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Abstract

Colour provides important information in many image praieg tasks such as object identification and
tracking. Different images of the same object frequentid/different colour values due to undesired
variations in lighting and the camera. In practice, cotitrglthe source of these fluctuations is difficult,
uneconomical or even impossible in a particular imagingremment. This thesis is concerned with the
question of how to best align the corresponding clustersolafur histograms to reduce or remove the
effect of these undesired variations.

We introduce feature based histogram alignment (FBHA)ritlyos that enable flexible alignment
transformations to be applied. The FBHA approach has thmessl) feature detection in the colour
histograms, 2) feature association and 3) feature alighmWa investigate the choices for these three
steps on two colour databases : 1) a structured and labetisolbd® of RGB imagery acquired under con-
trolled camera, lighting and object variation and 2) greyel video streams from an industrial inspection
application. The design and acquisition of the RGB imagegryg-level video databases are a key con-
tribution of the thesis. The databases are used to quargitatompare the FBHA approach against
existing methodologies and show it to be effective. FBHAnienhded to provide a generic method for
aligning colour histograms, it only uses information frone thistograms and therefore ignores spatial
information in the image. Spatial information and otherteahsensitive cues are deliberately avoided
to maintain the generic nature of the algorithm; by ignosoge of this important information we gain
useful insights into the performance limits of a colour atigent algorithm that works from the colour

histogram alone, this helps understand the limits of a gea@proach to colour alignment.
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Chapter 1

Introduction

1.1 Colour consistency in Computer Vision

Colour is an important source of information in computeiosissystems. Objects with different material
properties can be imaged as different colours. Common egifuins that use colour information are
object segmentation, object tracking [7] and retrievingikir images from a database [8]. Figure 1.1
shows an image of a tomato with a rotten patch on the left aneb#tlty looking tomato on the right.
Clearly, the tomato on the right is preferable to eat, a pesn make this judgement quickly and
effortlessly using colour information. Buhler Sortex [$e industrial partner company for this project
produce systems that use colour information to separateé god bad food [10]. The annual Robocup
competition [11] is a soccer tournament for autonomoustoltigure 1.2 shows images from the Aibo
robot dog league. Colour information is used to distinglistween the ball, robots, the terrain and the
goal.

A major problem for all colour computer vision systems istttiee recorded colour of an object
varies when camera and lighting conditions change. Colonsistency occurs when an object or ob-
jects with the same material properties are imaged to gezedime recorded colour values irrespective of
any different lighting and camera conditions that may ba@né Colour consistency of objects in an un-

controlled scene can be improved by introducing carefealctidn of the lighting and camera conditions;

Figure 1.1: A tomato with a black rotten patch on the left amgalthier looking tomato on the right.
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s

@) (b) (© (d)

Figure 1.2: Two scenes captured by an Aibo robot that have begmented using the method of Rofer
[1]. 1.2(a) shows a scene and 1.2(b) shows a segmented verfsibe image. Each unique colour in
1.2(b) indicates a unique class label. 1.2(c) and 1.2(dyshdifferent scene and its segmented version.

In this image the scale of the ball and robot is larger whenpamed to 1.2(a).

however, it rapidly becomes impractical or even imposdibleroduce incremental improvements using
this approach because lighting environments and camevasdittaerent variabilities that are difficult to
minimize due to the limits of manufacturing technology. @alconsistency should not be confused with
colour constancy, the term colour constancy is used to tefarethods that reduce object colour varia-
tion due to lighting effects only. High colour consistencgans that colour variation can be attributed
to the object material properties and not the propertie@tamera or light source. This is significant
in the Robocup application when tracking the ball and goaitpm; regions of the ball and terrain in
Figure 1.2(d) have been misclassified, misclassificatiaesiofrequently when the lighting or camera
conditions are highly variable. Currently, Robocup sognatches are played indoors as the variability
due to outdoor lighting fluctuations is considered too gfg&a}. In addition, a large amount of time is
needed to set up the colour thresholds for each Aibo evem lighting conditions change [13]. In-
creasing the degree of colour consistency improves thkitrgprocess and makes object segmentation
thresholds more reliable.

Improved colour consistency reduces the camera and lightinations. Computer vision applica-

tions that would benefit from this are:
1. Colour object segmentation where data has been captured with lighting and/or cameiatiean.

2. Image lookup from a database where images were captured under different lighting ctooms

and/or camera conditions
3. Colour object tracking when subsequent frames vary due to camera and/or lightiagtef

4. Robust colour models object variation can be compactly modelled when cameralighting
variation is reduced. If these effects can be minimizedeabgolour models constructed under
one set of lighting and camera conditions could be moreyedsjployed under a different set of

conditions.

This thesis argues that colour consistency can be improvaedange of applications by summarizing
colour data-sets with histograms and then finding transéitions that align the histograms to minimize

the differences due to camera and lighting variations.ddigtms can be computed from single images,
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Figure 1.3: Input, Accept and Reject Samples for White LongiGParboiled Rice using a Buhler
Sortex Z-series machine. Pictugcopyright Buhler Sortex Ltd, 2008. Reprinted with permossi

image frames in a video sequence or from portions of a videaust over time. Colour data acquired
from a range of different situations can be summarized usihgur histograms, this means that generic

methods to align colour histograms could have significadtwide reaching impact.

1.2 Colour consistency in the food processing industry

Colour sorting machines are a vital part of the modern foat@ssing and production process; these
machines are used to sort products such as rice and cofteadnept and reject categories as seen in
Figure 1.3. Buhler Sortex is a leading global supplier ofegtsorting machines in over 100 countries;
they have more than 20,000 installations around the wortHaae continually striving to improve the
quality of the sorting process. Sorted foodstuffs have mifig@antly higher economic value than unsorted
foodstuffs. Buhler Sortex and their customers are keenitoggnomic advantage through optimization

of the sorting process.

Product classification performance varies within and betwaachines; this variation exists despite
the fact that machines have been engineered to provide by leightrolled inspection environment. Buh-
ler Sortex engineers and scientists have determined they faktor affecting classification algorithms
is the variability in the recorded colours of product beinged. Current techniques for minimizing this
undesired variation involve a large degree of hand tunimggusteractive tools; performing this tuning
requires a high degree of skill. Buhler Sortex are contilydabking to improve the classification per-
formance and reduce the set-up time of their machines. Tév@acic and environmental impact of even

a small performance improvement is extremely significaettdithe large volumes of food produce pro-
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cessed. A typical machine sorts approximately nine toneefipur and works for approximately 6000
hours per year. Therefore, a performance improvementaévasgust 0.5 percent of this product volume
will yield an extra 270 tonnes of product per machine per y€ae application of generic and automatic
colour space alignment algorithms on Buhler Sortex machiv&uld mean that the manual tuning step
could potentially be eliminated or at least minimized. Iffer Sortex machines operate at higher levels
of performance then less product will be wasted and highalitytsorted produce will result.

A further goal of improved calibration routines on Buhlert®a machines is to build colour distri-
butions for specific products suchlaasmati riceor kenyan coffetéhat can be calibrated across different
machines. Improved calibration methods will enable thedeur distributions to be applied in practice
since the calibration mapping within and between machiné$e better understood. Deployment of
colour models for food products would reduce set-up timeab @sts. At present, engineers may be
required to fly to foreign sites to perform detailed calilmatand set up procedures; colour distributions

that can be automatically calibrated for different machiweuld greatly reduce these costs.

1.3 The automatic histogram alignment problem

Colour histograms of objects with the same material pragethat are imaged under different camera
and lighting conditions exhibit differences due to colauransistencies. This thesis hypothesises that
meaningful structure can be extracted from histograms Bgidraent transforms can be found that align
the structure of the histograms to increase colour comgigtel' he term automatic histogram alignment
problem is used in this thesis to describe the process offindiignment transforms from colour his-
tograms without manually defined labels. The applicatiar8dction 1.1 and the Buhler Sortex problem
described in 1.2 would all benefit from robust and generiatsmhs to the automatic histogram alignment
problem.

The next chapter reviews existing methods for solving tHeurdnconsistency problem and high-
lights that many solutions are only applicable to a specifabfem domain. Domain specific solutions
are important as they teach us how to produce high perforengygtems in a pragmatic way; however,
it is difficult to apply methods from one problem domain to #es. Generic histogram alignment algo-
rithms with known performance characteristics would aliesion systems that handle colour inconsis-
tency to be built using standardized colour consistencyutesy prior knowledge and related constraints
can then be integrated into the problem as required. Th&ghkevelops generic histogram alignment

methods and tests the methods on an RGB colour image datahadsgey-level video stream data.

1.4 Goals and Contributions

The goal of this thesis is to create unsupervised alignmentigorithms that can align the corre-
sponding clusters in colour histograms.

The aim is for these algorithms to have general relevancerimpater vision and to find direct applica-
tion to the problems faced by Buhler Sortex. This sectionraanizes the original contributions of this

thesis developed in the pursuit of this goal.
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1. Design and capture of structured databases for the study ofalour space alignment.

e A structured, labelled RGB colour database.

The image database systematically introduces scale, eaaloeal and ambient lighting vari-
ation for four sets of simple objects. Different histograligrament methods can be tested
on image sets where the class of physical variation leadirgpserved colour variation is
known. The hand labeled object annotations allow robushtifaéive evaluation of aligned

histograms.

e Buhler Sortex grey-level video streamed data.

A new real time capture system has been developed to recoed data from a Z1 Buhler
Sortex food processing system. The real time nature of ttesalows existing and new real
time colour calibration methods to be studied in a mannerhha direct relevance to the

real-time machine behaviour.
2. Algorithms to solve the colour space alignment problem.

o Athree-step feature based histogram alignment (FBHA) éwaark is introduced. The three
steps are 1) unsupervised colour space feature detec}ifagtdre association and 3) feature
alignment. There are a variety of choices at each step, thesees are evaluated in isolation
using the RGB image database. Examination of each compon&uiation in addition to
the aggregate performance provides insight into the ahgdle and advantages of the FBHA

approach.

e Scale space techniques are utilised as a robust way of gérggaeaks from noisy histograms.
Matching these peaks leads to the discovery that strugnisshatches between correspond-

ing clusters commonly occur in data from commodity cameras.
3. Colour space alignment metrics and evaluation methodology

e A labeled histogram metric for comparing multi-modal dtations is introduced, it lim-
its the bias towards the largest and overlapping clustetss means that it considers the

alignment of each cluster to be of equal importance.

e A method for ranking FBHA and existing colour inconsistemeynoval techniques is in-
troduced. The variability of transform performance is fduo be high, the method uses

bootstrap confidence tests to establish a ranking that ateéar outlier behavior.

e A method to compare colour histogram corrections on Buhtate® data is introduced.
Corrections are ranked by the residual colour variatiorhefdorrected acceptable product,
good scores indicate correction methods that are worthyrtfiér investigation in a sorting

setup.

