction accuracy significantly. Spatial smoothing seemed 

to result extensive improvement in PBAIC 2007 than the effect of smoothing in PBAIC 2006. 

To remove low frequency components (high pass filtering), we relied on the 

cross validation of subject two, and empirically determined that removing the lower 

eight DCT components was optimal (figure 4.9). This was equivalent to a high pass 
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filtering with the cut-off frequency at 0.0057Hz. (SPM default cut-off frequency is 

1/128=0.0078). Additional smoothing with a 6mm FWHM Gaussian kernel was also 

applied spatially. No temporal smoothing was applied. 

Ugly Duckling Theorem (Duda et al., 2000; Watanabe, 1970) tells us that prior 

knowledge is essential for quantifying the similarity between things, so knowledge 

about human brain function was used to further increase the signal to noise ratio and 

suppress those features that were believed, a priori, to be less informative. It is known 

from the functional brain mapping literature that some cognitive functions and 

sensory perceptions are regionally localised. Hence, masks were used to weight the 

kernels when predicting the two feature ratings: “dog barking” and “interior or 

exterior of the building”. It was believed that most of the fMRI pattern resulting from 

the barking sound would be localised in auditory cortex. Similarly, the major 

discrimination between the inside and outside of the buildings would be the 

illumination differences. Therefore, a mask of visual cortex could mask out a large 

amount of irrelevant signal. In order to generate the mask of functional regions for all 

three subjects, first, the cytoarchitectonic maps of visual and auditory in stereotaxic 

space were downloaded from the McConnell Brain Imaging Center 

(http://www.bic.mni.mcgill.ca/cytoarchitectonics/). Then the deformation map was 

generated using the spatial normalisation routine in SPM5, but rather then warping the 

individual to the MNI space, the cytoarchitectonic maps in MNI space were warped to 

match the individual subjects fMRI data. Finally, (although not really necessary) a 

threshold of 0.3 was used to convert the probability maps into binary masks. We could 

also have weighted each voxel by the corresponding probabilities. 

4.3.3 Predicting general ratings and details on how to achieve nearly 

perfect predictions for some ratings 

In this competition, there were 13 compulsory ratings and 10 optional ratings. 
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Initially, we applied both standard KRR and RVR to all the ratings. It was identical to 

what we did for PBAIC 2006. All the ratings were treated independently, hence the 

same kernel was used as the input with different ratings as the target variable, except 

“dog barking” and “interior or exterior of the building”. For those two ratings, we 

used kernels generated from auditory cortex and visual cortex respectively. Most 

ratings were predicted using linear kernels, except for “Valance” and “Arousal”. For 

those two ratings, we used RBF kernels, and selected the parameter that resulted in 

the peak of the histogram of the RBF kernel at 0.5. (Note, all elements in the RBF 

kernel are between 0 and 1). The regularisation for KRR was determined by cross 

validation, and both methods showed similar results.  

Because the competition scoring was based on Z-scores, we found that 

increasing a correlation from 0.8 to 0.9 resulted in three times as much improvement 

in the final scores as raising a correlation from 0.2 to 0.3. The goal was therefore to 

focus attention on those ratings that could be predicted reasonably well, and improve 

them further. By watching the re-play of the VR games provided by the competition 

organiser, we found a few insights into the VR games. It was observed that for each 

run, the “instructions” ratings had seven spikes, all of which had similar shapes across 

all subjects and all runs. It became apparent that an ad hoc model fitting strategy 

could be used to further improve what were already high correlations. Firstly, kernel 

regression was applied to predict the rating, and then the prediction was convolved 

with the model shape, which was generated by averaging all the spikes in all runs of 

all subjects. This is equivalent to match filtering, and the peak values in the convolved 

ratings indicate the location where the average shape fits best. After finding the 

estimated peak location, the average shape was placed in (Figure 4.10). Without this 

procedure, the correlation of the predicted rating was 0.8, whereas by adopting it, the 

final correlation reached 0.988, which increased the Z-score from 1.0986 to 2.555.    
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Figure 4.10 Model fitting for predicting “Instructi on” 

This figure shows the model fitting approach to boost the prediction of “Instruction”. The top left 

graph shows the original prediction. The average shape of the response of “Instruction” was 

generated to fit the raw prediction. The bottom figure shows the fitted model of final prediction. 

This procedure removed the small noise between each “spike” and boosted the prediction 

from 0.8 to 0.99. 

We also utilised the insights we found about the design of the VR game to 

achieve correlations in excess of 0.99 for “search fruit”, “search weapons”, and 

“search people”. In fact, those three ratings were not predicted in the same way as 

other ratings, and the “search” ratings in the first and second run of the virtual reality 

games were not actually used for training the regression machine. To achieve such 

high accuracy, prior knowledge was utilised to arrive at a solution from predictions of 

more accurate ratings.  From observation, a few repeating patterns were found in the 

design of the virtual reality (VR) game. These could be seen as a weakness in the 

design, and we exploited them as far as possible. 

1. Each run of the game was cut into seven slots, each of which started at the 
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“instruction” and ended with the “instruction” - except for the last slot. 

2. Each search request (fruit, weapons, and people) appeared after the instruction and 

occupied exactly four arbitrary slots at each run. 

3. Each slot contained at least one request. 

4. The requests to search the three categories were in the same order for all subjects. 

5. The optional ratings of “hit (people, weapons, and fruit)” only appeared when the 

slot had the same category of search request, otherwise the rating of hit something 

would be zero for the whole slot. E.g. If during a particular time slot, the search 

requests were “search people” and “search weapons”, then the rating of “hit fruit” 

would be zero for the entire slot. 

From cross-validation, we found that training with the “search (people, weapons, 

and fruit)” rating returned very low accuracy, with correlations of only about 0.2. 

However, predicting “hit (people, weapons, and fruit)” could achieve correlations of 

0.4~0.5, for at least one of the subjects. Hence, we used the prediction of “hit 

something” to predict “search something”. For example, if we knew during one slot 

“hit people” is non-zero (after removing the noise) in at least one scan, there would 

definitely be a “search people” request in that slot. Mathematically, although the 

prediction of “hit something” would of course contain noise, the strength of the noise 

was believed to be lower than that of “true hits”. Therefore, if we threshold the 

prediction and only kept high peaks, most noise would possibly be pruned out, but 

kept enough true “hit something” to infer which slots had the particular category of 

search request. Motivated by this observation and by previous findings, the procedure 

can be summarised by the following steps (figure 4.11) 
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Figure 4.11 Illustration of how to predict “search people” 

These figures show how to predict “Search people” using prediction of “hit people. The red 

spikes are the prediction of “instruction”. For simplification, the fixation (resting) period was 

removed. The “instruction” divided each run into 7 slots. The prediction of hit people is shown 

in green, and the threshold version of hit people is shown in blue. 4 out of the 7 slots were 

elected based on the strength and frequency of threshold hit people. In this case they are slot 

1 2, 4, and 5, then the rating was set to 1 for time points in those 4 slots. The prediction was 

furbished by convolved with the HRF. 

1. Predict “hit (people, weapons, and fruit)” for three subjects. 

2. Prune most of the points and only keep some high value peaks (top 20%). 

3. Count how many peaks are in each slot. For each “search something” request, 

we found the four most possible slots, which contain the highest counts of 

peaks. If peak distributions were different among the three subjects, a majority 

vote was used. 

4. The rating of the “search something” was set to one during the four slots. 

5. Finally, the predicted block was convolved with the canonical HRF. 
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Unlike most conventional fMRI studies, which provide controlled external 

stimuli, some of the ratings were self-paced, such as “hits” or “velocity”. It was 

believed that those ratings may have different HRF delays from the canonical HRF. 

The stringent way would have been to train with ratings convolved with different 

HRF parameter settings, but there are at least five parameters to adjust for generating 

the HRF using a double gamma functions. For the reason of generalisation and 

robustness, we simply applied forward or backward shifts by discrete numbers of time 

points (scans). The predicted rating was later inversely shifted. It was found, by cross 

validation, that shifting the original training target 1{ } N
i i =t  by one scan (1TR) earlier 

would yield more accurate predictions. The shifted training target would be 1{ } N
j j =t , 

where 1, 0j i N+= =t t t . The following tables show the results of cross validation for 

“Hits”, “Velocity”, and “Faces”. 

 

Subject 1 Subject2  Subject3 Hits 
Predict VR1 Predict VR2  Predict VR1 Predict VR2 Predict VR1 Predict VR2 

Original 0.5873  0.6861  0.7427  0.8030  0.6019 0.7551   

Apply shift 0.6094 0.7272 0.735 0.8  0.6096 0.7341 

 

Subject 1 Subject2  Subject3 Faces 
Predict VR1 Predict VR2  Predict VR1 Predict VR2 Predict VR1 Predict VR2 

Original 0.5538  0.5436 0.589  0.7521 0.8313 0.8706 

Apply shift 0.5549 0.553 0.7114 0.8155  0. 8328 0.8859 

 



 140 

Subject 1 Subject2  Subject3 Velocity 
Predict VR1 Predict VR2  Predict VR1 Predict VR2 Predict VR1 Predict VR2 

Original 0.7217  0.7207 0.7010 0.6347 0.664 0.7022 

Apply shift 0.7432 0.7312 0.7481 0.6464 0.7059 0.7508 

In these three feature ratings, only “Hits” did not show consistent improvement across 

all three subjects. “Velocity”, and “Faces”, both showed increasing accuracy for all 

subjects. This led us to ask why it might be that measured brain activity preceding an 

event would appear to be more predictive. It might be possible that the regions 

involved in those two ratings had an HRF that was considerably shorter for these 

regions than for other ratings. The alternative explanation is that brain activity 

preceding the event reflects what is subsequently recorded. The “Velocity” rating is 

related to the amplitude of joystick movement, so the involvement of processes 

underlying voluntary motor control would be expected. Motor preparation, or the 

readiness potential, has been known to precede onset of voluntary motor execution by 

over a second. This would conceivably correspond to the period of 1 TR. 

Above all these additional improvements, we also used the standard “quadratic 

deconvolution” and smoothing (figure 4.5), which were identical to the 

post-processing performed in PBAIC 2006. In general, the standard procedure 

involved a linear kernel using a GM mask. The details and additional procedures for 

predicting each rating are summarised in the following table. 

Rating Arousal Valence Hits 

(items) 

Search 

people 

Search 

Weapons 

Search 

Fruit 

Additional 

Procedures 

RBF 

kernel 

RBF 

kernel 

None Information 

from 

predicting 

“hit 

people” 

Information 

from 

predicting 

“hit 

weapons” 

Information 

from 

predicting 

“hit fruit” 
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Instructions Dog barks (seeing) 

Faces 

(seeing) 

Fruits 

Vegetables 

(seeing) 

Weapons 

Tools 

Interior or 

Exterior 

Velocity 

Model 

fitting with 

averaged 

template 

Auditory 

cortex mask 

Temporal 

shift 

None None Visual 

cortex mask 

Temporal 

shift 

 

4.3.4 Our result in PBAIC 2007 

PBAIC 2007 also allowed each team to submit the prediction three times. The 

results of the first two submissions would be returned to the team, and the best score 

out of the all submissions would be ranked with other teams. Our strategy was rather 

simple: we submitted the first submission with predictions by KRR, and the second 

submission with predictions by RVR. Both submissions included those additional 

procedures. Our final submission was based on selecting the best results from the first 

and second submissions (figure 4.12). 

  

 

 

 

 

 

 

 

Figure 4.12 Results of our final submission 

This figure shows prediction accuracy of our final (third) submission for all three subjects. We 

achieved nearly perfect prediction for “Instructions”, “Search fruit”, “Search people”, and 

“Search weapons”. 

In general, subject one had the worst prediction accuracy (average Z score 0.980), 
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especially for emotional and subjective ratings such as “Arousal”, “Valence”. Subject 

three had the best overall prediction accuracy with average Z score 1.142. The 

variation of prediction accuracy for each rating across all subjects is quite consistent; 

i.e. subject one is often the worst. This implies that accuracy is influenced by 

subject-specific issues. This may relate to concentration, but was most likely due to 

motion in the scanner. By inspecting the movement parameters generated from the 

realignment procedure, subject one clearly showed more translation and rotation than 

subjects two and three. Our ability to predict particular ratings were clearly higher for 

objective ratings such as instructions, velocity and faces than they were for subjective 

ratings. We believe this is related to the reliability of the reported ratings (many of the 

subjective ratings were made at a separate occasion based on episodic recall of how 

they felt), and that this will improve if real-time measures such as skin conductance 

and heart rate or subjective ratings between each block were used instead. Among 

objective ratings, we were able to best predict those that involved attention or required 

a response on the part of the subject. Thus “instructions” required the subject to attend 

and comprehend, while “velocity” and “hits” required a motor response from the 

participant. These were followed by anthropomorphic objects such as faces.  

As the 1st place winner in 2007 PBAIC competition, our final competition score 

was 0.785 which was substantially higher than that of other groups. Generally 

speaking, our team predicted all the objective ratings well within the top 5% of the 

maximum correlation for the entry, and we had the best prediction over the three 

subjects for “Hits”, “Search People”, “Search Weapons”, “Search Fruit”, “Faces”, 

“Fruits Vegetables”, and “Velocity”.  (Figure 4.13)  However, our method did not 

perform well for the subjective ratings, which were “Arousal” and “Valence”. It is 

probably because our team used the whole gray matter, and results from groups which 

did feature selection seemed to perform better for those two ratings. In addition, we 
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used RBF kernels to predict “Arousal” and “Valence”. Cross validation showed that 

linear kernels performed poorly for those two ratings.  Linear methods are only able 

to model a single mode of difference, whereas nonlinear models can potentially model 

multiple modes of variability. This may indicate that these states may be represented 

in the brain by several alternative networks of activity, rather than a single consistent 

pattern of differential activity. 

 
Figure 4.13 Our best results compared with other te ams. 

This figure shows the prediction accuracy of our final submission. We achieved nearly perfect 

prediction for “Instructions”, “Search fruit”, “Search people”, and “Search weapons”. 
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4.3.5 Overall discussion of PBAIC 2007 

 

Relevance Vector Machine VS Kernel Ridge Regression 

On average, kernel ridge regression (KRR) performed slightly better than 

relevance vector regression (RVR), but the results are mostly within 10% of each 

other. In the following table, we compared the results of KRR and RVR for predicting 

the third run of subject 3, using a linear kernel.  

 

 Velocity Hits Weapons Tools Fruits Vegetable Faces 

KRR 0.8277 0.7835 0.5470 0.5366    0.8091    

RVR 0.8309 0.7552 0.4998 0.4955 0.7995 

In addition, the sparseness of RVR (percentage of the training scans contributing to 

the prediction i.e. (number of relevance vectors)/(number of training samples)) is 

presented in the table below. 

 

 Velocity Hits Weapons Tools Fruits Vegetable Faces 

RVR Sparsity 21.3% 24.4% 22.8% 23.3% 18% 

 As we observed, KRR performed slightly better for most ratings. It is possible 

that sparse representations may not fully utilise all the information in the training set; 

hence pooling all the training scans would probably estimate the variance component 

more accurately. However, from the table above, RVR only required less than 25% of 

the training data to make predictions, with less than a 10% sacrifice in accuracy. For 

ratings which could be predicted well, such as “Velocity” and “Faces”, the differences 

between RVR and KRR are only about 1%. This sparsity may be due to consistent 

activation patterns in the brain during the same ratings; hence the regression machine 

only required a subset of the training data to represent it. It is also possibly due to 
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irrelevant training scans for particular ratings. Because the nature of this “experiment” 

is self paced, not all the scans contained relevant information for particular ratings. 

For general fMRI studies, sparse methods have the advantage of providing more 

interpretable results. By looking at the time point of scans with non-zero weights, 

researchers may gain some understanding about the temporal pattern of task 

activation. 

Importance of pre-processing 

We believe that one of the winning factors for our team was good spatial and 

temporal pre-processing models. Spatial smoothing and temporal detrending had been 

shown to change the results of SPM as well as the prediction accuracy (LaConte et al., 

2003; LaConte et al., 2005; Strother, 2006; Tanabe et al., 2002) (figure 4.9). One 

major reason why temporal detrending is important is because scans from the all three 

games were combined together. In other words, all the scans were assumed to be 

collected in the same session with the same intra-sessional variance. If the low 

frequency components dominated the major variance components, i.e. the first few 

principle components, the signals due to brain activations would be reduced. In 

general though, detrending with eight DCT bases, with spatial smoothing (6mm 

FWHM Gaussian) gave the best results for most ratings. The improvement was most 

prominent for “Hits” and “Velocity” (figure 4.9). In figure 4.13, it shows that our 

prediction performed specifically better than other groups for those two ratings. We 

speculate that a lot of teams used the pre-processed dataset provided by the 

competition committee, which still contained large amount of low frequency noise. 

