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“Prediction is very difficult, especially about theure.”

(Danish Physicist,Nobel Prize for Physics in 1922)



Abstract

The aim of this thesis is to apply a particularegaty of machine learning and
pattern recognition algorithms, namely the kernelthods, to both functional and
anatomical magnetic resonance images (MRI). Thiskvapecifically focused on
supervised learning methods. Both methodologicdl@actical aspects are described
in this thesis.

Kernel methods have the computational advantagehifgit dimensional data,
therefore they are idea for imaging data. The mloes can be broadly divided into
two components: the construction of the kernels #ied actual kernel algorithms
themselves. Pre-processed functional or anatonmuafes can be computed into a
linear kernel or a non-linear kernel. We introduah kernel regression and kernel
classification algorithms in two main categoriesrol@bilistic methods and
non-probabilistic methods. For practical applicasiokernel classification methods
were applied to decode the cognitive or sensongstaf the subject from the fMRI
signal and were also applied to discriminate p&ievith neurological diseases from
normal people using anatomical MRI. Kernel reg@ssnethods were used to predict
the regressors in the design of fMRI experimentyg] alinical ratings from the

anatomical scans.
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1.1 Motivation and Aims

The initial objective of my PhD was to develop rebmachine learning systems,
which are capable of classifying anatomical bra@ns into different disease (or other)
categories, using state of the art supervised ilegtiechniques. The aim was to use
kernel methods to represent patterns of similathong brains, the basic idea being
that similar brains are more likely to be in thensagroup. The majority of this work
involved collaborations with neurologists and negrentists. The Pittsburgh brain
activity interpretation competition (PBAIC) in botk006 and 2007 was an ideal
opportunity to compare my machine learning straegnith those of others, and
broadened my research interests into the field bokihh decoding” for functional
imaging.

The thesis is written for both methodological aeteral readers. For those who
understand neuroimaging methodology, it should aansufficient mathematical
detail to replicate our results. For those wholass interested in technical detail, it
also contains intuitive explanations of the aldoris and procedures.

1.1.1 Diagnoses of Neurodegenerative Diseases

The idea of Evidence-based medicine (EBM) was thtced in the early 1990s
(1992; Sackett, 1997), before the prevalence oflbernet and Google. The main
objective of EBM was to promote the practice ofrekeng published work, and
making effective diagnoses and decisions basedhenlatest evidence. Generally
speaking, the framework proposed in my PhD camtegpreted as a form of EBM, by
constructing models from existing data, which caakenpredictions about new cases.
Peer reviewed publications only report highly sirfigdl characterisations of data.
Much of the relevant information has to be discdroteorder to present a few salient

results on the printed page. Also, as the numbarealical publications grows, new
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and more efficient strategies will be needed focoeing medical knowledge. In
terms of making diagnoses and clinical decisionpatiern recognition procedure,
optimally trained using relevant data, may evemyuyaiove to be more useful than the
entire collection of publications written about secsame data.

Neurological diseases and psychiatric disordersaaseciated with anatomical
and functional changes in the brain. For examplehéimer’s disease involves grey
matter loss in the temporal lobe. There is curyegtkat interest in finding markers
that may guide the early diagnosis of neurodegémeradisorders, based on
anatomical and functional MR images. Such reseigrsbmetimes impoverished by a
lack of the necessary engineering and statistiqartise. As a result, the end product
of such work is often a simple table of manuallyiekd average measurements, along
with their standard deviations, and perhaps a fewapues relating to group
differences. A much more useful solution would bentodel the data using state of
the art pattern recognition and machine learnirdhrijues. The basic idea of my
project was to develop classification systemsdchatbe trained with existing images of
known labels (disease states or clinical outcomEsy. simplest case involves images
from a group of patients and a group of controlsergby the algorithm would learn the
pattern in the images that differentiates betwhergtoups. Then, when a new subject’s
image is presented to the trained algorithm, iusthbe able to determine how likely it
is that the subject is a control or a patient.

Voxel-Based Morphometry (VBM) (Ashburner and Frist@000), is often used to
make voxel-wise comparisons of regional volumegrely matter, among populations
of subjects. This could be considered as one wayidehtifying markers of
neurodegenerative disorders. Other methods invahatyzing shape representations
of anatomical structures, such as hippocampus.oBgh those techniques can

characterize local differences between patientscanttols, they were not designed to
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classify new subjects and perform diagnosis. Thogept will try to parameterize and
guantify all these differences observed among stdj@and put them into a machine
learning framework. The Support Vector Machine (SVMCristianini and
Shawe-Taylor, 2000) is one of the most popular siped learning algorithms, and is
employed in various fields with promising resultalaeasonable computing time. It's
potential had already been demonstrated by idemgifgubjects’ genders from their
structural MRI scans (Lao et al., 2004). BesidedSYhere are many other related
kernel algorithms. The PhD research focused on @mphting some of those
algorithms, using simple measurements of brainlamty. There was a specific focus
on differentiating Huntington’s Disease (HD) andziAé¢imer’s disease (AD) from
healthy controls. Patients who will manifest HD easily be diagnosed from genetic
information, so HD patients can be used for testmgdels for classifying
neurodegenerative diseases. Unlike HD, there at@amarkers that guarantee 100%
accurate diagnosis of AD, other than post morteamerations. Therefore, there is
growing interest in early detection of AD. To aarete scientific advances in
improving the detection of AD from imaging modadgi the “Alzheimer’s Disease
Neuroimaging Initiative” (ADNI) Database was lauednh(Mueller et al., 2005). This
database allows people to access AD images fraetapply their algorithms to the
dataset. Although the neuroimaging field is a laray behind the geneticists in terms
of sharing primary data, a number of other pulicalailable neuroimaging datasets
are also beginning to emerge.

During the period of my PhD, several others hage ahown interest in applying
pattern recognition methods to brain images, fer parpose of making diagnoses.
These have involved both structural and functiad&l (Davatzikos et al., 2008;
Demirci et al., 2008; Fan et al., 2007a; Fan et26l08b; Fan et al., 2005; Fu et al.,

2008; Vemuri et al., 2008). Most of the works shdvpeomising results, which may
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indicate that this research area has a certainrianpee to the field. With the increase
of data sharing, and computational power continuieg grow exponentially
(multi-core processors, cloud computing, etc), matc diagnostic/screening tools
will become applicable in clinical environments. ¥vhlarge training datasets become
available, pattern recognition methods will prolydtsbcome as robust as experienced
clinicians. With aging populations, and hints tledtective treatments may soon
emerge, new developments in the computer aided ndsg (CAD) of
neurodegenerative disease are set to become imgasmportant for clinical
decision making.
1.1.2 Prediction Based Functional Images Analysis

Conventionally, functional imaging studies mainlgcis on finding regions
showing variation under controlled experimentaimsii. The most well-known
technique is Statistical Parametric Mapping (SPM)sfon et al., 1995). Under the
assumptions of the general linear model (GLM), tinge series at each voxel is
modelled by a linear combination of experimentaldibons and confounds (e.g. low
frequency drifts). The statistical tests are lapplied to the weighting of each
experimental regressor, to infer where the cordrattexperimental conditions have
significant effects on the pattern of brain activin other words, the objective is to
detect regions of activation in the brain duringk&a Three dimensional statistical
maps would be generated, showing activation patdnat relate to contrasts of
experimental conditions. The location of activatipatterns provides insight into
brain function. This is also called an encoding elod the sense that the brain
responses are encoded the experimental factors.

In recent years, pattern recognition and machiaenieg methods have been
used to predict, or decode, an experimental vaiitbm high-dimensional functional

imaging data. Not all methods are truly multivegjatas some still assume
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independence among voxels (Shinkareva et al., 2008)eneral, these studies have
well-controlled experimental stimuli, and the numbe& conditions are limited.
Measures of predictive accuracy are determinedrbgsevalidation, which involves
partitioning the data into training and testingsseéhe discriminating machine, or
classifier, is trained using the functional imagemd Ilabels indicating the
corresponding experimental conditions. In the tgsphase, the classifier returns the
predicted experimental conditions using test imagesinput. Because the true
experimental conditions are known, the predictigeuaacy can be calculated. This is
also called a decoding model in the sense thatodiats the decoding of neuronal
activity that causes a percept or behaviour. Intretglies, the design involved block
stimuli with categorical conditions, such as obsegwifferent categories of image
stimuli or performing different tasks (Carlson ét 2003; Cox and Savoy, 2003b;
Haxby et al., 2001; Haynes and Rees, 2005, 2006 ohte et al.,, 2005;
Mourao-Miranda et al., 2005).

Scientific theories are essentially models. WithirBayesian framework, the
objective is to determine the model (from a nundfetandidates) that best describes
the observed distribution of data in the most paosious way. Such a model
essentially says something about what could be at&gdefrom unobserved data. If
only parts of such data are presented to the mtidei,it should be possible to use the
model to make an informed estimate about the ngssiformation. In other words, it
is able to predict what is unknown, from known $acModels are generally
considered "better" if they can be used to makeenawrcurate predictions about
unknown data. The real benefit of using Bayesigir@gches is that they allow us to
determine the structure of the most accurate m@daein among the candidates),
through the process of Bayesian model comparisanyMscientists take threalist

view, which considers the structure of the modebé& of most scientific interest,
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ignoring the actual probability density that is eded. Unfortunately, most biological

systems are extremely complex. If more and mora ded collected, or the quality of
the data is improved, then increasingly complex efmdan be supported (Morch et
al., 1997). The actual complexity of the model tisadeemed to be "best" is largely a
function of data quality. A report describing theodahel structure with the highest
evidence may tell us more about the quantity araityuof data, than it does about
the biological system itself. Most neuro-imagersfer to treat estimates of model
parameters as the important findings (e.g. SPM jn&uh studies generally involve
simplified models, as these allow findings to bereneasily visualised and explained.
It is acknowledged that the models may depend dikalyp assumptions, but the

benefits of adopting them should be evident frome therature. For example,

mass-univariate statistical testing in SPM has @mnoto be a very powerful tool for

visualising differences, despite the fact that sually ignores the possibility of

connections among different brain regions.

Theinstrumentalistview of science is that it is the predictions tisetaes, or the
ability to make such predictions, that are of iestr (Forster, 2002). Scientific
research is sometimes funded according to theibatitn it can make (or potentially
make) to society. Some of the benefits of neuroingaghnay come from its potential
to make predictions, rather than from the actuatl@ or parameter estimates. It is
difficult to anticipate all the benefits from sughedictions, just as it is difficult to
anticipate the ultimate utility of any area of rasz.

Predictive models may also allow different formsgoiestions to be posed. For
example, it becomes possible to estimate whetlsér Caactivates a network that is
more similar to that activated by task A, or thetivaated by task B. By accurately
characterising the pattern of difference betweeandl B, it becomes possible to

formulate questions in terms of this difference.rd@ccurate characterisations of
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differences may also lead to tests with greatesisieity. This has been demonstrated
in studies that applied pattern recognition appneado particular brain regions (Eger
et al., 2008; Haynes and Rees, 2005). Such workalewed differences to be

detected that could not be found by mass-univaapfoaches (Kriegeskorte et al.,

2006).

1.2 Overview of Chapters

Because | was involved in multiple projects usiigilgr methods, this thesis is
mainly divided into technical and application senf. In the technical sections,
equations and algorithms are introduced with sigifit details for them to be
implemented. The application sections will statechtalgorithms were used, and the
reader should then refer to the appropriate teahsection. Specifically, this thesis is
largely about kernel pattern recognition approackdsch can be roughly divided
into kernel generation and the kernel algorithmentbelves. Methods of kernel
generation are described in chapter 3, and theiddgts are described in the first half

of chapters 4 and 5. The remaining chapters a@negd as follows.

Background of Machine Learning Theories and Methods
For readers with a less methodological backgrotimd, chapter explains basic

concepts of pattern recognition and machine legfnivith some practical examples
using AD data. The chapter begins with probabiligory in the Bayesian framework,

which is used throughout the thesis. The notatimh @quations commonly used in
Bayesian methods are described. Only two probgldistributions are mentioned,

because all the probabilistic algorithms used fus tthesis are based on either
Gaussian or Bernoulli distribution. A section irduzes decision theory, which is

essential for classification. Generative and Dmarative models are compared. For



21

classification problems, a generative model woudsctdibe the entire probability
distribution of each of the classes of data. Thermadtive is to use a discriminative
model, which only needs to model the probabilitygiey of the differences between
the classes. Generative models are not usuallynibst accurate approach for
predicting, as they require more hidden variabks,marginalisation over higher
dimensional probability densities is needed. Eroplri evidence shows that
discriminative pattern recognition models usuallytperform generative models in
terms of their predictive accuracy. That is alseridason why the applications did not
use generative models for classification. Simplgression and -classification
algorithms are illustrated in this chapter, to stsseaders to understand the more
advanced models described in later chapters. agkation is often used to
evaluate the performance of different models. Somoglels can also be compared
using criteria based on the Bayesian evidence framle which measures the
goodness of models in terms of their trade-off leetwv fitting the data and their
complexity. In this framework, integrating out tlparameters can lead to the
conditional probability of data given the mode(D|M)or the “evidence for the
model”.
Kernel Methods and Kernel Construction from Neuroimaging Data

The first part of this chapter describes mathermahtefinitions and properties of
kernels. Because most algorithms applied in thesith are kernel methods, it is
essential to understand the constraints and liafiteernel methods. Unlike common
pattern recognition models, kernel methods taken#s” as the input rather than
features of the data. Intuitively, kernels encodeasures of pair wise similarity
between all the data points. Information, descgbjpatterns in the training set, is
encoded in the kernel. The kernel trick also all@ffscient construction of various

kernels, which are the equivalent of input featyregected into higher dimensions.
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This can enable non-linear patterns in the origspace to appear linear or separable
in the new feature space.

To construct a kernel from imaging data (eitherctional MRI or structural
MRI), we have to establish a measure of similatitgly Duckling Theorem (Duda et
al., 2000; Watanabe, 1970) tells us that measurssnilarity between things can not
exist without prior assumptions. From our knowleddehe physiological basis, we
can extract meaningful information that is moreted to the conditions we intend to
characterise. For example, we know that neurodegiwne diseases would cause grey
matter changes more than white matter changesedmaw that low frequency drift
in the fMRI time series is more likely to be noig&an informative signal (Henson,
2004). To extract the useful “features”, both dmual and functional MRI has to be
pre-processed. The pre-processing procedures toeluced in this chapter, along
with a description of information that may be enetdn the outputs, which are later
used to generate the kernels. It is also possibépply operations that can efficiently
remove the confounding factors, such low frequedclys, ages or genders, directly
from the kernel. Temporal compressing technique$Mdr| data are also introduced.
The last part of the chapter mentions some basinekalgorithms, for example
kernel principal component analysis, kernel K-nstineeighbour classification, a
simple novelty detection method and some clustennegthods. These simple
algorithms sometimes allow useful visualizatiortha structure of the patterns.
Kernel Regression Methods and their Application inFunctional and
Structural MRI

Following the basic regression method introducecthapters 2 and 3, more
advanced kernel regression methods are describ#dsirchapter. These algorithms
are Support Vector Regression (SVR), which is a paybabilistic model, together

with two probabilistic models, which are Relevandstor Regression (RVR) and
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Gaussian Process Regression (GPR). The first Halh® chapter is about the
technical details of these three algorithms, wherda&e second half describes
applications of those methods. Two of the projeceswork for the “Pittsburgh Brain
Activity Interpretation Competition” (PBAIC) of 2@and 2007. The competitions
were open globally, enabling teams from aroundwibdd to test their algorithms on
the same dataset. The competition allowed a cosgammong a diverse range of
approaches for making predictions from brain imggoata. As in any model
comparison problem, it allowed the most accuratgr@gch to be selected from a
range of candidates. We achievéliBace in 2006 and*iplace in 2007. Details of
how we tackled the tasks are described in the ehafihother application concerns
predicting clinical scores from structural MRI. likd conventional correlation
analysis, this analysis was based on “predictivegrb and we demonstrated that by
using RVR, it is possible to achieve good predetaccuracies. The framework also
involves a comparison among different clinical espras some clinical scores could
be more accurately predicted, from the structumages, than others.
Kernel Classification Methods and their Application in Functional
and Structural MRI

In the chapter 5, support vector classificatiod@$ which is one of the most
popular classification algorithms for practical Apgtions, is explained in detail. Two
Bayesian classification algorithms, namely Releeaiector Classification (RVC)
and Gaussian Processes Classification (GPC) awiloes. These two algorithms
have similar forms to regularised logistic regressi and the corresponding
hyper-parameters can be optimised via marginalitited maximisation. A novel
multi-class classifier, which utilises the temporgiormation of fMRI data, is also
present. Another classification method introducedalled the one-class classifier,

which is based on smallest hypersphere enclosinbeatraining data. Like chapter 4,
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the first half of the chapter is about the technabstails of these three algorithms,
whereas the second half describes applicationbasfet methods. Three applications
are about classification between patients and otsntrsing anatomical MRI data for
Alzheimer’s disease (AD), Huntington’s disease (H&)d major depressive disorder
(MDD). Some methods of feature selection are alsmtioned. Two applications
involved fMRI decoding, one was applied with thevelomulti-class classifier, and
another one was applied with standard SVC in ackkght fashion. The novel
multi-class classifier demonstrated high predictagguracy in single subject. The
searchlight SVC revealed regions in the hippocampisch are relevant to

navigation tasks.
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Chapter 2

Background of machine learning theories and

methods
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This Chapter will describe the basic probabilitpltoand simple algorithms,

which will lead to the advanced algorithms in thtel chapters.

2.1 Basic Probability Theory

Probability theory provides a quantitative framekvty measure and manipulate
uncertainty. In the context of pattern recognitemmd machine learning, probability
rules also enable us to use mathematical langweagjestract the practical problems into
models and equations.

The commonly used examples to introduce probadslitire either flipping coins
or drawing coloured balls from a box. These examiave discrete events over
repeatable trials. For instance, we can toss aldfirtimes, and measure the number of
times the coin faces up with heads or tails. Werodice the “random
variable”X O{' head," tail} , which means it can take the condition of eithezdtt’
or “tail”. Then we define the probability of havirghead ap(X=head)=Number of
heads/number of tossddowever, as the topic of this thesis focusespplieations of
pattern recognition on neuroimaging, we will useagiical examples from
neuroimaging.

In the context of imaging data, most of the meavergs and observations are
continuous variables rather than discrete oneslefoonstrate the rules of probability
with meaningful examples, we use the left and rigippocampal volumes from 91
control subjects and 99 patients with clinicallyntomed Alzheimer’s disease as two

random variabled, andR.



Counts

27

60

Volume of left hippocampus Volume of right hippocampus

0
2500 2900 3300 3700 4100 4500 4900 5300 5700 6100 6500 2500 2900 3300 3700 4100 4500 4900 5300 5700 6100 6500

Volume mnt Max
Figure 2.1 Histogram of hippocampal volume

Histogram of the volume of both left and right hippocampi in cubic millimetres.

We present the distribution of the volume for biatth and right hippocampus in
figure 2.1, using histograms with intervals of 4QMic millimetres. A histogram is a
method of representing the distribution of a sahpb®pulation using bins. The
horizontal axis is usually specified as non-ovgrlag intervals of the random
variable. The height of each particular bin indesathe frequency or number of
samples that lie in the interval. Histograms previsimple ways to discretise
continuous variables into frequencies over differatervals. However, because the
number of counts depends on the total sample &zgeneralize the representation,
the heights of each bin are be normalized into tipps” or “percentage” of the

population. This is achieved by applying the riattthe probability sums to one over
the viable:zXDX p(x) =1 for a discrete variable, ancfo p(x)d(X¥ =1 for a

probability density over a continuous variableolr histogram example, the heights
of each bin are simply divided by the total nhumloérsamples to represent the
probability. For example,p(L=4300<1< 4700F 41/196¢ 0.21!, means if a
random subject is selected form the sample setptbbability of observing a left
hippocampal volume of between 4300famd 4700mrhis around 22%, or 0.22.
2.1.1 Probability densities

By discretising a continuous variable over a seoiemtervals (bins), and using

normalized histograms to represent probability riigtions, this leads to the
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mathematical abstraction of “probability densitydétion” (pdf). Assuming we have
infinite samples and infinite bins, of which hawéinitesimal range over a continuous
variable, such as the volume of hippocampus, i.e.
P(X=(x=0/2)< x<(x+3/2))= p(0 > for ox - 0, then p(x) is called the
probability density function (pdf) over The equation to calculate the probability that

x will lie within an interval is given by

P(a< x< b :j" q 3 o (2.1)

By definition, the probability density is non-negatp(x) = 0,[0x, but it can have
values larger than one, as the definition only losutne total integreﬁo p(x)d(xX =1,

to be one.
The “cumulative distribution function” (cdf) of aagicular probability density
function is defined by the probability thafalls in the interval from minus infinity to

a particular value.

P(a)=[" (3 dx 2.2)

The derivative of a cdf equals the pdfP(X)/ dx= @ %. Notice the cumulative
distribution function or cdf, is symbolized by tbapital P. Some texts use capital P to
denote probability mass function (pmf) for discreteents. Readers should be aware
that p(x) may indicate a pdf, cdf or pmf, dependamgthe context.
2.1.2 Joint probability and conditional probability

Returning to the example of hippocampal volumeseasgnted by histograms,
when we consider more than one variable, we cancalkulate the joint histogram or
joint probability. For examplgy(4300< | < 4700,400&r < 430 9/190 0.04,
means there are 9 subjects, or around 5% of theleanthat satisfy both conditions
that the left hippocampal volume is between 4300°rand 4700 mrhand the right

hippocampal volume is between 4000 framd 4300 mrh
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Figure 2.2 Joint histogram of hippocampal volume

Joint histogram of the volume of both left and right hippocampi in cubic millimetres.

Conditional probability is defined by the fractiof particular instances, given
the condition of some other instances. For example,
p(4300< 1< 4700|400&8r < 4306 9/26 0.34€, means there are 26 subjects
that satisfy the condition that the right hippocaimmlume is between 4000 niand
4300 mni, and out of those 26 subjects, there are 9 subjehb also satisfy the
condition that the left hippocampal volume is besw@300 mmand 4700 mrh The

relationship between joint probability and condi@b probability is given by

p(x] y)=% or p(x Y= KX Y K Y (2.3)

We can also marginalise the joint probability widspect to one of the variables to

obtain the marginal probability.

p(Y =[x Y or p()=[" p(x ) d (2.4)

In plain English, we say “the probability of x andis the product of the
probability of y and the probability of x given yThe principles of joint probability,
conditional probability, and marginalisation carl géneralise to more than two
variables. In addition, ifp(x, y)= p(X Yy orp(x|y)= p(¥, we say that both

variables are independent.



30

2.1.3 Bayesian probability
By rearranging equations 2.3 and 2.4, we can rew&is conditional dependence

between two variables

p(x]y) (Y ___P(x]y) (Y 55
o P Ty @9

Pyl x) =

The relationship above, between two conditionalbphilities, is called Bayes’
theorem. Bayes’ rule plays a major role in decisibaory, as well as being the
foundation for the advanced machine learning meshbdt will be introduced in later
chapters. The general Bayesian view further pravitie framework to formulate the
calculation of belief using Bayes’ rule. As mengdrby Cox (Cox, 1946 ), there are
two ways to conceptualize probability. One is tdea of frequency in a group of
ensemble, such as the frequency of drawing colobe#id from a large number of
boxes (or repeated trials) with the same contéerite. other idea is the reasonable
expectation. For example, probability would repneéslee strength of belief that a white
ball will be drawn from a box containing two blagélls and one white ball, in a single
trial. Using reasonable expectation as probabiityild make more sense when terms
like “probability of raining tomorrow” and “probalitly of getting elected” are in use,
as not all events can be repeated multiple timeghé frequentist (also known as
“sampling theory”) approach (MacKay, 2002), oneculdtes the estimators from the
samples of interest, and then uses some critevigelect between those estimators. In
contrast, we only need to make assumptions on ¢mm fof the models and
distributions for Bayesian inference, and can rety the rules of probability and
Bayes’ theorem to return the quantitative degreleetief.

One practical example of the utility of Bayes’ rugethe chance of having HIV
when a test shows a positive result (Gigerenz€22Bunt, 2003). Today’s blood test

for HIV offers the sensitivity of 99.9% and specity of 99.99%. That means if
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someone is HIV positive, the test will have a plaobty of 99.9% of giving a positive
result, and for a person who does not have HIV,pitedability of the test giving a
negative result will be 99.99%. In a probabilistiacepresentation,
p(test=+| HIV=+)=0.999 and p(test=—| HIV=-)=0.9999, and the quest is to
find p(HIV =+ |test=+). Despite hearing propaganda about HIV all the fithe
virus infects a very low percentage of the genpagdulation in developed countries.
For example, only 0.01% of the US population ndobging to a high-risk group has
HIV. Therefore we can sag(HIV =+)=0.0001. Sometimes, people call this
p(HIV) the prior, which means the prior knowledge, olidiebefore observing any
data. The probability p(test] HIV) is called the likelihood, and expresses how
probable the observed data is for different coadgi In fact, what we are interested
is the posterior terrp(HIV |tesf), which gives us the probability of having HIV

given the test result. Often people state Bayesittm in words

posterior= prior xlikelihood or posteriorcx prior xlikelihood (2.6)

evidence

The “evidence” is the probability of observing tiparticular data given all possible
conditions. In our example, both the test resutt BtV status each have only two

states, namely positive or negative. Therefore, évadence is formulated as

p(tes) = Z [{ tesf HIVy p HIYand we can represent the solution as

HIVX + 3

p(test=+| HIV=+) g HIV=+)

p(HIV =+ |test=+) =
p(test=+| HIV=+) g HIV=+)+ ftest+| HI\&-) p HI\E-)

2.7)

0.999x 0.0001 — 0.499¢ (2.8)

p(HIV =+ |test=+) = =0.
0.999x 0.000% 0.0004 0.9999

This calculation shows that for someone, not frorhigh risk group, who has a

positive blood test result, the actual probabiliyhaving HIV is only 0.5. If the
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person takes another blood test, then we can relBayes’ theorem to calculate the
new probability from the additional observed evicnBy assuming both blood test
results are independent, if the second test $tdivs positive, then this person will
now have a 99.99% probability of having HIV.

In practice, the Bayesian formulation provides &yant way to aggregate all
known information. One example is in the contextissue segmentation (Ashburner
and Friston, 2005). The unified segmentation apgra@mbines many components,
from the intensity distribution of tissues, the anogeneity field of the scanner, to
image normalization. By defining a prior distribari for the models, such as the
spatial prior of tissue classes and regularizafion the image registration, the
optimization can be solved on the integrated eqnatio obtain the posterior
probability of each tissue class at each voxel.

2.1.4 Mean and covariance

Simplification is essential to characterize patacisamples from a population.
The most intuitive way to generalize a particulaioup is by averaging the
observations. For example, it is said that Gernaaiadall and Japanese are short, and

this conception is mainly based on the averagehit®igq both populations. The
average, or the mean, of the variable is often ehas X :%zi”:l)g , Wheren is the
number of samples. To describe how variable eaalpkais in the observations,
another measurement called variance can be caédulzgtvar(x)=%Zi":1 (x = X).
This is often called the biased estimate of théamae. An alternative is the unbiased
variance estimate, which is defined Mr(x)unbiased:ﬁzinzl (x,—X)*. This gives a
slightly higher measure, especially when the samsde is small. The sample mean

X is estimated from the samples, and is further wsezhlculate the variance. Hence

the estimate of the variance should have one kegsed of freedom. That is where the
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n-1 term comes from. A different proof can be fouméppendix A.

Here, we assume equal probabilities for the vagiabut a more generalized
formulation can be given for some functioh(x) with probabilityp(x). We call this
average, weighted by its probability, the expeota®ff (x). It is often denoted as

following:

E(F)=[f(x)p(dx  or E(f)=3"" f(x)p(x) (2.9)
The variance of f (x) is defined as
var(f )= E[f (x)- EIf (x)])°] (2.10)
By expanding the square, we can write the variamesother form
var(f )= Ef (x)¥]- E[f (X)]? (2.11)
There is an advantage of using this formulationmtie variance is calculated online
or when memory is an issue to store all the obsens Notice that the equation in
(2.10) requires the expectation to be computedrbdfee variance can be calculated,
whereas equation (2.11) can be used to updateatienee and expectation iteratively
when a new observation is measured.
In cases when there are more than one variabléhemmeasurement called

covariance is computed from pairs of variables:

COV(XJF%ZL (x =X)(y~—"y) or cov(x,y)= E[xy]- E[XE[ Y (2.12)
Notice that variance is non-negative, but that dange can be negative. Commonly,
with multivariate data, the covariance between quils of variable is represented as
a covariance matrix. If we define the matix[x, x,---x,]",x00%, where each
is a column vector of one observation or samplehwit number of variables
(sometimes called the dimension). If we use thedgampal volume mentioned in

previous section as an example, the2, and n will be 190. To calculate the

covariance matrix, we first remove the mean overabservations from each variable.
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XpaTH o Xy T Hy 1
X= : : , Wherey, =—Zi"_l>qd , then the covariance matrix is
p &eiz

Xn,l_lul Xn,d_l'ld
computed by

Z=23 (- ) =KX (2.13)

i=1

and the size id by d. The matrix is a symmetric positive semi-definitatrix. Notice
that the diagonal of the covariance matrix is theance of each variable. When two
variables have positive covariance, it implies ¢hego variables tend to vary in the
same direction, i.e. if one variable is very laig@ne particular observation, the other
variable is also likely to be large in the sameeobation. If the variables have
negative covariance, they would be likely to vanythe opposite direction. The
covariance matrix plays an important role in lineagression, and also principle
component analysis, which will be explained intad@hapter.

In order to provide a standardized measurementribde@sg the co-variation
between two variables, Pearson’s correlation ocdefit is defined as the normalized

covariance ranging from -1 to 1.

corr(X,y)= Covlx,y) (2.14)
JJvar(x)var(y)
The correlation matrix can be computed from theaciance matrix by:
R . = i, (2.15)
sz '

2.2 Probability Distributions

We have defined the concept of probability den&ityction in section 2.1.1. In

the statistics literature; there are many formpafametric distributions, of which the
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probability distribution varies by adjusting therg@aeters. Each distribution has its
applications and theories associated. In the coraéxhis thesis, we are mainly
concerned with the two common distributions usedhachine learning: the Normal
distribution (also known as the Gaussian distridmjti and the Bernoulli distribution.
2.2.1 Gaussian distribution

The Gaussian distribution is probably best known ife bell shape. In the
simplest case of a single variable, the probabtignsity function of a Gaussian

distribution is defined by

N(x|,u,az):$ex —%} (2.16)

There are two parameters controlling the shapenisf distribution: iis the mean,
and ois the standard deviation, which is the square ojaihe variance. In other

words, the expectation afequals the meanE(x) = 7, and var(x)=o?. The inverse

5 Is called the precision, which will be mentioneften in later

of the variance,i
o

chapters. Recalling the probability rule that thial integral of any distribution is one,

we can utilize this property to derive the follogiequation (it can also be derived

from a general method).

207

o 2
jexp{— X }dx:J\/ /4 (2.17)
Sometimes in the context of neuroimaging, the sprdaa Gaussian distribution is
specified by the full width at half maximum (FWHM®ther than the variance. The
FWHM is defined by the width of the distributiontieen the points having half the

value at the peak. (See Fig 2.3)
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Illustration of the univariate Gaussian distribution with 0 mean, and 1 standard deviation. The

FWHM is also shown, and is slightly larger than two standard deviations.

In a Gaussian distribution, both variance and FWe#vi be directly calculated from
each other. Notice the peak of the Gaussian digtob appears at its mean, hence
FWHM is invariant to the mean of the distributi@md we can simplify the equation

to

exo) - )" | _exp(0)_ 1
P 20° 2 2

2
- (th‘;"z) =-In2

(Xou)> =20°In2 (2.18)
Xoot =20N2In2
FWHM=X .. = X = 20N 2In 2= 2.3548

The multivariate Gaussian distribution is defingd b

1 1 Ty
NX|p,X)=—F——exp ——(X-p) T7(x- 2.19
(XI2)= s 0] - E ) 2.19
where D refers to the dimension, or length, of Wieetor x, the pis the vector of
means, andX is the D by D covariance matrix. The multivarigggsion of equation

(2.17) is given by
J EXP{-%(X-u)TZ_l(X-u)}dX =z {? (2" (2.20)

This equation is particularly useful when marginalig over a square exponential
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function, such as a Gaussian distribution, is neglii

Figure 2.4 Two dimensional Gaussian
lllustration of a two dimensional multivariate Gaussian distribution. The coloured contour
shows an elliptical shape, the major and minor axes of the ellipse are the corresponding

eigenvectors of the covariance matrix X . The major axis is the eigenvector with the highest

eigenvalue.

One reason that Gaussian distributions are commasdyg in the field of statistical
modelling is its simplicity, as it has only two pareters. The reason that Gaussian
distributions are so prevalent and widely obsernvedature may be the consequence
of the central limit theorem, which states that sen of a set of random variables,
which are not necessarily Gaussian distributed, ldvoapproach a Gaussian
distribution when the number of terms in the suoreases. For example, roll a dice a
hundred times and sum up the numbers, then repast niultiple times, the
distribution of the sum of the numbers will approac Gaussian with mean at 350.
However, not everything in the real world followsetGaussian distribution. Some
events have distributions with heavier tails thiae Gaussian, such as the chance of
economic crises (Buchanan, 2007; Gopikrishnan.efil@98). For those cases, power
law distribution may be more suitable. In this tkedor the simplicity of most
algorithms, only Gaussian distributions are conmgiddor modelling populations and
noise.

2.2.2 Parametric models and maximum likelihood (ML)estimates

In the probabilistic framework of machine learnimge main task is to model
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the distribution of the population given some samplsuch as the hippocampal
volumes shown in figure 2.1. Having a nearly irtBnmumber of samples is unlikely,
so fully characterising a population density fuatusing histograms, with minimum
precision of the observations (i.e. very narronspimecomes more difficult. For cases
when the sample size is too small to fully covdrpalssible measurement points,
parametric models may provide a more robust waghtracterize the distribution of
the population - providing the true distribution tbe population is not too far from
the model assumptions. Usually, parametric modelg i@equire a few parameters to
fully describe the distribution. For instance, au&san distribution only needs the
mean and the covariance. An approach called “maxirtikelihood estimation” can
be used to estimate model parameters from colleadtedrvations. In this formulation,
the model parameters that yield the highest likelthof the observed data would be
determined as the solutions. Mathematically, we dafine a set of observed data
D ={x, X,...,X,} drawn from the same distribution independentlyother words,
the observed samples are “independent and iddmtichdtributed” (i.i.d.). The
maximum likelihood estimates of the parametersiméd by

0, = argemaxp Op (2.21)

When estimating parameters for a Gaussian distoibutve can firstly define the

likelihood function of the observed data as
N
p(D[p,X)= |_l NX, [p.X) (2.22)

Because each observation is assumed to be indegetite likelihood of the dataset
is the product of the likelihoods of each obsepbsatiThe objective is to determine the
parametersp,, and X,, that give the highest value of the likelihood ftioe. Since

the logarithm is a monotonically increasing funotidghe parameters that maximize

the likelihood function are equivalent to thosettnaaximize the log likelihood
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function. The log likelihood for a Gaussian is givey

N
In l_l N(X, |p,Z)
N

=3 InN(x, |p,Z) (2.23)

n

~LINDIN@27) + NIn | £+ (¢, ~m) 2 (x, -}

- E n=1
By setting the derivative of the log likelihood tvitespect top and Xto zero, we
obtain the solutions for the maximum likelihoodtbEé parameters (Bishop, 2006a;

Magnus and Neudecker, 1999)
_ 1 o
P =17 2 s (2.24)

By = Y (6 B )0, ) (225)
These solutions are exactly the same as the defindf mean and covariance
mentioned in section 2.1.4.
2.2.3 Mixture of Gaussians (MoG)

The simplicity of the Gaussian distribution expkaits popularity for modelling
probability distributions. However, not all distutions have the same “bell shape”.
For example, some distributions may be skew orsynmetrical. Some distributions
may have heavy tails, and some may have multipkselt is possible to model
those distributions using other mathematical reprdgions of probability
distributions, and one commonly used approach ismtodel them by linear

combinations oK Gaussian distributions.