4. Empirical analysis.
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e A new ranking of existing colour inconsistency removal noeth and transforms is devel-
oped. To the author’s knowledge, no comparable rankindsixighe literature. The ranking
helps system designers pick an appropriate method or tnansfthen constructing a com-
puter vision system. The analysis highlights the high pemémce of point alignment trans-
forms. An important discovery is that the performance of ownly used transforms and

methods is highly sensitive to small variations in the datgugsition conditions.

¢ Different combinations of system components and transétions are tested and ranked us-
ing Buhler Sortex data. The ranking is novel and leads tghtsiconcerning the importance

of different processing steps and transform selection.

Thesis Plan

This chapter has introduced the automatic colour histogrigmment task and related it to the

highly relevant problem of colour consistency.

Chapter 2 reviews related work and constructs a taxonomy of colouoriststency correction
methods. Background methods that directly support theldpmeent of ideas in subsequent chap-

ters are specified.
Chapter 3 introduces the FBHA methods and qualitatively evaluates tiehavior.

Chapter 4 introduces an RGB image database containing examplesatficiolconsistency. The
different sources of colour inconsistency in the databaseescribed. FBHA methods are quan-

titatively compared to a set of reference methods using dtabdise.

Chapter 5 studies the Buhler Sortex machine and applies the FBHA ndelbgy to grey-level

video stream data.

Chapter 6 discusses the commercial impact of this work and the valge@do the industrial

sponsor.
Chapter 7 draws relevant conclusions from this work and suggestsdutsearch directions.

Chapter 8 summarises the achievements of this thesis.
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Chapter 2

Literature Review

This chapter reviews important background material thiatna solutions to the automatic histogram
alignment problem to be developed and placed in contexst,Rite basics of colour vision are intro-
duced; the aim is to explain how colour phenomena occur inde wange of physical environments.
Second, existing colour inconsistency methods are revleme organized so that their key operational
points can be understood. Finally, a compilation of math@aakransforms is specified. The transforms

are used by existing methods and the specifications are drpemat later points in the thesis.

2.1 Colour fundamentals

This section introduces basic concepts of colour visione fgdationship between colour, light, mate-
rial properties and camera sensors is described. Adelptari®pic function [14] summarizes the light
sampling process that produces colour data. The plenaptictibn is used in this review to describe
different common sampling schemes; it provides a commois baisthinking about different physical
capture conditions. Next, the ambiguous mappings betweebject's material properties and observed
colour are discussed; the different types of ambiguity ested and examples of when they occur are
given. The section concludes with a description of how colswepresented using colour spaces and

the purpose of these spaces.
2.1.1 The three elements of colour
Colour requires three elements:
1. light,
2. interaction of the light and objects in the scene,

3. the capture of light at a sensor.

The following subsections explain these three elementring of their physical principles. The percep-
tion of colour by humans depends on the physics of the worddrdrat happens in the eye and the brain.
Human sensations of colour involve the photo-chemicalgsses in the eye combined with psychologi-
cal processes in the brain. In computer vision, colour irsage represented as numbers and depend on

the physical world and the physics of cameras. This secatitvoduces these concepts in some detail.
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Figure 2.1: The electromagnetic spectrum describes fadiat different wavelengths. Visible light
occupies a small part of the spectrum between 380nm and 7.8Pictare by L.Keiner (Reprinted with

permission)

Visible light is electromagnetic radiation between the glangths of 380nm to 780nm. Infra-red
and ultra-violet light exist below and above this range eesipely. Light and other forms of radiation
exist on a continuous spectrum of wavelengths as illustdaye-igure 2.1. Lightis composed of particles
called photons, each photon carries a definite amount ofjgnéight is remarkable as it exhibits the
properties of both a wave and a particle, this behaviour @swmnas wave-particle duality [15].

A light source emits photons in different directions. Rawé&ry deals with the measurement of
light and the distribution of light in space is measured gsadiance. Radiance is the power (energy per
unit time) travelling at some point in a specified directiper unit area perpendicular to the direction
of travel, per unit solid angle. Its units are watts per squaeter per steradian [16]. It is common to
study the property of light by ignoring the dependency oidsahgle and plotting the spectral exitance
in watts per square meter against wavelength. Figure ZBays a spectral power distribution outdoors
and 2.2(b) shows a spectral power distribution measureéruadlorescent light. Measurements are
obtained with a photometer, the vertical scales in thests gle normalized to lumens. Lumens is a

transformed representation of actual radiance that is tese@asure the perceived power of light [2]. It
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is immediately noticeable how different these two disttifys are. Spectral power distributions change
for different lighting conditions.

The spectral power distribution is a summary descriptionght interacts with a physical en-
vironment in complex ways. Adelsoet al. [14] introduced the plenoptic function as an idealized
concept to describe the incident ligtite incoming radiancegt every point in space. The value
P(0,¢,\t,V,,V,,V,) of the plenoptic functionp, is the intensity of the light with wavelength,
at position,V;, V,,, V, at time,t in direction,d, ¢. The function describes the incoming radiance at every
pointV,, V,, V, of anidealized eye along a ray direction specified in sphéciwordinates parameterized
by 0, ¢, for every wavelength\ at every timet. Adelsonet al. state that the plenoptic function allows
specification of a colour holographic movie: “A true hologihéc movie would allow reconstruction of
every possible view, at every moment, from every positibeyary wavelength, within the bounds of the
space-time wavelength region under consideration. Theoplic function is equivalent to this complete
holographic representation of the visual world”. The plaiofunction is important as it allows one
to abstractly examine the structure of the information thavailable to the observer by visual means.
In computer vision or computer graphics, the plenoptic fiomcis naturally parameterized in terms of

(x,y) spatial coordinates on the image plane to give the v&IUg y, \, ¢, V,., V,,, V2).
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Figure 2.2: Spectral power distributions from GE Lightir®].[ 2.2(a) shows the spectral power dis-
tribution of outdoor daylight and 2.2(b) shows the spegb@ber distribution under Spx35 florescent
lighting.
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The interaction of light with objects
When light hits an object it is modified by the interactioniwiihe object’'s material structure. Berns [17]

lists the following different interactions:
e Transmission through a transparent or translucent object.
¢ Reflection from a specular or matt object.
e Absorbtion of light by an object.
e Scattering of light through a material.
e Fluorescence. Fluorescent materials absorb and thenitdigits at different wavelengths.

In practice, a combination of these effects may occur forvaminteraction between light and object.
Models that consider all the effects would be prohibitivebmplex, it is common to introduce sim-
plifying assumptions and propose models for limited classeobjects. The bidirectional reflectance
distribution function (BRDF) [17] describes how incomingaidiance coming from different directions
is reflected in different directions. The function can bedugedescribe interactions with diffuse, specu-
lar or diffuse and specular interactions. In computer giagtthe BRDF of a material such as skin [18]
can be measured and then utilized in the production of tealimking rendered images.

In medical imaging, current research in optical tomogragaeks to reconstruct images of the brain
by shining infra-red light on the brain and inferring intakbrain structure from light readings that have
passed through the head [19]. These methods must accouhefepmplex manner in which light is
scattered. To summarize, models of light and material&ttgwn exist for a range of different materials.

However, the models are frequently complex.

The observer

The capture of the incoming distribution of light by a phatositive observer is the final element nec-
essary to describe colour. The human eye is a natural gfgrtimt for discussion. Figure 2.3 shows a
schematic view of the eye. Light enters the eye by passiraytir the cornea and lens and an image is
formed on the retina. The retina is comprised of rod and celig, ¢the rods are responsible for detecting
brightness and the cones are responsible for colour vigiba.majority of normal people possess three
types of cone cell. The three different cone cells are eacliezkin a different manner by different
wavelength ranges of light.

Guild [20] conducted colour matching experiments to iniggge trichromacy and to determine the
response functions of the three types of cone cell. Paaitipwere presented with a split visual field, the
left side was illuminated by a monochromatic light and tlyltihand side was illuminated by a mixture
of red, green and blue monochromatic lights. The partidipaask was to mix the red, green and blue
(RGB) lights until the colour appearance of the right sidéheffield matched the left hand side. The task
was repeated for different illuminants on the left hand sifléhe visual field. Figure 2.4(a) shows the
RGB tristimulus curves that result from this experimengsil curves are the best fit curves to the mixing

results obtained from all participants. The RGB matchingcfions can be negative, this is because it is
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not possible to match all colours by mixing the RGB primarlesorder to effect certain matches, Guild
moved a primary light source from the mixing side of the fiehd #o the test light side. This situation is
modelled by subtractive matching and results in the negaidrtions of the matching function. The CIE
34 XYZ matching functions are a basis transformation of ti&BRporimary matching functions so that
X,Y and Z are positive everywhere. The updated CIE 63 XYZd#ad is shown in Figure 2.4(b). The
CIE 34 standard presented the test and mixture field usinglegoees of visual angle, whereas the CIE
64 standard used ten degrees [21]. Understanding the akigifour matching experiments is important
because most modern cameras and colour spaces are basabaifiodings of these original matching

experiments.
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Figure 2.3: Schematic view of the human eye (Source: Cre@ammons [3]).
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In computer vision, a camera is used to capture colour imd&eth a camera or human eye sample
the plenoptic function spatially, over different wavelémtpands and over time. In a colour camera, a
number of optical filters are used to extract informatiomfrine different wavelength bands. The ideal
theoretical camera is a pin-hole camera shown in figure 2rbimfage is formed on the rear plane by
placing the pin-hole aperture &, V,,, V., this arrangement samples the plenoptic function at thistpo
Real cameras deviate from the ideal pin hole camera becdug#ical, electronic and manufacturing
limitations. Section 2.1.4 explains how these deviatiansse colour inconsistencies that exist in all real
cameras. Section 2.1.5 discusses how RGB cameras may hgtistdddor many machine vision tasks

and proposes alternative choices.
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Figure 2.4: Colour matching functions for the RGB and the &|F,Z primaries shown in 2.4(a) and
2.4(b) respectively. Red is used to indicate R and X, greditattes G and Y, blue indicates B and Z
primaries. The curves indicate the relative amounts of tiragry colours needed to match a test target

colour with the indicated wavelength.
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Figure 2.5: The pinhole camera (Source: Creative Commdins [4

2.1.2 A simple colour model
The CIE defined a multiplicative model of colour that is commyaised because of its simplicity [16](pg.
115). The model is most appropriate for Lambertian surfatetates that the grey-level intensity in the
ith channel is

g = / ENSNQi(N)dN,i=1,...,m. (2.2)
The scene is illuminated by a single light characterizedhgy dpectral power distributiof'()\), this
specifies how much energy the light source emits at each wagéi\. The surface reflectancg \) of
the imaged object is the proportion of light incident on theface reflected at each wavelength and the
spectral sensitivity functiorp; (1), is the sensitivity of théth channel to light at each wavelength of the

spectrum. The integral is over the rangef wavelengths of light.