The noise eventually caused the inferior performances for those teams. 

 

Comparing the regularisation parameter λ of KRR obtained by cross validation or 

GPR 
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Unlike RVR, where the hyper-parameters and parameters can be determined 

through maximisation of marginal likelihood, the regularisation parameter for KRR 

had to be determined empirically by cross validation. In figure 4.14, the correlations 

of training VR game 1 then testing on VR game 2 and the vice versa were evaluated 

with different regularisation parameter for four feature ratings. The graph showed that 

the correlation reached a plateau with the regularisation roughly between 102 and 105. 

Both predicting VR1 and VR2 had a consistent shape to the plateau. Alternatively, it 

is possible to find the parameters by maximising the marginal likelihood (4.23), with 

the Gaussian Processes Regression model having the covariance function 

1 2θ θ= +C I K . The regularisation of KRR can be computed by /1 2θ θλ = . Intriguingly, 

in figure 4.14, it seemed the regularisation determined by maximising marginal 

likelihood was over-regularised, and the results were not very desirable. This may 

reveal the importance of well specified models to the application of Bayesian 

techniques. If a good model structure is not accurately known, then cross-validation 

may allow more accurate tuning of various hyper-parameters than the Bayesian 

evidence framework.  In our case, the less accurate solution found by GP may due to 

several factors, firstly, no temporal autocorrelations were modelled, whereas the true 

noise for fMRI data is not independent and identically distributed (iid). Secondly, the 

objective function of marginal likelihood is based on the sum of the squares differences, 

which may have different characteristics from Pearson’s correlation. Thirdly, a proper 

covariance matrix, C, should contain a constant term 3θ++= KIC 21 θθ . From our 

experiment, including the constant term actually improved the correlation to around the 

same accuracy as the plateau in the cross-validation plot.  
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Figure 4.14 Determine regularization for KRR 

This figure shows the cross validation results for subject two, using KRR to predict four 

ratings-“hits”, “FruitsVegetable”, “Faces”, and “Velocity”. The horizontal axis indicates different 

amount of regularisation for KRR. The plotted line of VR1 means the prediction of the first run 

by training the second run, and vice versa. The dot is the prediction of VR1 estimated via 

maximising of marginal likelihood with GPR, and the cross is the prediction of VR2. GPR 

based on maximising the marginal likelihood (evidence) seemed to slightly over-regularised 

the model, except for the rating “Faces”. 

In addition, we also generated the “weight map” for visualisation purpose. The 

weight map of “Velocity” is particularly interesting. Inspection of the weighting in 

voxel space (figure 4.15) shows that the motor areas around M1, the supplementary 

motor area and cerebellum had activity positively weighted with ratings. This is 

evidence supporting our assumption about motor preparation, or the readiness 

potential preceding onset of voluntary motor execution (Cunnington et al., 2002), and 

may explain why temporal shift of 1 TR could improve the prediction accuracy of 

“Velocity”. 
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Figure 4.15 Weight map of “Velocity” 

This figure shows a weight map of “Velocity” for subject 3. There are strongly positive 

weightings in the motor areas. This is evidence for our assumption about motor preparation 

preceding onset of voluntary motor execution, as “Velocity” was related to navigating around 

the VR game using a joystick.  

4.4 Application: Regression Analysis for Clinical Scores of 

Alzheimer’s Disease Using Multivariate Machine Learning 

Method 

4.4.1 Introduction 

In this study, we demonstrated that RVR can not only be applied to functional 

data, but it can also be applied to structural MRI data to predict clinical ratings. 

Voxel-based morphometry (VBM) studies have shown relationships between 

cognitive measures and structural differences in MRI (Baxter et al., 2006; Jack et al., 

2008). However, VBM or any univariate method aims to localise regional atrophy, 

rather than characterise the pattern of difference due to atrophy. Physiological 

biomarkers have been shown to have good accuracy for detecting early Alzheimer’s 

Disease (AD) (Ray et al., 2007). In practice, the combination of cognitive tests and 
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imaging may help physicians to decide the disease state of patients, since both 

cognitive and imaging changes are shown to be associated with the early stages of AD 

(Caselli et al., 2007; Twamley et al., 2006). 

The main objective of this study was to examine the relationship between 

structural changes and clinical ratings, in the framework of pattern classification.  

Our hypothesis was that global GM patterns have a linear relationship with clinical 

scores. Using the probabilistic regression model (RVR), we can compute the 

conditional distribution of clinical ratings, given the structural images. We applied 

RVR to predict clinical ratings from structural MR, where the ratings were three 

commonly used cognitive measures: the Mini-Mental State Exam (MMSE) (Folstein 

et al., 1975), the Dementia Rating Scale (DRS) (Mattis, 1988) and the Auditory 

Verbal Learning Test (AVLT) (Rey, 1964). We compared the predicted clinical ratings 

with the true ratings using correlation (similar to the PBAIC scoring). Because all 

three clinical scores have different ranges and scales, it would be difficult to compare 

the predicative accuracies across different scores using mean square error (MSE). The 

advantage of using correlation is its scale invariance. On the other hand, correlation is 

also invariant to the bias of the prediction, which may be a less desirable feature. 

4.4.2 Material and Methods 

The dataset contained structural MRI scans of 73 patients with probable AD 

(clinically defined), ranging from mild to severe (MMSE from 10 to 30, mean 22.3) 

and 91 cognitively normal controls from the Mayo Rochester Alzheimer’s Disease 

Research Centre (ADRC) and Mayo Alzheimer’s Disease Patient Registry (ADPR) 

(Petersen et al., 1990). There were eight controls with MMSE less than 27. Because 

our study aimed at comparing clinical scores, rather than classifying AD or non-AD, 

we did not exclude controls with subclinical disease. In fact, both controls and AD 

patients were assumed to be from the same population in this study. All subjects had 
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MMSE, DRS, and AVLT scores recorded within three months of the MRI scans. 

MR scans were collected from 14 different scanners over about 10 years. All 

scanners were the same model (General Electric Signa 1.5T), and the scans were 

acquired using T1-weighted imaging sequences (parameters: TR=17.7 to 27 ms, TE=6 

to 10 ms, flip angle 25 degrees or 45 degrees, voxel size 0.86 mm x 0.86mm x1.6mm). 

A VBM analysis showed no significant interaction of scanner with the effect of 

disease (Stonnington et al., 2008). 

We pre-processed the data using standard methods described in section 3.2.1. 

T1-weighted scans were firstly segmented into GM and WM tissue class images, 

which were imported for use with the DARTEL toolbox.  This involved bringing 

them into the closest rigid body alignment with each other and resampling to isotropic 

1.5mm voxels. These data were then DARTEL registered with the population 

template, as described in section 3.2.1. The nonlinearly aligned GM images were 

scaled by their corresponding Jacobian determinant maps, such that tissue volumes 

were conserved. No spatial smoothing was applied in this study. 

We generated a linear kernel from whole GM, as well as, a kernel from the 

combination of two volume of interests (VOI: dimensions 12, 16, 12 mm in x,y,z 

directions respectively) centred around both left and right parahippocampus 

(equivalent to x,y,z =-17, -8, -18, and 16, -9 -18 in the population template space, it is 

approximately the same as in MNI space). The VOI was motivated by the findings 

that the earliest pathological changes of AD are found in the entorhinal cortex and 

hippocampus (Braak and Braak, 1991).  

We applied standard leave-one-out cross validation to predict the clinical ratings. 

We left one subject out of the full set, and trained the remaining 163 with RVR. The 

trained RVR was then applied to predict the clinical scores of the subject left out. The 

training procedure was similar to that used for PBAIC, as we use the same kernel as 
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input, and three different clinical scores as target variables.  

4.4.3 Results and discussion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16 Predictions for three clinical ratings 

These plots show the predicted scores versus actual scores for 3 different clinical ratings 

(MMSE, DRS, VALT) using whole brain grey matter (left column) and parahippocampal VOI 

(right column)  

For whole brain GM, the correlations of predicted and real scores were as 

follows: MMSE: 0.70; DRS: 0.73; AVLT: 0.60. When we applied the 
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parahippocampal mask, the correlations were less good for MMSE (0.66) and 

DRS(0.7), but better for AVLT (0.66) (figure 4.16). 

The result show strong linear relationships between all clinical scores and the 

structural MRI, with DRS showing the highest prediction accuracy. Both MMSE and 

DRS showed significantly better prediction results with whole brain data, because 

MMSE and DRS test multiple domains. It is also understandable why the accuracies 

dropped when we trained using only the parahippocampal VOI. Conversely, AVLT 

mostly tests the single domain of memory, which is associated with medial temporal 

lobe function. This can explain why the prediction accuracy of AVLT improved using 

only the parahippocampal VOI. From the weight maps (figure 4.17), we see that 

almost no regions, apart from the medial temporal lobe, were important for predicting 

AVLT. The DRS was found to be slightly more sensitive than MMSE to fit with 

disease progression (Galasko et al., 2000). Our results confirmed the findings, and we 

also agree that this is probably due to the ceiling effect of MMSE, as MMSE is 

capped at 30. 

One practical use for such a machine learning approach would be to aid in 

clinical management. Bayesian machine learning methods can compute the predictive 

distribution, and not only a point-estimate. For tests showing good correlation with 

the MRI scans, such as MMSE or DRS, if an individual’s scan predicts a significantly 

lower score than the actual score, this may imply that the patient may have greater 

resilience of cognitive reserve. In our dataset, one subject scored within the normal 

range in the three tests (MMSE 30, DRS, 135, AVLT 11), however the predicted 

scores (MMSE 24, DRS, 121, AVLT 7) were similar to the MCI patients. As has been 

shown (Mortimer et al., 2005), cognitive reserve may mask cognitive deficits, and 

prevent the detection of early AD using only clinical ratings. Therefore, a combination 

of both clinical measures and imaging information may be used to more accurately 
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predict the clinical state of any individual. On the contrary, if the actual score is 

significantly lower than the predicted score, there may be other factors affecting the 

performance of the tests, such as fatigue or depression. In addition, if longitudinal 

scans are collected and used optimally, the predicted rating should provide a more 

robust measure of disease progression.  

To observe the confounding effect due to age, we also applied RVR with age 

removed using equation (3.14) described in section 3.2.1. This actually improved the 

prediction slightly, for whole brain GM, MMSE: 0.72, DRS: 0.76, AVLT: 0.63), and 

for the parahippocampal VOI, MMSE: 0.74, DRS 0.74, AVLT: 0.69. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17 Weight maps for three clinical ratings 

Weight maps for whole brain images of MMSE, DRS, AVLT, reflecting areas of the brain most 

vital in determining each predicted score. Because all three scores have different scales, we 

normalised the intensity range of the weight map for visualisation purpose. The red areas 

indicate where more grey matter adds to the predicted score, whereas blue areas indicate 

areas where more grey matter subtracts from the predicted score. Note that dementia does not 

necessarily cause increased volumes of grey matter in these blue areas, but these regions 

may have relatively less atrophy for dementia patients.



 154 

 

Chapter 5  

Kernel Classification Methods and the Application 

in Functional and Structural MRI  

Contents_____________________________________________________________ 

5.1 Introduction to Kernel Classification Algorithms ……………………………157 

5.1.1 Support Vector Classification ...................................................................157 

5.1.2 Relevance Vector Classification................................................................165 

5.1.3 Gaussian Processes Classification ............................................................167 

5.1.4 Multi-class Classification approaches.......................................................170 

5.1.5 One-class Classification............................................................................172 

5.2 Application: Classification of MR Scans in Alzheimer’s Disease ……………176 

5.2.1 Introduction...............................................................................................176 

5.2.2 Materials and methods ..............................................................................177 

5.2.3 Results and discussion ..............................................................................179 

5.2.4 Direct Comparison between radiologists and our computerised method .183 

5.3 Application: Automatic Detection of Presymptomatic Huntington Disease Using 

Structural MRI …………………………………………………………………185 

5.3.1 Introduction...............................................................................................186 

5.3.2 Materials and Methods..............................................................................186 

5.3.3 Results and Discussion .............................................................................188 

5.3.4 Automatic feature selection using Gaussian processes.............................190 

5.4 Application: Multi-class Classification of fMRI Pattern by Kernel Regression 

Methods ……………………………………………………………………………193 

5.4.1 Introduction...............................................................................................193 

5.4.2 Materials and methods ..............................................................................194 

5.4.3 Results and discussion ..............................................................................196 

5.5 Decoding Neuronal Ensembles in the Human Hippocampus 203 

5.5.1 Introduction...............................................................................................203 

5.5.2 Materials and methods ..............................................................................204 

5.5.3 Results and discussion ..............................................................................209 

5.6 Prognostic and Diagnostic Potential of the Structural Neuroanatomy of 



 155 

Depression ………………………………………………………………………211 

5.6.1 Introduction...............................................................................................211 

5.6.2 Materials and methods ..............................................................................212 

5.6.3 Results and discussion ..............................................................................214 

 

 



 156 

In this Chapter, we introduce the methodological aspects of kernel classification, 

discussing Support Vector Classification (SVC), Relevance Vector Classification 

(RVC), Gaussian Processes Classification (GPC), one class classification, and a 

multiple class classification I proposed by combining a regression method with a 

decision function.  Also, the projects employing those methods for both fMRI and 

structural MRI data will be presented in details. The fMRI related works are: 

• “Decoding Neuronal Ensembles in the Human Hippocampus” (Hassabis 

et al., 2009), which was a collaborative work with Demis Hassabis. 

• “Multi-class Classification of fMRI pattern by Kernel Regression 

Methods”, which was chosen for oral presentation in the OHBM 

conference of 2008. 

The projects with structural MRI are: 

• “Automatic classification of MR scans in Alzheimer's disease” (Kloppel 

et al., 2008b; Kloppel et al., 2008c; Kloppel et al., 2008d), which was a 

collaborative work with Dr. Stefan Kloppel and Dr. Cynthia Stonnington, 

using data from Dr. Clifford Jack at the Mayo Clinic. 

• “Automatic detection of preclinical neurodegeneration: presymptomatic 

Huntington disease” (Kloppel et al., 2009), which was a collaborative 

work with Dr. Stefan Kloppel. 

• “Classification of major depressive disorder using SVM with structural 

MRI”, where I collaborated with Dr. Cynthia Fu at the Institute of 

Psychiatry, Kings College, London.  

The general framework for classification was introduced in section 2.4, whereby 

a training set contains input/output pairs, 1 1 2 2{( , ), ( , ),..., ( , )}N NS t t t= x x x , and t is a 

discrete label. For binary classification, the labels are often denoted by { 1,1}−  or 

{0,1} . The general model for a binary classification problem is 
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1
( ) 0

D

d dd
t w x offset

=
= + >∑ , which is closely related to the linear regression problem, 

except the labels are separated by the decision boundary. The general model for a 

kernel binary classification is 
* *( ( , ) ) 0i i

i training

t K offsetβ
∈

= + >∑ x x . Both SVC and RVC 

are sparse kernel machines, which implies that some of the kernel weights, β , are 

zero. In other words, not all training samples contribute to the prediction of the testing 

samples. Similar to linear kernel regression models, when we apply the linear kernel, 

we can obtain the weights in the input feature space by 
1

N

i
i

β
=

=∑ iw x .   

5.1 Introduction to Kernel Classification Algorithms 

Generally speaking, RVC and GPC are probabilistic classifiers, which are closely 

linked to logistic regression, (section 2.4.6) i.e. they use a generalized linear model by 

applying a sigmoid link function. Therefore, both RVC and GPC can be extended into 

multiple classes by assuming a multinomial distribution. On the other hand, SVC was 

motivated by the statistical learning theory (Vapnik, 1998), is not a probabilistic 

model, and was originally formulated as a binary classifier. Usually when people refer 

to a Support Vector Machine (SVM), they often mean Support Vector Classification 

(SVC). In this section we will present the classification aproaches in the same order as 

the regression models of chapter 4, introducing the non-probabilistic SVC first, then 

RVC and GPC later. 