K
Puoc (X) = zk:]_”kN(X ln ) (2.26)
Here, 7z is the mixing portion of each of the Gaussians, which must have a value

between zero and one inclusively, [J(0;1). Also, these mixing proportions must

K

sumto one,» 7 =1.
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Figure 2.5 Mixture of Gaussians

lllustration of mixtures of two Gaussians. The left figure shows a combination of two Gaussians,
with different means and variances, that model a skew distribution. The right figure shows a
heavy tailed distribution modelled by two Gaussians with the same mean but different

variances.

A mixture of Gaussians can also be used as a dhugteechnique. By adopting
the maximum likelihood approach, we can find theing portions, means, and
covariances that maximize the log likelihood givgn

In(p(D|n,p,E):z::lln{z::lﬂ,;NQ(n |uk,zk)} 2.27)
This optimization problem could be solved by a ggatidecent approach, but usually
it is solved by an “Expectation Maximization” or Epfocedure (Dempster et al.,
1977). EM algorithms never decrease the likelihdond,EM converges to only a local
maximum rather than the global maximum. Thereforgializing the parameters to
reasonable estimates of the optimal values is itaporThe EM algorithm divides the
iterative procedure into two stages (Bishop, 20@Bhahramani and Sahani, 2005).
The first stage is called the “E step”, which fillsvalues of latent variables according
to posterior given data and the current estimath®fparameters. In the context of a
mixture of Gaussians, the latent variables areréisponsibilities,r, , of each data

point to allK Gaussians.

10




41

r.= N, [y 2y ) (2.28)

ZﬂiN(Xn I 2)

The responsibilities can be seen as the belongiolggpility of a particular sample to
a particular Gaussian. In the case of hard classifin or clustering, the cluster
(Gaussian) to which the sample belongs, is chogetié clusterk with the highest

responsibility, k= arg max(, ). After updating the latent variables in the E stbe
k

next stage is the “M step”, which re-estimating pla@ameters using current estimates

for the responsibilities.

n _ Z:lzlrnkxn
K= e —
Z:lzlrnk

N
y = anlrnk(xn_uk)(xn_uk)T
K =

z:‘:l M

(2.29)

N
T = Zn=l rnk
X N

By iterating between the E step and M step, thampaters should converge to a local
maximum of the likelihood function.

Because the parameters in a MoG are determined dymmizing likelihood,
introducing more Gaussians into the model will glsvancrease the likelihood, which
may result in over-fitting of the data. The problefrover-fitting will be described in
more detail in later chapters. The choice of thignmpm number of Gaussians should
be based on model selection criteria (Lee et @062McKenzie and Alder, 1994).

We applied the MoG and EM algorithm to the datadetippocampal volume
(Figure 2.6), where the only prior knowledge we vmled was the number of
GaussiansK=2. The algorithm had no further information abdl¢ controls and
patients, yet the groups seemed to be separated successfully. If we set the

threshold at 0.5 for the responsibilities as thessification boundary, the algorithm
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had 96.7% of specificity and 70.7% of sensitividpwever, when the dimensionality
is high, the size of the covariance matrix growsdyatically with the number of
dimensions. A related issue is the “curse of dinwaity”, which occurs when the
number of samples is less than the number of dilmessand the sample covariance
matrix will be non-invertible. Although this prolte can be resolved by adding a
small constant in the diagonal terms of the cowaeamatrix, computationally the

EM-MoG approach is still very expensive for higimeénsional data.

. 1800 -

1600 -

1400

1200 -

right hippocampus volume

J = 1000t

J 800 -

800 1000 1200 1400 1600 1800 800 1000 ~ 1200 1400 1600 1800

left hippocampus wvolume left hippocampus volume

Figure 2.6 EM with a mixture of Gaussians

The left figure shows the clustering result with two Gaussians of the left and right hippocampal
volume dataset. The elliptical contours are the one standard deviation boundary for both
Gaussian distributions. The crosses are the mean of both distributions. The right figure shows
the same dataset and the same clustering results by revealing the identity of the patients and
controls. The red colour indicates the controls and the blue indicates the patients. The MoG
clustering seems to identify both populations well without any prior information about the
patients and controls. An examination of the separation of patients from controls using the
responsibilities shows that 96.7% of controls have responsibilities over 0.5 for the red

Gaussian, and 70.7% of patients have responsibilities of over 0.5 for the blue Gaussian.
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2.2.4 Bernoulli distribution
The Bernoulli distribution is a distribution forriary measurements, the most

commonly used example of which is coin flipping. ¢&n define a variabhe1{0,1} ,

which indicates head or tail in the coin flippingperiment. The probability of
observing y=1 is defined by the parametgr , so thatp ¢= 1l Fu ,

andp (y= O|¢ = + u. Therefore, the probability distribution has toenf

Bern(y |u)=p" (I-p ¥ (2.30)
The above formulation is derived from the fact th& a binary variable, so it acts as

a switch. When we observe a dataset of binary owsp D ={y, V.,..., ¥}, the

likelihood function of observing all those outconuas be defined as

p(D| )= ﬁ p (= ) (2.31)
The parameter that maximizes the likelihood ofdbeve equation can be derived by
setting the derivative to zero, so tpgt =%ZnN:lyn. Here, we can further extend

the formulation of maximum likelihood estimationtanthe general framework on
which logistic regression, relevance vector clasaifon, and Gaussian process

classification are based. We may have a dataset
D ={(Xy ¥, (Xs Yo)sorrn Xy » i )} O (O x{1,0}) , for example, wherex is a two

dimensional vector containing both left and rigipgocampal volumes, angis a
binary variable indicating whether the subject ipaient or not. In this general

formulation, the likelihood function can be writtan

N
p(y|0,x)= |_l fOx, )" @ fOx,))”" (2.32)
The functionf (0,x)1(0;1) has the range between 0 and 1, and in practice, it

may be a logistic function or a probit function,rg@eterised by the vector of

parameters,0 . Often, we are interested i, , which are the values 0 that



44

maximize the likelihood.

2.3 Decision Theory

An essential aspect of machine learning and pattrognition is not just to
learn the pattern and distribution of the obserdath, but to make predictions about
new data. In the context of clinical diagnosisisiimportant to be able to make a
decision about the group membership of a subject widerwent some tests, hence
classify the subject into either the diseased ordiseased group.

2.3.1 Bayesian Decision Theory

In the probabilistic framework, we can use the By probability in equation
2.5 to make the decision based on posterior prbotyae can continue to use the
Alzheimer’s dataset as an example, and define tassesC, for patients andC,
for controls;x would still be the volume of hippocampus. What ave interested in

are the probabilities of both classes, given theasuements of hippocampus,

p(C, |x). Intuitively, we would like to classify a personto the class with the
highest posterior probabilityp(C, [x). We can show indeed that this intuition is
correct mathematically if we want to minimize thescofassification rate. We can

define the probability of making a mistake by tbédwing

if we decid
o(mistakdx) = | P(G1X) 1T we decideC, (2.33)
p(C,|x) if we decideC
The average probability of mistake is given by
p(mistake = j_” b mistake) (R) X (2.34)

To minimize the p(mistak@, we come up with the Bayesian decision rule for

minimizing the probability of a mistake: Decid€, if p(C |x)> p(C |X);
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otherwise decideC,. In binary classification, sincp(C |x)+ p(C, |x)=1, the
decision criteria would be to decide the class #swatisfiesp(C, |x)> 0.5. At the
border, where p(C |x) = p(C, |x)= 0.5, it is called the decision boundary.
2.3.2 Loss function and Utility function

For many practical situations, the objective is siotply to merely reduce the
misclassification rate. In many real world situagp often the penalties of
misclassifying class 1 as class 2 are not the ssmmisclassifying class 2 as class 1.
For example, the cost of erroneously misclassifymgatient as healthy, hence
delaying the treatment, will certainly result inhggher loss (for the subject) than
misclassifying a healthy subject as a patient. &loee, the optimal decision should
be the one that minimizes the expected loss whemisxlassification occurs.
Sometimes, a utility function, which is the inverdfethe loss function, is considered,
and the objective would be to make decisions thakimise the expected utility,
rather than minimise the expected loss. For ingtatite loss from classifying an
Alzheimer’s patient as normal may be 5, and the lfsclassifying a normal into a
patient may be 2. When we observe the posteriobgtitity p(normal|x) = 0.6,
without the penalty of loss, the optimal decisidtmowd be put the subject into the
normal group. However, when the loss is multipledthe probability of mistake,
based on equation (2.33), the expected loss ofifjasy the subject as normal
is p( patient|x)x5= (1- 0.6)x 5= z, and the expected loss from classifying the
subject as a patient gnormal|x)x 2=1.2. In order to minimize the expected loss,
the optimal solution should be to treat the subgesca patient.
2.3.3 Discriminative models vs. Generative models

There are commonly two approaches to solve deciohlems, the generative
methods and the discriminative methods (Bishop,72Q@0usoy and Bishop, 2005a;

Ulusoy and Bishop, 2005b). The generative methaplires the learning of class
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conditional probabilitiep(x|C,). The name “generative” comes from the fact that
when re-sampling from the joint distribution, it mossible to generate synthetic
examples of the input featuxe To solve the inference problem, we can apply Baye

theorem to calculate the posterior probability

p(C, 1) = LIRS (2:34)
l—————— —~~ ===
\ / p(XIC1)
0.8 1\ 4 p(x|C2)
\ J - p(C1[x)
\ ] - p(C2]x)

probability

Figure 2.7 Class-conditional densities and correspo nding posterior probabilities

lllustration for one dimensional class-conditiorddnsity of two classes and their
corresponding posterior probabilities, The priopl@abilities for both classes are
assumed to be the same. Notice both class-condlitidensity and the posterior

probabilities intercept at the value x, at whichhoposterior probabilities are 0.5.

An alternative approach is to find the conditiod@tributionp(C, |x) directly. In
practice, discriminative models generally perforettér than generative models. The
complexity of generative methods is usually muaghkr than that of discriminative
methods. Taking an naive example of distinguisisipgken words between German
and English, if we take the generative approachywliehave learn both German and

English well. However, if our only purpose is tsdiminate between German and
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English, it will be more efficient to learn the féifences between German and English.
We can especially concentrate on the difficult veoethd pay less attention to the
trivial words. However, the problem will arise wheomeone speaks Dutch. If we
take the generative approach, we will realize inether German nor English, but
with the discriminative approach, we may misclasBititch as German. This may be
the reason why a lot of westerners tend to mistifjeiKorean as Japanese. The
advantages of the generative approach will arisermiiie want to further distinguish
between German, English, Dutch, and French. Ifake tliscriminative approaches, it
will require us to learn the new discriminative étions each time we want to identify
a new language, but with the generative approaehyilV only need to learn the new
language (the class conditional distribution of thew language), then we can
distinguish all the languages we have learnt.

In the context of neuroimaging, because the inpatures generally have high
dimensionality, it is nearly impossible to learm ttlass conditional distribution from
limited samples. However, when people start poatiatasets together, the generative
modelling approach should become more and moreatecu

There are some commonly used generative methodsexample, the Naive
Bayes classifier, which assumes independence betiwpat features, is equivalent to
sum of the mass univariate log likelihoods (Hiraa al., 2005). The linear
discriminant analysis (LDA) (Sato et al., 2008by ajuadratic discriminant analysis
(QDA) assume Gaussian distributions for the clas®litional densities. Both LDA
and QDA consider covariance structures betweenrestand LDA makes the further
assumption that the within group covariance isstr@e for all classes.

The common discriminative models, which are alsorttain focus of this thesis
are logistic regression, the support vector classifSVC), the relevance vector

classifier (RVC), and the Gaussian processes @sgEPC).
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2.4 Basic Machine Learning Algorithms

Before introducing more advance methods, this @eatill show some basic and
prevalent algorithms. There are two main categonesupervised learning. As
mentioned in the previous chapter, a supervisethileg method requires training
from obtained training data. A training set congairinput/output pairs,
S={(X, ¥, (X5 ¥),.... Xy » Y )} If the target variablg comes form a set of discrete
labelsy U{C, C,..G}, then it is a classification problem (ey.is the label for
patients or normal). Iy is a continuous numbgr] O, then it is a regression problem
(e.qg. yis the age).

2.4.1 Linear least squares regression

The history of least squares fitting goes a longy Wwack, and it is one of the
most popular methods in the world. When peopleriefeegression, by default, they
usually mean least squares regression. The bagarlregression models the output

as a weighted linear combination of the input fezguwith an offset term.
D
Y= WXt W (2.35)
Wherew,is a constant to model the bias or offset. We dsm arite this in a matrix

form,y =x"w +w,, or we can further simplify by adding a constaetreent in thex,

X W
so that x. :{J and w, :{

]y:xfw*. For simplicity of notation, we will
0
assume the feature vectrrcontains the constant element by default. Redal t

notation in section 2.1.4, where we define a daarimyX =[x, X,---x,]", of input

features. To estimate the weight veatgrwe set up a least squares cost function, so

that the optimum weight vector would minimize thamsof squares between the
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observed target variablesind the predicted outpXtv .
N
argmin iw-t, ¥ = Xw-t J w-t ) (2.36)
w n=1

To find the optimum parameterg;, we set the derivative with respectwoto O,

which yields the following equation
O=i x'w -t X! (2.37)
n=1
This can be written in the matrix notation as
0=X" (Xw -t)
X"™Xw =Xt (2.38)
w=(XTX)X Tt
This is often referred to as estimating paramddgrsrdinary least squares (OLS), and
the data matrixX is sometimes known as a design matrix (Fristoralgt2007c;
Friston et al., 1995). The OLS solution can alsdramed as a maximum likelihood
estimate with Gaussian noise.
t=w' X +¢& (2.39)
The error, £, is a zero mean Gaussian random variable wittamaes®. Therefore,

we can express the likelihood function as
N
Pt X w.0* )TN, w'x,0) (2.40)
Then we obtain the log likelihood function

In p(t |X w ,02)=%{ N Ino? = Nin(2m)-o?> €Tw - 1 )2} (2.41)

n=1

If we set the derivative of the log likelihood fuion to 0, and solve, then we obtain

expressions (2.37) and (2.38).

! Although the output/target variable was looselfird=l in the previous sections, to
avoid further confusion in the equations, we wakti to refer to the observed target

vector in the training set, aiydo refer to the predicted output vector from the model
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2.4.2 Regularized least squares regression
When the sample size is limited, in order to sdllveosed problems (i.eX"X is

non-invertible (Tarantola, 2004)) or to prevent mfiting, some form of
regularization is often introduced into the mod€he most common regularizer
involves also minimising the sum of squares ofgheameters. This is also known as
“ridge regression”.

arg mini Kw—t Y+A |w fi= Xw-t ) Xw-t ¥ w'w (2.42)

w n=1

The regularization parametér also called the decay or shrinkage term, contias
amount of regularization. Whelis large, the weight vectov will shrink toward zero,
and whem approaches zero, the estimatedvill have a nearly identical solution to

that obtained by OLS. To find the optimal solutiare set the derivative of equation

with respect tav (2.42) to zero.
N
0=) (X;w —t, )X} +Aw (2.43)
n=1
Which can be written in matrix notation as

0=X" (Xw -t )+ Aw
(XX +A W =X1 (2.44)
w=(X"X+A)X1

In the Bayesian view of ridge regression (Hsiangy/5), the regularization can be
viewed as priors on the weight vector. The priorofeen modelled by zero mean
Gaussian with the hyper-parametgrwhich denotes the precision (the inverse of the
variance) of the prior distribution.

p(w|a)=Nw|0a™) (2.45)
The resulting posterior distribution is proportibma the product of the prior (2.45)
and the likelihood (2.40)

p(w|t,X,a,0?)0pt W X o p¢ ) (2.46)
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The log of the posterior distribution

N
In p(w|X t,a,0° ):—;{0_22 Kw -t )2+awTw}+ constan (2.47)

n=1

Now we can see the similarity between the objecfivection in ridge regression

(2.42) and the log of the posterior (2.47) .The imaxn posterior weight is
Wypp =0 (07X X +al )X t (2.48)

If we take the ridge regression view, the regulgion parameter is equivalent to the
product of the variance of the noise and the pi@tisof the prior
distributiond = o”a (Bishop, 2006a; Hsiang, 1975).
In practice, the optimal regularization parametauld be learnt empirically through
cross validation, which will be explained in lassctions. However, we can also take
the Bayesian approach, which is to marginalize wnaipect to the weight vector and
find the hyper-parameters that can maximize theende functiorp(t |o?,a). This
will lead to the Bayesian learning of relevancetgemachines in chapter four.
2.4.3 Logistic least squares regression
Least squares regression tries to minimize the rsgaared difference between
the predicted and observed variables. In the fraonlewf a generalized linear model,
it is possible to apply a non-linear functiofi(x’w) and convert the linear
combination of the input features into non-lineastputs. Many different link
functions could be used, but in this thesis ongyltgistic function will be considered.
A logistic function is one type of squashing funati which constrains the output
between the range of zero and one. The Probit ifuma$s also another squashing

function. The definition of the logistic functios i

f=— = expK) (2.49)
1+expEx)  expk W I '

This leads to an interesting property of the logistodel thaf(x)+f(-x)=1
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Figure 2.8 Logistic function
The logistic function constrains the output range between 0 and 1. Notice the regions around

the middle of the function, where x=0, is approximately linear, with a gradient of 0.25.

The derivative of the logistic function also hasreque property

di(_ 1 expEx) .
dx  1+expt X)D1+ exptx) SUCRIC) (2.50)

This equation impliedf (x)/ dx= df(— ¥/ d>. To obtain the weight vector of the

logistic regression, we first define a least sgsi&mor function.
N
E(w) = (f(qw) - t,)? (2.51)
n=1
Sincef(x) is no longer a linear function, it is not possilbbeobtain a closed-form

solution similar to equation (2.44). Thereforejragstingw requires iterative methods,

such as the Newton-Raphson optimization:

W, =W o — (OOE(W)) " OE(W) (2.52)

new

Please refer to the Appendix B for details of tbedtives and the implementation of
least squares logistic regression. To demonstnat@pplication of logistic regression,
we applied the algorithm to a subset of the hippgza dataset, containing 179
subjects, and apply the regression to the hippoahrglumes and the Mini-Mental

State Examination (MMSE) scores (Fuller et al.,3;%erneczky et al., 2006)
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Figure 2.9 Linear regression versus logistic regres sion
The left figure shows a linear regression of the hippocampal volumes and the MMSE scores.

The right figure shows a logistic regression. The maximum scores of MMSE is 30.

Because the MMSE scores range from 0 to 30, it dvoudke sense to use a logistic
regression to avoid the capping effect from linegression. We also scale down the
MMSE to between 0 and 1 before applying the logistigression. The results are

shown in Figure 2.8.

2.4.4 Linear discriminant methods for classificatio

In section 2.3, we described both the generatidediscriminative approaches to
the classification problem. In this section, weused on the binary discriminant
function, which requires a weighted linear combmatof input features, as in

equation (2.35). If we define the labels yM{-1,1} , then binary discriminant

functions should have the form

.
>
:{1 W' X+w, >0 (2.53)

-1 w'x+w,<0
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The simplest method to determine the weight vectald be just treating the labels
as the target variables in a regression problem,satving this using least squares.
The solution in this formulation will minimize thequare of the distance between
each sample to the decision boundaries.

Another approach would be to use the perceptrooritthgn (Rosenblatt, 1962),
which is the primitive version of the artificial m&al network. It usually uses a
gradient based optimization to minimize the missifasation errors iteratively. The
perceptron algorithm can guarantee a solution whashno classification error if the
classes are separable, however, there are arntéenfinmber of possible solutions, and
the final solution would rely on the initial conidibs and learning rate of the
perceptron algorithm. Neither least squares, nemptrceptron methods, are based on
a probabilistic framework.

For linear discriminant models, the decision boundadefined by the subspace
of the input space that satisfigdx+w, =0. The decision boundary is orthogonal to

the weight vectow, hence it has one less dimension thafandwg). When the input
space is two dimensional, the decision bounda®y lise, and in three dimensional
input space the boundary would be a plane. Whemphe space is high dimensional,

then the decision boundary is sometimes referres @ “hyper-plane”.

2.4.5 Fisher’s linear discriminant analysis (LDA)

Fisher’s linear discriminant method, also knownliasar discriminant analysis
(LDA), is the most well known linear discriminanigarithm. This comes from its
simplicity and robustness when the distributiontheftwo classes are Gaussian. LDA
projects all the data points to a one dimensiopakcse and aims to maximize the

inter-group separation, as well as minimize infeess variation. Because the
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magnitude of the projection vector is not importave can calculate the vector
w =S (1, —py) (2.54)

Wherep,,pn,are the mean vectors of both classes,

1 1
B D X B = DX, (2.55)
Nan N G

and S, is the within class covariance, given by

Sw = z ()% _ul)(xn _ul)T + z (Xn _uz)(xn_uz)T (256)
n0G, G,

The bias term,w,, is commonly defined in the way that the averafghe means of

both classes would lay on the boundary in the ptegespace.w, = _%("2 +py)' W

We can also take a generative approach by assubuotiy class conditional
probabilities are Gaussian distributed with equaiaciances (Li, 2008)

p(x|G)= N(x|pn,X),  p&[G)= NK ju, X (2.57)

-

Figure 2.10 Two Gaussians with equal covariance
The left figure shows two Gaussian distributions with equal covariance, and the right figure
shows their corresponding contours. The boundary, which is defined by having the same class

conditional probabilities for both classes, is shown in the red line.

If we assume both classes have equal priors, themécision boundary will be the

subspace that satisﬁ%%%:l or log(p(x|C,))=log(pk |C, )). Therefore, the

X in the space of the decision boundary must satidfg condition that
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(X-p,) T (X-p,) =(X-p,) = (x-p,) . Expanding both sides we can derived the
following equation
2X Ny B+ 2X B, =0
S 1 _— (2.58)
X' X (uz-ul)-i(uz’ful) X (p,~ny)=0

If we reformulate the second equation in (2.589 itfte linear discriminant equation,

y=w'x+w, , then we can derive the identical solutiom=X"(,-p,) , and

w, = _%(Nz +p,)'was in (2.54). Different priors on the classes wdwdequivalent

to changing the offset term,.
LDA generally yields good performance in low dimemsal data. With

high-dimensional imaging data, LDA has the drawbdablat the within-class

covariance matrix,S,, is often non-invertible when the number of sarapselower

than the number of dimensions. This usually canrdsolved by regularization

methods (Chen et al., 2000; Thomaz and Gilliespp@®ensure thatS,, is invertible.

2.4.6 Logistic regression

We mentioned the least-square logistic regressiodeimwith a continuous target
variable in 2.4.3. In this section, we introducdogistic model with a different
objective function to solve the linear classificatiproblem. The logistic model for
binary classification arises from the assumptioat tthe log of the ratio of both

posterior probabilities has a linear relationship.

IogM =W'X+W, (2.59)
P(C %)

Then we can derive the logistic model for the pastgrobability.
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z=x"w+w, %:exp(z)
PG 1%, KG] X)=exp(z)+1= Gl 3+ G| X
PG X PG| X Gl 3 (2.60)
PG+ (G X¥=1

— 1 — —1
Dp(CZlX)_—exp(z)+1' (G| % expEZ ) 1

Because it is a binary classification, we can apipéyBernoulli distribution discussed
in section 2.2.4 for assembling the likelihood fumie. For the convenience of the

mathematical formulation, we changed the label frdrand 1 to O and 1t [1{0,1} .

N
pltiw) =[] fw'x,)" @ fv'x,)™ (2.61)
n=1
The functionf is the logistic function defined in (2.49). Foetkake of clarity, we also

take the augmented feature vectao incorporate the constant offset in the featete s

The log-likelihood function is
In p(t |W):i{tnln f(w'x,)+@-t)In@-fWw'x )} (2.62)
n1
As in the case of least squares logistic regressimne is no closed form solution to
the log-likelihood function. Therefore, an iter&ivmethod such as the
Newton-Raphson update method (2.52) is required.gradient of the log-likelihood

function is

0, In p(t |W)=§:(tn - fn)xn:—ZN:(fn—tn)(n:—XTd‘ -t) (2.63)

n=1

where f =f(w'x,). The second derivatives of the log-likelihood ftioie, also

know as the Hessian matrix, are

N
O0In p(t [w)==>" f (1~ f, X x| =-X"RX (2.64)

n=1

where theR is a diagonal matrix with elemenftg1- f,), which is also the gradient

of the logistic function (2.50). Therefore, the apelequation for the logistic model is
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simply

W, =W~ (XTRX)XTF —t) (2.65)

new

See Appendix B for an implementation in MATLAB.

To show the classification capability, we appliedibLDA and logistic regression to
the Alzheimer’s dataset. The decision boundaridsradgned by both methods are
similar. In a simulation study (Pohar et al., 2Q04)was found that when the
normality assumption of both classes were not tadlybviolated, both LDA and
logistic regression yield nearly identical solugsotiowever, when the assumption of
normality fails, logistic regression would perforisvourably compared with LDA.
This is because logistic regression does not hageassumption of normality, and
does not require the estimation of a covarianceirdtogistic regression does still
assume symmetry of the posterior distributions both classes, and extension of

logistic regression will be described in the sattol.2.
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Figure 2.11 Fisher’s linear discriminant

The figure shows the decision boundaries determined by both fisher’s linear discriminant
analysis (LDA) (Black line) and logistic regression (Magenta dashed line) for the Alzheimer’s
dataset, blue indicates the patient population, red indicates the controls. Since both
populations satisfy the Gaussian distribution, and have similar covariance, the boundaries
computed by both methods are also similar. The right figure zooms in closely to the decision

boundary.
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2.5 Cross validation and Model Comparison

In the context of machine learning and pattern gat®mn, the predictive ability
(empirical success) of a model is essentially teasare of goodness for a particular
problem. Different models and learning algorithnadn different assumptions and
learning strategies. Unbiased determination of iptieh accuracy is crucial to

selecting a desirable model for a specific pattern.

2.5.1 Cross validation and overfitting

When a model is trained, the accuracy with whicbxplains the training data
does not necessarily reflect the true generalimagiwor that would occur when it is
used to make predictions - especially when theitrgiset is small. Often, when an
algorithm is finely tuned to minimize training ersp a phenomenon called
“overfitting” would occur. Although training errors may be vergall for an overly
complex model, the generalization performance maypdor. Therefore to validate
the performance of a learning algorithm, we somesinuse cross validation to
provide an empirical measure of the generalizaperformance. Cross validation is
not only used to estimate the performance of aardihgn, it is also often applied to
tune parameters, such as the regularization paeanmetidge regression.

Cross validation techniques involve splitting thdl tataset into a training set
and a test set, repetitively. At each repetitidre &lgorithm is trained using the
training set, and the trained model is appliechiotest set. The average error over all
the iterations, between the predicted outcome ef tdst set and the real target

outcome, gives the test error.
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Under-fitting Optimal Overfitting

A

Error

\Jesting error

Training error

Figure 2.12 Risks of overfitting and underfitting

The above figure illustrates overfitting and underfitting. The three figures at the bottom
demonstrate three possible models of binary classification with the same data points. Red and
blue regions are learnt by the models after training. The left one is a linear model which
under-fits the data, and the right model has no training errors, but it exhibits a complicated
decision boundary. The middle figure is a compromise between training accuracy and the
flexibility of the boundary, hence it may be the optimal model for this particular dataset. (The
lightness of the colour indicate the strength to the classification likelihood, the darker the colour,

the more likely that regions belong to the particular class.)

The most common method is called K-fold cross-wi@h. The procedure
works by partition the dataset intd equal size subsets. For each validatig,
subsets (folds) are trained and the remaining ifldsed for testing. The procedure
will loop K times. At each iteration, a different subset Wil chosen as the new
testing set. This ensures all the samples willfmbuding in the testing set at least
once. IfK equals the size of the training set, then at eatidation run, only one

sample will be left out, hence it is called thevie@ne-out cross-validation (loocv).
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Finding a desirabl& involves a compromise between computational time the
training set size. IK is too small, the training set will be relativedgall at each run.
In practice, the choice of the number of folds dwjseon the size of the dataset.

In cases when a model has free parameters, ordimentg procedure includes
feature selection, in order to estimate the trgg@rtg error, a three way split (Cheng et
al., 2008; Ritchie et al., 2003; Su et al., 200)udd be employed. The data needs to
be partitioned into three sets, namely the trairsagy the validation set, and the test
set. The procedure works as following. First, thedel is trained using a training set
with specific parameters, and the prediction acuis evaluated using the validation
set. This procedure is repeated for all the choidggmrameters and models. The best
model (and associated parameter set) is seleatddrained using the combination of
training and validating set. The trained modehsnt applied to the test set to evaluate
its testing accuracy. It is also possible to apiiyold cross-validation for both
validation and testing. K-fold three way splits Maé a double layered loop, where the
inner loop runs over a subset of data to selecb#st model and parameters, and the
outer loop evaluates the testing error. The testskeuld always be intact when
computing the performance of different models i thalidation phase. Some
published experiments did not use a full three wpljt. These papers reported only
the best validating accuracy of the best modelcwimay be too optimistic and under
estimate the generalization error.

2.5.2 Evaluating performance

After performing cross-validation, we can obtainegicted labels (for
classification) or values (for regression). Forresgion algorithms we often evaluate
the performance using root mean square error (RMS@Egorrelation. RMSE is

defined as
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RMSE= \/%i(;— W2 (2.66)

wheret are the observed, or true, values in the datasdly are the predicted values
estimated by the model. If we are not interestethenoffset and scale between the
true values and the predicted value, we can ta&edirelation (2.14) of both as the
measure of performance.

For evaluating classification results, the simplestasurements would be the
classification accuracy rate, which is calculatedmf the number of correctly
predicted samples divided by the total number efdjated samples. Often, a single
measurement is not sufficient, especially in theesaof disease diagnosis, when the
costs of classifying patients into normal and tnerse are not the same. To present

more information, we often create a confusion matritable of confusion (Hastie et

al., 2003).
Predicted outcome
True label Positive (patient) Negative (normal)
Positive (patient) True positive (Tp)| False negafivn)
Negative (normal) False positive (Fp) True negafive)

The sensitivity of the classifier is the numbertfe positives divided by the
total number of real positives. In our exampleyiit be the number of patients. The
specificity of the classifier is the number of tmegatives divided by the total number

of real negatives (controls).

sensitivity:l, specificity= T (2.66)
Tp+Fn T

n+Fp

In our example, sensitivity is the accuracy of detg patients of the given test, and
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the specificity will be the accuracy of classifypan-diseased subject as normal. If we
recall the decision function for the linear cla®sif(2.53), it is possible to adjust the
bias, hence to trade between specificity and geigitConsidering figure 2.10, if the
decision boundary is shifted orthogonally to thghtj then more patients will be
classified correctly, but some normal subjects Wi classified as patient (false
positive). To visualize the trade-off between sevisy and specificity, we can plot the
receiver-operating characteristic (ROC) curve, asel the area under the curve (AUC)

as a measure of classifier performance (Huang argl R005).

0.8

0.6

Sensitivities

0.4
AUC=0.8939

0.2

0 0.2 0.4 0.6 0.8 1
1-specificity

Figure 2.13 Receive-operating characteristic curve
The above figure illustrates the Receiver-Operating Characteristic (ROC) curve of the logistic
regression classifier applied to the Alzheimer’s dataset. The corresponding accuracy is 0.8158

and the area under the curve is 0.8939.

The ROC curve normally plots sensitivities along trertical axis and 1-specificity
along the horizontal axis. A random classificatstrould yield a 45 degrees line from
bottom left to the up right with an AUC of 0.5. &stem that is better than random
should have its ROC curve above the 45 degreesiitiiean AUC greater than 0.5.
2.5.3 Model selection

Good generalization performance involves a baldmeteeen model complexity

and training accuracy. A complex model, such as witle little regularization and
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many parameters, will yield low training errors.the extreme case, the number of
input features or basis functions may equal or eddbe number of training samples,
and the model will explain the training data pettifecSuch a model is unlikely to
make accurate predictions. To avoid overfittingsitisually suggested to use models
with less complexity. People often refer to Occamdzor (Domingos, 1998) to
support the idea preferring simpler modelsHowever, Occam’s razor did not
specifically state sophisticated models should V&ded, but rather people should
prefer the simpler model than the complex model nwhmth have the same
generalization performance. If a more complex madlieve better generalization
performance than a simpler one, people should fawbe model with better
performance. In practice, cross-validation can ®wempirical estimation of the
generalization performance, but when the modelnmaisiple complexity parameters,
cross validating all the combinations of settingsynbe impractical. Therefore, it is
necessary to find a measure of performance whiplertis on the training set only.
One of the famous information criteria is the Alailaformation criterion (AIC)
(Akaike, 1974). It simply measures model compleXifythe number of parameters
and penalize it from the maximum likelihood estiesadf the model.

AIC =In p(D| 6,,,)—M (2.67)
whereln p(D| 6, )is the maximum log likelihood of the model, akdis the number
of adjustable parameters. For regressMrgould be the number of input features. It
is often combined with principal component analyBi€A) to orthogonalize the input
features and rank them based on their contribubaiotal variance. Model selection
based on AIC will try to achieve a compromise bemvéhe fitting of the regression

and the number of principal components (Brickmaralet 2007). Another similar

’ The original quote states “Nunquam ponenda est pluralitas sin necessitate”, which is translated into
“Entities should not be multiplied beyond necessity”
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criterion is the Bayesian information Criterion (8] which penalizes model

complexity more heavily
BEZMpﬂH%J—%MMN (2.68)

Here theN is the number of samples.

We can also take the Bayesian approach, of whigorithms in the later
chapters are based, to marginalize over the paeasneind obtain the evidence
function (2.5). Recall the Bayesian view on ridggression in section 2.4.2. Because
both the prior and the likelihood function are miodg Gaussians, it is possible to
find the analytic form of the marginal likelihoodrfction

p(tla,®)= pt W .o° oW o )ow
=N(t|0,C)

(2.69)

Here, C=c’l+a™XX" is the covariance of the marginal likelihood. Tlere, we
can estimate the hyper-parameters by maximizing eidence function without
dividing the data into training and validating sé¢re details are in chapter 4 on the
topic of Relevance Vector Regression (RVR). Foresashen the integration cannot
be achieved analytically, approximation methodshsas Laplace’s method and

variational Bayes can be applied (Friston et &l072; Mackay, 1992).
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Chapter 3.

Kernel Methods and Kernel Construction from

Neuroimaging Data
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This Chapter will describe the foundation of kermadthods, data preprocessing,
kernel construction, and basic kernel algorithm®rri€¢l methods are a specific
category of machine learning algorithms. The procesl can be broadly divided into
two components: the construction of the kernels #ied actual kernel algorithms
themselves. The two parts are mostly independentkesnel algorithms are not
constrained to particular data types or input fiestuThe same kernel algorithms can
be used with kernels generated from images, botralny other types of data, such
as documents, genetic data, etc. One of the adyestaf kernel methods is that
kernel functions take care of the conversion fr@w data into the desirable kernel
matrix. When the input features are in a high disi@mal space, such as with image
data, the kernel algorithms work in the dimensidpabf the input kernel. This
dimensionality is the number of training sampleather than the number of

dimensions in the original high dimensional samples

Raw data Input Features Kernel matrix Pattern Pattern
Analysis Function
Kernel
Pre-processin functi
p g unction P

[ ' f(x,)= aKx,x)
. RVM iD;ng |
_

Figure 3.1 The pipeline of kernel methods

The different stages of standard procedures for pattern analysis with kernel methods
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The general pipeline for pattern analysis usingn&kemethods involves five

stages:

1.

4.

5.

Extract measurements from the observed data, &anee, by converting
magnetic resonance images (MRYI) into tissue clasges.

Select the most relevant features for pattern argly

Choose the desired kernel function to convert tiput features into the
kernel space.

Train the kernel algorithm with the kernel or kdme

Obtain the pattern function and apply the functmpredict the new data.