2.1.3 Colour ambiguities: Metamerism and Colour inconsistncy

The mappings from an object’s spectral reflectance funcipx) to observed colours are not unique.

This is perhaps the most important idea in colour vision beeaf the consequences of two examples
of these non-unique mappings: Metamerism and Colour instamey. Observed colour is dependent
on the three elements of the colour triplet, the Lambertimdehis used here to describe the different

ambiguities.

Metamerism

Metamerism occurs when imaged objects with different nigt@roperties have the same recorded
colour [17]; in the Lambertian model, material properties@escribed by the reflectance functi®m).
Metamerism enables important applications such as pricaémlir pictures and colour television. The
colours of objects in a picture or on a television screen app®match their real world counterparts.
This is an example of metamerism, the material properti¢isevink of the paper, or the phosphors on a
cathode ray television are different to the material propeof the displayed objects and yet the colours

appear to match. Without metamerism it would not be possibtecreate images that accurately match
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what we see in the outside world! In computer vision, metasners treated as a problem to be avoided
or minimized if possible; this is because a common use ofuraoto uniquely identify objects with the
same material properties.

The two kinds of metamerism are:

1. llluminant metamerism: Colours of different objects aflatinder one lighting condition and mis-

match under another.

2. Observer metamerism: Colours of different objects mataier one observer (camera) condition

and mismatch under another.

Colour inconsistency
Colour inconsistency occurs when a single object give®uifit recorded colours. The two types of

colour inconsistency are:

1. llluminant colour inconsistency: An object gives twofdient colours under two different illumi-

nation conditions.

2. Observer colour inconsistency: An object gives two défe colours under two different observer

(camera) conditions.

In practice, combinations of illuminant and observer ctinds are possible for both metamerism and

colour inconsistency.

2.1.4 Physical basis for inconsistency
This section explains how observer colour inconsistendyidluminant colour inconsistency are caused
by physical conditions during image capture. An understamdf when these inconsistencies occur is

important when designing computer vision systems.

Observer colour inconsistencies

Cameras used in computer vision require optical lens systerfocus light and electronic sensors to
capture the light and convert it into numerical signals.sT$gction describes details of modern camera
design that suffer from colour inconsistency.

The optical system

Two notable sources of colour inconsistency in the optigatesm are vignetting and chromatic abber-
ation. Vignetting is the fall off in intensity due to the geetry of a thin lens. The pixels at the edge
of a CCD array observe darker colours than those at the ¢ehiseis a problem when segmenting a
colour object using the same colour thresholds in all pixefe Aibo robot dogs used in Robocup suffer
from significant vignetting, segmentation performanceriprioved across the visual field by calibration
of the vignetting effect [22]. Horn [23] proposed a basic rlodr the behaviour of the vignetting fall
off function. The basic model is often insufficient becausddes not account for further imperfec-
tions in real lenses [24], also the vignetting function dsas a function of aperture and zoom. This

makes photometric calibration of systems with variablerape and zoom difficult [24]. Vignetting is
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also a significant source of colour inconsistency in panarqmotography where multiple images with

overlapping content are stitched into a larger image [ZB]&7].

Chromatic abberations occur because different wavelsrajtight are refracted through a medium
at different angles. In photographic lenses, this can tasdifferent wavelengths being broughtto focus
at different points. Lens designers undergo great efforteduce this effect and using a high quality
lens is the best way to combat this abberation. The two kifd&immatic aberration are longitudinal
chromatic aberration which shows up as the inability of & lenfocus different colours on the same fo-
cal plane and transverse chromatic aberration which cam$&ereed as fringing at areas of high spatial
detail. In practice, chromatic aberration will result asoabination of both the longitudinal and trans-
verse effects. The effect can be seen by imaging a grid oklilaes on a white background, inspection
of the red, green and blue intensity profiles from verticaéd near the centre and the edge will show
misalignment if chromatic abberation is present, see @fil[R4] for more details of this method.

The sensor system

Light passes through the optical system and is focused onrthge plane. Incident light on the im-
aged plane can be sampled using a charged coupled device) (@Gtdmplementary-metal-oxide-
semiconductor (CMOS) arrays. Both types of sensor accumsilgnal charge in each pixel proportional
to the local illumination intensity, the charge is then certgd to an output signal. With CCD arrays the
camera circuitry is separate from the imaging chip, CMO&yarconvert charge to voltage on the chip
in each pixel. Each sensor type has advantages in diffeiteatisns, CMOS sensors are rugged and
offer superior integration. CCDs offer superior imagesligqpand flexibility [28]. In both types of
sensor, manufacturing tolerances mean that there aregahggferences between individual pixel sites.
The combined effect of these physical and electronic difiees mean that colour inconsistencies exist
between different pixels on the same sensor and betweaneatitfsensors. Further comparison of CCD
and CMOS can be found in Janesick [29]. For an in depth studgwifces of noise in electronic cameras

see Kamberova [30].

Coloured lens filters are used to sample different spectablengths when using CCD or CMOS
chips. There are two common sampling arrangements: 1) therBingle chip arrangement [31] shown
in Figure 2.6(a), and 2) the prism based multi-chip arrareygnshown in Figure 2.6(b). The Bayer
pattern places red, green and blue optical filters over theaseslements to approximate the relative
distributions of red, green and blue sensitive cone celthéneye. There are more red and green filters
because the human eye is less sensitive to the blue charostlcammon cameras use this construction.
Different spectral bands are sampled at different spatisitipns, so the missing samples in each spec-
tral band must be reconstructed; demosaicing algorithi2isd8al with the optimal manner to perform
this reconstruction. The spatial sampling limitations o Bayer pattern can be avoided with a more
expensive and complex multi-chip design shown in 2.6(b) frtulti-chip arrangement uses a prism to
split light into the red, green and blue bands which are ealthgampled in the spatial domain using in-
dependent arrays of sensors. Itis important to be awareedfifferent characteristics of sensor systems

as they sample the plenoptic function in different ways aadehdifferent noise characteristics. This
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Figure 2.6: Two different arrangements for sampling défeérspectral ranges. 2.6(a) shows the single
chip Bayer pattern array where a red, green or blue filter etgrs placed over each pixel. 2.6(b) shows
a multi-chip arrangement that splits light with a prism asésithree separate imaging chips for the red,

green and blue bands. Images reproduced from Dalsa [5].

means that different colour inconsistencies are to be ¢&gec

Illuminant colour inconsistencies

Section 2.1.1 introduced the idea that different light searhave considerably different spectral power
distributions and that imaging objects under differentifgleads to colour inconsistencies. Objects im-
aged outside during changing atmospheric conditions daenssing different lights will be illuminated
with lights that have different spectral power distribatso Additionally, it is practically impossible to
construct an environment that illuminates objects in agmly constant manner at different positions
in the scene. When using bulbs, different amounts of ligatradiated in different directions and the
characteristics of a bulb can change over time as it ages.

A further important consideration is the geometric relasioip between the light source, the imaged
object and the camera. For specular objects such as mb&lglt leaving an object at a given point on
the surface will vary significantly as the light source is mdv For diffuse objects such as matte paints
that scatter light in all directions, movement of the ligbtuisce produces a much smaller change in
outgoing illumination from the surface patch. Imaging afecbwith a complicated shape compounds
the complexity of the matter further, even if the object isd@mdrom a homogeneous material. This
is because the local surface normal varies at differenttipasi on the surface and the local surface
reflectivity is dependent on the local normal. In the theoattcase, an ideal camera in a perfectly
constant light field could be used to sample the plenoptictfan by taking images of an object from
all camera positions and viewing angles. This would givegesathat have different colour values that
are due to the BRDF and other material properties of the bhjett the object geometry alone. This is
the minimum possible colour variation that can be theoadlfiexpected with an idealised lighting and
camera setup when observing an object from different mostwithin the environment. In practice, the
observed colour variation will be much greater due to thearamand lighting inconsistencies detailed.

A pragmatic approach to using colour is necessary in machsien, practical steps to minimize colour
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variation are : 1) Controlling the illumination as much ap@ssible, 2) Limiting the range of different
geometric relationships than can exist between the lighifect and camera and 3) Using the best quality
cameras given the budget. The cameras, lenses and filtanki e chosen by considering how the
camera inconsistencies will affect the recorded colounad@ offs between different camera choices

should be made to maximize application performance.

2.1.5 Colour Spaces

A colour space is a co-ordinate system that allows all caslealevant to a domain of interest to be
described. Many different colour spaces exist that have blegeloped for a variety of reasons. This
section summarises prominent colour spaces derived frenR®B tristimulus experiments and con-
trasts these with non-RGB models. An N-dimensional colpaics is formed by sampling N different
ranges of the light spectrum and combining the resultinguwoValues into an N dimensional vector.
Each resulting dimension is called a colour channel. Se@ia.1 introduced tristimulus theory which
motivates the use of three overlapping ranges in wavelerajiid the red, green and blue colour bands.
Most colour cameras generate RGB data as the images ardaadtéor human viewing. However, the
automatic histogram alignment problem is independent adréiqular colour space and so wavelength
sampling selection is discussed in a general way. Finalyypaedure for designing a colour space for

object recognition is discussed and the relative meritstisatlvantages of this approach are discussed.

RGB derived models

The RGB colour space represents colours as a mixture of regin@nd blue, this section details common
colour spaces based on this representation.

Perceptually based systems

There are two problems with the RGB colour space: 1) the RGE ao not correspond to intuitive
notions of colour and 2) a constant Euclidean distance ketwéferent colours in RGB space does not
correspond to a constant perceptual difference betwegpoihés.

Perceptually based colour spaces aim to alleviate theségong. The Hue, Saturation, Value (HSV)
colour space forms a cone along the white black axis. Huespands to the chromatic notion of colour,
saturation is the distance from the axis and value is thehbress. HSV and a similar space HSL are
transformations of the device dependent RGB space. Thissiteat the HSV and HSL spaces provide
greater intuition than RGB but differ for each device. Thesaces find use in photo-editing and drawing
software.