5.1.1 Support Vector Classification 

SVC is also known as the maximum margin classifier (Bishop, 2006b; 

Cristianini and Shawe-Taylor, 2000), and has gained in popularity in recent years 

because of its superior performance in practical applications, especially in the field of 

bioinformatics (Brown et al., 2000; Guyon et al., 2002; Noble, 2006). The philosophy 

behind the SVM is to estimate an optimal solution based on “structural risk 
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minimization” rather than “empirical risk” minimization. Motivated by statistical 

learning theory (Vapnik, 1995), the decision boundary is chosen so it achieves the 

maximum margin. The margin is defined as the distance between the decision 

boundary and the closest data points.  

We begin our introduction of the simple binary SVC model, by assuming both 

classes are linearly separable. Let us define a training set {( , )} { 1,1}d
i iS t= ∈ℜ × −x . 

The objective of the training is to find the linear decision boundary, or a hyperplane in 

the feature space, that maximizes the margin. By a hyperplane we mean a set 

T
, { : 0}d
bH b= ∈ℜ + =w x w x  parameterized by a vector d∈ℜw  and a scalar b. In 

other words, the hyperplane is in the subspace of 1d−ℜ .  The hyperplane is a line 

when the feature space is 2D and a flat surface when the feature space is 3D. When 

the two classes are totally separated, the following equation 

T( ) 0,  1,...,i it b i N+ > =w x  is satisfied. This is to say, the data points labelled with 1 

will all be positive from T
i b+w x , and data points labelled with -1 will be all 

negative. The distance of a point, ix , to the hyperplane is 
T| |

|| ||
i b+w x

w
, and the 

margin is defined by 
T

1

| |
min

|| ||
N i
i

b
=

+w x
w

 

Unlike the case of regression, the vector w is scale invariant in the context of 

classification; hence the solution of w and b is not unique in that any vector w, which 

is perpendicular to the hyperplane, is a valid solution. There are two ways to 

reformulate the parameterization to obtain a unique solution for each decision 

boundary. One way is to normalize w so that || ||=1w , the other way is to choose || ||w  

such that the distance of the margin is defined by 
1

|| ||w
 i.e. T

1min ( )=1N
i i it b= +w x . 
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Figure 5.1 Hard-margin SVC 

This figure is a 2D example of a linearly separable support vector classification. The blue and 

red spheres are the data points for different classes. The spheres enclosed by white circles are 

the support vectors, which are the data points closest to the decision boundary (hyperplane). 

In this formulation, there are no data points between the margins. 

We will work on the second parameterization, where the optimization problem 

can be formulated as 

1minimize 2

subject to ( ) 1, 1...,i it b i N+ ≥ =

T

T

w w

w x
               (5.1) 

This is often known as the primal form of the SVC optimization. To solve the 

constrained optimization problem, Lagrange multipliers, ia , are introduced. The 

Lagrangian function is defined as 

1

1
( , , ) { ( ) 1}, 0

2

N

i i i i
i

L b a a t b a
=

= − + − ≤∑T Tw w w w x        (5.2) 

To solve the optimization, we set the derivative of the Lagrangian function with 

respect to w and b to zero, 
1 1

0
N N

i i i i i i
i i

dL
t a t a

d = =

= − = ⇒ =∑ ∑w x w x
w

,
1

0
N

i i
i

dL
t a

db =

= =∑ . 

Substituting these new conditions back to (5.2), leads to the dual form of the 

optimization, where 
1 1 1 1

1 1
( , , )

2 2

N N N N

i i j i j i j i
i i j i

L b a a a a t t a
= = = =

= − + = − +∑ ∑∑ ∑T T Tw w w w w x x  

Support 

vectors 

margin 

Decision boundary 

y=1 

y=-1 

w 
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1

1

1
Maximize

2

0
subject to

0, 1,...,

n

i
i

n

i i
i

i

a

t a

a i N

=

=

− +

=

≥ =

∑

∑

Ta Ha

                   (5.3) 

where H is a N by N matrix . More generally we replace i j
Tx x  by the kernel 

( , )i jK x x  (see Chapter 3), and define , ( ( , ) : , 1,..., )i j i j i jh t t K i j N= =x x . Equation 

(5.3) is a typical constrained quadratic programming optimization problem. Although 

general purpose quadratic programming can be used(5.3), the most popular algorithm 

to solve this specific optimization is called sequential minimal optimization (SMO) 

(Platt, 1999a). After finding the optimal Lagrange multipliers, we can compute the 

weight in the feature space from the condition derived previously, 
1

N

i i ii
a t

=
=∑w x . 

During the optimization, only some Lagrange multipliers have values greater than 

zero, and their corresponding data points are called support vectors (SVs). The 

decision boundary is defined only by those SVs, hence removing non-SVs from the 

training would yield identical solution from the original training. Theoretical 

investigations show that the proportion of SVs in the training set reflects an upper 

bound of the expected generalization error (Vapnik, 1998). The parameter b can be 

determined by finding the b that satisfies ( ) 1i i i it b b t+ = ⇒ = −T Tw x w x  if ix is a 

SV (notice { 1,1}t ∈ − , so 
1

t
t

=  ), because the distance of the SV to the decision 

boundary is 1. More generally, if we are using the kernel trick and are unable to 

compute the weight vector w in the feature space, we can find b by satisfying 

             
1

1

( ( , ) ) 1

( , )

N

i j j j i
j

N

i j j j i
j

t a t K b

b t a t K

=

=

+ =

⇒ = −

∑

∑

x x

x x

                     (5.4) 

where ix is any SV. In practice, b is estimated from all SVs and then averaged for 
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numerical stability. The decision function for predicting new input point is given by 

* *
1

 ( ) ( , )
N

i i i
i

y a t K b
=

= +∑x x x                      (5.5) 

This value measures the distance of the new data point to the decision boundary, in 

units of the margin width. Intuitively, the maximum margin formulation implicitly 

means only a subset contributes to the solution of the hyperplane. Trivial cases, which 

are far away from the opposite class, will not be used to calculate the decision 

boundary, and only "ambiguous" cases, those samples that are closer to the other class, 

will contribute to constructing the decision function (5.5). This may not be desirable if 

there are outliers that are close to the opposite class or mislabelled data points. To 

relax the formulation of the “hard margin” SVC, the “soft margin” SVC introduces 

space for some training errors. In the framework of the soft margin SVC, a free 

parameter C can control the trade off between training errors and the width of the 

margin. i.e. we can expand the margin by allowing some samples in the other side of 

the margin (a.k.a. margin errors) during the training (see figure 5.2). We introduce a 

slack variable to formulate this new problem. 

1
1minimize 2

subject to ( ) 1

                 0, 1...,

N

ii

i i i

i

C

t b

i N

ξ

ξ
ξ

=
+

+ ≥ −
≥ =

∑T

T

w w

w x                    (5.6) 

The larger the C is, the higher the penalty of the training errors, which has the inverse 

effect of the regularization,λ , in ridge regression. If we set C to a large enough value, 

this will be equivalent to the hard margin SVC (5.1). The corresponding Lagrangian is 

defined as  

1 1 1

1
( , , , , ) { ( ) 1 } ,0 0

2

N N N

i i i i i i i i i
i i i

L b a r C a t b r r aξ ξ ξ ξ
= = =

= + − + − + − ≤ ≤∑ ∑ ∑T Tw w w w x

       (5.7) 

where r and a are the corresponding Lagrange multipliers. Differentiating with respect 
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to ,  ,  and bξw , and setting the derivative to zero, leads to the dual form of the soft 

margin SVC 

. 
1

1

1
Maximize

2

0
subject to

0, 1,...,

n

i
i

n

i i
i

i

a

t a

C a i N

=

=

− +

=

≥ ≥ =

∑

∑

Ta Ha

                   (5.8) 

Interestingly, this is very similar to the hard-margin SVC, except now the Lagrange 

multiplier a is capped by the regularization parameter C. This is also the reason that a 

C larger than the maximum Lagrange multiplier would result the identical solution to 

that from a hard margin SVC (5.3). In the soft margin formulation, if the data points 

satisfy the condition ( ) 1 0i i it b a+ > ⇒ =Tw x , then these are the non-SVs. If the 

points satisfy ( ) 1 0i i it b a C+ = ⇒ < <Tw x , then these are the SVs on the margin. If 

the points satisfy ( ) 1i i it b a C+ < ⇒ =Tw x , then these are the SVs with positive slack 

variableξ  (see figure 5.2). It is important to notice that a positive slack variable does 

not necessary mean the training point is misclassified in the training. If 0 1iξ< < , 

then the point is between the decision boundary and the margin, but it is still on the 

correct side of the decision boundary. The point is misclassified only if the slack 

variable is greater than 1. Therefore, a soft margin SVC may still have no 

classification errors in the training. 
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Figure 5.2 Soft-margin SVC 

These figures show a 2D example of the soft margin support vector classification with different 

value of C. The blue and red spheres are the data points for different classes. The spheres 

enclosed by white circles are the support vectors. In this formulation, there are two types of 

support vectors (SVs): one is SVs on the margin and the other is the SVs on the opposite side 

of the margin boundary with positive slack variableξ . If 0 1iξ< < , then this training point is 

still on the correct side of the decision boundary, but if 1 iξ< , then this training point is on the 

wrong side of the decision boundary, hence results in a misclassification in the training. When 

the C is large enough (left figure), we obtain the hard margin SVC. 

Parameter C is often chosen by minimizing the cross validation error, and it can 

be shown that the solutions of the optimization (5.8), i.e. , ,ia bw  are piecewise 

continuous functions of C. In other words, identical decision boundaries may be 

obtained with different values of C. (figure 5.3) 

 

 

 

 

 

 

 

 

Figure 5.3 Margin width as a function of C 

This figure shows the piecewise relationship between the margin and the parameter C. At 

some range of C, the margin and the hyperplane is unchanged, for instance when C is 

between 51 and 141. When C is greater than around 470, the solution of a hard margin SVC is 

obtained. 

C=5 C=1000 

>1 

1> 
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In practice, to reduce the computation in the procedure of finding an optimal C 

via cross-validation, we often find the maximum absolute value of the Lagrange 

multipliers in the hard margin SVC as the maximum C, and then set different C values 

in the validation based on the percentage of the maximum C. Since the parameter C 

has no intuitive meaning, an alternative formulation called SVMν − or nu-SVM 

(Chen et al., 2005; Scholkopf et al., 2000) introduced a slight variation of problem (5.8) 

with the parameter (0,1]ν ∈ . Intuitively, this parameter is realised as the lower bound 

on the fraction of SVs and the upper bound on the margin errors (data points that lie 

on the wrong side of the margin boundary and 0iξ > ). The new formulation is given 

by 

1

1

1
Maximize

2

0

subject to 1/ 0

, 1,...,

n

i i
i

i

n

n
i

t a

N a

a i Nν

=

=

−

=

≥ ≥

≥ =

∑

∑

Ta Ha

                   (5.9) 

More details about the derivation of SVM and related theories can be fond in Dr. 

Pontil’s lecture slides (http://www.cs.ucl.ac.uk/staff/M.Pontil/courses/index-SL05.htm) 

or the following text books and papers (Cristianini and Shawe-Taylor, 2000; Hastie et 

al., 2003; Pontil and Verri, 1998; Schlkopf and Smola, 2001). In our work, we often 

used the LIBSVM toolbox (Hsu et al., 2003) with a pre-computed kernel 

(http://www.csie.ntu.edu.tw/~cjlin/libsvm/) to perform SVC. We also have our own 

implementation of SVC using the quadratic programming function (quadprog) of the 

Matlab optimization toolbox. Identical solutions were achieved from LIBSVM and 

our implementation with hard margin SVC. However, there were disagreements in the 

solutions of soft margin SVC between two implementations. Our implementation 

using the quadratic programming function in Matlab did not seem to find the optimal 



 165 

solutions when C was small. 

Generally speaking, training SVC is very efficient, but the framework of SVM 

can not generate probabilistic outputs. One ad hoc approach to this is to impose a 

sigmoid function on the output of the SVC (Platt, 1999b), but this requires training the 

parameter of the sigmoid function from a separate testing set. Better approaches to 

obtain probabilistic outputs should come from the probabilistic models, which will be 

introduced in the later sections. 

5.1.2 Relevance Vector Classification 

Essentially, relevance vector classification (RVC) is logistic regression (section 

2.4.6) with an ARD prior. The likelihood function is identical to (2.62), and 

since ( | , ) ( | ) ( | )p p p∝β t α t β w α , for fixed values of α , the ‘most probable’ value of 

β in the posterior distribution can be obtained by maximizing  

1

1
ln{ ( | ) ( | )} { ln ( ) (1 ) ln(1 ( )}

2

N

n n n n
n

p p t f t f
=

= + − − −∑ T T Tt β w α β φ β φ β Aβ   (5.10) 

where the function f() is the logistic function defined in (2.49), φ is simplified 

notation for ( )φ x , {0,1}nt ∈  and 0 1( , ,..., )Ndiag α α α=A . We take the same 

iterative Newton-Raphson method utilized by logistic regression, and compute the 

first and second derivative (Hessian matrix) of equation (5.10) with respect to the 

parameter β  

ln ( | , ) ( )p∇ = − − −T
β β t α Φ f t A β                     (5.11) 

ln ( | , ) ( )p∇ ∇ = − +T
β β β t α Φ RΦ A                    (5.12) 

where ( )n nf f= T
β φ , 1[ ,..., ]Nf f= Tf , and R is a diagonal matrix with 

elements (1 )n nf f− , which is the gradient of the logistic function. Because of the form 

of the posterior distribution, integrating out the weights is analytically intractable, so 

we have to rely on approximation methods. For the Laplace approximation framework 
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(Friston et al., 2007b; MacKay, 2002) , which approximates a given distribution with 

a Gaussian distribution, it can be shown that the negative inverse of the covariance 

matrix of the Gaussian approximates the Hessian matrix of the distribution at its mode. 

Therefore, the approximate covariance matrix of the posterior distribution is given by 

-1=( )+TΣ Φ RΦ A and the maximum posterior weight µ  is computed by iterating the 

update function 

 1( ) ( ( ) )new old
−= − + − +T T

β β Φ RΦ A Φ f t A β            (5.13) 

The hyperparameters, α , are updated in the same way as in RVR (4.12), except there 

is no noise term for RVC. Similar to the regression model, some hyperparameters 

would also grow very large, effectively removing some of the basis functions. The 

implementation of RVC can be seen as a combination of regularized logistic 

regression with a standard RVR update of the hyperparameters. The implementation is 

a nested loop, such that that the inner loop performs the regularized logistic regression 

using (5.13) with fixed hyperparameters α , and the outer loop updates the 

hyperparameters using the current estimates of the posterior weights and posterior 

covariance matrix, using (4.12). We can take the Laplace approximation and model 

the approximate marginal likelihood ( | ) ( | 0, )p N=t α t C  with covariance matrix 

1 1=( )− −+TC ΦA Φ R . For a given testing point, the probability that this point belongs 

to class 1 is computed by *0 *
( ( ) ) ( )

N

i ii
f fφ β

=
=∑ Tx φ β . 

The main feature of RVC is that it provides a sparse probabilistic output. In 

practice, we found the performance of RVC to be slightly inferior to that of SVC. In 

terms of the computational efficiency, because the implementation of SVC (LIBSVM) 

is in C/C++ and RVC is in MATLAB, training SVC is often about one thousand times 

faster than training RVC. Even though SVC requires additional cross validation to 

determine the parameter C, it is still faster than RVC. This is why we rarely use RVC 



 167 

when we were only interested in classification accuracies rather than probabilistic 

outputs. 

5.1.3 Gaussian Process Classification 

In section 4.1.3, we have introduced Gaussian processes (GP) for regression 

problems. To adapt the framework to one of of binary classification, we place a GP 

prior over the latent function g(x), and then squash it by a logistic or probit function 

(Rasmussen and Williams, 2006). The class probability is then given 

by ( 1| ) ( ( ))p y f g= =x x , where the function f() can be any squashing function, but we 

generally use a logistic function (2.49). For GPR, because both likelihood and prior 

are Gaussian, there is an analytic solution for making predictions (4.22). However, the 

non-Gaussian likelihood used for classification makes the integration analytically 

intractable. Therefore, approximation methods are used. In this thesis, we only 

consider the simple Laplace approximation (Williams and Barber, 1998), and ignore 

more sophisticated and computationally expensive methods such as expectation 

propagation (Minka, 2001). The Laplace approximation models the posterior 

distribution of the latent function as a Gaussian distribution having the mean at the 

maximum posterior estimate and the covariance matrix given by the negative inverse 

Hessian at the maximum estimate.  