Unlike most of the memoryless algorithms mentionedchapter 2, kernel

methods require the training data to be retainggt &faining. Exceptions to this

rule include algorithms that require only a spasleset of the training data to be

retained, or algorithms using linear kernels. Th&gyn recognition algorithms

themselves will be described in chapters 4 and laereas this chapter will

concentrate on kernel generation procedures.

3.1 Introduction to Feature Projection and Kernels

Chapter 2 introduced linear methods for classificatand regression. Linear

methods make predictions using weighted linear c¢oatibns of input features.

However, data may exhibit non-linear patterns mitiput space. To characterize such

patterns, kernel methods use the approach of mgupeinput space into a higher

dimensional feature space, via a mapping fungion

@:x00° - x)OF OOM (3.1)

Nonlinear characterizations in the input spaceaateeved by linear characterizations

in the new space. Theoretically, if the mapped sgwas equal or higher dimensions
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than in number of training samples, the algorithem dind an exact linear fit.
Although such solutions may explain the trainingtad&xactly, they may not
generalize well for making predictions based on rmata. A simple example of a
mapping is the polynomial mapping function. For ae-@imensional input
spaceX 00", a third order polynomial mapping will result ihet new feature
setp: x — @(X) =(x ¥, ¥)00°. Such polynomial basis functions are often used in

least squares regression, to fit non-linear padtarmata.

ik oM
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= nput feature fitted
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f(x)
o

Discrete Cosine Bas 15

input features

Figure 3.2 Feature projection with basis functions

This figure illustrates possible feature mappings to resolve classification and regression
problem for non-linear patterns in the original input space. The top row shows how a non-linear
decision boundary, between two classes in the input space, may appear linear after mapping
to a new space. For illustration purposes, the data points are projected into a two-dimensional
subspace for both input and feature space. The bottom row shows a regression example,
using cosine basis functions to fit one-dimensional sinusoidal data. The input features were
mapped into a five dimensional space shown at the bottom left. At the bottom right, the black
line is the linear fit through the input features. The red line shows the fit from the five

dimensional functions.
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Given a feature map, its associated kernel functiorks O° xO° - Oas
K(x,z) =< @(X),¢(z)>, x,zOOP (3.2)

Here <[I$symbolizes the dot-product operation, or the sunthef element-wise
products. < x,z >= ZiD:lxi z, x,z0O0OP .Such a kernel function is symmetric, so that

K(x,z2)=K(z,x). Notice that the feature map can also be an iigemapg :x —» X. In
such cases, the kernel is called a linear kernéKdr,z)=< x,z>= x" z. For each
input feature pair and the corresponding mappingtian, there is a unique value
determined by the kernel function. However, thetuea space defined by the

mapping function is not uniquely determined by kieenel function. For example, the

feature mapping defined Iy x =(x,%,) — @x) = (X, ><§,\/_2>gx2)yields the inner

product< ¢(x), @(z) >= Xz + X% Z+2 %% 7 3=<X,z>?, which is identical to the
inner product generated from the mapping functionefinged by
P X=(%,%) - @X)=(X, %, X%, % X% . Strictly defined, the kernel is in a

reproducing kernel Hilbert space (RKHS), which is ianer product space with
additional properties. For mathematical detailegpk refer to the textbooks (Schlkopf
and Smola, 2001; Shawe-Taylor and Cristianini, 300#ear kernels were mostly
used for this thesis, with only limited exploratiasf non-linear kernels. For

simplification, the thesis will refer to the kernelthe inner produce space.

We define the input matriX, whereX =[x,,X,,---X,]", and each row oK is
one vector of input features with elements. We also define the feature marisom
a particular mapping functian, wherep(X)=®=[g,,¢,,---¢,]" . Each row of ®is a
vector of mapped features wit¥l elements. The gram matrix, or kernel matrix, is

defined as th&l by N matrix K, whose entries ake; =< g(x; ), ¢x; ) >andK =P’ .
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The kernel matrix is a symmetric positive-semi-diédé matrix, which means that for
any non-zero vectax, x'Kx =0. This implies that all the eigenvalue of the matri
are non-negative.

Intuitively, the kernel matrix can be conceptualizas a matrix of similarity
measures between each pair of input training poifike kernel contains all the
information available about the relative positi@ighe inputs in the feature space. In
other words, if we rotate and translate the datamtpan the feature space, the
information contained in the kernel matrix will nctange, although the values of the
kernel matrix may change. Most learning algorithos®e only information about
relative positions. It should be noted that altHougost kernel algorithms will
maintain identical solutions after rotating andnsiating the data points in feature

space, some of them (such as Gaussian processsnousi not.

3.1.1 Dual representation

Many linear classification or regression algorithoas be formulated into either
primal or dual forms. In the primal form, we sebk tinear weights for each feature,
whereas in the dual form, we try to find the wegghar each training point. Both
weights are interchangeable. The commonly used pbeano illustrate the dual
representation is ridge regression (Bishop, 200®hawe-Taylor and Cristianini,
2004). The primal form was described in sectionZ.#here we derived the primal
weightsw = (X'™X + Al )™X t . Alternatively, we can rewrite the second line in

equation (2.44) to obtaim =A"X"(t —-Xw) =X "a . This shows thatv can be written

N
as a linear combination of the training poiI\Ms;Za,.xi , with a=A7"(t-Xw). By
i=1

substitutingw into this new dual representation, it can be shtvan
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Aa=(t-XX"a)
(XXT+ Al g =t (3.3)
a=(K+A)™

HereK =XX "is the linear kernel matrix, mentioned in an earlection of this
chapter. This formulation makes the computationhmeasier when the input features
are high dimensional, a§ is onlyN by N. Ridge regression can be extended into a
high dimensional feature space by apply a mappiagctiong. Hence this
formulation is also called “kernel ridge regresSi(tRR).

To make a predictiory)f from a new data point

N
y:WTX* :Zq K(xi,x*)=aTk* (3.4)

i=1

The vectok, =[K(X,,X.), K(X,,X.),--K (X% )" is the kernel of the new input
pointx, with all the training points in the training seh the dual formulation, the
algorithms do not need the input features or thpped features. Only the kernel is
needed, which describes the relative positionsiwitie feature space. This can be an
advantages of kernel methods when the input spadeature space is very large
D>>N or M>>N. Utilizing the kernel formulation also implies thais not necessary
to compute the features mapped by the fungioBecause only the kernel function is

needed, it is even possible to use mapping funetmath infinite dimensions.

3.1.2 Constructing kernels

The beginning of this chapter showed the conswouactif a kernel matrix by a
pair-wise dot produd =®®" . In practice, it is often not necessary to comghte
mapped feature matrix, because the new kernelxnzdn be computed from a linear
kernel. There are a number of rules to describectirestruction of valid kernel

matrices. Here, only those rules are listed thanhamst relevant to this work.
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Akernel, K, (x,,X,),scaled by a positive constant is also a valid Kerne
K(x,,X,) =cK,(X;,X,), ¢>0 (3.5)
The sum of two valid kernelsk,(x,,x,) andK,(x;,X,), is also a valid kernel.

K (X, X,) = Ky (X4, X ) + K (X X ) (3.6)

Combining both rules (3.5) and (3.6), it can be vahothat a positive linear
combination of valid kernels is also a valid kerridie element-wise product of valid
kernels is also a valid kernel

K(Xl’XZ): Kl(xl’XZ)K Z(Xl'x 2) (37)
The polynomial kernel can be derived by applying dbove rule (3.7)

Kooy (Xi5X) =< X, X, > (3.8)
The polynomial kernel can be further generalizeshétude a non-negative constant

Kpoly(xilxj):(<xi’xj >+C)d (3.9)

Expansion of the kernel (3.9) using the binomial eottem
. d
givesK , (X;,X,) = Zid:o( i

jcd‘i <x,,X; > . The constant term works as a control of

the relative weighting of the different degree mmimds. Increasing decreases the
relative weighting of the higher order polynomials.
A very popular non-linear kernel is the radial Bafsinction (RBF) kernel, which is

sometimes called the squared exponential kernel.
Kot (X, X, ) =expCy [ =X, i)
=exp{-y(<X;,X >=2<X X; >+<X % >)} (3.10)
=expEy <X X >)exp(¥<x X; > )eXp(y<Xj X >

°°1>€,We

Recalling the Taylor expansion of the exponentiaiction,exp(x)=Z._O-—'
=l

see that the RBF kernel is a valid kernel withriité features.

Another commonly used kernel is the normalized &kralso known as the Cosine
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similarity.

<X, X; >

(3.11)

Knorm(xi’xj)=
JSXX ><X X >

Because the normalization in (3.11) depends onotlggn in the feature space, we
often centre the data and set the origin in theufeaspace to the mean of the training
set. By defining amMN element column vector of ondsthe centred kernel matrix can

be computed by

K K-Sk - +—12|(R| DN (3.12)
N N N

centered —

If we recall the definition of the covariance mataof the features in section 2.1.4, the
centred kernel can also be viewed as a covariamtexnof the data points. Hence, a
centred and normalized kernel is also the coratatnatrix between data points of a
particular feature space. For the above non-likeanel, centring, and normalization
can be done without directly computing the datthanfeature space. All of these new
kernels can be computed from linear kernels geeeér&om dot product pairs of

training data points. However, there are a numbether popular non-linear kernels,
which are not mentioned or applied in this themm] not all of them can be computed
directly from linear kernels. So far, most inveatmys have used either linear or RBF

kernels for neuroimaging data (Fan et al., 200aa; ¢t al., 2008b).

3.2 Pre-processing and Generating Kernels from Imagg

Data

The previous section introduced theoretical aspefckernel methods and some

mechanisms to compute non-linear kernels from tineanels. This section will

* This will be generalized later, by using a residual forming matrix.
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describe practical aspects of generating kernessn feither structural or functional
MRI data. From Ugly Duckling theorem (Watanabe, @9prior knowledge is still
required to define the similarity measure. Withkgaound knowledge about the task
of pattern recognition, for instance, discrimingtipatients with Alzheimer’s disease
and normal controls, one may be in favour of kempeherated from grey matter
density map than kernel generated from raw T1-image
3.2.1 Data pre-processing for structural MRI data

Briefly speaking, MRI techniques utilize the prajpes of the nuclear spin of
protons in water molecules, to create contrast gmdifferent body tissues
(McRobbie et al., 2007). A variety of sequencesradiofrequency pulses and
magnetic field gradients, produced in the MR maehmake it is possible to create
different types of images with different tissue wasts. Structural (or anatomical)
MRI scans are often acquired using T1-weighed sempse but it is important to note
that many pulse sequences can also be used to ibmagestructure. T1-weighted
sequences have relatively short TR (repetition tiamel short TE (echo time), and are
often used to image brain structure because they rgiasonable separation between
the intensities of grey and white matter (GM and Wils well as between grey
matter and cerebro-spinal fluid (CSF). T2-weightedges are often used to detect
brain lesions. To most users, the main distinctiogtween T1-weighted and
T2-weighted images are their intensity distribusofor GM, WM and CSF. In
T1-weighted images, the intensity of CSF is lesmtthat of GM, and GM is less
intense than WM. In T2-weighted images, the ordereversed. The work in this
thesis mostly concerns degenerative diseasesedodts is on GM.

Although images may be acquired using the same Iibgdzach sequence and
machine may still have some variations. This magultein different baseline

intensities and intensity scaling of the same &ssun the raw MRI data. Therefore, it
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may not be feasible to use the raw MRI intensiassnput features for the machine
learning algorithms. A more reliable measure, whishinvariant to the intensity
distribution given the same tissue type, shouldi®ed. The procedure called “tissue
classification” or “segmentation” is applied to geste tissue class images from the
original scans.

Besides variability among the intensity distribagoof tissues, different brains
have different shapes and sizes. Theoreticallgrgev large training set containing all
possible variations of patient and control braws, could still learn the pattern of
difference; with minimum noise induced by inter @ab variability. This would
require a nonlinear kernel to accurately encodectimplicated shape variability that
may be encountered. In practice, available datdset$ to be rather small, so it is
necessary to reduce inter subject variability amlgase the with-in group similarity.
To achieve this goal, images would be warped irdtaadard space. This procedure is
often called “spatial normalisation”, and has tfffea of modelling out much of the
shape variability.

There are many publicly available packages to dgmsatation and spatial

normalisation, but the current work uses SPM8pf//www.fil.ion.ucl.ac.uk/spn)/

which the well-known package developed in our Rie-processing of images prior
to using pattern recognition can be done in a sinvilay to pre-processing for Voxel
Based Morphometry (VBM) (Ashburner and Friston, @02001).

The first stage of the pre-processing is to segrfemtoriginal MRI data into
tissue class images of GM and WM. In these tissagsdmages, the voxel values
range between 0 and 1 to represent the probabfliyvoxel belonging to a particular
class. In principle, the “unified segmentation” étion in SPM5 (Ashburner and
Friston, 2005) works for different modalities, sbis also possible to segment

T2-weighted or proton density-weighted images. FEigited images normally give a
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reasonable estimation of the GM tissue map. The segmentation routine (which is
part of SPM8) could also be used to achieve mblirel segmentation.

Segmentation in SPM is based on a mixture of Ganssiclustering method

(introduced in section 2.2.3), which is guided tsgue probability maps representing
the prior probability of encountering various tisdypes at each voxel. The algorithm
incorporates some nonlinear registration so thattibsue probability maps can be
overlaid, and also models out a smooth intenshpimogeneity artefact.

Because registration is built into the segmentatioodel, the output of the
routine can include spatially normalized versioristlte tissue class images. To
preserve the tissue volumes, an additional sc@igghe Jacobian determinants of the
nonlinear deformation) is applied to the normalim®ages (Davatzikos et al., 2001;
Good et al., 2001a; Good et al., 2001b). This Ikbqaially known as “modulation”.
The integral of the values from a GM tissue clasage in the native space, should
equal the integral of the modulated normalized ienddneoretically, if the registration
was perfect, all the spatially normalized imagesulobe identical without the
modulation. In practice however, because thereegularization imposed on the
registration, the normalization is not perfect dne residual differences between the
non-modulated normalized image and the templata &eaction of the regularization
parameters. From the pattern recognition perspective could use either the
Jacobian determinants or the residuals as inputiries for kernel constructions.
However, using Jacobian determinants as the irgattifes often yields similar results
to those obtained using the modulated images.

One slight drawback is that the nonlinear defororettiin the segmentation
routine are based on a model with only about 1g¥}ameters. Another is that only a
small-deformation approximation is used (Ashburaad Friston, 1999), so the

registration is only approximately invertible. Ttemplate space (MNI spac&rhau
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and Mcintosh, 2005; Evans et al., 1993 ), is alsown to be slightly larger than
brains from the general population (Lancaster gt2807). To decrease the within
group variability, an iterative template generatmgthod was used (Ashburner and
Friston, 2008) from the “DARTEL” (Ashburner, 200f9olbox of SPM5/SPM8. The
processing works as follows. Firstly, the segme@®dil and WM tissue class images
of each subject in the native space are rigidlgradld using a Procrustes method.
Initial template data are generated by averagiegGM over all subjects, and doing
the same for the white matter. The individual GMdawM maps are then
simultaneously registered with their correspondiamplates, and their respective
weighted averages are recomputed. This iterativ@ingand averaging procedure is
repeated 18 times. The regularization of the wayps reduced slightly at each
iteration. The outputs of this procedure are theutation templates of GM and WM
and the deformation parameters of each individoidhis template. The deformation
parameters are used to generate the modulatedoamélized images, which serve as

features for the subsequent pattern recognition.
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Small field deformation in Large field deformation in
MNI space (conventional population space (DARTEL

SPM normalization) normalization

Figure 3.3 Normalised brain by conventional SPM and DARTEL

The above figures show the results of two subjects with two different normalization methods.
The left figure shows the normalization using about a thousand discrete cosine transform basis
functions to parameterize the warp to the MNI template. The right figure shows the spatial
normalization using the DARTEL toolbox, with iterative registration and template generation.
The conventional SPM normalization clearly resulted in larger brains than the DARTEL
normalization due to the larger MNI template. The DARTEL normalization also performed
more accurate registration. The hippocampus shown at the bottom left of the figure is clearly

mis-registered

There are a number of other outputs generated dY&RTEL toolbox, which
could also be used as data for generating kernéliaess Each of them conveys
slightly different information about the shape alotal density. The Jacobian
determinants of the nonlinear spatial transformg meflect most information on
global and local shape differences. Alternativellye parameterisations of the
deformations could be used as features. Theretiyatoan established strategy to
determine which of those feature sets are mostrgalo tissue degeneration in the
context of multivariate pattern recognition. Thégly Duckling” Theorem explains
why prior knowledge of the data should really bediso formulate the similarity

measures.
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The current implementation of the DARTEL toolbox bhased on generating
diffeomorphic mappings via a constant velocity feamork. It is fast because it
allows a larger one-to-one mapping to be generdiingepeatedly composing a very
small deformation with itself, using a scaling aeduaring procedure. From a
theoretical perspective, a variable velocity apphauch as that used by the Large
Deformation Diffeomorphic Metric Mapping (LDDMM) gbrithm (Miller, 2004; Qiu
et al., 2007; Wang et al., 2007), would be supeti@DMM tries to minimize the
difference between the source and the template amag well as minimize the
geodesic distance of the deformation. It can aksshown, through the conservation
of momentum, that knowledge of the initial condisq(initial velocity) is sufficient to
derive the entire deformation trajectory. Such a&oddesic shooting” method is
currently being developed for inclusion within ti8PM software. The variable
velocity framework has some unique mathematic ptagse that make it a good
metric system. The initial momentum, which can benputed by a linear operator
from the initial velocity, can encode the inforneeti of the full deformation in a
spatially compact fashion (Ma et al., 2008).

The pre-processing pipeline is often finished bgpatial smoothing step. The
idea is to suppress higher spatial frequency sigwaich is more likely to be
uninformative for the pattern recognition (ie ngis€onventionally, people doing
VBM analysis convolve their images with Gaussiamkés of between about 8 and
12mm FWHM. The aim is to reduce the errors indugganis-registration, and also
to satisfy the assumptions of Random Field Thedkiter the more accurate
inter-subject alignment of DARTEL, the data woulgitally be convolved with
Gaussians of 6mm FWHM or less. For pattern recagnitthe optimal amount of
smoothing is an empirical problem, and requiressalidation to justify.

To generate a linear kernel matrix of the coho#,sinply treat each image as a
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long one dimensional vector, and compute dot prisdioetween each pair of images.
As when fitting a mass-univariate general lineadeidGLM) through the data, it is
sometimes desirable to remove some of the confagndter-subject variability that
could be explained by variables such as sex, educajender and a constant term.
We can apply the same method used by the GLM t@verthe linear effects of the

confounding factors at each voxel across subjétese, we take the same definition

of X as in the previous section, wheX=[x,,X,,---X,,]"and each row oK is one

vector of input features witD voxels. We can define aw by K matrix of confounds,
C, where each column is one covariate to remove fftwrdata, an& is the number
of covariates. From the general equation of orgirflaast squares (2.38), we can
compute the contribution of each confound at eanteMbyW =(C'C)™'C"X , where
W is aK by D matrix. The input data with the confounds remoiecbmputed by

X=X-CW =X -CCC)C™X =( €C "X (3.12)
whereC* =(C'C)'C" is the pseudo-inverse. We often define a residoanihg
matrix as

R=(I-CC") (3.13)

Normalised Jacobian determinants  Velocity field (3D vector field) which
modulated grey of the deformation parameterize the deformation. Only
matter map the x component is shown.

Figure 3.4 Output images from DARTEL
The three images show different maps generated from registration by the DARTEL toolbox.

Each of these maps encodes the information about shape and GM density in a different way.
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Recalling that the linear kernel is calculate&kaXX ", a linear kernel from data with

confounds removed can be computed by
K=XXT=RXX RTRKR " (3.14)

This shows that it is not necessary to directly seenthe confounding covariates at
each voxel, especially when the images having onidli of voxels. We can simply
compute a kernel using the original data, and flaetor out the confounds from it.
This proves to be computationally efficient, andoabdds flexibility when we may
want to remove different numbers of covariatesadidition, centering the kernel
using (3.12) can also be achieved by factoringaocdvariate consisting in a column

of onesC =[1,...,1] .

Segmentation Registration Normalization Smoothing

T1-weighted Deformation  Modulated Smoothed

MRI

parameters Normalized Modulated

GM and WM GM map Normalized

Templates
probability map GM map

Figure 3.5 Pipeline of structural MRI pre-processin g

The pipeline of pre-processing for structural MRI data.

In practice, the size of is sometimes beyond the allowable memory. Theeefor
kernel construction involves loading only part betfield of view of all subjects’
images into memory at a time. Because dot prodaretdinearly additive, the sum of

the kernels generated from each part is equivabetite kernel generated from the full
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field of view.

To summarize the pre-processing and kernel geperédr structural MRI data,
we firstly segment the raw MRI data into tissuesslanages in the cohort. Secondly,
the GM and WM maps are iteratively registered te fopulation template. The
deformation parameters are then used to genemratediulated and normalized GM
maps, which are in a standard space, and cons&kal gsM volumes. Sometimes
spatial smoothing is applied to remove image nars& registration error. The most
common input features for pattern analysis arestheothed modulated normalized
images. The linear kernel is computed first, argidieal forming matrices are later
applied to remove the confounding covariates. For-lmear patterns, conversion to
an RBF kernel (3.10) or polynomial kernel (3.9) neydone. The final kernel is then

used by kernel methods, such as the support ve@ohine.

3.2.2 Data pre-processing for functional MRI data

Functional imaging generally refers to imaging nitigs that are capable of
measuring regional neuronal activity, and includlestroencephalography (EEG) and
magnetoencephalography (MEG). When referring tactional magnetic resonance
imaging (fMRI), people often mean Blood Oxygenatioevel Dependent (BOLD)
imaging, which is an MR-based non-invasive techaitpumeasure signals related to
brain activity. The most recognized theory abow ¢higin of the BOLD signal is
based on changes to concentrations of deoxygehatadglobin in the draining veins
(McRobbie et al., 2007). When regions in the ba® invoked in cognitive tasks, in
order to provide the energy for local action pasdrdnd synapse activity, the local
blood flow will increase to bring more oxygenatdddal (Attwell and ladecola, 2002;

Logothetis, 2008; Logothetis et al., 2001). Becatlsefully oxygenated blood and



84

deoxygenated blood have different magnetic suduiépés, higher concentrations of
oxygenated blood will increase the BOLD signalsydftiogical constraints also
induce delay and dispersion into the measured lsighmother words, a response at
the neuronal level does not cause immediate BOgDasichanges, but changes that
are often characterized by a hemodynamic respamszidn (HRF). The HRF peaks
about 5 seconds after the stimulation, and mayhreacundershoot after about 15
seconds. The overall duration of the response ifmmas around 30 seconds, and
sometimes a initial dip can be observed (Malonak @rinvald, 1996), which may be
due to initial increase of deoxygenated blood. PMS a “canonical HRF” is modelled
by two Gamma functions, with seven parameters tdrobthe overall form (Friston
et al.,, 2007c) (figure 3.6). The precise shapehef HRF has been shown to vary
across different regions in the brain as well ay @&ross different people (Aguirre et
al., 1998; Schacter et al., 1997). However, forabevenience of modelling, we often
use the canonical HRF or sometimes vary the delaye onset, but maintain the

shape of canonical HRF.

2.5

«—— Peak

=
o
T

Undershoot

Signal change (%)
H

0 5 10 15 20 25 30 35
Post-stimulus time (s)
Figure 3.6 Hemodynamic response function
The canonical hemodynamic response function (HRF) of the BOLD signal modelled in SPM5.

The delay of the peak is 6 seconds, and the delay of the undershoot is 16 seconds,
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Echo planar imaging (EPI) is the usual imagingtstia to measure BOLD
signal, as it provides relatively strong signahtmse ratio with short acquisition times.
However, EPI suffers from susceptibility-induced aige distortion and several
artifacts. In the imaging field, the majority ofviestigators use gradient-echo echo
planar imaging (GE-EPI) , which has a T2* weightedtrast (Logothetis, 2008).

In fMRI studies, sequences of EPI are acquiredetwrh subject in a particular
experiment. The first stage in pre-processing @mligement and re-sampling of
images to remove movement artifacts. This procedgi@ly transforms the images to
match the template, which can be the first imagéénsequence or the average of the
images. Rigid-body transforms in 3D are parameddrltsy translations in all x, y and
z directions and rotation around all x, y and zsaX@om the perspective of pattern
recognition, the variability arising from rigid bpanotion lies on a six-dimensional
manifold embedded within a space having the sammemkionality as the number of
voxels. Therefore, removing motion effects can éensas a form of dimensionality
reduction, and increases the within group simiksit

To further reduce dimensionality, those brain regiothat are, a priori,
considered non-informative to the pattern recognitshould be masked out (or at
least down-weighted relative to more informativgioas). BOLD signal change is
generally believed to occur mainly in grey matses,its major cause should be the
local neuronal activity. Masks defining grey mattan be generated for each subject
by segmenting one of the EPIs using (for example)unified segmentation approach
implemented in SPM5. A practical reason for maslong non-grey matter tissue is
that it accelerates the speed of kernel generaBgmasking out other tissues, only
20% of the whole image is used. It may also hawenbgossible to coregister the
anatomical image with the fMRI, and identify greyatter from this. Nevertheless,

functional images tend to suffer from spatial distms, especially in the frontal
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region due to the air in the frontal sinus, so &ymmot have been possible to
accurately overlay grey matter masks derived frioenanatomical scans.

If the aim is to apply pattern analysis method®os&rsubjects, we will have to
spatially normalize the fMRI data to minimize dmediarity due to inter-subject
variation. There are three commonly used ways #diapy normalize fMRI series
using the SPM5 software.

1. Match the fMRI data to an EPI template image, bgimising the mean
squares difference of the intensities.

2. Coregister the functional images to a structuragmof the same subject,
and apply the normalization parameters estimateadhgiuhe unified
segmentation routine in SPM5 to the functional data

3. Coregister the functional image to the structunahge, apply DARTEL
to the structural images and use the estimatectiglbelds mentioned
in 3.2.1 to warp the functional data.

There is a less common way to normalize the fMR& dagure 3.6), which has
been shown to perform slightly better in our engairiresults of pattern predictions.
This is to segment the EPI using unified segmeamatand later apply DARTEL to
the tissue class images segmented from the EPleStiaated deformation fields can
then be used to spatially normalise all the fumalalata.

Usually, when fMRI data are spatially normalisetjastigators do not adjust the
data to account for the relative expansion or @mtisn incurred by the warping.
However, incorporating such a Jacobian scaling stap prove useful, although we

have not yet collected empirical evidence to teistitlea.
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Mean EPI of each subject

Segmentation v DARTEL

Velocity field Normalized
G} ntialaverage  of one subject image

Subject 1
\4
Subject 2 > Intermediate ->
Subject 3 @ Final average Apply the deformation  Smoothed with
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Segmented EPI jieratively register to volumes of the same Gaussian kernel
lising SEMS and evolving group subject ,with no
rigidly aligned average

Jacobian correction

Figure 3.7 Pipeline of spatial normalisation for fM RI data

The pipeline shows the unconventional way to spatially normalize fMRI data. The EPI of each
subject are segmented into tissue probability maps. Those maps are used to create the
population template using DARTEL toolbox. The normalization parameters are then applied to

the original fMRI data.

Signal changes in fMRI that are due to brain astitend to be slightly lower
frequency over space than the much of the noigen fer Wiener filtering perspective,
the signal to noise ratio can be increase by dpat@Emoothing the images.
Empirically, we found that accuracy could oftenibereased by convolving the scans
with a 6mm FWHM Gaussian Kernel. Another reasonafgplying spatial smoothing
was to suppress interpolation errors from fMRI tisegies realignment (Grootoonk et
al., 2000).

3.2.3 Temporal modelling for functional MRI data

Low frequency drift has often been reported in fMRie series. This drift has
been attributed to physiological noise or subjectiom, but few studies have been
done to test this assumption (Smith et al., 199%e drift models currently

dominating fMRI analysis are linear subspaces spary a set of polynomial or
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discrete cosine transform (DCT) basis functionsnign et al., 2004; Tanabe et al.,
2002). In the context of fMRI decoding, low freqegndrift affects the prediction
accuracy significantly. The optimal amount of lowedquency component to be
removed sometimes varies from experiment to exmmrimand can only be
determined empirically. Often, for event relatedmsti with short durations, the
cut-off frequency can be set at higher value fer ltigh-pass filtering. In contrast to
this, removing only the linear and quadratic disfioften sufficient for block design
experiments.

In SPM, the low frequency drift is removed by irdilug DCT basis function as
confounding variables in the design matrix, andde&ult cut-off frequency is 1/128

Hz. DCT is an invertible frequency transform fosdiete data. Mathematically, for

each voxel v, the time serieg ={v} 2 is collected fromN time points and can be

transformed into a frequency sequenice{ f} X3

N-1
%Zvn =0
f = o (3.15)

234 T 1
— ) v cos n+=)l I=1,..N-!
NZO n m( 2)]

After pruning the low frequency drift terms (i.eequency components less than
or equal to a particular number of minimum basiss,seay L) in the original

voxel-time series, the detrended sequerfce{v} N is obtained by the inverse

transforms

\7n=\/%§f,cos%l(n+—;)] n=0,..N- 1 (3.16)

I=L+1

Note that the DCT can be represented as a matritipheation. LetG be theN by L

matrix withg, :\/%cos[% (n+%)l] l=1,.L, gnylz\/%, where L denotes the

number of the minimum DCT basis which are meardgagemoved. It can be shown
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that the detrending operation is
V=v-G(G'v)=(1 -GG ")v =Rv (3.17)
TheR matrix is the residual forming matrix mentionedsaction 3.2.1. Notice in
(3.17) we use the transpose of Bematrix rather than the pseudo-inverse in the
equation (3.13). This is becau€eis an orthonormal basis &tG =1. Since this
procedure is equivalent to removing confoundingaciates, we can generalize matrix

G with any basis functions that model the drift. Egample a quadratic basis set will

be G=| : : :|and we can apply (3.13) to calculate the residwaming

matrix.

To compute the linear kernel from the fMRI dataiegrwe can take the same
definition of X as for structural MRI, whereX =[x,,X,,--X,] and each row oX is

one vector of input features wiih voxels at one time point. Conventionally, we use
ascending order for the order of the row i.e. ir& fow in X is the first image in the
fMRI time series, and the last row K is the last image in the series. The linear
kernel is then computed By=XXT. Recall equation (3.14), we can apply this
equation to detrend the linear kernel and avoid éxpensive computation of
detrending all the voxels.

Researchers often apply additional pre-processindplbck design experiments
in fMRI pattern classification, so there would belyoone representative image per
block. The most common pre-processing strategiekude averaging the image
volumes over the duration of the block (Cox anddya2003a; Mourao-Miranda et
al., 2005). This can be generalized to the morgagieapproach of obtaining the “beta
map” (parameter image) for each block, which aeerdgression parameters from a

general linear model (GLM) (Eger et al., 2008; Igaskorte et al., 2008).
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Both approaches are linear operations, so it isipesto formulate them as
matrix operations. In fact, both “average maps” dreta maps” are a weighted linear
combination of the images in the time series. $oaf@quare residual forming matrix
has been described for removing uninteresting bidgrman the kernel. Such a
procedure does not necessarily require the matriket a square residual forming
matrix. Instead, it could be one for convertingeariel generated from the original
data, into a kernel that would be obtained by gativey dot products from the
parameter images.

Mathematically, we can define a vector of weightooefficient,p, which has
the same number of elements as the number of imegdése time series. This
weighting vector is generated by taking the pseusierse of the regressor in the
design matrix of the corresponding block. Usuallye regressor is the HRF
convolved block (See figure 3.8) or a boxcar fumtsi with 6 seconds delay after the
onset of the stimulus. The 6 seconds delay conmes the delay of the peak of the
HRF (figure 3.6). We can also take a more genepgraach by including the
confounding covariates in the design matrix, arke téhe pseudo-inverse of the
design matrix (all the regressors) correspondinghto specific block. The is the
transpose of the row of the pseudo-inversed matiresponding to the specific beta
values (parameters of the regressors) in which nearderested. If every block has
the same length, we can use the Kronecker produgtierate the “average forming
matrix” or “beta map forming matrix” (temporal conggsing matrix) b =10p",
wherel is the number of blocks by number of blocks idgntnatrix. This approach
can be extended to event related fMRI as wellatfheevent is modeled as a separated
regressor in the design matrix, the temporal cosgang matrixP is simply the
pseudo inverse of the design matrix. The new daddrixncan be evaluated by

X =PX and the compressed kernel can also be evaluatectigifrom the original
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linear kernel generated from all the image volumgssXX T =PXX P TPKP" .
The dimension of this new kernel will be the numbgblocks or events, rather than

number of fMRI volumes in the series.

p: :-JL- = n
@“ Original kernel . e ﬁ .E?!
: : : ) Compressed kernel

Average of volumes - 18 by 18 (average of

forming matrix = volumes)

14 volumes each
Beta map Compressed kernel

(7 active, 7 resting)
18 by 18 (beta map)

p: 0

2 i e sl01214 3 Cond|t|0ns X |
B svooseanx || =P
forming matrix o

Figure 3.8 Temporal compression using matrix operat ion

This figure illustrates the matrix operation to compress the original kernel into the reduced
kernel whose dimension is the number of blocks. The experiment in the example had a total of
252 image volumes, with 3 different types of stimuli using the block design. Each condition has
6 repeats, and each block contains 14 volumes (7 volumes of active condition, followed by 7
volumes of resting). The averaging operation computes the kernel by averaging the 3"to the
o image volumes in each block. And the operation to generate the equivalent kernel from
beta maps can be realized as a weighted averaging by the mean removal HRF (see the profile

of p at the lower left corner in the figure)

There is also another formulation called “spatgfiporal” (Mourao-Miranda et
al., 2007)". In this formulation, images in eaclodk are concatenated into one long
vector, hence the input features contain both apatid temporal information, i.e. the
temporal information is not averaged. Unfortunatehjis formulation cannot be
arranged into the same matrix operation. Therefeeeexpress each element in the

condensed kernel as a sum of weighted kernel elisnirerthe original kernel (figure
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3.9)

Ko = zz g; K(k—1)+i n(-1+] (3.18)

i=1 j=1

wherek,, is the element at rowand columr in the condensed kerneljs the number

of image volumes in each blocR is the n by n weighting matrix containing the

coefficients a,, for each of the elements in the original kernetc&8use the kernel

matrix K is symmetric, the weighting matrix is also symneetr
A [ Bl | u
n n d h
Ky = |Z=1: 2 8 K 1y +i n-2y+ —) 'ﬁ : ."'
14 by 14

weighting  Average of volumes

Compressed Kernel

18 by 18
matrlx// o = - = N E N
S i § :I'
7 —) - el
. - i
Original Kemel R Compressed Kernel
252 by 252 Beta map 18 by 18

3 conditions x

6 blocks each x

SRR Compressed Kernel
Spatlal temporal 18 by 18

Figure 3.9 Temporal compression using generalised o peration

This figure illustrates the generalized operation to compress the original kernel into the
reduced kernel whose dimension is the number of blocks. The experiment is the example used
in figure 3.8. The new elements in the compressed kernel matrix are the sum of the weighted
elements in the original kernel, computed using equation (3.18). The weighting matrix is shown

on the second column of the figure. Brighter colours indicates higher values.

The weighting matrix for the beta map can be combulirectly from their weighting

vectorp, byA =pp'. For the spatial-temporal operation, the weightinatrix is a

0 i0s
partial diagonal matrix, such thar;, :{1 i0s’ where S is the set of images
' i
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concatenated in the block, and it is often seletddoe the same set as the averaging
operation. Generally speaking, the full kernel ixatrom the entire time series is
often utilized in the kernel regression framewowhereas the condensed kernel

matrix is used in classification problems, where dhjective is to categorise events.

3.3 Introduction to Basic Kernel Algorithms

Before going into more sophisticated kernel aldponi$ in chapters 4 and 5, this
section introduces some basic algorithms for ciugjeand classification. Data
decomposition methods will also be introduced, saglisingular value decomposition
(SVD), principal component analysis (PCA), as wadl the more general kernel

principal component analysis (KPCA).

