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Abstract

Colour provides important information in many image processing tasks such as object identification and

tracking. Different images of the same object frequently yield different colour values due to undesired

variations in lighting and the camera. In practice, controlling the source of these fluctuations is difficult,

uneconomical or even impossible in a particular imaging environment. This thesis is concerned with the

question of how to best align the corresponding clusters of colour histograms to reduce or remove the

effect of these undesired variations.

We introduce feature based histogram alignment (FBHA) algorithms that enable flexible alignment

transformations to be applied. The FBHA approach has three steps, 1) feature detection in the colour

histograms, 2) feature association and 3) feature alignment. We investigate the choices for these three

steps on two colour databases : 1) a structured and labeled database of RGB imagery acquired under con-

trolled camera, lighting and object variation and 2) grey-level video streams from an industrial inspection

application. The design and acquisition of the RGB image andgrey-level video databases are a key con-

tribution of the thesis. The databases are used to quantitatively compare the FBHA approach against

existing methodologies and show it to be effective. FBHA is intended to provide a generic method for

aligning colour histograms, it only uses information from the histograms and therefore ignores spatial

information in the image. Spatial information and other context sensitive cues are deliberately avoided

to maintain the generic nature of the algorithm; by ignoringsome of this important information we gain

useful insights into the performance limits of a colour alignment algorithm that works from the colour

histogram alone, this helps understand the limits of a generic approach to colour alignment.
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Chapter 1

Introduction

1.1 Colour consistency in Computer Vision

Colour is an important source of information in computer vision systems. Objects with different material

properties can be imaged as different colours. Common applications that use colour information are

object segmentation, object tracking [7] and retrieving similar images from a database [8]. Figure 1.1

shows an image of a tomato with a rotten patch on the left and a healthy looking tomato on the right.

Clearly, the tomato on the right is preferable to eat, a person can make this judgement quickly and

effortlessly using colour information. Buhler Sortex [9],the industrial partner company for this project

produce systems that use colour information to separate good and bad food [10]. The annual Robocup

competition [11] is a soccer tournament for autonomous robots. Figure 1.2 shows images from the Aibo

robot dog league. Colour information is used to distinguishbetween the ball, robots, the terrain and the

goal.

A major problem for all colour computer vision systems is that the recorded colour of an object

varies when camera and lighting conditions change. Colour consistency occurs when an object or ob-

jects with the same material properties are imaged to give the same recorded colour values irrespective of

any different lighting and camera conditions that may be present. Colour consistency of objects in an un-

controlled scene can be improved by introducing careful selection of the lighting and camera conditions;

Figure 1.1: A tomato with a black rotten patch on the left and ahealthier looking tomato on the right.
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(a) (b) (c) (d)

Figure 1.2: Two scenes captured by an Aibo robot that have been segmented using the method of Rofer

[1]. 1.2(a) shows a scene and 1.2(b) shows a segmented version of the image. Each unique colour in

1.2(b) indicates a unique class label. 1.2(c) and 1.2(d) show a different scene and its segmented version.

In this image the scale of the ball and robot is larger when compared to 1.2(a).

however, it rapidly becomes impractical or even impossibleto produce incremental improvements using

this approach because lighting environments and cameras have inherent variabilities that are difficult to

minimize due to the limits of manufacturing technology. Colour consistency should not be confused with

colour constancy, the term colour constancy is used to referto methods that reduce object colour varia-

tion due to lighting effects only. High colour consistency means that colour variation can be attributed

to the object material properties and not the properties of the camera or light source. This is significant

in the Robocup application when tracking the ball and goal position; regions of the ball and terrain in

Figure 1.2(d) have been misclassified, misclassifications occur frequently when the lighting or camera

conditions are highly variable. Currently, Robocup soccermatches are played indoors as the variability

due to outdoor lighting fluctuations is considered too great[12]. In addition, a large amount of time is

needed to set up the colour thresholds for each Aibo every time lighting conditions change [13]. In-

creasing the degree of colour consistency improves the tracking process and makes object segmentation

thresholds more reliable.

Improved colour consistency reduces the camera and lighting variations. Computer vision applica-

tions that would benefit from this are:

1. Colour object segmentation, where data has been captured with lighting and/or camera variation.

2. Image lookup from a database, where images were captured under different lighting conditions

and/or camera conditions

3. Colour object tracking when subsequent frames vary due to camera and/or lighting effects.

4. Robust colour models: object variation can be compactly modelled when camera andlighting

variation is reduced. If these effects can be minimized, object colour models constructed under

one set of lighting and camera conditions could be more easily deployed under a different set of

conditions.

This thesis argues that colour consistency can be improved in a range of applications by summarizing

colour data-sets with histograms and then finding transformations that align the histograms to minimize

the differences due to camera and lighting variations. Histograms can be computed from single images,
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Figure 1.3: Input, Accept and Reject Samples for White Long Grain Parboiled Rice using a Buhler

Sortex Z-series machine. Picturec©copyright Buhler Sortex Ltd, 2008. Reprinted with permission.

image frames in a video sequence or from portions of a video stream over time. Colour data acquired

from a range of different situations can be summarized usingcolour histograms, this means that generic

methods to align colour histograms could have significant and wide reaching impact.

1.2 Colour consistency in the food processing industry

Colour sorting machines are a vital part of the modern food processing and production process; these

machines are used to sort products such as rice and coffee into accept and reject categories as seen in

Figure 1.3. Buhler Sortex is a leading global supplier of optical sorting machines in over 100 countries;

they have more than 20,000 installations around the world and are continually striving to improve the

quality of the sorting process. Sorted foodstuffs have a significantly higher economic value than unsorted

foodstuffs. Buhler Sortex and their customers are keen to gain economic advantage through optimization

of the sorting process.

Product classification performance varies within and between machines; this variation exists despite

the fact that machines have been engineered to provide a highly controlled inspection environment. Buh-

ler Sortex engineers and scientists have determined that a key factor affecting classification algorithms

is the variability in the recorded colours of product being sorted. Current techniques for minimizing this

undesired variation involve a large degree of hand tuning using interactive tools; performing this tuning

requires a high degree of skill. Buhler Sortex are continually looking to improve the classification per-

formance and reduce the set-up time of their machines. The economic and environmental impact of even

a small performance improvement is extremely significant due to the large volumes of food produce pro-
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cessed. A typical machine sorts approximately nine tonnes per hour and works for approximately 6000

hours per year. Therefore, a performance improvement that saves just 0.5 percent of this product volume

will yield an extra 270 tonnes of product per machine per year. The application of generic and automatic

colour space alignment algorithms on Buhler Sortex machines would mean that the manual tuning step

could potentially be eliminated or at least minimized. If Buhler Sortex machines operate at higher levels

of performance then less product will be wasted and higher quality sorted produce will result.

A further goal of improved calibration routines on Buhler Sortex machines is to build colour distri-

butions for specific products such asbasmati riceor kenyan coffeethat can be calibrated across different

machines. Improved calibration methods will enable these colour distributions to be applied in practice

since the calibration mapping within and between machines will be better understood. Deployment of

colour models for food products would reduce set-up times and costs. At present, engineers may be

required to fly to foreign sites to perform detailed calibration and set up procedures; colour distributions

that can be automatically calibrated for different machines would greatly reduce these costs.

1.3 The automatic histogram alignment problem

Colour histograms of objects with the same material properties that are imaged under different camera

and lighting conditions exhibit differences due to colour inconsistencies. This thesis hypothesises that

meaningful structure can be extracted from histograms and alignment transforms can be found that align

the structure of the histograms to increase colour consistency. The term automatic histogram alignment

problem is used in this thesis to describe the process of finding alignment transforms from colour his-

tograms without manually defined labels. The applications in Section 1.1 and the Buhler Sortex problem

described in 1.2 would all benefit from robust and generic solutions to the automatic histogram alignment

problem.

The next chapter reviews existing methods for solving the colour inconsistency problem and high-

lights that many solutions are only applicable to a specific problem domain. Domain specific solutions

are important as they teach us how to produce high performance systems in a pragmatic way; however,

it is difficult to apply methods from one problem domain to another. Generic histogram alignment algo-

rithms with known performance characteristics would allowvision systems that handle colour inconsis-

tency to be built using standardized colour consistency modules; prior knowledge and related constraints

can then be integrated into the problem as required. This thesis develops generic histogram alignment

methods and tests the methods on an RGB colour image databaseand grey-level video stream data.

1.4 Goals and Contributions

The goal of this thesis is to create unsupervised alignment algorithms that can align the corre-

sponding clusters in colour histograms.

The aim is for these algorithms to have general relevance in computer vision and to find direct applica-

tion to the problems faced by Buhler Sortex. This section summarizes the original contributions of this

thesis developed in the pursuit of this goal.
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1. Design and capture of structured databases for the study of colour space alignment.

• A structured, labelled RGB colour database.

The image database systematically introduces scale, camera, local and ambient lighting vari-

ation for four sets of simple objects. Different histogram alignment methods can be tested

on image sets where the class of physical variation leading to observed colour variation is

known. The hand labeled object annotations allow robust quantitative evaluation of aligned

histograms.

• Buhler Sortex grey-level video streamed data.

A new real time capture system has been developed to record video data from a Z1 Buhler

Sortex food processing system. The real time nature of this data allows existing and new real

time colour calibration methods to be studied in a manner that has direct relevance to the

real-time machine behaviour.

2. Algorithms to solve the colour space alignment problem.

• A three-step feature based histogram alignment (FBHA) framework is introduced. The three

steps are 1) unsupervised colour space feature detection, 2) feature association and 3) feature

alignment. There are a variety of choices at each step, thesechoices are evaluated in isolation

using the RGB image database. Examination of each componentin isolation in addition to

the aggregate performance provides insight into the challenges and advantages of the FBHA

approach.

• Scale space techniques are utilised as a robust way of extracting peaks from noisy histograms.

Matching these peaks leads to the discovery that structuralmismatches between correspond-

ing clusters commonly occur in data from commodity cameras.

3. Colour space alignment metrics and evaluation methodology.

• A labeled histogram metric for comparing multi-modal distributions is introduced, it lim-

its the bias towards the largest and overlapping clusters. This means that it considers the

alignment of each cluster to be of equal importance.

• A method for ranking FBHA and existing colour inconsistencyremoval techniques is in-

troduced. The variability of transform performance is found to be high, the method uses

bootstrap confidence tests to establish a ranking that accounts for outlier behavior.

• A method to compare colour histogram corrections on Buhler Sortex data is introduced.

Corrections are ranked by the residual colour variation of the corrected acceptable product,

good scores indicate correction methods that are worthy of further investigation in a sorting

setup.

4. Empirical analysis.
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• A new ranking of existing colour inconsistency removal methods and transforms is devel-

oped. To the author’s knowledge, no comparable ranking exists in the literature. The ranking

helps system designers pick an appropriate method or transform when constructing a com-

puter vision system. The analysis highlights the high performance of point alignment trans-

forms. An important discovery is that the performance of commonly used transforms and

methods is highly sensitive to small variations in the data acquisition conditions.

• Different combinations of system components and transformations are tested and ranked us-

ing Buhler Sortex data. The ranking is novel and leads to insights concerning the importance

of different processing steps and transform selection.

1.5 Thesis Plan
• This chapter has introduced the automatic colour histogramalignment task and related it to the

highly relevant problem of colour consistency.

• Chapter 2 reviews related work and constructs a taxonomy of colour inconsistency correction

methods. Background methods that directly support the development of ideas in subsequent chap-

ters are specified.

• Chapter 3 introduces the FBHA methods and qualitatively evaluates their behavior.

• Chapter 4 introduces an RGB image database containing examples of colour inconsistency. The

different sources of colour inconsistency in the database are described. FBHA methods are quan-

titatively compared to a set of reference methods using the database.

• Chapter 5 studies the Buhler Sortex machine and applies the FBHA methodology to grey-level

video stream data.

• Chapter 6 discusses the commercial impact of this work and the value added to the industrial

sponsor.

• Chapter 7 draws relevant conclusions from this work and suggests future research directions.

• Chapter 8 summarises the achievements of this thesis.
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Chapter 2

Literature Review

This chapter reviews important background material that allows solutions to the automatic histogram

alignment problem to be developed and placed in context. First, the basics of colour vision are intro-

duced; the aim is to explain how colour phenomena occur in a wide range of physical environments.

Second, existing colour inconsistency methods are reviewed and organized so that their key operational

points can be understood. Finally, a compilation of mathematical transforms is specified. The transforms

are used by existing methods and the specifications are drawnupon at later points in the thesis.

2.1 Colour fundamentals

This section introduces basic concepts of colour vision. The relationship between colour, light, mate-

rial properties and camera sensors is described. Adelson’splenopic function [14] summarizes the light

sampling process that produces colour data. The plenoptic function is used in this review to describe

different common sampling schemes; it provides a common basis for thinking about different physical

capture conditions. Next, the ambiguous mappings between an object’s material properties and observed

colour are discussed; the different types of ambiguity are listed and examples of when they occur are

given. The section concludes with a description of how colour is represented using colour spaces and

the purpose of these spaces.

2.1.1 The three elements of colour

Colour requires three elements:

1. light,

2. interaction of the light and objects in the scene,

3. the capture of light at a sensor.

The following subsections explain these three elements in terms of their physical principles. The percep-

tion of colour by humans depends on the physics of the world and what happens in the eye and the brain.

Human sensations of colour involve the photo-chemical processes in the eye combined with psychologi-

cal processes in the brain. In computer vision, colour images are represented as numbers and depend on

the physical world and the physics of cameras. This section introduces these concepts in some detail.
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Light

Figure 2.1: The electromagnetic spectrum describes radiation at different wavelengths. Visible light

occupies a small part of the spectrum between 380nm and 780nm. Picture by L.Keiner (Reprinted with

permission)

Visible light is electromagnetic radiation between the wavelengths of 380nm to 780nm. Infra-red

and ultra-violet light exist below and above this range respectively. Light and other forms of radiation

exist on a continuous spectrum of wavelengths as illustrated by Figure 2.1. Light is composed of particles

called photons, each photon carries a definite amount of energy. Light is remarkable as it exhibits the

properties of both a wave and a particle, this behaviour is known as wave-particle duality [15].

A light source emits photons in different directions. Radiometry deals with the measurement of

light and the distribution of light in space is measured using radiance. Radiance is the power (energy per

unit time) travelling at some point in a specified direction,per unit area perpendicular to the direction

of travel, per unit solid angle. Its units are watts per square meter per steradian [16]. It is common to

study the property of light by ignoring the dependency on solid angle and plotting the spectral exitance

in watts per square meter against wavelength. Figure 2.2(a)shows a spectral power distribution outdoors

and 2.2(b) shows a spectral power distribution measured under a florescent light. Measurements are

obtained with a photometer, the vertical scales in these plots are normalized to lumens. Lumens is a

transformed representation of actual radiance that is usedto measure the perceived power of light [2]. It
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is immediately noticeable how different these two distributions are. Spectral power distributions change

for different lighting conditions.

The spectral power distribution is a summary description. Light interacts with a physical en-

vironment in complex ways. Adelsonet al. [14] introduced the plenoptic function as an idealized

concept to describe the incident light(i.e incoming radiance)at every point in space. The value

P (θ, φ, λ, t, Vx, Vy, Vz) of the plenoptic function,P , is the intensity of the light with wavelength,λ

at position,Vx, Vy, Vz at time,t in direction,θ, φ. The function describes the incoming radiance at every

pointVx, Vy, Vz of an idealized eye along a ray direction specified in spherical coordinates parameterized

by θ, φ, for every wavelengthλ at every timet. Adelsonet al. state that the plenoptic function allows

specification of a colour holographic movie: “A true holographic movie would allow reconstruction of

every possible view, at every moment, from every position, at every wavelength, within the bounds of the

space-time wavelength region under consideration. The plenoptic function is equivalent to this complete

holographic representation of the visual world”. The plenoptic function is important as it allows one

to abstractly examine the structure of the information thatis available to the observer by visual means.

In computer vision or computer graphics, the plenoptic function is naturally parameterized in terms of

(x, y) spatial coordinates on the image plane to give the valueP (x, y, λ, t, Vx, Vy , Vz).

(a)

(b)

Figure 2.2: Spectral power distributions from GE Lighting [2]. 2.2(a) shows the spectral power dis-

tribution of outdoor daylight and 2.2(b) shows the spectralpower distribution under Spx35 florescent

lighting.
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The interaction of light with objects

When light hits an object it is modified by the interaction with the object’s material structure. Berns [17]

lists the following different interactions:

• Transmission through a transparent or translucent object.

• Reflection from a specular or matt object.

• Absorbtion of light by an object.

• Scattering of light through a material.

• Fluorescence. Fluorescent materials absorb and then re-emit lights at different wavelengths.

In practice, a combination of these effects may occur for a given interaction between light and object.

Models that consider all the effects would be prohibitivelycomplex, it is common to introduce sim-

plifying assumptions and propose models for limited classes of objects. The bidirectional reflectance

distribution function (BRDF) [17] describes how incoming irradiance coming from different directions

is reflected in different directions. The function can be used to describe interactions with diffuse, specu-

lar or diffuse and specular interactions. In computer graphics, the BRDF of a material such as skin [18]

can be measured and then utilized in the production of realistic looking rendered images.

In medical imaging, current research in optical tomographyseeks to reconstruct images of the brain

by shining infra-red light on the brain and inferring internal brain structure from light readings that have

passed through the head [19]. These methods must account forthe complex manner in which light is

scattered. To summarize, models of light and material interaction exist for a range of different materials.

However, the models are frequently complex.

The observer

The capture of the incoming distribution of light by a photosensitive observer is the final element nec-

essary to describe colour. The human eye is a natural starting point for discussion. Figure 2.3 shows a

schematic view of the eye. Light enters the eye by passing through the cornea and lens and an image is

formed on the retina. The retina is comprised of rod and cone cells, the rods are responsible for detecting

brightness and the cones are responsible for colour vision.The majority of normal people possess three

types of cone cell. The three different cone cells are each excited in a different manner by different

wavelength ranges of light.

Guild [20] conducted colour matching experiments to investigate trichromacy and to determine the

response functions of the three types of cone cell. Participants were presented with a split visual field, the

left side was illuminated by a monochromatic light and the right hand side was illuminated by a mixture

of red, green and blue monochromatic lights. The participant’s task was to mix the red, green and blue

(RGB) lights until the colour appearance of the right side ofthe field matched the left hand side. The task

was repeated for different illuminants on the left hand sideof the visual field. Figure 2.4(a) shows the

RGB tristimulus curves that result from this experiment, these curves are the best fit curves to the mixing

results obtained from all participants. The RGB matching functions can be negative, this is because it is
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not possible to match all colours by mixing the RGB primaries. In order to effect certain matches, Guild

moved a primary light source from the mixing side of the field and to the test light side. This situation is

modelled by subtractive matching and results in the negative portions of the matching function. The CIE

34 XYZ matching functions are a basis transformation of the RGB primary matching functions so that

X,Y and Z are positive everywhere. The updated CIE 63 XYZ standard is shown in Figure 2.4(b). The

CIE 34 standard presented the test and mixture field using twodegrees of visual angle, whereas the CIE

64 standard used ten degrees [21]. Understanding the original colour matching experiments is important

because most modern cameras and colour spaces are based uponthe findings of these original matching

experiments.

Figure 2.3: Schematic view of the human eye (Source: Creative Commons [3]).

In computer vision, a camera is used to capture colour images. Both a camera or human eye sample

the plenoptic function spatially, over different wavelength bands and over time. In a colour camera, a

number of optical filters are used to extract information from the different wavelength bands. The ideal

theoretical camera is a pin-hole camera shown in figure 2.5. An image is formed on the rear plane by

placing the pin-hole aperture atVx, Vy, Vz , this arrangement samples the plenoptic function at this point.

Real cameras deviate from the ideal pin hole camera because of optical, electronic and manufacturing

limitations. Section 2.1.4 explains how these deviations cause colour inconsistencies that exist in all real

cameras. Section 2.1.5 discusses how RGB cameras may be suboptimal for many machine vision tasks

and proposes alternative choices.
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(a)

(b)

Figure 2.4: Colour matching functions for the RGB and the CIEX,Y,Z primaries shown in 2.4(a) and

2.4(b) respectively. Red is used to indicate R and X, green indicates G and Y, blue indicates B and Z

primaries. The curves indicate the relative amounts of the primary colours needed to match a test target

colour with the indicated wavelength.
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Figure 2.5: The pinhole camera (Source: Creative Commons [4]).

2.1.2 A simple colour model

The CIE defined a multiplicative model of colour that is commonly used because of its simplicity [16](pg.

115). The model is most appropriate for Lambertian surfaces, it states that the grey-level intensity in the

ith channel is

qi =

∫

ω

E(λ)S(λ)Qi(λ)dλ, i = 1, ..., m. (2.1)

The scene is illuminated by a single light characterized by the spectral power distributionE(λ), this

specifies how much energy the light source emits at each wavelengthλ. The surface reflectanceS(λ) of

the imaged object is the proportion of light incident on the surface reflected at each wavelength and the

spectral sensitivity function,Qi(λ), is the sensitivity of theith channel to light at each wavelength of the

spectrum. The integral is over the rangeω of wavelengths of light.

2.1.3 Colour ambiguities: Metamerism and Colour inconsistency

The mappings from an object’s spectral reflectance functionS(λ) to observed colours are not unique.

This is perhaps the most important idea in colour vision because of the consequences of two examples

of these non-unique mappings: Metamerism and Colour inconsistency. Observed colour is dependent

on the three elements of the colour triplet, the Lambertian model is used here to describe the different

ambiguities.

Metamerism

Metamerism occurs when imaged objects with different material properties have the same recorded

colour [17]; in the Lambertian model, material properties are described by the reflectance functionS(λ).

Metamerism enables important applications such as printedcolour pictures and colour television. The

colours of objects in a picture or on a television screen appear to match their real world counterparts.

This is an example of metamerism, the material properties ofthe ink of the paper, or the phosphors on a

cathode ray television are different to the material properties of the displayed objects and yet the colours

appear to match. Without metamerism it would not be possibleto recreate images that accurately match
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what we see in the outside world! In computer vision, metamerism is treated as a problem to be avoided

or minimized if possible; this is because a common use of colour is to uniquely identify objects with the

same material properties.

The two kinds of metamerism are:

1. Illuminant metamerism: Colours of different objects match under one lighting condition and mis-

match under another.

2. Observer metamerism: Colours of different objects matchunder one observer (camera) condition

and mismatch under another.

Colour inconsistency

Colour inconsistency occurs when a single object gives different recorded colours. The two types of

colour inconsistency are:

1. Illuminant colour inconsistency: An object gives two different colours under two different illumi-

nation conditions.

2. Observer colour inconsistency: An object gives two different colours under two different observer

(camera) conditions.

In practice, combinations of illuminant and observer conditions are possible for both metamerism and

colour inconsistency.

2.1.4 Physical basis for inconsistency

This section explains how observer colour inconsistency and illuminant colour inconsistency are caused

by physical conditions during image capture. An understanding of when these inconsistencies occur is

important when designing computer vision systems.

Observer colour inconsistencies

Cameras used in computer vision require optical lens systems to focus light and electronic sensors to

capture the light and convert it into numerical signals. This section describes details of modern camera

design that suffer from colour inconsistency.

The optical system

Two notable sources of colour inconsistency in the optical system are vignetting and chromatic abber-

ation. Vignetting is the fall off in intensity due to the geometry of a thin lens. The pixels at the edge

of a CCD array observe darker colours than those at the centre, this is a problem when segmenting a

colour object using the same colour thresholds in all pixels. The Aibo robot dogs used in Robocup suffer

from significant vignetting, segmentation performance is improved across the visual field by calibration

of the vignetting effect [22]. Horn [23] proposed a basic model for the behaviour of the vignetting fall

off function. The basic model is often insufficient because it does not account for further imperfec-

tions in real lenses [24], also the vignetting function changes as a function of aperture and zoom. This

makes photometric calibration of systems with variable aperture and zoom difficult [24]. Vignetting is
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also a significant source of colour inconsistency in panoramic photography where multiple images with

overlapping content are stitched into a larger image [25][26][27].

Chromatic abberations occur because different wavelengths of light are refracted through a medium

at different angles. In photographic lenses, this can result in different wavelengths being brought to focus

at different points. Lens designers undergo great efforts to reduce this effect and using a high quality

lens is the best way to combat this abberation. The two kinds of chromatic aberration are longitudinal

chromatic aberration which shows up as the inability of a lens to focus different colours on the same fo-

cal plane and transverse chromatic aberration which can be observed as fringing at areas of high spatial

detail. In practice, chromatic aberration will result as a combination of both the longitudinal and trans-

verse effects. The effect can be seen by imaging a grid of black lines on a white background, inspection

of the red, green and blue intensity profiles from vertical lines near the centre and the edge will show

misalignment if chromatic abberation is present, see Willson [24] for more details of this method.

The sensor system

Light passes through the optical system and is focused on theimage plane. Incident light on the im-

aged plane can be sampled using a charged coupled device (CCD) or complementary-metal-oxide-

semiconductor (CMOS) arrays. Both types of sensor accumulate signal charge in each pixel proportional

to the local illumination intensity, the charge is then converted to an output signal. With CCD arrays the

camera circuitry is separate from the imaging chip, CMOS arrays convert charge to voltage on the chip

in each pixel. Each sensor type has advantages in different situations, CMOS sensors are rugged and

offer superior integration. CCDs offer superior images quality and flexibility [28]. In both types of

sensor, manufacturing tolerances mean that there are physical differences between individual pixel sites.

The combined effect of these physical and electronic differences mean that colour inconsistencies exist

between different pixels on the same sensor and between different sensors. Further comparison of CCD

and CMOS can be found in Janesick [29]. For an in depth study ofsources of noise in electronic cameras

see Kamberova [30].

Coloured lens filters are used to sample different spectral wavelengths when using CCD or CMOS

chips. There are two common sampling arrangements: 1) the Bayer single chip arrangement [31] shown

in Figure 2.6(a), and 2) the prism based multi-chip arrangement shown in Figure 2.6(b). The Bayer

pattern places red, green and blue optical filters over the sensor elements to approximate the relative

distributions of red, green and blue sensitive cone cells inthe eye. There are more red and green filters

because the human eye is less sensitive to the blue channel, most common cameras use this construction.

Different spectral bands are sampled at different spatial positions, so the missing samples in each spec-

tral band must be reconstructed; demosaicing algorithms [32] deal with the optimal manner to perform

this reconstruction. The spatial sampling limitations of the Bayer pattern can be avoided with a more

expensive and complex multi-chip design shown in 2.6(b). The multi-chip arrangement uses a prism to

split light into the red, green and blue bands which are each fully sampled in the spatial domain using in-

dependent arrays of sensors. It is important to be aware of the different characteristics of sensor systems

as they sample the plenoptic function in different ways and have different noise characteristics. This
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(a) (b)

Figure 2.6: Two different arrangements for sampling different spectral ranges. 2.6(a) shows the single

chip Bayer pattern array where a red, green or blue filter element is placed over each pixel. 2.6(b) shows

a multi-chip arrangement that splits light with a prism and uses three separate imaging chips for the red,

green and blue bands. Images reproduced from Dalsa [5].

means that different colour inconsistencies are to be expected.

Illuminant colour inconsistencies

Section 2.1.1 introduced the idea that different light sources have considerably different spectral power

distributions and that imaging objects under different lights leads to colour inconsistencies. Objects im-

aged outside during changing atmospheric conditions or inside using different lights will be illuminated

with lights that have different spectral power distributions. Additionally, it is practically impossible to

construct an environment that illuminates objects in a perfectly constant manner at different positions

in the scene. When using bulbs, different amounts of light are radiated in different directions and the

characteristics of a bulb can change over time as it ages.