From Bayes’ rule, the posterior of the latent variables is given by 

( | ) ( | )
( | , )

( | )

p p
p

p
= t g g X

g X t
t X

, where {0,1}nt ∈  is the label of the class, X is the input 

features matrix, which can be built as the covariance function of the Gaussian 

processes (4.20), and g is the vector of latent variables. The goal is to maximize the 

posterior distribution with respect to g, as ( | )p t X  is independent of g, we can only 

consider the un-normalised posterior. The GP prior is given in (4.18) 

( | ) (0, )p N=g X C  and the likelihood function is the standard binomial likelihood 
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used by logistic regression (2.61) 1

1 1

( | ) ( ) (1 ( )) ( )n n n n

N N
t t g t

n n n
n n

p f g f g e f g−

= =

= − = −∏ ∏t g . 

Therefore the un-normalised log posterior function is given by 

1

1

( ) ln ( | ) ln ( | )

1
{ ln | |} - ln(1 ) constant

2
n

N
g

n

p p

e−

=

Ψ = +

= − + + + +∑T T

g g X t g

g C g C t g
        (5.14) 

We can optimize the above equation using the Newton-Raphson method. To do so, we 

differentiate equation (5.14) with respect to g 

1( ) −∇Ψ = − −g t f C g                         (5.15) 

1( ) −∇∇Ψ = − −g R C                         (5.16) 

where ( )n nf f g= , 1[ ,..., ]Nf f= Tf , and R is a diagonal matrix with 

elements (1 )n nf f− . The update function is then given by 

1 1 1

1 1

( ) ( )

( ) ( )

new old old

old

− − −

− −

= + + − −

= + + −

g g R C t f C g

R C Rg t f
              (5.17) 

Once we have found the mode MAPg of the posterior distribution, we can compute the 

Hessian matrix, hence the Gaussian approximation of the posterior distribution is 

given by 1 1( | , ) ( , ( ) )MAPp N − −= +g X t g R C . To make the predictions, we first 

compute the latent variable of the new input by adopting the equation in GPR (4.22), 

1
* *E[ | ] = ( )MAPg −= T TX,t,x k C g k t - f (notice at MAPg , ( ) 0∇Ψ =g , so ( )MAP = −g C t f ). 

The vector k has elements *= ( , ), 1,...,i iK i N=k x x . If we use a linear kernel and are 

interested in generating the “weight map” for visualising the contribution of each 

input feature, we can computed the map by 
1
( )

N

n n nn
t f

=
= −∑w x . The variance of the 

predicted latent variable is given by 1 1
* * * *var[ | ] ( , ) ( )g K − −= − +TX,t, x x x k R C k . 

Given the mean and variance of the predicted latent variable *g , we can compute the 

averaged prediction by * * * * *( ) ( | , , )f g p g dgπ = ∫ X t x . Because of the asymmetric 
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nature of the logistic function, the averaged prediction is always less than the MAP 

prediction *( )f g , however, for binary classification, the predicted test labels given 

by selecting the class of highest probability obtained by averaged or MAP predictions 

are identical. i.e. if *0.5 ( )f g< , then * *0.5 ( )f gπ< < , or if *( ) 0.5f g < , 

then * *( ) 0.5f g π< < . 

 

 

 

 

 

 

 

 

 

Figure 5.4 Gaussian Processes Classification with R BF kernel 

This figure shows the decision boundary found from the AD data by GPC with an RBF kernel. 

The hyperparameters were learnt through optimising the marginal likelihood (5.18). The 

distribution in the figure shows the probability of the data point belongs to the AD group, 

( AD| )p t = x , and the dark line indicates the decision boundary where the probability is 0.5. 

The marginal likelihood function of GPC ( | , ) ( | ) ( | , )p p p dθ θ= ∫t X t g g X g  is 

analytically intractable, so we use the Laplace approximation of the posterior 

distribution, and an approximation of the log marginal likelihood 

1

1 1

1

1
ln ( | , ) ( ) ln | | ln(2 )

2 2
1

{ ln | | ln | |} - ln(1 )+constant
2

n

MAP

N
g

n

N
p

e

θ π−

− −

=

= Ψ − + +

= − + + + + +∑T T

t X g R C

g C g C R C t g
    (5.18) 

For the implementation, we used the GPML Matlab toolbox 

(http://www.gaussianprocess.org/gpml/code/matlab/doc/) with some modifications, so 
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we can use a pre-computed kernel as input. We also add some code to generate linear 

combinations of kernels. There is another in house implementation by Dr. Ashburner. 

In this implementation, Powell’s line search method (Press et al., 1992) is used to 

optimize the marginal likelihood (5.18). 

5.1.4 Multi-class Classification approaches 

Generally speaking SVC, RVC, and GPC are all binary classifiers, although we 

can expand the likelihood function of those probabilistic models, such as RVC and 

GPC, from Bernoulli distribution to standard multinomial distribution, and then apply 

the softmax function  

1

exp( )
( | , )

exp( )
k

k K

ii

p t C
=

= =
∑

T

T

w x
w x

w x
                  (5.19) 

Often people take simpler approaches by combining a number of binary classifiers 

(Hassabis et al., 2009; Mourao-Miranda et al., 2006). For situations with K classes, 

there are two commonly used approaches; one is the “one versus the rest” classifier. 

This works by training K classifiers, each of them trained with one class versus the 

other K-1 classes. The classification for a testing point is determined by the classifier 

that achieves the highest classification scores i.e. furthest away from the decision 

boundary toward the particular class. Nevertheless, ambiguous cases may still occur 

when all the classifiers consider a testing point to be in “the other K-1 classes”. The 

label of this point will be undetermined. Another approach is called the “one versus 

one” classifier, which works by introducing K(K-1)/2 or 2CK classifiers. Each of the 

classifiers is trained with one class versus another class only. The assigning of a 

testing point is achieved by majority vote, in other words, the most frequent class to 

which the testing point is classified by all the classifiers. Ambiguous cases may also 

occur in this approach. For example if we have three classes 1, 2, and 3, then we will 
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have three classifiers (1vs2, 1vs3, 2vs3). The testing point may be classified into class 

1, class 3, and class 2 from the three classifiers respectively. 

To tackle the issue of ambiguous cases, we introduced a multi-classification 

method for fMRI block designed experiments. This method also utilizes the temporal 

information, without compressing into a reduced kernel by equation (3.18). Our 

approach breaks the classification into three stages: 1. Train K regression models; 2. 

Predict the temporal profiles for a testing block; 3. Match the predicted K profiles 

with the canonical profile (figure 5.5). This approach was originally inspired by the 

PBAIC, so we take a similar approach in the training phase, that is, we only change 

the target variable, but use the same input features. For example, consider an 

experiment with three conditions in the design. We could train three different 

regression machines with RVR or KRR, where each of the machines takes the same 

kernel generated from the fMRI volumes as input features, but the target variables are 

the corresponding regressors (HRF convolved) in the design matrix. In the predicting 

phase, temporal profiles of the test block (multiple fMRI volumes) are predicted from 

all three regression machines. To assign the class membership, we compare all the 

predicted profiles with the canonical profile which is the HRF convolved block. 

Covariance or correlation is chosen as the metric to measure similarities. Both 

measures ignore the constant offset, and covariance considers the magnitude of the 

prediction, but correlation ignores the information of magnitude. The class is assigned 

to the condition for which the machine achieves the highest similarity between the 

predicted profile and the canonical profile. 

This method resolves the issue of ambiguous regions and showed higher 

accuracies for prediction than combinations of binary SVC at the individual level. 

Although we gave an example of block design experiment, there is no reason why this 

method should not be used for event related designs. A practical example will be 
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given in an application section of this chapter. 

 
Figure 5.5 Multi-classification using regression ma chines 

This figure shows the pipeline of the multi-classification method we proposed by predicting 

different conditions in a block design fMRI experiment  

5.1.5 One-class Classification 

One class classification is often referred to as novelty detection (Scholkopf et al., 

2001; Shawe-Taylor and Cristianini, 2004; Tax, 2001). The one class classifier can 

learn the distribution of the ‘normal’ samples from the training data, and then perform 

the detection of abnormal or novel sample in a new set (Sato et al., 2008a). Often, 

when we have uneven sample sizes, for instance, a larger sample of control subjects 

than patients, it will be preferred to train a one-class classifier that can well describe 

the distribution of the controls. This classifier can still be used to classify patients by 

finding subjects who do not belong to the class of control subjects. We introduced a 

simple method in section 3.3.3, by calculating the distance from a data point to the 

centre of the mass of the set from the kernel (3.23). We can then define the radius, 

hence the boundary of the hypersphere enclosing the data set. There is a more flexible 
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approach, namely “the smallest hypersphere containing the training set” (Schlkopf 

and Smola, 2001; Shawe-Taylor and Cristianini, 2004). This method also works on 

kernel space, and therefore does not require explicit specification of the feature space. 

This allows us to explore the hypersphere in the feature mapping space. Unfortunately, 

there is no easy way to find the centre that minimises the radius of the hypersphere, so 

the solution can only be found using an optimization scheme. This leads to the 

following formulation 

2

2 2
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Similar to SVM, we can use Lagrange multipliers to solve this optimization problem. 

The dual formulation is given by 
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         (5.21) 

This is a standard quadratic programming optimization as used by SVM, and similarly, 

some of the Lagrange multipliers will have zero values. Only those data points laid on 

the circumference have positive Lagrange multipliers. They are analogous to the 

support vectors in SVM. The centre of the sphere can be calculated by 
1

( )
N

i i
i

c aφ
=

=∑ x , 

and the radius of the sphere is *( )r W= a . The function 

2
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, 1

( ) ( , ) 2 ( , ) ( , ) 0
N

N

i i i j j ii
j i

f K a K a a K r
=

=
= − + − ≥∑ ∑x x x x x x x  will assess whether 

the test point is inside the hypersphere. Positive output indicates that the test data is 

outside the hypersphere, hence is novel. 
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Figure 5.6 The smallest enclosing 2D circle 

This figure shows 2D example of the smallest sphere that encloses all the data points. The red 

points are the points with positive Lagrange multipliers (support vectors). The distance of these 

points to the centre of the sphere is equal to the radius of the sphere, and the red cross 

indicates the centre of the sphere. The blue cross indicates the centre of mass. If the 

distribution of the points is asymmetric, the centre of mass and the centre of the smallest 

enclosing circle may be quite distant. 

Furthermore, if data points in the mapped feature space have equal distance to the 

origin, in other words, the points are located on the boundary of the hypersphere 

centred at the origin of the feature space such as the RBF kernel and the normalized 

kernel. Since the diagonal elements of those kernels are all 1. We can simplify the 

objective function by maximizing only 
, 1

( , )
N

i j j i
j i

a a K
=

−∑ x x . Interestingly, this is 

equivalent to a binary SVC between all training points and the origin. Notice the 

LIBSVM implements this objective function rather than the objective function 

described in (5.21). Therefore, one class SVM in LIBSVM works only for the RBF 

kernel or the normalized kernel. 

We can also take the approach in soft margin SVC by relaxing the boundary of 

the hypersphere to avoid over-fitting the data. This can achieve a “soft hypersphere" 
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that contains most of the data points. As in the case of the soft margin SVC, a free 

parameter C is introduced to penalize the training errors (points outside the sphere). 

The new objection function is given by 

2
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Minimize || ||

|| ( ) ||
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0, 1,...,
i i
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The dual form of this new objective function is give by 
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The effect of C, which capped the Lagrange multipliers, is exactly the same as in soft 

margin SVC. The centre of the hypersphere is still given by 
1

( )
N

i i
i

c aφ
=

=∑ x , although 

its computation is intractable from an RBF kernel. As with the soft margin SVC, 

points with the corresponding Lagrange multipliers equal to C would have positive 

slack variables, so these training points are outside the hypersphere. Points on the 

boundary of the hypersphere would have their Lagrange multipliers in the range 

0 ia C< < . The radius of the sphere is 

, 1 1$

( , ) ( , ) 2 ( , ),  0
N N

l l i j j i i j j l
j i j

r K a a K a K a C
= =

= + − < <∑ ∑x x x x x x . To evaluate the 

testing data, the decision function is the same as for the standard hypersphere 

formulation without C. We can also take the approach of SVMν − , by converting the 

parameter C into a more intuitive variable ν , such that 1/( )C Nν= . The ν  

parameter allows us to exert some control over the fraction of points that are excluded 

from the hypersphere. 
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Figure 5.7 One Class SVM with RBF kernel 

This figure shows a 2D example of the one class classifier applyied to the AD dataset using a 

RBF kernel ( 55eγ −= ). The one class classifier was trained on the normal subjects (red dots) 

with 20% training misclassification ( 0.2ν = ). The dark contour indicates the boundary of the 

classifier. 76.77% of AD patients (blue dots) were classified as “novel” from the training class.   

5.2 Application: Classification of MR Scans in Alzheimer’s 

Disease 

Recent advances in MRI segmentation (Ashburner and Friston, 2005), spatial 

normalization (Ashburner, 2007), and machine learning techniques (Bishop, 2006b) 

have led to the application of automatic classification to MRI for detection of a 

variety of disease states (Davatzikos et al., 2008; Fan et al., 2008a; Fan et al., 2005; 

Fan et al., 2007b; Golland et al., 2002). The objectives of our study were to assess 

how well SVC classified individuals, and to determine whether datasets from multiple 

scanners and different centres could be combined to obtain improved classification 

accuracy (Kloppel et al., 2008d). 

5.2.1 Introduction 

Alzheimer’s disease (AD) is a neurodegenerative disorder, and a common cause 
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of dementia. Research advances have shown the biochemistry link to the molecular 

pathogenesis of plaques composed of amyloid beta, and tangles composed of 

hyperphosphorylated tau. Familial AD is very rare, but sporadic AD is common and 

has affected more than 15 million people worldwide. The exact cause of sporadic AD 

is unknown, and its early detection is important (Blennow et al., 2006). In practice, 

the diagnosis is mainly based on clinical history and neuropsychological examination, 

but the diagnosis rate of AD is less than one-half in the primary care setting (Solomon 

and Murphy, 2005). When more detailed criteria are used, the diagnostic accuracy is 

improved, but still has around 80% sensitivity (Petersen et al., 2001). Only recently, 

people have realized that MRI can improve the diagnostic accuracy of AD. Studies 

have shown that the use of MRI to measure temporal lobe atrophy can assist 

diagnostic accuracy (Barnes et al., 2004), evidence shows that hippocampal volume is 

a sensitive marker for pathological AD stage (Jack et al., 2002). However, a lot of 

studies still rely on manual tracing of hippocampi, which is laborious and time 

consuming. Besides, single measurements of hippocampal volume are unlikely to be 

more sensitive than multivariate measures. Averages of multiple voxels into a single 

volume measure may be easy for human interpretation, but this simplification results 

in some information loss. On the other hand, statistical learning methods are well 

suited to finding patterns in high dimensional space, especially as the computational 

cost of kernel methods are bounded by the number of training samples rather than the 

number of input features. We applied SVC in this work to examine different sets of 

MRI from AD patients and elderly control subjects. One advantage of our approach is 

that all the procedures are fully automatic; therefore the result is not biased by 

subjective errors from manual tracing. 

5.2.2 Materials and methods 

We have three sets of data from different sources. In the first set (group 1), AD 
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patients were largely from a community based setting in Rochester, Minnesota, USA. 

All AD diagnoses were confirmed with neuropathology. There were 20 patients and 

20 controls. Controls all had MMSE greater or equal to 27.  

The second set consisted of neuropathologically confirmed AD patients and 

controls from the Dementia Research Centre, University College London. There were 

14 patients and 14 controls. The AD patients in this group (group 2) tended to be 

younger than AD patients in group 1. Cognitively normal controls were confirmed by 

clinical exam or pathology. 

The third set (group 3) consisted of 99 clinically confirmed AD patients and 90 

age and sex matched control subjects. Subjects were from a community and referral 

based sample in Rochester, Minnesota, USA. Since the patients were only clinically 

confirmed (no post mortem examination), some of the patients may not actually have 

had AD. From previous studies, we speculated that only about 85% of the patients in 

the third set actually had AD. In fact, group 3 is a subset of the subjects mentioned in 

section 4.4 of chapter 4. 

For groups 1 and 3, MR scans were collected over a period of about 10 years, 

from 13 different scanners. However, all scanners were the same platform, General 

Electric Signal 1.5T scanners. The scanning protocols used were also similar, and the 

parameters for the T1-weighted images were: TR=23 to 27 ms, TE=6 to 10ms, flip 

angle 25 degrees or 45 degrees, voxel size 0.86mm x 0.86mm x 1.6mm or 0.94mm x 

0.94mm x1.6mm. 