The CIE XYZ tristimulus functions plotted in figure 2.4(b)lk to so called chromaticity coordi-

nates, these are the normalized tristimulus values:

X Y Z
€r = = z = .
X+v+2? X+v+2° X+v+2Z

The x-y plane describes the chromatic variation of the aslamd z represents lightness. The x-y plane
plot is known as the chromaticity diagram and representgaasible human perceivable colours. The
CIE XYZ colour space is not perceptually uniform, this metoag different perceptual differences result

from colours a constant distance apart. The field of colosion has sought to develop perceptually
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uniform systems, although none is perfect. The 1976 uv Jia¢épgs 63-65yas developed to improve

the chromatic uniformity, its coordinates relate to XYZ axding to:

’ 4 / 9y

U = , U = .
2412y +3 —2z 4+ 12y + 3

One problem with the u'v’ space is that it is not perceptuathyfform in lightness. The CIELAB ad-
dresses this problem and has correlates for lightnessmzhemd hue. CIELAB is considered to be
the simplest colour appearance model (CAM). A CAM providethematical formulae to transform
physical measurements of the stimulus and viewing envigartimto correlates of perceptual attributes
of colour [33]. Most CAMs have a corresponding chromatieqatdtion transform (CAT); the CAT is a
method for transforming the CAM of a scene acquired undestiltaminant so that the scene colours
match those under a reference illuminant. The combinati@?ds and CAT seek to model the human
colour constancy mechanism that enables people to pereivbject to be the same colour under differ-
ent illuminants. Research has led to CAMs that predict knpsytho-physical effects more accurately.
For example, CIECAM97s is a CAM that predicts a number of hum@our appearance phenomena
such as chromatic adaptation.

Care should be taken when using colour spaces designed tel imachan vision processes in a
machine vision setup because human colour vision proceseasten not directly comparable to the
processes in a particular machine vision setup.

Colour mixing models The need to mix appropriate proportions of inks to print colimnages has led
to the CMYK system. CMYK is a subtractive mixing system thgpresses how an RGB colour can be

created by mixing the appropriate amount of cyan,mageeitayy and black inks on white paper.

Non RGB models

For most humans the notion of colour is synonymous with th&R@@del. When analysing how to best
use colour in a machine vision application, it is importantealise that human colour is a product of
evolution and is in no sense ticerrectmodel. Birds, lizards, turtles and many fish have four typges o
cone cells and most mammals only have two types; Birds alsalgse to the ultra-violet band [34].
Each individual species has evolved a visual system spégiffte environmental challenges and needs
that it faces. Machine and computer vision problems alsgedtiat are not best suited to the RGB
camera, Grey-level inspection is important in industriegdection [35] because of its simplicity and
robustness. Hyperspectral imaging combines usage of #fitdevbands with infra-red and ultra-violet
bands as required. For example, visible and IR bands candaeta®xtract information from airborne

imagery of vegetation [36].

How to design a colour space

A key concern in computer vision is how to capture colours tliscriminately identify different objects

in a scene; this section discusses the principles of howdgotsgpectral wavelength bands to achieve this
goal. In practical terms, these principles guide the sieaf colour lens filters so that discriminative
colours are obtained. It is important to realise that the R@Bur space and its derivatives are preva-

lent in the literature because of the pervasiveness of mo@&B cameras, RGB cameras have been
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developed to produce images that match human perceptiony Bamputer vision applications do not
require a visual output to be presented to a human and thienefay be better served by a different set
of sampling wavelengths.

The best wavelength ranges to sample can be determined bieang the spectral reflectance of
the objects being inspected. The spectral reflectance obgttovaries with wavelength, and spectral
reflectance curves have been prepared in the laboratory asipectrophotometer for a range of objects
by Glassner [6]. As an example, Figure 2.7(a) shows the splaeflectance curves for barley seeds
and bark. The curves are well separated across the full @figeminant wavelengths from 400-690
nm, this means that a grey-level system in these ranges beulded to successfully distinguish barley
seeds from tree bark. Figure 2.7(b) shows the spectral taflee curves for redwood and a brown paper
bag. At around 650 nm the curves cross, this means that usiagrs that sample within a narrow band
around 650 nm would be ineffective at discriminating betw#® brown bag and better discrimination
between the bag and redwood can be achieved by samplingsdletween 400 and 550 nm.

These examples illustrate that the best colour ranges $oridiination can be discerned by con-
sidering the spectral reflectances of the objects in questfdhere is a distinct difference in reflectiv-
ity within a single band of wavelengths then this monochricnange of wavelengths may be used.
Monochromatic sorting removes dark rotten peanuts and diefigcts from rice [10]pgs. 117-136)
When it is not possible to find a single region of the spectrunene the acceptable and defect food
produce are separated then more colour channels are réquires is the reason that Buhler Sortex
bi-chromatic machines are used to sort coffee, bi-chransgttems are more complex to produce due
to the duplication of optical and detection componentithgplitting devices and more complex signal

processing [10].

2.2 Colour Histograms

A colour histogram counts the number of times that each plessblour value occurs, colour values
are represented as N-dimensional vectors. RGB histogranestieen used in image database retrieval
[8] and head tracking [37]. The combination of colour hisags and a robust comparison metric
can be used to perform colour comparisons that are reagomdtnist to mild fluctuations in lighting and
object pose. Common reasons for utilising colour histoggamparisons is their robustness to geometric

variation of the scene and viewpoint.

2.3 Discussion

The concepts introduced in this chapter allow the autonegtogram alignment problem introduced in
section 1.3 to be motivated with further precision. Thedgsam alignment problem poses colour incon-
sistency removal as a histogram alignment task, this assthmécolour inconsistencies between colour
data captured under different experimental conditionstearemoved by aligning similar structures in
histograms. This review highlights illuminant and obsem@our inconsistencies, in practice both the
illuminant and capture conditions are likely to vary togethlhe plenoptic function provides a general

way to describe colour image formation, it can describelsimgage capture, video and different colour
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Figure 2.7: Spectral reflectance curves comparing tworgiffesets of objects. 2.7(a) shows the reflec-
tivity of Barley seeds (red) and Bark (green). 2.7(b) shdvesreflectivity of Redwood (red) and a brown

paper bag (green). All data is from Glassner [6].
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space representations.

The histogram alignment approach is attractive as it doesaguire explicit physical modelling
of the illuminant and camera complexities. A transform #ilains colour inconsistent histograms is an
implicit model for the colour inconsistencies. Using sfiegirior knowledge in a constrained situation
is always more likely to yield more reliable algorithms, rewmer it is believed that a generic approach
is of great value. Ultimately, it is expected that knowleddé¢he best generic algorithms and applica-
tion specific algorithms will greatly enhance the flexilyil#gnd power of the computer vision designer’s
toolbox.

Examples of different colour inconsistencies that can duated within a common histogram

alignment scheme are:

e Inconsistency between images: A single image samples &moptic function at a given instant
in time ¢ (assuming all pixels are captured at exactly the same tinfelsecond image of the
same scene under the same exact camera conditions buediffighting conditions samples the
plenoptic function at a different time. Histograms can bmpated for the colour data from each

image and comparisons made.

e Inconsistencies between portions of a video stream: A vitemam captures multiple colour
values from the same pixels over time, the colour values faosingle or multiple pixels can be
represented as a histogram. Comparison between diffeidd gtream histograms compares the

colour inconsistencies that exist between the differeptura conditions.

o Different colour spaces: The fact that different colourcgsaschemes are important has been
highlighted. Different spectral sampling arrangementsa different ranges of in the plenoptic
function. Generic histogram alignment methods that worlhistograms of different dimensions
would be useful because data from a particular colour spanebe simply histogrammed and

passed to the histogram alignment algorithm to performwdlconsistency removal.

The flexibility of the histogram alignment approach is thet same methods can be applied to these and
different scenarios as desired. Of course, the performahaéhistogram alignment approach must be

validated independently using appropriate data.

2.4 Ataxonomy of colour inconsistency correction methods

This section presents a taxonomic organisation of exidii@gature on colour inconsistency correction
in computer vision. The main aim of the taxonomy is to undardithe relevant advantages and disad-
vantages of these methods.

The goal of colour inconsistency correction methods is jasidhe colour of some or all of a set of
colour data points so that ambiguous mappings from an dbjectterial properties to observed colour
are removed. Metamerism cannot be removed by transformafithe data points using information
in the colour data-set alone, instead metamerism shouldbgatled by controlling the lighting and

camera set up; the method of Sanders [38] dynamically adfashera settings to minimize metamerism
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to improve an object recognition application. In the absemitmetamerism, colour inconsistency can

be removed by alignment of the colour data-points.

The methods introduced in this thesis aim to reduce colaarisistencies between different colour
data-points where a histogram can be computed for each sktt@fpoints. This class of problems is
termedbetween set alignment of colour data pojraed is emphasised in this taxonomy. For complete-
ness, a class of popular colour inconsistency correctivaitscorrect data-points within a single set are
discussed briefly, these are ternveithin set alignment of colour data pointethods. The development
of histogram alignment algorithms is motivated by the widage ofbetween seproblems. The tax-
onomy views all methods in thiegetween setlass in terms of the colour data-point sets to be aligned.
Even when colour histograms are not directly used in a calmesnsistency correction method, it is
useful to think about what happens to the colour histograftiseocolour data-point sets to be aligned.
Colour histogram alignment algorithms must do two thingddéntify salient features or class labels of
the histograms to be aligned, and 2) Apply appropriate foainss to align the corresponding features or
labels. This taxonomy organizes thetween setethods according to how the features or class labels
are obtained, this reveals how prior knowledge is embedudedi method and therefore how applicable
it is in other domains. If all colour data-points had corraati unambiguous material class labels then
the colour inconsistency correction problem would reductirding the best alignment transforms. In
reality, labelled data are rarely available and so methodstract features and labels from the colour
histograms is critical. Ultimately, better labelling ofetltolour data allows more powerful alignment
transformations to be applied. A graphical overview of tagohomy is shown in Figure 2.8. The

categories of the taxonomy are:

¢ Within set alignment of colour data points
A number of notable colour inconsistency corrections fatibithewithin setcategory. Vignetting
removal methods seek corrections for the light attenuadltianoccurs near the edges of the image.
It is common to take training images of constantly illumathbbjects with homogenous material
properties. Given these images, it is assumed that vigigatidue to lens abberations which can
be corrected. The GermanTeam Robocup entry [22] and thevigmitting method of Yu [39]
both take this general approach. The GermanTeam methoddfisiatially dependent correction
in each colour band in YUV space to correct vignetting. Yusthod handles noisy reference
images using a wavelet de-noising method and finds the péeesraf a vignetting model to per-
form the correction. Zheng's method for vignetting cori@e{40] computes the parameters of a
vignetting correction model from a single arbitrary imagferepeatedly segments the image into
homogeneous intensity regions and then uses the regiorgtitoage a vignetting function, the
procedure is iterated until convergence. Zheng's apprbigtiiights the inter-connection between
segmentation and colour inconsistency correction; thispaance of the segmentation procedure
and the vignetting correction are coupled. These vigregettimrrection methods are informative,
but not generally applicable to other colour inconsisteoasrection problems. The correction

methods and models used are specific to the vignetting proble
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Examples of other within-set corrections are chromaticeasifion and sensor noise removal.
Chromatic abberations can be removed using an active ssistiem that dynamically brings dif-
ferent colour bands into focus to find a correction [24]. Thithod requires specialised hardware
and specific test image patterns that make the method gbneiféitult to apply. Sensor noise
is minimized [41][42] by acquiring dark images with the laezep on. These noise minimization
methods acquire a uniform reference field from a single camiesm to align the colour response

of the individual pixels.