A further important consideration is the geometric relationship between the light source, the imaged

object and the camera. For specular objects such as metals, the light leaving an object at a given point on

the surface will vary significantly as the light source is moved. For diffuse objects such as matte paints

that scatter light in all directions, movement of the light source produces a much smaller change in

outgoing illumination from the surface patch. Imaging an object with a complicated shape compounds

the complexity of the matter further, even if the object is made from a homogeneous material. This

is because the local surface normal varies at different positions on the surface and the local surface

reflectivity is dependent on the local normal. In the theoretical case, an ideal camera in a perfectly

constant light field could be used to sample the plenoptic function by taking images of an object from

all camera positions and viewing angles. This would give images that have different colour values that

are due to the BRDF and other material properties of the object and the object geometry alone. This is

the minimum possible colour variation that can be theoretically expected with an idealised lighting and

camera setup when observing an object from different positions within the environment. In practice, the

observed colour variation will be much greater due to the camera and lighting inconsistencies detailed.

A pragmatic approach to using colour is necessary in machinevision, practical steps to minimize colour
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variation are : 1) Controlling the illumination as much as ispossible, 2) Limiting the range of different

geometric relationships than can exist between the lights,object and camera and 3) Using the best quality

cameras given the budget. The cameras, lenses and filters should be chosen by considering how the

camera inconsistencies will affect the recorded colours. Trade offs between different camera choices

should be made to maximize application performance.

2.1.5 Colour Spaces

A colour space is a co-ordinate system that allows all colours relevant to a domain of interest to be

described. Many different colour spaces exist that have been developed for a variety of reasons. This

section summarises prominent colour spaces derived from the RGB tristimulus experiments and con-

trasts these with non-RGB models. An N-dimensional colour space is formed by sampling N different

ranges of the light spectrum and combining the resulting colour values into an N dimensional vector.

Each resulting dimension is called a colour channel. Section 2.1.1 introduced tristimulus theory which

motivates the use of three overlapping ranges in wavelengthcalled the red, green and blue colour bands.

Most colour cameras generate RGB data as the images are intended for human viewing. However, the

automatic histogram alignment problem is independent of a particular colour space and so wavelength

sampling selection is discussed in a general way. Finally, aprocedure for designing a colour space for

object recognition is discussed and the relative merits anddisadvantages of this approach are discussed.

RGB derived models

The RGB colour space represents colours as a mixture of red, green and blue, this section details common

colour spaces based on this representation.

Perceptually based systems

There are two problems with the RGB colour space: 1) the RGB axes do not correspond to intuitive

notions of colour and 2) a constant Euclidean distance between different colours in RGB space does not

correspond to a constant perceptual difference between thepoints.

Perceptually based colour spaces aim to alleviate these problems. The Hue, Saturation, Value (HSV)

colour space forms a cone along the white black axis. Hue corresponds to the chromatic notion of colour,

saturation is the distance from the axis and value is the brightness. HSV and a similar space HSL are

transformations of the device dependent RGB space. This means that the HSV and HSL spaces provide

greater intuition than RGB but differ for each device. Thesespaces find use in photo-editing and drawing

software.

The CIE XYZ tristimulus functions plotted in figure 2.4(b) lead to so called chromaticity coordi-

nates, these are the normalized tristimulus values:

x =
X

X + Y + Z
, y =

Y

X + Y + Z
, z =

Z

X + Y + Z
.

The x-y plane describes the chromatic variation of the colours and z represents lightness. The x-y plane

plot is known as the chromaticity diagram and represents allpossible human perceivable colours. The

CIE XYZ colour space is not perceptually uniform, this meansthat different perceptual differences result

from colours a constant distance apart. The field of colour vision has sought to develop perceptually
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uniform systems, although none is perfect. The 1976 uv space[17] (pgs 63-65)was developed to improve

the chromatic uniformity, its coordinates relate to XYZ according to:

u′ =
4x

−2 + 12y + 3
, v′ =

9y

−2x + 12y + 3
.

One problem with the u’v’ space is that it is not perceptuallyuniform in lightness. The CIELAB ad-

dresses this problem and has correlates for lightness, chroma and hue. CIELAB is considered to be

the simplest colour appearance model (CAM). A CAM provides mathematical formulae to transform

physical measurements of the stimulus and viewing environment into correlates of perceptual attributes

of colour [33]. Most CAMs have a corresponding chromatic-adaptation transform (CAT); the CAT is a

method for transforming the CAM of a scene acquired under a test illuminant so that the scene colours

match those under a reference illuminant. The combination of CAMs and CAT seek to model the human

colour constancy mechanism that enables people to perceivean object to be the same colour under differ-

ent illuminants. Research has led to CAMs that predict knownpsycho-physical effects more accurately.

For example, CIECAM97s is a CAM that predicts a number of human colour appearance phenomena

such as chromatic adaptation.

Care should be taken when using colour spaces designed to model human vision processes in a

machine vision setup because human colour vision processesare often not directly comparable to the

processes in a particular machine vision setup.

Colour mixing models The need to mix appropriate proportions of inks to print colour images has led

to the CMYK system. CMYK is a subtractive mixing system that expresses how an RGB colour can be

created by mixing the appropriate amount of cyan,magenta,yellow and black inks on white paper.

Non RGB models

For most humans the notion of colour is synonymous with the RGB model. When analysing how to best

use colour in a machine vision application, it is important to realise that human colour is a product of

evolution and is in no sense thecorrect model. Birds, lizards, turtles and many fish have four types of

cone cells and most mammals only have two types; Birds also see close to the ultra-violet band [34].

Each individual species has evolved a visual system specificto the environmental challenges and needs

that it faces. Machine and computer vision problems also arise that are not best suited to the RGB

camera, Grey-level inspection is important in industrial inspection [35] because of its simplicity and

robustness. Hyperspectral imaging combines usage of the visible bands with infra-red and ultra-violet

bands as required. For example, visible and IR bands can be used to extract information from airborne

imagery of vegetation [36].

How to design a colour space

A key concern in computer vision is how to capture colours that discriminately identify different objects

in a scene; this section discusses the principles of how to select spectral wavelength bands to achieve this

goal. In practical terms, these principles guide the selection of colour lens filters so that discriminative

colours are obtained. It is important to realise that the RGBcolour space and its derivatives are preva-

lent in the literature because of the pervasiveness of modern RGB cameras, RGB cameras have been
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developed to produce images that match human perception. Many computer vision applications do not

require a visual output to be presented to a human and therefore may be better served by a different set

of sampling wavelengths.

The best wavelength ranges to sample can be determined by considering the spectral reflectance of

the objects being inspected. The spectral reflectance of an object varies with wavelength, and spectral

reflectance curves have been prepared in the laboratory using a spectrophotometer for a range of objects

by Glassner [6]. As an example, Figure 2.7(a) shows the spectral reflectance curves for barley seeds

and bark. The curves are well separated across the full rangeof illuminant wavelengths from 400-690

nm, this means that a grey-level system in these ranges couldbe used to successfully distinguish barley

seeds from tree bark. Figure 2.7(b) shows the spectral reflectance curves for redwood and a brown paper

bag. At around 650 nm the curves cross, this means that using colours that sample within a narrow band

around 650 nm would be ineffective at discriminating between the brown bag and better discrimination

between the bag and redwood can be achieved by sampling colours between 400 and 550 nm.

These examples illustrate that the best colour ranges for discrimination can be discerned by con-

sidering the spectral reflectances of the objects in question. If there is a distinct difference in reflectiv-

ity within a single band of wavelengths then this monochromatic range of wavelengths may be used.

Monochromatic sorting removes dark rotten peanuts and darkdefects from rice [10](pgs. 117-136).

When it is not possible to find a single region of the spectrum where the acceptable and defect food

produce are separated then more colour channels are required. This is the reason that Buhler Sortex

bi-chromatic machines are used to sort coffee, bi-chromatic systems are more complex to produce due

to the duplication of optical and detection components, light-splitting devices and more complex signal

processing [10].

2.2 Colour Histograms

A colour histogram counts the number of times that each possible colour value occurs, colour values

are represented as N-dimensional vectors. RGB histograms have been used in image database retrieval

[8] and head tracking [37]. The combination of colour histograms and a robust comparison metric

can be used to perform colour comparisons that are reasonably robust to mild fluctuations in lighting and

object pose. Common reasons for utilising colour histogramcomparisons is their robustness to geometric

variation of the scene and viewpoint.

2.3 Discussion

The concepts introduced in this chapter allow the automatichistogram alignment problem introduced in

section 1.3 to be motivated with further precision. The histogram alignment problem poses colour incon-

sistency removal as a histogram alignment task, this assumes that colour inconsistencies between colour

data captured under different experimental conditions canbe removed by aligning similar structures in

histograms. This review highlights illuminant and observer colour inconsistencies, in practice both the

illuminant and capture conditions are likely to vary together. The plenoptic function provides a general

way to describe colour image formation, it can describe single image capture, video and different colour
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Figure 2.7: Spectral reflectance curves comparing two different sets of objects. 2.7(a) shows the reflec-

tivity of Barley seeds (red) and Bark (green). 2.7(b) shows the reflectivity of Redwood (red) and a brown

paper bag (green). All data is from Glassner [6].
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space representations.

The histogram alignment approach is attractive as it does not require explicit physical modelling

of the illuminant and camera complexities. A transform thataligns colour inconsistent histograms is an

implicit model for the colour inconsistencies. Using specific prior knowledge in a constrained situation

is always more likely to yield more reliable algorithms, however it is believed that a generic approach

is of great value. Ultimately, it is expected that knowledgeof the best generic algorithms and applica-

tion specific algorithms will greatly enhance the flexibility and power of the computer vision designer’s

toolbox.

Examples of different colour inconsistencies that can be evaluated within a common histogram

alignment scheme are:

• Inconsistency between images: A single image samples the plenoptic function at a given instant

in time t (assuming all pixels are captured at exactly the same time). A second image of the

same scene under the same exact camera conditions but different lighting conditions samples the

plenoptic function at a different time. Histograms can be computed for the colour data from each

image and comparisons made.

• Inconsistencies between portions of a video stream: A videostream captures multiple colour

values from the same pixels over time, the colour values froma single or multiple pixels can be

represented as a histogram. Comparison between different video stream histograms compares the

colour inconsistencies that exist between the different capture conditions.

• Different colour spaces: The fact that different colour spaces schemes are important has been

highlighted. Different spectral sampling arrangements sample different ranges ofλ in the plenoptic

function. Generic histogram alignment methods that work for histograms of different dimensions

would be useful because data from a particular colour space can be simply histogrammed and

passed to the histogram alignment algorithm to perform colour inconsistency removal.

The flexibility of the histogram alignment approach is that the same methods can be applied to these and

different scenarios as desired. Of course, the performanceof a histogram alignment approach must be

validated independently using appropriate data.

2.4 A taxonomy of colour inconsistency correction methods

This section presents a taxonomic organisation of existingliterature on colour inconsistency correction

in computer vision. The main aim of the taxonomy is to understand the relevant advantages and disad-

vantages of these methods.

The goal of colour inconsistency correction methods is to adjust the colour of some or all of a set of

colour data points so that ambiguous mappings from an object’s material properties to observed colour

are removed. Metamerism cannot be removed by transformation of the data points using information

in the colour data-set alone, instead metamerism should be controlled by controlling the lighting and

camera set up; the method of Sanders [38] dynamically adjusts camera settings to minimize metamerism
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to improve an object recognition application. In the absence of metamerism, colour inconsistency can

be removed by alignment of the colour data-points.

The methods introduced in this thesis aim to reduce colour inconsistencies between different colour

data-points where a histogram can be computed for each set ofdata-points. This class of problems is

termedbetween set alignment of colour data points, and is emphasised in this taxonomy. For complete-

ness, a class of popular colour inconsistency corrections that correct data-points within a single set are

discussed briefly, these are termedwithin set alignment of colour data pointmethods. The development

of histogram alignment algorithms is motivated by the wide range ofbetween setproblems. The tax-

onomy views all methods in thebetween setclass in terms of the colour data-point sets to be aligned.

Even when colour histograms are not directly used in a colourinconsistency correction method, it is

useful to think about what happens to the colour histograms of the colour data-point sets to be aligned.

Colour histogram alignment algorithms must do two things: 1) Identify salient features or class labels of

the histograms to be aligned, and 2) Apply appropriate transforms to align the corresponding features or

labels. This taxonomy organizes thebetween setmethods according to how the features or class labels

are obtained, this reveals how prior knowledge is embedded into a method and therefore how applicable

it is in other domains. If all colour data-points had correctand unambiguous material class labels then

the colour inconsistency correction problem would reduce to finding the best alignment transforms. In

reality, labelled data are rarely available and so methods to extract features and labels from the colour

histograms is critical. Ultimately, better labelling of the colour data allows more powerful alignment

transformations to be applied. A graphical overview of the taxonomy is shown in Figure 2.8. The

categories of the taxonomy are:

• Within set alignment of colour data points

A number of notable colour inconsistency corrections fall into thewithin setcategory. Vignetting

removal methods seek corrections for the light attenuationthat occurs near the edges of the image.

It is common to take training images of constantly illuminated objects with homogenous material

properties. Given these images, it is assumed that vignetting is due to lens abberations which can

be corrected. The GermanTeam Robocup entry [22] and the anti-vignetting method of Yu [39]

both take this general approach. The GermanTeam method findsa spatially dependent correction

in each colour band in YUV space to correct vignetting. Yu’s method handles noisy reference

images using a wavelet de-noising method and finds the parameters of a vignetting model to per-

form the correction. Zheng’s method for vignetting correction [40] computes the parameters of a

vignetting correction model from a single arbitrary image.It repeatedly segments the image into

homogeneous intensity regions and then uses the regions to estimate a vignetting function, the

procedure is iterated until convergence. Zheng’s approachhighlights the inter-connection between

segmentation and colour inconsistency correction; the performance of the segmentation procedure

and the vignetting correction are coupled. These vignetting correction methods are informative,

but not generally applicable to other colour inconsistencycorrection problems. The correction

methods and models used are specific to the vignetting problem.
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Figure 2.8: Introduced taxonomy of colour inconsistency correction methods.
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Examples of other within-set corrections are chromatic abberation and sensor noise removal.

Chromatic abberations can be removed using an active visionsystem that dynamically brings dif-

ferent colour bands into focus to find a correction [24]. Thismethod requires specialised hardware

and specific test image patterns that make the method generally difficult to apply. Sensor noise

is minimized [41][42] by acquiring dark images with the lenscap on. These noise minimization

methods acquire a uniform reference field from a single camera view to align the colour response

of the individual pixels.

• Between set alignment of colour data points

Methods in this category can be thought of as histogram alignment methods although they may

not act explicitly on histograms. Colour data points are grouped into sets and a histogram is

computed for each set. Relationships between the sets are used to align colour responses. A set of

colour values is obtained by sampling the plenoptic function. Different applications use different

sampling schemes; two different examples are 1) the coloursacquired from a single pixel video

sensor over time and 2) a single frame in a video sequence. Naturally, it is only sensible to compare

histograms obtained from colour data sets that have been sampled in a similar manner.

An application may align a pair of histograms (e.g. two images of a scene taken with different

lighting) and others may require alignment of a larger number of histograms (such as subsequent

images in a video sequence). When it is known which histograms are more similar the problem

is called anordered set histogram alignment problem. For example, during a video capture of

rice falling down a chute it is known that histograms from pixels close together are more similar

than from pixels that are far apart. In other problems, no knowledge of the ordering is known in

advance and this is called theunordered set histogram alignment problem. For example, reducing

the colour inconsistencies between similar objects in randomly chosen image pairs from an image

database.

– Global feature alignment

∗ Utilize knowledge of colour formation

Colour constancy is a heavily researched area that aims to recover the scene illuminant

of an image. Colour constancy estimates the scene illuminant and finds a mapping trans-

form to a common(canonical)illuminant. Scene descriptions that are transformed to

the canonical illuminant are considered to be illuminant invariant. These approaches can

be divided into statistics based and physics based approaches [43]. The physics based

methods build on models of material properties such as the dichromatic reflection model

[44] and statistical methods correlate colours in the scenewith statistical knowledge of

the spectral power distribution of common lights and material properties of common

surfaces. The initial motivation for research into the areaof colour constancy was pro-

vided by the ability of humans to recognize colours of objects constantly under different

lights. The Retinex model [45] has a basis in human perceptual modeling. Cioccaet
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al. [46] have evaluated Retinex for preprocessing images to reduce dependency on il-

lumination variation in an image retrieval task. The algorithm assumes constant scene

illumination and objects with Lambertian material reflectance properties. A compre-

hensive review of computational colour constancy algorithms is provided by Barnardet

al. [47]. They identify algorithms that utilize increasingly stringent assumptions about

the nature of the light and scene. The problem with the computational colour constancy

approach is that good results can only be obtained on highly constrained imagery. Fin-

layson [48] has shown that existing methods are not good enough to facilitate colour

object recognition across a change in illumination during adatabase retrieval task; he

also notes that no existing method accounts for device independence. This final point

is critical as it means that colour constancy methods are notgenerally applicable across

different uncalibrated cameras. Colour constancy methodsdo not take account of the

different sources of colour inconsistency introduced by camera variations. Calibrating

cameras to a common reference colour space requires detailed inspection of imaging

charts and the use of involved procedures such as Barnardet al. [47]. In practice it is

not possible to calibrate the response of all cameras in thisway.

∗ Use global properties of distribution.

The Von Kries transform is a multiplicative adjustment of the means in each channel

[49] and the Grey-world transformation shifts a colour distribution so the mean colour

is grey. These simple transforms were originally introduced as models of human colour

constancy, the problem with these simple transforms is thatthey can perform well for

some classes of images and poorly in others [50]. The colour transfer method of Rein-

hard et al. [51] transforms the colours of a source image to be perceptually similar

to the colours of a target image. The method transforms from RGB to a de-correlated

perceptual colour space [52], the mean and variance are aligned in this space before

transforming back to the original RGB space. The method performs the alignment in

a perceptually based space so that alignment along the axes of the space corresponds

to improving the matching perceptual factors. The authors claim to use a device inde-

pendent colour transform but their transform simply matches a single white point. True

device independent mapping requires further characterisation of the cameras, the im-

plication is that this method will perform quite differently across different uncalibrated

cameras.

The method of Xiao and Ma [53] has similar aims to that of Reinhard [51] but seeks a

transformation in the RGB space. The method performs two separate SVD decomposi-

tion of the RGB covariance matrices of the source and target distributions. The principal

axes are assumed to correspond according to their ordered variance which is given by

ordering the principal axes according to the size of their corresponding Eigenvalues. The

corresponding axes are then used to find a transformation that is composed of a shift,
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rotation and scaling. The method is known to fail on highly multi-modal imagery as the

shapes of these distributions can change significantly. Manually segmenting image pairs

and applying the method to corresponding image regions is suggested by the authors

in these cases. The colour transfer method of Pitie [54] repeatedly projects the RGB

histogram onto a randomly oriented two-dimensional plane passing through the centre

(grey-point) of the histogram. One dimensional histogram matching is performed on the

marginal distributions of the 2D projected histogram. Thisprocess is iterated for a set-

time to determine an overall mapping function, the mapping is then applied to re-colour

images. The problem with this method is that it transforms a source distribution to be

equivalent to a target distribution, when run to convergence this destroys true features

of the source distribution. Moreover, features of the original histogram are likely to be

destroyed when stopping the algorithm early as suggested bythe authors. This proce-

dure has been used to transform images for visual effect but the stopping criteria for

the algorithm are ad-hoc and are of questionable value in system that requires statistical

correctness.

The methods of Reinhard [51], Xiao and Ma [53] and Pitie [54] are all evaluated on a

small number of images. The visual results of transformed images are presented. No

end-user studies or quantitative evaluations are performed. The main advantage of the

global transformation methods presented is their simplicity, which allows them to be

applied to align colour histograms with little concern for the nature of the data. The

main limitation of these global methods is that they do not make use of informative

local features of the data distributions which can in turn lead to poor performance.

– Labelled/Partially labelled data

The methods at this level of the taxonomy attach labels to thedata from the different align-

ment sets, then they transform the colour data to align the corresponding labels. Methods

to label the data are often highly specialized and cannot be applied to other problems; these

methods can be grouped according to whether they assume a particular structural form to the

data such as the presence of particular objects in the scene or that objects will appear in a

predefined order in a video sequence.

∗ Structured data

Objects with known reflectancescan be introduced into a scene to reduce the com-

plexity of finding corresponding points in colour space. A MacBeth chart is a standard

chart used for colour management that has 24 patches of knownreflectance (shown in

Figure 2.9). Typically, 24 colour points in RGB space are computed by finding the mean

colours of regions obtained from each patch. The process is repeated with different cam-

eras or lighting conditions and another 24 RGB points are found; the correspondences

between points are known, so point alignment transformations can be applied to align

the colour histograms. A chart-based approach has been usedin a multi camera food
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inspection environment by Tao [55]. In diagnostic imaging,Colposcopy is a method to

identify cervical cancer by ranking lesions in order of severity. Colour inconsistencies

affect the ability of physicians to make meaningful comparative diagnostics; the method

of Li et al. [56] calibrates cameras for colposcopy using a grey chart and a standard

MacBeth colour chart. The method first removes vignetting variations by inspecting the

grey chart. A general camera transform is modelled as a homogeneous4× 3 transform

followed by a third order polynomial transform in each channel. The transforms are

computed to align the corresponding source and target patches extracted from MacBeth

charts.

Illie and Welsch [57] improve the colour consistency between multiple colour cameras

for use in a photometric stereo system. Their method places aMacbeth chart in the

shared field of view of the cameras. The chart and squares are automatically detected.

The calibration process has two main steps: 1) hardware parameters of the cameras are

adjusted to minimize the variance of the same patches obtained from different camera

views. 2) Different alignment transforms are computed thatalign the mean colours of

the patches obtained from different cameras. The transforms explored are the3 × 3

RGB transform and a hierarchy of polynomial transformations. The polynomial trans-

forms perform best according to the introduced criterion. The quantitative evaluations

are performed with the chart, no indication of the effect on more general imagery is

given. Macbeth charts are a powerful tool that facilitate a number of powerful colour

inconsistency removal methods. However, it is often impractical or impossible to insert

a Macbeth chart into a scene each time the lighting changes toperform a re-calibration.

In many scenarios it may be impossible to place a Macbeth chart into a scene at all.

An alternative to using colour charts is to deliberately construct situations that limit the

complexity of the scenes. Robocup is an annual robotics competition that requires au-

tonomous robots to compete in a game of soccer. Colour calibration has a significant

effect on the performance of these robots and the methods used take advantage of the

fact that the main object colour classes are known in advance. For example, it is known

that the ball is always orange, the terrain is green and the pitch lines are white. Jungel

[58] developed a calibration system for Aibo robots that utilises this prior information

from the spatial and colour domain. These approaches take advantage of scene knowl-

edge to develop robust approaches but are highly specific to the task at hand.

Image overlap is a constraint utilized in the field of panoramic image stitching where

multiple photographs of a scene are stitched together to produce a larger panoramic

image. Different images obtained as an input to a panoramic stitching process exhibit

differences in colour for the matching pixels due to local variations such as vignetting

and global variations between cameras such as exposure time, white balance, gain and

so on. Failure to compensate for these radiometric differences results in visible seam



2.4. A taxonomy of colour inconsistency correction methods 47

stitches between the images. Numerous methods [59][27][26][60] find partial label cor-

respondence in the matched overlapping regions and use thisinformation as part of their

colour histogram alignment procedure. Tian and Gledhill [60] apply diagonal,3 × 3

and homogenous4 × 4 (affine)transforms that align the histograms of the overlapping

regions. Jia and Tang [26] find a vignetting function and a separate global monotonic

correction function per image. The functions are found by a tensor voting approach

that seeks local smoothness; in this approach, no explicit model of vignetting or camera

effects is specified. The approaches of Litvinov and Schechner [59] and Goldman and

Chen [27] develop explicit models of colour inconsistency effects and use the matched

regions as part of the fitting procedure.

∗ Unstructured data

The termunstructured datais used here to refer to data that is not tuned for the task of

colour labeling.

· Colour data only: labels are attached to colour data from colour histograms alone.

Jeong and Jaynes [61] propose a colour transfer methodologyto improve object

tracking performance between multiple cameras with non-overlapping fields of

view. The first step of their process performs background andforeground mod-

eling that assumes the foreground is moving. All moving pixels are assembled into

an appearance model in the U-V space for each camera view. An affine transfor-

mation is found between U-V histograms for each camera by fitting a Gaussian

mixture model to each histogram and then aligning the corresponding components

of different models. This method is interesting as the processing after the motion-

detection step is performed entirely in colour space. However, the method does not

perform consistently better than the diagonal transform onRGB histograms. The

results show that the method performs worse than the diagonal model when tracking

low numbers of objects. Performance relative to the diagonal model improves for

higher numbers of objects. The use of the U-V colour space means that dependency

on illumination is reduced. However, bringing the colour response of multiple cam-

eras into the same reference space requires precise characterisation of each camera’s

response using imaging charts. This step is not performed and so the U-V colour

space correspondence can be approximate at best. This approach shows the poten-

tial of histogram alignment for improving the performance of a tracking application

but raises questions about the suitability of the GMM feature mapping approach as

the best way to do this.

· Incorporate other features: Fredembachet al. [62] propose a region based im-

age labeling approach to improve automatic colour correction methods. The stated

aim of this approach is to label image regions according to labels such asskinand

vegetation. The idea is that once labeled, the colours of correspondingregions can
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be adjusted. The method performs a segmentation in DC-Lab space by performing

K-means clustering with K=8 and then merging clusters that are below a manually

set distance threshold. Colour features that measure the blue content of the image

are also introduced and the methods is tested on a number of images containing

different objects on backgrounds with a high blue content. The number of scenes

evaluated is limited and there is no quantitative evaluation of colour inconsistency

removal performance.

Figure 2.9: A Macbeth chart, commonly used for colour calibration tasks.

2.5 Transformation Methods

This section catalogs colour inconsistency transformations and methods for computing the transforma-

tions. Transforms are related to the different methods described in the taxonomy.

2.5.1 Transformations

Between set methods in the taxonomy use transformations that fall into three categories. These are 1)

Independent polynomials in each channel, 2) Correlated Polynomials in each channel and 3) General

monotonic transforms in each channel. Each transformationmoves an n-dimensional colour values to a

new position in colour spaceq. The scalar valuessi andqi are theith elements of the respectiven× 1

column vectors,s andq. Expanding these categories further:

1. Independent PolynomialAn orderd polynomial is applied to each dimension separately. For the

ith dimension,

qi = αi0 +

d
∑

k=1

αiksk
i . (2.2)

The transform is called independent because theith channel is not related to other channels. Equa-

tion 2.2 is the general form of the following transforms.

• Additive. d = 1 and the coefficientαik is set to 1 reducing the equation to a simple offset.
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For a colour data-point,

q = s + a, (2.3)

wherea is an × 1 vector of scalar offsets. It is not common the use the additive transform

for inconsistency correction, although many transforms contain an additive element. The

additive transform is worth considering for its simplicity.

• Multiplicative. d = 1 and the additive coefficient,αi0, is set to 0. The multiplicative trans-

form is the dominant model in colour constancy. It is also called the Von Kries transform,

diagonal model orgain transformation. For a colour data point,

q = Ds. (2.4)

D is ann × n diagonal matrix where diagonal entries are the multiplicative scaling factors

in each channel.

• Linear. d = 1. The linear transform of a colour data point can be represented using(n+1)×1

homogeneous representations ofq ands, qh andsh, such that,

qh = Tsh. (2.5)

T is an(n + 1) × (n + 1) homogeneous matrix. The multiplicative elements are in theith

row andj columns wherei = j andi = 1..n. The additive elements are indexed byi, (n+1)

wherei = 2..(n + 1). All other elements are zero.T represents a scaling, rotation and shift

of the colour data-points.

• General. d ≥ 2. Polynomials of order 2 or greater are represented as a separate matrix

multiplication in each channel.

qi =
[

1 si s2
i · · · sd

i

]

















αi0

...

...