For group 2, the scans were acquired from three different 1.5T scanners. Image 

parameters were TR=35 or 15, TR=5 or 5.4 or 7, flip angle 35 degrees or 15 degrees. 

The image pre-processing procedures are described in section 3.2.1. Images were 

firstly segmented by SPM into GM and WM, and then imported into a rigidly aligned 

space. The GM and WM were iteratively registered to the population mean by the 
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DARTEL toolbox. Finally, the linear kernel is computed from the normalized and 

Jacobian scaled GM. For classification, we applied standard hard-margin SVC in this 

work. Methodological details can be found in 5.1.1. Leave one out cross validation 

(section 2.5.1) was applied to test the generalization performance. 

5.2.3 Results and discussion 

Classification between confirmed AD patients and controls in group 1 yielded 

the accuracy of 95% with whole brain GM from the leave one out cross validation. 

The corresponding sensitivity was 95% (i.e. probability of correctly identifying AD 

patients) and specificity was 95% (i.e. probability of correctly identifying control 

subjects). One 89 year old AD patient with a MMSE of 29 and one 86 years old 

control were misclassified. Classification of group 2 achieved 92.9% classification 

accuracy with the same procedures used for group 1. The sensitivity was 100% and 

specificity was 85.7%. The two oldest controls were misclassified. We then combined 

both groups 1 and 2, and obtained a cross validation accuracy of 95.6%, which was 

higher than any of the groups alone. The sensitivity was 97.1% and the specificity was 

94.1%. Finally, we trained the SVC with data in group 1, and then used group 2 as the 

test set. The accuracy was 96.4% (sensitivity 100%, specificity 92.9%). Conversely, 

we trained group 2 and tested on group 1. The accuracy was 87.5% (sensitivity 95%, 

specificity 80%). Because subjects in group 1 were generally older than subjects in 

group 2, we suspected that the poor specificity was due to misclassification of older 

subjects in group 2. This actually raises an important issue of supervised learning 

methods, which is that the statistical machine is constrained by the information 

available in the training set. When the training samples are relatively scarce, as in our 

case, differences of the distribution between the test set and training set can impair the 

accuracy of classification. In our case, because aging patterns have some similarities 

between atrophy patterns in AD, the classifier may not learn sufficient information to 
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discriminate between aging patterns and AD patterns from a younger group. However, 

when we trained from a set of relatively older subjects, the classifier would be able to 

characterise the pattern between AD and aging much more clearly. 

Group 3 contains probable AD and mild AD patients. The classification accuracy 

using whole brain GM was 83.2% (sensitivity 81.8%, specificity 85.6). A further 

improvement to 88.9% (sensitivity 85.9%, specificity 93.3%) was obtained when 

volumes of interest (VOI) centred around both left and right parahippocampi were 

used. This VOI is the same one described in 4.4.2. Because many AD patients in both 

groups 1 and 2 were in the later stage of AD, we would like to test whether training 

using data from group 1 plus group 2 can predict patients in group 3, which consisted 

of many mild AD patients. The result was surprisingly biased, with an accuracy of 

80% (sensitivity 63.6% specificity 97.8%). It seemed that training SVC with severe 

cases of AD drove the hyperplane toward the direction of the AD group. One way to 

correct this situation is by biasing the decision boundary closer towards the control 

subjects. By sacrificing the specificity, we can improve the sensitivity. We found that 

by biasing by -0.5 in the direction perpendicular to the decision boundary, the 

accuracy improved to 89% and the sensitivity increased to 87.9% with specificity 

dropping to 91.2%. 

Conversely, when we trained using group 3 data and predicted groups 1 and 2, an 

accuracy of 94.1% (sensitivity 94.1%, specificity 94.1%) was achieved. This implied 

that patterns of mild AD are consistent with patterns of severe AD. Because patients 

with mild AD should be more similar to normal controls, training with difficult cases 

should yield good results when predicting less difficult cases. 

Finally, we combined all three groups together, and the accuracy was 87.2% 

(sensitivity 85.7%, specificity 88.8%). The following table summaries our results. 
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Group 
% correctly 

classified 

Sensitivity 

(%) 

Specificity 

(%) 

Group 1 95.0 95.0 95.0 

Group 2 92.9 100 85.7 

Group 3 83.2 81.8 85.6 

Dataset 1 for training, set 2 for testing 96.4 100 92.9 

Dataset 2 for training, set 1 for testing 87.5 95.0 80.0 

Group 1 + 2 95.6  97.1 94.1 

Group 3 with VOI 88.9  85.9 93.3 

Dataset 1 +2 for training, set 3 for 

testing 
80 63.6 97.8 

Dataset 1 +2 for training, set 3 for 

testing (after correcting the bias) 
89 87.9 91.2 

Dataset 3 for training, set 1+2 for 

testing (after correcting the bias) 
94.1 94.1 94.1 

Group 1 + 2+ 3 87.2 85.7 88.8 

 

Because we used linear kernels in this application, it is feasible to reproduce the 

linear weights in the input feature space, or the “weight map”. The weight map allows 

visualisation of those regions that contribute more to the discrimination between AD 

and controls. In order to produce a less biased weight map, we utilise the “bootstrap 

methods” (Efron, 1979; Efron and Tibshirani, 1993; Zoubir and Boashash, 1998). We 

resampled the whole dataset 200 times. Each time, around 70% of the samples were 

selected. The SVC was trained 200 times, and the 200 corresponding weight maps 

were averaged to produce the mean map. Because the weight maps vary across 

different training subsets, to produce a map that illustrates most consistent voxels 

discriminating AD from controls, we divide the mean weight map by its voxel-wise 

standard deviation. This then constructed the z-score map. The assumption was that if 

there is no information in the training images to distinguish between AD and controls, 

the mean weight map should be 0 across all voxels. From the aspect of visualization, 

the z-score map would suppress voxels having high variance of weights from different 
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weight map. In other words, the z-score map can indicate regions which are 

consistently “informative” across subjects. 

From the weight map, voxels around the parahippocampal gyrus and parietal 

cortex showed strong contribution to classify between AD and controls. Because we 

set the label of AD patient as 1, and controls as -1, negative values in the weight map 

indicates relatively higher grey matter volume increasing the likelihood of classifying 

into normal. In other words, degeneration in the parahippocampal gyrus and parietal 

cortex would lead to be classified as AD patients. 

 

 

 

 

 

 

 

 

Figure 5.8 Weight maps for AD classification 

These two figures show the relevance of voxels for classifying patients from both groups 1 and 

2 (pathologically confirmed subjects). The left figure is the mean weight map generated by 

averaging 200 SVC solutions with bootstrap sampling. The right figure shows the 

corresponding z-sores map. Both maps are visually very similar. The blue areas indicate 

where relatively higher grey matter volume increases the likelihood of classifying as normal. 

The red areas indicate the opposite effect. 

Our results clearly indicate the feasibility of apply machine learning techniques 

to aid the clinical diagnosis of AD. The procedure presented here promises to classify 

disease specific atrophy from that of normal aging in a standard T1 weighted 

structural MRI scan. Generally speaking, our results have been comparable with or 
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better than other classification methods published based on MR images (Barnes et al., 

2004; Csernansky et al., 2004; Jack et al., 2002; Wahlund et al., 2005). Most of these 

studies restricted analysis to temporal lobe structures. Although, we also used 

temporal VOIs for group 3 to improve the classification performance, this 

improvement could be because the clinical determination of AD was partially based 

on examining temporal lobe structures. To be fair, it is actually difficult to judge 

whether our approach was superior to other methods, as every group worked on 

different datasets. However, we can still compare our automatic methods with human 

experts.  

5.2.4 Direct Comparison between radiologists and our computerised 

method 

The aim here is to verify the performance of the automatic classification system, 

including the automatic segmentation and spatial normalization processing. One way 

is to compare the prediction accuracy with those made by clinical radiologists. This 

project was mainly led by Dr. Stefan Kloppel, and he kindly allowed me to put the 

material of this study, for which I was one of the co-authors, in my thesis (Kloppel et 

al., 2008b) to make the chapter more complete. The binary diagnosis was made by six 

radiologists, with different levels of experience, using scans from groups 1 and 2 

(pathologically confirmed cases). 

To allow a fair comparison, radiologists were provided information about the age 

range of patients and controls, and were also told that the both diagnostic categories 

were age matched and equal in number. This means the radiologists were not told the 

age for each scan, but the age range in the group. The radiologists were asked to 

perform binary classification with an additional level of diagnostic confidence (low, 

intermediate or high). The radiologists rated group 1 first, and just before rating group 

2, we disclosed the diagnosis of a third of patients and controls to the radiologists 
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from group 2 to mimic the training in SVC. Disclosed cases were randomly selected 

and removed from the test set. There was no time limit for the radiologists to perform 

their diagnoses. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9 Classification performance of radiologis ts and SVM 

This figure shows the classification accuracy of radiologists and SVM for both groups 1 and 2. 

The results of radiologists are shown as circles, and those of SVM are shown as triangles. 

One radiologist performed as accurately as SVC in the task of classifying AD 

and controls from group 1, but SVC outperformed the other five radiologists. 

Radiologists’ diagnostic accuracy was highest when they expressed high diagnostic 

confidence. Correlations between the diagnostic accuracies of the radiologists with 

the percentage of brain scans in their daily workload showed that their diagnostic 

accuracy improved with their level of experience. All radiologists achieved relatively 

high accuracies on the third dataset (figure 5.9). This suggests that training by 

disclosing part of the data may have helped the less experienced radiologists, as they 

improved the most. 
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Given the good diagnostic accuracy achieved by SVC relative to the radiologists, 

it substantially extended the possibility of the use of computers in clinical decision 

making (Ashburner et al., 2003). Although, experienced radiologists working under 

optimal conditions are very accurate, the automatic system could improve diagnoses 

in places where trained neuroradiologists or cognitive neurologists are scarce. It is 

also important to realize that the performance achieved in our classification system 

was hugely attributed to the image pre-processing algorithms. The pre-processing can 

be understood as the procedure for feature extraction. If the extracted features were 

meaningful, the task of classification would be relatively invariant to the statistical 

learning tools. Nevertheless, the automatic classification system introduced here 

warrants similar applications to large image sets, such as those being collected for the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Mueller et al., 2005). When a 

large training set is available, multiple sub-training groups can be established based 

on the gender, age, and ethnicity. This should reduce the inter-subject variability due 

to other factors. Once the pattern of AD has been characterised, screening the patients 

could just take a few minutes (including segmentation and registration), as there is no 

need to re-train the classifier. Considering the growing possibilities of cloud 

computing (Buyya et al., 2008) and high speed internet, computation does not 

necessary need to be done on site, but could be dispatched to computing centres 

around the world. 

5.3 Application: Automatic Detection of Presymptomatic 

Huntington Disease Using Structural MRI 

The benefit of treatments for neurodegenerative diseases is much higher in the 

very early and preclinical stages of degeneration. In this project, we applied the fully 
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automatic classification method, which is nearly the same one described in section 5.2, 

for detecting subtle degenerative change in preclinical Huntington Disease (HD).  

5.3.1 Introduction 

The availability of a definitive genetic test for HD provides a perfect standard for 

evaluating the performance of classification systems from gene mutation carriers who 

do not have symptoms. Group studies of familial HD have shown substantial 

neurodegeneration before the onset of clinical symptoms (Thieben et al., 2002). 

Preclinical degeneration observed from structural MRI scans may indicate important 

timing information for treatment to slow down the process of degeneration. Automatic 

and efficient methods would be required for screening large numbers of subjects for 

early detection. In addition, Presymptomatic HD is an important model for the study 

of the earliest stages of neurodegeneration and atrophy. This autosomal dominant 

disorder has complete penetrance, and results from expanded CAG trinucleotide 

repeats in the Huntington gene, which can be detected from the blood (Penney Jr et al., 

1997). 

5.3.2 Materials and Methods 

A total of 96 presymptomatic Huntington disease gene mutation carrier (PSC) 

and 95 control subjects enrolled in the PREDICT-HD study (Paulsen et al., 2006) 

were included. PREDICT-HD is an international multicentre study that focuses on 

discovering biological and refined clinical predictors of disease progression in PSCs. 

The PSCs in the dataset have at least 39 CAG repeats in the HD gene, whereas 

controls have fewer than 30 CAG repeats. Subjects were also screened for unstable 

illness, alcohol or drug abuse, a history of special educational needs, and a history of 

other CNS diseases. The scans acquired were also checked for artifacts with a 

semi-automatic quality control procedure at the time of acquisition. 

In this study, we separate PSCs into various groups by their estimated time to 
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clinical manifestation, based on age and CAG repeat length (tables available at 

http://www.cmmt.ubc.ca/sites/default/files/pdf_hayden_supplementary_tables.pdf) 

(Langbehn et al., 2004). This robust model was based on 3,000 gene carriers. We used 

the algorithm to estimate the probability of developing clear signs of HD in the next 5 

years, and then divided PSCs into three equal sized groups according to their 

probability of clinical manifestation within 5 years: 

1. less than 10% (far group) 

2. 10% to 33% (mid group) 

3. more than 33% (near group)  

Controls were selected to match the age in each group. A control subject may 

also be repeatedly used in different groups. Each group contains 32 HD and 32 

controls. 

The T1-weighted MRI scans were acquired using the three dimensional 

volumetric spoiled gradient echo series on 1.5T scanners (TE=3ms, TR=18ms, flip 

angle 20 degrees, field of view 240mm, 124 slices at 1.5mm thickness, matrix size 

256x192). We applied standard pre-processing procedures. Briefly speaking, images 

were segmented into GM and WM, and then imported into a rigidly aligned space. 

The GM and WM were iteratively registered to the population mean by the DARTEL 

toolbox. Finally, the linear kernel is computed from the spatially normalized and 

Jacobian scaled GM (for details, see section 3.2.1).  

Unlike the AD dataset, where the controls and the AD patients were quite distinct, 

there was a lot of overlap between the PSCs and controls, so we applied soft-margin 

SVC with parameter C in this project. When we evaluated the generalization 

performance, in order to prevent overly optimistic estimation, we performed a three 

way split cross validation (section 2.5.1). This means we split the data into training, 

validating, and testing sets. We used the validating set to optimise C, and use the test 
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set to verify the classification accuracy with the optimal C value. 

From previous voxel based morphometry (VBM) studies, we knew that the 

atrophy in HD is localised in the striatum (Kassubek et al., 2004; Thieben et al., 2002). 

This prior knowledge should increase the predictive power of the classifier, so we 

performed additional feature selections procedures. We performed a VBM comparison 

between normal controls and PSCs from an external dataset, to generate the statistical 

map. This new dataset consisted of 42 PSCs and control subjects. The scans were 

acquired from a 1.5T Siemens Sonata scanner (T1-wegithed MDEFT sequence, 

TR=20.66ms, TE=8.42ms, inversion time=640ms, flip angle 25 degrees, 176 slices at 

1mm thickness, sagittal, phase encoding in anterior/posterior, field of view 224x256 

mm2). All images were spatially normalized into the same space as the original dataset. 

We applied three different levels of threshold on the t-map to obtain the mask for 

feature selection. The thresholds are as followed 1) uncorrected p<0.001, 2) FEW 

corrected p<0.05, 3) single voxel of the global maxima.  

 

5.3.3 Results and Discussion 

Classification accuracy depended greatly on estimated time to disease 

manifestation. Subjects with at least 33% chance of developing unequivocal signs of 

HD in 5 years were correctly classified at 68.7% accuracy (sensitivity 62.5%, 

specificity 75%). The prediction accuracy improved to 82.8% (sensitivity 78.1%, 

specificity 87.5%) when a mask of uncorrected p<0.01was used for selecting features. 

For the mid group, the best classification accuracy of 79.7% (sensitivity 78.13, 

specificity 81.3) was achieved when the single voxel of the global maxima was used. 