Between set alignment of colour data points

Methods in this category can be thought of as histogram mdégrt methods although they may
not act explicitly on histograms. Colour data points areuged into sets and a histogram is
computed for each set. Relationships between the setseddaalign colour responses. A set of
colour values is obtained by sampling the plenoptic fumctidifferent applications use different

sampling schemes; two different examples are 1) the colaegaired from a single pixel video

sensor over time and 2) a single frame in a video sequencaradllg; it is only sensible to compare

histograms obtained from colour data sets that have beeplsediim a similar manner.

An application may align a pair of histograms (e.g. two inmgéa scene taken with different
lighting) and others may require alignment of a larger nundfdnistograms (such as subsequent
images in a video sequence). When it is known which histograra more similar the problem
is called anordered set histogram alignment problerfor example, during a video capture of
rice falling down a chute it is known that histograms fromegisxclose together are more similar
than from pixels that are far apart. In other problems, nokadge of the ordering is known in
advance and this is called thaeordered set histogram alignment probleror example, reducing
the colour inconsistencies between similar objects inoamg chosen image pairs from an image

database.

— Global feature alignment

x Utilize knowledge of colour formation
Colour constancy is a heavily researched area that aimsdweethe scene illuminant
of an image. Colour constancy estimates the scene illurharahfinds a mapping trans-
form to a commor(canonical)illuminant. Scene descriptions that are transformed to
the canonical illuminant are considered to be illuminawaient. These approaches can
be divided into statistics based and physics based appgeddB]. The physics based
methods build on models of material properties such as ttiealinatic reflection model
[44] and statistical methods correlate colours in the sedgttestatistical knowledge of
the spectral power distribution of common lights and matgsroperties of common
surfaces. The initial motivation for research into the askeolour constancy was pro-
vided by the ability of humans to recognize colours of ol§@tmnstantly under different

lights. The Retinex model [45] has a basis in human percéptodeling. Cioccaet
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al. [46] have evaluated Retinex for preprocessing images toceedependency on il-
lumination variation in an image retrieval task. The algori assumes constant scene
illumination and objects with Lambertian material reflexta properties. A compre-
hensive review of computational colour constancy alganglis provided by Barnaret
al. [47]. They identify algorithms that utilize increasinglfisgent assumptions about
the nature of the light and scene. The problem with the coatjmurtal colour constancy
approach is that good results can only be obtained on higiigtcained imagery. Fin-
layson [48] has shown that existing methods are not goodgmtufacilitate colour
object recognition across a change in illumination durirdagabase retrieval task; he
also notes that no existing method accounts for device enldgnce. This final point
is critical as it means that colour constancy methods argeerally applicable across
different uncalibrated cameras. Colour constancy metlodsot take account of the
different sources of colour inconsistency introduced hyee variations. Calibrating
cameras to a common reference colour space requires defaélgection of imaging
charts and the use of involved procedures such as Baataid [47]. In practice it is

not possible to calibrate the response of all cameras imtéys

Use global properties of distribution.

The Von Kries transform is a multiplicative adjustment o ttneans in each channel
[49] and the Grey-world transformation shifts a colour igition so the mean colour
is grey. These simple transforms were originally introdlias models of human colour
constancy, the problem with these simple transforms istttegt can perform well for
some classes of images and poorly in others [50]. The cotanster method of Rein-
hardet al. [51] transforms the colours of a source image to be percéyptsianilar

to the colours of a target image. The method transforms fr&@B R a de-correlated
perceptual colour space [52], the mean and variance areealiin this space before
transforming back to the original RGB space. The methodoper$ the alignment in
a perceptually based space so that alignment along the &xles space corresponds
to improving the matching perceptual factors. The autht@isncto use a device inde-
pendent colour transform but their transform simply mascisingle white point. True
device independent mapping requires further charactenisaf the cameras, the im-
plication is that this method will perform quite differepthcross different uncalibrated
cameras.

The method of Xiao and Ma [53] has similar aims to that of Remd{51] but seeks a
transformation in the RGB space. The method performs twarsép SVD decomposi-
tion of the RGB covariance matrices of the source and taigktlilitions. The principal
axes are assumed to correspond according to their orderase@ which is given by
ordering the principal axes according to the size of thairegsponding Eigenvalues. The

corresponding axes are then used to find a transformatidnstitamposed of a shift,
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rotation and scaling. The method is known to fail on highlyitimmodal imagery as the
shapes of these distributions can change significantly.udiinsegmenting image pairs
and applying the method to corresponding image regionsggested by the authors
in these cases. The colour transfer method of Pitie [S54]ateuly projects the RGB
histogram onto a randomly oriented two-dimensional plaasimng through the centre
(grey-point) of the histogram. One dimensional histograatahing is performed on the
marginal distributions of the 2D projected histogram. Tjriscess is iterated for a set-
time to determine an overall mapping function, the mappérthen applied to re-colour
images. The problem with this method is that it transformewe distribution to be
equivalent to a target distribution, when run to convergethés destroys true features
of the source distribution. Moreover, features of the oddjhistogram are likely to be
destroyed when stopping the algorithm early as suggestédebguthors. This proce-
dure has been used to transform images for visual effectheustopping criteria for
the algorithm are ad-hoc and are of questionable value tesythat requires statistical
correctness.

The methods of Reinhard [51], Xiao and Ma [53] and Pitie [54 all evaluated on a
small number of images. The visual results of transformeab@s are presented. No
end-user studies or quantitative evaluations are perfdrmbe main advantage of the
global transformation methods presented is their sintgligvhich allows them to be
applied to align colour histograms with little concern foetnature of the data. The
main limitation of these global methods is that they do nokenase of informative

local features of the data distributions which can in tuadléo poor performance.

— Labelled/Partially labelled data
The methods at this level of the taxonomy attach labels ta#ta from the different align-
ment sets, then they transform the colour data to align tineesponding labels. Methods
to label the data are often highly specialized and cannoppkeal to other problems; these
methods can be grouped according to whether they assumgaufaarstructural form to the
data such as the presence of particular objects in the seethatmbjects will appear in a

predefined order in a video sequence.

* Structured data

Objects with known reflectancescan be introduced into a scene to reduce the com-
plexity of finding corresponding points in colour space. AdBath chart is a standard
chart used for colour management that has 24 patches of krefiectance (shown in
Figure 2.9). Typically, 24 colour points in RGB space are patad by finding the mean
colours of regions obtained from each patch. The procespeated with different cam-
eras or lighting conditions and another 24 RGB points aradpthe correspondences
between points are known, so point alignment transformatt@n be applied to align

the colour histograms. A chart-based approach has beenmusechulti camera food
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inspection environment by Tao [55]. In diagnostic imagi@g|poscopy is a method to
identify cervical cancer by ranking lesions in order of géye Colour inconsistencies
affect the ability of physicians to make meaningful comgpiseadiagnostics; the method
of Li et al. [56] calibrates cameras for colposcopy using a grey chatteastandard
MacBeth colour chart. The method first removes vignettimigti@ns by inspecting the
grey chart. A general camera transform is modelled as a hermemys! x 3 transform
followed by a third order polynomial transform in each chelnnThe transforms are
computed to align the corresponding source and target gatettracted from MacBeth
charts.

lllie and Welsch [57] improve the colour consistency betwemultiple colour cameras
for use in a photometric stereo system. Their method pladdscbeth chart in the
shared field of view of the cameras. The chart and squaresutomatically detected.
The calibration process has two main steps: 1) hardwaremeeas of the cameras are
adjusted to minimize the variance of the same patches a@utdiom different camera
views. 2) Different alignment transforms are computed #iigin the mean colours of
the patches obtained from different cameras. The transf@xplored are th8 x 3
RGB transform and a hierarchy of polynomial transformatiofihe polynomial trans-
forms perform best according to the introduced criteriohe §uantitative evaluations
are performed with the chart, no indication of the effect oorengeneral imagery is
given. Macbeth charts are a powerful tool that facilitateuanber of powerful colour
inconsistency removal methods. However, it is often imficator impossible to insert
a Macbeth chart into a scene each time the lighting changssrform a re-calibration.
In many scenarios it may be impossible to place a MacbetH aitara scene at all.

An alternative to using colour charts is to deliberatelystounct situations that limit the
complexity of the scenes. Robocup is an annual robotics etitign that requires au-
tonomous robots to compete in a game of soccer. Colour a#iliiorhas a significant
effect on the performance of these robots and the methodkstake advantage of the
fact that the main object colour classes are known in advdrmeexample, it is known
that the ball is always orange, the terrain is green and tioh pnes are white. Jungel
[58] developed a calibration system for Aibo robots thalisés this prior information
from the spatial and colour domain. These approaches talantabe of scene knowl-
edge to develop robust approaches but are highly specifettask at hand.

Image overlapis a constraint utilized in the field of panoramic image &iitgg where
multiple photographs of a scene are stitched together tdyse a larger panoramic
image. Different images obtained as an input to a panoratititiig process exhibit
differences in colour for the matching pixels due to locaiations such as vignetting
and global variations between cameras such as exposurevinite balance, gain and

so on. Failure to compensate for these radiometric diffsgemesults in visible seam
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stitches between the images. Numerous methods [59][p{@dind partial label cor-
respondence in the matched overlapping regions and udefitrisation as part of their
colour histogram alignment procedure. Tian and Gledhill] [@pply diagonal3 x 3
and homogenous x 4 (affine)transforms that align the histograms of the overlapping
regions. Jia and Tang [26] find a vignetting function and aasae global monotonic
correction function per image. The functions are found bgrasor voting approach
that seeks local smoothness; in this approach, no explanitetof vignetting or camera
effects is specified. The approaches of Litvinov and Schecfi®] and Goldman and
Chen [27] develop explicit models of colour inconsistenffgas and use the matched

regions as part of the fitting procedure.