3.3.1 Singular Value Decomposition and dimension#i reduction
In linear algebra, Singular Value Decomposition [BVis a factorization to
decompose amN by D matrix X, into anN by N unitary matrixU, an N by D
rectangular diagonal matri® and aD by D unitary matrixV (Lay, 1997; Moler,
2006).
X =USsV' (3.19)

U is often called the matrix of left singular vectaactors, and contains orthonormal

basis set{u,...,u.}, so UTU=1I. Similarly, V is called the matrix of right singular

vectors, containing the orthonormal basis §efs..,v,}, where V'V =I . The

diagonal entries is are the first r singular values ¥f s >s,2...2 $>0, where r

is the rank of the matriX. If we define the linear kernel KsXX ', then it can be

represented big =USS' U . If we recall the definition of eigenvalue andasigector,

Xu=Au, we can realize that the orthonormal vectfus...,u,} are actually the
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eigenvectors of the linear kernel, and the squiiteeosingular valueds’,..., §} are

the eigenvalues.

Section 3.1.1 mentioned that one advantage of wgrki the dual form is the
computational efficiency when the number of dimensis much higher than the
number of samplespD >> N . In fact, the data points do not span across thelev
feature dimensioD, but rather span the subspace that is bound battkeof the data
matrix, r =rank(X)< N. Therefore, we can reduce the data maXixwhile still
maintaining all the information regarding the relatdistance between data points. In

other words, we can reduce tRdy D data matrix into ai by N matrix

X =US=XV,V ={v,...,v } (3.20)

This often reduces the computation in the primaifao be the same as that in the
dual form. However, this technique of dimensionaliteduction still has a
shortcoming compared with when dealing with higmeinsional data in the dual form.
The drawback appears when we want to preserveuthmfiormation and maintain a
lossless dimensionality reduction while additiodata points are added. If we apply
SVD on the initial training set, the effective dinsgon is bounded by the number of
training points. When new training points arriveg wan still apply the firsi right
singular vectors to project the new data point® itite subspace defined by the
original training set. Unfortunately, this will rede the information carried in the new
data. If we want to preserve the information, weaulddave to apply SVD every time
new data arrives. In practice, if the initial traig set is sufficiently large, we can be
quite confident of obtaining adequate informatidteradimensionality reduction is
applied. Hence we can fix the number of singulaitmes to a desirable value.

For memory reasons, it is usually impractical toatepose the huge matrk.

To overcome this issue, we can generate the lkeraelK by sequentially summing
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up kernels computed from subsets of the full daal, then apply SVD to the matrix

K. The SVD can decompose the matrix into its eigetore and eigenvalues,

K=UMT,L=SS o, =S’ . After obtaining the left singular vectors, ande th

eigenvalues we can compute successively to find thght singular

vectorsy, = X"u,§,V =X'US™. Because it is a linear operation, part of theiewis

in the data matrix can be sequentially loaded topmate the corresponding elements
in the right singular vectors. The reduced matfikght singular vector¥ is N by N .
SVD can be applied not only to dimensionality reduy but also if there is
enough redundancy in the data matrix (i.e. onlgtretly few singular vectors can
represent the original data matrix adequately);emental SVD can be employed to
estimate missing entries (Brand, 2002; Kurucz e28l07 ). In the context of imaging
data, we can use this method to replace voxelshageé volumes containing artifacts,

by treating those entries as missing in the fulbdaatrixX.

3.3.2 Principal Component Analysis and Kernel Prinipal
Component Analysis

Principal Component Analysis (PCA) is a very populasupervised learning
method for data visualization, lossy dimensionatgguction, and feature selection.
Intuitively, PCA can be understood as a techniqueotate and sometimes flip the
data points, without translation and scaling sucht the data points in the new
coordinate system are orthogonal, i.e. there ar®ffidiagonal components in the
sample covariance matrix of this new coordinateéesgs This leads to the maximum
variance formulation of PCA (Bishop, 2006b; Jodif002). To simplify the notation,

we assume the means in each dimension of dataxm@athave been removed, as

described in section 2.1.4. We can define a prigieetnit vectow,, such thav, v, =1.
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The projected data points in this one dimensiopate are computed By, , so the
variance of the projected datavisx'Xv, =v]Xv,, whereXis the data covariance
matrix defined in equation (2.13). The objectivel e to maximizes; Lv, with

respect tov,, under the constrainf v, =1. To solve this optimization problem, we
introduce a Lagrange multiplidy to convert into the unconstrained optimization
ofv] v, + A,(1-v]v,). Setting the derivative with respect tg to zero, and solving,

leads to the characteristic equation

Xv, = AV, (3.21)

This means that, and/, are the eigenvector and eigenvalue of the samplarizmce

matrix. We often define the largest eigenvalue asatorresponding eigenvector as
the first principal component. The additional pipat components are the rest of the
eigenvectors and eigenvalues, ordered such thateienvalues are decreasing.
Because the covariance matrix is positive defittite, eigenvectors are orthonormal to
each other. In fact, PCA can be implemented by SWben SVD is applied to the
covariance matrix, the singular vectors are therssly the eigenvectors, and the
singular values are the eigenvalues. When the diroeality is very large, computing
the sample covariance matrix is infeasible. Weroftest generate the linear kernel,
and apply equation (3.12) to centre the data, bed &pply SVD to the centred kernel.
The data projected to the principal componentsbeaavaluated using equation (3.20).
Notice that the projected data points will be ddéf& if the kernel is not centred.
Sometimes, investigators remove the projected comepis with lower eigenvalues,
and retain only those principal components thatrdaute most (e.g. 96%) of the total

variance (Ashburner et al., 1998). A related teghej called Principal Component



97

Regression (PCR), selects a few principal compaenesith high eigenvalues as the
regressors in the model to avoid over-fitting. Hoare sometimes the low variance
components may be important (Jolliffe, 1982). PR@ also be combined with model
selection criteria introduced in section 2.5.3. ¥da use AIC (2.67) or BIC (2.68) to

select a desirable number of principal compondBiisKkman et al., 2007).
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Figure 3.10 Principal component analysis

The left figure is the original plot of right hippocampal volume versus left hippocampal volume,
and the right figure is the data project to the first and second principal components. The
relative distance between each data points in both figures is the same, however, the data

points were mean removed, rotated and flipped.

Because the projected data can be computed byiequ@20), and the left
singular vectorsl, computedwithout needing to work on the original input fertsi
we can apply the kernel trick to project the datto ia higher dimensional space.
Typically, an RBF kernel function would be useddathe principal components
computed in the high dimensional projected feasyace. This is called Kernel PCA,
and is a technique that may sometimes reveal sttegestructure among the data

points.
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Figure 3.11 Kernel Principal component analysis

The left panel shows the first two principal projections of the implicit feature space of the RBF
kernel with the parameter value })=2.5e-6, using the same data as in figures 2.6 and 3.10

(hippocampal volumes). The circular shape is due to the property of RBF kernels. Notice that
the diagonal elements in the RBF kernel are all one, which implies that the data points are
projected on to a hyper-sphere. The right panel shows the principal projections of a fifth order

polynomial kernel. The red colour indicates controls and blue indicates patients.

3.3.3 Basic kernel algorithms

This section introduces some elementary algorittwminsch sometimes assist the
visualization or analysis of data. The first woddd using kernels to calculate the
distance to the group average in the kernel spasesimplify the notation, we

replaceyx) by as the features of one data point in the projefgatiire space. The

distance between any two data points can be cadclbey

o =0, (=<0, —¢; @ —¢, >=<q g >-Xq g >+<q ¢ > (3.22)
= K(X;, %) = KX, % )+ KX ,X )
This leads to the equation for computing the distawfcany point from the mean of a
particular set of sampleg|g. —o, [f=<¢. 9,>—2<¢. 9 >+<0¢ ¢ >, Where
¢, is the centre of mass of the set, and the norm gigen by
ji=1

1 < 1< 1 N .
o, |f:<ﬁzi=1‘|’i ,Nzizl(pi >ZWZ K & X; ). Therefore, the distance to the

centre of mass is given by
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1 o 2 <N \
lo. -0, [f=K & x +WZ“:1K & X )_Nzile ko x ) (3.23)

This is often useful when the aim is to detectietgl in the training groups, and
removing those that are more than (say) three atdndeviations away from the
mean.

Another simple classification algorithm is called-N¢arest Neighbour
classification (KNN). In KNN classification, the ads of a new data point is
determined according to the majority class memiyershthe K closest training data
points (Bishop, 2006b; Duda et al., 2000). For hirdassification, K is typically an
odd number to avoid equal numbers of neighbourd&dth classes. Because the
distance between any data points can be calculesied (3.22), this algorithm is very
easy to implement. Another advantage of this allgoriis that it does not require any

training. However, cross validation may be neededetermine a suitable setting for
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Figure 3.12 K-near neighbour classification

This figure shows the leave one out cross-validation accuracy with different K for the K nearest
neighbour classification. The left panel shows the accuracies using a linear kernel generated
from the left and right hippocampal volumes, and the right panel shows the accuracies with
fifth-order polynomial kernel. The maximum accuracy of 83.68% is achieved with k=7 using the

non-linear kernel in this example.
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The distance matrix, computed with equation (3.28n also be used for
clustering. The hierarchical clustering method #reldendrogram can reveal hidden
structures of similarities among subjects or caod#. For example, if we have
several experimental stimuli in an fMRI experimemte can use hierarchical
clustering to group similar conditions togethercauitically. This may tell us which
conditions are similar in terms of their BOLD patie Hierarchical clustering works
by initially assuming that there are as many chssées data points. Then each cluster
will merge with the nearest cluster until only ookister remains, or when the
minimum number of clusters is reached. The dendragmhich is the visualization
tool for the hierarchical clustering tree, consistsnany upsides down U-shape lines
connecting different clusters. The height of eaeherse U represents the distance

between the two clusters being connected (seed-BjaB).
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Figure 3.13 Cluster analysis using dendrogram

This is an example of a dendrogram applied to the fMRI experiment mentioned in figure 3.8.
We used the volume averaging kernel introduced in section 3.2.2, so each label represents
one type of experimental stimulus. Label ‘1’ represents unpleasant stimuli, label ‘2’ represents
neutral stimuli, and label ‘3’ represents pleasant stimuli. From this dendrogram, we can see
unpleasant stimuli (label 1) are quite distinctive from the neutral stimuli (label 2), and that the

unpleasant stimuli seem to be less dispersed.

For the current example, we used the Matlab fonctilinkage’ and
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‘dendrogram’ in the statistics toolbox. The onlygqueed input is the pair-wise
distance, which can be computed using equatior2)3There are various methods to
evaluate the distances between clusters. The coromeshare:

*‘Single-linkage’, which measure the distance betwekisters by finding the
distance between the closest points in both clsister. the shortest possible
distance between members in cluster one to memiversluster two.
dist(C, C) =min(dis( i })),i0 G, jOC,.

*‘Complete-linkage’, which is the opposite of then@e-linkage, finds the
furthest points in both clusterslist(G, C,) = max(dist(i, j)),il0 G , jU C,.

‘Average-linkage’ evaluates the overall averagetlod distances between all

1 Lo
S d )
GG, o, (st D)

*‘Centroid-linkage’ measures the distance betweercéntroids of the clusters.

possible pairs in both clusterslist(C, C) =

Besides hierarchical clustering, there is a wethkn clustering algorithm called
“K-means” clustering which is famous for its singily. The algorithm is a greedy
method; hence it only guarantees to find a locéhagm, so the solution may change
with different initial estimates. The algorithm wer by iteratively evaluating the
distance of all data points to the cluster centeesl assigning cluster membership
according to which centre is closest. This schesniéerated until convergence. The
free parameter K, which is the number of clustkas to be specified before running
the algorithm. From equation (3.23), we can disectiilize the kernel formulation
and calculate the distance to the cluster centréisowt explicitly evaluating the
cluster centres in the feature space. We firstaliie anN by K indicator matrixA,
which  specifies the membership of each data poinso that

_{1 if x; is in clusterk

ik

= , . We can compute the cluster centreXdpD , where
0 otherwise
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X is the data matrix, and th2 is K by K diagonal matrix having the inverse of the
column sums oA in the diagonal entries. The distance of all ghatiats to the cluster
centres can therefore be computed logiag DA (KAD T — KA2 , wherel is anN
element column vector, and diag() indicates thgahal entries of the matrix. Once
the distances to cluster centres has been evajuhtedluster memberships A can
be reassigned based on the shortest distance. prbisedure is iterated until

convergence, when no elementins reassigned.
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Chapter 4

Kernel Regression Methods and their Application

in Functional and Structural MRI
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This chapter will introduce the methodological agtpeof kernel regression
methods, namely Relevance Vector Regression (R@Rpport Vector Regression
(SVR), Gaussian Processes Regression (GPR), anddheel Ridge Regression
(KRR) mentioned in section 3.1.1. Projects emplgyihese methods to both fMRI
and structural MRI data will be presented in defélle fMRI related works are the
“Pittsburgh Brain Activity Interpretation Competiti 2006 (PBIAC)”, in which we
achieved 5 place, and the “PBIAC 2007”, in which we cametf{@arlton Chu et al.,
2009; Ni et al., 2008). The project using strudtit&| is on “Regression analysis for
clinical scores of Alzheimer’s Disease using muatigte machine learning method”.
It is a collaborative work with Drs. Stefan Kloppmhd Cynthia Stonnington, using
data from Dr. Clifford Jack at the Mayo Clinic. lgsented this work as both a poster
and an oral presentation at the Organisation fom&u Brain Mapping (OHBM)
conference in 2007.

The general regression framework was introducesettion 2.4, and assumes
that a training set containing input/output pads,{( X, t),(X, t),...,(Xy .t )}, where

t is a continuous number] [0 . The general model for a linear regression prolieem
t=zzzlwdxd+offset+ errol, which means that the output is a weighted linear

combination of input features, plus a constantetfésnd noise. The general model for

a kernel regression ig = ' BK(x.,x)+offset+ error, Which means the output is a

iCtraining
weighted linear combination of the kernel generdtech the input sample, with all
the training samples - plus offset and error. Somoelels may not include an offset
term. Both SVR and RVR are in the category of spdternel machines, which
implies that some of the kernel weightg,, are zero. In other words, not all training
samples contribute to the prediction of the testamples. One advantage of kernel

methods is that the kernel algorithms are invari@ntthe type of kernels used.
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Therefore, all the issues relating to non-lineatguas were previously encapsulated

in Chapter 3 (kernel construction). However, ifreeér kernel is used, we can obtain

N
the weights in the input feature space h/y:Zﬁ;xi, which can be useful for
i=1

gaining insight into which features are informative

4.1 Introduction to Kernel Regression Algorithms

KRR was previously described in section 3.1.1, somore needs to be said
about it here. RVR and GP both use a Bayesian framie SVR will be introduced
first. Usually when describing the Support Vectoadfline (SVM), the classification
form is introduced first and the regression forrteabards. Classification is directly
linked to the fundamental core of SVM (Vapnik, 1998nd is also the most popular
form. In fact, SVM is often used to refer only tagport Vector Classification (SVC).
SVR is often viewed as a regression model motivégdhe philosophy of SVC.
Because of the structure of this thesis, SVR isrilesd prior to SVC, but it is
advisable to read about SVC first in Chapter 5.

4.1.1 Support Vector Regression

In the SVM framework, the optimisation problem mngex, so the solution it
finds is the global optimum. Another feature of SM#/its property of sparseness
(Vapnik, 1998). To achieve both sparseness andgtbbal optimum, SVR is
motivated by defining a loss function, which igr®rerrors within a certain range
between the predicted and the true (target) vallieis. is called an-insensitive loss
function (Bishop, 2006b; Cristianini and Shawe-6ay000; Schlkopf and Smola,

2001; Smola and Olkopf, 2003). A typical linear dos function
isL,(x,t)=]y-t|,y=w'x+band a quadratic loss functionligx,t) = (y—t)*, where

t is target, or true value, anydis the predicted value. The lingainsensitive loss is
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defined by

L (x,t) = max(0,ly-t fe& | (4.1)
and the quadratic-insensitive loss is defined by

L5 (x,t) = (max(0,ly -t |-¢ )] (4.2)
This means that if the conventional linear lossa®w a threshold valug the loss is

ignored. If we adapt the regularised linear regogss (2.42), the objective function

for SVR with quadratie -insensitive loss is given by

N
DL+ A Iw If (4.3)
i=1
9 T T T
- ; — 4
L\ = |inear €-insensitive loss Y]
8 7\‘ == == = quadratic &-insensitive loss 7]

LA
6 ‘\
2 3\
&, A

— ----\ 2\8 -\--- —
- -1 0 1
predicted value-true value

Figure 4.1 e-insensitive loss function

Both linear and quadratic ¢ -insensitive loss functions with the value of ¢ setto 2.

This optimisation problem can be reformulated byoducing slack variables. Two
slack variables are required for each data pouth ghat & >0 corresponds to the

point wheret >¢+y (the predicted value is more thabelow the target) and
g%i >0 corresponds to point where<y —& (the predicted value exceeds the target
value by more thag). In addition, the slack variables satisfy the diton
thatg%ifi =0. This implies that for each point, either bothcklavariables are zero

(when the data point is within the insensitive 2prme one of the slack variables is
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zero. In the one dimensional regression examptpr@ 4.2), if the data point is
outside the insensitive zorgg, indicates the error from the data point to theaupp
boundary of the insensitive zone, anzﬁ:l indicates the error from the data point to the

lower boundary of the insensitive zone.

Figure 4.2 1D Support Vector Regression

lllustration of a one dimensional Support Vector Regression problem, with a linear
£ -insensitive loss function. The left panel shows the solution with a linear kernel and the right
panel shows the result of a RBF kernel with the same data points. The dotted lines indicate the
insensitive “tube”, defined by the £ parameter. The data points are indicated by crosses, and
the circles are the so called “support vectors”, which are the data points defining the solution.
In other words, they are the data points with non-zero kernel weights. Data points within the

insensitive tube do not contribute to the solution.

The primal objective function of the regularisedRSWith quadratie -insensitive loss

function is given by

minimize |w |"]+Ci E2+E%)

subjectto W'x, +b }t<e+& i= 1,.N (4.4)
t—w'x+b xe+é& i=1,..N
&&=0,=1.N

TheC and ¢ settings are often chosen using cross validatfen= 0, this objective
function is equivalent the ridge regression in 22.Aotice the difference between the

free parameterC and the A used in conventional ridge regression. In ridge
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regression,A controls the amount of regularisation. In SVR, tegularisation is
fixed andC controls the amount of penalty from the trainimges. Therefore higher
C indicates less regularisation, and lower C in@isatronger regularisation. The dual

problem can be derived by introducing the Lagramgéipliers, &,4§.

maximize Zti 6-a )—sZ (a+ar%2 @-a)p-p)Ex x >+Elé,», )

ij=1

N
subjectto > 4-3 F 0, 3= Oa= 0= 1,.N
i=1
(4.5)
where g, ; is the delta function, having a value of 1 only=f, and zero otherwise.

We can then substitute=4a —3, and use the relati@yg =0, which is inherited

from the corresponding slack variables. We can kiyn{@.5) to the following

maximize ZN:ti,éf—gzN: 1B k%iﬁ,&; €x X >+El¢'j :
i'\:ll i=1 ij=1 (4.6)
subjectto > =0, i= 1,.N

i=1

This is essentially a quadratic programming problenThis equation

N
ij=

1 : :
l,3“3](<xi,xj >+EC?'])' can also be reformulated into the matrix form

BT (K +%I )B, whereK is theN by N kernel matrix, and is an identity matrix of the
same dimensions. We can see the similarity betwasrformulation and KRR (3.3):

both methods adjust the regularisation by addiagatal entries to the kernel. After

fitting, predictions can be made by

f(x.) =Y. BK(x.,x)+b (4.7
where b is chosen so thatf(x,)-t =—¢-4/C for any i that 8 >0 or
f(x))-t =+ B /C for anyithat 8 <0. In practiceb is chosen by averaging the
solution of b, for data points satisfying3 # 0. This reduces numerical rounding

errors.
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Although the quadratic loss function is more clgselated to ridge regression,
the linear ¢ -insensitive loss function is more popular for SVIRe primal objective

function of the regularised SVR with a quadratimsensitive loss function is given

by

minimize %Hw ﬂ+ci €+8)

subjectto W'x +b Ft<e+é j= 1,.N (4.8)
t—Ww'x +bxe+é i= 1,.N
E&=0=1.N

The corresponding dual form can be derived by thtoing Lagrange multipliers

maximize Yt 6 -3 )-£), @+2),Y (@-ANA- A)xX X >
|N:l i=1 ij=1 (49)
subjectto > 4-3 F 0, 3= O0a< Cij= 1,..N

i=1
We can also substitutgg =a —§ to derive

maximize itiﬂ,—gi 1B I'%ZN:,Q,G’] <X X >
i=1 i=1 ij=1 (4.10)

N
subjectto > =0, C<B<Ci= 1.N

i=1

In the linear loss function modd),is chosen so thatf x( -}, =—¢ for anyi that
satisfies &< B <C, or f (x, )-t =&for anyi satisfying -C < <0. These data
points are right on the boundary of the insensitiube”. The data points with3 =0
are inside the insensitive “tube” (see figure 4.2pd the data points with
either3 =C org =-C are outside the tube. Notice that both (4.6) ahdQ) are
very similar. For the formulation of quadratic lpske only difference is the extra
diagonal elements added to the kernel. Thereforenwthird party SVR software
does not explicitly support the quadratic loss fion; which is often the case, we can
simply use an implementation of the lineansensitive SVR to compute the kernel
weights for the quadratie-insensitive SVR. This is achieved by setti@gto

infinity and adding regularisation to the diagomééments of the kernel, prior to
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passing it as an argument to the algorithm. If gtiategy is adopted, it is essential to
note that the offset term, is calculated differently for both formulations.

If training samples with zero weights are remowvexh of the original training
set, the new result will yield an identical solutiorhis means that any additional
training samples, which locate in the insensitiveet of a previously trained solution,
will not benefit the training. However, in practjca cross validation using the
extended training dataset may suggest a differesdth” for the insensitive tube.
Generally speaking, training SVR is very fast, amel solution is also guaranteed to
be globally optimal. The sparse solution suggdsts $VR is faster when predicting
new data points, than is KRR - especially whentithi@ing set is very large. However,
the two free parametersC(and ¢) in SVR increase the computation time by
requiring cross-validation to optimise them. Ingiree, the solutions obtained using
SVR are not very sparse for fMRI data. A largeeimstive parameter can increase the
sparsity, but it may also harm the performance.

For this thesis, SVR was performed by passing ecpmputed kernel matrix to

the LIBSVM toolbox http://www.csie.ntu.edu.tw/~cjlin/libsvin/

4.1.2 Relevance Vector Regression
Relevance Vector Regression (RVR) is also a spieeseel method, but it is
formulated in a Bayesian framework. While the gahekpression takes the form of a

dual formulation, RVR treats the kernel as a sdingfar basis functions in order to
obtain the form of equation (4.7)p:x. 00" - @(x.) = (K(X , X),.....k& ,% NOO".

RVR is not strictly a kernel algorithm becauseirfsut is not required to be a kernel
satisfying Mercer’s condition. In other words, tkernel need not be symmetric and
positive definite (Tipping, 2000, 2001). In factewould also use input features for

RVM rather than kernels, and enabling sparsityhia feature space to be achieved
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(Peng et al., 2008). It is also possible to takg arfew “representative samples”, and
use the similarity measures, i.e. kernel valuesdiesimilarity measures of those
samples for the basis functions (Pekalska and 0A5). In such a case, the input
will be theN by M matrix, whereN>M. The general RVM takes the full kernel for the
input, and prepends a column of ones to model tfseto We will denote thé by
N+1 basis functions b =[I,K ], wherel is anN element column vector of ones. The
likelihood function of the data set can be modebad a Gaussian distribution,
p(t|B,o%)= N( |®p,o? ). Similar to the Bayesian view of ridge regressieach of
the weights, B, are assigned a unique zero mean Gaussian phda.differs from

ridge regression, where all the elements of theghtehave the same variance, ™.

The RVR models the prior of B with independent variance,
N
p(p|a) = l] N(B, |0,a™). This formulation is similar to the Bayesian viefvridge

regression mentioned in section 2.4.2, so the postdistribution is also similar to

equation (2.46). It is given by pB|t,a,0’)=N@|p.X) , where
Y=(o7®'®+A)™" is the posterior covariance andl =diag(a,,a,,....a, )is the

diagonal matrix with the precision or the inverdetlte variance for each weight.
n=0L®'t=(® ®+0°A)'®'t is the maximum posterior weight. This is nearly
identical to the maximum posterior solution forgaédregression, except the diagonal
matrix does not have identical diagonal elememttuitively, this can be viewed as
using different amounts of regularisation for ea€lthe “training samples”, where the
amount of regularisation is controlled by the hyparameters. In the Bayesian
framework, finding an optimum solution involves nraising the marginal likelihood
(type-Il maximum likelihood) with respect to the ger-parameteraxand a noise
variance o®. Because both the likelihood and the prior are etemtl by Gaussian

distributions, it is analytically feasible to degithe marginal likelihood function by



112

integrate over the parameters. The marginal libelthis also a Gaussian
p(t]a,0%)= [ p(t |B,0)p® lo )dB= N¢ |OC (4.11)

where C =0’ +®A'®" is the covariance of the marginal likelihood. Ttgective

of the optimisation is to find the hyper-parameté&sr®, which maximise the
“evidence” of the data (Mackay, 1992; Tipping, 2DR0This is closely related to
restricted maximum likelihood (ReML) and estimatiohcovariance components in
the statistical literature. (Friston et al., 206&rville, 1977; Henderson, 1953). The
covariance matrix that maximises the marginal ik@d can be obtained by iterative
re-estimation or expectation maximisation (EM). Bptimising the hyper-parameters,
we can differentiate (4.11) and set the derivatveero, based on the approach in

(Mackay, 1992). The update is given by

'newzi 2 newzllt_(DB |F 412
a, Iuiz' () N_Zyi (4.12)

wherey, = I-a; 2, represents a measure of how well the corresporpingmetef3

is determined by the data, arlj = (07%¢' @ +a )'is theith diagonal element of the

posterior covariance. Wheun, is large, S is heavily regularised, s&; =a;, and

it follows that y, =0. This indicates that the corresponding weight asslwell
determined by the data. When maximising the maldikalihood, some of thex

will grow very large, implying a small prior variee. Because the prior is zero mean, a
parameter with an extremely small variance reswilishave its posterior probability
sharply peaked at zero. This property allows ixah¢ columns of the basis functions
to be pruned out, and is known as automatic relsvaetermination (ARD)(MacKay,
1995). Because the solution is sparse, it mean®itia some of the training scans are
used for prediction. Those scans are called “relesavectors”, and are analogous to

“support vectors” in the SVM framework.
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Figure 4.3 1D Relevance Vector Regression

lllustration of a one dimensional Relevance Vector Regression with an RBF kernel (the free
parameter ) = 0.3). In the top plot, the solid line is the mean of the predictive distribution, and
the grey stripe has the width of two standard deviations. The data points are shown as crosses,
and the relevance vectors as circles. The bottom plot shows the variance of the predictive
distribution. Notice that the variance estimate from RVR is actually higher around the

relevance vectors, and smaller away from them.

When making the prediction, RVR has a similar fdorother kernel methods,
except that the test point is augmentedg@s.) =[L k(X ,X ),....k & X, )], where
X;,1 =1,...,N are the data points in the training set. The ptextias given by

f(x)=21,4(x)A (4.13)
with a predictive variance ob” = g” +¢(x. )" Z@(x. ) . This is the variance in the data

plus the uncertainty of the predicted maximum pasteveights. Unfortunately, there
is a property of the predictive variance estimdtesn RVM, which is that if the test
pointx, is far away from the centres of all relevance vestthe values of the basis

function ¢(x.) become small. This formulation results the secoedntin the
predictive variance going to zex.)" Z¢(x.) =0. Therefore if the test points are

far from the training points, their estimated potidie variances are actually smaller
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(Rasmussen and Quifionero-Candela, 2005)(see figu8g This behaviour is
undesirable, and is not shared with Gaussian Psonethods.

Although both SVR and RVR are sparse kernel methtbasy exhibit different
sparsity properties. Section 4.1.1 mentioned tlatoving non-support vectors from
the training set will result the same training tefor SVR, but this is not the case for
RVR. Removing any non-relevance vectors from tlaéning set may result in a
different solution, and even a different set oéwvalnce vectors.

Work in this thesis used in-house RVR code written MATLAB®

(http://lwww.mathworks.con)/

4.1.3 Gaussian Processes Regression

A Gaussian process is defined by a collection afloan variables, any finite
number of which is normally distributed (Rasmusaed Williams, 2006). Gaussian
process approaches for machine learning were intextirelatively recently (MacKay,
1998, 2002; Williams, 1999). There are usually twiews of Gaussian Process
Regression (GPR): the weight-space view and thetifumspace view.

The weight-space view is from a similar perspectivehe description of RVR
and ridge regression, where a standard linear segre model with Gaussian noise is
used, p(t|®,w)= N(®w,o’l). This is a more general formulation than (2.40),

where @ = ¢(X) encodes the projected features, and has dimensidmby M. The

weights are modelled by a zero mean Gaussian ppgw) = N(0,X By

prior ) '

applying the Bayes' rule (2.5) we can obtain tHefaing relationship

p(wt,@) = RUEYIPW) - noren (¥ [ p 0w pw v (4.14)
Pt ®)

The posterior distribution is given kyw|t,®)=N(@?Z @'t

post where

post) )

L= (0@ ®+3 ). To make a prediction of a test sample, we integrate

prior
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over all parameter values, which are weighted bg torresponding posterior
probability.

p(t [@( ).t @)= p(t | )w)ptw It ® v

(4.15)
= I(ﬂ(x*)TWD(W |t,®)dw = N(0°p(x. ) £, @"t,0° + gk ] Z  pK ))

All of the formulations above are identical to tader RVR. We can also re-write the

equation using the kernel formulation by
p(t |gx. ).t @)= N '%,,® K+o1)t,

(p*TZprior(p* +02 _(P*Tz (I)T K +02| _)1(I)zprior P.

prior

(4.16)

where K =®3> . @', and ¢(x.) is denoted by, for convenience. We often

prior

_ 1 L. )
assume =a™l,s0o K ==®®", which is a scaled kernel matrix, also known as

a

prior
the covariance function in the context of Gaus$aocesses. Further details of the
derivation can be find in the text book (Rasmusaed Williams, 2006), which is

freely available online dtttp://www.gaussianprocess.org/gpml/chapters/

In the function-space view of GPR begins with thefidtion of a simple

Bayesian linear regression modet,=®w , with the prior p(w)=N(0|Z ).

Becauseyis a linear combination of Gaussian distributedaldes, it is itself also
Gaussian distributed, and defined by the followimgan and covariance.

Ely] = ®E[w] =0

covly)=®Ejww’ @' = ®3 (4.17)

o' =K

prior
For the regression model with Gaussian noise, itedifood probability is given
by p(t|y)= N(y |o ), and the marginal distribution §y) = N(0,K ). Integration
overy gives the marginal distribution

p(t)=[ p(t ly)pyy)d = N¢ |0C ) (4.18)

where the covariance matiixis defined by
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C=K +09 (4.19)
This equation resembles the covariance matrixifembarginal likelihood for RVR in

(4.11). In fact, RVR is a special case of GPR. Thegariance matrix in RVR is
defined by C=a;'¢;0, +a,'0%0 ,+...a 9,0, +01, where ¢, is theith row in
the feature matrix® . A simple covariance matrix with a linear kerreekbonstant and
the noise term is given b =gXX"+6,+6] , where § =0models the weighting
for each component. More generally, we can defieekernel matrix by

K (X, %;) = K (%% )+ K, (X % )+ OK % % ).+ ¢ (4.20)
For example, the kernel matrk can be a positive weighted combination of an RBF
kernel, a linear kernel, a polynomial kernel anzbastant. Here we take advantage of

the kernel trick without needing to explicitly dedi the feature matri® .

For N training samples, we denote the distribution eftifaining data plus a new
test data point bp(t,.,) = N(0,C,,), wheret,,, =[t,...t,,t.]' andC,,,is anN+1

by N+1 covariance matrix

Crn =( ¢ kj (4.21)

k' ¢
Covariance matrix C is defined by (4.19), the vectork has elements
k,=K(x,,x.),i =1,...N, and the scalar value = K(x.,x.)+0o?. Using the properties
of conditional Gaussian distributions, we can cotapghe conditional distribution of
p(t [t) by

p(t. [t)=NK'C™t,c-k 'C k) (4.22)

This is equivalent to (4.16) by defining=¢.'% ., ¢. +o°and k =¢."Z , ®".

prior
However, the formulation in (4.22) does not require feature space to be specified

directly. Note that the mean of the predictive mhsition can be included in the
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general kernel regression equatjor Zi“:l,ei K(x.,x)=k"p, where g =C™t. Because

C is the combination of the kernel matrix and a dreg) matrix, this resembles the
kernel ridge regression (3.3), where the kernelhtsi are given byp=(K + A1)t .
However, in the usual ridge regression framewohle free parameters are often
determined by cross validations. In the Bayesiamé&work, those free parameters, or
hyper-parameters, can be learned by maximisingniduginal likelihood (4.18). This

is also known as the “model evidence”, whose ligliihood function is given by
In(p(t|6,0%)) = —% In|C |——;tTC 4 —ﬂz In(27) (4.23)

It is therefore possible to optimise the evidenneorder to find the optimum
regularisation for a ridge regression, without réeg to cross validation. This
framework has many other uses, for example, itcdcdad used to find the optimum
threshold for high-pass filtering of fMRI time sesi Furthermore, the evidence
framework can allow comparisons among differentggatmapping models (Friston
et al., 2008). In this work, which | am a co-autledr we mapped input voxels into
different linear pattern spaces. This included tise of linear kernels, principal
components, and spatially smoothed input data.ekdy search was applied to find
sparse solutions that maximise the model evidem¢kadse pattern spaces. Instead of
making predictions, we made inferences based omthael evidence from different
pattern spaces, and compared the models this way.

The major advantage of using model evidence tocsélgper-parameters is its
computational efficiency. When the number of freargmeters increases, the
computation for cross validation grows exponentidih practice, hyper-parameters
learned through maximising marginal likelihood aft@rovide reasonably good
performance, but they are not always better thapehparameters learned by

cross-validation. Examples will be described in thext section on practical
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applications.
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Figure 4.4 1D Gaussian Process Regression

lllustration of a one dimensional Gaussian Process Regression using a RBF kernel. The
hyper-parameters of the RBF kernel and the data noise were learnt through maximising
marginal likelihood or the “model evidence”. The input data features are the same as in figure
4.3. In the top plot, the solid line is the mean of the predictive distribution, and the grey stripe
has a width of two standard deviations. The data points are shown by crosses. The bottom plot
shows the variance of the predictive distribution. Notice that the variance is actually lower
around the data points and higher away from them. This property is the converse of RVR, and

iS more accurate.