The far group obtained the best prediction at 60% (sensitivity 62.5%, specificity 59.38) 

when a mask of uncorrected p<0.01 was applied (figure 5.10). Results are presented 

in the following table 
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Figure 5.10 Classification performances for preclin ical Huntington Disease  

This figure shows the classification accuracy of PSCs using soft-margin SVC with different 

input features in each subgroup. 
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Classification performance was satisfactory considering that PSCs do not have 

clinical symptoms. Our study also provided evidence supporting the gene prediction 

model. The probability of developing unequivocal signs of HD within a period of time 

is strongly correlated with prediction performance. In general, feature selection 

improves the prediction accuracy for both near and mid groups, however, 

performance was around chance level for the far group, regardless of feature selection 

criteria. Subjects in this group were estimated 20 years or more from developing signs 

of disease. It was very likely some people the group did not manifest atrophy, hence 

those people would have similar patterns as normal controls. When we combined all 

three groups, the classification performance had similar accuracy to the far group. 

This was possibly due to many PSCs in the far group having similar pattern of normal 

controls thus affecting the classifier during training. In one of our previous studies, we 

applied SVM on diffusion weighted imaging (DWI) data, and 82% classification was 

achieved with whole brain data (Kloppel et al., 2008a). Although the cohort was not 

the same, the subjects in the DWI study were estimated to be an average of 19 years 

from clinical manifestation. This strongly implies that DWI may provide more salient 

information related to structural changes for PSCs than grey matter atrophy. 

Nevertheless, in the framework of kernel methods, we can combine features by means 

of generating kernels from weighted linear combination of kernels. If both DWI and 

T1-MRI of the same subjects are available, the appropriately weighted combination of 

both modalities should allow even better performance. 

5.3.4 Automatic feature selection using Gaussian processes 

When training samples are scarce, feature selection techniques are shown to 

improve the performance of classification. A popular method called recursive feature 

elimination (RFE) was developed for SVM. RFE works by eliminating feature which 
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contributes the least to the change of margin width. i.e. 2 2
( )argmin( || || || || )i

i
−w w , 

where 2|| ||w is the margin width of the full features, and 2
( )|| ||iw is the margin width 

when the i-th feature is removed. If we use a linear kernel, 2 ( ) 2argmin( || || || || )i

i
−w w  

this will be equivalent to argmin(| |)i
i

w  (Fan et al., 2005; Guyon and Elisseeff, 2003; 

Guyon et al., 2002; Rakotomamonjy, 2003). The original SVM-RFE removes features 

one by one. However, when there are too many features this is computationally 

unfeasible and many tend to remove multiple features at once, which can give 

sub-optimal results. However, non-Bayesian methods suffer from the need to use 

cross validation in order to determine the optimal number of features. If we have only 

limited samples, splitting the data into training, validation and testing sets will reduce 

the number training samples. Besides, cross validation for feature selection normally 

requires a lot of computation due to the high dimensional nature of the imaging data. 

In this small additional project, we tested the ability of automatic feature selection 

using marginal likelihood maximisation with Gaussian Process Classification (section 

5.1.3). We used the external dataset, which generated the statistical map in the main 

project, with additional scans in the work. The scans were acquired from a 1.5T 

Siemens Sonata scanner (T1-weighted MDEFT sequence). The dataset consisted of 40 

PSCs and 40 controls. The average years of onset, calculated from the CAG repeat in 

the dataset, is about 15 years. 

Standard pre-preprocessing procedures were applied, but with additional 

Gaussian smoothing (6mm). We partitioned the whole normalized and Jacobian scaled 

grey matter into five regions: the left and right striatum, the left and right 

hippocampus, and everything left. In principle, we could have automatically 

parcellated the brain using standard templates (e.g. AAL template). The covariance 
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matrix takes the form 

1 2 3 4 5 6lh rh ls rs elseθ θ θ θ θ θ= + + + + +C K K K K K            (5.24) 

We then run the GPC to optimise the hyperparameters by maximising the 

marginal likelihood (5.18). Because optimising the weights for each kernel is 

equivalent to weighting the importance of each region. Automatic feature selection 

was achieved in the training process, so we did not need to run the time consuming 

three-way split cross validation. Standard leave one out cross validation was applied 

to test the generalisation performance. When we used the whole brain as features, i.e. 

1 2 3 4 51 θ θ θ θ θ= = = = = , the classification accuracy from GPC is 52.5%. (sensitivity 

50%, specificity 55%). When automatic feature selection was used, the accuracy 

increases to 67.5% (sensitivity 65%, specificity 70%). 

 

 

 

 

 

 

 

 

 

 

Figure 5.11 Classification performances of Gaussian  Process Classification 

The left figure shows the predicted probabilities of both PSCs and controls using whole GM. 

The accuracy was about chance level (52.5%). The right figure shows the prediction, when 

automatic feature selection was applied using maximising marginal likelihood. The accuracy 

increased to 67.5%. 

To examine which regions were most important for classification, we trained the 
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GPC with the full training set. We then normalize the hyperparameters except the 

constant term to calculate the percentage of contribution from each region (figure 

5.12). Interestingly, the kernel generated from left striatum contributed 99% of the 

covariance matrix. This result is in agreement with previous VBM studies (Kassubek 

et al., 2004; Thieben et al., 2002), which showed higher t values in the left striatum.  

 

 

 

 

 

 

 

 

 

 

Figure 5.12 Contribution of each region to the cons truction of covariance matrix 

The figure shows the contribution of five regions to the covariance matrix (5.24). From the 

figure we can see that the left striatum dominated over other regions. 

5.4 Application: Multi-class Classification of fMRI Patterns 

by Kernel Regression Methods 

This application is based on the method mentioned in 5.1.4. We compared our 

multi-class classification system against a multi-class classification system built from 

a combination of binary classifiers, at both single subject level and at group level.  

5.4.1 Introduction 

There has been increasing interest in the application of pattern classification, 

especially with support vector machines (SVM), to fMRI analysis. In these 
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approaches, fMRI volumes are treated as the input features and the patterns reflect the 

strength of BOLD signal. However, there are strong temporal correlations in fMRI 

time series, especially as a result of the delay and smoothing due to the hemodynamic 

response (HRF). For block designed experiments, investigators have typically either 

applied a shift to account for the hemodynamic delay, or they have averaged the 

volumes in the block (Cox and Savoy, 2003a; Mourao-Miranda et al., 2005). Both 

strategies ignore the temporal correlation due to hemodynamic convolution. An 

alternative method, which preserves the HRF information, is to fit a GLM to obtain 

parameter maps (sometimes called the “beta maps”) for each block or event (Eger et 

al., 2008). However, all these methods involving temporal compression greatly reduce 

the size of the training set, impairing the training process and exacerbating the relative 

sparsity of events common in many fMRI designs. Here, we propose a novel approach, 

which treats the fMRI pattern as a regression problem, and predict the fMRI pattern 

with a regression machine rather than a classification machine. We adapt a match 

filter as the final decision function to compare the predicted time series with the 

canonical time series pattern, and then select the best matched pattern as the predicted 

class. 

5.4.2 Materials and methods 

The dataset used for this work was also used in previously published papers 

(Hardoon et al., 2007; Mourao-Miranda et al., 2007; Mourao-Miranda et al., 2006). 

Functional MRI scans from 16 male right handed healthy US college students (age 

20–25), without any history of neurological or psychiatric illness, were acquired. 

After the study was explained to them, all subjects gave written informed consent to 

participate in the study. The study was performed in accordance with the local Ethics 

Committee of the University of North Carolina. The data were collected at the 

Magnetic Resonance Imaging Research Center at the University of North Carolina on 
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a 3T Siemens Allegra Head-only MRI system. The fMRI runs were acquired using a 

T2* sequence with 43 axial slices (slice thickness, 3 mm; gap between slices, 0 mm; 

TR = 3 s; TE = 30 ms; Flip angle = 80 dgrees; FOV = 192 × 192 mm; matrix, 64 × 64; 

voxel dimensions, 3 × 3 × 3 mm). In each run, 254 functional volumes were acquired. 

The experimental stimuli were in a standard block design. It was a passive 

experiment with visual stimuli, so subjects were not required to react to the stimuli. The 

visual stimuli were categorized into three different active conditions: viewing 

unpleasant (dermatological diseases), neutral (people) and pleasant images (girls in 

bikini). Each active condition was followed by a resting condition (fixation) with equal 

duration. In each run, there were 6 blocks of the active condition (each consisting of 

seven images volumes) alternating with resting (fixation) of seven image volumes. Six 

blocks of each of the three stimuli were presented in random order. 

We applied the pre-processing procedures described in 3.2.2. Briefly speaking, 

the fMRI volumes were realigned and resliced. Grey matter (GM) masks were 

generated by segmenting the fMRI volume for each subject. Similar to PBAIC 

competition 2007 (section 4.3), we masked out non GM voxels, which were less 

likely to contain BOLD signals, to increase the signal to noise ratio. For group level 

prediction, we further normalised each subject into the population template by the 

DARTEL toolbox. A linear kernel was generated for each subject from GM masked 

fMRI series in the native space. Also one linear kernel for all subjects was computed 

from all the GM masked spatially normalized fMRI series. Linear detrending was 

applied using the residual forming matrix (equation 3.14). 

To test the prediction accuracy, we applied the multi-class method using a 

regression machine mentioned in section 5.1.4. We used both kernel ridge regression 

(KRR) and relevance vector regression (RVR) for training the regression machine. 

Covariance was chosen as the metric to measure the similarity between the predicted 
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profile and the canonical profile. Because we used different pre-processing from 

previously published papers (Mourao-Miranda et al., 2007; Mourao-Miranda et al., 

2006), we also retested the performance of support vector classification (SVC) by 

combining three “one versus one” classifiers, which were the same procedures used 

for previously published results. We applied the averaging, beta-map, and 

spatial-temporal techniques to compress the kernel. Details on efficient ways to 

compress the kernel are described in chapter 3. 

5.4.3 Results and discussion 

Leave one block out cross validation was performed to estimate the prediction 

performance for each subject. The results were then averaged across all subjects. The 

accuracy of predicting experimental stimuli from fMRI volumes in each single subject 

was very high when we applied our approach. 100% classification accuracy was 

obtained for six subjects and an average of 94% accuracy was achieved across 16 

subjects. KRR and RVR resulted the same accuracy, but the computation time of RVR 

was about 500 times more than for KRR. We achieved similar results for SVC 

compared with previously published work. The best classification accuracy for SVC 

was 83% using averaging blocks. The results are presented in the following table. 

 

                     Single Subject 

Prediction 

Accuracy % 

Multiclass 

with RVR 

Multiclass 

with KRR 

SVC (block 

average) 

SVC 

(beta-map) 

SVC 

(spatial 

temporal) 

Average 

Accuracy 

93.8 93.8 83.3 83 64.2 

Unpleasant 94.8 93.8 79.2 79.2 65.6 

Neutral 91.7 92.7 84.4 84.4 59.3 

Pleasant 94.8 94.8 86.5 85.4 67.7 

 



 197 

 

 

 

 

 

 

 

Figure 5.13 Multi-class classification performance for single subject 

The figure shows the classification accuracy of the multi-class regression machine and SVC 

for single subject. 

And the confusion matrix for multi-class with RVR and SVC (temporally compressed 

by block average) is given by 

 

Predicted % Actual 

Multiclass with RVR Unpleasant Neutral Pleasant 

Unpleasant 93.75 3.13 2.1 

Neutral 3.13 91.67 3.13 

Predicted 

Pleasant 3.13 5.2 94.79 

 

Predicted % Actual 

SVC (block average) Unpleasant Neutral Pleasant 

Unpleasant 79.17 5.21 7.29 

Neutral 6.25 84.38 6.25 

Predicted 

Pleasant 13.54 8.33 86.46 
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Notice that the columns of unpleasant and neutral in SVC (block average) do not sum 

to 1. This was due to ambiguous cases, which were unclassifiable. i.e. the condition 

was predicted as all three conditions from three “one versus one” SVC classifiers. Our 

method of multi-class with RVR did not show strong prediction bias, but SVC seemed 

to have a strong bias toward mistaking the condition of unpleasant as pleasant. This 

could be explained from our clustering analysis shown in figure 3.13. The analysis 

showed that the temporally averaged fMRI pattern under unpleasant stimuli were 

more similar to the pattern under pleasant stimuli than neutral stimuli. In general, our 

multi-class regression based method outperformed conventional multiclass SVC 

approaches regardless of the type of temporal compression. This implies that 

additional information for discriminating among different conditions is encoded in the 

temporal profile of the HRF. The superior performance could also be due to sufficient 

training samples, which allowed more accurate estimation of the distribution. In this 

work, each regression machine was trained on a 252 by 252 kernel (18 blocks times 

14 volumes per block), whereas SVC was trained on an 18 by 18 kernel after temporal 

compression. Some information must be lost in the process of compression. It is not 

surprising that spatial temporal compression had the worst predicting accuracy (figure 

5.13), because if we recall the way that spatial temporal compression works in figure 

3.9. Spatial temporal compressed the original kernel by summing only the diagonal 

components of each sub block. Relative to block average or beta-map, spatial 

temporal ignores more information in the original kernel. Both beta-map compression 

and block averaging had nearly the same prediction accuracies, which implies that 

these approaches did not preserve much temporal information after the compression. 

For the group level prediction, leave one subject out cross validation was 

performed. This involved training from the fMRI volumes of 15 subjects, and then 

making predictions about the subject left out. The prediction accuracies were then 
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averaged across all subjects. The multi-class classifier using regression machine 

performed worse than SVC with temporal compression. The result of 83.3% accuracy 

was achieved from multi-class using RVR. In contrast, SVC with block averaging 

achieved 95.1% classification accuracy. Even SVC with spatial temporal compression 

obtained 94.1% classification accuracy. The results are presented in the following 

table. 

                     Multiple Subjects 

Prediction 

Accuracy % 

Multiclass 

with RVR 

Multiclass 

with KRR 

SVC (block 

average) 

SVC 

(beta-map) 

SVC 

(spatial 

temporal) 

Average 

Accuracy 

83.3 80.1 95.1 94.8 94.1 

Unpleasant 83.3 79.2 94.8 93.8 93.8 

Neutral 81.3 78.1 94.8 94.8 93.8 

Pleasant 85.4 84.4 95.8 95.8 94.8 

 

 

 

 

 

 

 

 

Figure 5.14 Multi-class classification performances  for multiple subjects 

The figure shows the classification accuracy of the multi-class regression machine and SVC 

for multiple subjects. 
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The confusion matrix for multi-class with RVR and SVC (block average) is given by 

Predicted % Actual 

Multiclass with RVR Unpleasant Neutral Pleasant 

Unpleasant 83.33 14.58 10.42 

Neutral 8.33 81.25 4.17 

 

Predicted 

Pleasant 8.33 4.17 85.42 

 

Predicted % Actual 

SVC (block average) Unpleasant Neutral Pleasant 

Unpleasant 95.83 2.08 4.17 

Neutral 4.17 94.79 1.04 

Predicted 

Pleasant 0 3.13 94.79 

 

There were no ambiguous cases in SVC for multiple subjects, so the columns in the 

confusion matrix summed to one. The prediction for SVC seemed to be less biased, 

unlike predicting for single subjects, where there was the tendency to mis-identify the 

condition of unpleasant as pleasant. However, multi-class classification using RVR 

seemed to be biased towards predicting the conditions of neutral or pleasant as 

unpleasant. 

We suspect that the reason why the multi-class regression machine did not work 

well in multiple subjects, as opposed to in single subjects, was due to the inter-subject 

variability of the HRF. The approach of the multi-class regression machine is more 

sensitive to variation of HRF than is SVC with temporal compression. If we could 

characterise the HRF for each individual, the prediction performance of the regression 
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machine should be at least compatible with SVC. One possible explanation of why 

SVC improved in the case of multiple subjects was because of sufficient training 

samples. For investigators interested in real time fMRI online prediction, our results 

suggest that if there are sufficient fMRI volumes available to train the prediction 

system offline, SVC will be the recommended classifier. However, if the prediction 

system is going to be trained online i.e. trained on the first half of the experiment, our 

multi-class regression machine should be a better choice. 

In addition, we also trained the multi-class regression machine with fMRI 

volumes corresponding to the active condition only. The standard multi-class 

regression machine trained all fMRI volumes, the only difference between each 

regression machines was the input target variable, which was the corresponding 

regressor in the design matrix (figure 5.5). For example, if we trained a regressing 

machine to predict condition 2, the corresponding elements of the target vector for 

other conditions would be set to zero. In the new approach, we did not train fMRI 

volumes of other conditions, but only the fMRI scans of the corresponding condition. 

The prediction accuracy of single subject for KRR was 84% (unpleasant 87.5%, 

neutral 76%, pleasant 88.5%), but the accuracy for RVR was much lower, only 57.6% 

(unpleasant 29%, neutral 70.9%, pleasant 72.9%). For multiple subjects, KRR 

achieved 81.3% correct classification (pleasant 82.3%, neutral 81.3%, unpleasant 

80.2%), and RVR achieved 62.9% (pleasant 65.5%, neutral 82.3%, unpleasant 40.6%). 