αid

















(2.6)

2. Correlated Polynomial An orderd correlated polynomial relates theith dimension to all other

dimensions by the relationship

qi = αi0 +

d
∑

k=1

n
∑

j=1

αj(d(k−1)+j)s
k
j . (2.7)

• N by N similarity transform : d = 1 and the additive coefficient,αi0, is set to 0. Ann × n

matrix pre-multipliess according to:

q = Ms. (2.8)

M represents a scaling and rotation of the colour data-points.
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• General: Equation 2.7 can be represented by multiplying a1 × (1 + nd) vector by a(1 +

nd)× 1 vector. Writing this for the cased = 2, n = 2 as an example.

qi =
[

1 s1 s2
1 s2 s2

2

]























αi0

αi1

αi2

αi3

αi4























(2.9)

This is repeated for each colour channel.

2.5.2 Methods For Computing The Transformations

This section describes different methods to compute the transformations introduced in the previous sec-

tion.

1. Aligning moments: A moment generating function represents a distribution interms of its mo-

ments. Thenth moment is

mn =

∫

x∈D

xnf(x)dx (2.10)

In this work, the alignment of the first and second moments is considered. The first moment is

also known as the mean or expected value,E(X). The second moment is closely approximated

by the varianceV ar(X) which is the average squared deviation from the mean. The square root

of the variance is the standard deviation,SDev(X). The mean is a common summary measure

of a colour distribution, the grey world algorithm assumes the mean colour in a scene is grey and

aligns the corresponding mean colours in different images using a multiplicative transform. The

colour transfer method of Reinhardet al. [51] aligns the mean and variance of a source and target

colour distributions in each channel.

The distribution of a random variableS can be aligned with the distribution of a random variable

Q using the following methods:

• Mean alignment using additive transformThe scalar elements of equation 2.3 are

qi = ai + si. (2.11)

The offset in theith channel,ai, is computed as

ai = E(Q)− E(S). (2.12)

The same offset is used for all data-points.

• Mean alignment using multiplicative transform The multiplierri in theith channel is the

entry in theith row and column of equation 2.4. It is computed as:

ri =
E(Qi)

E(Si)
(2.13)
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• Mean and Variance alignment using linear transformSettingd = 1 in equation 2.2 gives

the linear equation,

qi = αi0 + αi1si. (2.14)

The mean and variance are aligned between distributionsS andQ using equation 2.14. The

multiplicative coefficientαi1 is:

αi,1 =
SDev(Qi)

SDev(Si)
, (2.15)

and the additive coefficientαi0 is:

αi0 = E(Q)− αi1E(S). (2.16)

2. Point Alignment Transforms: Local features of colour histograms can be identified by points in

the colour space. The Macbeth chart alignment method of Illieet al. [57] identifies corresponding

points in the RGB histograms of images by finding the mean colours in each of the coloured

squares on the chart. A point alignment transform moves a setof source points so the residual

distance between the transformed points and the target points is minimized. This transform is then

used to transform all source data-points. Illieet al. [57] apply this method to compute3 × 3

RGB and second order correlated polynomials to calibrate multiple colour cameras, they find the

correlated polynomials perform best in their application.

This segment describes methods for computing different transforms of thel source points to the

l target points. The source and target points are representedby two l × n matrices,S andQ

respectively.sji andqji are the scalar values of thejth points in theith channels ofS andQ. The

transformation parameters that minimize the distance between the transformed source points and

the target points can be solved using the following methods:

• Align points with additive transform. The additive shift,ai, for theith channel is computed

as:

ai =

l
∑

j=1

qji

l
−

l
∑

j=1

sji

l
. (2.17)

All entries of theith row ofa in equation 2.3 are set toai.

• Align points with multiplicative transform. The multiplier,ri, is theith diagonal element

in the matrixD in equation 2.4. Theith row ofS is xi and theith row ofQ is yi, so,

ri = yi
Txi. (2.18)

This is repeated for all channels.

• Align points with independent polynomialsA separate polynomial transformation is com-

puted for each channel. An orderd polynomial is computed in theith channel that aligns the

scalar source and target values. Writing each source and target value as linear constraints on
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the coefficient values as:










1 s1,i s2
1,i . . . sd

1,i

1
...

...
...

...

1 sl,i s2
l,i . . . sd

l,i





















α0,i

...

αd,i











=











q0,i

...

qd,i











. (2.19)

Writing this asAiCi = Di and solving forCi givesCi = A
†
iDi whereA†

i is the pseudo-

inverse ofAi. Solutions are found for each colour channel.

• Align points with correlated polynomials The relationship between each source and target

point can be described by a correlated polynomial in each colour channel. Writing this in

matrix form:










1 s1,1 . . . s1,n . . . sd
1,1 . . . sd

1,n

1
... . . . s1,n
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... . . .

...
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1,n










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... . . .
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



q1,1 . . . q1,n

... . . .
...

ql,i . . . ql,n











.

(2.20)

Writing this asAC = T and solving forC givesC = A†T.

• Align points with N by N transform. RearrangingS = MQT, gives,

M = QT(ST)†. (2.21)

3. Histogram matching and equalization: The standard histogram equalization operation finds a

monotonic transformation of a 1D histogram so that the intensity distribution across its bins are

uniform. Histogram equalization finds a monotonic transform of the original intensity values

so that the cumulative distribution of the transformed values is linear. Finlaysonet al. [48] apply

histogram equalisation to improve image retrieval rates from an uncalibrated image database. They

transform all images with a histogram equalisation in each individual channel prior to the retrieval

step.

Histogram matching finds a monotonic transform of the sourcehistogram intensity distribution that

matches the distribution of a target histogram. Pitieet al. [54] use repeated histogram matching

as part of their colour transfer method.

The problem with histogram equalisation for colour inconsistency removal between images is that

the available colour information in both images is not directly related. The histogram equalisa-

tion transform only depends on the form of the one dimensional input histograms, this means that

corresponding features in the histograms are ignored. The problem with the histogram matching

method is that any scale variations between corresponding clusters will be removed; this is erro-

neous when seeking a transform that removes lighting and camera effects only. Pitieet al. [54]

compound this problem with their iterative algorithm to apply histogram matching along randomly

projected axes.

4. SVD based principal axis alignment: The SVD colour transfer method of Xiao and Ma [53]

computes a homogeneous rotation, scaling and translating that aligns the principal axes and means
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of a source and target data-set. The method separately decomposes the covariance matrix of the

source and target image data using an SVD decomposition, thedistribution means are aligned and

a rotation and scaling is computed that aligns the nearest axes. The method computesT in equation

2.5, it assumes that the entire RGB colour distribution of the entire image is well modeled by an

spheroid. This assumption can break down due to the multi-modal nature of the distributions, if

individual modes move and deform independently the enclosing spheroids of the source and target

distributions may not correspond correctly.

2.6 Motivation
This chapter has described the problem of colour inconsistency and techniques that are used to manage

and correct these inconsistencies. The taxonomy organisescolour inconsistency removal techniques

according to how they attach labels to colour data. Different branches of the taxonomy incorporate

different levels of prior knowledge of the problem domain into the method. Methods that incorporate

high levels of prior knowledge typically perform well in thedomain that they are designed for but are

inapplicable or generalize poorly to other domains. Methods that label colour data reliably and accurately

can apply more powerful alignment transforms than methods that label the data approximately. This

thesis proposes that generic solutions to the colour inconsistency correction problem can be developed by

solving the between set histogram alignment problem. The aim is to detect local features of histograms

and apply point alignment transforms to perform the alignment, this rationale is explored because point

alignment transforms have proven highly successful when using structured data methods with objects of

known reflectance (such as MacBeth charts) [57][63]. To date, these transforms have not been applied

from the colour histograms alone; the object tracking calibration method of Jeong [61] comes the closest

to achieving this, but incorporates a motion segmentation step as the first part of the processing. In

addition, it has only been tested in U-V space and depends on the Gaussian mixture model which is

often a poor model for the real shapes of distribution. Nonetheless, Jeong’s work is promising as it

suggests that this approach is relevant to the field of objecttracking.

Despite the proliferation of different methods and transforms, we find no comprehensive studies

that explain which methods are best for minimizing colour inconsistency. It is common to study a colour

inconsistency correction technique within an applicationframework such as colour image retrieval [46]

or object recognition [64], these studies show that colour inconsistency methods improve performance

within these frameworks but they do little or nothing to explain the details of the relative performance

and behaviour of colour inconsistency methods. In addition, we find no data-bases that are constructed

for the study of colour inconsistency correction that allowthe alignment of all relevant local modes in

the colour histograms to be easily tested.

The key driver for this project is the colour inconsistency problem encountered by the industrial

partner Buhler Sortex. The research in this thesis has been conducted to add value to the proprietary

methods described in Chapter 5, but also to relate these proprietary methods to other techniques used in

the wider vision community. Understanding the Buhler Sortex methods and how generic colour inconsis-

tency methods can be applied to both Buhler Sortex data and more general imagery helps understand the
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problems faced in each area. It is informative to see how pragmatic solutions can be built on industrial

technology with an eye on the wider developments and trends in the vision community.

In summary, this review motivates the need for generic feature based histogram alignment methods

and a study of their performance on different colour inconsistent data-sets.
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Chapter 3

Feature based histogram alignment

This chapter introduces a feature based histogram alignment (FBHA) method to align a source RGB

histogram with a target RGB histogram. Aligning the colour histograms of images computes a colour

transformation that aligns the colours of a source image with those in a target image. This chapter

considers the case where two colour inconsistent images contain the same set ofN single-coloured

objects. Each histogram contains a number of dense regions that correspond to objects of interest.

FBHA seeks a transform that aligns clusters that correspondto the same objects. FBHA is designed

to handle multiple clusters of potentially different size,no explicit assumption is made about the shape

of the distributions or the number of clusters present. FBHAassumes that the source and target images

are of the same set of objects.

3.1 Feature based histogram alignment algorithm
The section outlines the FBHA algorithm. The steps to compute a colour transformation from a source

image to a target image using FBHA are:

1. Compute histograms for the source and target images.

2. Compute the scale space of each histogram and extract salient features.

3. Reject obvious outlying features.

4. Match the remaining features.

5. Compute the coefficients of a point alignment transform toalign matching features.

6. Transform the source image.

7. Test for failure by comparing the transformed and target histograms.

8. If FBHA fails, revert to a moment based transformation.

This algorithm was introduced by Senanayake and Alexander [65] to process the individual R,G and B

channels of images. The treatment in this chapter is more general and explores the approach in more

detail. The following subsections detail the steps of the algorithm and explain the rationale for taking

this approach.
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3.1.1 Feature Detection

This section introduces a feature detection step to find significant maxima in colour histograms. The

approach uses methods developed in the realm of scale space analysis. First, background scale space

theory is introduced and then the feature detection methodsare described.

Background to Scale Space Methods

Meaningful structure exists at different scales in the world and so meaningful structure in images can

exist at different scales. Scale space methods are techniques for extracting information from signals

when the relevant scales are not known in advance. Koenderink [66] introduced a scale space theory for

processing visual imagery using differential geometric descriptors. The scale space approach has moti-

vated the popular SIFT feature [67] detection method that computes scale invariant local features from

images. Lindeberg [68] provides a detailed review of scale space theory. The scale space representation

of aN dimensional signal,f , can be computed by convolution with Gaussians,g(σ) of varying widths,

σ as

L(σ) = g(σ) ∗ f, (3.1)

where the Gaussian kernel is

g(σ) = (2π)−N/2 |Σ| exp(−(x− u)TΣ−1(x − u)/2). (3.2)

The covariance,Σ, is a diagonal matrix with diagonal entries set toσ2. This defines an isotropic Gaussian

with standard deviationσ along each dimension. Convolution of a signal with a Gaussian at increasing

widths blurs the detail of the signal until eventually all detail is smoothed away and a single mode

remains. Scale space methods process the scale space of signals to extract meaningful information. The

term deep structure has been used to refer to linked structures that can be extracted through the different

levels of the scale space [66].

Deep structure feature detection

The local maxima of aN dimensional histogram,H, provide local structure information. This section

introduces a new deep structure feature detection method that avoids spurious local maxima detection.

First, it removes maxima below a noise threshold,γ. Second, it finds local maxima at each level of the

scale space that are connected to form paths over at leastT levels. The local maxima in the histogram,

H, that lead to these scale space path are retained as salient features,F. F is a v × N matrix of

feature points, each row indicates the co-ordinates of a detected feature in the histogram; the number

of detected features,v, is specific to a histogram and the parameters chosen. The pseudo-code function

F = FindPersistentMaxima(H, T, BlurScales, γ) summarizes these steps in algorithm 1. The

parameters of the algorithm are:

1. T: the path length.

2. BlurScales: theT scales used for the blurring. Theith blurring parameter isσi. σi = e0.1(i−1),

wherei = 1..T.
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3. γ: the noise floor parameter.

The functionFindPersistentMaxima generates and parses the scale space ofH. It maintains an inter-

nal structureDeepStructurePaths that contains all information about the detected paths. There are two

elements to constructing paths: 1) local maxima are detected using the functionDetectLocalMaxima

and 2) maxima connected across scales are added to a path stored inDeepStructurePaths by the func-

tion FollowPaths. For histograms of different dimensionality there are different ways of computing

local maxima and different possible connectivity rules across scale. In 1D, a maximum occurs in a bin

that is greater than its two neighbouring bins, in 2D the fourN-E-S-W or all eight neighbouring bins

can be inspected. Two maxima are connected across scales if they have bin positions that are connected

by a pre-defined shape. In the 1D case the three neighbouring bins at the next level of the scale space

are tested for connectivity. In the 2D case, the 5-connectedor 9-connected bins at the next scale are

examples of alternative connectivity rules. The maxima detection and connectivity rules are specified

when applying the algorithm to data.

An example feature detection process in 1D is now given. Figure 3.1 shows a histogram of the green

channel data from an image of plastic skittles. Local maximaare detected where a bin value is greater

than its two neighbours. There are a large number of irrelevant local maxima detected in this histogram,

Figure 3.1(b) highlights that a single cluster can contain many local maxima due to local spikiness at the

top of a cluster. Note that local maxima are detected in the noisy portions of the histogram, these noisy

maxima are discarded during the call toThresholdBins with noise floor threshold,γ. Figure 3.2(a)

shows the scale space representation of the histogram signal and local maxima at each scale, notice how

maxima that are detected in the noise that surrounds a dominant cluster centre are eliminated as the

corresponding feature paths terminate early in the scale space. Figure 3.2(b) shows the histogram and

features that lead to paths at least 20 long by settingT = 20.

Algorithm 1 F = FindPersistentMaxima(H, T, BlurScales, γ)

LM ⇐ DetectLocalMaxima(H)

PrevLevelLM ⇐ ThresholdBins(LM, γ)

DeepStructurePaths⇐ InitialisePathStructure()

for i = 1 to T do

ThisLevelLM ⇐ DetectLocalMaxima(H ∗ g(σi))

FollowPaths(DeepStructurePaths, PrevLevelLM, ThisLevelLM)

end for

F⇐ Features at the start of the paths with lengths ofT.

3.1.2 Feature Matching

This section introduces methods to match source histogram features,W, with target histogram features,

Q. There is no guarantee that the number of detected source features,a, is the same as the number of

detected target features,b. The goal is to find the best set of one to one assignments betweena andb,

each set of assignments is called amatch. A maximum cardinality match finds the maximum number
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of one to one assignments as a solution, there area!
(a−b)! solutions whena > b, b!

(b−a)! solutions when

b > a anda! solutions whena = b. Choosing the best match requires a notion of cost between points.

The total Euclidean distance between thekth set of matched points is computed as,

Ek =

min(a,b)
∑

i=1

L2(wi,qi), (3.3)

whereL2 is the L2 norm. The match with the minimum Euclidean distance, Ek, is chosen. This value

can be found by brute force search by computing all of the possible matches and the corresponding

scores,Ek, for all k and then finding the minimum value. The minimum Euclidean distance does not

guarantee that matches preserve rank ordering in a channel,this means that it allows folding transforma-

tions. In a rank ordered match, both matched points in each channel must be either less than or greater

than all other matched points in the channel. Two options forfeature matching are evaluated in this work:

1. The maximum cardinality, one to one, minimum Euclidean distance computed with brute force.

(Referred to with the code:CEM )

2. UseCEM , then remove all non-rank preserving matches. This is prevents folding transformations.

(Referred to with the code:CEM-DC )

3.1.3 Feature Alignment

A point alignment transform is selected and used to align thematched features. Transforms with greater

degrees of freedom are more flexible but are likely to over-fitthe data. The best transformation for an

alignment is determined by testing a range of transformations on a data-set to see which transforma-

tion performs best. The matching process sets the source pointsS and the target pointsQ so that the

corresponding rows ofS andQ are the matched points. Then the following steps are performed:

1. The chosen point alignment transform is computed. The point alignment transforms forS and

Q and the methods for solving them are described in section 2.5.2. Different options for the

point alignment transformation are multiplicative (eqn: 2.18), additive (eqn: 2.17), independent

polynomial (eqn: 2.19), correlated polynomial (eqn: 2.20)or an N by N transform (eqn: 2.21).

2. The source histogram,A, is transformed toP(A) using the point alignment transform,P.

3. The Bhattacharyya coefficient,B, is computed between the transformed histogramP(A) and the

target histogram,B as
∑

x∈X

√
sxtx, wheresx and tx are the corresponding bins ofP(A) and

B respectively. If the coefficient is less than a threshold,D, the point alignment transform is

discarded and a moment based transform is computed to align the histograms.

Steps 2 and 3 are optional, they improve the robustness of thealgorithm overall and may not be required

when the point alignment transformations are likely to work.

3.1.4 Discussion

This section elaborates on the design choices of the FBHA algorithm and discusses the advantages

of the approach taken. The FBHA steps described are summarized by the pseudo-code function

RobustFeatureBasedAlignment in algorithm 2.
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Algorithm 2 RobustFeatureBasedAlignment(A,B)

W = FindPersistentMaxima(A)

Q = FindPersistentMaxima(B)

S,Q = MatchFeatures(W,Q)

Compute Point Alignment Transform usingS andQ.

Transform source histogram,A, using point alignment transform.

Compute the Bhattacharyya metric,B, between transformed histogram and target.

if B < D then

Perform moment based transform of source histogram,A.

end if

The problems encountered in employing standard feature detection techniques motivate the deep

structure scale space feature detection technique described. The motivation is to produce a feature de-

tector that:

• Doesn’t require the number of clusters to be specified as a parameter.

• Detects features at different scales without parameter adjustment.

• Is not dependent on random initialisation and thus gives consistent results for a single data-set.

Common feature detection methods such as K-Means [69] and EM-GMM [70](pg. 435)approaches

require the number of data clusters to be specified as a parameter to the algorithm; both approaches use an

iterative procedure to update initial cluster estimates. In K-Means, a data point is updated. In EM-GMM,

each cluster is modeled with a Gaussian distribution whose mean and covariance is updated during

the procedure. For anything but the simplest distributions, these methods give different results based

on the initialisation points, resolving the correct clusterings from these results often involves manual

intervention and parameter tuning. GMMs fitted with EM suffer similar initialisation problems to the

K-Means algorithm, also data clusters are frequently not Gaussian which leads to poor fits.

Matching low numbers of features with brute force is sufficient, however matching large numbers

of points can become expensive using this technique. In thiswork, the brute force approach is used

because low numbers of features are present and the focus of the experimental work is on the histogram

alignment performance. If speed of execution of the matching step becomes an issue in future work the

Hungarian method [71] can be used to match larger numbers of features efficiently. In this approach,

the feature matching problem is represented as a maximum cardinality, maximum flow problem on a

bi-partite graph. The graph is bi-partite because there aretwo types of nodes corresponding to source

and target features in this case; a bi-partite match is a one to one correspondence between a source

and target feature. A cost is computed for each of the bi-partite matches, and then a maximum flow

technique such as Ford-Fulkerson [72] is used to find themin(a, b) matches. The Hungarian algorithm

finds the set of bi-partite matches that maximise the total cost between matches. The total Euclidean

distance minimization can be performed using Hungarian matching by altering the cost function to find

a maximum value. This is done by subtracting the Euclidean cost from a suitably large constant.
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In summary, the FBHA algorithm allows the use of point alignment transforms to be investigated

using automatic processing. It is designed to produce stable local features and simple one to one feature

matches. A degree of robustness is built into the approach bytesting for catastrophic failure of the point

alignment transform.

3.2 Qualitative Evaluation
This section qualitatively evaluates FBHA, the aim is to gain an intuition into the behavior of the algo-

rithm and how different options affect its behavior. FBHA isevaluated on image pairs using 1D, 2D and

3D versions of the deep structure feature detector. The images are from the image database described

in chapter 4, a full description of the image data is deferredto concentrate on the algorithm behavior.

Chapter 4 develops a quantitative methodology for testing colour inconsistency removal and tests colour

inconsistency methods comprehensively. The aim of this section is to visually demonstrate:

1. Feature detection using the deep structure method,

2. the matched features,

3. transformed histograms,

4. transformed images.

3.2.1 1D FBHA

1D FBHA operates on pairs of one dimensional histograms. To apply 1D FBHA to dimensions,N >= 2,

the procedure is applied in each dimension separately. Thissection demonstrates 1D FBHA on a colour

inconsistent image pair.

Images

Figure 3.3(a) shows the source image and 3.3(b) shows the target image; both images are of a red and

cyan piece of paper captured under different lighting conditions. The transformed source image is shown

in 3.3(c), its colours appear more similar to those of the target image. The increased visual similarity

of the colours gives a qualitative indication that the colour inconsistency has been reduced by the 1D

FBHA procedure.

FBHA steps

The deep structure feature detection step described in section 3.1.1 is performed on the red, green and

blue channel individually using parameters,γ = 0.005 andT = 9. The detected features and corre-

spondingCEM matched features are shown for the red, green and blue channels in figures 3.4(a), 3.4(b)

and 3.4(c) respectively. Two features are detected and matched in the red channel histograms. The green

and blue channel histogram pairs show three detected features in the target histograms and two detected

features in the source histograms; the final matches in the green and blue channels discard one of the

features from the target histogram. The matched features are used to compute a linear point alignment

transform in each channel, the source image data-points from the red, green and blue channels are cor-

rected using the transforms. A histogram of the corrected values is computed for each channel. The
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corrected histograms and their corresponding target histograms are shown for the red, green and blue

channels in figures 3.5(a), 3.5(b) and 3.5(c). The corresponding peaks in the corrected histograms are

aligned in all three cases.

Observations

The 1D FBHA procedure allows a linear correction to be computed in each channel that aligns the local

structure of the histograms. The computed linear transforms in each channel modify the original source

image so that it is more similar to the target image; these qualitative results provide an indication of

what is possible using the algorithm. The algorithm is able to identify and match the histogram peaks

robustly even though the local structure of the histogram peaks is variable. Noticeable artifacts occur in

the histograms of the transformed data, the histogram of thetransformed red channel data in figure 3.5(a)

exhibits spikes and the histograms of the transformed greenand blue channel data in figures 3.5(b) and

3.5(c) exhibit gaps. These effects occur because of the discrete precision of image data, the image pixels

are represented by integer values in the0−255 range. Transformation of pixel values by a multiplicative

transform less than 1 can cause transformed values to bunch together in particular bins which results in

the histogram spikes observed in 3.5(a). Gaps in the histograms of transformed values can be produced

by a multiplicative transform greater than1 that effectively stretches the transformed values and so leaves

gaps in the histograms as seen in 3.5(b) and 3.5(c). Section 3.2.4 provides further discussion of the issues

surrounding these effects and methods to mitigate them.

3.2.2 2D FBHA

The 2D FBHA procedure computes 2D source and target histograms from two colour channels. An RGB

image is transformed by running 2D FBHA on the red and green channels and 1D FBHA is on the blue

channel. Any two channels could be chosen, but the green and red channels are selected because the

standard RGB camera samples the red and green wavelengths more than the blue band. Recall that the

human eye samples the red and green bands more than the blue band, this sampling strategy helps the

human visual system uniquely identify most objects in the natural world. Reasoning by analogy, one

can suppose that the RG histogram is more likely to produce well separated clusters than other channel

combinations.

Images

The colour inconsistent image pair in this example containsfour different types of coloured object.

Figure 3.6(a) shows the source image captured in a room with aflorescent lighting and 3.6(b) shows the

target image under the same ambient lighting conditions with a red bulb held over the objects. Figure

3.6(c) shows the transformed source image using 2D FBHA on the red and green channels and 1D FBHA

on the blue channel.

FBHA steps

The deep structure feature detection on the RG histogram usesγ = 0.0002 andT = 11. The connectivity

rule in the path following step connects a local maximum to a current path if the local maximum is in

the nine neighbouring bins at the end of the path. The 1D FBHA in the blue channel usesγ = 0.005
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andT = 9. Figure 3.7(a) shows the square root of the source RG histogram and Figure 3.7(b) shows the

square root of the target RG histogram. The complex shapes present in the histograms provide a visual

illustration of the potential features in the histograms, alarge number of local maxima are present in

the histograms so it is important to pick the significant features of the histogram. Figures 3.8(a) and

3.8(b) show intensity plots of the source and target RG histograms respectively. Matched features are

shown as green crosses and unmatched features are shown as red crosses. Yellow lines on the target

histogram are drawn between the position of the feature on the target histogram with the position of the

matched feature on the source histogram. The matched features in each channel are used to compute

three independent linear transformations, these transforms are applied to the red, green and blue channel

of the source image in Figure 3.6(a) to transform it to 3.6(c).

Observations

Detecting and matching features in the RG histograms is a challenging problem. The advantage of the

2D FBHA step is its ability to detect and match features in theRG histogram that may be obscured

when inspecting the red and green channels individually. The RG histograms in figures 3.8(a) and

3.8(b) exhibit complex shapes and it is not obvious how to identify and match features manually. Upon

visual inspection it can be concluded that 2D FBHA performs areasonable job of feature detection and

matching. However, the potential variability of histogramshapes mean that detecting and matching

features from the histograms alone is not sensible in many cases. 2D FBHA reveals details of the

histograms that may be obscured in the 1D version; however, the increased detail available in the 2D

histogram must be balanced against the increased difficultyof the feature detection and matching step.

This example applies independent linear transforms in the RG histogram even though it is possible to

apply the correlated linear transform described by equation 2.7 withd = 1 andn = 2, this means that

any advantage gained by applying 2D FBHA over 1D FBHA in the red and green channels is purely

due to improved feature detection and association. Applying the correlated transform removes colour

inconsistencies that are correlated between channels.

3.2.3 3D FBHA

3D deep structure feature detection usesγ = 0.00001 andT = 11. Maxima are detected where his-

togram bins contain values greater than those in the three-dimensional 26 connected neighborhood. Max-

ima features are connected over scales if the 27 connected neighborhood at the next scale contains a

maximum.

Observations

3D deep structure feature detection was found to yield many short broken tracks, all ending at approxi-

mately the same length in the scale space. This meant that thefeatures detected were not suitable for use

in the later stages of the FBHA algorithm. Larger connectivity windows and different noise floor val-

ues were interactively tested but none improved the featuredetection results. 3D deep structure feature

detection is not reliable on the histograms of RGB images, so3D FBHA is not explored further.
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3.2.4 Shape preserving histogram transformations

Section 3.2.1 describes 1D FBHA and shows that computing histograms of the transformed data in each

channel leads to histogram shapes that have gaps or spikes when compared to histograms of the original

data. The spikes and gaps appear in such a way that the shape ofthe original histogram is no longer

preserved. This section details how to transform a source histogram so that is shape is preserved. The

interpretation of a histogram under transformation that preserves shape is discussed and compared to

computing the histogram of the transformed source data-points.

The idea of a shape preserving histogram transformation is now introduced with an example in 1D.