For the implementation, we used the GPML Matlab Idoo

(http://www.gaussianprocess.org/gpml/code/matlaldfjdeth some modifications to

allow the use of pre-computed kernel. We also amdescodes to enable generating
linear combination of kernels. There is anotherhmuse implementation by Dr.
Ashburner. In this implementation, Powell’s lineageh method (Press et al., 1992) is

applied to optimize the marginal likelihood.
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4.2 Application: Pittsburgh Brain Activity Interpre tation

Competition 2006

In the spring of 2006, the psychology departmentheUniversity of Pittsburgh
held the international “Pittsburgh Brain Activitgterpretation Competition” (PBAIC),
in conjunction with the Organization for Human Bravlapping conference, which
was held in Florence later that year. All detabl®at the competition can be found at

http://www.Irdc.pitt.edu/ebc/2006/competition.htmlhe competition was primarily

organised by the “Experienced Based Cognition” (EBfoject, of which the
principal investigator was Prof. Walter Schneiddre goal of the competition was to
“challenge multiple groups to use state-of-thed@mthniques to infer subjective
experience from a rigorously collected set of fMRh other words, the competition
aimed to test the ability of different pattern rgotion methods for mapping the
BOLD patterns in fMRI data to the subjects’ expece during scanning. These
techniques are often referred as “fMRI decodindieie were 273 teams registered to
take part in the competition and 40 teams submitted results at the end. Our entry
came %' in the competition. The prize money was $10,000e first place, $5,000
for the 2%place, and $2,000 for th&"Blace.
4.2.1 Overview of the competition: data, goals, anslcoring system

The fMRI data was provided by the competition orgars. Data were collected
from three subjects viewing three 20 minute londewss, which were re-edited
segments of the American comedy “Home Improvemeniiere were also resting
(blank) periods for each run of the video. Ratiadgadwvere collected on 13 subjective
features rated by each subject, plus seven adingsaand seven location ratings. The
subjective ratings were collected after the fMR3ssen from each subject separately,

which means subjects watched the videos repeatediyrovide the 13 different
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ratings. Thirteen of the ratings were compulsory tbe participants of the
competition, and there were an additional 14 ojiioatings, which would benefit the
participant if they scored higher than the averalgeompulsory ratings. The ratings
were named “amusement”, “attention”, “arousal”’, dyoparts”, “environmental
sounds”, “faces”, “food”, “language”, “laughter”’mfotion”, “music”, “sadness”, and
“tools”. For further details, please refer to thmmpetition websites. All the ratings
were scaled between 0 and 1, and the baselinedet af the ratings was 0, except
for arousal and attention, which had a baselin@.Bf The organiser provided all the
fMRI volumes for the three subjects viewing theethrvideos segments, but only the
ratings for the first two videos were provided. Thigiective for each team was to
use data collected from the first two movies ineord learn the mappings from fMRI
volumes to the subjective ratings, and then apipéylearnt mapping to predict the
ratings from the third video. To resemble the mayaventional GLM analysis, each
rating was convolved by the canonical hemodynaesponse function (HRF) (figure
3.6). Instead of predicting the original ratingse tobjective was to predict the HRF
convolved ratings i.e. regressors in the desigmirmat

The fMRI volumes were acquired in a Siemens 3T gkle scanner with
TR=1.75s, TE=25ms, and flip angle=76 degrees. Tibe tickness was 3.5mm and
xy voxel size was 3.28mm. Each video was approxima&0 minutes, so there were
858 volumes for the first run (corresponding to tingt video), 868 volumes for the
second run, and 900 volumes for the third run. Thdeo and volumes were
approximately synchronised across the three suhjéatditional structural data was
also collected in the same scanner, using a MPRAGguence with 1mm slice
thickness and 0.82 xy voxel size. The organisemdlkiprovided pre-processed data
done using Brain Voyager. We chose to pre-procéss raw data with SPM5

ourselves.
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The score for each rating was evaluated using Bearsorrelation between the
predicted rating and the true HRF convolved ratifig.encourage participants to
improve their predictions and achieve higher aaoyrthe scores were converted into

Fisher’s z score,z, =tanh™ (i, ):% mw ). In order to rank the performance from
_rxy

different teams, the competition committee developeingle “competition score” by
averaging all the z scores for thirteen ratingalbthree subjects, and then convert the
averaged z scores back to correlation coefficidBésause z scores are non-linearly
related to correlations, improving a correlatioonfr 0.65 to 0.75 increases the scores
by twice as much as improving a correlation frorh 1. 0.2. Each team was allowed
to submit their prediction of run three only thrt@mes. The best competition score
among the three submissions was compared withesitesisores of the other teams.
4.2.2 Our approaches to tackle PBAIC 2006

This competition was held less than six monthsrdfteegan my PhD study. In
addition, the release of the full dataset was alago each team had only about five
weeks to complete their entries. As | was very pegienced, | teamed up with a
senior researcher, Dr. Janaina Mourao-Miranda, ftbm Institute of Psychiatry,
Kings College. At this stage, | still had much &ain, and spent more than a week
pre-processing the dataset, using various SPM®naeessing options. | worked on
RVR with my own pre-proceesed data, and Dr. Mow@nd worked on SVR with
spatially normalised data pre-processed by the etitign organisers.

For our own pre-processing steps, all functionahdeas realigned and resliced,
and the T1 structural image was coregistered withfMRI data. The grey matter
(GM) was segmented from the structural image, &ed tesampled to have the same
dimension as the functional data. This GM map wsesluo mask out non-grey matter

tissues. The time series of each voxel were dedgbnasing a piecewise linear
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regression model. The breakpoints of each linegmsat were set at the middle of
each resting period. At this point, | had not readi that detrending could be done to
the kernel using a residual forming matrix, as dbed in equation (3.14). | took an

inefficient approach of detrending all voxels fdr three runs of each user. Then
different amounts of Gaussian smoothing were agpbehe data. We also tried using
the ROI time series provided by the competition potiee as input features.

Standard RVR was used to predict the subjectivegst We used each rating as
the target and a kernel generated from the pre-processed fMRImes as the input.
In this work, we treated each rating independeatig trained them separately. The
prediction accuracies for different settings, sashdifferent spatial smoothing and
different choices of input features, were determibg two fold cross validation i.e.
train using ratings from run one, and then prethet ratings for run two, and vice
versa. An interesting phenomenon was observethatnwe could actually predict one
subject’s subjective rating using another subjeiiiRI data. We believed that this
was due to synchronisation among the three subjetésms of when the videos were
viewed. Therefore, we also combined input featdrem different subjects when
predicting the rating of one subject. i.e. summipghe three linear kernels generated
from each individual.

A further processing step was applied in ordentprove their accuracy. In most
cases, the range of the raw feature ratmgs, prior to convolution with the
haemodynamic response function (HRF), was betweenm and one. To utilise this
prior knowledge, a constrained de-convolving stratevas applied. The “canonical
HRF”, which the competition used to convolve the ratings with, was generated.
The convolution can be implemented as a matrixiplidation of the raw rating by a

toeplitz matrix, such that =Hz . The objective is to recover the raw ratiag,,

fulfilling the constraints by minimising the sum afquare loss between the
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re-convolves solutiorHz,,,, and the predicted rating. .
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Figure 4.5 Constrained deconvolusion

lllustration of constrained deconvolution using quadratic programming. This was used because
we know the original rating (before convolved by HRF) is between 0 and 1. Cross validation
showed that this technique generally improved the prediction accuracy slightly. The additional

temporal Gaussian smoothing also boosted the prediction accuracy.

Quadratic programming (the same optimisation uge8\iM) was used to deconvolve
the HRF from the predictions (t*) by

argmin{Hz ,, -t.)"(Hz ,, —t.)}=argminiz [, H'Hz - 2"Hz _}

Zoaw Zeaw (4.24)

subjectto &z, < 1
The new predicted rating is then=Hz,,. Ideally, some sort of procedure such as
Weiner filtering would have been used. Estimateshef expected temporal power
spectrum of the predicted time course (derived ftbim smoothness of the scores
used for training), and the power spectrum of thrers (obtained by making use of
the probabilistic nature of the RVR), would havelowked more accurate
deconvolution to be performed. As a compromisesmeothed the reconvolved data

slightly using a Gaussian smoothing kernel of 3 HR¢HM. The FWHM was based

on empirical testing.
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Before we submitted our predictions for run thmee,did some cross validations.

The only variation in our attempts was the inpattéiees. For training and testing, we

used SVR and RVR throughout the competition, anmtéehe results of each attempt

will be listed here with four different ranks frompoor (scores<0.3), neutral

(0.3<scores<0.4), good (0.4<scores<0.45), to exae(D.45<scores). These are based

on the ranking results. Because of the time coimésranot all features were tested

with all three subjects, for both video one ancewidwo. The two free parameters for

SVR were also selected empirically (Dr. Mourao-Mata was responsible for all the

SVR training)

Input features type Learning methods Subject Rank
(SVR or RVR or both)

Individual pre-processed grey RVR All 3 Poor

matter masked

Individual Smoothed RVR All 3 Neutral

pre-processed grey matter

masked

Individual normalised & SVR & RVR All3 Good for subject

pre-processed whole brain | (RVR slightly better) 1,2, excellent for
subject 3

Individual ROI time series RVR & SVR All 3 Neutral

(ROI data was provided hy

the competition committee)

Combining ROI of 3 subjects RVR & SVR All 3 Good rfosubject
1,2 Neutral for
subject 3

Combining normalised & RVR Subject 1,2 Good

pre-processed whole brain [of

3 subjects

Combining normalised & SVR Subject 1,2 Neutral

pre-processed whole brain

of

3 subjects
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Combining smoothed
matter masked brain
subjects

gre
of

RVR

Subject 1, 2

Excellent

Combining smoothed
matter masked brain
subjects

gre
of

RVR

Subject 3

Neutral

The finding was fairly interesting. In most case¥R seemed to perform better
than SVR according to the cross validations. Weadbaut that by adding the kernels
of three subjects together, we could predict sulmae and subject two better, but not
subject three. The ratings could be modelled asue ‘rating” with noise added. For
subjects one and two, the variance maybe high coedpaith that from subject three.
The optimal combination of data from several peapkey help RVR estimate the
variance components better, but since the ratingubfect three has lower variance
already, this procedure may actually increase #n@mce of the prediction for subject
three. Due to the time constraint, we did not preany optional ratings.

Because we had three chances to submit, we subntiigeprediction from Dr.
Mourao-Miranda’s work in the first attempt. For agcond attempt, we submitted the
predictions based on our cross-validation reshigce for subject one, the prediction
was from “combining smoothed grey matter maskedthobthree subjects” with RVR,
for subject two, the prediction was from “combinisigoothed grey matter masked
brain of three subjects” with SVR, and for subjéutee, the prediction was using
“Individual pre-processed whole brain” with RVR.rRbe first two submissions, the
competition organiser returned our results withdimhdurs. The results had shown that
RVR was superior than SVR (perhaps we did not fimel optimum parameters for
SVR). Therefore in our final attempt, we submitté® same predictions as our
second submission, except for subject 2, whergtadiction was from “combining

smoothed grey matter masked brain of 3 subjectsh RVR instead of SVR. We
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achieved a competition score of 0.477 and ranki#id fiace, which was higher than
the first two submissions. The competition scomesnfthe first place to the fourth
place are as following, 0.515, 0.509, 0.493, ad@4. Here we can see that the scores
in the top five places are very close. The residisothers teams can be found at

http://www.lrdc.pitt.edu/ebc/2006/2006results.htmFigure 4.6 shows our final

competition score relative to the other teams. @Galyespeaking, we did relatively
well, and had four ratings predicted within the &%. Our work was also presented

in the poster session of the 2006 OHBM conference.
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Figure 4.6 Our result of PBAIC 2006

The figures show the summary of our competition scores across 13 compulsory ratings. The
bottom plots show the maximum correlation from one of the subject at each feature rating for
all the teams. Our team was shown with the black line with dots. Any feature in which the entry

was within the top 5% of prediction is indicated as TOP at the top of this figure.

4.2.4 Post-competition analysis
A few months after the competition, the organiscnmittee reopened their

scoring system without disclosing the true ratifsrun three. The system allowed
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each registered user to submit one prediction esemen days. During the OHBM
conference, the top three teams gave oral presamgaas well as presenting their
work by poster. Instead of pooling subject’s fMRata to predict each subject’s
ratings, all three teams averaged their predidiiom three subjects. Inspired by this
idea, | simply averaged our final submission antnsitted the same averaged
prediction for all three subjects. This achievescare0.497 which was higher than

the team in third place (0.493).

Because we knew there would be another competitio2007, we took the
opportunity to test different algorithms and diéfat input features. We submitted new
predictions for run three every week, and the téelew indicates the different trials
we did. In the new trials, the predictions wereraged for three subjects by default. If

not specified otherwise, the input used a lineandle

Input feature and Algorithm description Score
pre-processing
Normalised, pre-processed Modified RVR 0.485

by the organiser, whole brain algorithm  with  single prio
variance. The formulation is
similar to GPR with a linear
kernel.

Normalised, pre-processed Modified RVR algorithm 0.495
by the organiser, spatiallywith single prior variance. The
smoothed with 6mm Gaussiarnformulation is similar to GPH
whole brain with a linear kernel.

~

Combining, normalised, Standard RVR 0.395
spatially smoothed with 6mr
Gaussian, grey matter masked
brains of 3 subjects (summation
of three linear kernels from three
subjects)

=1

Normalised, pre-processed  Standard RVR 0.480
by the organiser, spatially
smoothed with 6mm Gaussia

>
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whole brain

Normalised, pre-processed Standard RVR 0.472
by the organiser, whole brain.
Temporal smoothing by 2 TR
Gaussian

Normalised, pre-processed Standard RVR 0.491
by the organiser, spatially
smoothed with 6mm Gaussian,
grey matter

Normalised, pre-processed Standard RVR with RBEF 0.487
by the organiser, spatiallykernel (free parameter determined
smoothed with 6mm Gaussianhy peak histogram of RBF kernEI
grey matter matrix at 0.5)

Normalised, pre-processed Standard RVR with second 0.483
by the organiser, spatiallyorder polynomial kernel
smoothed with 6mm Gau55|an(Kp0|y=(K F16°))
grey matter

Normalised, pre-processed Modified RVR algorithm 0.483
by the organiser, spatiallywith single prior variance using
smoothed with 6mm Gaussiansecond order polynomial kerngel
grey matter (K oy = (K F16°))

Normalised, pre-processed SVR with fixed free 0.479
by the organiser, spatiallyparameters (C= 0.0000¢,
smoothed with 6mm Gaussiangpsilon=0.1)
grey matter

Normalised, pre-processed SVR free parameters 0.472
by the organiser, spatiallyoptimised through cross
smoothed with 6mm Gaussianvalidation
grey matter

Normalised, pre-processed Standard RVR with linear 0.521
by the organiser, spatiallyjkernel, except for “Attention”
smoothed with 6mm GaussiarfEnvironmental Sounds’},
grey matter “Sadness”, and “Tools” we used

RBF kernel (free parameter
determined by peak histogram |of
RBF kernel matrix at 0.5)
Normalised, pre-processed Standard RVR with 0.486




129

by the organiser, spatiallynormalised kernel
smoothed with 6mm Gaussian,
grey matter

Normalised, pre-processed KRR, regularisatior 0.414
by the organiser, spatiallydetermined through Cross
smoothed with 6mm Gaussiarnvalidation
grey matter

From the table, it is clear that most of the resale better than our competition
score. RVR seems to be slightly better than SVR thoel difference is tiny, and may
not be statistically significant. Oddly, the frearameters of SVR optimised by cross
validation for each rating and each subject did wark as well as the fixed
parameters. It might due to the bias from two faldss validation. Generally
speaking, Gaussian smoothed and grey matter masleggs were the most preferred
input features. RVR was also favoured, not becaagwediction accuracy was better,
but because it did not require additional crosddatibn. Notice that when we
combined the linear kernel and the RBF kernel, ereewved a score of 0.521, which
was higher than the score achieved by first peaet (0.515).

For the ratings predicted by a linear kernel, wa also compute “weighting
maps”, which are the weights in voxel space. Thabées visualisation of which

regions contribute most to the prediction.
N N
y=> Bx'x. +b=w'x. +b w=> Bx (4.25)
i=1 i=1
The weighting in voxel space often resembles thepsmgenerated from the
conventional mass-univariate analysis; howevers itessential to understand the
differences between mass-univariate and multivarggtproaches. Regions with low

p-values in a mass-univariate analysis should Hagk absolute weighting in the

“weight map”, but this does not necessary applyativer way around.
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Figure 4.7 Weight map of the rating “Music”

The figure on the left shows the projected weighting in the grey matter masked voxel-space.
This is referred to as the “weighting map”, computed from the RVR and equation (4.25). The
right figure is the corresponding structural MRI. This is the predicted map of subject three
training on “Music” with both runs one and two. We can see clearly that voxels in the right
auditory cortex have high weights, indicating those voxels that contribute more in the

prediction of the rating “Music”.

4.3 Application: Pittsburgh Brain Activity Interpre tation

Competition 2007

In the spring of 2007, the same competition orgasisvhich organised the
PBAIC 2006 held the second PBAIC in conjunctionhwthie Organization for Human
Brain Mapping conference at Chicago later that.y&€his time we were much better
prepared. After gaining experience from re-analyzime dataset from PBAIC 2006,
we had clear knowledge about which algorithms aredppocessing procedures are
most suitable. | also invited a friend of mine, Mfizhao Ni, who was a PhD
candidate at the University of Southampton, spesong in kernel methods, into our
team. In this competition, we won the $10,000 fpstze. All the competition details

can be found atttp://www.Irdc.pitt.edu/ebc/2007/competition.html
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4.3.1 Overview of the competition

The main difference of the competition in 2007, pamed with that from 2006,
was that most of the ratings in PBAIC 2007 weresotiye rather than subjective. The
aim was to understand how the brain represents raadipulates information
dynamically during real-world behaviour. The orgams developed a virtual reality
(VR) system. Instead of receiving passive stimatatas in the previous competition,
subjects were asked to navigate freely around Reskvironment. A few tasks were
also given to the subjects (or players, since ltasically a video game). The players
were asked to collect items on the ground or te faiktures of people with piercings.
When subjects played the game in the MR scannersystem could collect the
activities of the players and the fMRI data synciuasly. Eye trackers were also used
to monitor the field of view of the players. Thi¥ormation was later converted into
ratings related to what the players were seeingnguthe game. There were 11
objective ratings, which are “hits” (collecting rnts), “search people”, “search
weapons”, “search fruit”, “listening to instructi®h “dog barking”, “seeing faces”,
“seeing fruit and vegetables”, “seeing weapons tants”, “interior or exterior of the
buildings”, and “velocity”. The two subjective ragjs were “arousal” and “valence”,
which were rated by reviewing the “game play” aftee fMRI scanning of each
subject

The format of PBAIC 2007 was the same as that cAIEB2006. There were
three subjects and three runs. The competition dtteendisclosed the ratings for
runs one and two, and the objective was to preédectatings for run three. The rating
system (raw and HRF convolved), MRI scanner, MRusege, scoring system, and
data format were all the same as PBAIC 2006, exitegtall three runs had exactly
the same length of 704 fMRI volumes. From the cstat®s’ point of view, PBAIC

2007 is the same as PBAIC 2006.
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4.3.2 Pre-processing and feature selection

We initially tried various pre-processing optiors subject two, and estimated
prediction accuracies through two fold cross vdiata The fMRI volumes in this
competition had a higher level of non-linear diiftthe signal intensities, but the
pre-processed data provided by the organisers higdbeen linearly detrended. This
may be the reason why some teams who performediwdéiBAIC 2006 did not
perform as well in PBAIC 2007. For example, thdidtagroup who won % place in

PBAIC 2006 were not even among the top 10 of PB2007.

200 40 600 800 1000 1200 1400

Raw Linear DCT first 5 DCT first 8 basis

Figure 4.8 Linear kernel with different level of de  trending

The images show the linear Kernel with raw data (no detrending) and different degrees of
detrending. The raw kernel without temporal detrending and the linear detrended kernel have
less uniform intensities than those kernels with more low frequency components removed.
Visualisation of the linear kernel can provide rough guidance of the quality of the data. Ideally,
the “grids” in the linear kernel should be prominent, as they indicate the resting or fixation

periods in the scanning runs. (Notice: the raw data here was still motion corrected).

Vsual inspection of the linear kernel (figure 4sBpws a patchy looking effect, even
after the linear detrending done by the competitiganisers. Because of this, we did
our own pre-processing using SPM5. All the scan®Miest realigned and resampled
to remove the effects of subject motion. We did attempt to correct for the fact that
all slices of an fMRI volume are collected at diffet times, although some such
adjustments had been made to the pre-processesttptavided by the organisers.

To further reduce dimensionality, those voxels twatre, a priori, considered
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non-informative were removed. Selecting informatregels can be seen as a form of
feature selection (Guyon and Elisseeff, 2003), Wiuan often increase the signal to
noise ratio. In the context of fMRI, BOLD signal afge is generally believed to
occur mainly in grey matter, as its major causeukhbe the local neuronal activities
(Logothetis et al., 2001). Masks defining grey miatvere generated for each subject
by segmenting one of the fMRI scans (Ashburnerknmgton, 2005). It may also have
been possible to coregister the anatomical imadk the fMRI, and identify grey
matter from this. However, this was not done beedtB| data tend to suffer from

spatial distortions, especially in the frontal mgdue to the air in the frontal sinus.

Subject 2, training run 2 predicting run 1

0O Raw

W Linear
5 DCT
m 8 DCT
B 8 DCT+ smooth

Correlation

Hit Instruction Faces Velocity

Figure 4.9 Prediction accuracy with different pre-p  rocessing

This figure shows the prediction accuracy of subject two for predicting the first run of the VR
game by training the second run with different detrending settings. It is clear that the raw data
without any detrending performed poorly. From our empirical results, removing the lower 8
DCT components resulted the best cross validation accuracy. Spatial smoothing with 6mm
FWHM Gaussian also boosted the prediction accuracy significantly. Spatial smoothing seemed

to result extensive improvement in PBAIC 2007 than the effect of smoothing in PBAIC 2006.

To remove low frequency components (high passrifigg, we relied on the
cross validation of subject two, and empiricallytedsnined that removing the lower

eight DCT components was optimal (figure 4.9). Thas equivalent to a high pass
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filtering with the cut-off frequency at 0.0057HSKM default cut-off frequency is
1/128=0.0078). Additional smoothing with a 6mm FWHBAussian kernel was also
applied spatially. No temporal smoothing was agplie

Ugly Duckling Theorem (Duda et al., 2000; Watanal#70) tells us that prior
knowledge is essential for quantifying the simthabetween things, so knowledge
about human brain function was used to furthereiase the signal to noise ratio and
suppress those features that were believed, a,fgodre less informative. It is known
from the functional brain mapping literature thaim& cognitive functions and
sensory perceptions are regionally localised. Henwesks were used to weight the
kernels when predicting the two feature ratingsod‘doarking” and “interior or
exterior of the building”. It was believed that mo$ the fMRI pattern resulting from
the barking sound would be localised in auditorytexa Similarly, the major
discrimination between the inside and outside o thuildings would be the
illumination differences. Therefore, a mask of akgortex could mask out a large
amount of irrelevant signal. In order to generagrmask of functional regions for all
three subjects, first, the cytoarchitectonic mapsisual and auditory in stereotaxic
space were downloaded from the McConnell Brain Imgag Center

(http://www.bic.mni.mcqill.ca/cytoarchitectoni¢s/Then the deformation map was

generated using the spatial normalisation routineRM5, but rather then warping the
individual to the MNI space, the cytoarchitectomaps in MNI space were warped to
match the individual subjects fMRI data. Finallg/tiough not really necessary) a
threshold of 0.3 was used to convert the probgbiiaps into binary masks. We could
also have weighted each voxel by the corresponatioigabilities.

4.3.3 Predicting general ratings and details on howo achieve nearly
perfect predictions for some ratings

In this competition, there were 13 compulsory mggirand 10 optional ratings.
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Initially, we applied both standard KRR and RVRatbthe ratings. It was identical to
what we did for PBAIC 2006. All the ratings weredted independently, hence the
same kernel was used as the input with differemiga as the target variable, except
“dog barking” and “interior or exterior of the bdihg”. For those two ratings, we
used kernels generated from auditory cortex andaVisortex respectively. Most
ratings were predicted using linear kernels, exéeptValance” and “Arousal”. For
those two ratings, we used RBF kernels, and seldbe parameter that resulted in
the peak of the histogram of the RBF kernel at (\mte, all elements in the RBF
kernel are between 0 and 1). The regularisationKieR was determined by cross
validation, and both methods showed similar results

Because the competition scoring was based on Z£scowe found that
increasing a correlation from 0.8 to 0.9 resultedhree times as much improvement
in the final scores as raising a correlation froa ©® 0.3. The goal was therefore to
focus attention on those ratings that could beipted reasonably well, and improve
them further. By watching the re-play of the VR ganprovided by the competition
organiser, we found a few insights into the VR ganitwas observed that for each
run, the “instructions” ratings had seven spikdspfavhich had similar shapes across
all subjects and all runs. It became apparent dinabd hoc model fitting strategy
could be used to further improve what were alrelaigi correlations. Firstly, kernel
regression was applied to predict the rating, domh tthe prediction was convolved
with the model shape, which was generated by awegaal the spikes in all runs of
all subjects. This is equivalent to match filteriagd the peak values in the convolved
ratings indicate the location where the averageehfgs best. After finding the
estimated peak location, the average shape wasdlagFigure 4.10). Without this
procedure, the correlation of the predicted ratiag 0.8, whereas by adopting it, the

final correlation reached 0.988, which increased4kscore from 1.0986 to 2.555.
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Figure 4.10 Model fitting for predicting “Instructi on
This figure shows the model fitting approach to boost the prediction of “Instruction”. The top left
graph shows the original prediction. The average shape of the response of “Instruction” was
generated to fit the raw prediction. The bottom figure shows the fitted model of final prediction.
This procedure removed the small noise between each “spike” and boosted the prediction

from 0.8 to 0.99.

We also utilised the insights we found about theigte of the VR game to
achieve correlations in excess of 0.99 for “seduciht”, “search weapons”, and
“search people”. In fact, those three ratings waose predicted in the same way as
other ratings, and the “search” ratings in thet frsd second run of the virtual reality
games were not actually used for training the m=siom machine. To achieve such
high accuracy, prior knowledge was utilised towerrat a solution from predictions of
more accurate ratings. From observation, a fewatipg patterns were found in the
design of the virtual reality (VR) game. These dobk seen as a weakness in the
design, and we exploited them as far as possible.

1. Each run of the game was cut into seven slots, e&ahhich started at the
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“instruction” and ended with the “instruction” - et for the last slot.
2. [Each search request (fruit, weapons, and peoppeaaed after the instruction and
occupied exactly four arbitrary slots at each run.
3. Each slot contained at least one request.
4. The requests to search the three categories wéne same order for all subjects.
5. The optional ratings of “hit (people, weapons, &uit)” only appeared when the
slot had the same category of search requestvatieethe rating of hit something
would be zero for the whole slot. E.g. If duringarticular time slot, the search
requests were “search people” and “search weaptresi,the rating of “hit fruit”
would be zero for the entire slot.
From cross-validation, we found that training witle “search (people, weapons,
and fruit)” rating returned very low accuracy, witlrrelations of only about 0.2.
However, predicting “hit (people, weapons, andtjtutould achieve correlations of
0.4~0.5, for at least one of the subjects. Hence,used the prediction of “hit
something” to predict “search something”. For exlang we knew during one slot
“hit people” is non-zero (after removing the noige)at least one scan, there would
definitely be a “search people” request in that.sMathematically, although the
prediction of “hit something” would of course coimtaoise, the strength of the noise
was believed to be lower than that of “true hitSherefore, if we threshold the
prediction and only kept high peaks, most noise ld/@ossibly be pruned out, but
kept enough true “hit something” to infer whichtsldvad the particular category of
search request. Motivated by this observation gngrévious findings, the procedure

can be summarised by the following steps (figuid }.
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Figure 4.11 lllustration of how to predict “search people”

These figures show how to predict “Search people” using prediction of “hit people. The red
spikes are the prediction of “instruction”. For simplification, the fixation (resting) period was
removed. The “instruction” divided each run into 7 slots. The prediction of hit people is shown
in green, and the threshold version of hit people is shown in blue. 4 out of the 7 slots were
elected based on the strength and frequency of threshold hit people. In this case they are slot
1 2, 4, and 5, then the rating was set to 1 for time points in those 4 slots. The prediction was

furbished by convolved with the HRF.

Predict “hit (people, weapons, and fruit)” for tareubjects.

Prune most of the points and only keep some higrevaeaks (top 20%).

n of
eople"

500

“search people” convolved

Count how many peaks are in each slot. For eadrc¢hesomething” request,

we found the four most possible slots, which caontdie highest counts of

peaks. If peak distributions were different amamg three subjects, a majority

vote was used.
The rating of the “search something” was set todunéng the four slots.

Finally, the predicted block was convolved with tdamonical HRF.
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Unlike most conventional fMRI studies, which pro@iccontrolled external

stimuli, some of the ratings were self-paced, sash*hits” or “velocity”. It was

believed that those ratings may have different HiRRys from the canonical HRF.

The stringent way would have been to train withngd convolved with different

HRF parameter settings, but there are at leastpiivameters to adjust for generating

the HRF using a double gamma functions. For thesomeof generalisation and

robustness, we simply applied forward or backwaittsby discrete numbers of time

points (scans). The predicted rating was laterrselg shifted. It was found, by cross

validation, that shifting the original training ¢gat {t} ", by one scan (1TR) earlier

would yield more accurate predictions. The shifteining target would b } jN:l,

where t, =t

i+11

“Hits”, “Velocity”, and “Faces”.

ty =0. The following tables show the results of croskdedion for

HitS Subject 1 Subject2 Subject3

Predict VR1| Predict VR2| Predict VR1| Predict VR2| Predict VR1| Predict VR2
Original 0.5873 0.6861 0.7427 0.8030 0.6019 0.7551
Apply shift 0.6094 0.7272 0.735 0.8 0.6096 0.7341
Faces Subject 1 Subject2 Subject3

Predict VR1| Predict VR2| Predict VR1| Predict VR2| Predict VR1| Predict VR2
Original 0.5538 0.5436 0.589 0.7521 0.8313 0.8706
Apply shift 0.5549 0.553 0.7114 0.8155 0.8328 0.8859
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Velocity Subject 1 Subject2 Subject3

Predict VR1| Predict VR2| Predict VR1| Predict VR2| Predict VR1| Predict VR2
Original 0.7217 0.7207 0.7010 0.6347 0.664 0.7022
Apply shift 0.7432 0.7312 0.7481 0.6464 0.7059 0.7508

In these three feature ratings, only “Hits” did sbbw consistent improvement across
all three subjects. “Velocity”, and “Faces”, bothosved increasing accuracy for all
subjects. This led us to ask why it might be thaasured brain activity preceding an
event would appear to be more predictive. It migkt possible that the regions
involved in those two ratings had an HRF that wasswerably shorter for these
regions than for other ratings. The alternative laxation is that brain activity
preceding the event reflects what is subsequertigrded. The “Velocity” rating is
related to the amplitude of joystick movement, Be tnvolvement of processes
underlying voluntary motor control would be expekctélotor preparation, or the
readiness potential, has been known to precede ohgeluntary motor execution by
over a second. This would conceivably corresporttiégeriod of 1 TR.

Above all these additional improvements, we alseduthe standard “quadratic
deconvolution” and smoothing (figure 4.5), which reveidentical to the
post-processing performed in PBAIC 2006. In genethé standard procedure
involved a linear kernel using a GM mask. The detand additional procedures for

predicting each rating are summarised in the fakgwable.

Rating Arousal | Valence| Hits | Search Search Search
(items) | people Weapons | Fruit
Additional | RBF RBF None Information Information | Information
Procedures kernel | kernel from from from
predicting | predicting | predicting
“hit “hit “hit fruit”
people” weapons”
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Instructions | Dog barks (seeing)| (seeing) | (seeing) | Interior or| Velocity
Faces Fruits Weapons| Exterior
Vegetables Tools
Model Auditory Temporal| None None Visual Temporal
fitting with | cortex mask| shift cortex mask| shift
averaged
template

4.3.4 Our result in PBAIC 2007

PBAIC 2007 also allowed each team to submit theliptien three times. The

results of the first two submissions would be netdr to the team, and the best score

out of the all submissions would be ranked witheotieams. Our strategy was rather

simple: we submitted the first submission with pcadns by KRR, and the second

submission with predictions by RVR. Both submissioncluded those additional

procedures. Our final submission was based ontselethe best results from the first

and second submissions (figure 4.12).
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Figure 4.12 Results of our final submission
This figure shows prediction accuracy of our final (third) submission for all three subjects. We
achieved nearly perfect prediction for “Instructions”, “Search fruit”, “Search people”, and

“Search weapons”.

In general, subject one had the worst predictiaui@cy (average Z score 0.980),
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especially for emotional and subjective ratingshsas “Arousal”, “Valence”. Subject
three had the best overall prediction accuracy vaenerage Z score 1.142. The
variation of prediction accuracy for each ratingoas all subjects is quite consistent;
i.e. subject one is often the worst. This implibsittaccuracy is influenced by
subject-specific issues. This may relate to comaéinh, but was most likely due to
motion in the scanner. By inspecting the movememtupeters generated from the
realignment procedure, subject one clearly showerkrtranslation and rotation than
subjects two and three. Our ability to predict jgatar ratings were clearly higher for
objective ratings such as instructions, velocitgt éaces than they were for subjective
ratings. We believe this is related to the reliabibf the reported ratings (many of the
subjective ratings were made at a separate occasieed on episodic recall of how
they felt), and that this will improve if real-timmaeasures such as skin conductance
and heart rate or subjective ratings between eémtk vere used instead. Among
objective ratings, we were able to best predics¢hibat involved attention or required
a response on the part of the subject. Thus “ioBtms” required the subject to attend
and comprehend, while “velocity” and “hits” requdr&@ motor response from the
participant. These were followed by anthropomormitigects such as faces.

As the 1st place winner in 2007 PBAIC competitionr final competition score
was 0.785 which was substantially higher than thlatother groups. Generally
speaking, our team predicted all the objectivengatiwell within the top 5% of the
maximum correlation for the entry, and we had tlestlprediction over the three
subjects for “Hits”, “Search People”, “Search Weagt “Search Fruit”, “Faces”,
“Fruits Vegetables”, and “Velocity”. (Figure 4.13However, our method did not
perform well for the subjective ratings, which weédsrousal” and “Valence”. It is
probably because our team used the whole gray matte results from groups which

did feature selection seemed to perform bettetHose two ratings. In addition, we
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used RBF kernels to predict “Arousal” and “Valenc€toss validation showed that

linear kernels performed poorly for those two rgéin Linear methods are only able

to model a single mode of difference, whereas neali models can potentially model

multiple modes of variability. This may indicateatithese states may be represented

in the brain by several alternative networks ofvitgt rather than a single consistent

pattern of differential activity.
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This figure shows the prediction accuracy of our final submission. We achieved nearly perfect

prediction for “Instructions”, “Search fruit”, “Search people”, and “Search weapons”.
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4.3.5 Overall discussion of PBAIC 2007

Relevance Vector Machine VS Kernel Ridge Regression

On average, kernel ridge regression (KRR) performséghtly better than
relevance vector regression (RVR), but the resares mostly within 10% of each
other. In the following table, we compared the lssof KRR and RVR for predicting

the third run of subject 3, using a linear kernel.

Velocity Hits Weapons Tools| Fruits Vegetable Faces
KRR 0.8277 0.7835 0.5470 0.5366 0.8091
RVR 0.8309 0.7552 0.4998 0.4955 0.7995

In addition, the sparseness of RVR (percentagdeftriaining scans contributing to
the prediction i.e. (number of relevance vectonsytiber of training samples)) is

presented in the table below.

Velocity Hits Weapons Tools| Fruits Vegetable Faces

RVR Sparsity | 21.3% 24.4% 22.8% 23.3% 18%

As we observed, KRR performed slightly better fawst ratings. It is possible
that sparse representations may not fully utiliséha information in the training set;
hence pooling all the training scans would probasimate the variance component
more accurately. However, from the table above, RVR required less than 25% of
the training data to make predictions, with lesmtl 10% sacrifice in accuracy. For
ratings which could be predicted well, such as 6¢gly” and “Faces”, the differences
between RVR and KRR are only about 1%. This sparsdy be due to consistent
activation patterns in the brain during the santimga; hence the regression machine

only required a subset of the training data to es@nt it. It is also possibly due to
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irrelevant training scans for particular ratingecBuse the nature of this “experiment”
is self paced, not all the scans contained relewdatmation for particular ratings.
For general fMRI studies, sparse methods have tvandage of providing more
interpretable results. By looking at the time panfitscans with non-zero weights,
researchers may gain some understanding about etmpotal pattern of task
activation.
Importance of pre-processing

We believe that one of the winning factors for ¢emm was good spatial and
temporal pre-processing models. Spatial smoothmigtemporal detrending had been
shown to change the results of SPM as well asrbdigiion accuracy (LaConte et al.,
2003; LaConte et al., 2005; Strother, 2006; Tansibal., 2002) (figure 4.9). One
major reason why temporal detrending is importaritdcause scans from the all three
games were combined together. In other words,hallsScans were assumed to be
collected in the same session with the same imtsaisnal variance. If the low
frequency components dominated the major variaoceponents, i.e. the first few
principle components, the signals due to brainvatbns would be reduced. In
general though, detrending with eight DCT basesh wpatial smoothing (6mm
FWHM Gaussian) gave the best results for mostgatiihe improvement was most
prominent for “Hits” and “Velocity” (figure 4.9).n figure 4.13, it shows that our
prediction performed specifically better than otlgepups for those two ratings. We
speculate that a lot of teams used the pre-prodeds¢aset provided by the
competition committee, which still contained la®mount of low frequency noise.