In this approach, sparse methods did not work well. This could be caused by an 

inability to capture subtle differences among conditions using sparse methods, 

because predicted profiles from different conditions by RVR all appeared very similar. 
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Figure 5.15 Weight maps for all conditions from tra ining all 16 subjects with RVR 

These figures show the weight map that predicts the temporal profile. These maps were 

generated by training three RVR machines with the corresponding target variables. Red 

indicates positive values and blue indicates negative values. 

For visualisation purpose, we also computed the corresponding weight map for 

all three conditions by training all the subjects with RVR. Notice in the weight map, 

there were large areas of negative weightings in the visual cortex for unpleasant 

stimuli. This does not necessarily mean those areas experienced deactivation during 

stimulation, but that those areas may have had less activity compared with neutral or 

pleasant stimuli. 

Unpleasant Neutral 

Pleasant 
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5.5 Decoding Neuronal Ensembles in the Human 

Hippocampus 

This was a joint work with Demis Hassabis, whose interests are in hippocampal 

functions. The hippocampus appears to be important in spatial navigation (Maguire et 

al., 2000). There is debate about how hippocampal neurons code such information. 

Nevertheless, Hassabis believed the neuronal coding related to navigation has a 

representation in the population of neurons, and is detectable from BOLD signals. 

Because the change of signals may be subtle, we applied multivariate pattern 

classification using high spatial resolution fMRI. Specifically we applied a 

“searchlight” based method (Haynes et al., 2007; Kriegeskorte et al., 2006) to explore 

regions in the temporal lobe that contain information that discriminates positions of 

the subject in a virtual environment.  

5.5.1 Introduction 

Studies had shown that the brain encodes information about the environment 

using a large population of neurons (Buzaki, 2004). Previously, recording of single, or 

small numbers of, neurons have demonstrated the memory-related response of 

hippocampal place cells, which fire invariantly when an animal is at a particular 

spatial location (Moser et al., 2008). It is difficult to examine what information such 

place cells represent at a neuronal population level, as recording thousands of 

hippocampal neurons simultaneously is not currently possible. Recently, examining 

neuronal codes through high resolution fMRI has been achieved (Haynes et al., 2007). 

The hypothesis was that although the fine grain of the neuronal representations are 

below the spatial resolution of fMRI, the ensemble activity of such distributed 

patterns could be used to predict the perceptual state or intention of an individual. We 

believed that if decoding from focal hippocampal fMRI signals was successful, this 
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would have significant implications for understanding how information may be 

represented within neuronal populations in the human hippocampus. To test our 

hypothesis, we used an interactive virtual reality (VR) environment with first person 

view to test spatial navigation of the subjects in the fMRI scanner. 

5.5.2 Materials and methods 

Prior to scanning, subjects were trained to familiarise with the VR environment. 

The navigation task allowed participants to move in the VR environment using a 

4-button control pad. There were two rooms, namely a blue room and a green room. 

These two rooms had the same dimensions and were designed to minimise the impact 

of irrelevant sensory inputs. There were four target positions (A, B, C, D) in each 

room. Participants were asked to navigate as quickly and accurately as possible 

among these four positions (figure5.16). 

Each room was visited 20 times during the scanning session giving 40 

“environment blocks” in total. Within each room, every target position was visited 14 

times in total. The cue for visiting the next destination would appear after the subject 

had arrived at the current target position and looked down at the floor. There would be 

a 13 second resting period after visiting 2~4 target position in the room. Then the 

subject would be placed randomly in the initial position of one of the rooms. To 

maintain the concentration of the subject, eight catch trials were included that 

involved an incidental visual task. During the count down, the numbers were normally 

displayed in white text, but occasionally one would flash red. Subjects were asked to 

press the trigger button when spotting a red number. The catch trials spread randomly, 

but they would always appear at the end of a block. Details and exact timing can be 

found in the published work (Hassabis et al., 2009). 
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Figure 5.16 Virtual reality environment for the nav igation task 

(A)The top two figures show the blue and green rooms. (B) This figure shows the layout of the 

4 different positions in both blue and green rooms. (C) When the subject reached the 

destination, they would press the button to look at the floor, and a 5 second countdown was 

given (the ‘3’ in this figure indicates the countdown), the count down was followed by the text 

label for the next destination. (one of the 4 positions). (D) After completing 2 to 4 navigation 

trials in the room (based on the time they spent), there would be a 13s fixation period. Then the 

subject would be replaced in one of the rooms. 

Actually, we had different experimental design for the first batch of fMRI 

experiments. Initially, we had four sessions in the experiment, and each session 

contained 6 environment blocks. The sessions were interrupted by turning off 

scanning, which made the temporal detrending perform poorly. The exact reason was 

unknown, but interrupting the process of acquiring fMRI volumes did change the 

properties of the low frequency drift. As a result of this, when we displayed the first 

few principle components of the data, we found scans in the four sessions came from 

different distribution (even after detrending). Unlike univariate analysis, each session 

can be modelled by different regressors. The multivariate classification system 

assumes all training samples come from the same distribution. When the training 

samples came from four slightly different distributions, the prediction accuracy would 

deteriorate. We made the decision to discard all the scans, and re-scanned four 
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subjects out of the original ten using the new design. In the new design, the time of 

each environment block (room switching) was reduced to decrease the effect of low 

frequency noise and increase the predictability. We also scanned the subjects in one 

long session without interrupting the scanning. 

The scanning was done in a 3T Siemens Allegra scanner (in-plane 

resolution=1.5x1.5mm2, matrix=128x128, field of view= 192x192mm2, 35 slices 

acquired in an interleaved order; slice thickness=1.5mm without gap, TR=3.57s, 

TE=30ms, flip angle=90 degrees). Every subject completed the navigation with 

different speed, so the scanning time for each subject was not fixed. 

We pre-processed the fMRI data by realigning and re-sampling the scans with 

spatial smoothing using 3mm FWHM Gaussian kernel. Linear detrending was applied 

to the pre-processed images directly. Because we used the searchlight method, 

applying the detrending to the images would be more efficient than applying it to 

kernels generated from each searchlight region. Next, we convolved the image data 

with the canonical HRF to increase the signal to noise ratio, which effectively acted as 

a low-pass temporal filter. To compensate for the delay induced by the inherited 

hemodynamic delay in BOLD and the additional HRF smoothing, all onset times 

were shifted forwards in time by three volumes yielding an approximation to the 12s 

delay (HRF peaks at 6s) given a TR of 3.57s. The first volume and the last four 

volumes of each environmental block were discarded to reduce the effects of 

appearing suddenly in a room, and to exclude catch trials. Three classification tasks 

were carried out to (1) indentify which of two target positions in the same 

environment that the participant was standing (A vs. B and C vs. D); (2) classify all 

four target positions in the same environment (A vs. B vs. C vs. D); (3) classify which 

of the two rooms the participant was in (green vs. blue). For task 2, we combined six 

“one versus one” binary SVCs. 
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To identify regions in the temporal lobe that contained information for 

discriminating the position of the participant, we applied the searchlight approach 

(Kriegeskorte et al., 2006). This approach utilised the multivariate information in 

local voxels. Thus, for one voxel iv , we selected the voxels in a sphere centred at iv  

with a radius of three voxels. This yielded total 123 voxels in the spherical volume of 

interest (VOI). We then generated the linear kernel from each VOI for classification. 

No temporal compression was applied because there were only two volumes per 

corresponding target position. Soft-margin SVC was applied to train the pattern with 

C fixed at 1 (empirically determined). To estimate the predicting accuracy, we used a 

leave one block out cross validation. We had 40 environment blocks, each containing 

about 12 volumes. Also, there were 56 position blocks, each containing two volumes. 

During the training, only volumes in the relevant blocks were used i.e. when training 

A vs. B in green room, we only used volumes acquired while the subject was standing 

at those two green room positions. Each volume within a test block was individually 

classified in the cross-validation, and the classification accuracy was calculated by the 

percentage of correctly classified volumes, as opposed to correctly classified blocks. 

For visualisation, we generated a “prediction map”, where the accuracy in each voxel 

represented the accuracy of the searchlight sphere centred at that particular voxel. 
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Figure 5.17 Illustration of searchlight pattern cla ssification  

(A)The top figure shows the fMRI volumes that corresponded with the participant standing at 

position A and B in the blue room. (B~E) This shows how we selected the searchlight sphere. 

(F,E) illustration of the “leave one block out” cross validation. The prediction accuracy was then 

stored at the central voxels of the searchlight 

To account for multiple comparisons issue, we applied permutation tests 

(Nichols and Holmes, 2002) to simulate the null distribution and estimate the 

significance threshold. We repeated the classification and cross-validation procedure 

100 times with a different random permutation of training labels for each 

classification tasks for each subject. The threshold was then estimated from the 95% 

quantile of the accuracies generated from the permutation trials, equating to a 

family-wise confidence level of p<0.05. This threshold was computed for each voxel 

in the prediction map, and prediction accuracies that did not reach significance were 

masked out from the map. 
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5.5.3 Results and discussion 

The first classification task was to indentify which of two target positions in the 

same environment the participant was standing at (A vs. B and C vs. D). The 

prediction map showed that voxels in the body-posterior hippocampus bilaterally 

were crucial for classifying position. The findings were highly consistent across 

participants 

 

 

 

 

 

 

Figure 5.18 Prediction map of classifying two targe t positions 

The prediction map was overlaid on the anatomical image to identify regions that contained 

information for discriminating two target positions (A vs. B and C vs. D) 

The second classification task was to indentify which of all four target positions in the 

same environment the participant was standing at. The prediction map revealed a 

focal cluster of voxels in the body-posterior of the hippocampus bilaterally. These 

findings were also very consistent across subjects. 
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Figure 5.19 Prediction map of classifying four targ et positions 

The prediction map was overlaid on the anatomical image to identify regions that contained 

information for discriminating among four target positions (A vs. B vs. C vs. D) 

The third classification task was to idenify which of the two rooms the participant was 

in (green vs. blue). The prediction map showed that voxels in the posterior 

parahippocampal gyrus bilaterally were important for discriminating between rooms. 

 

 

 

 

 

 

 

 

 

Figure 5.20 Prediction map from classifying environ ments 

The prediction map was overlaid on the anatomical image to identify regions that contained 

information for discriminating between two environments (green room vs. blue room) 

To summarise the findings, we found there was a significantly higher proportion 

of voxels in the hippocampus than in the parahippocampal gyrus containing 

information for identifying position. For environment classification, there was a 



 211 

higher proportion of voxels active in the parahippocampal gyrus than the 

hippocampus for all participants. Our results showed the possibility of decoding 

spatial information from the pattern of fMRI signals across spatially distributed 

voxels in the human hippocampus. This implies that the hippocampal neurons may 

represent spatial locations by large populations of neurons. The permutation test and 

the consistency of prediction maps across subjects suggested that it was unlikely that 

the patterns were just random. Although, the mechanism that caused the fMRI pattern 

is unknown at the neuronal level, the finding suggested a different view to prevailing 

theories, that there may be an underlying functional organization to the hippocampal 

neural code. 

 

5.6 Prognostic and Diagnostic Potential of the Structural 

Neuroanatomy of Depression 

This work was a collaboration with Cynthia Fu at the Institute of Psychiatry at 

Kings College London, for which I did all the analysis and coding. There are no 

neurobiological diagnostic markers for psychiatric disorders currently. Usually, the 

diagnosis of depression is based on self reported symptoms without using evidence 

from neurobiological markers. In this work, we tried to examine the potential of 

discriminating between MDD patients and normal controls using anatomical MRI. 

5.6.1 Introduction 

Major depression disorder (MDD) is characterised by persistent low mood or 

anhedonia, and by behavioural and cognitive distractions that disturb daily 

functioning. Neuroimaging studies have shown structural and functional patterns 

associated with MDD (Drevets, 2000; Lyoo et al., 2004). A previous study had also 
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shown the possibility of distinguishing between depressed and healthy individuals 

from the fMRI pattern during the task of viewing sad facial expressions. An accuracy 

of 86% was achieved (Fu et al., 2008). However, the use of fMRI is still not as 

prevalent as structural MRI as a diagnostic tool. Therefore, we tried to test the 

diagnostic performance for depression using anatomical scans. Unlike Alzheimer’s 

disease and Huntington’s disease, which have known pathology of degeneration in 

localised areas of the brain, MDD is not a neurodegenerative disease. Nevertheless, 

subtle shape variation and degeneration may still induce patterns in the structural MRI 

that could be utilised for diagnosis. Generally, global cerebral volume is slightly lower 

in patients with depression than in healthy subjects, and the pattern of difference 

seems to be distributed. There were reports of reduced volume in hippocampus 

(Campbell et al., 2004), anterior cingulate (Caetano et al., 2006), and middle frontal 

cortices (Bremner et al., 2002) for depressed patients. 

5.6.2 Materials and methods 

In the analysis, there were 37 right-handed patients (28 women, mean age 41.9 

years) meeting Diagnostic and Statistical Manual of Mental Disorder-IV (DSM-IV) 

(Spitzer, 1994) criteria for major depression by Structured Clinical Interview for 

DSM-IV. All patients had been free of psychotropic medication for a minimum of four 

weeks. There were 37 right-handed healthy control cases (CC) matched for age, 

gender, and IQ with no history of psychiatric disorder, neurological disorder, or head 

injury resulting in a loss of consciousness. Their Hamilton Rating Scale for 

Depression (HRSD) (Hamilton, 1960) was less than or equal to 7. Eighteen depressed 

patients had participated in a treatment study with the antidepressant medication 

fluoxetine (20mg daily) and twelve patients were treated with cognitive behavioural 

therapy (CBT). Nine patients achieved remission from the antidepressant medication, 

and six patients achieved remission from CBT. 
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Anatomical MRI data were acquired on a 1.5T IGE LX system (General Electric). 

The acquisition protocol involved collecting 120 slices using a dual echo, fast spin 

echo sequence (T2 weighted and proton density weighted), coronal orientation, 

in-plane resolution 0.8mm, slice thickness 3mm, TR=4s, TE=15ms and 105ms, echo 

train length=8. 

The image pre-processing procedures are described in section 3.2.1. Briefly, 

images were first segmented by SPM into GM and WM, and then imported into a 

rigidly aligned space. The GM and WM were iteratively registered to the population 

mean by the DARTEL toolbox. Jacobian scaled spatially normalised GM images were 

generated, which were smoothed using a 6mm FWHM Gaussian kernel. Finally, the 

linear kernel is computed from the pre-processed data. 

Voxel-Based Morphometry (VBM) was used to localise any volumetric 

differences between the controls and patients. No voxels survived a family-wise error 

(FWE) correction or even a false discovery rate (FDR) correction. When the threshold 

was set to uncorrected p<0.001, the SPM map showed small clusters of a few voxels 

in size, which were scattered across the brain. This suggested that the anatomical 

pattern of difference between MDD and controls might need to be characterised at a 

finer spatial scale than afforded conventionally. To increase the classification accuracy, 

feature selection was applied. Feature selection, the process of selecting a subset of 

features that may be most useful for prediction (Guyon and Elisseeff, 2003), is 

important for high dimension data when only a few sparsely distributed features are 

informative. We implemented a simple univariate t-map filtering. First, the t-value 

and degrees of freedom was estimated for each voxel in the training set using 

equations for unequal sample sizes and unequal variance. The t-map was then 

converted into a p-map. Different thresholds of uncorrected p-values were chosen, 

such that voxels higher than the threshold were masked out. We then applied 
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hard-margin SVC to discriminate between patients and controls. Leave one out cross 

validation was used to estimate the classification accuracy. It is important to realise 

that we only used the training set for computing the p-map, so the test set remained 

completely independent. However, reporting the best cross validation accuracy out of 

all possible selected feature sets is biased towards being too optimistic (a multiple 

comparisons issue). Three way cross validation should really be used to estimate the 

generalisation performance of SVC with feature selection. Because of the intensive 

computations required for three way cross validation, we chose another approach to 

estimate the p-value of the predicted accuracy. We applied permutation tests (Nichols 

and Holmes, 2002) to simulate the null distribution and estimated the significance 

value of the predicted accuracy using the threshold that achieved the best leave one 

out accuracy. We fixed the threshold for feature selection and repeated the 

cross-validation procedure 300 times with a different random permutation of the 

training labels. The significance level was then estimated from one minus the percent 

quantile of the accuracies generated from the permutation trials. For example, if the 

leave one out accuracy using correct labels achieved 67.6% accuracy, which ranked 

the 292nd in the permutation trails (ascending order), then the p value was estimated as 

1-292/300=0.0267.  