A 1D histogram with bins of unit size counts the values,q, for thexth bin so thatx − 1 < q ≤ x where

x is an integer bin index in the range1 . . . 255. The lower bin boundary for thexth bin is defined by

lx = x− 1 and the upper bin boundary is defined byux = x. For a given transform, the bin boundaries,

ux and lx, are transformed to give new bin positions, the bin counts ofthe transformed histogram are

reassigned to the bins of a target histogram with unit size. If a transformed bin lies within a single bin in

the target histogram its count is assigned to this bin; however, if the transformed bin spans more than one

bin in the target histogram its count is assigned proportionally to the spanned bins. This simple procedure

preserves the shape of 1D histograms for monotonic transforms, the same principle of transforming bin

boundaries and re-assigning bin counts can be extended to 2Dand 3D histograms if required.

The correction transform is a model for the sources of colourinconsistency between the source and

target data. Computing the histogram of the transformed source data does not give the same histogram

as the shape preserved histogram. It is important to articulate the difference between these approaches

and relate them back to the colour inconsistency problem. The motivation for using shape preserved

histograms is that the gaps and spikes in a 1D transformed histogram do not appear and disappear in a

predictable manner. Spikes and gaps in histograms of transformed data are likely to appear at different

bins in the histograms being compared, this means that histogram metrics that compare corresponding

bins will be perturbed by these effects. The spikes and gaps are genuinely present in the histogram of

the transformed data. Given the source colour values, the transformed histogram represents an inference

about the distribution of colour values that would be obtained under a different set of experimental

conditions. The assumption that the transformed histogrammust retain the same shape as the source

histogram is a strong assumption; it says that if further observations of the same set of objects are

available under the target lighting and camera conditions,one could expect the histogram of these values

to follow the shape of the preserved histogram. As a greater number of colour values of the same

objects are observed, the gaps in the target histogram wouldbe filled and spikes would be smoothed out.

One problem with the shape preserving procedure is that is can introduce a non-monotonic relationship

between the source and target histogram that is not specifiedby the original transformation model. For

example, if a linear correction is computed where the multiplicative component is greater than 1 the shape

preserving procedure introduces a one to many mapping from asingle bins in the source histogram to

multiple bins in the target histogram. This adjustment preserves the histogram shape but a 1 to many

relationship between source data-point values and target values is now introduced, there is no way to
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know how to transform the individual data-points without further information.

In conclusion, the shape preserved histogram minimizes effects that are likely to cause perturba-

tions in common histogram alignment metrics. However, maintaining the shape constraint introduces

a deviation away from the computed colour inconsistency correction transform. This can be seen be-

cause the histogram of the transformed data-points is not equivalent to the shape preserved histogram.

The shape preserved histogram is of use when the source and target histogram shapes exhibit similar

structure and deformations are moderate. In this case, the advantages of avoiding problems with his-

togram comparison metrics outweigh the introduced deviation from the colour inconsistency correction.

When the source and target histograms contain complex shapes, the shape preservation procedure may

not be appropriate as it is likely to model significant deviations from the computed colour inconsistency

transform.

3.3 Summary Conclusions
This chapter has introduced a method for removing colour inconsistencies called feature based histogram

registration. The contributions of the method are:

• the introduction of an automatic feature detection and alignment approach. The feature based

approach makes it possible to align the local structure of histograms using point alignment trans-

forms. Point alignment transforms include correlated polynomials and can account for a wider

range of variations than is possible when aligning the moments of the distribution using multi-

plicative or linear transforms.

• the introduction of a novel feature detector that exhibits stable performance over multiple execu-

tions. The detector does not require the number of clusters to be specified and makes no parametric

assumptions about the form of the data.

• the introduction of two automatic feature matching strategies,CEM andCEM-DC .

FBHA has been evaluated in a purely qualitative manner to give the reader and understanding and feel for

the steps of the algorithm, the 1D and 2D deep structure feature detectors are shown to work well. The

3D version of the feature detector does not work well enough to facilitate automatic feature detection and

matching. Nevertheless, automatic feature based alignment of 1D and 2D histograms is useful because

1D and 2D data is common in machine vision applications. 1D FBHA has been shown to work on the

red, green and blue channels of an image. 2D FBHA has shown to work on the red-green histograms, an

RGB image can be manipulated by applying 2D FBHA on the red-green channels and 1D FBHA on the

blue channel. The next chapter develops a quantitative assessment of colour inconsistency removal and

evaluates the automatic FBHA approaches that haves been introduced.
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Figure 3.1: Example of the local maxima in a one dimensional histogram. 3.1(a) shows a histogram

obtained from the green channel of an image of skittles in theimage database. All local maxima are

shown as red dots, maxima in low level noise is highlighted as1) and multiple local maxima on a cluster

are highlighted as 2). 3.1(b) shows a zoomed view of the localmaxima in the cluster labelled 2).
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Figure 3.2: 3.2(a) shows a representation of the scale spaceof the histogram in Figure 3.1(a); horizontal

slices indicate histograms blurred at increasing scale moving from bottom to top, denser regions of the

scale space are rendered closer to white and local maxima at each scale are drawn as circles. The maxima

form paths across scales, with paths from less significant peaks ending earlier in the scale space. 3.2(b)

shows the persistent maxima usingT = 20.
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(a)

(b)

(c)

Figure 3.3: The source image in 3.3(a) and target image in 3.3(b) exhibit colour inconsistency. 3.3(c)

shows the colours of the source image transformed using 1D FBHA with a linear transform in each

channel.



3.3. Summary Conclusions 68

(a)

(b)

(c)

Figure 3.4: Source and target histograms are shown as overlayed line plots in the top portion of each

sub-figure. The red plots show the target histogram in the redchannel 3.4(a), green channel 3.4(b) and

blue channel 3.4(c). The corresponding blue plots show the source histograms. Detected features are

marked on the source and target histograms with a star. The bottom portions of each sub-plot show an

exploded view of the source and target histograms and the matched features.



3.3. Summary Conclusions 69

(a)

(b)

(c)

Figure 3.5: Exploded view of the histograms of the correcteddata plotted with the solid line and the

target histogram plotted with the dotted line. The aligned features are shown using a line to connect

the aligned feature and target feature. Subfigures 3.5(a), 3.5(b) and 3.5(c) show the red, green and blue

channels respectively.
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(a)

(b)

(c)

Figure 3.6: Image of plastic skittles. Figure 3.6(a) shows the source image and figure 3.6(b) shows the

target image where a red light modifies the appearance of the skittles. Figure 3.6(c) shows the modified

source image where 2D FBHA is used in the RG channels and 1D FBHA is used in the blue channel.
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(a)

(b)

Figure 3.7: Sub-figure 3.7(a) shows the square root of RG histogram for the source image in Figure

3.6(a) and sub-figure 3.7(b) shows the square root of the RG histogram for the target image in Figure

3.6(b). Taking the square root of the histograms allows the shapes of local features at different scales to

be observed more easily on a single plot.
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(a)

(b)

Figure 3.8: Feature detection and matching for the source and target RG histograms shown in Figures

3.7(a) and 3.7(b). The source RG histogram in 3.7(a) is shownas an intensity plot in sub-figure 3.8(a),

dense regions of the histogram are shown closer to white and less dense regions are shown closer to

black. The target RG histogram in 3.7(b) is shown as an intensity plot in 3.8(b). Matched detected

features are shown with a green cross, detected features that remain unmatched are shown with a red

cross. A blue line is drawn on the target RG histogram from thematched feature on the target histogram

to the position of the matched feature on the source histogram.
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Chapter 4

An image database for testing RGB colour

alignment

This chapter introduces an image database for evaluating colour inconsistency removal methods. The

database is structured to investigate different sources ofcolour inconsistency. A quantitative methodol-

ogy for evaluating and ranking different colour alignment methods is introduced. The methodology is

used to compare FBHA and alternative methods.

4.1 Database design

This section motivates and describes the image database. Consider the task of removing the colour in-

consistency between the two images in Figure 4.1. The plastic toys in 4.1(a) are illuminated with ambient

lighting, 4.1(b) shows the same objects illuminated by an additional red light. A colour inconsistency

removal method should find transformations of the images so that the individual colours of the yellow

skittles, blue skittles, green balls and grey backgrounds each become more coherent in colour space.

Trivial solutions such as setting colours to the same value should be ignored. Recall that colour incon-

sistencies are non-unique mappings from the material properties of an object to observed colours. A fair

comparison of methods should evaluate when the colours fromhomogeneous materials become more

(a) (b)

Figure 4.1: Two images of plastic toys on a grey cardboard background. In 4.1(a) the scene is lit using

clear bulbs, in 4.1(b) a red bulb is placed above the scene.
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self similar while remaining distinct from the colours of other materials. The database contains images

that:

1. are composed of a low number of simple objects that containlarge regions of homogenous colour.

2. are captured under different experiment conditions leading to different colour inconsistencies.

3. vary the relative scale of the different materials present in the image.

4. are labelled so that colours corresponding to different materials can be identified.

The subsequent subsections describe more details about themotivation for these choices.

4.1.1 Objects

Four different sets of objects are chosen to create images that contain 2 to 4 different materials. Scenes

with low numbers of distinct materials are chosen because this allows the behavior of the colour clusters

that correspond to different scene materials to be studied with clarity. Notice that it is the number of

distinct materials in the scene that is important and not thenumber of objects.

The objects are:

1. Red and cyan paper strips shown in Figure 4.2(a). Two different materials are present.

2. Red, green and blue paper strips shown in Figure 4.2(b). Three different materials are present.

3. Purple, yellow and green plastic skittles and balls on an uncluttered grey background shown in

Figure 4.2(c). Four different materials are present.

4. Brown, yellow and red stuffed animals arranged on an uncluttered grey background shown in Fig-

ure 4.2(d). Four different materials dominate the images, anumber of different materials occupy

a small fraction of the image. These are the black eyes of the red bear, the white and black labels

and the flag on the chest of the red bear.

The images of paper provide examples of a planar object, the plastic objects provide examples of specular

reflections and the teddy bears are diffuse reflectors. Figure 4.3 shows the database hierarchy, this

structure groups similar variation types together.

4.1.2 Capture conditions

The database contains images of four different object classes that are captured by varying four different

experimental conditions. The experimental conditions varied are:

1. The camera used.

2. The local illuminating light.

3. The ambient illuminating light.

4. The scale of the objects in the image.
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(a) (b)

(c) (d)

Figure 4.2: Typical images from the four different object categories used in the colour alignment

database; for each object category, objects are imaged under different scale, lighting and camera con-

ditions. Image 4.2(a) shows a representative image from theset Red and Cyan paper set. Image 4.2(b)

shows an image from the set of red, green and blue paper strips. Image 4.2(c) shows and image of the

plastic skittles and ball on a grey background. Image 4.2(d)shows an image from the set of stuffed

animals.
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The first three experimental conditions lead to observer andilluminant colour inconsistencies. Object

scale variation is a common confounding condition that makes object matching problems harder. There-

fore, it is important that colour inconsistency removal methods can handle data with scale variations.

Colour inconsistency removal methods can be tested on two ormore images of the same object type

from the database. The difference in experimental conditions between any pair of images is known, so it

is possible to test whether specific experimental conditions confound specific methods.

Figure 4.3: Organisation of the UCL colour variation database. The directory structure under each of

the four object type folders is identical. The unique parts of the hierarchy are shown. At the lowest level

of the hierarchy there are three folders corresponding to the different cameras; each camera directory

contains five images corresponding to five different local lighting conditions.

Each of the sets of objects are imaged using:

• 3 different cameras.

• 2 different object scales.

• 5 different local lighting conditions.

• 2 different ambient lighting conditions.

These combinations lead to 60 images per object set and 240 for the entire database. The three cameras

used to capture the pictures are shown in figure 4.6. The flash was switched off for each camera and

automatic settings were used, a tripod was used to minimize hand shake and the camera was allowed to

focus first by pressing the shutter down half way before taking the picture.

The object scale in the image was varied by moving the camera,adjusting the zoom and readjusting

the positions and numbers of objects where appropriate. Theobjects were imaged under two different

sets of scale conditions; human judgement was used to keep the relative composition of objects and

background approximately constant across different camera and lighting conditions. Figure 4.4 shows

example images from the four different object classes imaged under 2 different scale conditions.
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Images are captured using five different local lighting condition conditions and two ambient lighting

conditions. The two ambient conditions were created by capturing all images in an office with a high

degree of florescent lighting shown in Figure 4.5(b) and a living room with a large window shown in

Figure 4.5(a). The office environment lighting provides constant ambient lighting, whereas the living

room lighting varied significantly over the capture period due to larger changes in sunlight and clouds.

Readings from a light meter shown in figure 4.5(d) were used toverify this. For each camera, scale and

ambient lighting condition, a scene was imaged under five different local lighting conditions. Figure

4.5(c) shows the four different coloured bulbs used: 1) a clear red 60W bulb, 2) a frosted green 60W

bulb, 3) a frosted yellow 60W bulb, 4) a clear 40W bulb. The fifth lighting condition was due to the

ambient lighting only. A dimmer switch set up was used to adjust the bulb brightness to avoid high

degrees of over-saturation in the image; this was particularly important when using a clear bulb and

highly reflective paper. Objects were placed on the floor and the coloured bulbs were attached at a fixed

distance above the floor. All images are captured in Jpeg format, users of the database should be aware

that Jpeg is a lossy format. The Jpeg format is less reliable than formats such as Tiff in areas of spatial

detail. The use of Jpeg does not affect the ability to test histogram alignment algorithms.

4.1.3 Object labeling

Each image in the data-base has an associated layered mask, each layer in the mask is a binary image that

defines a polygon or polygons that mark regions of the image with homogenous material properties. The

polygons were marked up manually for each image region in allimages. The colours of each material

can be accurately compared across imaging conditions by gathering and comparing pixels from each

mask layer. Figure 4.7 shows examples of the image regions extracted by using the associated masks,

the masks do not approach the object boundary too closely to avoid ambiguous pixels.

4.1.4 Image variation sets

The termimage variation setsis introduced here to refer to the set of all image pairs with aparticular

combination of imaging conditions changing between the twoimages in the pair. There are 60 images

associated with each set of objects so there are60C2 = 1770 image pairs in total. When transforming

a single image in the pair to match the other image in the pair there are 3540 possible source to target

image pair combinations. Table 4.1 lists the different image variation sets along with a short hand code

and the number of image pairs in each set.

4.2 Existing Colour Datasets
There are a number of freely available computer vision datasets. This section identifies these data-sets,

their design rationale and what they are used for. The reasons why these data-sets are not appropriate

for the investigations performed in this thesis are identified, this motivates the need for the new image

data-base presented in this chapter.

The existing image data-bases are:

1. The University of East Anglia(UEA) colour constancy database [73]. It contains images of vari-

ous kinds of wallpapers captured under different lighting conditions and from different cameras.



4.2. Existing Colour Datasets 78

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.4: Images from the four different image sets illustrating the different scale variations captured

and categorised in the database. The red and cyan pieces of paper occupy roughly equal portions of the

image in 4.4(a), the cyan paper occupies a larger portion of the image in 4.4(b). The red, green and blue

strips are arranged to occupy approximately a third of the image each in 4.4(c); 4.4(d) shows a scale

adjustment of the red and blue paper. Images 4.4(e) and 4.4(f) illustrate scale variation in the skittles set.

Images 4.4(g) and 4.4(h) illustrate scale variation in the Teddy Bears set.
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(a) (b)

(c) (d)

Figure 4.5: Locations and equipment used to create different lighting conditions. 4.5(a) shows the

naturally lit lounge and 4.5(b) shows the office lit by florescent bulbs. 4.5(c) shows the bulbs and dimmer

switch used create local lighting variation, 4.5(d) shows the light meter used to approximately monitor

the ambient lighting conditions.

(a) (b) (c)

Figure 4.6: The three different cameras used to acquire the colour variation database. These are 4.6(a):

a Nikon Coolpix 4600, 4.6(b): an Olympus Camedia C40 Zoom and4.6(c): a FujiFilm FinePix 6900

Zoom.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.7: Example masked regions from sample images from the four different object types. Images

4.7(a), 4.7(c), 4.7(e) and 4.7(g) show numbered distinct masked regions for the corresponding images in

4.7(b), 4.7(d), 4.7(f) and 4.7(h).
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Figure 4.8: Two images from the UEA uncalibrated colour database. Both images are of wall paper

under the same lighting and camera conditions. The data-base contains the same images taken under

different combinations of lighting and camera changes.

Figure 4.9: Different objects in the SOIL database.
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Table 4.1: The image variation sets in the UCLColvariation database. Each variation set refers to a subset

of the image pairs for an object type in the database, the image pairs in the subset differ in experimental

capture conditions as described. The short hand codes are used to refer to these image variation sets.

Varied Conditions Code Num image pairs

Scale 000(S) 60

Ambient Lighting 00(L-AL)0 60

Local Lighting 0(L-LI)00 240

Camera (C)000 120

Ambient lighting and Scale 00(L-AL)(S) 60

Local lighting and ambient lighting 0(L-LI)(L-AL)0 240

Camera and local lighting (C)(L-LI)00 480

Camera and ambient lighting (C)0(L-AL)0 120

Camera and scale (C)00(S) 120

Local lighting and scale 0(L-LI)0(S) 240

Camera, Local lighting and ambient lighting (C)(L-LI)(L-AL)0 480

Local lighting, ambient lighting and scale 0(L-LI)(L-AL)(S) 240

Camera, ambient lighting and scale (C)0(L-AL)(S) 120

Camera, local lighting and scale (C)(L-LI)0(S) 480

Camera, local + ambient lighting and scale(C)(L-LI)(L-AL)(S) 480

Figure 4.8 gives an example of two images of different wallpaper patterns taken under the same

lighting and camera conditions. Images of these and other wallpaper patterns are captured under

three different lighting conditions and by four different cameras. The UEA data-base has been

used to test image retrieval performance in the presence of colour inconsistencies [46]. The de-

sign of the data capture for UCLColVariationLib follows theUEA design by varying lighting and

camera conditions systematically. The UEA data-base does not contain examples with low num-

bers of material properties, also the relative amounts of the different materials are not varied so

that the effect of scale changes in the corresponding clusters of a histogram can be examined.

UCLColVariationLib introduces these examples so that the behavior of colour inconsistency re-

moval algorithms can be studied on simple examples.

2. The SOIL database from Surrey university [74] contains commonly obtained supermarket items

imaged under lighting and pose changes. Figure 4.9 illustrates the objects present in the database.

The Soil database varies the 3D viewpoint, the illuminationintensity, occlusion and scene dis-

tracters and structural appearance variation and has been used to test object recognition algorithms

[75]. The scene objects are captured against a black background and occupy a small fraction of

the image. The objects typically have multi-coloured intricate patterns and logos that are common

on product packaging. The high number of different colouredregions mean that these objects
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Figure 4.10: Sample images from the SFU database.

present a more difficult colour inconsistency removal task than the objects in the UCLColvaria-

tionLib data-base. Again, the strength of UCLColvariationLib is that it allows the simple cases to

be studied first.

3. The Simon Fraser University(SFU) database [76] is similar to the SOIL database in design. It

divides images into a training set of objects with fixed pose and changing illuminant and a test

set with random pose under the same illuminants. Example images are shown in Figure 4.10.

The SFU data-base has been used to evaluate colour constancyalgorithms [77]. The objects are

multi-coloured with small detailed regions, like the SOIL database these coloured regions lead

to scattered small regions in the colour histograms. The SFUdatabase does not introduce scale

variation in a systematic way. These factors mean that the UCLColVariationLib is a better starting

point for investigating colour histogram alignment methods.

This section has presented existing data-bases that have been successfully used in colour inconsistency

research, because of the reasons mentioned these data-bases do not match the requirements of simplicity

and systematic object scale variation that the study in thisthesis requires. To summarize, the advantage

of UCLColVariationLib is that it introduces colour inconsistencies for very simple objects so that the

differences between the colour inconsistent histograms are more easily interpreted than those from these

existing data-bases.

4.3 Histogram alignment metrics
One way to obtain quantitative measures of colour transfer performance is to compare histograms of the

transformed images. This section lists a variety of metricsfor histogram comparison and studies their

properties on simple synthetic histograms. The histogram metrics fall into three categories: 1) Bin-Bin

metrics, 2) Cross-Bin Metrics and 3) Manually defined metrics.

4.3.1 Bin to Bin Measures

Bin to Bin metrics are based on comparisons between the corresponding bins in histograms. Common

examples are the Bhattacharyya distance [78], Mutual Information [79] or the Kullback-Leibler (K-L)
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divergence [79]. Bin to Bin measures are not discriminativefor histograms containing non overlapping

or sparse data; also, comparisons between multi-modal clusters are biased by the largest overlapping

clusters. This section introduces two popular bin to bin measures for comparing a histograms with

another histogramt; sx is bin x in s andtx is the corresponding bin int. The histograms contain the

same number of bins over the domainX. The Bhattacharyya coefficient is

B(s, t) =
∑

x∈X

√
sxtx, (4.1)

and the K-L divergence is

KL(s|t) =
∑

x∈X

sx log
sx

tx
. (4.2)

The Bhattacharyya coefficient is used extensively due to itssimplicity and numerical stability when

dealing with zero bins [78]. The K-L divergence is an asymmetric measure known as the relative entropy

in information theory, its numerical computation requirestranslating all histogram bin values away from

zero to avoid division by zero.

4.3.2 Cross-Bin Measures

Cross bin measures [80][81][82] compute a metric based on corresponding and non-corresponding his-

togram bins, they have been used successfully in vision-based database lookup applications to alleviate

biases in bin-bin comparisons when comparing partially or non-overlapping clusters of different size.

Colour histograms are commonly sparsely populated, so cross bin measures are a robust choice for com-

paring them. The Earth Mover’s Distance is perhaps the first example of a cross-bin measure that has

found applications in Computer Vision; it is computed as theminimum work required to transform one

distribution to another when posed as the transportation problem in linear programming. The EMD has

O(n3) complexity wheren is the number of histogram bins; because of this computational expense the

EMD is typically used to compare simple histograms. Subsequent work has sought to replicate the ben-

efits of the EMD within a computationally efficient framework; examples are the pyramid match kernel

[81] and the diffusion distance [82]. The diffusion distance is of particular interest because of its simplic-

ity and speed of computation. The diffusion distance considers the difference between two distributions

as

d = t− s (4.3)

where the corresponding bins ofs are subtracted fromt. d is blurred by convolution with a Gaussian

kernelG(.; σ); the L1 norm is computed between the blurred distance and a matrix of zero entries. The

is repeated over a range of kernel widthss to t and the results are summed as

t
∑

σ=s

L1(d ∗G(.; σ)). (4.4)

4.3.3 Manually defined metrics

The termmanually defined metricsis introduced to describe metrics that are computed from labeled data

that is obtained from the marked up masks associated with each image in the database. There arem

different labels attached to the data,j indexes the labels. Two different manually defined metrics are
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described here. The first metric is the total Euclidean distance between labeled clusters, the mean of

the colours labeledj is qj for the source distribution andwj in the target distribution. The L2 norm is

computed between corresponding means and the results are summed over all labels, as,

E =

m
∑

j=1

L2(qj ,wj). (4.5)

The Euclidean metric is not discriminative for changes in cluster orientation at fixed distances between

cluster centres; the second metric reduces this problem, itcomputes an average Mahalanobis distance

over the clusters. The Mahalanobis distance in both directions for thejth label is,

φj =
√

(qj −wj)−1Σqj
(qj −wj) (4.6)

and

βj =
√

(wj − qj)−1Σwj
(wj − qj), (4.7)

whereΣqj
andΣwj

are the covariances ofjth source and target components respectively. For each pair

of corresponding components the average of these distancesis computed as,

Jj =
φj + βj

2
. (4.8)

The average Mahalanobis metric is computed as the sum of the averages ofφn andβn,

L
∑

n=1

Jn. (4.9)

4.3.4 Empirical comparison of metrics

This section develops an intuitive notion of how different histogram alignment metrics vary. Synthetic

source and target histograms are generated from a parametric model, the parameters of the model are

specified so that they correspond to intuitive geometric transformations. Then, metrics are computed

for a sequence of histogram pairs. The pairs are generated byadjusting the model parameters to in-

vestigate different forms of alignment. One motivation is to understand the effects of overlapping and

non-overlapping clusters on the behavior of the metrics.

Model

A two dimensional Gaussian Mixture Model (GMM) is specified here in terms of a set of intuitive

parameters. The GMM is a weighted sum of Gaussian distributions, each Gaussian is usually specified

in terms of its mean, a scaling parameter and a covariance matrix. One problem with specifying the

shape of each mixture component with a covariance matrix is that it does not relate clearly to an intuition

about manipulating the model. This formulation defines eachGaussian component with its mean at the

origin, the standard deviations along the x and y axes are specify the shape of the component. A rotation

of each component in the X-Y plane is then specified. This subtle change in parametrization allows one

to think in terms of rotating, stretching and translating each component.

Each histogram is generated by a mixture model as a linear combination ofm component densities,

p(x|j). A mixture model has the form:

p(x) =
m

∑

j=1

p(x|j)P (j), (4.10)
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where the coefficientsP (j) are called the mixing parameters. The mixing parameters satisfy

m
∑

j=1

P (j) = 1, (4.11)

and

0 ≤ P (j) ≤ 1. (4.12)

The component densitiesp(x|j) are normalised such that

∫

p(x|j)dx = 1. (4.13)

The component densities can take any parametric form. In this work, each component is anN dimen-

sional anisotropic Gaussian distribution,

p(x|j) = (2π)−N/2 |Σ| exp(−(x− u)TΣ−1(x− u)/2), (4.14)

whereN = 2. The covariance matrix,Σ is expressed in terms ofθ, σx andσy using a singular value

decomposition,

Σ = USVT. (4.15)

S is a diagonal scaling matrix. The diagonal entries specify the variance along the x and y axes of a zero

mean Gaussian. In terms of standard deviations,σx andσy this is

S =





σ2
x 0

0 σ2
y



 . (4.16)

The Gaussian is rotated counter-clockwiseθ degrees in the X-Y plane. This is specified by settingU to

a standard rotation matrix so,

U =





cos θ − sin θ

sin θ cos θ



 , (4.17)

andU = V.

Method

A sequence of source and target histograms are generated using the model, the sequence of parameters

is chosen to investigate a particular experimental hypothesis. A histogram in the sequence is generated

by specifying each if itsm clusters. Thejth cluster in thelth source histogram is specified by five

parameters as,Slj(P (j),u, θ, σx, σy). The corresponding cluster in the target histogram is identified as

Tlj(P (j),u, θ, σx, σy).

Five metrics are computed from each histogram pair in the sequence, these are:

1. The Bhattacharyya coefficient (eqn:4.1).

2. The Kullback-Leibler distance (eqn:4.2).

3. The Diffusion distance (eqns:4.3.2, 4.4).

4. The total Euclidean distance (eqn: 4.5).
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5. The average Mahalanobis distance (eqn: 4.9).

The results for the sequence are plotted for each metric. Allmetrics are normalized to the range0..1.

The Bhattacharyya coefficient is normally in the range0..1 where a score of1 indicates the highest level

of similarity. Bhattacharyya coefficient scores are reflected about the axisy = 0.5 so that0 indicates the

highest level of similarity. After these steps, all scores for a sequence are shown in the range0..1 and a

lower score indicates a greater degree of similarity between histograms.

Experiments

This section describes the empirical results obtained fromthree different sequences of histograms. The

sequences are designed to show the effects of non-overlapping clusters and the bias of larger overlapping

clusters on the metrics.

Sequence 1: Comparison of single mode variations Bin to bin metrics only consider the relationship

between the corresponding bins in the histogram. This leadsto the presupposition that bin to bin metrics

will not discriminate between changes in orientation when the degree of cluster overlap is low.

Hypothesis: Bin-Bin metrics are not discriminative at large distances.

Sequence: The source and target histogram contain a single cluster each. The sequence is generated

by iterative rotation and translation of the target cluster. The rotations areθ1 = 0, θ2 = 20, θ3 = 45,

θ4 = 90, and the means of the target histogram cluster are,u1 = [0,0], u2 = [5,0], u3 = [10,0],

u4 = [15,0], u5 = [20,0], u6 = [25,0], u7 = [30,0], u8 = [35,0]. The source histogram does not

change throughout the sequence, it isSl1(1,u1, θ1, σx, σy). σx = 10 andσy = 30 for all histograms.