Unstructured data
The termunstructured datas used here to refer to data that is not tuned for the task of

colour labeling.

- Colour data only: labels are attached to colour data from colour histogrdorea
Jeong and Jaynes [61] propose a colour transfer methodadommprove object
tracking performance between multiple cameras with nograpping fields of
view. The first step of their process performs backgroundfaneground mod-
eling that assumes the foreground is moving. All moving [gix@e assembled into
an appearance model in the U-V space for each camera viewffiaa &ransfor-
mation is found between U-V histograms for each camera hipdith Gaussian
mixture model to each histogram and then aligning the cpoeding components
of different models. This method is interesting as the psetw after the motion-
detection step is performed entirely in colour space. Harnghe method does not
perform consistently better than the diagonal transfornR@B histograms. The
results show that the method performs worse than the didgwuael when tracking
low numbers of objects. Performance relative to the diabomalel improves for
higher numbers of objects. The use of the U-V colour spacensteat dependency
on illumination is reduced. However, bringing the colowspense of multiple cam-
eras into the same reference space requires precise avéaiibn of each camera’s
response using imaging charts. This step is not performddarthe U-V colour
space correspondence can be approximate at best. Thisagpploows the poten-
tial of histogram alignment for improving the performandéadracking application
but raises questions about the suitability of the GMM featmapping approach as

the best way to do this.

- Incorporate other features. Fredembaclet al. [62] propose a region based im-
age labeling approach to improve automatic colour comeatiethods. The stated
aim of this approach is to label image regions accordinglieliasuch askinand

vegetation The idea is that once labeled, the colours of corresporn@igigns can
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be adjusted. The method performs a segmentation in DC-Ladedpy performing
K-means clustering with K=8 and then merging clusters that&low a manually
set distance threshold. Colour features that measure tigecbintent of the image
are also introduced and the methods is tested on a numberagiesncontaining
different objects on backgrounds with a high blue conterte iumber of scenes
evaluated is limited and there is no quantitative evaluegibcolour inconsistency

removal performance.

Figure 2.9: A Macbeth chart, commonly used for colour calilon tasks.

2.5 Transformation Methods

This section catalogs colour inconsistency transformatind methods for computing the transforma-

tions. Transforms are related to the different methodsriest in the taxonomy.

2.5.1 Transformations

Between set methods in the taxonomy use transformationgathanto three categories. These are 1)
Independent polynomials in each channel, 2) Correlategri®atials in each channel and 3) General
monotonic transforms in each channel. Each transformatioves an n-dimensional colour valsiéo a
new position in colour spaag. The scalar values; andg; are theith elements of the respectivex 1

column vectorss andq. Expanding these categories further:

1. Independent PolynomialAn orderd polynomial is applied to each dimension separately. For the

ith dimension,
d
i = aio + Y ks (2.2)
k=1

The transform is called independent becauseéttihehannel is not related to other channels. Equa-

tion 2.2 is the general form of the following transforms.

e Additive. d =1 and the coefficient;;, is set to 1 reducing the equation to a simple offset.
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For a colour data-point,
q=s+a, (2.3)

wherea is an x 1 vector of scalar offsets. It is not common the use the adsttiensform
for inconsistency correction, although many transformstaim an additive element. The

additive transform is worth considering for its simplicity

e Multiplicative. d =1 and the additive coefficient,, is set to 0. The multiplicative trans-
form is the dominant model in colour constancy. It is alsdezhthe Von Kries transform,

diagonal model ogaintransformation. For a colour data point,
q = Ds. (2.4)
D is ann x n diagonal matrix where diagonal entries are the multipheascaling factors
in each channel.
e Linear. d=1. Thelinear transform of a colour data point can be repteskusingn+1) x 1
homogeneous representationga@nds, qi, andsy, such that,

gnh = Tsp. (2.5)

Tisan(n + 1) x (n + 1) homogeneous matrix. The multiplicative elements are inthe
row andj columns wheré = j andi = 1..n. The additive elements are indexedibyn + 1)
wherei = 2..(n + 1). All other elements are zer@ represents a scaling, rotation and shift

of the colour data-poirt.

e General. d > 2. Polynomials of order 2 or greater are represented as aaepaatrix

multiplication in each channel.

=1 s s - s : (2.6)
Qid

2. Correlated Polynomial An orderd correlated polynomial relates thith dimension to all other

dimensions by the relationship

d n
¢ = oo + Z Z Oj(a(k—1)+5) - (2.7)
k=1 j=1

e N by N similarity transform : d = 1 and the additive coefficient, is setto 0. Ann x n

matrix pre-multiplies according to:
q = Ms. (2.8)

M represents a scaling and rotation of the colour data-goint
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e General: Equation 2.7 can be represented by multiplyinga (1 + nd) vector by a(1 +

nd) x 1 vector. Writing this for the casé = 2, n» = 2 as an example.

Q50
Q51

Qi:[l s 82 sy S5 Qo (2.9)

This is repeated for each colour channel.

2.5.2 Methods For Computing The Transformations
This section describes different methods to compute tmsfoamations introduced in the previous sec-

tion.

1. Aligning moments: A moment generating function represents a distributioteims of its mo-

ments. Thexth moment is

my, = / " f(x)dx (2.10)
xeD
In this work, the alignment of the first and second moment®oissitiered. The first moment is

also known as the mean or expected valieX). The second moment is closely approximated
by the variancé/ar(X') which is the average squared deviation from the mean. Tharsqoot

of the variance is the standard deviatidil)ev(X). The mean is a common summary measure
of a colour distribution, the grey world algorithm assuntesmean colour in a scene is grey and
aligns the corresponding mean colours in different imagésgua multiplicative transform. The
colour transfer method of Reinhaedlal. [51] aligns the mean and variance of a source and target

colour distributions in each channel.

The distribution of a random variabke can be aligned with the distribution of a random variable

@ using the following methods:
e Mean alignment using additive transform The scalar elements of equation 2.3 are
G = a; + ;. (2.12)
The offset in thath channelg;, is computed as
a; = BE(Q) — E(S). (2.12)

The same offset is used for all data-points.

e Mean alignment using multiplicative transform The multiplierr; in theith channel is the

entry in theith row and column of equation 2.4. It is computed as:

(2.13)
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e Mean and Variance alignment using linear transformSettingd = 1 in equation 2.2 gives
the linear equation,

qi = Qo + Qy18;. (2.14)

The mean and variance are aligned between distribuicarsd Q) using equation 2.14. The

multiplicative coefficienty;; is:

o SDev(Q;)
Q51 = SD@’U(Sl) N (215)
and the additive coefficient;q is:
Q0 = E(Q) - CmE(S)- (2.16)

2. Point Alignment Transforms: Local features of colour histograms can be identified by{sain
the colour space. The Macbeth chart alignment method efellal. [57] identifies corresponding
points in the RGB histograms of images by finding the meanwslin each of the coloured
squares on the chart. A point alignment transform moves afssurce points so the residual
distance between the transformed points and the targesgsiminimized. This transform is then
used to transform all source data-points. Ilieal. [57] apply this method to compute x 3
RGB and second order correlated polynomials to calibratéipreicolour cameras, they find the

correlated polynomials perform best in their application.

This segment describes methods for computing differensfoams of theg source points to the

[ target points. The source and target points are represégtégdo [ x n matrices,S and Q
respectivelys;; andg;; are the scalar values of thth points in theith channels o8 andQ. The
transformation parameters that minimize the distance eéatvithe transformed source points and

the target points can be solved using the following methods:

o Align points with additive transform. The additive shifta,, for theith channelis computed
as:

l l
> QGi D Sji
= iz

a; =

- (2.17)

All entries of theith row ofa in equation 2.3 are set tq.
e Align points with multiplicative transform. The multiplier,r;, is theith diagonal element
in the matrixD in equation 2.4. Théth row of S is x; and theith row of Q is y;, so,

T,y = yiTXi. (218)

This is repeated for all channels.

o Align points with independent polynomialsA separate polynomial transformation is com-
puted for each channel. An ordépolynomial is computed in th#&h channel that aligns the

scalar source and target values. Writing each source agettaalue as linear constraints on
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the coefficient values as:

2 d

1 s1; S$1 $1 Q0,5 q0,i

1 : : : : : = : . (2.19)
2 d

L s sy, St Qd,i qd,i

Writing this asA;C; = D; and solving forC; givesC; = A]D; whereA| is the pseudo-
inverse ofA;. Solutions are found for each colour channel.

e Align points with correlated polynomials The relationship between each source and target

point can be described by a correlated polynomial in eacbucathannel. Writing this in

matrix form:
1 d
S1,1 S1,n S11 Sin Q.1 cee Qo,n q1,1
1 S1,n =
1 d d )
Si,1 S1,n Sii o0 Sin And+1,1  --- Qnpd+ln qi,i
(2.20)

Writing this asAC = T and solving forC givesC = ATT.

o Align points with N by N transform. Rearrangingg = MQT7, gives,

M = QT (sT). (2.21)

3. Histogram matching and equalization The standard histogram equalization operation finds a

monotonic transformation of a 1D histogram so that the isitgrdistribution across its bins are
uniform. Histogram equalization finds a monotonic transfaf the original intensity values
so that the cumulative distribution of the transformed ®alis linear. Finlaysoat al. [48] apply
histogram equalisation to improve image retrieval ratesifan uncalibrated image database. They
transform all images with a histogram equalisation in eadividual channel prior to the retrieval

step.

Histogram matching finds a monotonic transform of the sohist®gram intensity distribution that
matches the distribution of a target histogram. Réti@l. [54] use repeated histogram matching

as part of their colour transfer method.

The problem with histogram equalisation for colour incstesicy removal between images is that
the available colour information in both images is not disecelated. The histogram equalisa-
tion transform only depends on the form of the one dimensiopat histograms, this means that
corresponding features in the histograms are ignored. Tdtdgm with the histogram matching
method is that any scale variations between correspondlistecs will be removed; this is erro-
neous when seeking a transform that removes lighting an@@asaffects only. Pitiet al. [54]
compound this problem with their iterative algorithm to bdgstogram matching along randomly

projected axes.

. SVD based principal axis alignment The SVD colour transfer method of Xiao and Ma [53]

computes a homogeneous rotation, scaling and translattgligns the principal axes and means

di,n

qi,n
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of a source and target data-set. The method separately gesesithe covariance matrix of the
source and target image data using an SVD decompositiodigtrdution means are aligned and
arotation and scaling is computed that aligns the nearest &he method computdsin equation
2.5, it assumes that the entire RGB colour distribution efehtire image is well modeled by an
spheroid. This assumption can break down due to the multiainmature of the distributions, if
individual modes move and deform independently the ermatpspheroids of the source and target

distributions may not correspond correctly.