The noise eventually caused the inferior performearfor those teams.

Comparing the regularisation parametérof KRR obtained by cross validation or

GPR
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Unlike RVR, where the hyper-parameters and parasetan be determined
through maximisation of marginal likelihood, theguéarisation parameter for KRR
had to be determined empirically by cross validatim figure 4.14, the correlations
of training VR game 1 then testing on VR game 2 #edvice versa were evaluated
with different regularisation parameter for fouafiere ratings. The graph showed that
the correlation reached a plateau with the reggdéion roughly between i@nd 16.
Both predicting VR1 and VR2 had a consistent shaple plateau. Alternatively, it
is possible to find the parameters by maximisirgrirarginal likelihood (4.23), with
the Gaussian Processes Regression model having ctivariance function
C=6,1 +0K . The regularisation of KRR can be computedi®®, /6,. Intriguingly,
in figure 4.14, it seemed the regularisation debteesh by maximising marginal
likelihood was over-regularised, and the resultsewsot very desirable. This may
reveal the importance of well specified models be tapplication of Bayesian
techniques. If a good model structure is not adely&known, then cross-validation
may allow more accurate tuning of various hyperlpaaters than the Bayesian
evidence framework. In our case, the less accstagion found by GP may due to
several factors, firstly, no temporal autocorrelas were modelled, whereas the true
noise for fMRI data is not independent and idetiyadistributed (iid). Secondly, the
objective function of marginal likelihood is basmdthe sum of the squares differences,
which may have different characteristics from Peasscorrelation. Thirdly, a proper
covariance matrixC, should contain a constant teth+ 6,1 +6,K +6,. From our
experiment, including the constant term actuallgrioved the correlation to around the

same accuracy as the plateau in the cross-validplat.
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Figure 4.14 Determine regularization for KRR

This figure shows the cross validation results for subject two, using KRR to predict four
ratings-"hits”, “FruitsVegetable”, “Faces”, and “Velocity”. The horizontal axis indicates different
amount of regularisation for KRR. The plotted line of VR1 means the prediction of the first run
by training the second run, and vice versa. The dot is the prediction of VR1 estimated via
maximising of marginal likelihood with GPR, and the cross is the prediction of VR2. GPR
based on maximising the marginal likelihood (evidence) seemed to slightly over-regularised

the model, except for the rating “Faces”.

In addition, we also generated the “weight map” f@mualisation purpose. The
weight map of “Velocity” is particularly interestyn Inspection of the weighting in
voxel space (figure 4.15) shows that the motorsasraund M1, the supplementary
motor area and cerebellum had activity positivelgighited with ratings. This is
evidence supporting our assumption about motor goedjon, or the readiness
potential preceding onset of voluntary motor execu{Cunnington et al., 2002), and
may explain why temporal shift of 1 TR could impeothe prediction accuracy of

“Velocity”.
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Figure 4.15 Weight map of “Velocity”

This figure shows a weight map of “Velocity” for subject 3. There are strongly positive
weightings in the motor areas. This is evidence for our assumption about motor preparation
preceding onset of voluntary motor execution, as “Velocity” was related to navigating around

the VR game using a joystick.

4.4 Application: Regression Analysis for Clinical $ores of
Alzheimer’s Disease Using Multivariate Machine Leaning

Method

4.4.1 Introduction

In this study, we demonstrated that RVR can noy @& applied to functional
data, but it can also be applied to structural MRta to predict clinical ratings.
\Voxel-based morphometry (VBM) studies have showtati@ships between
cognitive measures and structural differences in (Eaxter et al., 2006; Jack et al.,
2008). However, VBM or any univariate method airasldcalise regional atrophy,
rather than characterise the pattern of differedoe to atrophy. Physiological
biomarkers have been shown to have good accuraayetecting early Alzheimer’s

Disease (AD) (Ray et al., 2007). In practice, tbenbination of cognitive tests and
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imaging may help physicians to decide the diseadate ©f patients, since both
cognitive and imaging changes are shown to be egedowith the early stages of AD
(Caselli et al., 2007; Twamley et al., 2006).

The main objective of this study was to examine takitionship between
structural changes and clinical ratings, in thenieavork of pattern classification.
Our hypothesis was that global GM patterns havimeat relationship with clinical
scores. Using the probabilistic regression modeVRR we can compute the
conditional distribution of clinical ratings, givethe structural images. We applied
RVR to predict clinical ratings from structural MRyhere the ratings were three
commonly used cognitive measures: the Mini-MentatsSExam (MMSE) (Folstein
et al., 1975), the Dementia Rating Scale (DRS) {8latt988) and the Auditory
Verbal Learning Test (AVLT) (Rey, 1964). We comphtke predicted clinical ratings
with the true ratings using correlation (similarttee PBAIC scoring). Because all
three clinical scores have different ranges antescé would be difficult to compare
the predicative accuracies across different sassgg) mean square error (MSE). The
advantage of using correlation is its scale invarga On the other hand, correlation is
also invariant to the bias of the prediction, whicly be a less desirable feature.
4.4.2 Material and Methods

The dataset contained structural MRI scans of 7#Bma with probable AD
(clinically defined), ranging from mild to seve®IMSE from 10 to 30, mean 22.3)
and 91 cognitively normal controls from the MayocRester Alzheimer’s Disease
Research Centre (ADRC) and Mayo Alzheimer’s Disdaatent Registry (ADPR)
(Petersen et al., 1990). There were eight contwtls MMSE less than 27. Because
our study aimed at comparing clinical scores, mathan classifying AD or non-AD,
we did not exclude controls with subclinical diseam fact, both controls and AD

patients were assumed to be from the same populatithis study. All subjects had
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MMSE, DRS, and AVLT scores recorded within threenths of the MRI scans.

MR scans were collected from 14 different scanmemer about 10 years. All
scanners were the same model (General ElectricaSIigsiT), and the scans were
acquired using T1-weighted imaging sequences (peteas1 TR=17.7 to 27 ms, TE=6
to 10 ms, flip angle 25 degrees or 45 degrees,\aze 0.86 mm x 0.86mm x1.6mm).
A VBM analysis showed no significant interaction sdanner with the effect of
disease (Stonnington et al., 2008).

We pre-processed the data using standard methadsiloe in section 3.2.1.
T1-weighted scans were firstly segmented into GM &M tissue class images,
which were imported for use with the DARTEL toolboxXThis involved bringing
them into the closest rigid body alignment withteather and resampling to isotropic
1.5mm voxels. These data were then DARTEL regidtength the population
template, as described in section 3.2.1. The neatlg aligned GM images were
scaled by their corresponding Jacobian determinays, such that tissue volumes
were conserved. No spatial smoothing was appliedisstudy.

We generated a linear kernel from whole GM, as wsll a kernel from the
combination of two volume of interests (VOI. dimens 12, 16, 12 mm in X,y,z
directions respectively) centred around both leftd aright parahippocampus
(equivalent to x,y,z =-17, -8, -18, and 16, -9 #i&he population template space, it is
approximately the same as in MNI space). The VOs$ wentivated by the findings
that the earliest pathological changes of AD amnibin the entorhinal cortex and
hippocampus (Braak and Braak, 1991).

We applied standard leave-one-out cross validatd@redict the clinical ratings.
We left one subject out of the full set, and trdirlee remaining 163 with RVR. The
trained RVR was then applied to predict the clihgzores of the subject left out. The

training procedure was similar to that used for RBAas we use the same kernel as
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input, and three different clinical scores as tavgeiables.

4.4.3 Results and discussion
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Figure 4.16 Predictions for three clinical ratings
These plots show the predicted scores versus actual scores for 3 different clinical ratings
(MMSE, DRS, VALT) using whole brain grey matter (left column) and parahippocampal VOI

(right column)

For whole brain GM, the correlations of predictead aeal scores were as

follows: MMSE: 0.70; DRS: 0.73; AVLT: 0.60. When weapplied the
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parahippocampal mask, the correlations were lessd gor MMSE (0.66) and
DRS(0.7), but better for AVLT (0.66) (figure 4.16).

The result show strong linear relationships betwakrtlinical scores and the
structural MRI, with DRS showing the highest préidic accuracy. Both MMSE and
DRS showed significantly better prediction reswitish whole brain data, because
MMSE and DRS test multiple domains. It is also ustindable why the accuracies
dropped when we trained using only the parahipppedriwOl. Conversely, AVLT
mostly tests the single domain of memory, whichdgsociated with medial temporal
lobe function. This can explain why the predictamturacy of AVLT improved using
only the parahippocampal VOI. From the weight mépgure 4.17), we see that
almost no regions, apart from the medial tempaiaé¢) were important for predicting
AVLT. The DRS was found to be slightly more sensitthan MMSE to fit with
disease progression (Galasko et al., 2000). Ouitsesonfirmed the findings, and we
also agree that this is probably due to the ceikffgct of MMSE, as MMSE is
capped at 30.

One practical use for such a machine learning agbrovould be to aid in
clinical management. Bayesian machine learning agstitan compute the predictive
distribution, and not only a point-estimate. Fastseshowing good correlation with
the MRI scans, such as MMSE or DRS, if an individuscan predicts a significantly
lower score than the actual score, this may impéat the patient may have greater
resilience of cognitive reserve. In our dataset eubject scored within the normal
range in the three tests (MMSE 30, DRS, 135, AvLI), however the predicted
scores (MMSE 24, DRS, 121, AVLT 7) were similathe MCI patients. As has been
shown (Mortimer et al., 2005), cognitive reserveynmaask cognitive deficits, and
prevent the detection of early AD using only clalicatings. Therefore, a combination

of both clinical measures and imaging informatioaynibe used to more accurately
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predict the clinical state of any individual. Oretleontrary, if the actual score is
significantly lower than the predicted score, thevay be other factors affecting the
performance of the tests, such as fatigue or dsjoresin addition, if longitudinal
scans are collected and used optimally, the predlicating should provide a more
robust measure of disease progression.

To observe the confounding effect due to age, we applied RVR with age
removed using equation (3.14) described in se@i@ril. This actually improved the
prediction slightly, for whole brain GM, MMSE: 0./DRS: 0.76, AVLT: 0.63), and

for the parahippocampal VOI, MMSE: 0.74, DRS 0AMLT: 0.69.
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Figure 4.17 Weight maps for three clinical ratings

Weight maps for whole brain images of MMSE, DRS, AVLT, reflecting areas of the brain most
vital in determining each predicted score. Because all three scores have different scales, we
normalised the intensity range of the weight map for visualisation purpose. The red areas
indicate where more grey matter adds to the predicted score, whereas blue areas indicate
areas where more grey matter subtracts from the predicted score. Note that dementia does not
necessarily cause increased volumes of grey matter in these blue areas, but these regions

may have relatively less atrophy for dementia patients.
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Chapter 5

Kernel Classification Methods and the Application

in Functional and Structural MRI
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In this Chapter, we introduce the methodologicaleass of kernel classification,
discussing Support Vector Classification (SVC), éRahce Vector Classification
(RVC), Gaussian Processes Classification (GPC), dass classification, and a
multiple class classification | proposed by comibinia regression method with a
decision function. Also, the projects employingsd methods for both fMRI and
structural MRI data will be presented in detailee TRI related works are:

* “Decoding Neuronal Ensembles in the Human HippoasshgHassabis
et al., 2009), which was a collaborative work wittmis Hassabis.

* “Multi-class Classification of fMRI pattern by Kesh Regression
Methods”, which was chosen for oral presentationtie OHBM
conference of 2008.

The projects with structural MRI are:

» “Automatic classification of MR scans in Alzheinsedisease” (Kloppel
et al., 2008b; Kloppel et al., 2008c; Kloppel et ab08d), which was a
collaborative work with Dr. Stefan Kloppel and @ynthia Stonnington,
using data from Dr. Clifford Jack at the Mayo Gdini

» “Automatic detection of preclinical neurodegenerati presymptomatic
Huntington disease” (Kloppel et al., 2009), whiclasnva collaborative
work with Dr. Stefan Kloppel.

» “Classification of major depressive disorder usBigM with structural
MRI”, where | collaborated with Dr. Cynthia Fu det Institute of
Psychiatry, Kings College, London.

The general framework for classification was introeld in section 2.4, whereby
a training set contains input/output pa8s;{(x, t),(X, t),...,(Xy, %)}, andt is a
discrete label. For binary classification, the labare often denoted b{-1,1} or

{0, . The general model for a binary classification Qe is
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t= (ijlwc,xd + offse} >0, which is closely related to the linear regressgooblem,

except the labels are separated by the decisiondaoy The general model for a

kernel binary classification is, =( > AK(x.,x)+offsef>0. Both SVC and RVC

iltraining
are sparse kernel machines, which implies that sofrtke kernel weights,5, are
zero. In other words, not all training samples dbate to the prediction of the testing

samples. Similar to linear kernel regression mqdelen we apply the linear kernel,

N
we can obtain the weights in the input feature sgmcw = Zﬁ;xi :
i=1

5.1 Introduction to Kernel Classification Algorithms

Generally speaking, RVC and GPC are probabiligéissifiers, which are closely
linked to logistic regression, (section 2.4.6) iley use a generalized linear model by
applying a sigmoid link function. Therefore, boti®and GPC can be extended into
multiple classes by assuming a multinomial distitou On the other hand, SVC was
motivated by the statistical learning theory (Vdpnl998), is not a probabilistic
model, and was originally formulated as a binagassifier. Usually when people refer
to a Support Vector Machine (SVM), they often mé&pport Vector Classification
(SVC). In this section we will present the clagsifion aproaches in the same order as
the regression models of chapter 4, introducingnitve-probabilistic SVC first, then
RVC and GPC later.

5.1.1 Support Vector Classification

SVC is also known as the maximum margin classifiBishop, 2006b;
Cristianini and Shawe-Taylor, 2000), and has gaimeg@opularity in recent years
because of its superior performance in practicpliegtions, especially in the field of
bioinformatics (Brown et al., 2000; Guyon et aD02; Noble, 2006). The philosophy

behind the SVM is to estimate an optimal solutioasdd on “structural risk
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minimization” rather than “empirical risk” minimizan. Motivated by statistical

learning theory (Vapnik, 1995), the decision bougda chosen so it achieves the
maximum margin. The margin is defined as the dc#abetween the decision
boundary and the closest data points.

We begin our introduction of the simple binary Sv@®del, by assuming both
classes are linearly separable. Let us defineiminigaset S={(x, )} 00X 4,1} .

The objective of the training is to find the linelcision boundary, or a hyperplane in

the feature space, that maximizes the margin. Byyperplane we mean a set

Hoo ={x00% w'x+b=0} parameterized by a vectav(0O0? and a scalar b. In

other words, the hyperplane is in the subspacélbf. The hyperplane is a line
when the feature space is 2D and a flat surfacenine feature space is 3D. When

the two classes are totally separated, the follgwinequation

t(w'x +b)>0, i=1,...N is satisfied. This is to say, the data points lladewith 1
will all be positive fromw'x, +b, and data points labelled with -1 will be all

.
negative. The distance of a point,, to the hyperplane |4%le| and the
w

. . _ |WTXi +b|
margin is defined bym|ni“i1W

Unlike the case of regression, the veatois scale invariant in the context of
classification; hence the solutionwfand b is not unique in that any vectarwhich
is perpendicular to the hyperplane, is a valid sou There are two ways to
reformulate the parameterization to obtain a unigodution for each decision

boundary. One way is to normaligeso that |jw||=], the other way is to choosgw ||

such that the distance of the margin is definedl-llalyi| i.e. min,t (W'x +b)=1.
W
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Figure 5.1 Hard-margin SVC

This figure is a 2D example of a linearly separable support vector classification. The blue and
red spheres are the data points for different classes. The spheres enclosed by white circles are
the support vectors, which are the data points closest to the decision boundary (hyperplane).

In this formulation, there are no data points between the margins.

We will work on the second parameterization, whitie optimization problem

can be formulated as

minimize w'w
% (5.1)
subjectto t Ww'x +b @ 1li= 1..N

This is often known as the primal form of the SV@timization. To solve the
constrained optimization problem, Lagrange mukidj a , are introduced. The

Lagrangian function is defined as
L(w,b, a) =%WTW—i a{tiw'x +B-13, O<a (5.2)
i1
To solve the optimization, we set the derivativetloé Lagrangian function with
respect tow andb to zero, %-w Ztapg O=w= Z;epg -th 0.

=1

Substituting these new conditions back to (5.2ad¢e to the dual form of the

N N

optimization, whereL(w,b, a)——w wW—w W+Zar ——%Zz a&}t,tx X +z a
i=1j=1
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Maximize —%aT Ha+> a
i=1

$ta =0 (5.3)
subjectto '
a=0 i=1..N

whereH is aN by N matrix . More generally we replacgiTxj by the kernel
K(x;,X;) (see Chapter 3), and defing; =(t;t K(x,x ):i,j=1,...N ). Equation

(5.3) is a typical constrained quadratic prograngroptimization problem. Although
general purpose quadratic programming can be usgd{be most popular algorithm
to solve this specific optimization is called seofisd minimal optimization (SMO)

(Platt, 1999a). After finding the optimal Lagrangiltipliers, we can compute the

weight in the feature space from the condition \xml‘ipreviously,w:Z:ilza1.1;xi :

During the optimization, only some Lagrange muié@ have values greater than
zero, and their corresponding data points are datlepport vectors (SVs). The
decision boundary is defined only by those SVs,chemmoving non-SVs from the
training would vyield identical solution from the iginal training. Theoretical

investigations show that the proportion of SVs he training set reflects an upper

bound of the expected generalization error (VaphB98). The parametdr can be

determined by finding thé that satisfiest, W'x, +b ¥ &> b=t-w'x if xis a

SV (notice t0{-1,1}, so %=t ), because the distance of the SV to the decision

boundary is 1. More generally, if we are using Keenel trick and are unable to

compute the weight vecter in the feature space, we can findy satisfying

ti(ZN:ajth(xj,x)+b)=1
. (5.4)
=b=1-2 31K ,X)

where x;is any SV. In practiceh is estimated from all SVs and then averaged for
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numerical stability. The decision function for pieithg new input point is given by
N

y(x*)=;a§ K(x ,x)+b (5.5)
This value measures the distance of the new datd fwothe decision boundary, in
units of the margin width. Intuitively, the maximumargin formulation implicitly
means only a subset contributes to the solutigdghehyperplane. Trivial cases, which
are far away from the opposite class, will not lsedito calculate the decision
boundary, and only "ambiguous” cases, those sartipdésire closer to the other class,
will contribute to constructing the decision fumcti(5.5). This may not be desirable if
there are outliers that are close to the opposaescor mislabelled data points. To
relax the formulation of the “hard margin” SVC, tfeoft margin” SVC introduces
space for some training errors. In the frameworkthef soft margin SVC, a free
parameterC can control the trade off between training erransl the width of the
margin. i.e. we can expand the margin by allowiogne samples in the other side of
the margin (a.k.a. margin errors) during the tragn{see figure 5.2). We introduce a
slack variable to formulate this new problem.

minimize }éwTw+CZiN:1g‘i

subjectto t Ww'x +b R & (5.6)
&> 0= 1.N

The larger theC is, the higher the penalty of the training errevijch has the inverse
effect of the regularizatiod,, in ridge regression. If we s€tto a large enough value,
this will be equivalent to the hard margin SVC |5The corresponding Lagrangian is

defined as

Lwb,ad,n)=2ww+CYE -Y a{tw'x +h-1+£)- 1,051 O<a

i=1

(5.7)

wherer anda are the corresponding Lagrange multipliers. Déferating with respect
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to w, &, andb, and setting the derivative to zero, leads todin@ form of the soft
margin SVC
. 1 - 3
Maximize e Ha+) a
i=1

n (5.8)

ta =0

subject to ,221: 4
C=2a20, i=1..N

Interestingly, this is very similar to the hard-miar SVC, except now the Lagrange

multiplier a is capped by the regularization param€efhis is also the reason that a

C larger than the maximum Lagrange multiplier worddult the identical solution to

that from a hard margin SVC (5.3). In the soft nrafgrmulation, if the data points

satisfy the conditiont(w'x, +b) >1=> g =0, then these are the non-SVs. If the
points satisfyt W'x +b ¥ > &g < C, then these are the SVs on the margin. If

the points satisfyt, v{'x, +b ¥ % g = C, then these are the SVs with positive slack

variableé (see figure 5.2). It is important to notice thgiasitive slack variable does
not necessary mean the training point is miscl@ssiin the training. If0<¢ <1,

then the point is between the decision boundarythaednargin, but it is still on the
correct side of the decision boundary. The pointisclassified only if the slack
variable is greater than 1. Therefore, a soft nimar§vVC may still have no

classification errors in the training.
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C=1000

Figure 5.2 Soft-margin SVC

These figures show a 2D example of the soft margin support vector classification with different
value of C. The blue and red spheres are the data points for different classes. The spheres
enclosed by white circles are the support vectors. In this formulation, there are two types of
support vectors (SVs): one is SVs on the margin and the other is the SVs on the opposite side
of the margin boundary with positive slack variable . If 0< fl <1, then this training point is
still on the correct side of the decision boundary, but if 1< &, then this training point is on the
wrong side of the decision boundary, hence results in a misclassification in the training. When

the C is large enough (left figure), we obtain the hard margin SVC.

ParametecC is often chosen by minimizing the cross validatesror, and it can
be shown that the solutions of the optimizatior8)5i.e. a,w,b are piecewise
continuous functions o€C. In other words, identical decision boundaries nbay

obtained with different values @. (figure 5.3)
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Figure 5.3 Margin width as a function of C

This figure shows the piecewise relationship between the margin and the parameter C. At
some range of C, the margin and the hyperplane is unchanged, for instance when C is
between 51 and 141. When C is greater than around 470, the solution of a hard margin SVC is

obtained.
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In practice, to reduce the computation in the pdace of finding an optimaC
via cross-validation, we often find the maximum abte value of the Lagrange
multipliers in the hard margin SVC as the maxim@pand then set differe@ values
in the validation based on the percentage of theimmanm C. Since the paramet€r
has no intuitive meaning, an alternative formulaticalled v —SVMor nu-SVM
(Chen et al., 2005; Scholkopf et al., 2000) intrmetia slight variation of problem (5.8)
with the parametew [(0,1]. Intuitively, this parameter is realised as thedo bound
on the fraction of SVs and the upper bound on thegm errors (data points that lie
on the wrong side of the margin boundary afid>0). The new formulation is given
by

Maximize —%aT Ha
itiq =0
i=1

subjectto 1N=a= 0

(5.9)

ia\q >y, i=1..N
i=1

More details about the derivation of SVM and radateeories can be fond in Dr.

Pontil’s lecture slideshttp://www.cs.ucl.ac.uk/staff/M.Pontil/courses/ixd8L05.htn)

or the following text books and papers (Cristiarand Shawe-Taylor, 2000; Hastie et
al., 2003; Pontil and Verri, 1998; Schlkopf and $m&@001). In our work, we often
used the LIBSVM toolbox (Hsu et al., 2003) with aeqgomputed kernel

(http://www.csie.ntu.edu.tw/~cjlin/libsvinto perform SVC. We also have our own

implementation of SVC using the quadratic programgrfunction (quadprog) of the
Matlab optimization toolbox. Identical solutions nieeachieved from LIBSVM and
our implementation with hard margin SVC. Howevbgre were disagreements in the
solutions of soft margin SVC between two implemgates. Our implementation

using the quadratic programming function in Matthtd not seem to find the optimal
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solutions wherC was small.

Generally speaking, training SVC is very efficiebtit the framework of SVM
can not generate probabilistic outputs. One ad dpproach to this is to impose a
sigmoid function on the output of the SVC (Pla@92b), but this requires training the
parameter of the sigmoid function from a separagtirig set. Better approaches to
obtain probabilistic outputs should come from thebabilistic models, which will be
introduced in the later sections.
5.1.2 Relevance Vector Classification

Essentially, relevance vector classification (RVi€)ogistic regression (section
2.4.6) with an ARD prior. The likelihood functiors iidentical to (2.62), and
sincep(p |t,a)O p(t |B)plw |a), for fixed values ofa, the ‘most probable’ value of

B in the posterior distribution can be obtained byimézing

ICEC D) P 6} =3 G (70 4L -0 ~(F0)) —5F A (5.10
where the functionf() is the logistic function defined in (2.49§¢is simplified
notation for ¢(x) , t 0{0,3 and A =diag(a,.q,,....a,). We take the same
iterative Newton-Raphson method utilized by logistegression, and compute the

first and second derivative (Hessian matrix) of agpn (5.10) with respect to the

parameterp

0, In p(B [t,a)=-® ( —t)-Ap (5.11)
0,0, In p(B[t,0)=~(@'R®+A) (5.12)

where f =f(B7e,) , f=[f,..f,]' , and R is a diagonal matrix with

elements, (1- f,), which is the gradient of the logistic functioredause of the form
of the posterior distribution, integrating out theights is analytically intractable, so

we have to rely on approximation methods. For tAplace approximation framework
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(Friston et al., 2007b; MacKay, 2002) , which apqmates a given distribution with
a Gaussian distribution, it can be shown that thgative inverse of the covariance
matrix of the Gaussian approximates the Hessiamxdtthe distribution at its mode.
Therefore, the approximate covariance matrix ofgbsterior distribution is given by
T=(®'R® +A)*and the maximum posterior weight is computed by iterating the

update function
Brew =B o~ (@R®+A) (@ (f -t) +AB) (5.13)

The hyperparametersy, are updated in the same way as in RVR (4.12gpbibere

is no noise term for RVC. Similar to the regressiondel, some hyperparameters
would also grow very large, effectively removingrs® of the basis functions. The
implementation of RVC can be seen as a combinatbrregularized logistic

regression with a standard RVR update of the hygrameters. The implementation is
a nested loop, such that that the inner loop per$dhe regularized logistic regression
using (5.13) with fixed hyperparameters, and the outer loop updates the
hyperparameters using the current estimates opdtsterior weights and posterior
covariance matrix, using (4.12). We can take thpld@e approximation and model
the approximate marginal likelihoo@®(t|a)= N( |0C) with covariance matrix

C=(®A'®" +R™). For a given testing point, the probability thiaistpoint belongs
to class 1 is computed li)(zzoq(x*)ﬂl) = f(¢.P).

The main feature of RVC is that it provides a spgpsobabilistic output. In
practice, we found the performance of RVC to bghsly inferior to that of SVC. In
terms of the computational efficiency, becauseni@ementation of SVC (LIBSVM)
is in C/C++ and RVC is in MATLAB, training SVC idten about one thousand times
faster than training RVC. Even though SVC requiadslitional cross validation to

determine the paramet€ it is still faster than RVC. This is why we rarelse RVC
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when we were only interested in classification aacies rather than probabilistic
outputs.
5.1.3 Gaussian Process Classification

In section 4.1.3, we have introduced Gaussian pease (GP) for regression
problems. To adapt the framework to one of of hindassification, we place a GP
prior over the latent function xj, and then squash it by a logistic or probit fimrct
(Rasmussen and Williams, 2006). The class prolabilis then given
by p(y=1|x)= f(g(x)), where the functiof{) can be any squashing function, but we
generally use a logistic function (2.49). For GPRcause both likelihood and prior
are Gaussian, there is an analytic solution foringagredictions (4.22). However, the
non-Gaussian likelihood used for classification esakhe integration analytically
intractable. Therefore, approximation methods asedu In this thesis, we only
consider the simple Laplace approximation (Williaamsl Barber, 1998), and ignore
more sophisticated and computationally expensiveéhous such as expectation
propagation (Minka, 2001). The Laplace approxinratimodels the posterior
distribution of the latent function as a Gaussiastridbution having the mean at the
maximum posterior estimate and the covariance rmgivien by the negative inverse
Hessian at the maximum estimate.

From Bayes’' rule, the posterior of the latent Jalea is given by

p(t1g) p(@ [ X)
p(t|X)

features matrix, which can be built as the covasamunction of the Gaussian

p(gl X.,t)=

, where t, [{0,1} is the label of the clasX; is the input

processes (4.20), argdis the vector of latent variables. The goal isntaximize the
posterior distribution with respect tp as p(t|X) is independent af, we can only
consider the wun-normalised posterior. The GP prier given in (4.18)

p(g| X)=N(0,C) and the likelihood function is the standard binalnikelihood
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N N
used by logistic regression (2.61)(t |g) = |_| f(g,)" (- f(g,)™ = |_| g f(-g).
n=1 n=1
Therefore the un-normalised log posterior funciegiven by
W(g) =In p(g| X)+In p(t]g)

N
= _%{ g'C'g+In|Q}+t' g Zln(l +e%) +constant

n=1

(5.14)

We can optimize the above equation using the NesRaphson method. To do so, we
differentiate equation (5.14) with respecgto
OW(g)=t-f-C™g (5.15)

O0w(g) =-R-C™ (5.16)
where f =f(g,) , f=[f,..f,]' , and R is a diagonal matrix with

elements, (1- f,). The update function is then given by

gnew = gold + ( R+ C_l)_l(t _f - C_lgold)

N (5.17)
=(R+C™)™(Rg,q +t-f)

Once we have found the mods, .- of the posterior distribution, we can compute the

Hessian matrix, hence the Gaussian approximatioth@fposterior distribution is
given by p(g|X,t)=N@,m . R+C™*)"). To make the predictions, we first
compute the latent variable of the new input bypdiehg the equation in GPR (4.22),
Elg. | X,t,x.]=k 'Cg,,,»=K " ¢-f ) (notice ag,,,,,O0¥(9) =0, SO g,,p = C(t-T)).
The vector k has elementsk; =K (x;,x.),i =1,...N . If we use a linear kernel and are

interested in generating the “weight map” for vigiag the contribution of each
input feature, we can computed the map Wy z::l(tn - f,)x,. The variance of the
predicted latent variable is given byar[g. |X,t,x. ][= KX x )-k" R *+C)k .

Given the mean and variance of the predicted latanableg., we can compute the

averaged prediction byz =J'f(g)p(g | X,t x. )dg. Because of the asymmetric
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nature of the logistic function, the averaged ol is always less than tiAP
prediction f(g.), however, for binary classification, the predictedt labels given
by selecting the class of highest probability aledi by averaged AP predictions
are identical. i.e. if0.5<f(Qg.), then 0.5<m<f (@), or if f(g.)<0.5,

thenf(g.) <7z <0.5.
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Figure 5.4 Gaussian Processes Classification with R~ BF kernel

This figure shows the decision boundary found from the AD data by GPC with an RBF kernel.
The hyperparameters were learnt through optimising the marginal likelihood (5.18). The
distribution in the figure shows the probability of the data point belongs to the AD group,
p(t = AD|x), and the dark line indicates the decision boundary where the probability is 0.5.

The marginal likelihood function of GP((t |X,6):j pt o)p6 X @) is

analytically intractable, so we use the Laplaceraxmation of the posterior

distribution, and an approximation of the log maagilikelihood

In P(t X ,6)= W@ ,up)~= INR +C 4 In(27)
2 2
1 y (5.18)
==5{9'Cg+In| G +In|R+ C}+t'g- 3 In(1+e™)+constan
n=1

For the implementation, we wused the GPML Matlab Idoo

(http://www.gaussianprocess.org/gpml/code/matlaldjdeith some modifications, so
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we can use a pre-computed kernel as input. Weaaldssome code to generate linear
combinations of kernels. There is another in haogg#ementation by Dr. Ashburner.
In this implementation, Powell’s line search meth®iless et al., 1992) is used to
optimize the marginal likelihood (5.18).
5.1.4 Multi-class Classification approaches

Generally speaking SVC, RVC, and GPC are all birdagsifiers, although we
can expand the likelihood function of those probsiic models, such as RVC and
GPC, from Bernoulli distribution to standard muttmial distribution, and then apply

the softmax function

oo XPIX) ‘16
p(t=GC |w,x) S exptx) (5.19)

Often people take simpler approaches by combinimyiraber of binary classifiers
(Hassabis et al., 2009; Mourao-Miranda et al., 2066r situations withK classes,
there are two commonly used approaches; one i%othe versus the rest” classifier.
This works by trainingK classifiers, each of them trained with one classus the
otherK-1 classes. The classification for a testing p@rdetermined by the classifier
that achieves the highest classification scoresfughest away from the decision
boundary toward the particular class. Neverthelasshiguous cases may still occur
when all the classifiers consider a testing panbe in “the otheK-1 classes”. The

label of this point will be undetermined. Anothgapaoach is called the “one versus

one” classifier, which works by introducirg(K-1)/2 or Cf classifiers. Each of the

classifiers is trained with one class versus amott&ss only. The assigning of a
testing point is achieved by majority vote, in atlerds, the most frequent class to
which the testing point is classified by all thasdifiers. Ambiguous cases may also

occur in this approach. For example if we havedlulasses 1, 2, and 3, then we will
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have three classifiers (1vs2, 1vs3, 2vs3). Thénggoint may be classified into class
1, class 3, and class 2 from the three classifemgectively.

To tackle the issue of ambiguous cases, we intexic multi-classification
method for fMRI block designed experiments. Thighod also utilizes the temporal
information, without compressing into a reducednkérby equation (3.18). Our
approach breaks the classification into three stajeTrainK regression models; 2.
Predict the temporal profiles for a testing blo8k;Match the predictet& profiles
with the canonical profile (figure 5.5). This appoh was originally inspired by the
PBAIC, so we take a similar approach in the tragnpmase, that is, we only change
the target variable, but use the same input festuF®r example, consider an
experiment with three conditions in the design. Wauld train three different
regression machines with RVR or KRR, where eacthefmachines takes the same
kernel generated from the fMRI volumes as inputuiess, but the target variables are
the corresponding regressors (HRF convolved) irddsgn matrix. In the predicting
phase, temporal profiles of the test block (mutifMRI volumes) are predicted from
all three regression machines. To assign the ctessbership, we compare all the
predicted profiles with the canonical profile which the HRF convolved block.
Covariance or correlation is chosen as the metiianeasure similarities. Both
measures ignore the constant offset, and covarieonsiders the magnitude of the
prediction, but correlation ignores the informatafmmagnitude. The class is assigned
to the condition for which the machine achieves highest similarity between the
predicted profile and the canonical profile.

This method resolves the issue of ambiguous regem$ showed higher
accuracies for prediction than combinations of kn&VC at the individual level.
Although we gave an example of block design expenitnthere is no reason why this

method should not be used for event related desiyrmactical example will be
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given in an application section of this chapter.

) Predicted
Regression target
Canonical HRF Training Phase Predicting Temporal Matching
profiles
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Figure 5.5 Multi-classification using regression ma chines
This figure shows the pipeline of the multi-classification method we proposed by predicting

different conditions in a block design fMRI experiment

5.1.5 One-class Classification

One class classification is often referred to asehg detection (Scholkopf et al.,
2001; Shawe-Taylor and Cristianini, 2004; Tax, 200dhe one class classifier can
learn the distribution of the ‘normal’ samples froine training data, and then perform
the detection of abnormal or novel sample in a sew(Sato et al.,, 2008a). Often,
when we have uneven sample sizes, for instan@rgarlsample of control subjects
than patients, it will be preferred to train a atass classifier that can well describe
the distribution of the controls. This classifi@ncstill be used to classify patients by
finding subjects who do not belong to the classaritrol subjects. We introduced a
simple method in section 3.3.3, by calculating distdance from a data point to the
centre of the mass of the set from the kernel §3.4& can then define the radius,

hence the boundary of the hypersphere enclosindateeset. There is a more flexible
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approach, namely “the smallest hypersphere comggithe training set” (Schikopf
and Smola, 2001; Shawe-Taylor and Cristianini, 2004is method also works on
kernel space, and therefore does not require @xpfiecification of the feature space.
This allows us to explore the hypersphere in tlauiee mapping space. Unfortunately,
there is no easy way to find the centre that mis@sithe radius of the hypersphere, so
the solution can only be found using an optimizatscheme. This leads to the

following formulation

Minimize r?
llp(;)-c|f<r? (5.20)

subjectto |
i=1,...N

Similar to SVM, we can use Lagrange multiplierstdve this optimization problem.