The target histogram sequence is described by the pseudo-code in algorithm 3.

Algorithm 3 GenerateHistoSequence1

count⇐ 1

for o = 1 to 8 do

for p = 1 to 4 do

Tcount1(1,uo, θp, σx, σy)

count⇐ count + 1

end for

end for

Results Figure 4.11 shows the values of the metrics for the sequence.Representative transformations

from the sequence are illustrated in Figure 4.12. The most noticeable observation is that none of the met-

rics varies smoothly across the sequence. The total Euclidean distance is the only metric that exhibits a

uniform repeating pattern. The total Euclidean distance exhibits a step like response as it does not regis-

ter the changes in target orientation but registers the change in mean. The average Mahalanobis distance

changes smoothly in response to orientation changes when the clusters are close and with more variation

when the clusters are far apart. The Bhattacharyya coefficient, Kullback-Leibler and Diffusion distance

all vary in a highly non-uniform manner across the sequence.The Kullback-Leibler stops discriminating

between changes in target orientation at position15 in the sequence and the Bhattacharyya coefficient
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stops at position20. The Diffusion distance continues to discriminate betweendifferent orientations

when the distance between clusters is large.

Conclusions The results show that the KL-Divergence and Bhattacharyya bin to bin metrics are not dis-

criminative when the degree of cluster overlap is low. This is important because according to these met-

rics two overlapping clusters that differ significantly in orientation score higher than two non-overlapping

clusters that share the same orientation. Furthermore, these results highlight the value of using manually

defined metrics such as the total Euclidean distance and the Average Mahalanobis distance; the advan-

tage of these metrics is noted even though the distributionscompared only contain a single cluster.
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Figure 4.11: Distance metric comparison for the histogram comparisons described in Experiment 1.

Sequence 2: Overlapping cluster bias for increasing total cluster distance The metrics are commonly

used to compare multi-modal histograms. The bias towards overlapping clusters demonstrated in se-

quence 1 motivates an exploration of what happens in the multi-modal case. Since the metrics sum-

marize the alignment of multiple clusters using a single number, the effect of relative improvements in

individual clusters is explored.

Hypothesis: When comparing multi-modal histograms, changes in highly overlapping clusters dominate

changes in clusters with lower overlap.

Sequence: Both source and target histograms contain 2 clusters each. All clusters are the same size and

shape. Both the source and target histograms have the parameters,P (1) = 0.5, P (2) = 0.5, σx = 10

andσy = 30. The orientationθ is set to0 for all clusters. The source histogram has cluster centres (0,0)

and (50,0). The sequence of cluster transformations for thetarget histogram is shown in table 4.2. The

sequence of four source and target histogram pairs are shownin 4.16(a),4.16(b), 4.16(c), and 4.16(d).

The sequence is designed so that the total Euclidean distance between the corresponding clusters in-

creases in the sequence0, 10, 15, 20. The 3rd pair in the sequence increases the distance betweenthe

1st component clusters and keeps the second cluster in the same position. The 4th pair in the sequence

decreases the distance between the 1st component clusters and increases the distance between the second

component clusters.
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Figure 4.12: Contour plots of source (blue) and target (red)Gaussian distributions for a target Gaussian

translation of 5 on the x-axis. Target values ofθ illustrated are 0 4.12(a), 20 4.12(b), 45 4.12(c) and 90

4.12(d). The complete sequence repeats these target cluster rotations at different translated positions.
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Figure 4.13: Contour plots of source (blue) and target (red)bimodal distributions. In 4.13(a) the dis-

tributions are identical, 4.13(b) moves the 2nd target cluster by 10 along the x axis. 4.13(c) moves the

1st target cluster by 5 along the x-axis, keeping the second cluster displacement at 10. 4.13(d) aligns

the first cluster components and displaces the second cluster by a distance of 20. The total distance be-

tween corresponding clusters is increasing across the sequence which allows the bias of metrics towards

movement in the overlapping clusters to be investigated.
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Table 4.2: Cluster Positions for the target histogram.
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Figure 4.14: Distance metric comparison for the histogram comparisons described in Experiment 2.

Results Figure 4.14 shows plots of the metrics. Representative transformations from the sequence are

illustrated in Figure 4.13. The second cluster becomes non-overlapping at position 4 in the sequence.

The Diffusion distance and the Kullback Leibler distance decrease from the 3rd to 4th position. All other

metrics increase between these positions. The Bhattacharyya coefficient only increases a small amount,

the total Euclidean and Average Mahalanobis give the same values across the the sequence because there

is no difference in the orientation of the clusters.

Conclusions The Kullback-Leibler and Diffusion distance metrics show heavy bias from the non-

overlapping cluster, the decrease in the value of these metrics contradicts the increase shown by the

other metrics. The bin-bin and cross-bin measures can be used when it is acceptable to heavily penalise

non-overlapping clusters. Manually defined metrics have clear benefits when considering clusters that

do not always overlap because they discriminate between alignment improvements of non-overlapping

clusters.

Sequence 3: Large cluster bias variation under equivalent translation Multi-modal histograms com-

monly contain clusters that are different sizes. Dependingon the application, the smaller clusters in a

histogram may represent very important information. When using a metric to summarize the alignment

of multiple modes it is important to understand how the metric changes with movement of the larger

clusters.

Hypothesis: Transformation of the larger clusters in a multi-modal histogram comparison has the great-
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est effect on the metric.

Sequence: Both source and target histograms contain 2 clusters each. The first cluster in both histograms

has the mixing parameter,P (1) = 0.7. The second cluster in both histograms has a mixing parameter,

P (2) = 0.3. All clusters useσx=10,σy=30. The mean of the 1st cluster in the source histogram is (0,0),

the mean of the second cluster is (0,50). The sequence of cluster means for the target histogram is shown

in table 4.3. Figure 4.16 shows contour plots of the overlayed histograms for the sequence.

Results Figure 4.15 shows plots of the metrics. At position 2 in the sequence the larger cluster is offset

by 5 units, at position 3 the smaller cluster is offset by 5 units. The Kullback-Leibler distance and the

Diffusion distance exhibit a large variation due to the movement of the different sized clusters. The

variation in the Bhattacharyya coefficient is smaller, but present. The manually defined metrics show

invariance to the movement of different sized clusters.

Conclusions When comparing multi-modal histograms movement of the largest clusters dominates the

scores computed by the bin-bin and cross bin metrics. Manually defined metrics alleviate this problem

and are a good choice when manual labeling is possible and it is important to consider the alignment of

a number of metrics irrespective of their individual sizes.

Table 4.3: Cluster Positions for the target histogram.

Component 1 mean Cluster 2 mean

(0,0) (0,50)
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Figure 4.15: Distance metric comparison Experiment 3.
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Figure 4.16: Contour plots of source (blue) and target (red)bimodal distributions. For both histograms

the first cluster has a weight of 0.7 and the second cluster hasa weight of 0.3. 4.16(a) shows the his-

tograms perfectly overlapping. In order to investigate thebias on metrics of the larger overlapping

clusters the large and small clusters are individually translated (in 4.16(b) and 4.16(c)) before moving

both clusters together 4.16(d). 4.16(b) moves the larger cluster, 4.16(c) moves the smaller cluster and

4.16(d) moves both clusters together.

4.3.5 Discussion

The empirical evaluation highlights a number of advantagesof the manually defined metrics over the

more commonly used bin-bin and cross-bin metrics. The manually defined metrics discriminate be-

tween alignments when the corresponding clusters are far apart, they also evaluate the movement of

overlapping clusters and larger clusters more fairly than bin-bin and cross-bin metrics. The average

Mahalanobis distance is the best metric for evaluating histogram alignment in a colour inconsistency

removal application. This is because clusters may not overlap and can be of different sizes, the average

Mahalanobis distance can rank alignments that produce incremental improvements fairly. The average

Mahalanobis distance is chosen over the total Euclidean distance as it considers the orientations of the

corresponding clusters.

4.4 Quantitative evaluation of RGB colour alignment

This section uses the UCLColVariation database and the developed methodology to improve the current

understanding of colour inconsistency removal methods. Colour inconsistency removal transformations

are comprehensively evaluated and FBHA is compared to competing approaches. Additionally, two

assumptions of the FBHA approach are investigated. The firstassumption is that point alignment trans-

forms give better performance than non-point alignment transforms, it is important to investigate this

assumption because a key benefit of FBHA is the ability to use point alignment transforms. However,

the extra work to perform automatic feature detection and matching is only justified if the point alignment

transforms show superior performance. Second, the closesttotal Euclidean distance matching strategy
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used by FBHA is investigated; the mean colours of manually labeled regions are used as ground truth

features to check that matched results are sensible. Finally, the performance of FBHA is evaluated and

its behavior is explored.

4.4.1 Experiment 1: Feature Based Alignment Hypothesis

Aims:

This experiment compares different colour inconsistency removal transforms on the UCLColVariation

data-base. The comprehensive ranking of these transforms provides important information about the

best ways to remove colour inconsistencies. Additionally,the ranked transforms allow point alignment

transformations to be compared to alternatives. If point alignment transforms perform best then this

motivates the FBHA approach.

Hypothesis:

Transformations that align local histogram features give better alignment scores than transforms that use

global properties of the histograms when applied to image pairs in the alignment database.

Method:

This experiment extracts all 1770 image pairs for each object set. For each image pair, one image is the

source image and the other is the target image. A list ofn transforms are used to producen transformed

images for each source image. Each transformed image is compared to the target image using the average

Mahalanobis metric to producen results scores per image pair. Results are grouped by transform and

image variation set for comparison, the distribution of results for each transform are compared to produce

a ranking of the transformations under the experimental conditions of the image variation set.

The list of transforms is presented here. For detailed mathematical descriptions refer back to section

2.5. Parameters are specified along with a short-hand code for subsequent identification. The non feature-

point transforms used are:

1. Identity Transform. Code: Untouched.

2. Additive alignment of the 1st moment in each channel using equations 2.11 and 2.12. Code:

Moment1-ShiftEachChan.

3. Multiplicative alignment of the 1st moment in each colour channel using equation 2.13. Code:

Moment1-MultEachChan.

4. Alignment of 1st and 2nd momentsin each colour channel using linear transforms computed

using equations 2.14, 2.15 and 2.16. Code: Moment1-2-MultiShiftEachChan.

5. Histogram equalizationperforms a standard histogram equalisation in each channel. Code: His-

tEqData, described in section 2.5.2.

6. Histogram matching finds the monotonic transform in each channel that matches the source and

target histograms in each channel. Code HistMatchData, described in section 2.5.2.
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7. SVD based principal axis alignment.The method of Xiao and Ma [53] computes a homogeneous

rotation, scaling and translation that aligns the principal axes and means of a source and target

data-set. Code: SVDSimilarityTrans, described in section2.5.2.

The feature point alignment methods use the mean RGB coloursextracted from the training region

of the marked up polygons associated with each image. These features are considered to be the best

ground truth available because they are obtained from regions of the image manually annotated by a

human, the feature correspondences are also known from the mark up data. Features are manually

provided in this experiment to test the experimental hypothesis. The feature point transforms are:

1. Multiplicative feature point alignment using equation 2.18. Code: AlignPtsGain.

2. Additive feature point alignment using equation 2.17. Code: AlignPtsShift.

3. N by N feature point alignment using equation 2.21. Code: AlignPtsNbyN.

4. Independent linear feature point alignmentusing equation 2.19 withd = 1. Code: NDIndep-

PolyOrder1.

5. Independent quadratic feature point alignmentusing equation 2.19 withd = 2. Code: NDIn-

depPolyOrder2.

6. Independent Cubic feature point alignmentusing equation 2.19 withd = 3. Code: NDIndep-

PolyOrder3.

7. Independent quartic feature point alignmentusing equation 2.19 withd = 4. Code: NDIndep-

PolyOrder4.

8. Correlated linear feature point alignment using equation 2.20 withd = 1. Code: NDCorrPoly-

Order1.

9. Correlated quadratic feature point alignment using equation 2.20 withd = 2. Code: NDCor-

rPolyOrder2.

10. Correlated cubic feature point alignmentusing equation 2.20 withd = 3. Code: NDCorrPoly-

Order3.

11. Correlated quartic feature point alignment using 2.20,d = 4. Code: NDCorrPolyOrder4.

Investigation of the distribution of average Mahalanobis distances for each transform reveals that the re-

sults histograms for a transform are highly skewed and non-Gaussian. Ranking the transforms requires a

meaningful ordering of these results distributions. For Gaussian distributions a paired t-test is commonly

used; however, the non-Gaussian form of these distributions mean that the t-test is inappropriate.

Non-parametric boot-strap statistics are a computationalmethod of performing statistical inference

that are based on random re-sampling with replacement of theoriginal data. The boot-strap procedure

allows confidence intervals to be constructed when a parametric formula is not available to describe
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the data; a key advantage of the approach is that it is simple to implement. Efron [83] provides a de-

tailed coverage of boot-strap methods. In this work the bootstrap procedure compares the distribution

means; to achieve this, results distributions are comparedby computing a confidence interval around the

sampled mean of each distribution. Histogram alignment increases as the Mahalanobis score decreases,

so if the mean of a results distribution for a transformA is significantly lower the mean of the results

distribution for transformB then transformA performs better with a degree of confidence. The pseudo-

code in algorithm 4 outlines the steps to determine whether atransformA or B scores better. Going

through the steps in the pseudo-code,rA is a vector of all scores for transformA andrB is a vector

of all results of transformB. The next loop computes estimates of the distribution mean.The function

RandomSampWithReplacement takes the vector of scores and produces a new sample with the same

number of elements, the new sample is produced by repeatedlysampling a randomly selected value from

the vector until a new sample of the same size is collected. The original vector remains untouched. The

expectation operationE() computes the mean value of the re-sampled set of values at each iteration and

assigns mean values to theith element of the arraysBootStrapMeanA andBootstrapMeanB. After

the loop, the next line computes a vector of differences,d, that contains the difference between the cor-

responding elements ofBootstrapMeanA andBootstrapMeanB. cdf(d) computes the cumulative

histogram of the difference values ind, then the functionConfidenceIntervals extracts the confidence

interval limitslb andub at theC confidence level. If zero falls between these limits then there is no sig-

nificant difference between the distributions. If zero doesnot fall between these limits then the transform

with the lower average score is the best. The overall rankingprocess is described by the pseudo-code in

algorithm 5, the number of times that each transform scores better than all other transforms is counted. A

higher count indicates a superior ranking between transforms, all transforms are ranked and ties between

transformations are allowed. Position 1 is used to indicatethe best transform and thus the highest count.

Results: The total processing time to compute all transformed imagesand results scores for all image

pairs from each of the four object data-sets was approximately 1 month on a Dell Inspiron 1525 laptop

with a 2Ghz dual core processor and 2GB of RAM; a single processor core was used for the compu-

tations. A comprehensive list of transformation rankings grouped by variation set and object group is

shown in Appendix 9.2. Each ranking is displayed using a colour coded format where a different colour

is used for each transform, Figure 4.17 shows the colours used for each transform. Figure 4.18 shows

the coloured coded ranking for transformations from the (C)(L-LI)(L-AL)(S) image variation set using

the red-cyan paper data-set. Each colour coded box containsa number that indicates the ranking of the

transform where 1 is the best and lower positions are worse, the first position is always shown as the

bottom box and the last position is shown as the top box. Note that positions 2,9,10,11 and 12 are occu-

pied by multiple transforms in this example, this means thatno significant performance difference was

detected by the procedure at these respective positions in the ranking. Subsequent positions down the

ranking are interpreted as being significantly worse at confidence levelC according to the comparison

procedure. This section presents ranked transforms for fivedifferent image variation sets. These sets

are chosen as illustrative examples of the main points, the Appendix 9.2 should be consulted as required.



4.4. Quantitative evaluation of RGB colour alignment 96

Algorithm 4 ScoresBetter(A, B) : Test if methodA scores better than methodB

rA ← Average Mahalanobis scores for methodA

rB ← Average Mahalanobis scores for methodB

for it = 0 to NumBootstapIts do

BootstrapMeanA[it] = E(RandomSampWithReplacement(rA))

BootstrapMeanB[it] = E(RandomSampWithReplacement(rB))

end for

d = BootstrapMeanA−BootstrapMeanB

[lb, ub] = ConfidenceIntervals(cdf(d), C)

if lb <= 0 <= ub then

Bootstrap distribution means are not significantly different

else if E(rA) < E(rB) then

Method A results significantly better than method B results with confidenceC

else

Method A results significantly worse than method B results with confidenceC

end if

Algorithm 5 Rank all alignment methods
for T 1 = 1 to NumTransforms do

for T 2 = 1 to NumTransforms do

if T 1! = T 2 then

Results(T 1, T 2) = ScoresBetter(AllScores(T 1), AllScores(T 2))

end if

end for

end for

GroupResults by transform type and sort from lowest(best) to highest(worst).

Count the number of transforms outperformed for each transform to give the final ranking. Ties are

allowed.
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Figure 4.17: Colour coding scheme to represent the different alignment transforms.

The highlighted results are:

1. All image pairs (all variations) in Figure 4.19,

2. (C)(L-LI)(L-AL)(S) in Figure 4.20,

3. 0(L-LI)(L-AL)0 in Figure 4.21 ,

4. 0(L-LI)(L-AL)(S) in Figure 4.22,

5. 00(L-AL)0 in Figure 4.23.

A further break down of the structure of the transform ranking variation on an image by image basis for

the Red-Cyan data-set is shown in Figure 4.24(a). Figures 4.24(a) to 4.24(f) show the transformations

that ranked in the 1st to 6th positions respectively for all 1770 image pairs. A coloured square is used to

represent the transform and show how transform performancevaries on an image by image basis.

Conclusions: Two key findings from this experiment are: 1) Transformationperformance varies sig-

nificantly across capture conditions and data-sets, 2) Feature point transforms robustly align colour his-

tograms with the highest degree of alignment. Elaborating on these findings:

1. Transformation performance variation The transformation rankings computed using the boot-

strap statistic procedure show that feature point transforms perform well. Also, a transformation

that performs well under one set of experimental condition can perform badly under another. For

example, the NDCorrPolyOrder1 transform performs well on the skittles data-set under 0(L-LI)(L-

AL)0, 0(L-LI)(L-AL)(S) and 00(L-AL)0 variations shown in Figures 4.21(b), 4.22(b) and 4.23(b)
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Figure 4.18: Ranked transformation methods with (C)(L-LI)(L-AL)(S) variation : 1) Red-cyan paper

respectively. However, Figure 4.20(b) shows the same transform performing very badly under

(C)(L-LI)(L-AL)(S) variation. This performance variation tells us that the best transformations

must be chosen on a per data-set and experimental variation basis to give the most significant

levels of performance improvement. Transformation rankings differ across data-sets and exper-

imental conditions, a change in scene objects leads to the biggest variation in the performance

of the transformations. Observe that selecting an independent linear point alignment transform

(NDIndepPolyOrder1) gives robust performance improvements across the data-sets and experi-

mental conditions.

Recall that the boot-strap ranking procedure is necessary because of the high variability of the

results for each transform, the ranking shows that there is aperformance hierarchy among the

transforms. However, transform performance can vary significantly on an image by image basis.

Figure 4.24(a) provides an intuition for how variable the results are, it shows that no single method

performs best across the different image pairs. By contrast, note the existence of structure in

the first and second positions in Figures 4.24(a) and 4.24(b), disorder increases from the first to

sixth position in 4.24(f) where no transform ranks consistently in sixth position. This tells us

that the best histogram alignment transform varies betweenimage pairs, even when the images

are of similar objects. This is an important result for computer vision designers seeking colour

inconsistency removal transforms. It means that it is possible to select a transform that performs
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reasonably well over a range of conditions, but the best transform for an image pair must be found

on a case by case basis. Also, the experiment has shown that outlier results are typical across

the different transforms; a transform that performs well onone image pair can perform badly on

another with seemly innocuous differences in experimentalcapture condition.

2. Feature point transforms The results demonstrate that a point feature based alignment trans-

form always performs better than the next best non-point feature based method. However, not

all point feature transforms outperform non-point featurebased methods; in particular, third and

fourth order polynomial transforms are susceptible to performing badly due to over-fitting the

data. This supports the idea that a well chosen feature pointalignment transform can robustly

align histograms; the original hypothesis that all point-feature transforms perform better than non-

point feature methods cannot be supported as we find some thatperform badly. The correlated

polynomials give some of the best alignment scores but are susceptible to failing poorly under

some conditions such as the skittles data-set in 4.19(b). The linear correlated polynomial is robust

across different conditions where the camera is held constant - this hints that correlated transforms

could be of greater use when calibrating between colour dataobtained from the same camera (this

argument could extend to cameras of the same make and model).

Other observations are:

• The SVD alignment method of Xiao and Ma [53] (Code:SVDSimilarityTrans) performs badly

across all examples. This shows that aligning the two multi-modal colour distributions using

rotation, scaling and translation based on the principal axes of the distributions is not a good idea

if alignment of the individual modes is the desired goal. Theresults presented in the original

paper offer no quantitative validation and it is thought that this method may be of value aligning

uni-modal or near uni-modal distributions.

• Histogram equalization (Code:HistEqData) and matching (Code:HistMatchData) perform uni-

formly badly. In particular, histogram equalization has noknowledge about the target distribution.

Both methods give poor alignment of the distribution modes and need not be considered further.
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Figure 4.19: Ranked transformation methods for all 1770 image pairs from : 1) Red-cyan paper 4.19(a),

2) Skittles 4.19(b), Teddy bears 4.19(c) and three paper strips 4.19(d).
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Figure 4.20: Ranked transformation methods with (C)(L-LI)(L-AL)(S) variation : 1) Red-cyan paper

4.20(a), 2) Skittles 4.20(b), Teddy bears 4.20(c) and threepaper strips 4.20(d).



4.4. Quantitative evaluation of RGB colour alignment 102

AlignPtsNByN1

NDCorrPolyOrder11

NDIndepPolyOrder12

NDIndepPolyOrder23

NDCorrPolyOrder24

NDIndepPolyOrder35

NDCorrPolyOrder35

NDCorrPolyOrder46

Moment1−2−MultiShiftEachChan7

AlignPtsShift8

Moment1−ShiftEachChan9

AlignPtsGain9

Untouched10

Moment1−MultEachChan10

HistMatchData11

NDIndepPolyOrder411

SVDSimilarityTrans12

HistEqData13

(a)

NDCorrPolyOrder11

NDCorrPolyOrder22

NDIndepPolyOrder23

NDIndepPolyOrder14

AlignPtsShift5

Untouched6

AlignPtsGain6

AlignPtsNByN7

HistMatchData8

Moment1−MultEachChan9

Moment1−ShiftEachChan10

Moment1−2−MultiShiftEachChan10

NDCorrPolyOrder311

HistEqData12

SVDSimilarityTrans13

NDCorrPolyOrder413

NDIndepPolyOrder414

NDIndepPolyOrder315

(b)

NDCorrPolyOrder11

NDCorrPolyOrder22

NDCorrPolyOrder32

NDCorrPolyOrder43

Moment1−MultEachChan4

AlignPtsGain4

NDIndepPolyOrder15

HistMatchData6

AlignPtsShift6

Moment1−2−MultiShiftEachChan7

Untouched8

Moment1−ShiftEachChan8

AlignPtsNByN8

HistEqData9

NDIndepPolyOrder210

SVDSimilarityTrans11

NDIndepPolyOrder412

NDIndepPolyOrder313

(c)

AlignPtsNByN1

NDCorrPolyOrder11

NDCorrPolyOrder22

NDCorrPolyOrder33

NDCorrPolyOrder43

NDIndepPolyOrder14

Moment1−2−MultiShiftEachChan5

AlignPtsShift6

Moment1−ShiftEachChan7

AlignPtsGain7

Moment1−MultEachChan8

Untouched9

HistMatchData9

HistEqData10

SVDSimilarityTrans11

NDIndepPolyOrder212

NDIndepPolyOrder312

NDIndepPolyOrder412

(d)

Figure 4.21: Ranked transformation methods for image pairswith 0(L-LI)(L-AL)0 variation for: 1)

Red-cyan paper 4.21(a), 2) Skittles 4.21(b), Teddy bears 4.21(c) and three paper strips 4.21(d).
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Figure 4.22: Ranked transformation methods for image pairswith 0(L-LI)(L-AL)(S) variation for: 1)

Red-cyan paper 4.22(a), 2) Skittles 4.22(b), Teddy bears 4.22(c) and three paper strips 4.22(d).
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Figure 4.23: Ranked transformation methods for image pairswith 00(L-AL)0 variation for: 1) Red-cyan

paper 4.23(a), 2) Skittles 4.23(b), Teddy bears 4.23(c) andthree paper strips 4.23(d).
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The ranked transformations for each image pair in the set arerepresented using az×z colour coded

matrix. For thenth ranked position, the matrix tells us which transforms ranked at thenth position for

the different source and target alignments. Rows index the source images and columns index the target

images. The upper triangular part of the matrix is populatedaccording to the colour scheme described

in figure 4.17. Black entries in the matrix indicate that no transformation and evaluation was performed

for the indexed source and target image combination. Performing the transformations indicated by the

non-diagonal black entries would reveal whether the structure of the results is symmetric, it is suspected

that such an investigation would reveal a non-symmetric structure.

4.4.2 Experiment 2: Closest Euclidean Feature Match Hypothesis

Aims: This experiment tests whether the minimum total Euclidean distance matches features correctly.

This is tested because FBHA uses this during the matching step. The features used in the evaluation are

the mean RGB colours of the hand marked up regions for each image(the ground truth features).

Hypothesis:The correct match between ground truth features can be foundby choosing the match with

the minimum total Euclidean distance between points.

Method The CEM feature matching method described in section 3.1.2 is tested. For each of the 1770

image pairs in all four object sets the mean RGB colours of themasked regions for both images are

computed. The first image in the pair hasa mean RGB colours,W, and the second image hasb mean

RGB colours,Q. The masks always contain the same number of marked up regions, so,a = b for

each image pair. All possible matches are enumerated and thetotal Euclidean distance between matched

points is computed for each match. The match with the minimumtotal Euclidean distance is compared

to the correct match known from the mask mark-up.

ResultsAll 1770 matches for all four object data-sets matched correctly.

ConclusionsThe correct match is picked correctly in all cases by the minimum total Euclidean dis-

tance. The strength of this constraint is surprising, especially given the different types of variation in

the database. The success of this test indicates that if the histogram features can be found robustly and

accurately then the minimum total Euclidean distance between features is a good constraint to match

with.

4.4.3 Experiment 3: FBHA comparison

Aims This experiment compares FBHA to alternative transforms. Experiment 1 demonstrates that fea-

ture point alignment transforms perform well when using features computed from labeled masks. First,

FBHA is compared to the entire list of candidate transforms used in Experiment 1, this contrasts the

impact of manually defined features with features that are automatically detected and matched. Second,

FBHA is compared to transforms that can be used without manual intervention or other forms of image

based feature processing. This shows how FBHA compares to its direct competitors.

HypothesisAutomatic FBHA methods perform better than manually specified alternatives.

Method Three FBHA configurations are run on three different image variation sets for all four object

data-sets. The bootstrap transformation comparison procedure is run to compare all transforms listed in

Experiment 1 with the three FBHA configurations.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.24: Colour coded matrices indicating the transformations that ranked 1st 4.24(a), 2nd 4.24(b),

3rd 4.24(c), 4th 4.24(d), 5th 4.24(d) and 6th 4.24(f). Thereare 60 images in this set, a coloured entry in

theith row andjth column indicates the transform that mapped theith image to thejth image in the set

and gave an average mahalanobis score that ranked at the position represented by the matrix. The colour

coding scheme is shown in Figure 4.17.
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The three FBHA configurations were used in section 3.2, the short-hand codes for these are:

1. (Code: [1D-Maxima]-[1DSS-[1]]-CEM). 1D deep structure feature detection in each of the red,

green and blue source and target histograms. Feature detection parameters areγ = 0.005, T = 9

and a path is followed in the scale space if connected by 1 bin.CEM feature matching is performed

and a linear feature point transform aligns the source and target points in each channel.