2.6 Motivation

This chapter has described the problem of colour incomsigtand techniques that are used to manage
and correct these inconsistencies. The taxonomy orgao@esr inconsistency removal techniques
according to how they attach labels to colour data. Diffelmanches of the taxonomy incorporate
different levels of prior knowledge of the problem domaitoithe method. Methods that incorporate
high levels of prior knowledge typically perform well in tld@main that they are designed for but are
inapplicable or generalize poorly to other domains. Megtibdt label colour data reliably and accurately
can apply more powerful alignment transforms than methbdslabel the data approximately. This
thesis proposes that generic solutions to the colour instamey correction problem can be developed by
solving the between set histogram alignment problem. Timeigito detect local features of histograms
and apply point alignment transforms to perform the aligntyihis rationale is explored because point
alignment transforms have proven highly successful whamusructured data methods with objects of
known reflectance (such as MacBeth charts) [57][63]. To,dhtse transforms have not been applied
from the colour histograms alone; the object tracking e¢atibn method of Jeong [61] comes the closest
to achieving this, but incorporates a motion segmentatiep as the first part of the processing. In
addition, it has only been tested in U-V space and dependi@@Gaussian mixture model which is
often a poor model for the real shapes of distribution. Nbeless, Jeong’s work is promising as it
suggests that this approach is relevant to the field of objacking.

Despite the proliferation of different methods and transfe, we find no comprehensive studies
that explain which methods are best for minimizing colowoimsistency. It is common to study a colour
inconsistency correction technique within an applicaframework such as colour image retrieval [46]
or object recognition [64], these studies show that coloaonsistency methods improve performance
within these frameworks but they do little or nothing to eiplthe details of the relative performance
and behaviour of colour inconsistency methods. In additremfind no data-bases that are constructed
for the study of colour inconsistency correction that alliwe alignment of all relevant local modes in
the colour histograms to be easily tested.

The key driver for this project is the colour inconsistencglpem encountered by the industrial
partner Buhler Sortex. The research in this thesis has baeducted to add value to the proprietary
methods described in Chapter 5, but also to relate theseiptagy methods to other techniques used in
the wider vision community. Understanding the Buhler Sonethods and how generic colour inconsis-

tency methods can be applied to both Buhler Sortex data anel gemeral imagery helps understand the
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problems faced in each area. It is informative to see howrpadig solutions can be built on industrial
technology with an eye on the wider developments and trantteei vision community.
In summary, this review motivates the need for generic fedbased histogram alignment methods

and a study of their performance on different colour incstesit data-sets.
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Chapter 3

Feature based histogram alignment

This chapter introduces a feature based histogram aligh(R&HA) method to align a source RGB
histogram with a target RGB histogram. Aligning the coloistdgrams of images computes a colour
transformation that aligns the colours of a source imagé tibse in a target image. This chapter
considers the case where two colour inconsistent imagesicothe same set aV single-coloured
objects. Each histogram contains a number of dense redgiaiorrespond to objects of interest.
FBHA seeks a transform that aligns clusters that correspornide same objects. FBHA is designed
to handle multiple clusters of potentially different sio®, explicit assumption is made about the shape
of the distributions or the number of clusters present. FEt48umes that the source and target images

are of the same set of objects.

3.1 Feature based histogram alignment algorithm

The section outlines the FBHA algorithm. The steps to computolour transformation from a source

image to a target image using FBHA are:
1. Compute histograms for the source and target images.
2. Compute the scale space of each histogram and extraattsfdatures.
3. Reject obvious outlying features.
4. Match the remaining features.
5. Compute the coefficients of a point alignment transformlign matching features.
6. Transform the source image.
7. Test for failure by comparing the transformed and targgbgrams.
8. If FBHA fails, revert to a moment based transformation.

This algorithm was introduced by Senanayake and Alexar@igrtf process the individual R,G and B
channels of images. The treatment in this chapter is morergeand explores the approach in more
detail. The following subsections detail the steps of tlgoathm and explain the rationale for taking

this approach.
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3.1.1 Feature Detection

This section introduces a feature detection step to findifsignt maxima in colour histograms. The
approach uses methods developed in the realm of scale spalgsia. First, background scale space

theory is introduced and then the feature detection metamdescribed.

Background to Scale Space Methods

Meaningful structure exists at different scales in the dahd so meaningful structure in images can
exist at different scales. Scale space methods are teawmiqu extracting information from signals
when the relevant scales are not known in advance. Koerd@&hintroduced a scale space theory for
processing visual imagery using differential geometrisatiptors. The scale space approach has moti-
vated the popular SIFT feature [67] detection method thatmdes scale invariant local features from
images. Lindeberg [68] provides a detailed review of scpées theory. The scale space representation
of a N dimensional signalf, can be computed by convolution with Gaussiaiis;) of varying widths,

o as
L(o) = g(o) * , (3.1)

where the Gaussian kernel is
g(o) = (2m) N2 S exp(—(x — u) TS (x — 1) /2). (3.2)

The covariances, is a diagonal matrix with diagonal entries setto This defines an isotropic Gaussian
with standard deviation along each dimension. Convolution of a signal with a Gamsatancreasing
widths blurs the detail of the signal until eventually allt@iéis smoothed away and a single mode
remains. Scale space methods process the scale spaceat sigextract meaningful information. The
term deep structure has been used to refer to linked stegctiat can be extracted through the different

levels of the scale space [66].

Deep structure feature detection

The local maxima of a dimensional histogran¥l, provide local structure information. This section
introduces a new deep structure feature detection mettadtioids spurious local maxima detection.
First, it removes maxima below a noise threshaldSecond, it finds local maxima at each level of the
scale space that are connected to form paths over atlelasels. The local maxima in the histogram,
H, that lead to these scale space path are retained as sa@uatesF. F is av x N matrix of
feature points, each row indicates the co-ordinates of ectid feature in the histogram; the number
of detected features, is specific to a histogram and the parameters chosen. Thed@s®de function

F = FindPersistentMaxima(H, T, BlurScales, v) summarizes these steps in algorithm 1. The

parameters of the algorithm are:
1. T: the path length.

2. BlurScales: theT scales used for the blurring. Tl blurring parameter is;. o; = %101,

where: = 1..T.
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3. ~: the noise floor parameter.

The functionF'ind Persistent M axima generates and parses the scale spakk dff maintains an inter-
nal structuredDeepStructure Paths that contains all information about the detected pathsr&aes two
elements to constructing paths: 1) local maxima are detecdimg the functiorDetect Local M axzima
and 2) maxima connected across scales are added to a pathistbreepStructure Paths by the func-
tion FollowPaths. For histograms of different dimensionality there areatiéint ways of computing
local maxima and different possible connectivity rulesoasrscale. In 1D, a maximum occurs in a bin
that is greater than its two neighbouring bins, in 2D the ftE-S-W or all eight neighbouring bins
can be inspected. Two maxima are connected across scaiey ifive bin positions that are connected
by a pre-defined shape. In the 1D case the three neighbouria@bthe next level of the scale space
are tested for connectivity. In the 2D case, the 5-conneate@tconnected bins at the next scale are
examples of alternative connectivity rules. The maximadk&n and connectivity rules are specified
when applying the algorithm to data.

An example feature detection process in 1D is now given. fei§ul shows a histogram of the green
channel data from an image of plastic skittles. Local maxameadetected where a bin value is greater
than its two neighbours. There are a large number of irreldeaal maxima detected in this histogram,
Figure 3.1(b) highlights that a single cluster can contaamyilocal maxima due to local spikiness at the
top of a cluster. Note that local maxima are detected in thigyrmortions of the histogram, these noisy
maxima are discarded during the callf&resholdBins with noise floor thresholdy. Figure 3.2(a)
shows the scale space representation of the histogramn aigsthéocal maxima at each scale, notice how
maxima that are detected in the noise that surrounds a dainghsster centre are eliminated as the
corresponding feature paths terminate early in the scaleespFigure 3.2(b) shows the histogram and

features that lead to paths at least 20 long by seffing 20.

Algorithm 1 F = FindPersistentMaxima(H, T, BlurScales, )
LM < DetectLocal M axima(H)

PrevLevel LM < ThresholdBins(LM,~)

DeepStructurePaths < Initialise PathStructure()

fori=1toT do
ThisLevel LM < DetectLocal Mazima(H x g(o1))
FollowPaths(DeepStructurePaths, PrevLevel LM, T hisLevel LM)

end for

F < Features at the start of the paths with length¥ of

3.1.2 Feature Matching

This section introduces methods to match source histogeataifesW, with target histogram features,
Q. There is no guarantee that the number of detected sourcedsa, is the same as the number of
detected target featurds, The goal is to find the best set of one to one assignments brtwandb,

each set of assignments is callechatch A maximum cardinality match finds the maximum number
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. . . b| .
of one to one assignments as a solution, ther% solutions wheru > b, Ta solutions when

b > a anda! solutions wherw = b. Choosing the best match requires a notion of cost betweietspo

The total Euclidean distance between iftle set of matched points is computed as,

min(a,b)

By= Y L2(wi@) (3:3)

i=1
whereL2 is the L2 norm. The match with the minimum Euclidean distadgg is chosen. This value
can be found by brute force search by computing all of theipessnatches and the corresponding
scores,Fy, for all k£ and then finding the minimum value. The minimum Euclideanagice does not
guarantee that matches preserve rank ordering in a chdliniseheans that it allows folding transforma-
tions. In a rank ordered match, both matched points in eaghrel must be either less than or greater

than all other matched points in the channel. Two optionffature matching are evaluated in this work:

1. The maximum cardinality, one to one, minimum Euclideastatice computed with brute force.
(Referred to with the codeCEM)

2. UseCEM, then remove all non-rank preserving matches. This is pitefelding transformations.
(Referred to with the codeCEM-DC)

3.1.3 Feature Alignment

A point alignment transform is selected and used to aligmihtched features. Transforms with greater
degrees of freedom are more flexible but are likely to ovehétdata. The best transformation for an
alignment is determined by testing a range of transformatian a data-set to see which transforma-
tion performs best. The matching process sets the souroési®and the target point® so that the

corresponding rows @ andQ are the matched points. Then the following steps are pegdrm

1. The chosen point alignment transform is computed. Thatmdignment transforms fa8 and
Q and the methods for solving them are described in sectior?.2.Bifferent options for the
point alignment transformation are multiplicative (eqni®), additive (egn: 2.17), independent

polynomial (eqn: 2.19), correlated polynomial (egn: 2.@0an N by N transform (eqn: 2.21).
2. The source histogram, is transformed t&(A) using the point alignment transforif,

3. The Bhattacharyya coefficier, is computed between the transformed histogR{# ) and the
target histogramB as > +/sxtx, wheres, andt, are the corresponding bins 8{A) and
rzeX
B respectively. If the coefficient is less than a threshdld,the point alignment transform is

discarded and a moment based transform is computed to hkgmstograms.