The dual formulation is given by

Maximize W(a)=—i a3 K X )+i akk x)

ji=1 i=1
N (5.21)

L =1

subject to ;q
a=20 i=1..N

This is a standard quadratic programming optinazratis used by SVM, and similarly,

some of the Lagrange multipliers will have zerouesl. Only those data points laid on

the circumference have positive Lagrange multiplieFhey are analogous to the

N
support vectors in SVM. The centre of the spherelbmacalculated byc = Z agx),

i=1

and the radius of the sphere isr:\/W(a*) . The function

N
f(x.)=K(x,x )-22:1181 K .x )+ ag K x)-r’=0 wil assess whether

ji=1

the test point is inside the hypersphere. Postivput indicates that the test data is

outside the hypersphere, hence is novel.
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Figure 5.6 The smallest enclosing 2D circle

This figure shows 2D example of the smallest sphere that encloses all the data points. The red
points are the points with positive Lagrange multipliers (support vectors). The distance of these
points to the centre of the sphere is equal to the radius of the sphere, and the red cross
indicates the centre of the sphere. The blue cross indicates the centre of mass. If the
distribution of the points is asymmetric, the centre of mass and the centre of the smallest

enclosing circle may be quite distant.

Furthermore, if data points in the mapped featy&ce have equal distance to the
origin, in other words, the points are located ba boundary of the hypersphere
centred at the origin of the feature space sudh@®RBF kernel and the normalized

kernel. Since the diagonal elements of those keraed all 1. We can simplify the

N
objective function by maximizing onIy—an]. K(X;,% ) . Interestingly, this is

ji=1

equivalent to a binary SVC between all trainingnp®iand the origin. Notice the
LIBSVM implements this objective function ratherath the objective function
described in (5.21). Therefore, one class SVM IBIVM works only for the RBF
kernel or the normalized kernel.

We can also take the approach in soft margin SV@elaxing the boundary of

the hypersphere to avoid over-fitting the data.sTéan achieve a “soft hypersphere”
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that contains most of the data points. As in theeaaf the soft margin SVC, a free
parametelC is introduced to penalize the training errors i(p®ioutside the sphere).
The new objection function is given by

Minimize  r>+C||& ||

llp )-clfsr*+& (5.22)

subject to .
§ =20, i=1,..N

The dual form of this new objective function is giby

Maximize W(a)=—i a3 K X )’ﬂi akk x)

ji=1

N (5.23)

L =1
subject to ;q
C=2g3=20, i=1..N

The effect ofC, which capped the Lagrange multipliers, is exatttyy same as in soft

N
margin SVC. The centre of the hypersphere is gitién by C=26}(0(Xi), although

i=1

its computation is intractable from an RBF kern&s. with the soft margin SVC,
points with the corresponding Lagrange multiplieggial toC would have positive
slack variables, so these training points are detshe hypersphere. Points on the

boundary of the hypersphere would have their Laggamultipliers in the range

O<a <C : The radius of the sphere is

r:\/K(xl,x,)+iqaj K(xj,x)—ZZN:aK(xj X ), 0<a<C. To evaluate the

ji=1 j=1%
testing data, the decision function is the samefoasthe standard hypersphere
formulation withoutC. We can also take the approachiof SVM, by converting the
parameterC into a more intuitive variablev, such thatC=1/(vN). The v
parameter allows us to exert some control ovefrieion of points that are excluded

from the hypersphere.



176

1800

—
o
=
=)

1400

1200

right hippocarnpal ¥olume e

—
=
=
[

800

800 1000 1200 1400 1600 1800
3

left hippocampal volurme  mm

Figure 5.7 One Class SVM with RBF kernel

This figure shows a 2D example of the one class classifier applyied to the AD dataset using a
RBF kernel () = 56_5). The one class classifier was trained on the normal subjects (red dots)
with 20% training misclassification (V = 0.2). The dark contour indicates the boundary of the

classifier. 76.77% of AD patients (blue dots) were classified as “novel” from the training class.

5.2 Application: Classification of MR Scans in Alzkeimer’s

Disease

Recent advances in MRI segmentation (Ashburner Figton, 2005), spatial
normalization (Ashburner, 2007), and machine legyrtechniques (Bishop, 2006b)
have led to the application of automatic classiioza to MRI for detection of a
variety of disease states (Davatzikos et al., 26@8 et al., 2008a; Fan et al., 2005;
Fan et al., 2007b; Golland et al., 2002). The dbjes of our study were to assess
how well SVC classified individuals, and to detemmiwhether datasets from multiple
scanners and different centres could be combineabtain improved classification
accuracy (Kloppel et al., 2008d).

5.2.1 Introduction

Alzheimer’s disease (AD) is a neurodegenerativerdisr, and a common cause
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of dementia. Research advances have shown theeonsiny link to the molecular
pathogenesis of plaques composed of amyloid betd, tangles composed of
hyperphosphorylated tau. Familial AD is very rasat sporadic AD is common and
has affected more than 15 million people worldwitlee exact cause of sporadic AD
is unknown, and its early detection is importante(Bow et al., 2006). In practice,
the diagnosis is mainly based on clinical histang aeuropsychological examination,
but the diagnosis rate of AD is less than one-inalfie primary care setting (Solomon
and Murphy, 2005). When more detailed criteria @sed, the diagnostic accuracy is
improved, but still has around 80% sensitivity @?s¢n et al., 2001). Only recently,
people have realized that MRI can improve the diagjo accuracy of AD. Studies
have shown that the use of MRI to measure templota atrophy can assist
diagnostic accuracy (Barnes et al., 2004), evidshosvs that hippocampal volume is
a sensitive marker for pathological AD stage (Jatlal., 2002). However, a lot of
studies still rely on manual tracing of hippocamwihich is laborious and time
consuming. Besides, single measurements of hippoalavolume are unlikely to be
more sensitive than multivariate measures. Averafjesultiple voxels into a single
volume measure may be easy for human interpretabiainthis simplification results
in some information loss. On the other hand, gstesislearning methods are well
suited to finding patterns in high dimensional spagspecially as the computational
cost of kernel methods are bounded by the numbgaining samples rather than the
number of input features. We applied SVC in thigkvto examine different sets of
MRI from AD patients and elderly control subjed@ne advantage of our approach is
that all the procedures are fully automatic; therefthe result is not biased by
subjective errors from manual tracing.

5.2.2 Materials and methods

We have three sets of data from different souritethe first set (group 1), AD
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patients were largely from a community based sgitinRochester, Minnesota, USA.
All AD diagnoses were confirmed with neuropathologiiere were 20 patients and
20 controls. Controls all had MMSE greater or eqo&?.

The second set consisted of neuropathologicallyfiroed AD patients and
controls from the Dementia Research Centre, Unitye@ollege London. There were
14 patients and 14 controls. The AD patients iis toup (group 2) tended to be
younger than AD patients in group 1. Cognitivelymal controls were confirmed by
clinical exam or pathology.

The third set (group 3) consisted of 99 clinicaltynfirmed AD patients and 90
age and sex matched control subjects. Subjects fnmrea community and referral
based sample in Rochester, Minnesota, USA. Sinegdients were only clinically
confirmed (no post mortem examination), some ofpagents may not actually have
had AD. From previous studies, we speculated thbt @bout 85% of the patients in
the third set actually had AD. In fact, group &isubset of the subjects mentioned in
section 4.4 of chapter 4.

For groups 1 and 3, MR scans were collected oyegrend of about 10 years,
from 13 different scanners. However, all scanneesevihe same platform, General
Electric Signal 1.5T scanners. The scanning prdsogsed were also similar, and the
parameters for the T1-weighted images were: TR9237t ms, TE=6 to 10ms, flip
angle 25 degrees or 45 degrees, voxel size 0.86r@6mm x 1.6mm or 0.94mm X
0.94mm x1.6mm.

For group 2, the scans were acquired from thrderdifit 1.5T scanners. Image
parameters were TR=35 or 15, TR=5 or 5.4 or 7 dtigle 35 degrees or 15 degrees.

The image pre-processing procedures are descmsettion 3.2.1. Images were
firstly segmented by SPM into GM and WM, and thexported into a rigidly aligned

space. The GM and WM were iteratively registeredh® population mean by the
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DARTEL toolbox. Finally, the linear kernel is contpd from the normalized and
Jacobian scaled GM. For classification, we appsishdard hard-margin SVC in this
work. Methodological details can be found in 5.1.2ave one out cross validation
(section 2.5.1) was applied to test the generadizaterformance.
5.2.3 Results and discussion

Classification between confirmed AD patients andtems in group 1 yielded
the accuracy of 95% with whole brain GM from thave one out cross validation.
The corresponding sensitivity was 95% (i.e. prolitgbof correctly identifying AD
patients) and specificity was 95% (i.e. probabilafy correctly identifying control
subjects). One 89 year old AD patient with a MMSE26 and one 86 years old
control were misclassified. Classification of groRpachieved 92.9% classification
accuracy with the same procedures used for grodphé.sensitivity was 100% and
specificity was 85.7%. The two oldest controls weaiisclassified. We then combined
both groups 1 and 2, and obtained a cross valia@&ozuracy of 95.6%, which was
higher than any of the groups alone. The sengitiés 97.1% and the specificity was
94.1%. Finally, we trained the SVC with data inwgdl, and then used group 2 as the
test set. The accuracy was 96.4% (sensitivity 1068écificity 92.9%). Conversely,
we trained group 2 and tested on group 1. The acguwvas 87.5% (sensitivity 95%,
specificity 80%). Because subjects in group 1 wgererally older than subjects in
group 2, we suspected that the poor specificity e to misclassification of older
subjects in group 2. This actually raises an impurissue of supervised learning
methods, which is that the statistical machine asstrained by the information
available in the training set. When the trainingpkes are relatively scarce, as in our
case, differences of the distribution between #isé $et and training set can impair the
accuracy of classification. In our case, becausegagatterns have some similarities

between atrophy patterns in AD, the classifier mai/learn sufficient information to
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discriminate between aging patterns and AD pattiams a younger group. However,
when we trained from a set of relatively older galg, the classifier would be able to
characterise the pattern between AD and aging rmarie clearly.

Group 3 contains probable AD and mild AD patiefitse classification accuracy
using whole brain GM was 83.2% (sensitivity 81.88pgecificity 85.6). A further
improvement to 88.9% (sensitivity 85.9%, specifici3.3%) was obtained when
volumes of interest (VOI) centred around both bafd right parahippocampi were
used. This VOI is the same one described in 4Be2ause many AD patients in both
groups 1 and 2 were in the later stage of AD, weld/dike to test whether training
using data from group 1 plus group 2 can preditepts in group 3, which consisted
of many mild AD patients. The result was surprigmigiased, with an accuracy of
80% (sensitivity 63.6% specificity 97.8%). It seaibat training SVC with severe
cases of AD drove the hyperplane toward the dweatif the AD group. One way to
correct this situation is by biasing the decisiaurdary closer towards the control
subjects. By sacrificing the specificity, we campnove the sensitivity. We found that
by biasing by -0.5 in the direction perpendicular the decision boundary, the
accuracy improved to 89% and the sensitivity inseelato 87.9% with specificity
dropping to 91.2%.

Conversely, when we trained using group 3 datapsedicted groups 1 and 2, an
accuracy of 94.1% (sensitivity 94.1%, specificity. B%) was achieved. This implied
that patterns of mild AD are consistent with patteof severe AD. Because patients
with mild AD should be more similar to normal canis, training with difficult cases
should yield good results when predicting lessdift cases.

Finally, we combined all three groups together, #mel accuracy was 87.2%

(sensitivity 85.7%, specificity 88.8%). The follavg table summaries our results.
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G % correctly | Sensitivity | Specificity
rou
P classified (%) (%)
Group 1 95.0 95.0 95.0
Group 2 92.9 100 85.7
Group 3 83.2 81.8 85.6
Dataset 1 for training, set 2 for testing 96.4 100 92.9
Dataset 2 for training, set 1 for testng 87.5 95.0 80.0
Group 1 +2 95.6 97.1 94.1
Group 3 with VOI 88.9 85.9 93.3
Dataset 1 +2 for training, set 3 for
. 80 63.6 97.8
testing
Dataset 1 +2 for training, set 3 for
. . _ 89 87.9 91.2
testing (after correcting the bias)
Dataset 3 for training, set 1+2 for
. . _ 94.1 94.1 94.1
testing (after correcting the bias)
Group 1 +2+3 87.2 85.7 88.8

Because we used linear kernels in this applicattas,feasible to reproduce the
linear weights in the input feature space, or theight map”. The weight map allows
visualisation of those regions that contribute moréhe discrimination between AD
and controls. In order to produce a less biasedgiwenap, we utilise the “bootstrap
methods” (Efron, 1979; Efron and Tibshirani, 1998ubir and Boashash, 1998). We
resampled the whole dataset 200 times. Each timend 70% of the samples were
selected. The SVC was trained 200 times, and tl@ec@dresponding weight maps
were averaged to produce the mean map. Becausedight maps vary across
different training subsets, to produce a map tHastrates most consistent voxels
discriminating AD from controls, we divide the mearight map by its voxel-wise
standard deviation. This then constructed the rzesomp. The assumption was that if
there is no information in the training images istidguish between AD and controls,
the mean weight map should be 0 across all voketsn the aspect of visualization,

the z-score map would suppress voxels having hegiance of weights from different
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weight map. In other words, the z-score map carcate regions which are
consistently “informative” across subjects.

From the weight map, voxels around the parahipppehrgyrus and parietal
cortex showed strong contribution to classify betwdéD and controls. Because we
set the label of AD patient as 1, and controlslasiegative values in the weight map
indicates relatively higher grey matter volume @asing the likelihood of classifying
into normal. In other words, degeneration in theapgpocampal gyrus and parietal

cortex would lead to be classified as AD patients.
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Figure 5.8 Weight maps for AD classification

These two figures show the relevance of voxels for classifying patients from both groups 1 and
2 (pathologically confirmed subjects). The left figure is the mean weight map generated by
averaging 200 SVC solutions with bootstrap sampling. The right figure shows the
corresponding z-sores map. Both maps are visually very similar. The blue areas indicate
where relatively higher grey matter volume increases the likelihood of classifying as normal.

The red areas indicate the opposite effect.

Our results clearly indicate the feasibility of §pmachine learning techniques
to aid the clinical diagnosis of AD. The procedpresented here promises to classify
disease specific atrophy from that of normal aginga standard T1 weighted

structural MRI scan. Generally speaking, our resblve been comparable with or
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better than other classification methods publigbesed on MR images (Barnes et al.,
2004; Csernansky et al., 2004; Jack et al., 20Ghlud et al., 2005). Most of these
studies restricted analysis to temporal lobe sirmest Although, we also used
temporal VOIs for group 3 to improve the classifica performance, this
improvement could be because the clinical deteriwinaf AD was partially based
on examining temporal lobe structures. To be fairs actually difficult to judge
whether our approach was superior to other methaslsevery group worked on
different datasets. However, we can still companeamtomatic methods with human
experts.

5.2.4 Direct Comparison between radiologists and ocwomputerised
method

The aim here is to verify the performance of theomatic classification system,
including the automatic segmentation and spatiainatization processing. One way
is to compare the prediction accuracy with thoselemay clinical radiologists. This
project was mainly led by Dr. Stefan Kloppel, are kindly allowed me to put the
material of this study, for which | was one of teauthors, in my thesis (Kloppel et
al., 2008b) to make the chapter more complete.biiery diagnosis was made by six
radiologists, with different levels of experienaesing scans from groups 1 and 2
(pathologically confirmed cases).

To allow a fair comparison, radiologists were pd®d information about the age
range of patients and controls, and were alsottwtl the both diagnostic categories
were age matched and equal in number. This meansdtologists were not told the
age for each scan, but the age range in the grbup.radiologists were asked to
perform binary classification with an additionald¢ of diagnostic confidence (low,
intermediate or high). The radiologists rated graupst, and just before rating group

2, we disclosed the diagnosis of a third of pasiestd controls to the radiologists
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from group 2 to mimic the training in SVC. Discldseases were randomly selected
and removed from the test set. There was no timi¢ for the radiologists to perform

their diagnoses.
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Figure 5.9 Classification performance of radiologis ts and SVM
This figure shows the classification accuracy of radiologists and SVM for both groups 1 and 2.

The results of radiologists are shown as circles, and those of SVM are shown as triangles.

One radiologist performed as accurately as SVChantask of classifying AD
and controls from group 1, but SVC outperformed tither five radiologists.
Radiologists’ diagnostic accuracy was highest wtiery expressed high diagnostic
confidence. Correlations between the diagnostiairaoies of the radiologists with
the percentage of brain scans in their daily wa#lehowed that their diagnostic
accuracy improved with their level of experiencd.rAdiologists achieved relatively
high accuracies on the third dataset (figure 519)is suggests that training by
disclosing part of the data may have helped the éeperienced radiologists, as they

improved the most.
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Given the good diagnostic accuracy achieved by 8l&live to the radiologists,
it substantially extended the possibility of thee uwd computers in clinical decision
making (Ashburner et al., 2003). Although, expecesh radiologists working under
optimal conditions are very accurate, the automsygtem could improve diagnoses
in places where trained neuroradiologists or cogmiheurologists are scarce. It is
also important to realize that the performance ead in our classification system
was hugely attributed to the image pre-processiggridhms. The pre-processing can
be understood as the procedure for feature extracli the extracted features were
meaningful, the task of classification would beatekely invariant to the statistical
learning tools. Nevertheless, the automatic clesdibn system introduced here
warrants similar applications to large image s&ish as those being collected for the
Alzheimer’s Disease Neuroimaging Initiative (ADNMueller et al., 2005). When a
large training set is available, multiple sub-tmaghgroups can be established based
on the gender, age, and ethnicity. This shouldaedhe inter-subject variability due
to other factors. Once the pattern of AD has bémmacterised, screening the patients
could just take a few minutes (including segmeatatind registration), as there is no
need to re-train the classifier. Considering thewgng possibilities of cloud
computing (Buyya et al., 2008) and high speed @Er computation does not
necessary need to be done on site, but could lpatdised to computing centres

around the world.
5.3 Application: Automatic Detection of Presymptomé&c
Huntington Disease Using Structural MRI

The benefit of treatments for neurodegenerativeagiss is much higher in the

very early and preclinical stages of degeneratiornhis project, we applied the fully
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automatic classification method, which is nearly #ame one described in section 5.2,
for detecting subtle degenerative change in priegirHuntington Disease (HD).
5.3.1 Introduction

The availability of a definitive genetic test foDHprovides a perfect standard for
evaluating the performance of classification systémm gene mutation carriers who
do not have symptoms. Group studies of familial HBve shown substantial
neurodegeneration before the onset of clinical sggmp (Thieben et al., 2002).
Preclinical degeneration observed from structur&lMcans may indicate important
timing information for treatment to slow down thepess of degeneration. Automatic
and efficient methods would be required for scregrarge numbers of subjects for
early detection. In addition, Presymptomatic Hamsimportant model for the study
of the earliest stages of neurodegeneration araplagr This autosomal dominant
disorder has complete penetrance, and results #wpanded CAG trinucleotide
repeats in the Huntington gene, which can be deddiodbm the blood (Penney Jr et al.,
1997).
5.3.2 Materials and Methods

A total of 96 presymptomatic Huntington diseaseegamutation carrier (PSC)
and 95 control subjects enrolled in the PREDICT-bliDdy (Paulsen et al., 2006)
were included. PREDICT-HD is an international nudtitre study that focuses on
discovering biological and refined clinical predi of disease progression in PSCs.
The PSCs in the dataset have at least 39 CAG sepeahe HD gene, whereas
controls have fewer than 30 CAG repeats. Subjeet® wlso screened for unstable
iliness, alcohol or drug abuse, a history of sdemicational needs, and a history of
other CNS diseases. The scans acquired were akstkegh for artifacts with a
semi-automatic quality control procedure at theetwhacquisition.

In this study, we separate PSCs into various grduyptheir estimated time to
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clinical manifestation, based on age and CAG repeagth (tables available at
http://www.cmmt.ubc.ca/sites/default/files/pdf _hapdsupplementary_tables.pdf)
(Langbehn et al., 2004). This robust model wasdase3,000 gene carriers. We used
the algorithm to estimate the probability of deyéty clear signs of HD in the next 5
years, and then divided PSCs into three equal sgredps according to their
probability of clinical manifestation within 5 yesar

1. less than 10% (far group)

2. 10% to 33% (mid group)

3. more than 33% (near group)

Controls were selected to match the age in eachpgra control subject may
also be repeatedly used in different groups. Eaclup contains 32 HD and 32
controls.

The T1-weighted MRI scans were acquired using theeet dimensional
volumetric spoiled gradient echo series on 1.5Thses (TE=3ms, TR=18ms, flip
angle 20 degrees, field of view 240mm, 124 slide$.amm thickness, matrix size
256x192). We applied standard pre-processing proesd Briefly speaking, images
were segmented into GM and WM, and then importéd anrigidly aligned space.
The GM and WM were iteratively registered to th@uylation mean by the DARTEL
toolbox. Finally, the linear kernel is computednirahe spatially normalized and
Jacobian scaled GM (for details, see section 3.2.1)

Unlike the AD dataset, where the controls and tBepatients were quite distinct,
there was a lot of overlap between the PSCs anttaenso we applied soft-margin
SVC with parameterC in this project. When we evaluated the generabimat
performance, in order to prevent overly optimiggtimation, we performed a three
way split cross validation (section 2.5.1). Thisame we split the data into training,

validating, and testing sets. We used the validagiet to optimis€, and use the test
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set to verify the classification accuracy with tpimal C value.

From previous voxel based morphometry (VBM) studiee knew that the
atrophy in HD is localised in the striatum (Kasdubkeal., 2004; Thieben et al., 2002).
This prior knowledge should increase the predicpesver of the classifier, so we
performed additional feature selections procedWéesperformed a VBM comparison
between normal controls and PSCs from an extemtakdt, to generate the statistical
map. This new dataset consisted of 42 PSCs andotaubjects. The scans were
acquired from a 1.5T Siemens Sonata scanner (Tithveelg MDEFT sequence,
TR=20.66ms, TE=8.42ms, inversion time=640ms, fhigla 25 degrees, 176 slices at
1mm thickness, sagittal, phase encoding in antposterior, field of view 224x256
mn?). All images were spatially normalized into thengaspace as the original dataset.
We applied three different levels of threshold be t-map to obtain the mask for
feature selection. The thresholds are as followgedntorrected p<0.001, 2) FEW

corrected p<0.05, 3) single voxel of the global mex

5.3.3 Results and Discussion

Classification accuracy depended greatly on es#ichatime to disease
manifestation. Subjects with at least 33% chanceeotloping unequivocal signs of
HD in 5 years were correctly classified at 68.7%uaacy (sensitivity 62.5%,
specificity 75%). The prediction accuracy improveed 82.8% (sensitivity 78.1%,
specificity 87.5%) when a mask of uncorrected p3@#s used for selecting features.
For the mid group, the best classification accura€y79.7% (sensitivity 78.13,
specificity 81.3) was achieved when the single VaXehe global maxima was used.
The far group obtained the best prediction at 688a4gitivity 62.5%, specificity 59.38)
when a mask of uncorrected p<0.01 was applied reigul0). Results are presented

in the following table
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full group |near group | mid group |far group
accuracy |accuracy |accuracy |accuracy
sensitivity |sensitivity |sensitivity |sensitivity
specificity |specificity |specificity |specificity
[%] [%] [%] [%]
: 56.3 68.7 57.8 59.4
whole brain
62.5 62.5 59.4 62.5
grey matter
56.3 75.0 56.3 56.25
60.9 82.8 64.1 60.0
T-map at p<0.001 62.5 78.1 84.4 62.5
59.4 87.5 43.8 59.38
45.3 81.3 71.9 53.1
T-map at p<0.05 FWE
50.0 84.4 68.8 50.0
corrected
41.3 78.1 75.0 56.3
. . _ | 65.0 78.13 79.7 50.0
Single voxel with maximum T
70.4 78.13 78.13 100
value
59.6 78.13 81.3 0
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whole brain GM

t-map at p<0.001
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Figure 5.10 Classification performances for preclin

ical Huntington Disease

This figure shows the classification accuracy of PSCs using soft-margin SVC with different

input features in each subgroup.
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Classification performance was satisfactory congigethat PSCs do not have
clinical symptoms. Our study also provided evidesagpporting the gene prediction
model. The probability of developing unequivocans of HD within a period of time
is strongly correlated with prediction performande. general, feature selection
improves the prediction accuracy for both near amdl groups, however,
performance was around chance level for the fangreegardless of feature selection
criteria. Subjects in this group were estimated@érs or more from developing signs
of disease. It was very likely some people the grdid not manifest atrophy, hence
those people would have similar patterns as noomadrols. When we combined all
three groups, the classification performance hadlai accuracy to the far group.
This was possibly due to many PSCs in the far glaying similar pattern of normal
controls thus affecting the classifier during tra@ In one of our previous studies, we
applied SVM on diffusion weighted imaging (DWI) datind 82% classification was
achieved with whole brain data (Kloppel et al., 280 Although the cohort was not
the same, the subjects in the DWI study were estitng be an average of 19 years
from clinical manifestation. This strongly impligsat DWI may provide more salient
information related to structural changes for PS@an grey matter atrophy.
Nevertheless, in the framework of kernel methodscan combine features by means
of generating kernels from weighted linear comhoraof kernels. If both DWI and
T1-MRI of the same subjects are available, the gmptely weighted combination of
both modalities should allow even better perforneanc
5.3.4 Automatic feature selection using Gaussian pcesses

When training samples are scarce, feature selet¢#iohniques are shown to
improve the performance of classification. A poputeethod called recursive feature

elimination (RFE) was developed for SVM. RFE wobseliminating feature which
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contributes the least to the change of margin Widmargmin“w fl- WV 21‘| ,

where ||w |fis the margin width of the full features, anw |[fis the margin width

when the i-th feature is removed. If we use a linesanel, arg}min“b/v - w® z]h
this will be equivalent toargmin(jw; [} (Fan et al., 2005; Guyon and Elisseeff, 2003;

Guyon et al., 2002; Rakotomamonjy, 2003). The aag5VM-RFE removes features
one by one. However, when there are too many festthis is computationally
unfeasible and many tend to remove multiple featwse once, which can give
sub-optimal results. However, non-Bayesian methsuféer from the need to use
cross validation in order to determine the optimainber of features. If we have only
limited samples, splitting the data into traininglidation and testing sets will reduce
the number training samples. Besides, cross vadbr feature selection normally
requires a lot of computation due to the high disi@mal nature of the imaging data.
In this small additional project, we tested theligbpf automatic feature selection
using marginal likelihood maximisation with GaussRrocess Classification (section
5.1.3). We used the external dataset, which gesebthie statistical map in the main
project, with additional scans in the work. The nscavere acquired from a 1.5T
Siemens Sonata scanner (T1-weighted MDEFT sequeHRoe)dataset consisted of 40
PSCs and 40 controls. The average years of oradetilated from the CAG repeat in
the dataset, is about 15 years.

Standard pre-preprocessing procedures were appbed, with additional
Gaussian smoothing (6mm). We patrtitioned the wholenalized and Jacobian scaled
grey matter into five regions: the left and rightisgum, the left and right
hippocampus, and everything left. In principle, weuld have automatically

parcellated the brain using standard templates feAd. template). The covariance
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matrix takes the form
C=6K, +0K  +OK (+ K +& .+0; (5.24)

We then run the GPC to optimise the hyperparamdigrsmaximising the
marginal likelihood (5.18). Because optimising theights for each kernel is
equivalent to weighting the importance of each argiAutomatic feature selection
was achieved in the training process, so we didneed to run the time consuming
three-way split cross validation. Standard leave out cross validation was applied
to test the generalisation performance. When wd tis2 whole brain as features, i.e.
1=6=6,=6,=6,=6,, the classification accuracy from GPC is 52.5%ns#ivity
50%, specificity 55%). When automatic feature seecwas used, the accuracy

increases to 67.5% (sensitivity 65%, specificit§ojo
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Figure 5.11 Classification performances of Gaussian Process Classification

The left figure shows the predicted probabilities of both PSCs and controls using whole GM.
The accuracy was about chance level (52.5%). The right figure shows the prediction, when
automatic feature selection was applied using maximising marginal likelihood. The accuracy

increased to 67.5%.

To examine which regions were most important fassification, we trained the
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GPC with the full training set. We then normalize thyperparameters except the
constant term to calculate the percentage of dmritan from each region (figure
5.12). Interestingly, the kernel generated fromt &fiatum contributed 99% of the
covariance matrix. This result is in agreement vpitevious VBM studies (Kassubek

et al., 2004; Thieben et al., 2002), which showigtiér t values in the left striatum.

Figure 5.12 Contribution of each region to the cons  truction of covariance matrix
The figure shows the contribution of five regions to the covariance matrix (5.24). From the

figure we can see that the left striatum dominated over other regions.

5.4 Application: Multi-class Classification of fMRI Patterns

by Kernel Regression Methods

This application is based on the method mentiome8.1.4. We compared our
multi-class classification system against a mutiss classification system built from
a combination of binary classifiers, at both sirglject level and at group level.
5.4.1 Introduction

There has been increasing interest in the appicati pattern classification,

especially with support vector machines (SVM), IRl analysis. In these
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approaches, fMRI volumes are treated as the irgaitifes and the patterns reflect the
strength of BOLD signal. However, there are stréeimporal correlations in fMRI
time series, especially as a result of the delaysanoothing due to the hemodynamic
response (HRF). For block designed experimentgsinyators have typically either
applied a shift to account for the hemodynamic yeta they have averaged the
volumes in the block (Cox and Savoy, 2003a; Mowh@nda et al., 2005). Both
strategies ignore the temporal correlation due émddynamic convolution. An
alternative method, which preserves the HRF infoionais to fit a GLM to obtain
parameter maps (sometimes called the “beta mapsgdch block or event (Eger et
al., 2008). However, all these methods involvingperal compression greatly reduce
the size of the training set, impairing the traghprocess and exacerbating the relative
sparsity of events common in many fMRI designs.e;lere propose a novel approach,
which treats the fMRI pattern as a regression gmbland predict the fMRI pattern
with a regression machine rather than a classibicatnachine. We adapt a match
filter as the final decision function to comparee thredicted time series with the
canonical time series pattern, and then seledbésematched pattern as the predicted
class.
5.4.2 Materials and methods

The dataset used for this work was also used imiqusly published papers
(Hardoon et al., 2007; Mourao-Miranda et al., 200Gurao-Miranda et al., 2006).
Functional MRI scans from 16 male right handed thgaUS college students (age
20-25), without any history of neurological or psiatric illness, were acquired.
After the study was explained to them, all subjeztee written informed consent to
participate in the study. The study was performmeddcordance with the local Ethics
Committee of the University of North Carolina. Tldata were collected at the

Magnetic Resonance Imaging Research Center atrihetdity of North Carolina on
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a 3T Siemens Allegra Head-only MRI system. The fMiRis were acquired using a
T2* sequence with 43 axial slices (slice thicknéssym; gap between slices, 0 mm;
TR =3 s; TE = 30 ms; Flip angle = 80 dgrees; FO192 x 192 mm; matrix, 64 x 64;
voxel dimensions, 3 x 3 x 3 mm). In each run, 2&#fional volumes were acquired.

The experimental stimuli were in a standard blo@signh. It was a passive
experiment with visual stimuli, so subjects weréneguired to react to the stimuli. The
visual stimuli were categorized into three diffdresctive conditions: viewing
unpleasant (dermatological diseases), neutral (pe@md pleasant images (girls in
bikini). Each active condition was followed by &tiag condition (fixation) with equal
duration. In each run, there were 6 blocks of ttteva condition (each consisting of
seven images volumes) alternating with restingaffon) of seven image volumes. Six
blocks of each of the three stimuli were presemedndom order.

We applied the pre-processing procedures desciib@&>R.2. Briefly speaking,
the fMRI volumes were realigned and resliced. Gregtter (GM) masks were
generated by segmenting the fMRI volume for eachjest. Similar to PBAIC
competition 2007 (section 4.3), we masked out ndn @xels, which were less
likely to contain BOLD signals, to increase thensigto noise ratio. For group level
prediction, we further normalised each subject ithte population template by the
DARTEL toolbox. A linear kernel was generated faclk subject from GM masked
fMRI series in the native space. Also one lineankkfor all subjects was computed
from all the GM masked spatially normalized fMRIriss. Linear detrending was
applied using the residual forming matrix (equatioiv).

To test the prediction accuracy, we applied thetireldss method using a
regression machine mentioned in section 5.1.4. ¥éel lboth kernel ridge regression
(KRR) and relevance vector regression (RVR) fomtrey the regression machine.

Covariance was chosen as the metric to measursrttilarity between the predicted
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profile and the canonical profile. Because we ud#éfirent pre-processing from
previously published papers (Mourao-Miranda et 2007; Mourao-Miranda et al.,
2006), we also retested the performance of suppentor classification (SVC) by
combining three “one versus one” classifiers, whigre the same procedures used
for previously published results. We applied theeraging, beta-map, and
spatial-temporal techniques to compress the kerDetails on efficient ways to
compress the kernel are described in chapter 3.
5.4.3 Results and discussion

Leave one block out cross validation was perforntedstimate the prediction
performance for each subject. The results were élwvenaged across all subjects. The
accuracy of predicting experimental stimuli fromRWolumes in each single subject
was very high when we applied our approach. 1008ssdication accuracy was
obtained for six subjects and an average of 94%racg was achieved across 16
subjects. KRR and RVR resulted the same accuratyhb computation time of RVR
was about 500 times more than for KRR. We achiestedllar results for SVC
compared with previously published work. The beassification accuracy for SVC

was 83% using averaging blocks. The results argepted in the following table.

Single Subject

Prediction | Multiclass | Multiclass | SVC (block | SVC SVvC
Accuracy % | with RVR | with KRR | average) (beta-map) | (spatial
temporal)
Average 93.8 93.8 83.3 83 64.2
Accuracy
Unpleasant 94.8 93.8 79.2 79.2 65.6
Neutral 91.7 92.7 84.4 84.4 59.3
Pleasant 94.8 94.8 86.5 85.4 67.7
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Figure 5.13 Multi-class classification performance for single subject
The figure shows the classification accuracy of the multi-class regression machine and SVC

for single subject.