2. (Code: [1D-Maxima]-[1DSS-[1]]-CEMDC). This configuration is thesame as ([1D-Maxima]-

[1DSS-[1]]-CEM) except CEMDC feature matching is used. This matching strategy eliminates

matches that do not preserve rank ordering.

3. (Code: [RG2D-B1DMaxima]-CEM2D-CEMDC). The deep structure feature detection on the RG

histogram usesγ = 0.0002 andT = 11. The connectivity rule for the path following step connects

a local maxima to a current path if the local maxima is in the nine neighbouring bins at the end of

the path. The 1D FBHA in the blue channel usesγ = 0.005 andT = 9. CEM matching is used

in the RG channels andCEMDC matching is used in the blue channel. Detected and matched

features are used to compute a linear feature point transform that aligns source and target points in

each channel.

The image variation sets used are 0(L-LI)(L-AL)0 , 0(L-LI)(L-AL)(S), (C)(L-LI)(L-AL)(S). The

variation set 0(L-LI)(L-AL)0 is chosen to examine the effects of lighting variation and 0(L-LI)(L-AL)(S)

is chosen to see whether object scale effects the results under the same colour inconsistency conditions.

(C)(L-LI)(L-AL)(S) is used to compare the transforms when all experimental conditions are varying.

The second part of the experiment compares FBHA against methods that do not use the labeled data

from the image mask, these methods are focussed upon becausethey compete directly with FBHA. The

methods from Experiment 1 that require no manual intervention are:

1. Multiplicative alignment of the 1st moment. Code: Moment1-MultEachChan.

2. Additive alignment of the 1st moment. Code: Moment1-ShiftEachChan.

3. Alignment of 1st and 2nd moments. Code: Moment1-2-MultiShiftEachChan.

4. Histogram equalization. Code: HistEqData.

5. Histogram matching. Code: HistMatch.

6. SVD based principal axis alignment. Code: SVDSimilarityTrans.

The bootstrap procedure is used to compare this list of transforms with the FBHA methods, the number

of times that a transform performs best is counted. This is done because initial tests showed that FBHA

does not perform well when using the full ranking procedure.Instead a simple count is used to show the

number of times that a FBHA method performs best. The cases when FBHA performs worse than all

other methods in the list are classified as failure cases, these cases are inspected manually and catego-

rized. The failure case categorization is valuable as it highlights assumptions of the FBHA method that
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are not applicable to the data.

Results

Figures 4.30, 4.31 and 4.32 show the ranked results for the 0(L-LI)(L-AL)0, 0(L-LI)(L-AL)(S) and

(C)(L-LI)(L-AL)(S) variation sets respectively. The rankings do not show a consistent performance

advantage of FBHA over the other automatic methods and so theinitial hypothesis is rejected. The per-

formance of FBHA is found to be highly variable across the different image variation sets and object

sets. For example, 1D FBHA outperforms a multiplicative alignment of the means for the skittles data-

set under 0(L-LI)(L-AL)0 and 0(L-LI)(L-AL)(S) variation sets shown in Figures 4.30(b) and 4.31(b)

respectively; however, 1D performs poorly under (C)(L-LI)(L-AL)(S) variation show in figure 4.32(b).

Other observations are:

1. The performance of the FBHA approach is not comparable to feature point alignment that use

features computed from the manually labeled masks.

2. 1D FBHA methods perform better than the hybrid ([RG2D-B1DMaxima]-CEM2D-CEMDC)

method.

3. FBHA transforms perform better than some transforms thatdo not require manual intervention,

but the ordering of the rankings varies considerably between different conditions and data-sets.

Figures 4.33 and 4.34 show bar charts of the number of times that an automatic transform performs

best for the 0(L-LI)(L-AL)0 variation set for all object data sets. The count is normalised between the

0-1 range. Figures 4.35 and 4.36 show the counts for the 0(L-LI)(L-AL)(S) variation set for all ob-

jects. Figures 4.37 and 4.38 show the (C)(L-LI)(L-AL)(S) variation set results. Transform performance

varies between variation set conditions and different object sets, the transforms that perform best most

frequently are Moment1-2-MultShiftEachChan and Moment1-MultEachChan. Interestingly, the identity

transform (Untouched) performs best for the (0)(L-LI)(L-AL)0 and (C)(L-LI)(L-AL)(S) variation sets

with the red, green and blue paper strips data set; this meansthat the histograms of the images in this

variation set are in better initial alignment than the histograms transformed by either the FBHA method

or moment based transforms. The FBHA method [1D-Maxima]-[1DSS-[1]]-CEM performs best under

0(L-LI)(L-AL)(S) variation for the red-cyan data set. Although a single FBHA does not perform better

than the alternatives in a consistent way, the different FBHA methods perform better than the alternatives

approximately 30 percent of the time on average and between arange of approximately 10 to 55 percent.

The list of FBHA failure cases compiled by hand illustrates when FBHA fails and why this is so,

they also illustrate when the structure of the histograms ismismatched according to the FBHA assump-

tions. These failure cases are an important contribution asthey identify specific problems that must

be solved by future work to improve the FBHA framework. The failure case categories are identified

from image pairs with poor alignment scores when using the FBHA methods, the cases are categorized

according to:

1. Correctness of the feature detection step.
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2. Correctness of matching step.

3. Match between structural features of the histograms.

The cases highlighted using 1D FBHA with CEM matching, theseare:

1. False negative feature detection and incorrect matching.Figure 4.25 shows an example of a

false negative feature detection that typically results when the deep structure path threshold,T, is

set too high. Recall that a single set of threshold values areused across all experimental conditions

and data-sets. Although picking a single threshold has proven reasonably robust, feature detection

failures can occur. Figure 4.26(a) highlights the positionof the missing feature and figure 4.26(b)

shows the resulting matched features. The result is that a significant peak in the target histogram

plays no part in the alignment.

2. False positive feature detection and incorrect matching.An irrelevant feature can be detected

at erroneous feature points, this can happen at regions thatcontain spikes in the histograms. Fig-

ure 4.26(b) shows an example of the false positive feature infigure 4.26(a) that leads to a false

match in figure 4.26(b). Another example of the potentially catastrophic effects on the matching

of misplaced features is shown in figure 4.27, figure 4.29(a) shows the detected features and high-

lights two features that have been detected at almost the same position. Figure 4.27(b) shows the

resulting matches from these features, they do not preserveranking ordering and result in poor

alignment. The CEM-DC drops these matches but then can not align these parts of the histogram

as a result. False positive features can be mitigated by increasing the deep structure threshold,

a balance exists between removing these features and maintaining robust detection of the true

features.

3. Correct feature detection, incorrect matching, structural mismatch between 1 pair of corre-

sponding clustersFigure 4.28 shows how a mismatch in the structure of corresponding clusters

can confound FBHA. The centre cluster in the source histogram has two peaks and the centre

cluster of the target histogram has one. The CEM matching scheme associates each peak in the

centre cluster of the source histogram to two different clusters in the target histogram.

4. Correct feature detection, incorrect matching, structural mismatch between multiple pairs

of corresponding clusters.Figure 4.29 shows how mismatches in the structure of multiple corre-

sponding clusters can confound FBHA. The source and target histograms show a matching cluster

on the left side of the plot, the source histogram cluster hastwo peaks and the corresponding target

histogram cluster has one. The centre target cluster has twopeaks and its corresponding cluster in

the source histogram has one. The corresponding clusters atthe right hand side of the source and

target plots also have a different number of peaks. The effect of these structural mismatches in the

histograms is that matched features lead to mismatches between the clusters as shown in figure

4.27(b).
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Figure 4.25: Example of false negative feature detection and incorrect matching. 4.26(a) shows source

(blue plot) and target histograms (red plot) in the blue channel for the teddy bears data set. The location

of the missing feature in the target histogram is highlighted by the black box. 4.26(b) shows the final

matches produced by CEM.
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Figure 4.26: Example of false positive feature detection and incorrect matching. The left most match is

deemed to be incorrect. 4.26(a) shows the detected featuresand 4.26(b) shows the matches.
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Figure 4.27: Example of false positive feature detection resulting in catastrophic matching failure.

4.27(a) shows the detected features and 4.27(b) shows the matches.
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Figure 4.28: Example of correct feature detection, incorrect matching and a structural mismatch in 1

cluster. Source and target histograms from the green channels of images of the red,green and blue

paper strips are shown in 4.28(a), the red plot is the target histogram and the blue plot is the source

histogram. Detected features are shown as crosses. 4.28(b)shows an exploded view of the source and

target histograms and the final correspondences generated by the CEM matching step.
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Figure 4.29: Example of correct feature detection, incorrect matching and a structural mismatch in 2

clusters. Source and target histograms from the green channels of images of the red,green and blue

paper strips are shown in 4.28(a), the red plot is the target histogram and the blue plot is the source

histogram. Detected features are shown as crosses. 4.28(b)shows an exploded view of the source and

target histograms and the final correspondences generated by the CEM matching step.
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ConclusionsThe initial hypothesis that FBHA performs better than comparable alternatives is rejected

because FBHA does not perform robustly across the range of colour inconsistency conditions and data-

sets tested. This means that FBHA cannot be substituted for simpler but more robust transforms such

as moment alignment transforms under the conditions tested. However, closer inspection of the results

shows that FBHA methods give the best performance in 30 percent of cases on average and up to 50

percent of cases under some conditions. The overall rankingof FBHA is low when the failure examples

are considered because catastrophic alignment failure frequently results when one of the FBHA failure

cases occurs.

The investigation into why FBHA can fail has led to importantan important discovery about colour

inconsistent data. This is that for colour inconsistent images of simple object sets, the clusters that

correspond to each scene colour can vary in unpredictable ways. In particular, it is not sufficient to

assume that a single peaked cluster will appear in the colourhistogram for each material type present

in the imaged scene. A single peaked colour cluster in a histogram from one set of conditions can

map to a cluster with multiple peaks across apparently simple changes in colour inconsistency. The

most significant conclusion of this is that a peak matching strategy is not sufficient to ensure correct

associations between corresponding clusters. It has been possible to discover this because the feature

detection step robustly detects features across a wide range of conditions given the same parameters.

Although false positive and false negative feature detections occur in this experiment, the structural

mismatches between clusters and the inability of FBHA to resolve these are the dominant effect that

negatively effects the robustness of FBHA in the experiment.

In summary, FBHA can robustly detect and match histogram peaks using the same set of parameters

across a wide range of colour inconsistent data. For cases where the corresponding histogram clusters

have a single significant peak, the FBHA approach produces good results and provides a distinct advan-

tage over other methods. However, structural mismatches inthe corresponding clusters occur frequently

in colour inconsistent data so more robust performance willonly be achievable if extra steps are taken

to reason about what constitutes a single cluster. Suggestions for future work that may lead to improved

FBHA robustness are discussed in Chapter 6.

4.5 Conclusions

This chapter makes four key contributions:

1. A freely available data-base for evaluating colour inconsistency correction methods is in-

troduced by the author. The data-base is unique because it contains examples of colour incon-

sistency for simple scenes containing a low number of easilyidentified material properties; this

data-base structure allows the colour histograms to be studied with reasonable expectations about

the number of clusters present. The data-base introduces different physical sources of colour in-

consistency so that different physical situations can be studied. Because the data-base contains

ground truth labels for each image, it could be useful for evaluating the performance of clustering

algorithms.
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Figure 4.30: Rankings of FBHA and the competing methods evaluated in experiment 1 in section 4.4.1.

Shows 0(L-LI)(L-AL)0 variation for: 1) Red-cyan paper 4.30(a), 2) Skittles 4.30(b), 3) Teddy bears

4.30(c) and 4) three paper strips 4.30(d).

2. Existing histogram metrics are critiqued and a new metric for labeled data is introduced.

Quantitatively ranking the alignment performance of different algorithms requires a metric to score

results. Different classes of metrics have been evaluated and the pros and cons of each metric have

been explored. A new histogram comparison metric for labeled data is introduced, the average

Mahalanobis distance. This metric discriminates between alignment improvements of overlapping

and non-overlapping clusters in multi-modal histograms.

3. Colour inconsistency removal transforms are quantitatively ranked. This work compares a

large number of transforms that have been used in different colour inconsistency removal appli-

cations. The evaluation performed is independent of a particular application and so it informs

the behavior of these transforms in a wide range of situations. Point alignment transforms of la-

beled ground truth data are shown to align histograms betterthan non-point alignment transforms,

this validates the need for automated methods that can applypoint alignment transforms to align

histograms. One surprising finding that emerged from the results is the variability of transform
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Figure 4.31: Rankings of FBHA and the competing methods evaluated in experiment 1 in section

4.4.1.Shows 0(L-LI)(L-AL)(S) variation for: 1) Red-cyan paper 4.31(a), 2) Skittles 4.31(b), 3) Teddy

bears 4.31(c) and 4) three paper strips 4.31(d).

performance; this means that the best transformation to remove colour inconsistencies varies on a

case by case basis even for similar colour inconsistent data-sets. Nevertheless, the bootstrap con-

fidence tests show that a dominant ordering of the transformsemerges for the majority of cases.

4. FBHA is quantitatively compared substitutable alternativesFBHA is evaluated on the data-

base. The experiments tell us that FBHA performs well when aligning histograms that contain

corresponding clusters that have 1 significant peak; in thiscase FBHA uses linear point alignment

transforms to align histograms so performance is comparable to point alignment transforms that

use features from manually marked up regions.

This work has identified that colour inconsistencies can cause unpredictable variations in the local

peak structure of clusters, in particular a change in the structure of a cluster across different condi-

tions confounds the FBHA algorithm presented. This knowledge informs future work, and shows

that it is not sufficient to align point based features to remove colour inconsistency. It is thought

that future work should attempt to map detected features to clusters before matching the clusters
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Figure 4.32: Rankings of FBHA and the competing methods evaluated in experiment 1 in section 4.4.1.

Shows (C)(L-LI)(L-AL)(S) variation for: 1) Red-cyan paper4.32(a), 2) Skittles 4.32(b), 3) Teddy bears

4.32(c) and 4) three paper strips 4.32(d).

between histograms, it is likely that topological reasoning about the histograms is necessary if

further progress is to be made. Chapter 6 discusses some ideas for possible future exploration.
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Figure 4.33: Normalised counts showing the number of times each transformation method performs best

against the others with 0(L-LI)(L-AL)0 variation for: 1) Red-cyan paper 4.33(a) and 2) Skittles 4.33(b).
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Figure 4.34: Normalised counts showing the number of times each transformation method performs best

against the others with 0(L-LI)(L-AL)0 variation for: 1) Teddy bears 4.34(a) and 2) three paper strips

4.34(b).
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Figure 4.35: Normalised counts showing the number of times each transformation method performs

best against the others with 0(L-LI)(L-AL)(S) variation for: 1) Red-cyan paper 4.35(a) and 2) Skittles

4.35(b).
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Figure 4.36: Normalised counts showing the number of times each transformation method performs best

against the others with 0(L-LI)(L-AL)(S) variation for: 1)Teddy bears 4.36(a) and 2) three paper strips

4.36(b).
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Figure 4.37: Normalised counts showing the number of times each transformation method performs

best against the others with (C)(L-LI)(L-AL)(S) variationfor: 1) Red-cyan paper 4.37(a) and 2) Skittles

4.37(b).
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Figure 4.38: Normalised counts showing the number of times each transformation method performs best

against the others with (C)(L-LI)(L-AL)(S) variation for:1) Teddy bears 4.38(a) and 2) three paper strips

4.38(b).
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Chapter 5

Application of feature based histogram

alignment to Buhler Sortex machines

The previous chapter examined approaches to aligning pairsof colour histograms, this chapter investi-

gates approaches to aligning sets of grey-level histogramsobtained from video streams of food produce

passing through a Buhler Sortex machine. The Z1 machine is introduced and the existence of colour in-

consistency experienced by the machine is described as a histogram alignment problem. Two classes of

approach to solving the histogram alignment are introducedand contrasted. The first approach involves

segmenting the histograms and then applying piecewise transforms to the portions of the histogram. The

second approach involves transforming the global properties of the histogram. The feature based his-

togram alignment method is introduced as a non-segmentation based method and is applied to Buhler

Sortex data. All histogram alignment methods are quantitatively compared and the relative merits of

these two approaches are discussed.

5.1 The Buhler Sortex Z-series

This section describes the operation of the Buhler Sortex Z-series machine, the grey-level histogram

alignment problem and the current method for aligning the histograms. Aligning the histograms corrects

unwanted appearance variation in the products observed by the machine. The Buhler Sortex machine

constrains the imaging environment to label image data as background or product and defect. Once the

background has been discarded the appearance of the productand defect is aligned across the camera

view. Correcting the appearance in this way allows a single threshold to be set that separates the accept-

able produce from the defect. The Z series machines are monochromatic optical sorting machines that

come in different sizes. Figure 5.1 shows the single chute machine and figure 5.2 shows the Z+ three

chute version. All machines operate by filling up the input hoppers with food produce to be inspected,

a vibrator system then feeds the food product so that it fallsdown the chute in a uniform manner. The

product falls past front and rear line scan cameras and a corresponding array of air ejectors. A computer

vision system identifies defective product and fires the appropriate air ejector in order to channel the

defective product to a reject receptacle. Figure 5.3 shows aschematic slice view diagram for a single

chute in a Z-series sorting machine to illustrate the key operational points.
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Figure 5.1: The single chute monochromatic Buhler Sortex Z1sorting machine. Picturec©copyright

Buhler Sortex Ltd, 2008. Reprinted with permission.

5.1.1 Histogram alignment problem

Each camera used in the Buhler Sortex Z-Series is a monochromatic line scan camera that produces a

one dimensional 1024 pixel wide image; the 1024 intensity values are then processed by calibration and

sorting algorithms. Figure 5.4 shows a grey-scale image that represents 1024 continuous captures of rice

falling past the 1D 1024 pixel CCD array. All such images in this section are portions of a video stream

where the capture rate has been set to sample the object as accurately as possible as it falls past the CCD

array aperture. Figure 5.5 shows a zoomed portion of the image in 5.4 that illustrates the recorded grey

levels when imaging a few rice grains over a short period of time.

The appearance of the product varies with spatial position across the view; evidence of this variation

can be observed by capturing approximately 20 seconds worthof data from a single camera and com-

puting a histogram of grey level intensities for each pixel.Figure 5.6 shows the histogramsh1..h1024 of

the intensities observed in the pixelsp1..p1024, the histograms show clear variation in intensity. Finding

the correction transformations that align the histograms across the view allows the appearance of the

product to be corrected across the view, this is called thehistogram alignment problem. There is a

scale variation in the relative amounts of product and background observed by pixels near the centre of

the chute and pixels near the edges. Figure 5.9 shows a plot ofthe histograms from pixel 500 in green

and from pixel 10 in blue. Notice the difference in size of thecorresponding peaks, in addition to the

displacement between the two histograms.
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Figure 5.2: The three chute monochromatic Buhler Sortex Z+ sorting machine. Picturec©copyright

Buhler Sortex Ltd, 2008. Reprinted with permission.

For any given pixel, there is a significant difference between the amount of product, background and

defect captured; this large difference means that the defect portions of the histogram are not visible in

figure 5.6. Figure 5.7 highlights the defect portions of the histograms in red and plots the log histograms

to show the variation among the different classes. Figure 5.8 provides a further sense of the variation

across the within view histograms by plotting the log histograms as a three dimensional height field.

These plots illustrate that the variation in intensity is reasonably small between pixels that are close

together and more significant when comparing pixels a largerdistance apart.

5.1.2 Current Approach and Commercial Confidence

The Buhler Sortex machine corrects appearance variation across the view. When produce falls down the

chute it is inspected by a front and rear camera. The aim is to reject produce that has visible defects when

inspected from either the front or rear. Separate thresholds are applied in each pixel in the front and rear

of the chute, independent spatial processing in the front and rear is used to identify defect regions above

a specified size and fire the air ejectors. Figure 5.10 summarizes these ideas.

The acceptable product is a significant feature of the histogram in each pixel, the defect product oc-

curs much less frequently and can be difficult to discern fromthe histogram. Because of the significant

scale difference between acceptable and defect product, the accept product is treated as the dominant fea-

ture of the histograms. Transforms are found that align the acceptable product portions of the histogram

in each pixel, the resultant transforms are then used to map asingle threshold value to an appropriate po-
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Figure 5.3: Side view slice of Z series machine chute. Camerasystems inspect both the front and rear

of the rice stream falling down the chute. The information from the front and rear views is use to reject

food produce from the stream using air ejectors. Picturec©copyright Buhler Sortex Ltd, 2008. Reprinted

with permission.

sition in each pixel. If different within-view alignment transforms are compared, a transform that gives

lower acceptable product appearance variability across the view gives mapped thresholds that depend

less on the product appearance variation.

Commercial confidence issues forbid direct disclosure and identification of the exact calibration

methods used by the Buhler Sortex machines. The work in this chapter is based on a detailed inves-

tigation of existing product specifications, conversations with Buhler Sortex engineers and interactive

investigation of machine behavior. Candidate methods for performing within-view calibration are intro-

duced and quantitatively evaluated.

5.1.3 Motivation for improved calibration routines

It is believed that improved calibration procedures will lead to improved sorting performance. Buhler

Sortex state, “There is a noticeable variation in performance across the width of the chute. The potential

benefit from improving the calibration across the view has not yet been quantified. An improvement in
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Figure 5.4: A 1024 by 1024 captured image of rice with approximately 3 percent defect. Theith column

in the image represents 1024 sequential grey-level captures from the pixel in the CCD array at theith

column position. Picturec©copyright Buhler Sortex Ltd, 2008.

sorting performance of 0.5% or 1% would yield both economic and environmental benefits for world

production of stable crops such as rice and wheat.” [84]

5.2 Product colour inconsistency reduction

This section introduces methods for colour inconsistency reduction of the product within a single camera

view of the Z1 machine. When inspecting rice falling down thechute the camera sees three object classes,

these are:

1. A white plate in the background,

2. the acceptable rice,

3. the defective rice and other contaminants.

During a calibration cycle the feed is stopped and the intensity of the white background plate is recorded.

The angle of the plate is adjusted so that it is brighter than the intensity of the acceptable product. Rice

defects are assumed to be darker than the acceptable rice. After calibration the three object classes are
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Figure 5.5: A portion of the capture stream that clearly shows the individual grey-levels that are recorded

over a small spatial region and short time frame. Rows in the image are grey level values captured over

time, columns indicate spatial position across the chute. Picture c©copyright Buhler Sortex Ltd, 2008.

ordered from dark to light on the intensity scale as : 1) defects+contaminants, 2) acceptable rice and 3)

the white plate. When the feed is turned on, the histogramhi in theith pixel of observed intensities is an

additive combination of the histograms of the backgroundbi, acceptable productpi and defectdi; so,

hi = bi + pi + di. (5.1)

With the feed turned off,hi = bi. Two contrasting approaches to removing colour inconsistencies across

the camera view are introduced in the next two sections. First, methods that align global properties of

the histograms are introduced in section 5.2.1; these are termednon-segmentation alignment methods.

Second, methods that align local properties of the acceptable productpi and defect portions of the

histogramdi are introduced in section 5.2.2; these are termedsegmentation based alignment methods.

The next two sections 5.2.1 and 5.2.2 develop two approachesto histogram alignment within the view,

the introduced methods have a number of potential sub-components. These options are introduced, along

with short hand codes to refer to them.

5.2.1 Non-segmentation alignment methods

This section introduces two non-segmentation alignment methods. Methods for applying FBHA across

the view are introduced along with methods to correct the global moments of the histograms. These
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Figure 5.6: Histograms of product, defect and background for the 1024 pixels across the view obtained

by computing histograms for the grey level values observed in each pixel. The vertical axis indexes the

256 different grey levels and the horizontal axis indexes pixel position. The frequency count is displayed

as a grey-value, where high frequencies are rendered close to white and lower frequencies are rendered

closer to black.
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Figure 5.7: Log of the histograms in figure 5.6 with the defectportions of the histograms highlighted in

red. This shows the distribution of the defect across the view despite the large scale variation between

product, defect and background.

methods do not use a separate background intensity estimate.

FBHA within a view

Chapter 4 applied FBHA to align paired histograms. In the Buhler Sortex histogram alignment problem

there is a histogram for each of the 1024 pixels in the camera view. This section describes a procedure to

align histograms from a camera view, the main steps are 1) feature detection for each histogramhi , 2)

association of all corresponding features and 3) aligning the features. The procedureWithinViewFBHA

in algorithm 6 describes these steps as pseudo-code.WithinViewFBHA accepts a255 × 1024 matrix

H where theith column contains theith histogram,hi, from the within view data. Alternatives for the

feature detection, feature association and alignment steps are described here in more detail.
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Figure 5.8: Three dimensional coloured height plot of the log histograms across the view displaying grey

levels 100 to 200.

Algorithm 6 WithinViewFBHA(H)
// Detect and store the features in each pixel

for i = 1 to NumPixelsInV iew do

F (i).F eatures = FindPersistentMaxima(hi)

end for

Matches = MatchFeaturesWithinView(F , MatchStrategy )

Compute alignment transform for each pixel that performs a feature based alignment to either a) centre

pixel features (pixel 512) or b) the average matched featurevalues.

Feature detection

There are two dominant peaks in the within-view histogram: background and acceptable product. The

amount of defect in a typical histogram is not large enough tofind a discernable peak. The persistent

scale space maxima are detected in each pixel. Figure 5.11 shows a grey-level histogram obtained from

a pixel within the view and smoothed histograms using mediumand large scales. Figure 5.12 shows the

scale space of the same histogram. Figure 5.12 shows the local maxima detected at each scale, we see

that two paths persist over the scale space - these correspond to the background and acceptable produce

peaks. Notice that a large number of irrelevant local maximacan be eliminated by thresholding the scale

space paths.

Feature matching

Three options for associating the detected features acrossthe view are proposed. The pseudo-code func-

tion call MatchFeaturesWithinView(F,MatchStrategy) in algorithm 6 accepts the detected features in

the parameterF and the parameterMatchStrategy selects one of the following methods for matching
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Figure 5.9: Plots of histograms from pixel 500 near the centre of the chute in green and from pixel 10

near the left edge of the chute in blue.

the detected features:

1. AssociateToTargetPixel(Targetpixel) maps features from all pixels to the features from a target

pixel, Targetpixel. Figure 5.14 illustrates this method by showing a sample of associated features

across the view; there are two types of feature, associated features of the same type are shown

with a circle or a square. The features for the target pixel are drawn in red and the features for

other pixels are drawn in blue. The features for theith column are matched to the target features

by finding the match that has the minimum total Euclidean costbetween the features from theith

column and theTargetpixel column.

2. ThreeStageAssociateFeatures(F,Targetpixel,EdgeT) is described in algorithm 7. The procedure

associates features in the centre region of the view together by working outwards from a centre

pixel, Targetpixel to two target pixels,EdgeT away from pixels1 and1024 on either side of

the view. The remaining unmatched features on both sides arematched to the target edge pix-

els. Figure 5.15 highlights the stages of the algorithm graphically by colour coding the matched

features across the view according to the stage of the algorithm when the features are matched.

The procedure avoids directly matching pixels that are far apart and places less confidence on the

features obtained near the edges of the chute.

3. The procedureThreeStageAssocAndFixup(F,Targetpixel,EdgeT) associates features withThree-

StageAssociateFeatures(F,Targetpixel,EdgeT) then scans across the view for missing features.

Gaps are filled with linear interpolation between the detected features. Extrapolation is used at the

edges if no product features are detected. Figure 5.16 showsan example of the linear interpolation

step when features are missing from a central portion of the view.

Section 5.3.2 shows results that highlight the performanceof these different approaches.
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Figure 5.10: The logical flow of information from the front and rear cameras within a chute. Defect

thresholding is performed on the front and rear views independently. The defect information is aggre-

gated by a spatial processing module, the decision to fire theair ejector is base on the size of the detected

defect and the machine settings.