A one class classifier was also applied to test the overlap between classes. To 

make the comparison less biased, each group was resampled to a subgroup of 30 

subjects. We then tested the percentage overlap between one class and another. i.e. 

train the one class classifier on patients, and test the percentage of controls who were 

classified as patients, and vice versa. This procedure was repeated 30 times, and the 

results were averaged. 

5.6.3 Results and discussion 

The prediction performance was very poor (45% accurate) when we used the 
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whole brain grey matter. With feature selection, the best prediction accuracy was 

67.6% (sensitivity 64.9%, specificity 70.3%) when we fixed the threshold of the 

p-map obtained from the training set at p<0.005. Using the permutation test, we 

estimated the corresponding p-value to be 0.0267. 

 

 

 

 

 

 

 

Figure 5.21 Classifying MDD and control with differ ent thresholds 

This plot shows the leave one out cross validation accuracy for classifying depressed patients 

and normal controls by varying the thresholds in the feature selection. The p-map was 

calculated from the training set, and only voxels lower than the threshold were selected. 

Because each cross validation trial used different features, we could not generate 

the weight map from SVC easily. To localise regions that were most important for 

classification, a frequency map was computed. The value in each voxel of the 

frequency map indicates the rate that that voxel was selected as a feature in the cross 

validation. From the frequency map based on the best prediction accuracy (threshold 

p<0.005), regions in right subgenual anterior cingulate, medial frontal gyrus, superior 

temporal cortex, precuneus, hippocampus, thalamus, left inferior parietal cortex, 

occipital cortex, and cerebellum, all contributed to discrimination between patients 

and controls. 
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Figure 5.22 Frequency map for separating MDD from c ontrols (threshold p<0.005). 

This figure illustrates regions that were most often selected in the cross validation trials with 

the threshold p<0.005. 

We suspected the reason that the classification result was not as good as for 

classifying AD or HD, and also the poor VBM result, was due to class overlapping. 

This suggests that some of the MDD patients had similar anatomical brain patterns to 

the controls, so the classifier would not be trained properly. To test this hypothesis, we 

applied the one-class classifier to both MDD, and CC separately. When the MDD 

group was trained, we found the average proportion of CC classified as MDD is 73%. 

When we changed the training set to the control group, interestingly, there were 92% 

of MDD classified as CC. The result may suggest that the anatomical pattern in the 

CC group had broader variations than in the MDD group. In other words, the 

structural pattern of the MDD group is likely to be a subset of the CC group. This 

could also be due to outliers in the control group. Because the assessment of 

depression is very subjective, some subjects in the control group might be depressed 
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for a period of time slightly prior to the recruitment, but not depressed during the 

assessment of HRSD. There was a large proportion of overlap between these two 

groups. However, we also noticed that about 25% of healthy controls had distinctive 

patterns compared with the MDD group. 

We also tried to classify between subjects who achieved clinical remission to 

treatment with the antidepressant medication fluoxetine and the subjects who received 

the antidepressant with residual symptoms. The anatomical MRI scans were acquired 

before the treatment. Surprisingly, 88.9% classification accuracy was achieved 

(88.9% of patients in clinical remission (sensitivity) and 88.9% patients with residual 

symptoms (specificity)). The significance level estimated using the permutation test 

was 0.01 with the fixed threshold set to p<0.005. 

 

Figure 5.23 Classifying patients who achieved remis sion or not with different 

thresholds 

This plot shows the leave one out cross validation accuracy for classifying patients who 

achieved remission with the antidepressant and those who did not improve after taking the 

antidepressant. 

Regions in right rostral anterior cingulate cortex, left posterior cingulate cortex, 

left middle frontal gyrus, right occipital cortex, orbitofrontal cortices bilaterally, right 

superior frontal cortex, and left hippocampus contributed highly to the classification. 
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The anatomical information did not show any ability to predict who would achieve 

clinical remission from CBT. 

 

 

 

 

 

 

 

 

Figure 5.24 Frequency map from classifying patients  achieving remission or not 

(threshold p<0.005). 

This figure illustrates regions which were most often selected in the cross validation trials with 

the threshold p<0.005 between patients who achieved remission and patients who had 

residual symptoms. 

Because there is no clear neurobiological mechanism that can describe the cause 

of depression, it was expected that the structural MRI would be inferior to fMRI for 

the clinical diagnosis of depression. From the analysis, we found a large proportion of 

depressed patients exhibited similar anatomy to normal subjects. However, for acutely 

depressed patients who received medication, the effect of the treatment was found to 

be significantly correlated with brain structure. The high predictability of clinical 

remission suggests an initial step towards the development of personalized medicine. 

If similar predictabilities could be obtained from other antidepressants, the most 

effective medications could be prescribed to the patient based on the prediction of 
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treatment effects. If we use probabilistic classifiers such as Gaussian processes, a 

combined utility function may provide the basis for making decisions that optimally 

balance the trade-off between side effects and treatment benefit (and financial cost). 
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The main focus of this thesis has been to introduce prediction based analyses that 

utilise state of the art machine learning methods. This thesis has described a number 

of pattern recognition algorithms that can be used for both functional MRI decoding 

and anatomical MRI prediction. These include various classification and regression 

algorithms. Most algorithms were not originally invented for this thesis, and many of 

implementations of the algorithms can be found freely on the internet, or could be 

fairly easily implemented in MATLAB by following the description in the text. The 

most frequently used methods in this thesis were Support Vector Classification (SVC), 

Relevance Vector Regression (RVR), and Kernel Ridge Regression (KRR). 

Practical applications were also presented to demonstrate the performance of 

those algorithms. A total of eight applications were presented in chapters 4 and 5. 

There were two applications on fMRI regression prediction, one application on 

anatomical MRI regression prediction, two applications on fMRI classification, and 

three applications on anatomical MRI classification. 

6.1 Original Contributions of This Thesis 

A few original contributions have been made within this thesis. Some original 

ideas came from my supervisors. Many of the contributions simply involve combining 

different parts of pre-existing methods in a new way.  

In chapter 3, a residual forming matrix is introduced to remove confounding 

factors or low frequency drifts from the kernel directly. This operation is more 

efficient than removing covariates voxel by voxel. Although a similar operation was 

introduced in a paper I contributed to (Friston et al., 2008), it was not formulated for 

general kernel methods, such as SVM or RVM. In this thesis, the operation is further 

extended to temporal compression for fMRI data. Matrix operations on the kernel 

generated from all the fMRI volumes can yield an equivalent kernel computed from 
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the “beta-map” or “averaged block”. Although Spatial-temporal compression can not 

be expressed as simple matrix operations, a generic algorithm (figure 3.9) is provided 

to compute all forms of temporal compression from the original kernel. 

A number of novel ideas can be found in the fMRI competition 2007 (PBAIC 

2007) in chapter 4. These include applying temporal shifts to train the regression 

machine, model fitting with average template (predicting instruction), masking 

functional regions, and utilising information from other conditions i.e. use hit 

weapons, hit people, and hit fruit to predict search weapons, search people, and search 

fruit. These novel approaches subsequently resulted our beating more than 40 other 

teams to win in the competition, especially as the two teams who achieved joint 

second place (Team Princeton and Team Maastricht) applied similar algorithms as 

ours (ridge regression and RVR respectively). The other novel idea in chapter 4 is the 

prediction of clinical ratings using structural MRI, and clinical ratings are compared 

based on their prediction accuracy. This idea was recognized by the abstract reviewers 

of OHBM 2007, as it was considered suitable for an aural presentation. 

Chapter 5 introduced two main original ideas. The first is the use of marginal 

likelihood maximization for automatic feature selection. This avoids the time 

consuming three-way cross validation. The second idea is the multi-class classifier 

using regression methods. This approach uses temporal information and was shown to 

significantly outperform conventional classifiers for single subject prediction. This 

idea was also recognized by the OHBM 2008 reviewers, and was also selected for an 

oral presentation. 

 6.2 General Conclusions 

Kernel methods were shown to be powerful for predicting linear and non-linear 

patterns in brain MRI data. In chapter 3, the definition of the kernel was introduced, 
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and efficient operations were demonstrated for constructing various kernels. Some 

common non-linear kernels can be computed directly from the linear kernel. Also, 

linear operations can efficiently remove confounds from the kernel or temporally 

compress it. Conventionally, researchers tend to use eigen-decomposition or singular 

value decomposition to reduce the dimensionality of the input features, but this is 

redundant for kernel algorithms as solutions can be sought in the space of the input 

kernel, where the computation is bounded by the number of samples rather than the 

number of input features. This characteristic is favourable for high dimensional 

imaging data. However, prior knowledge is still required to define the similarity 

measure. Extracting relevant features to predict the target variable, which can be 

labels (classification) or continuous variable (regression), from the raw image data 

depends on one’s understanding of what information is encoded. For example, kernels 

generated from Jacobian determinants may encode different information to kernels 

generated from “velocity fields” that encode brain shape. In principle, it would also be 

possible to combine the advantages of both discriminative models and generative 

models using Fisher kernels (Jaakkola and Haussler, 1999). 

Kernel regression methods predicted BOLD signals accurately for some 

experimental conditions. Both PBAIC 2006 and PBAIC 2007 allowed a comparison 

among a diverse range of approaches for making predictions from brain imaging data.  

As in any model comparison problem, it allowed the most accurate approach to be 

selected from a range of candidates. Our approaches proved to be superior by showing 

competitive results. In general, objective ratings had higher predictability than 

subjective ratings, such as valence and arousal. It was also shown empirically that 

pre-processing would have a higher impact than the choice of algorithm or model, 

assuming optimal parameters of the models were found. For example, insufficient 

detrending in PBAIC 2007 led to relatively poor performance (figure 4.9). RVR was 
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applied to most of the applications, because it does not require free parameters, and 

the optimisation of RVR is faster than GPR in our implementations. No systematic 

comparisons between algorithms were performed in this thesis, because the “no free 

lunch theorem” (Duda et al., 2000), says that there is no algorithm that is superior to 

others across all problems and contexts. The optimal algorithm may be different for 

each dataset. However, from our empirical results, it seems that RVR generally 

performs well for both anatomical and functional MRI datasets. Perhaps this is 

because MRI datasets satisfy the Gaussian assumption well. 

Unlike kernel regression methods, kernel classification algorithms have greater 

variability among their model structures and assumptions. For instance, Fisher’s linear 

discriminant assumes equal covariance for classes; logistic regression, GPC, and RVC 

assume a Bernoulli likelihood model; the philosophy behind SVC is based on 

structural risk minimization. The maximum margin approach in SVC effectively 

prevents overfitting of the training data. Because the posterior and marginal 

distributions of GPC and RVC are analytically intractable, Laplace approximations 

are used, which may reduce the accuracy of the estimation. In practice, SVC generally 

performed more accurate binary classifications than most of the Bayesian methods, 

but Bayesian methods provide probabilistic measures which can be more easily 

integrated into a decision theoretic framework. Most importantly, the applications in 

chapter 5 demonstrated the feasibility of an automatic diagnostic system. The 

classification system showed comparable performance with clinical radiologists in the 

task of discriminating between AD patients and normal controls. For 

neurodegenerative diseases affecting large regions in the brain such as Alzheimer’s 

disease, whole brain features can achieve accurate classification. However, when the 

regions with anatomical change are relatively small, selecting salient features 

increases the performance of classification when only small training datasets are 
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available.  

For investigators doing prediction based fMRI analysis, it is recommended to 

have long sessions or short sessions without turning off the scanning. From our 

experience, turning off scanning disturbed the classification performance. 

6.3 Directions for Future Research 

Overall, decoding patterns in both fMRI and structural MRI were achieved 

successfully in this thesis. These achievements can lead to two main directions of 

research. 

6.3.1 Clinical decision support system 

Medical examinations are becoming increasingly complicated, and more 

measurements can be acquired from the patient. Physicians relying on only few 

markers may risk the chance of misdiagnosis. Pooling all available information should 

allow the most accurate diagnoses to be achieved, but there is a cognitive limit for 

normal humans to retain and utilise all the details in a useful way. To reduce the cost 

of medical systems without sacrificing the quality of diagnosis, it seems inevitable 

that computer aided diagnoses or clinical decision support systems will become 

increasingly used. Modern computers are already powerful enough to perform very 

complicated calculations in real time. Because Moore’s law still holds today, 

multi-core computers, parallel computing, and terabyte storages system are likely to 

become prevalent in the future. Computation power can be expected to take over 

some aspects of the physician’s analytic ability (maybe not for physician’s 

experiences and intuitions). Developing models and algorithms to integrate 

measurements from different examinations will be crucial. For example, physiological 

biomarkers can achieve 90% classification of AD from blood samples (Ray et al., 

2007). Combining such measurements with MRI data could push the diagnostic 
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accuracy even higher. If individual’s genetic information is added, 99% accuracy may 

be achieved one day. Anatomical MRI may also predict the effect of treatment as 

shown in section 5.6. The achievement of personalised medicine may only become 

feasible by adopting computer aided clinical systems.  One of the main obstacles 

comes from the lack of large datasets for training such systems, which in turn arises 

from the reluctance of investigators in the neuroimaging field to share their primary 

data. 

6.3.2 Prediction based fMRI analysis  

Classification from fMRI patterns has been shown to work successfully by many 

people. The current approaches mainly use direct signal changes from the baseline, 

but patterns of functional connectivity may be more robust to noise. With sufficiently 

high classification accuracies, practical applications may be performed. For example, 

the fMRI patterns of arousal can be found for a particular subject by training with 

specifically designed experiments (calibrating phase). Then different advertisements 

are shown to the same subject. Based on the previously found patterns, it may be 

possible to measure the level of arousal for different advertisements. This type of 

method could also be used to look for interaction between cognitive functions. For 

example, training could be based on listening to pleasant and unpleasant music, and 

then the classifier is applied to fMRI scans of viewing pleasant and unpleasant images. 

The classification performance could provide a similarity measure between different 

cognitive processes, for instance by assessing the similarity between the feeling of 

listening to pleasant music to that from looking at pleasant images. 

Pattern classifiers can also be applied to real-time fMRI experiments. For 

example, it may be possible to train a classifier that can predict the move of the 

subject playing “rock-paper-scissors” in the scanner. However, the hemodynamic 

delay may complicate this type of experiment. Generally, pattern classifiers will be 
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useful for experiments involving real-time feedback. 

Future developments could potentially lead to directions of research that raise 

important ethical questions.  For example, insurance companies may wish to know 

what kinds of health predictions could be made from data about their clients.  

Similarly, there may also be legal implications if the procedures allowed very accurate 

decoding of mental states.  Currently, our ability to make predictions from 

neuroimaging data has only limited accuracy, but the techniques are likely to become 

much more accurate in future.  Many of the potential ethical implications are not yet 

known. To quote Niels Bohr: 

 

“Prediction is very difficult, especially about the future.” 
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Appendix A: Basic proves 
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Appendix B: Demo codes 

Least squares logistic regression 

function  w=logisticRegression_LS(X,y,lam); 

for  iter=1:100, 

    f1   = X*w; 

    f    = exp(f1)./(1+exp(f1)); 

    df   = X'*(2*(f-y).*f.*(1-f)); 

    % Approx 2 nd derivative  

    %d2f  = (B'*diag(2*(f.*(f-1)).^2)*B);  

    % True 2nd deriv  

    d2f  = 

(X'*diag(2*f.*(1-f).*(2*f-3*f.^2+y.*(2*f-1)))*X); 

    % Regularization  

    d2f  = d2f + lam*eye(size(d2f)); 

    df   = df  + lam*w; 

    %update  

    old_w=w; 

    w    = w   - d2f\df; 

    dw=w-old_w; 

    if  dw'*dw/numel(w)<1e-6 

        disp(iter); 

        break ;         

    end  

end ; 
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Binary logistic regression 

function  w = logistic_binary(X, y,lam) 

  

[n, m] = size(X); 

w = zeros(m,1); 

for  i=1:60 

    z=X*w; 

    f=1./(1+exp(-z)); 

    deriv= f.*(1-f); 

    R=spdiags(deriv,0,n,n); 

    w=w-(X’*R*X+eye(m)*lam)\(X'*(f-y)+ones(m,1)*lam );       

end  
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