And the confusion matrix for multi-class with RVRA&ASVC (temporally compressed

by block average) is given by

Predicted % Actual

Multiclass with RVR UnpleasantNeutra|Pleasant

PredictedUnpleasant 93.75 3.13| 2.1

Neutral 3.13 91.67 3.13
Pleasant 3.13 5.2 94.79
Predicted % Actual

SVC (block average)UnpleasantNeutra|Pleasant

PredictedUnpleasant 79.17 5.21| 7.29

Neutral 6.25 84.38 6.25

Pleasant 13.54 8.33| 86.46
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Notice that the columns of unpleasant and neutr@\C (block average) do not sum
to 1. This was due to ambiguous cases, which wectassifiable. i.e. the condition
was predicted as all three conditions from thraee“wersus one” SVC classifiers. Our
method of multi-class with RVR did not show strgrgdiction bias, but SVC seemed
to have a strong bias toward mistaking the conaliob unpleasant as pleasant. This
could be explained from our clustering analysisvahan figure 3.13. The analysis
showed that the temporally averaged fMRI patterdennunpleasant stimuli were
more similar to the pattern under pleasant stirian neutral stimuli. In general, our
multi-class regression based method outperformeaverdgional multiclass SVC
approaches regardless of the type of temporal cessmn. This implies that
additional information for discriminating amongféifent conditions is encoded in the
temporal profile of the HRF. The superior performegould also be due to sufficient
training samples, which allowed more accurate egton of the distribution. In this
work, each regression machine was trained on ab95252 kernel (18 blocks times
14 volumes per block), whereas SVC was trainednob8aby 18 kernel after temporal
compression. Some information must be lost in tleegss of compression. It is not
surprising that spatial temporal compression hadatbrst predicting accuracy (figure
5.13), because if we recall the way that spatmalpiral compression works in figure
3.9. Spatial temporal compressed the original kesgesumming only the diagonal
components of each sub block. Relative to blockraye or beta-map, spatial
temporal ignores more information in the originatrel. Both beta-map compression
and block averaging had nearly the same predia@muracies, which implies that
these approaches did not preserve much tempoaaimation after the compression.
For the group level prediction, leave one subjeat oross validation was
performed. This involved training from the fMRI wohes of 15 subjects, and then

making predictions about the subject left out. Fnediction accuracies were then
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averaged across all subjects. The multi-class itilrssising regression machine

performed worse than SVC with temporal compressitre. result of 83.3% accuracy

was achieved from multi-class using RVR. In conr&/C with block averaging

achieved 95.1% classification accuracy. Even SV gpatial temporal compression

obtained 94.1% classification accuracy. The resaites presented in the following

Classification Accuracy

table.
Multiple Subjects
Prediction | Multiclass | Multiclass | SVC (block | SVC SvC
Accuracy % | with RVR | with KRR | average) (beta-map) | (spatial
temporal)
Average 83.3 80.1 95.1 94.8 94.1
Accuracy
Unpleasant 83.3 79.2 94.8 93.8 93.8
Neutral 81.3 78.1 94.8 94.8 93.8
Pleasant 85.4 84.4 95.8 95.8 94.8
09 a3 £ ol
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Figure 5.14 Multi-class classification performances for multiple subjects

The figure shows the classification accuracy of the multi-class regression machine and SVC

for multiple subjects.
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The confusion matrix for multi-class with RVR andG (block average) is given by

Predicted % Actual

Multiclass with RVR UnpleasaniNeutra|Pleasant

Unpleasant 83.33 14.58 10.42
Predicted
Neutral 8.33 81.2% 4.17
Pleasant 8.33 4.17 85.42
Predicted % Actual

SVC (block average)UnpleasantNeutra|Pleasant

PredictedUnpleasant 95.83 2.08| 4.17

Neutral 417 94.79 1.04

Pleasant 0 3.13 94.79

There were no ambiguous cases in SVC for multiptgegts, so the columns in the
confusion matrix summed to one. The predictionI®C seemed to be less biased,
unlike predicting for single subjects, where thewes the tendency to mis-identify the
condition of unpleasant as pleasant. However, rold8s classification using RVR
seemed to be biased towards predicting the conditiof neutral or pleasant as
unpleasant.

We suspect that the reason why the multi-classessgrn machine did not work
well in multiple subjects, as opposed to in sirglbjects, was due to the inter-subject
variability of the HRF. The approach of the mulass regression machine is more
sensitive to variation of HRF than is SVC with tesrgd compression. If we could

characterise the HRF for each individual, the ptgain performance of the regression
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machine should be at least compatible with SVC. Possible explanation of why
SVC improved in the case of multiple subjects wasabise of sufficient training
samples. For investigators interested in real timMRI online prediction, our results
suggest that if there are sufficient fMRI volumesitable to train the prediction
system offline, SVC will be the recommended classiiHowever, if the prediction
system is going to be trained online i.e. trainedhe first half of the experiment, our
multi-class regression machine should be a beftigice.

In addition, we also trained the multi-class regi@s machine with fMRI
volumes corresponding to the active condition onlye standard multi-class
regression machine trained all fMRI volumes, thdyodifference between each
regression machines was the input target variablech was the corresponding
regressor in the design matrix (figure 5.5). Foaragle, if we trained a regressing
machine to predict condition 2, the correspondilggnents of the target vector for
other conditions would be set to zero. In the n@preach, we did not train fMRI
volumes of other conditions, but only the fMRI ssafi the corresponding condition.
The prediction accuracy of single subject for KRRsw84% (unpleasant 87.5%,
neutral 76%, pleasant 88.5%), but the accuraciR¥R was much lower, only 57.6%
(unpleasant 29%, neutral 70.9%, pleasant 72.9%j. rRoltiple subjects, KRR
achieved 81.3% correct classification (pleasan8%2.neutral 81.3%, unpleasant
80.2%), and RVR achieved 62.9% (pleasant 65.5%rale®R.3%, unpleasant 40.6%).
In this approach, sparse methods did not work wilis could be caused by an
inability to capture subtle differences among ctods using sparse methods,

because predicted profiles from different condgitwy RVR all appeared very similar.
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Figure 5.15 Weight maps for all conditions from tra  ining all 16 subjects with RVR
These figures show the weight map that predicts the temporal profile. These maps were
generated by training three RVR machines with the corresponding target variables. Red

indicates positive values and blue indicates negative values.

For visualisation purpose, we also computed theesponding weight map for
all three conditions by training all the subjectshwRVR. Notice in the weight map,
there were large areas of negative weightings e wisual cortex for unpleasant
stimuli. This does not necessarily mean those aggperienced deactivation during
stimulation, but that those areas may have hadaetbaty compared with neutral or

pleasant stimuli.
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5.5 Decoding Neuronal Ensembles in the Human

Hippocampus

This was a joint work with Demis Hassabis, whoderists are in hippocampal
functions. The hippocampus appears to be impomaspatial navigation (Maguire et
al., 2000). There is debate about how hippocampatans code such information.
Nevertheless, Hassabis believed the neuronal codiladed to navigation has a
representation in the population of neurons, andeiectable from BOLD signals.
Because the change of signals may be subtle, wdedpmultivariate pattern
classification using high spatial resolution fMREpecifically we applied a
“searchlight” based method (Haynes et al., 200Tedgéskorte et al., 2006) to explore
regions in the temporal lobe that contain informtthat discriminates positions of
the subject in a virtual environment.

5.5.1 Introduction

Studies had shown that the brain encodes informadimout the environment
using a large population of neurons (Buzaki, 20@4¢viously, recording of single, or
small numbers of, neurons have demonstrated the onyerelated response of
hippocampal place cells, which fire invariantly whan animal is at a particular
spatial location (Moser et al., 2008). It is diffitto examine what information such
place cells represent at a neuronal populationl,lea® recording thousands of
hippocampal neurons simultaneously is not curreptgsible. Recently, examining
neuronal codes through high resolution fMRI hasnkeshieved (Haynes et al., 2007).
The hypothesis was that although the fine graithefneuronal representations are
below the spatial resolution of fMRI, the ensembleivity of such distributed
patterns could be used to predict the perceptatd str intention of an individual. We

believed that if decoding from focal hippocampalRMsignals was successful, this
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would have significant implications for understarglihow information may be
represented within neuronal populations in the hurhgppocampus. To test our
hypothesis, we used an interactive virtual regNtir) environment with first person
view to test spatial navigation of the subjectthim fMRI scanner.

5.5.2 Materials and methods

Prior to scanning, subjects were trained to famdewith the VR environment.
The navigation task allowed participants to moveha VR environment using a
4-button control pad. There were two rooms, namehfue room and a green room.
These two rooms had the same dimensions and wsignéd to minimise the impact
of irrelevant sensory inputs. There were four taggesitions (A, B, C, D) in each
room. Participants were asked to navigate as quiekid accurately as possible
among these four positions (figure5.16).

Each room was visited 20 times during the scanrsegsion giving 40
“environment blocks” in total. Within each room,egy target position was visited 14
times in total. The cue for visiting the next deation would appear after the subject
had arrived at the current target position and éolottown at the floor. There would be
a 13 second resting period after visiting 2~4 tamssition in the room. Then the
subject would be placed randomly in the initial ifpoa of one of the rooms. To
maintain the concentration of the subject, eighicltatrials were included that
involved an incidental visual task. During the codown, the numbers were normally
displayed in white text, but occasionally one woflégh red. Subjects were asked to
press the trigger button when spotting a red nunider catch trials spread randomly,
but they would always appear at the end of a blbekails and exact timing can be

found in the published work (Hassabis et al., 2009)
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Figure 5.16 Virtual reality environment for the nav  igation task

(A)The top two figures show the blue and green rooms. (B) This figure shows the layout of the
4 different positions in both blue and green rooms. (C) When the subject reached the
destination, they would press the button to look at the floor, and a 5 second countdown was
given (the ‘3’ in this figure indicates the countdown), the count down was followed by the text
label for the next destination. (one of the 4 positions). (D) After completing 2 to 4 navigation
trials in the room (based on the time they spent), there would be a 13s fixation period. Then the

subject would be replaced in one of the rooms.

Actually, we had different experimental design tbe first batch of fMRI
experiments. Initially, we had four sessions in #heeriment, and each session
contained 6 environment blocks. The sessions weterrupted by turning off
scanning, which made the temporal detrending parfooorly. The exact reason was
unknown, but interrupting the process of acquirfMR| volumes did change the
properties of the low frequency drift. As a resfitthis, when we displayed the first
few principle components of the data, we found saarthe four sessions came from
different distribution (even after detrending). el univariate analysis, each session
can be modelled by different regressors. The nasdtate classification system
assumes all training samples come from the santebdigon. When the training
samples came from four slightly different distrilouts, the prediction accuracy would

deteriorate. We made the decision to discard al gshans, and re-scanned four
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subjects out of the original ten using the new glesin the new design, the time of

each environment block (room switching) was reducedecrease the effect of low

frequency noise and increase the predictability. Al¢e scanned the subjects in one
long session without interrupting the scanning.

The scanning was done in a 3T Siemens Allegra stanim-plane
resolution=1.5x1.5mf matrix=128x128, field of view= 192x192mm35 slices
acquired in an interleaved order; slice thicknesssmin without gap, TR=3.57s,
TE=30ms, flip angle=90 degrees). Every subject detad the navigation with
different speed, so the scanning time for eachestibyas not fixed.

We pre-processed the fMRI data by realigning andarapling the scans with
spatial smoothing using 3mm FWHM Gaussian kerniele&r detrending was applied
to the pre-processed images directly. Because wveel tise searchlight method,
applying the detrending to the images would be nedfieient than applying it to
kernels generated from each searchlight regiont,Nex convolved the image data
with the canonical HRF to increase the signal teeaatio, which effectively acted as
a low-pass temporal filter. To compensate for tleéayl induced by the inherited
hemodynamic delay in BOLD and the additional HRFosthing, all onset times
were shifted forwards in time by three volumesdjiigy) an approximation to the 12s
delay (HRF peaks at 6s) given a TR of 3.57s. Th& frolume and the last four
volumes of each environmental block were discartiedreduce the effects of
appearing suddenly in a room, and to exclude caials. Three classification tasks
were carried out to (1) indentify which of two tatgpositions in the same
environment that the participant was standing (AB/&ind C vs. D); (2) classify all
four target positions in the same environment (AB/ss. C vs. D); (3) classify which
of the two rooms the participant was in (greenblge). For task 2, we combined six

“one versus one” binary SVCs.
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To identify regions in the temporal lobe that camed information for
discriminating the position of the participant, \applied the searchlight approach
(Kriegeskorte et al., 2006). This approach utiliged multivariate information in
local voxels. Thus, for one voxel , we selected the voxels in a sphere centreq at
with a radius of three voxels. This yielded totaBlvoxels in the spherical volume of
interest (VOI). We then generated the linear kefrah each VOI for classification.
No temporal compression was applied because there wnly two volumes per
corresponding target position. Soft-margin SVC applied to train the pattern with
C fixed at 1 (empirically determined). To estim#te predicting accuracy, we used a
leave one block out cross validation. We had 4Qrenment blocks, each containing
about 12 volumes. Also, there were 56 position kipeach containing two volumes.
During the training, only volumes in the relevatads were used i.e. when training
Avs. B in green room, we only used volumes acaginviile the subject was standing
at those two green room positions. Each volumeiwightest block was individually
classified in the cross-validation, and the clasaifon accuracy was calculated by the
percentage of correctly classified volumes, as epgdo correctly classified blocks.
For visualisation, we generated a “prediction magtiere the accuracy in each voxel

represented the accuracy of the searchlight spesiteed at that particular voxel.
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Figure 5.17 lllustration of searchlight pattern cla  ssification

(A)The top figure shows the fMRI volumes that corresponded with the participant standing at
position A and B in the blue room. (B~E) This shows how we selected the searchlight sphere.
(F,E) illustration of the “leave one block out” cross validation. The prediction accuracy was then

stored at the central voxels of the searchlight

To account for multiple comparisons issue, we &gblpermutation tests
(Nichols and Holmes, 2002) to simulate the nulltrdbsition and estimate the
significance threshold. We repeated the classiinadnd cross-validation procedure
100 times with a different random permutation o&irtmg labels for each
classification tasks for each subject. The thresheas then estimated from the 95%
guantile of the accuracies generated from the pition trials, equating to a
family-wise confidence level of p<0.05. This threkhwas computed for each voxel
in the prediction map, and prediction accuracies thd not reach significance were

masked out from the map.



209

5.5.3 Results and discussion

The first classification task was to indentify winiof two target positions in the
same environment the participant was standing av§AB and C vs. D). The
prediction map showed that voxels in the body-pastehippocampus bilaterally
were crucial for classifying position. The findinggere highly consistent across

participants

Figure 5.18 Prediction map of classifying two targe  t positions
The prediction map was overlaid on the anatomical image to identify regions that contained

information for discriminating two target positions (A vs. B and C vs. D)

The second classification task was to indentifychtof all four target positions in the
same environment the participant was standing lae prediction map revealed a
focal cluster of voxels in the body-posterior o€ thippocampus bilaterally. These

findings were also very consistent across subjects.
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Figure 5.19 Prediction map of classifying four targ et positions

The prediction map was overlaid on the anatomical image to identify regions that contained

information for discriminating among four target positions (Avs. B vs. C vs. D)

The third classification task was to idenify whighthe two rooms the participant was
in (green vs. blue). The prediction map showed thatels in the posterior

parahippocampal gyrus bilaterally were importamtdiscriminating between rooms.

Figure 5.20 Prediction map from classifying environ ments
The prediction map was overlaid on the anatomical image to identify regions that contained

information for discriminating between two environments (green room vs. blue room)

To summarise the findings, we found there was aifsigntly higher proportion
of voxels in the hippocampus than in the parahippgmal gyrus containing

information for identifying position. For environmie classification, there was a
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higher proportion of voxels active in the parahipgmpal gyrus than the
hippocampus for all participants. Our results shobwiee possibility of decoding
spatial information from the pattern of fMRI sigeaacross spatially distributed
voxels in the human hippocampus. This implies that hippocampal neurons may
represent spatial locations by large populationseafrons. The permutation test and
the consistency of prediction maps across subgeggested that it was unlikely that
the patterns were just random. Although, the meshathat caused the fMRI pattern
is unknown at the neuronal level, the finding swfee a different view to prevailing
theories, that there may be an underlying functionganization to the hippocampal

neural code.

5.6 Prognostic and Diagnostic Potential of the Statural

Neuroanatomy of Depression

This work was a collaboration with Cynthia Fu ag tinstitute of Psychiatry at
Kings College London, for which | did all the ansity and coding. There are no
neurobiological diagnostic markers for psychiatlisorders currently. Usually, the
diagnosis of depression is based on self repoggatpt®mMs without using evidence
from neurobiological markers. In this work, we tfigo examine the potential of
discriminating between MDD patients and normal oastusing anatomical MRI.
5.6.1 Introduction

Major depression disorder (MDD) is characterisedpleysistent low mood or
anhedonia, and by behavioural and cognitive distnas that disturb daily
functioning. Neuroimaging studies have shown stmadtand functional patterns

associated with MDD (Drevets, 2000; Lyoo et al.020 A previous study had also
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shown the possibility of distinguishing between msged and healthy individuals
from the fMRI pattern during the task of viewingldacial expressions. An accuracy
of 86% was achieved (Fu et al., 2008). However, uke of fMRI is still not as
prevalent as structural MRI as a diagnostic todieréfore, we tried to test the
diagnostic performance for depression using ana@ngcans. Unlike Alzheimer’s
disease and Huntington’s disease, which have knpathology of degeneration in
localised areas of the brain, MDD is not a neuredegative disease. Nevertheless,
subtle shape variation and degeneration may stilice patterns in the structural MRI
that could be utilised for diagnosis. Generallgbgll cerebral volume is slightly lower
in patients with depression than in healthy subjeand the pattern of difference
seems to be distributed. There were reports of cediivolume in hippocampus
(Campbell et al., 2004), anterior cingulate (Caetahal., 2006), and middle frontal
cortices (Bremner et al., 2002) for depressed ptstie
5.6.2 Materials and methods

In the analysis, there were 37 right-handed patié2® women, mean age 41.9
years) meeting Diagnostic and Statistical ManuaMehtal Disorder-1V (DSM-1V)
(Spitzer, 1994) criteria for major depression byu&ured Clinical Interview for
DSM-IV. All patients had been free of psychotropiedication for a minimum of four
weeks. There were 37 right-handed healthy contasles (CC) matched for age,
gender, and 1Q with no history of psychiatric dad&n neurological disorder, or head
injury resulting in a loss of consciousness. Theiamilton Rating Scale for
Depression (HRSD) (Hamilton, 1960) was less thaaqual to 7. Eighteen depressed
patients had participated in a treatment study ulh antidepressant medication
fluoxetine (20mg daily) and twelve patients wereated with cognitive behavioural
therapy (CBT). Nine patients achieved remissiomfitbe antidepressant medication,

and six patients achieved remission from CBT.
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Anatomical MRI data were acquired on a 1.5T IGEdystem (General Electric).
The acquisition protocol involved collecting 12(cek using a dual echo, fast spin
echo sequence (T2 weighted and proton density wexijh coronal orientation,
in-plane resolution 0.8mm, slice thickness 3mm, 48=TE=15ms and 105ms, echo
train length=8.

The image pre-processing procedures are describexkdtion 3.2.1. Briefly,
images were first segmented by SPM into GM and VdhY then imported into a
rigidly aligned space. The GM and WM were iterdivieegistered to the population
mean by the DARTEL toolbox. Jacobian scaled spgtieirmalised GM images were
generated, which were smoothed using a 6mm FWHMs&an kernel. Finally, the
linear kernel is computed from the pre-processed. da

\Voxel-Based Morphometry (VBM) was used to localis@y volumetric
differences between the controls and patients. dd@lg survived a family-wise error
(FWE) correction or even a false discovery rateRlrPorrection. When the threshold
was set to uncorrected p<0.001, the SPM map shewedl clusters of a few voxels
in size, which were scattered across the brains Baggested that the anatomical
pattern of difference between MDD and controls rigéed to be characterised at a
finer spatial scale than afforded conventionalty.ficrease the classification accuracy,
feature selection was applied. Feature selectlon ptocess of selecting a subset of
features that may be most useful for prediction y@uand Elisseeff, 2003), is
important for high dimension data when only a feyarsely distributed features are
informative. We implemented a simple univariate apnfiltering. First, the t-value
and degrees of freedom was estimated for each voxé¢he training set using
equations for unequal sample sizes and unequaaneai The t-map was then
converted into a p-map. Different thresholds of arnected p-values were chosen,

such that voxels higher than the threshold werekethsout. We then applied
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hard-margin SVC to discriminate between patient$ @ntrols. Leave one out cross
validation was used to estimate the classificaioauracy. It is important to realise
that we only used the training set for computing phmap, so the test set remained
completely independent. However, reporting the bests validation accuracy out of
all possible selected feature sets is biased t@mvheihg too optimistic (a multiple
comparisons issue). Three way cross validation ldhaally be used to estimate the
generalisation performance of SVC with feature teda. Because of the intensive
computations required for three way cross validggtise chose another approach to
estimate the p-value of the predicted accuracyapyied permutation tests (Nichols
and Holmes, 2002) to simulate the null distributeomd estimated the significance
value of the predicted accuracy using the threskiwddl achieved the best leave one
out accuracy. We fixed the threshold for featurded®mn and repeated the
cross-validation procedure 300 times with a diffikreandom permutation of the
training labels. The significance level was thetinegted from one minus the percent
guantile of the accuracies generated from the petion trials. For example, if the
leave one out accuracy using correct labels actiéve6% accuracy, which ranked
the 292%in the permutation trails (ascending order), ttrenp value was estimated as
1-292/300=0.0267.

A one class classifier was also applied to testowerlap between classes. To
make the comparison less biased, each group wampésd to a subgroup of 30
subjects. We then tested the percentage overlapebetone class and another. i.e.
train the one class classifier on patients, anttbespercentage of controls who were
classified as patients, and vice versa. This pnaeedas repeated 30 times, and the
results were averaged.

5.6.3 Results and discussion

The prediction performance was very poor (45% ate)yrwhen we used the
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whole brain grey matter. With feature selectiorg ttest prediction accuracy was
67.6% (sensitivity 64.9%, specificity 70.3%) where viixed the threshold of the
p-map obtained from the training set at p<0.005ingshe permutation test, we

estimated the corresponding p-value to be 0.0267.
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Figure 5.21 Classifying MDD and control with differ ~ ent thresholds
This plot shows the leave one out cross validation accuracy for classifying depressed patients
and normal controls by varying the thresholds in the feature selection. The p-map was

calculated from the training set, and only voxels lower than the threshold were selected.

Because each cross validation trial used diffeiemiures, we could not generate
the weight map from SVC easily. To localise regitingt were most important for
classification, a frequency map was computed. Thkievin each voxel of the
frequency map indicates the rate that that voxel sedected as a feature in the cross
validation. From the frequency map based on thé fresliction accuracy (threshold
p<0.005), regions in right subgenual anterior clat|y medial frontal gyrus, superior
temporal cortex, precuneus, hippocampus, thalarais,inferior parietal cortex,
occipital cortex, and cerebellum, all contributeddiscrimination between patients

and controls.
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Figure 5.22 Frequency map for separating MDD from ¢ ontrols (threshold p<0.005).
This figure illustrates regions that were most often selected in the cross validation trials with
the threshold p<0.005.

We suspected the reason that the classificatiomtrass not as good as for
classifying AD or HD, and also the poor VBM resuitas due to class overlapping.
This suggests that some of the MDD patients hadasimnatomical brain patterns to
the controls, so the classifier would not be trdipeoperly. To test this hypothesis, we
applied the one-class classifier to both MDD, ar@d s&parately. When the MDD
group was trained, we found the average propodfddC classified as MDD is 73%.
When we changed the training set to the contraligranterestingly, there were 92%
of MDD classified as CC. The result may suggest tha anatomical pattern in the
CC group had broader variations than in the MDDugroln other words, the
structural pattern of the MDD group is likely to besubset of the CC group. This
could also be due to outliers in the control groBecause the assessment of

depression is very subjective, some subjects irctmerol group might be depressed
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for a period of time slightly prior to the recruiémt, but not depressed during the
assessment of HRSD. There was a large proportiooveflap between these two
groups. However, we also noticed that about 25%eadthy controls had distinctive

patterns compared with the MDD group.

We also tried to classify between subjects whoeaad clinical remission to
treatment with the antidepressant medication fltioeeand the subjects who received
the antidepressant with residual symptoms. Theoamaal MRI scans were acquired
before the treatment. Surprisingly, 88.9% clasaifan accuracy was achieved
(88.9% of patients in clinical remission (senstiiyiand 88.9% patients with residual
symptoms (specificity)). The significance leveliestted using the permutation test

was 0.01 with the fixed threshold set to p<0.005.
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Figure 5.23 Classifying patients who achieved remis sion or not with different

thresholds
This plot shows the leave one out cross validation accuracy for classifying patients who

achieved remission with the antidepressant and those who did not improve after taking the

antidepressant.

Regions in right rostral anterior cingulate cortkeft posterior cingulate cortex,
left middle frontal gyrus, right occipital cortesrbitofrontal cortices bilaterally, right

superior frontal cortex, and left hippocampus dbnted highly to the classification.
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The anatomical information did not show any abitibypredict who would achieve

clinical remission from CBT.

Figure 5.24 Frequency map from classifying patients achieving remission or not
(threshold p<0.005).

This figure illustrates regions which were most often selected in the cross validation trials with
the threshold p<0.005 between patients who achieved remission and patients who had

residual symptoms.

Because there is no clear neurobiological mechathsincan describe the cause
of depression, it was expected that the structdiRl would be inferior to fMRI for
the clinical diagnosis of depression. From the w818 we found a large proportion of
depressed patients exhibited similar anatomy tonabsubjects. However, for acutely
depressed patients who received medication, tieetedff the treatment was found to
be significantly correlated with brain structurehelhigh predictability of clinical
remission suggests an initial step towards the ldpugent of personalized medicine.
If similar predictabilities could be obtained froother antidepressants, the most

effective medications could be prescribed to theeptbased on the prediction of
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treatment effects. If we use probabilistic clagsdi such as Gaussian processes, a
combined utility function may provide the basis foeking decisions that optimally

balance the trade-off between side effects andinesa benefit (and financial cost).
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The main focus of this thesis has been to introgwediction based analyses that
utilise state of the art machine learning methddss thesis has described a number
of pattern recognition algorithms that can be usedoth functional MRI decoding
and anatomical MRI prediction. These include vasialassification and regression
algorithms. Most algorithms were not originally ented for this thesis, and many of
implementations of the algorithms can be foundlyrea the internet, or could be
fairly easily implemented in MATLAB by following # description in the text. The
most frequently used methods in this thesis wepp8u Vector Classification (SVC),
Relevance Vector Regression (RVR), and Kernel Riiggression (KRR).

Practical applications were also presented to dstrate the performance of
those algorithms. A total of eight applications svgresented in chapters 4 and 5.
There were two applications on fMRI regression migah, one application on
anatomical MRI regression prediction, two applicas on fMRI classification, and

three applications on anatomical MRI classification

6.1 Original Contributions of This Thesis

A few original contributions have been made witttis thesis. Some original
ideas came from my supervisors. Many of the coutidins simply involve combining
different parts of pre-existing methods in a new.wa

In chapter 3, a residual forming matrix is introddcto remove confounding
factors or low frequency drifts from the kernel editly. This operation is more
efficient than removing covariates voxel by voxglthough a similar operation was
introduced in a paper | contributed to (Fristoralet 2008), it was not formulated for
general kernel methods, such as SVM or RVM. In thesis, the operation is further
extended to temporal compression for fMRI data. rMabperations on the kernel

generated from all the fMRI volumes can yield amnieglent kernel computed from
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the “beta-map” or “averaged block”. Although Sphtemporal compression can not
be expressed as simple matrix operations, a gealgacithm (figure 3.9) is provided
to compute all forms of temporal compression from ariginal kernel.

A number of novel ideas can be found in the fMRmnpetition 2007 (PBAIC
2007) in chapter 4. These include applying tempshafts to train the regression
machine, model fitting with average template (pradg instruction), masking
functional regions, and utilising information fromther conditions i.e. use hit
weapons, hit people, and hit fruit to predict seameapons, search people, and search
fruit. These novel approaches subsequently reswltedeating more than 40 other
teams to win in the competition, especially as thve teams who achieved joint
second place (Team Princeton and Team Maastrigiutjea similar algorithms as
ours (ridge regression and RVR respectively). Tinemonovel idea in chapter 4 is the
prediction of clinical ratings using structural MRiAnd clinical ratings are compared
based on their prediction accuracy. This idea wasgnized by the abstract reviewers
of OHBM 2007, as it was considered suitable fonaral presentation.

Chapter 5 introduced two main original ideas. Tingt is the use of marginal
likelihood maximization for automatic feature selex. This avoids the time
consuming three-way cross validation. The secoed id the multi-class classifier
using regression methods. This approach uses tamp@rmation and was shown to
significantly outperform conventional classifiersr fsingle subject prediction. This
idea was also recognized by the OHBM 2008 reviewasrd was also selected for an

oral presentation.

6.2 General Conclusions

Kernel methods were shown to be powerful for prgaticlinear and non-linear

patterns in brain MRI data. In chapter 3, the daéin of the kernel was introduced,
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and efficient operations were demonstrated for ttoogng various kernels. Some
common non-linear kernels can be computed dirdiotign the linear kernel. Also,
linear operations can efficiently remove confouriadsn the kernel or temporally
compress it. Conventionally, researchers tend éoeigen-decomposition or singular
value decomposition to reduce the dimensionalitythef input features, but this is
redundant for kernel algorithms as solutions carsdagght in the space of the input
kernel, where the computation is bounded by thebmrmof samples rather than the
number of input features. This characteristic igotaable for high dimensional
imaging data. However, prior knowledge is still uggd to define the similarity
measure. Extracting relevant features to prediet thrget variable, which can be
labels (classification) or continuous variable (esgion), from the raw image data
depends on one’s understanding of what informati@ncoded. For example, kernels
generated from Jacobian determinants may encoflerafif information to kernels
generated from “velocity fields” that encode bralrape. In principle, it would also be
possible to combine the advantages of both disndthie models and generative
models using Fisher kernels (Jaakkola and Haud468).

Kernel regression methods predicted BOLD signalsumately for some
experimental conditions. Both PBAIC 2006 and PBAI@7 allowed a comparison
among a diverse range of approaches for makinggqti@as from brain imaging data.
As in any model comparison problem, it allowed thest accurate approach to be
selected from a range of candidates. Our approguiogsd to be superior by showing
competitive results. In general, objective ratinggd higher predictability than
subjective ratings, such as valence and arousaast also shown empirically that
pre-processing would have a higher impact thanctimce of algorithm or model,
assuming optimal parameters of the models weredio&or example, insufficient

detrending in PBAIC 2007 led to relatively poor fpemance (figure 4.9). RVR was
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applied to most of the applications, because isduo# require free parameters, and
the optimisation of RVR is faster than GPR in ompiementations. No systematic
comparisons between algorithms were performedisthesis, because the “no free
lunch theorem” (Duda et al., 2000), says that tliemo algorithm that is superior to
others across all problems and contexts. The opttgarithm may be different for
each dataset. However, from our empirical resuttseems that RVR generally
performs well for both anatomical and functional M&atasets. Perhaps this is
because MRI datasets satisfy the Gaussian assumvpeib

Unlike kernel regression methods, kernel clasdificaalgorithms have greater
variability among their model structures and asgionp. For instance, Fisher’s linear
discriminant assumes equal covariance for classgistic regression, GPC, and RVC
assume a Bernoulli likelihood model; the philosopbghind SVC is based on
structural risk minimization. The maximum marginpegach in SVC effectively
prevents overfitting of the training data. Becaube posterior and marginal
distributions of GPC and RVC are analytically iotable, Laplace approximations
are used, which may reduce the accuracy of theastin. In practice, SVC generally
performed more accurate binary classifications thnst of the Bayesian methods,
but Bayesian methods provide probabilistic measuvbgh can be more easily
integrated into a decision theoretic framework. Masgportantly, the applications in
chapter 5 demonstrated the feasibility of an autmmdiagnostic system. The
classification system showed comparable performarniteclinical radiologists in the
task of discriminating between AD patients and rarmcontrols. For
neurodegenerative diseases affecting large regiotise brain such as Alzheimer’s
disease, whole brain features can achieve accadlagsification. However, when the
regions with anatomical change are relatively sma#lecting salient features

increases the performance of classification whely emall training datasets are
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available.
For investigators doing prediction based fMRI as@lyit is recommended to
have long sessions or short sessions without tgroifh the scanning. From our

experience, turning off scanning disturbed thesifastion performance.

6.3 Directions for Future Research

Overall, decoding patterns in both fMRI and strugkuMRI were achieved
successfully in this thesis. These achievementsle&at to two main directions of
research.

6.3.1 Clinical decision support system

Medical examinations are becoming increasingly darafed, and more
measurements can be acquired from the patient.id?dnys relying on only few
markers may risk the chance of misdiagnosis. Pgalhavailable information should
allow the most accurate diagnoses to be achiewadthlere is a cognitive limit for
normal humans to retain and utilise all the detiaila useful way. To reduce the cost
of medical systems without sacrificing the qualitfydiagnosis, it seems inevitable
that computer aided diagnoses or clinical decisapport systems will become
increasingly used. Modern computers are alreadyepioivenough to perform very
complicated calculations in real time. Because Muoraw still holds today,
multi-core computers, parallel computing, and tgtalstorages system are likely to
become prevalent in the future. Computation powaer be expected to take over
some aspects of the physician’s analytic abilityaybe not for physician’s
experiences and intuitions). Developing models amdorithms to integrate
measurements from different examinations will hec@l. For example, physiological
biomarkers can achieve 90% classification of ADnfrblood samples (Ray et al.,

2007). Combining such measurements with MRI dataldcgush the diagnostic
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accuracy even higher. If individual’s genetic inf@tion is added, 99% accuracy may
be achieved one day. Anatomical MRI may also ptetlie effect of treatment as
shown in section 5.6. The achievement of persasdlisedicine may only become
feasible by adopting computer aided clinical systemOne of the main obstacles
comes from the lack of large datasets for trairsngh systems, which in turn arises
from the reluctance of investigators in the neuaming field to share their primary
data.
6.3.2 Prediction based fMRI analysis

Classification from fMRI patterns has been showwtok successfully by many
people. The current approaches mainly use dirgctakichanges from the baseline,
but patterns of functional connectivity may be mioust to noise. With sufficiently
high classification accuracies, practical applmasi may be performed. For example,
the fMRI patterns of arousal can be found for aipalar subject by training with
specifically designed experiments (calibrating gha3hen different advertisements
are shown to the same subject. Based on the psdyidound patterns, it may be
possible to measure the level of arousal for difieradvertisements. This type of
method could also be used to look for interactiebmeen cognitive functions. For
example, training could be based on listening tagant and unpleasant music, and
then the classifier is applied to fMRI scans ofwirey pleasant and unpleasant images.
The classification performance could provide a kirity measure between different
cognitive processes, for instance by assessingithgarity between the feeling of
listening to pleasant music to that from lookinglasant images.

Pattern classifiers can also be applied to rea-tiiRIl experiments. For
example, it may be possible to train a classiffeat tcan predict the move of the
subject playing “rock-paper-scissors” in the scanm®owever, the hemodynamic

delay may complicate this type of experiment. Galhgrpattern classifiers will be
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useful for experiments involving real-time feedback

Future developments could potentially lead to dioexs of research that raise
important ethical questions. For example, insugatmmpanies may wish to know
what kinds of health predictions could be made frdata about their clients.
Similarly, there may also be legal implicationshié procedures allowed very accurate
decoding of mental states. Currently, our ability make predictions from
neuroimaging data has only limited accuracy, battdthniques are likely to become
much more accurate in future. Many of the potémtilaical implications are not yet

known. To quote Niels Bohr:

“Prediction is very difficult, especially about th&ure.”
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Appendix A: Basic proves

Unbiased variance
Sample variances” :%Zn:(x -X)? = E(X°)-X*, where X :%Zn: X
E(o7)
1 <\2
=E(EZ (x=%))
1 X -~
:;Z(E(X )- E(2x)+ EX))

:%(nE(xz) - 2nEQGC )+ nE(®¥))

=(o; +X*—E(X))
=(07 +X*-var(X)- E(X’) notex’- Ek§f= (

=(0? —n—lzvar(z X)) note:vartix F i vark )

1
—_ 2 2
=(o; —Fnan)
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Appendix B: Demo codes

Least squares logistic regression
function  w=logisticRegression_LS(X,y,lam);
for iter=1:100,
f1 = X*w;
f =exp(fl)./(1+exp(fl));
df = X*(2*(f-y).*f.*(1-f));
% Approx 2 " derivative
%d2f = (B"*diag(2*(f.*(f-1)).2)*B);
% True 2nd deriv
daf =
(X'*diag(2*f.*(1-f).*(2*f-3*f ./ 2+y.*(2*f-1)))*X);
% Regularization
d2f = d2f + lam*eye(size(d2f));
df =df + lam*w;
%update
old w=w;
w =w - d2f\df;
dw=w-old_w;
if dw™*dw/numel(w)<le-6
disp(iter);
break ;
end
end;

229
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Binary logistic regression

function  w = logistic_binary(X, y,lam)

[n, m] = size(X);
w = zeros(m,1);
for i=1.60
z=X*w;
f=1./(1+exp(-2));
deriv= f.*(1-f);
R=spdiags(deriv,0,n,n);
w=w-(X"*R*X+eye(m)*lam)\(X"*(f-y)+ones(m,1)*lam );
end
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