Feature alignment

Point alignment transforms are used to align the associatedfeatures; for a recap, see section 2.5.2. A

point alignment transformation is found for all pixels in the view, the transform in a pixel moves the

associated features to new target positions. The associated source features from a pixel are represented

by a2× 1 vector,s, where each entry indexes the position of the feature in the corresponding histogram.

There are three choices for selecting the2× 1 target vectort,

1. the associated features from pixel 512 are used. (This option is referred to as[Target-512])

2. the average background and product values. All associated features are represented as a2 ×
1024 matrix,M, where the 1st row represents the associated product intensities and the 2nd row

represents the associated background intensities. Given this, the rows oft are computed as the

average of the corresponding rows ofM. (This option is referred to as[Target-MeanCluster])

3. the maximum background and product values. The rows oft are computed as the maximum value

of the corresponding rows ofM.

For each pixel, a point alignment transform is found. The transforms evaluated are:

1. Additive using equation 2.17.

2. Multiplicative using equation 2.18.
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Figure 5.11: Histogram of grey-level intensities from a single pixel in blue and its representation at

medium and high levels of blurring (plotted in green and black respectively).

3. Linear using equation 2.19,d = 1.

4. Quadratic using equation 2.19,d = 2.

5. Cubic using equation 2.19,d = 3.
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Figure 5.12: Grey level representation of the scale space ofa grey-level histogram. Each row in the

image represents the blurred values of the histogram at different scales, higher values are rendered closer

to white and lower values are rendered closer to black. The blur scale index indexes the lowest scale at

the bottom row to the highest scale at the top row.

Figure 5.13: Contour plot of the scale space shown in figure 5.12. Local maxima at each scale are

displayed using a circle.
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Figure 5.14: Associated features across the view using theAssociateToTargetPixel(Targetpixel) method.

Features indicated with a circle are associated together and features indicated with a square are associated

together. Features from the target pixel are drawn in red.
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Figure 5.15: Associated features across the view using theThreeStageAssociateFea-

tures(F,Targetpixel,EdgeT) method described in algorithm 7. Features indicated with a circle are

associated together and features indicated with a square are associated together. The initial seed features

are drawn in red, the algorithm associates the features drawn in blue to the target features in two passes.

First the features on the left are associated by matching thefeatures in a column to the matched features

in the adjacent column, this process is repeated for the features on the right of the initial seed features.

The features drawn in green areEdgeT pixels away from the side of the chute; the green features on the

left side of the chute are target features for the features onthe left side of the chute marked in pink, the

green features on the right side of the chute perform the samepurpose for the matched features on the

right side of the chute.
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Figure 5.16: Associated features across the view usingThreeStageAssocAnd-

Fixup(F,Targetpixel,EdgeT). The method usesThreeStageAssociateFeatures(F,Targetpixel,EdgeT)

shown in Figure 5.15 as a first step, then the algorithm scans for gaps in the features across the view.

The black line shown indicates the detection of a gap and the interpolated line between the detected

features.

Alignment of global moments

This section enumerates possible transforms for aligning the moments of the histograms in each pixel.

No background removal segmentation is performed, i.e.hi = bi + pi + di. The different transforms

are:

Global additive transform A global additive(shift) transformation in each pixel mapsall grey-level

intensitiesq to q +ωi. A shift in each pixel is computed to align the mean value in each pixel to a target.

The mean in each pixel is computed as,

fi = E(bi + pi + di). (5.2)

The additive transform is computed as,

ωi = µt − fi (5.3)

Three choices for the targetµt are investigated,

• Code: GlobalShiftToMean. µt is set to the mean of all histogram means.

• Code: GlobalShiftToMax. µt is set to the maximum of all histogram means.

• Code: GlobalShiftToTarget. µt is set to the mean of thetth pixel. The pixel is chosen manually.

Global multiplicative transform A global multiplicative transform correction maps all grey-level in-

tensitiesq to gq. A separate multipliergi is computed for each pixelpi to align the distribution means.

The mean in each pixel is

fi = E(bi + pi + di). (5.4)
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Algorithm 7 ThreeStageAssociateFeatures(F,Targetpixel,EdgeT)
// Set targets for the left and right sides.

Tl ⇐ EdgeT

Tr ⇐ 1024− EdgeT

AllMatches(Targetpixel).F eatures⇐ F (Targetpixel).F eatures

LastTargetMatch⇐ AllMatches(Targetpixel).F eatures

// Stage 1: Sweep outward from Target pixel, associating thefeatures in each pixel to its neighbouring

pixel.

i = Targetpixel− 1

while i >= Tl do

AllMatches(i).F eatures⇐MatchFeatures(F (i).F eatures, LastTargetMatch).

LastTargetMatch⇐ AllMatches(i).F eatures

i⇐ i− 1

end while

i = TargetP ixel + 1

LastTargetMatch⇐ AllMatches(Targetpixel).F eatures

while i <= Tr do

AllMatches(i).F eatures⇐MatchFeatures(F (i).F eatures, LastTargetMatch).

LastTargetMatch⇐ AllMatches(i).F eatures

i⇐ i + 1

end while

TargetMaxima = AllMatches(Tl).F eatures

for i = 1 to Tl − 1 do

AllMatches(i).F eatures⇐MatchFeatures(F (i).F eatures, LastTargetMatch).

end for

for i = Tr + 1 to 1024 do

AllMatches(i).F eatures⇐MatchFeatures(F (i).F eatures, LastTargetMatch).

end for
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This is used to compute the multiplicative transform

gi =
µt

fi
(5.5)

The different ways of computing a multiplicative correction in each pixel are:

• GlobalGainToMean: µt is set to the mean of all histogram means.

• GlobalGainToMax: µt is set to the maximum of all histogram means.

• GlobalGainToTarget: µt is set to the mean of thetth pixel. The pixel is chosen manually.

Global linear transform A linear transformation in each pixel maps all grey-level intensitiesq to λiq +

ωi. The multiplicative component aligns the standard deviation of theith pixel with the target standard

deviation, we write this as

λi =
σt

σi
. (5.6)

The additive component is

ωi = µt − λifi. (5.7)

The standard deviation in a pixel is computed using all product, background and defect intensities ob-

tained andfi = E(bi + pi + di).

The three transform-target combinations are:

• Code: MeanVarToMean. The target mean,µt, is defined asµt =

1024
∑

i=1

fi

1024 . The target standard

deviation,σt, is defined asσt =

1024
∑

i=1

σi

1024 .

• Code: MeanVarToMax. The maximum mean and standard deviation are used as target valuesµt

andσt.

• Code: MeanVarToTarget: The mean and standard deviation of theith pixel are the target values,

µt andσt. The pixel is chosen manually.

5.2.2 Segmentation based alignment methods

This section introduces methods to compute a piecewise alignment of the product portion of the his-

tograms. There are three elements to the segmentation basedalignment approach. First, a background

threshold is used to remove the background portions of the histograms. Second, an erosion step is applied

to discard the intensities corresponding to edge pixels. Third, the remaining portions of the histograms

are aligned. Background segmentation methods and transformation methods are described; different op-

tions are identified for each step so that the performance of different combinations of these options can

be evaluated.
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Methods for Background removal

Two types of background removal method are introduced. First, segmentation methods based on aver-

age intensity statistics are introduced and second, thresholds based on associated persistent maxima are

introduced.

Average intensity thresholds

With the feed turned off, it is possible to observe the intensity of the background plate on its own and

compute the average intensity in each pixel. The mean grey-level value in theith pixel bi of the back-

ground histogrambi is

bi = E(bi). (5.8)

When the feed is turned on, the average intensity of the background, acceptable produce and defect is

computed in each pixel as,

fi = E(bi + pi + di). (5.9)

A simple method of thresholding the background is to computea fraction offi in each pixel. This

threshold is computed as,

ri = Pfi, (5.10)

whereP is a fraction between 0 and 1. The value ofP is set manually. This method is referred to as

PercMean.

A second method is to compute a thresholdti in each pixel that is an offset from the background

mean by a fixed proportiond of the distance between the background mean andri. This is,

ti = bi + d(ri − bi). (5.11)

This method is referred to asDiffOffset . Pixels with grey-levels less than or equal tori in the case of

PercMeanthresholding andti in the case ofDiffOffset thresholding are classified as product or defect.

A feature of the within view data is that less product is observed by the edge pixels because pro-

duce bounces off the sides of the chute. The implication of this is that average intensity thresholds can

misclassify background as product near the edge of the chute. Figure 5.17 shows how theDiffOffset

threshold,ti, approaches the background mean level,bi, on the right hand side of the chute. In this

example the effect is less pronounced on the left hand side ofthe chute. A further processing step termed

ExtrapEdgesseeks to replace average intensity thresholds at the edges of the chute by using a simple

linear model to perform extrapolation. The procedureExtrapEdgeThresholds described in algorithm

8 accepts the existing thresholds,ti or ri depending on the method used. Outlier thresholds are discarded

from both edges of the chute, separate lines are fit to thresholds on either side of the chute using a fixed

window size. The fitted lines are then extrapolated on each side to generate the replacement thresholds.

Figure 5.18 shows the modified thresholds for the ExtrapEdgeThresholds procedure.

Persistent maxima offset thresholdsThe persistent feature detection and matching step allows aback-

ground segmentation threshold to be computed without a separate background estimate. This is per-

formed by
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Algorithm 8 ExtrapEdgeThresholds(T,EdgeT,Fitsize)
LeftLimit⇐ EdgeT

RightLimit⇐ 1024− EdgeT

LeftLine⇐ Fit line to pixels(LeftLimit + 1)..(LeftLimit + Fitsize)

RightLine⇐ Fit line to pixels(RightLimit− Fitsize)..(RightLimit− 1)

ExtrapolateLeftLine to pixel 1, replacing all extrapolated pixels.

ExtrapolateRightLine to pixel 1024 replacing all extrapolated pixels.

1. Finding the persistent deep structure features in each pixel.

2. Associating features usingThreeStageAssocAndFixup(F,Targetpixel,EdgeT)with gap filing

3. In a pixel, we compute a background segmentation threshold ti, as:

ti = bi − P (bi − pi), (5.12)

wherebi is the detected background feature,pi is the product feature andP is a fraction that can

be set from 0 to 1. In this work,P = 0.5.

This method is referred to asDStructMidPoint . Figure 5.19 shows plots of the background features,

the product features and the background segmentation thresholds.

Erosion step

Pixels at the edge of the rice grain give inaccurate grey level values for the product due to pixels partially

sampling the product and background. These outlying grey-level values are removed from the product

brightness distribution using an erosion image processingoperation. The edge pixels are rejected by first

producing a binary thresholded image of acceptable and defective product, the thresholds are computed

using an average intensity thresholding method; one ofPercMean, DiffOffset or ExtrapEdges is cho-

sen. Next, an erosion image processing operator is run to identify edge pixels. These edge pixels are

discarded as they do not represent the intensity of the product well.

Local Transforms

This section introduces transforms to perform alignment ofthe product portion of the histograms. The

product histograms are the result of applying a background removal segmentation to the within view

histograms and then applying an optional erosion step. For each transform the different target alignment

values are enumerated.

Multiplicative correction transform

The appearance of the product and defect distributions are corrected across the view by aligning

the means of the combined product and defect distributions.A multiplicative transform correction maps

product grey-level intensitiesq to gq. A separate multipliergi is computed for each pixelpi to align the

means of the segmented product and defect distributions. The mean in each pixel is

µi = E(pi + di). (5.13)
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Figure 5.17: Thresholds computed within a single chute using average intensity statistics method. The

green plot shows the mean background values,bi (eqn: 5.8), computed by turning the feed off to inspect

the background. The black plot is the mean valuefi in each pixel (eqn: 5.9) with the feed turned on.

The blue plot is the thresholdri, in each pixel computed withPercMean. The red plot is the threshold

ti in each pixel (eqn: 5.11), computed withDiffOffset .

This is used to compute the multiplicative transform

gi =
µt

µi
. (5.14)

The different ways of computing a multiplicative correction in each pixel are:

• Code:GainToMean. The target,µt, is the mean of all means. i.e.µt =

1024
∑

i=1

µi

1024 .

• Code:GainToMax. The maximum mean computed in each pixel is used as the target. i.e. µt =

max(µi), ∀i

• Code:GainToTarget. The mean of theith pixel is the target value,µt. The pixel is chosen

manually.

Additive correction transform

An additive(shift) transformation in each pixel maps product grey-level intensitiesq to q + ωi. A

shift in each pixel is computed to align the mean value in eachpixel to a target. The mean in each pixel

is

µi = E(pi + di). (5.15)

The additive transform is

ωi = µt − µi. (5.16)
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Figure 5.18: The red plot shows modified thresholds in each pixel using the ExtrapEdgeThresholds

procedure described in Algorithm 8. The green plot shows themean background values,bi (eqn: 5.8),

computed by turning the feed off to inspect the background. The blue plot is the thresholdri, in each

pixel computed withPercMean. Note that the extrapolated red DiffOffset lines cross the green plot on

the right hand side. This is undesirable behaviour.

The targetµt is set to the mean of all mean values (Code: ShiftToMean), the maximum of all mean

values (Code: ShiftToMean) or the mean value from a manually chosen target pixel (Code: ShiftTo-

Target).

Linear correction transform

A linear transformation in each pixel maps product grey-level intensitiesq to λiq+ωi. The multiplicative

component aligns the standard deviation of theith pixel with the target standard deviation, we write this

as

λi =
σt

σi
. (5.17)

The additive component is

ωi = µt − λiµi. (5.18)

The three transform-target combinations are:

• Code: MeanVarToMean. The target mean,µt, is defined asµt =

1024
∑

i=1

µi

1024 . The target standard

deviation,σt, is defined asσt =

1024
∑

i=1

σi

1024 .

• Code: MeanVarToMax. The maximum mean and standard deviation are used as target valuesµt

andσt. µt = max(µi), ∀i andσt = max(σi), ∀i.

• Code: MeanVarToTarget: The mean and standard deviation of theith pixel are the target values,

µt andσt. The pixel is chosen manually.
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Figure 5.19: Persistent deep structure features and background segmentation thresholds computed using

the DStructMidPoint method. Background features are plotted in green, the blue plot shows the product

features. The red plot shows the background segmentation thresholds computed in equation 5.12

5.3 Experimental Evaluation

This section experimentally compares the alternative histogram alignment methods. First, we qualita-

tively investigate the behavior of the persistent maxima detection and association procedures on Buhler

Sortex data. Second, we quantitatively compare the introduced colour inconsistency corrections. The

next section introduces the data used in the experiments.

5.3.1 Data

This section describes the procedures and system developedduring the EngD to capture data from the

Buhler Sortex machine in order to investigate the histogramalignment problem.

A new capture system

Figure 5.20 shows the Z1 machine and the real time data capture setup that has been developed by the

author specifically for this project. The architecture details have been classified confidential by Buhler

Sortex. The capture setup allows data to be captured from a single monochromatic camera view in real

time. This setup provides significant advantages over previous capture setups at Buhler Sortex that had

a 25 second delay between captured frames. The non real-timenature of the previous capture solution

meant that a recirculation rig was needed to recycle to product during a data capture. Figure 5.21 shows

a recirculation rig that pumps the product back up to the input hopper via a mechanical system. With the

previous setup, the rice was physically polished as it recycled through the rig thus changing its brightness

over time. The developed system avoids these problems.
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Figure 5.20: Buhler Sortex Z1 sorting machine and PC based capture system. Picturec©copyright Buhler

Sortex Ltd, 2008. Printed with permission.

Figure 5.21: Buhler Sortex Z1 sorting machine and recirculation rig. Picture c©copyright Buhler Sortex

Ltd, 2008. Printed with permission.
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Figure 5.22: The author operating the touch screen interface on the Buhler Sortex Z1. Picture

c©copyright Buhler Sortex Ltd, 2008. Printed with permission.

Figure 5.23: Camera and sorting electronics. Picturec©copyright Buhler Sortex Ltd, 2008. Printed with

permission.

All data referenced in this chapter was captured using the new capture system. The development of

this system was a significant undertaking that occupied a significant portion of the 1st year of the project.

All parts were ordered, assembled and custom software was written and debugged as part of the project.

The developed system allows real time streaming data to be captured for the first time from Z1 machines,

this ability to capture this data will prove beneficial in a variety of other projects.

Data capture procedure

The Z1 series machine is first calibrated using the in-built calibration routines. Figure 5.22 shows the

author operating the Buhler Sortex Z1 machine. Once fully calibrated, the camera is unplugged from

the machine’s internal electronics shown in Figure 5.23 andplugged into the custom capture setup. This

does not affect the internal state of the machine.

A continuous flow of rice was created by filling the top input hopper with rice three times, this

was sufficient for calibration and data capture. Notice the ladder positioned next to the Z-Series during

a capture session in Figure 5.20, the top input hopper shown in Figure 5.24 is filled with rice. Rice is
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Figure 5.24: Top chute to be filled with rice on the Buhler Sortex Z1. Picturec©copyright Buhler Sortex

Ltd, 2008. Printed with permission.

Figure 5.25: Bottom of chute on the Buhler Sortex Z1. Picturec©copyright Buhler Sortex Ltd, 2008.

Printed with permission.
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(a)

(b)

(c)

Figure 5.26: Associated persistent features from the frontview using an offset of 110 usingAssociate-

ToTargetPixel(Targetpixel) in 5.26(a),ThreeStageAssociateFeatures(F,Targetpixel,EdgeT) in 5.26(b)

andThreeStageAssociateFeatures(F,Targetpixel,EdgeT) with gap filing in 5.26(c).
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(a)

(b)

(c)

Figure 5.27: Associated persistent features from the rear view using an offset of 110 usingAssociate-

ToTargetPixel(Targetpixel) in 5.27(a),ThreeStageAssociateFeatures(F,Targetpixel,EdgeT) in 5.27(b)

and ThreeStageAssociateFeatures(F,Targetpixel,EdgeT)with gap filing in 5.27(c).
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(a)

(b)

(c)

Figure 5.28: Associated persistent features from the frontview using an offset of 120 usingAssociate-

ToTargetPixel(Targetpixel) in 5.28(a),ThreeStageAssociateFeatures(F,Targetpixel,EdgeT) in 5.28(b)

andThreeStageAssociateFeatures(F,Targetpixel,EdgeT) with gap filing in 5.28(c).
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(a)

(b)

(c)

Figure 5.29: Associated persistent features from the rear view using an offset of 120 usingAssociate-

ToTargetPixel(Targetpixel) in 5.29(a),ThreeStageAssociateFeatures(F,Targetpixel,EdgeT) in 5.29(b)

andThreeStageAssociateFeatures(F,Targetpixel,EdgeT) with gap filing in 5.29(c).
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collected at the bottom of the machine as shown in Figure 5.25and a bucket is used to refill the top input

hopper, a separate operator controls the capture software during this process.

The Z-series has abackground offsetparameter to the calibration routines that can be set from the

graphical user interface. A higher background offset valueincreases the distance between the product

reference,ri, and background mean,bi, across the view by adjusting the angle of the white calibra-

tion plate during the calibration cycle. Therefore, a high background offset value increases contrast

between the background and product grey-levels making the segmentation more robust. There is a trade

off between setting a high background offset and using up thedynamic range of the camera to record

background and acceptable product grey-levels, a higher offset means that there is a smaller range of

grey-levels to discriminate between the acceptable product and the defect. The capture system can cap-

ture the data feed from only one camera at a time. American parboiled rice is used with 2-3 percent

defect to compare the effects of:

1. Different background offset settings - (110 and 120), and

2. Front and rear views.

White lamps were used in the machine. The data-sets capturedare:

1. the front view, calibrated with an offset of 110.

2. the rear view, calibrated with an offset of 110.

3. the front view, calibrated with an offset of 120.

4. the rear view, calibrated with an offset of 120.

The offset values of 110 and 120 give a low and high contrast between the background and rice respec-

tively. The offset is commonly set to 110 in production sorting setups, data is captured with the 120

setting because the product and background peaks are further apart which should be an easier histogram

alignment task.

5.3.2 Qualitative evaluation of feature detection and association

Aims

To assess the feature detection and association steps within a Buhler Sortex view.

Method

For each of the four data-sets, the following steps are performed:

• Compute histograms in each pixel for a portion of the video stream.

• Compute persistent maxima from the histogram in each pixel usingFindPersistentMaxima(H)

in algorithm 1 using scales,σi = e0.1(i−1), wherei = 1..T. The scale persistence threshold,T, is

set to 17. The noise floor threshold,γ, is set to 0.001.

• Match the detected features using the three different routines introduced in section 5.2.1. These

are:
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– AssociateT oTargetP ixel(Targetpixel), with Targetpixel = 512,

– ThreeStageAssociateFeatures(F,Targetpixel,EdgeT). Targetpixel = 512 and

EdgeT = 30,

– ThreeStageAssociateFeatures with an additional gap filling step.

Plot the associated background features using a green line the associated product features using a

blue line.

Results and conclusions

Figures 5.26 and 5.27 show results for the front and rear, 110offset datasets respectively. Figure 5.28

and 5.29 show results for the front and rear, 120 offset datasets. The most noticeable result from the

plots is that theThreeStageAssociateFeatures procedure followed by a gap filling step performs the

best. The problems with the two association methods highlight issues when matching features across

the view. Figure 5.26(a) shows how the minimum Euclidean distance can mismatch features between

histograms that exhibit large deformations. The features in each pixel are matched to pixel 512 which

causes mismatches between the background and foreground features at both ends of the chute, this is

because the mismatched features are closest together. Figure 5.26(b) shows that finding associations

between neighbouring pixels working out from the centre of the view resolves this problem. Two further

problems with the associated features are evident in the matched product features in figure 5.26(b):

1. Absent features are represented as a zero grey levels and so the plotted feature line drops to zero.

Further investigation of the features in 5.26(b) showed that the optimal feature persistence thresh-

old is different for these few pixels. Despite this, we note that the same feature detection parame-

ters are used in all pixels for all four data-sets; only thesepixels exhibit this issue.

2. Product edge features are frequently not present at the edges of the chute due to low or no product

passing these pixels. This can be seen in figures 5.26(b), 5.27(b), 5.28(b) and 5.29(b).

We have shown that the combination ofThreeStageAssociateFeatures with gap filling works well

across the data-sets.

5.3.3 Quantitative evaluation of colour inconsistency corrections

Aims

The aim of all methods is to minimize the colour inconsistency of the acceptable food across different

pixels. The product is the focal point of the investigation because the background is removed and the

defect does not form significant peaks in the histogram.

Method

The introduced methods to perform appearance correction within a view are comprised of steps with

a number of options. The different combinations are evaluated, and all methods are applied to each

data-set. An alignment score is computed after applying each method. The following steps detail the

experimental procedure used to evaluate alignment methodson each of the four within-view data-sets.
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For each data-set:

1. Divide the video stream into a training and test portion.

2. Compute the histograms for each pixel across the view using the training set.

3. For each alignment method, compute the alignment transformations in each pixel across the view

using the training set.

4. Apply the computed transformations in each pixel to the test set data histograms.

5. Use the ground truth labels (see below) to extract the aligned histogram data across the view for

each class label.

6. Discard edge histograms computed from pixels that have observed insignificant amounts of prod-

uct.

7. Normalize all remaining histograms.

8. Compute the variance of the aligned class histograms using the summary variance measure de-

scribed in equation 5.21 (see below).

Ground truth

The histogram alignment methods evaluated may contain a segmentation and alignment transform step.

The different methods are compared by evaluating their alignment performance on a data-set that has

been labeled as the ground truth. To produce an acceptable ground truth, the existing calibration method

is used to label portions of each data-set with the class labels 1) Background, 2) Accept product, 3) Edge

Pixel and 4) Defect.

The steps used to compute the four labelled classes are:

1. TheDiffOffset method described in equation 5.11 is used to generate thresholds to segment the

background.

2. The background portion of the signal is removed and the remaining signal is aligned across the

view using the multiplicative correction transform. This is computed using equation 5.14 and

GainToMax.

3. A fixed defect threshold is applied across the corrected view signal to label the defect. The thresh-

old is adjusted manually until a visually acceptable resultis obtained.

4. The product signal is isolated and used to create binary images of the rice. An erosion filter is run

to classify the edge pixels, the remaining non-eroded pixels are labelled as the product.

5. The labelled class information is used to create a four coloured mask that overlays the original

grey level data. The product regions are inspected by eye anda manual correction is performed.

Missing product pixels are added and false product classifications are removed.

This procedure produces a highly robust labelling of the acceptable product data. The defect portions of

the histograms are not directly studied in this work.
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Metrics

The variance of the transformed ground truth classes tells us how much residual colour inconsistency re-

mains. When making comparisons, a better alignment method leads to lower variances of each individual

class. First, the data is transformed and then the ground truth labels are used to compute class-labeled

histograms in each pixel. Each of theC labels can be used to extract portions of this ground truth his-

togram. To reduce of the sensitivity of the metric to scale variations between different instances of the

same class, the transformed histogram components for each class are normalized.

For thecth class, we compute the variance in each grey-level of the transformed ground truth his-

tograms components labeledc. For a set ofN labeled histograms from the CCD pixels{p} we write the

variance of the vector of histogram bin values for theith grey-level of thecth classgi,c as:

var(gi,c) =

∑N
p=1 (gi,p,c − E(gi,c))

2

N
, (5.19)

wherep indexes the CCD pixel,gi,p,c is the bin-count from theith grey-level of thepth histogram for

classc. The expected grey-level at intensityi for classc is

E(gi,c) =

∑N
p=1 gi,p,c

N
. (5.20)

We summarize the grey level variance using a single number bysumming over all grey-levels according

to,

Vc =
256
∑

i=1

var(gi,c). (5.21)

The different set of pixels{p} that we consider are:

1. From the correction of a single view.

2. From the alignment of front and rear views.

Care must be taken to reject edge pixels that have not observed rice falling past, this can occur at the

edge of the chute due to rice bouncing off the sides; including such pixels in the metric can cause out-

landish results and so we remove the histograms from these pixels from the alignment evaluation. Outlier

pixels are identified by inspecting edge pixels histograms and flagging those with no product peaks, the

outlier pixels are saved along with the ground truth information and used during each evaluation.

Experiment 1: segmentation driven within-view alignment

Hypothesis: Alignment of the first two moments of the eroded product distribution leads to the best

alignment score when compared to other product alignment methods.

Method and ResultsWithin view alignment methods that segment the product distribution and then

align this portion of the distribution are used to align the test set data as described in the previous sec-

tion. The methods evaluated each comprise a product segmentation method, a transformation and a

choice of target values. For each data-set we rank the transformations according to the score on the

aligned product portion of the distribution. The best 15 scores are displayed as a bar chart for each data-

set in figure 5.30.
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Conclusions Segmentation driven within-view alignment methods that use linear correction trans-

forms outperform methods that use the multiplicative correction. This is seen by comparing lin-

ear and multiplicative correction results where all other conditions are held constant; for example,

DiffOffsetEros0-93ExtrapMeanVarToMax performs better than DiffOffsetEros0-93ExtrapGainToMax

in Figure 5.30(a). This pattern is repeated among other transforms. In addition, the best performing meth-

ods DiffOffsetEros0-93ExtrapMeanVarToMax in Figure 5.30(a) and PercMean0-93ErosMeanVarToMax

in Figure 5.30(b) both use the linear correction. This tellsus that the linear correction reduces the ap-

pearance variance of the product across the view; during dark-sort thresholding appearance variation in

the product is significant as it affects the effectiveness ofthe thresholds used across the view. The results

also show the importance of discarding edge pixels to gain anestimate of product brightness as almost

all of the top 15 ranked methods on all data-sets utilize the erosion step.

Also of note, is the variation in alignment score according to the choice at target parameters. For both the

multiplicative and linear transformation there is an advantage gained by aligning to the maximum values;

this ensures that the multipliers are positive and the rangeof the bins occupied by product is increasing,

this yields more similar histograms compared with the case where the range is being reduced. Finally,

the alignment scores are sensitive to the method used to segment the product across the view, the best

performing method can vary according to the data-set. In allcases the methods are dependent on product

reference value computed using 5.10 withP = 0.93. Individually tuningP may yield improved results

on specific data-sets. A common value was chosen across all data-sets for simplicity.

Further individual tuning of this parameter may lead to improved results in some cases, however this

parameter is set by observing its effect on aggregate systemperformance by a Buhler Sortex engineer

during setup.

Experimental 2: global histogram alignment

Hypothesis: FBHA transformations outperform shift, multiplicative orlinear alignment of the distribu-

tion moments.

Method and ResultsShift, Multiplicative and linear alignment of the distribution moments are com-

pared against the FBHA procedure with linear, quadratic andcubic correction transforms. Alignment

scores for the 110 calibration offset data-sets are shown in5.32 and 5.33 shows the 120 calibration off-

set data-sets. FBHA3MatchMax performs best in all cases. All FBHA methods perform better than all

moment based corrections on the front view 110 and 120 data-sets, this is seen in Figures 5.32(a) and

5.33(a) respectively. Most FBHA methods perform better than moment based corrections on the rear

view data-sets shown in Figures 5.32(b) and 5.33(b). The GlobalMeanVarToMax and GlobalMeanVar-

ToTarget methods outperform FBHA1MatchMean for the rear view 110 data-set and they outperform

FBHA2MatchMean and FBHA1MatchMean on the rear 120 data-set.

ConclusionsFBHA is shown to be robust and effective, it outperforms other global histogram alignment

methods. The parameters of the algorithm are shown to be robust and features are extracted from the

data in an unsupervised manner. There are no hard wired assumptions in the algorithm about the number

of clusters in the data. The results show an improvement of the alignment score from linear through to



5.4. Summary Conclusions and Discussion 158

cubic transforms.

The global transformations do not align the individual product distribution components as well as the

segmentation driven approach. However, the FBHA approach is more general and aligns the background

components of the distribution as well.

5.4 Summary Conclusions and Discussion
This chapter makes four key contributions:

1. FBHA robustly aligns the appearance of Buhler Sortex in-feed data.

The procedureThreeStageAssociateFeatures with gap filling detects and associates features

within the view reliably so that FBHA can be performed. We learn that correct association of the

features across the view can be achieved by using the knowledge that neighbouring pixels give

rise to similar histograms and edge pixels frequently observe either low levels of product or no

product at all. FBHA with linear, quadratic and cubic transformations equalizes the appearance of

the product and background across the view. These combinations outperform shift, multiplicative

and linear alignments of the global moments of the histograms. Figures 5.32 and 5.33 show that

the best global feature based alignment method is FBHA3MatchMax on all four data-sets. Feature

based histogram alignment methods that use a third order polynomial give product variation scores

approximately a factor of two lower than the next best momentbased transform GlobalMeanVar-

ToMax. This validates using the feature based approach compared to moment based approaches.

2. Background removal thresholds are computed using in-feed data. Stopping the feed to inspect

the background plate is a costly procedure because lost sorting time reduces the productivity of a

sorting machine. We have introduced an alternative to the average intensity statistics method that

does not require separate background estimates with the feed turned off. The DStructMidPoint-

ErosMeanVarToMax method processes histograms obtained with the feed turned on and performs

well on all data-sets; it gives close to the best result in 5.30(a), 5.30(b) and 5.31(a). It performs

best in 5.31(b), the method works well because it robustly segments the product and background

across the view before applying the linear correction step to the product. Global moment based

transforms perform worse in most cases because they do not consider the multi-modality of the dis-

tributions to be aligned. DStructMidPointErosMeanVarToMax could give superior performance

over long periods of operation compared to the Buhler Sortexalgorithm, this is because the Buhler

Sortex method’s background estimates will become more inaccurate if the intensity of the back-

ground changes over time. Further tests and data capture could explore whether this scenario arises

in production set-ups.

3. Performance effects of component permutations of the Buhler Sortex algorithm are evalu-

ated We discover that the erosion step is critical to the performance of all segmentation based

methods. The top fifteen segmentation based methods in Figures 5.30 and 5.31 all use the erosion

step to discard the edge pixels. We also discover that no single background segmentation method

performs best across all data-sets, the difference in product variance across the view for the top
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fifteen segmentation based methods is very small compared tothe global histogram alignment re-

sults. This variation is approximately0.5 × 10−4 between the best and worst results in 5.30(a),

5.30(b) and 5.31(b). The variation is approximately1.0×10−4 in 5.31(a). The results contrast sig-

nificantly with the global histogram alignment scores whichare significantly higher for all meth-

ods. The differences between the best global histogram transformation and FBHA3MatchMax, the

best performing global moment based transformation are approximately: 3 × 106 GlobalMean-

VarToMax in 5.32(a),1.75× 107 in 5.32(b),4× 106 in 5.33(a) and1.5× 107 in 5.33(b). We note

that all global histogram alignment methods are significantly worse than background segmentation

driven methods.

4. A linear correction of the product appearance is introduced. The linear correction gives lower

appearance variation across the view compared to the multiplicative correction. This is significant

because the multiplicative correction has significant support in the literature [49]. This tells us that

it is worth aligning the mean and variance of a histogram modewhen the histogram can be reliably

labelled.

Global and segmentation driven local correction transforms have been examined and contrasted.

The controlled environment and constraints of thedark sortprocedure mean that alignment of the product

mode of the set of histograms is of utmost importance. We learn that in these cases, segmentation driven

algorithms are favorable. We have shown how the new feature detection procedure can be used to

perform the segmentation - it is important to realize that the FBHA procedures used have no parameters

to indicate the number of clusters present in the data. This is a key design feature of this approach,

specifying the number of colour clusters frequently leads to brittle assumptions; the bottom up feature

extraction procedure deserves further examination on Buhler Sortex bi-chromatic machines. Future work

may also seek to develop the idea of performing segmentationdriven piece-wise alignments on sets of

2D or 3D colour histograms.
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Figure 5.30: The fifteen best performing within view transformation methods applied to the front 5.30(a)

and rear 5.30(b) view data-sets with a calibration offset of110. The scores indicate the variance of the

product components of the histograms across the view after correction. A lower variance indicates better

alignment.
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Figure 5.31: The fifteen best performing within view transformation methods applied to the front 5.31(a)

and rear 5.31(b) view datasets with a calibration offset of 120.
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Figure 5.32: Variance of the product components of the histograms across the view after correction with

moment based and feature based global correction transforms on data front the front 5.32(a) and rear

5.32(b) views with an offset setting of 110.
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Figure 5.33: Variance of the product components of the histograms across the view after correction with

moment based and feature based global correction transforms on data front the front 5.33(a) and rear

5.33(b) views with an offset setting of 120 .
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Chapter 6

Conclusions and Further Work

This chapter highlights the commercial relevance of the work in this thesis then discusses the empirical

findings presented in Chapters 4 and 5. It considers what the empirical findings tell us about removing

colour inconsistencies using an automatic histogram alignment approach. The limitations of the work

are identified and suggestions for future improvements and extensions are discussed.

6.1 Commercial relevance and contributions

This section highlights the commercially relevant achievements in this thesis

6.1.1 Direct applicability of findings

Chapter 5 provides a detailed investigation of methods for reducing colour inconsistencies in the product

appearance across the view of a Buhler Sortex Z1 machine. Section 1.2 reasoned that a performance

improvement that saves just 0.5 percent of the processed food volume will yield an extra 270 tonnes

of product per machine per year. Buhler Sortex engineers know that colour inconsistencies are one

significant factor that affect the Sorting performance of the machines; the introduced linear correction

gives the best segmentation driven alignment and the FBHA alignments gives the best non segmentation

alignment method. Deployment of the calibration algorithms into sorting setups will enable the effect of

the improved calibration on the performance on the food sorting process to be tested.

6.1.2 Future applications

Future work may extend the FBHA approach to work with bi-chromatic colour data. The experiments

performed on the image data-base in Chapter 4 provide insights into the behavior of FBHA in 2D. The

background removal thresholds computed using the deep structure features proved extremely robust on

the Buhler-Sortex data, the need to perform alignment of individual modes motivates the extension of

FBHA to perform piece wise alignment of corresponding clusters. The need to segment individual modes

in order to align them well suggests that it would be desirable to integrate calibration and segmentation

into a fully automatic approach.

6.2 FBHA

The feature based histogram alignment approach has been applied to a database of colour inconsistent

images in Chapter 4 and to grey level video streamed data in Chapter 5. The deployment of the same
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basic approach on these two different applications was motivated by the need for generic colour incon-

sistency removal techniques; FBHA shows itself to be a generic approach to aligning histograms with

corresponding clusters that have a single dominant peak. FBHA behaves in a robust manner on Buhler

Sortex data and a significant number of image pairs in the image database.

The results of the histogram alignment experiments make it possible to draw conclusions about

assumptions made by the FBHA approach. These are:

• Point features. Histogram peaks are good features to match when the corresponding clusters

have the same number of peaks. Small irrelevant peaks are smoothed away by the deep structure

feature detection procedure. However, it is unclear how to match different numbers of peaks for the

corresponding cluster. Deep structure feature detection is shown to robustly find peaks in 1D and

2D histograms, the technique does not generate robust features from 3D histograms of the RGB

data. It is thought that tracking the connected path of maxima in the scale space of 3D histograms

leads to broken tracks as the number of degrees of freedom forthe path following step is increased.

The deep structure feature detector is useful because its results are not dependent on initial seeding

points as is the case with algorithms such as K-Means and Expectation maximisation mixture

model fitting; the detector does not require the number of clusters to be input in the algorithm and

has proven robust to its input parameters.

• The structure of colour inconsistent histograms.The experiments on the RGB image database

show that high variability between corresponding clustersin colour inconsistent histograms is

common. This means that it is difficult to match point features correctly due to these unpredictable

changes in the structure. The FBHA procedure failed most often on these cases, this shows that

point feature detection and a CEM or CEM-DC matching strategy does not work successfully in

many cases. Ambiguous matches between feature points can only be resolved if feature points are

associated with a cluster. The lesson here is that matching feature points alone is not sufficient in

many cases, correct matching can only be achieved in these cases by reasoning about the clusters in

the histograms. Section 6.4 discusses potential approaches to extend the current FBHA approach

to meet this challenge.

The Buhler Sortex problem did not exhibit the same problems of histogram structure variation as

the RGB histogram alignment problem. Grey-level histograms obtained from the Sorting machine

have clear and unambiguous clusters that enable the FBHA to work well. The stable nature of the

histograms obtained from the Buhler Sortex machines is probably not surprising, as these machines

are engineered for high performance imaging and use qualityoptical and electronic components.

However, the commodity cameras used for the RGB image database capture are produced with

different aims in mind, in particular they are designed to produce visually pleasing images using

optics and electronics that must be produced at competitivehigh street prices.

Applying the same generic approach to colour data from different sources has proved informative.

The results show that a generic approach has value, but caution must be exercised when applying a
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method that works well under one set of acquisition conditions to data-sets that are acquired under

a different set of conditions.

• Alignment transforms. FBHA allows point alignment transforms to be used to align colour his-

tograms. Previously, this class of transform was restricted for use by applications that labeled the

colour data using information from the spatial domain. For example, by extracting the correspond-

ing coloured squares of a MacBeth chart in different images and using the mean colours of each

square as the feature points. Point alignment transforms are powerful, they can align histograms

more precisely than other commonly used colour transforms such as moment based alignments.

Section 4.4.1 in chapter 4 investigates the feature based alignment hypothesis and finds that point

alignment transforms perform better than all other classesof method tested.

Global and piecewise local transforms are investigated in this thesis. The experiments in chapter

4 transform all colour values using different global transforms. Chapter 5 evaluates both global

and local transforms on Buhler Sortex data, section 5.3.3 presents experiments that quantitatively

evaluate these transforms. These experiments show that local transforms align the appearance

of the rice better than global transforms, they also show that point alignment transforms are the

best choice among global transforms. It makes sense that piecewise transforms that align corre-

sponding histogram clusters can produce better alignmentsthan global alignments that aim to align

multiple clusters, this is because piecewise transforms adjust each mode of the histograms individ-

ually. Applying piecewise local transforms is difficult because the corresponding clusters must be

segmented prior to computing a local alignment transform. The Buhler Sortex machine utilises a

robust imaging setup so that segmentation of the corresponding clusters is effective. However, it is

more difficult to segment the corresponding clusters of morevariable histograms like those of the

RGB image database. The work in this thesis highlights that the alignment performance of global

non feature based transforms, global feature based transforms and piecewise local transforms ex-

ist in a performance hierarchy. Global feature based transforms perform better than global non

feature based transforms and piecewise local perform better than global feature based methods

on the Buhler Sortex data. It is reasonable to infer that piecewise transforms would also improve

the alignment of the RGB image data if suitable segmentations of the histograms can be found.

A general observation is that the transforms that perform better are harder to apply automatically

as incorrect feature detection or segmentation steps can cause them to fail catastrophically. The

results in this thesis suggest that a promising line of future investigation could seek to unite ideas

from segmentation and calibration into a single framework,section 6.4 discusses some possible

approaches.

• Multiple histogram alignments. Chapter 5 demonstrates that multiple histograms can be aligned

using the FBHA method. The qualitative assessment of feature detection and association in sec-

tion 5.3.2 shows how features from Buhler Sortex within viewdata can be correctly associated

using a three stage feature matching procedure. The procedure matches the centre, left and right

edge regions separately. Then, the three regions are associated in a final step. Attempts to match
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features from all pixels to the features from the centre pixel failed, this result shows that closest

Euclidean feature matching (CEM) can fail when the incorrectly matching features are close to-

gether. When working with Buhler Sortex data, it is possibleto use the knowledge that features

from neighbouring pixels are likely to be more similar than features from pixels that are far apart;

the three stage feature association uses this knowledge to perform correct matching. FBHA ex-

periments on the RGB image database focus on matching image pairs, the performance of the

FBHA method needs to be improved in future work to justify itsapplication to aligning multiple

RGB histograms. Automatic alignment of multiple RGB histograms is more difficult than the

Buhler Sortex problem because there is no inherent orderingamong the images in the data-set and

correct cluster association is more difficult because of thestructural variation that exists between

corresponding clusters.

6.3 Existing methods

Experiment 1 in section 4.4 provides a unique evaluation of commonly used colour alignment transforms.

The findings from this work inform machine vision system designers to make intelligent choices when

selecting transforms in their work. Particular lessons of note are that transform performance can vary

greatly for small changes in experimental conditions. The collated transform rankings can be used by

practitioners needing to select a transform for an application, the rankings give a sense of alignment

performance and robustness. The high variability of transform performance highlights an area for future

work, an automatic transform selection method would be desirable in this case. For automatic model

selection to work an improved non parametric model is needed, this option is discussed further in section

6.4.

6.4 Further work

The limitations of the work in this thesis suggests four areas for future research that could advance the

state of the art of automatic histogram alignment algorithms. The ultimate aim is to produce a fully

modularblack boxalgorithm that can be used to remove colour inconsistenciesin any computer vision

scenario. This section states the research areas along withthe problem they should address and some

suggestions for potential lines of investigation. The areas for further research are:

1. Extend FBHA to handle topological features.

Problem: Point features are useful when the corresponding clusters contain the same number of

significant peaks. However, feature points are not easy to match correctly when the structure of

corresponding clusters is significantly different. The difficulty of matching the structurally varying

clusters that occur in the RGB database motivates the development or usage of cluster detection

algorithms that are robust to these changes in local topology.

Potential approaches:A cluster detection method is needed that finds significant peaks in the

histograms and also the relationship between these peaks. The method needs to find features that

occur at different and unspecified scales, also the algorithm should not require the number of
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clusters or their shape to be specified. Klemela [85] has introduced a level set tree method for

the visualisation of multivariate density estimates that appears to meet these criteria. The method

builds a tree structure from the separated parts of level sets of a function, this is called a level

set tree. Klemela proposes the method as a way of visualisinggeneral multivariate functions

and shows promising results on synthetic histograms generated using Gaussian mixture models

in three and four dimensions. Two relevant questions to investigate are: 1) Can level set trees

be used to robustly detect features in the 1D, 2D and 3D histograms of images from the RGB

image database?, and, 2) Can level set trees of these histogram be robustly matched? Work on

comparing the topological structure of 3D shapes [86] may provide some insights into the best

ways to perform the matching.

If this technique is found to work, it would represent a significant advance. Volume estimates are

computable for each cluster in the level set tree, so it is possible to express the posterior probability

of each data point belonging to the identified clusters in thelevel set tree. A Bayesian expression

that describes the probability that an unseen data-point belongs to each of the clusters identified

by the level set tree would be of great value. It would be a natural next step to develop this

formulation if initial tests on the level set tree are positive. The Bayesian formulation would make

it easy to combine labeling information from other algorithms that use prior information as label

probabilities can be combined by use of the multiplication rule.

2. Unordered set automatic multiple histogram alignment

Problem: The FBHA approach is not currently tested on the unordered set, multiple histogram

alignment problem. The alignment experiments on the BuhlerSortex data show how multiple

alignment can be performed but the approach uses the knowledge that neighbouring pixels produce

more similar histograms. The experiments on the RGB database only test alignments on pairs of

histograms. Future work could explore the challenges of aligning multiple histograms when no

ordering information between the histograms is known.

Potential approaches: A sensible starting point for research on this topic would beto devise

algorithms to align Buhler Sortex data that do not utilise the inherent ordering between pixels.

Potential lines of investigation could take inspiration from work into the alignment of multiple

range views [87] and point sets [88][89]. Attempts could then be made to extend the multiple

alignment approach to the RGB data, it is presumed that the ability to do this successfully is

dependent on the ability to successfully manage the topological features described in the 1st item

in this list.

3. Produce a unified cluster segmentation and alignment routines

Problem: The alignment of corresponding clusters using piece wise transforms requires a cluster

segmentation step to be performed before the alignment step. Work on the Buhler Sortex problem

shows that the segmentation method and alignment are coupled; applying piece wise transforms

in more general settings (such as the RGB data-base) requires methods that integrate ideas from

segmentation and alignment.
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Potential approaches: The problem of dealing with data from multiple sources or multiple

learned models has been tackled by the machine learning community. Cluster ensembles [90][91]

are methods to combine multiple partitionings of a set of objects into a single consolidated clus-

tering. An insight from the alignment experiments on BuhlerSortex data is that a single clustering

is not sufficient to segment all the histograms correctly. Instead, it is important to find correct

clusterings in each histogram and the transformations between these clusterings. It is thought that

development in this area would benefit from development of the first two research items in this

list.

4. Extend segmentation framework to allow priors to be seamlessly integrated into the labeling

process

Problem: Correct histogram alignment is dependent on correct labeling of the histograms prior to

alignment, either by feature detection or complete labeling. Fully automatic histogram alignment

algorithms do not utilise many powerful sources of prior information in particular problem do-

mains. A challenge for the development of a generic approachis to retain a modular frame work

that allows prior information from other labeling processes to be seamlessly integrated.

Potential approaches:The development of Bayesian labelings that do not impose unnatural shape

constraints on the distributions would allow prior information from other sources to be integrated

probabilistically in a natural manner. In striving for thisgoal, it is important not to impose dis-

tributions that do not fit the data just because they are easy to deploy; for example the Gaussian

mixture model is frequently used to model highly non Gaussian distributions in many computer

vision applications. Advances to research item 1 in this list would naturally lead to these exten-

sions. Information from the spatial or temporal domain provide powerful cues and should not be

ignored when aiming to build the best systems, it would be interesting to integrate generic spatial

segmentation approaches such as graph partitioning [92] with the automatic histogram alignment

approach. Additionally, striving for clear modularity will lead to wider deployment of algorithms

and deeper insights in the future.
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Chapter 7

Summary of Achievements

This chapter summarises the achievements made by this thesis. Section 1.3 introduced the automatic

histogram alignment problem and section 1.4 outlined the goal to develop unsupervised alignment algo-

rithms that can align the corresponding clusters in colour histograms. The achievements that meet these

goals and improve understanding are:

• Introduced taxonomy of colour inconsistency removal techniques. Chapter 2 provides a new

way of looking at colour inconsistency correction methods by organising methods into a taxonomy.

The relationship between apparently disparate methods is made explicit, common transformations

are identified and related to different methods in the literature. The chapter can be used on its own

by anyone interested in an overview of basic colour theory and colour inconsistency removal.

• Introduction of a new feature based histogram alignment approach. Chapter 3 introduces a

new feature based histogram alignment approach. The algorithm makes effective use of a scale

space technique to robustly detect features in 1D or 2D colour histograms. The introduction of the

scale space feature detector solves an important feature detection problem, it finds histogram peaks

at different scales robustly and efficiently. FBHA can be successfully used to align histograms

that have similar structures using feature point alignmenttransforms. Feature point transforms

are shown to be a useful and powerful class of transform; previous colour inconsistency removal

applications relied on manual labeling or domain specific prior information such as the presence

of Macbeth charts to use these transforms.

• Design and capture of colour inconsistent databases.The experimental design and subsequent

data-capture of the RGB image database described in Chapter4 and the Buhler Sortex video data

described in Chapter 5 were both significant undertakings. In the case of the Buhler Sortex data

capture, a new capture system and associated software were designed and constructed by the author

as part of this project.

• Introduction of procedures and metrics to rank colour inconsistency removal methods.

Chapter 4 introduces a new metric for evaluating the alignment of labeled or partially labeled

histograms, the average Mahalanobis distance. The metric is a fair way to rank multi-modal align-

ments, its choice is justified by empirical comparison with existing metrics. Chapter 4 also in-
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troduces a ranking methodology based on bootstrap statistics, the method produces an ordered

ranking of all methods tested on the RGB image database. The bootstrap methods handle the

highly non-Gaussian nature of the results distributions being compared with an associated degree

of confidence.

Chapter 5 introduces procedures to rank different colour inconsistency removal methods on the

Buhler Sortex methods, these procedures are specific to the Buhler Sortex data and procedures

and show the methods that give the lowest variation in product appearance across the chute.

• Empirical investigation of methods on RGB data-baseChapter 4 provides a comprehensive

comparison of existing colour inconsistency removal methods. To the author’s knowledge, this

is the first such application independent ranking of its kind. The ranking can be used by other

practitioners as an initial assessment before investing time implementing or using some of the

methods in custom systems. The chapter also investigates the FBHA algorithm on RGB data using

1D and combinations of 1D and 2D histogram alignments; both the strengths and weaknesses of

the automatic FBHA procedure are highlighted.

• Empirical investigation of methods on Buhler Sortex dataChapter 5 investigates both global

and piece-wise transforms of the data. FBHA with a cubic transform is found to be the best global

alignment transform. Also, the feature detection and association step can be used to segment the

product portions of the distribution without the need to inspect the background separately. This

functionality alone, could lead to stopping the product feed less so that efficiency is increased.

A large number of permutations of system components were tested in this chapter, commercial

confidence means that relative improvement to the system arenot highlighted directly in this thesis.

Relative improvements to the current system can be discussed with the thesis examiners at oral

examination only(Note: this is a contractual requirement).

• Clear positioning of the existing work for future researchSignificant advances have been made

towards the goal of fully automatic and general histogram alignment procedures. Where limita-

tions have been found, they have been exposed, explained andsuggestions for future research have

been made. Hopefully, this approach will facilitate continued progress on this topic.
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Chapter 8

Glossary

BRDF: Bidirectional Reflectance Distribution Function.

CAM : Colour Appearance Model.

CAT : Chromatic Adaptation Transform.

CCD: Charge Coupled Device.

CIECAM97s: A colour appearance model that predicts a number of human colour appearance phenom-

ena such as chromatic adaptation.

CMOS: Complementary Metal Oxide Semiconductor.

CMYK : Cyan, Magenta, Yellow and Key(black) subtractive colour model used in colour printing.

CIE : International Commission on Illumination.

CIE 34 XYZ : CIE colour space based on positive matching functions determined using experiments that

use two degrees of visual angle.

CIE 63 XYZ : CIE colour space based on positive matching functions determined using experiments that

use ten degrees of visual angle.

FBHA : Feature Based Histogram Alignment.

EM : Expectation Maximisation algorithm.

GMM : Gaussian Mixture Model

HSV: Hue, Saturation and Value colour space.

HSL: Hue, Saturation and Lightness colour space.

RGB: Red, Green and Blue colour space.

YUV : Colour space defined in terms of luminance (Y) and chrominance (UV).

SIFT Scale Invariant Feature Transform.

SVD: Singular Value Decomposition.

U-V: The UV plane of the YUV colour space.
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Chapter 9

Appendix

9.1 The Pseudoinverse

The inverseA−1 of a matrixA exists only ifA is square and has full rank. In this caseAx = b has the

solutionx = A−1b.The pseudoinverseA† is a generalization of the inverse, and exists for anym × n

matrix. We assumem > n, if A has full rank we define

A†= (A
T
A)

−1
AT

and the solution ofAx = b is x = A†b. The best way to computeA† is using singular value decom-

position. WithA = USVT, whereU andV aren×n orthogonal matrices andS is anm×n diagonal

matrix with real, non negative singular values.

We find,

A†= V(S
T
S)

−1
STUT.

If the rank ofA is less thann, then(S
T
S) does not exist, and one only uses the firstr singular values;

S becomes anr × r matrix andU andV shrink accordingly.
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9.2 Ordering Results
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Figure 9.1: Ranked transformation methods for image pairs with 000(S) variation for: 1) Red-cyan paper

9.1(a) and 2) Skittles 9.1(b).
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Figure 9.2: Ranked transformation methods for image pairs with 000(S) variation for: 1) Teddy bears

9.2(a) and 2) three paper strips 9.2(b).
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Figure 9.3: Ranked transformation methods for image pairs with 0(L-LI)00 variation for: 1) Red-cyan

paper 9.3(a), 2) Skittles 9.3(b), Teddy bears 9.3(c) and three paper strips 9.3(d).
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Figure 9.4: Ranked transformation methods for image pairs with (C)000 variation for: 1) Red-cyan paper

9.4(a), 2) Skittles 9.4(b), Teddy bears 9.4(c) and three paper strips 9.4(d).
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Figure 9.5: Ranked transformation methods for image pairs with 00(L-AL)(S) variation for: 1) Red-cyan

paper 9.5(a), 2) Skittles 9.5(b), Teddy bears 9.5(c) and three paper strips 9.5(d).
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Figure 9.6: Ranked transformation methods for image pairs with (C)(L-LI)00 variation for: 1) Red-cyan

paper 9.6(a), 2) Skittles 9.6(b), Teddy bears 9.6(c) and three paper strips 9.6(d).
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Figure 9.7: Ranked transformation methods for image pairs with (C)0(L-AL)0 variation for: 1) Red-cyan

paper 9.7(a), 2) Skittles 9.7(b), Teddy bears 9.7(c) and three paper strips 9.7(d).
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Figure 9.8: Ranked transformation methods for image pairs with (C)00(S) variation for: 1) Red-cyan

paper 9.8(a), 2) Skittles 9.8(b), Teddy bears 9.8(c) and three paper strips 9.8(d).
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Figure 9.9: Ranked transformation methods for image pairs with 0(L-LI)0(S) variation for: 1) Red-cyan

paper 9.9(a), 2) Skittles 9.9(b), Teddy bears 9.9(c) and three paper strips 9.9(d).
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Figure 9.10: Ranked transformation methods for image pairswith (C)(L-LI)(L-AL)0 variation for: 1)

Red-cyan paper 9.10(a), 2) Skittles 9.10(b), Teddy bears 9.10(c) and three paper strips 9.10(d).
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Figure 9.11: Ranked transformation methods for image pairswith (C)0(L-AL)(S) variation for: 1) Red-

cyan paper 9.11(a), 2) Skittles 9.11(b), Teddy bears 9.11(c) and three paper strips 9.11(d).
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Figure 9.12: Ranked transformation methods for image pairswith (C)(L-LI)0(S) variation for: 1) Red-

cyan paper 9.12(a), 2) Skittles 9.12(b), Teddy bears 9.12(c) and three paper strips 9.12(d).
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