Steps 2 and 3 are optional, they improve the robustness algloeithm overall and may not be required

when the point alignment transformations are likely to work

3.1.4 Discussion

This section elaborates on the design choices of the FBHAriggn and discusses the advantages
of the approach taken. The FBHA steps described are sumedaby the pseudo-code function
RobustFeatureBasedAlignment in algorithm 2.
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Algorithm 2 Robust Feature BasedAlignment(A, B)
W = FindPersistentMaxima(A)

Q = FindPersistentMaxima(B)
S, Q = MatchFeatures(W, Q)

Compute Point Alignment Transform usiSgandQ.
Transform source histogram,, using point alignment transform.
Compute the Bhattacharyya metrig, between transformed histogram and target.
if B < D then
Perform moment based transform of source histogriam,

end if

The problems encountered in employing standard featuectien techniques motivate the deep
structure scale space feature detection technique dedcrithe motivation is to produce a feature de-

tector that:
e Doesn't require the number of clusters to be specified asanpeter.
e Detects features at different scales without parameteisadent.
¢ |s not dependent on random initialisation and thus givesistent results for a single data-set.

Common feature detection methods such as K-Means [69] andsEN [70](pg. 435)approaches
require the number of data clusters to be specified as a pteatméhe algorithm; both approaches use an
iterative procedure to update initial cluster estimatask-Means, a data pointis updated. In EM-GMM,
each cluster is modeled with a Gaussian distribution whosanrand covariance is updated during
the procedure. For anything but the simplest distributidhese methods give different results based
on the initialisation points, resolving the correct clustgs from these results often involves manual
intervention and parameter tuning. GMMs fitted with EM sufemnilar initialisation problems to the
K-Means algorithm, also data clusters are frequently natsSian which leads to poor fits.

Matching low numbers of features with brute force is suffitidowever matching large numbers
of points can become expensive using this technique. Inwbik, the brute force approach is used
because low numbers of features are present and the fodus experimental work is on the histogram
alignment performance. If speed of execution of the matgktep becomes an issue in future work the
Hungarian method [71] can be used to match larger numbersatdifes efficiently. In this approach,
the feature matching problem is represented as a maximudmedity, maximum flow problem on a
bi-partite graph. The graph is bi-partite because therdvemetypes of nodes corresponding to source
and target features in this case; a bi-partite match is a @mmé correspondence between a source
and target feature. A cost is computed for each of the bitpartatches, and then a maximum flow
technique such as Ford-Fulkerson [72] is used to finchih€a, b) matches. The Hungarian algorithm
finds the set of bi-partite matches that maximise the totat between matches. The total Euclidean
distance minimization can be performed using Hungariarchiad by altering the cost function to find

a maximum value. This is done by subtracting the Euclideahftom a suitably large constant.
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In summary, the FBHA algorithm allows the use of point alignmitransforms to be investigated
using automatic processing. Itis designed to produceestabhl features and simple one to one feature
matches. A degree of robustness is built into the approadédting for catastrophic failure of the point

alignment transform.

3.2 Qualitative Evaluation

This section qualitatively evaluates FBHA, the aim is tonga intuition into the behavior of the algo-
rithm and how different options affect its behavior. FBHAeisaluated on image pairs using 1D, 2D and
3D versions of the deep structure feature detector. Theaésage from the image database described
in chapter 4, a full description of the image data is defetcedoncentrate on the algorithm behavior.
Chapter 4 develops a quantitative methodology for testoigur inconsistency removal and tests colour

inconsistency methods comprehensively. The aim of thismsets to visually demonstrate:
1. Feature detection using the deep structure method,
2. the matched features,
3. transformed histograms,

4. transformed images.

3.2.1 1D FBHA
1D FBHA operates on pairs of one dimensional histogramspptydl D FBHA to dimensionsy >= 2,

the procedure is applied in each dimension separately.sEgigton demonstrates 1D FBHA on a colour

inconsistent image pair.

Images

Figure 3.3(a) shows the source image and 3.3(b) shows thet tanage; both images are of a red and
cyan piece of paper captured under different lighting choials. The transformed source image is shown
in 3.3(c), its colours appear more similar to those of thgeaimage. The increased visual similarity

of the colours gives a qualitative indication that the colmeconsistency has been reduced by the 1D
FBHA procedure.

FBHA steps

The deep structure feature detection step described isek:tl.1 is performed on the red, green and
blue channel individually using parametetis= 0.005 andT = 9. The detected features and corre-
spondingCEM matched features are shown for the red, green and blue deamfigures 3.4(a), 3.4(b)
and 3.4(c) respectively. Two features are detected anddio the red channel histograms. The green
and blue channel histogram pairs show three detected é&satuthe target histograms and two detected
features in the source histograms; the final matches in thengand blue channels discard one of the
features from the target histogram. The matched featuseas®d to compute a linear point alignment
transform in each channel, the source image data-pointstine red, green and blue channels are cor-

rected using the transforms. A histogram of the correctddegais computed for each channel. The
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corrected histograms and their corresponding targetdnatos are shown for the red, green and blue
channels in figures 3.5(a), 3.5(b) and 3.5(c). The corredipgrpeaks in the corrected histograms are

aligned in all three cases.

Observations

The 1D FBHA procedure allows a linear correction to be coragint each channel that aligns the local
structure of the histograms. The computed linear trans§ammeach channel modify the original source
image so that it is more similar to the target image; thesditgtiae results provide an indication of
what is possible using the algorithm. The algorithm is ablalentify and match the histogram peaks
robustly even though the local structure of the histograakpés variable. Noticeable artifacts occur in
the histograms of the transformed data, the histogram dféimsformed red channel data in figure 3.5(a)
exhibits spikes and the histograms of the transformed gnadrblue channel data in figures 3.5(b) and
3.5(c) exhibit gaps. These effects occur because of theatiésprecision of image data, the image pixels
are represented by integer values in@he255 range. Transformation of pixel values by a multiplicative
transform less than 1 can cause transformed values to bagether in particular bins which results in
the histogram spikes observed in 3.5(a). Gaps in the histegpf transformed values can be produced
by a multiplicative transform greater thamhat effectively stretches the transformed values anda@ke
gaps in the histograms as seen in 3.5(b) and 3.5(c). Secfloh@@ovides further discussion of the issues

surrounding these effects and methods to mitigate them.

3.2.2 2D FBHA

The 2D FBHA procedure computes 2D source and target higtegfim two colour channels. An RGB
image is transformed by running 2D FBHA on the red and greamieéls and 1D FBHA is on the blue
channel. Any two channels could be chosen, but the greenexhdhannels are selected because the
standard RGB camera samples the red and green wavelengtadhran the blue band. Recall that the
human eye samples the red and green bands more than the htlietfiia sampling strategy helps the
human visual system uniquely identify most objects in theurz world. Reasoning by analogy, one
can suppose that the RG histogram is more likely to produdieseparated clusters than other channel

combinations.

Images

The colour inconsistent image pair in this example cont&ms different types of coloured object.

Figure 3.6(a) shows the source image captured in a room Vitlmescent lighting and 3.6(b) shows the
target image under the same ambient lighting conditionk wited bulb held over the objects. Figure
3.6(c) shows the transformed source image using 2D FBHA®rethand green channels and 1D FBHA

on the blue channel.

FBHA steps

The deep structure feature detection on the RG histograsayuse).0002 andT = 11. The connectivity
rule in the path following step connects a local maximum taaent path if the local maximum is in

the nine neighbouring bins at the end of the path. The 1D FBH#ke& blue channel uses= 0.005
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andT = 9. Figure 3.7(a) shows the square root of the source RG hatognd Figure 3.7(b) shows the
square root of the target RG histogram. The complex shagsept in the histograms provide a visual
illustration of the potential features in the histogram$arge number of local maxima are present in
the histograms so it is important to pick the significant Geas$ of the histogram. Figures 3.8(a) and
3.8(b) show intensity plots of the source and target RG fistms respectively. Matched features are
shown as green crosses and unmatched features are showhaessges. Yellow lines on the target
histogram are drawn between the position of the feature etatfyet histogram with the position of the
matched feature on the source histogram. The matched ésatueach channel are used to compute
three independent linear transformations, these tramsfare applied to the red, green and blue channel

of the source image in Figure 3.6(a) to transform it to 3.6(c)

Observations

Detecting and matching features in the RG histograms is keclggng problem. The advantage of the
2D FBHA step is its ability to detect and match features in R@ histogram that may be obscured
when inspecting the red and green channels individuallye RG histograms in figures 3.8(a) and
3.8(b) exhibit complex shapes and it is not obvious how taifieand match features manually. Upon
visual inspection it can be concluded that 2D FBHA performsasonable job of feature detection and
matching. However, the potential variability of histogramapes mean that detecting and matching
features from the histograms alone is not sensible in masgsca2D FBHA reveals details of the
histograms that may be obscured in the 1D version; howeverincreased detail available in the 2D
histogram must be balanced against the increased diffiofiltye feature detection and matching step.
This example applies independent linear transforms in BehiBtogram even though it is possible to
apply the correlated linear transform described by eqo&i@ withd = 1 andn = 2, this means that
any advantage gained by applying 2D FBHA over 1D FBHA in thet @aad green channels is purely
due to improved feature detection and association. Apglytie correlated transform removes colour

inconsistencies that are correlated between channels.

3.2.3 3DFBHA

3D deep structure feature detection uses: 0.00001 andT = 11. Maxima are detected where his-
togram bins contain values greater than those in the threergional 26 connected neighborhood. Max-
ima features are connected over scales if the 27 connecighbmehood at the next scale contains a

maximum.

Observations

3D deep structure feature detection was found to yield mhoyt roken tracks, all ending at approxi-
mately the same length in the scale space. This meant thigheaes detected were not suitable for use
in the later stages of the FBHA algorithm. Larger connegtiwindows and different noise floor val-
ues were interactively tested but none improved the featetection results. 3D deep structure feature

detection is not reliable on the histograms of RGB image83&BHA is not explored further.
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3.2.4 Shape preserving histogram transformations

Section 3.2.1 describes 1D FBHA and shows that computirigdriams of the transformed data in each
channel leads to histogram shapes that have gaps or spikesasmpared to histograms of the original
data. The spikes and gaps appear in such a way that the shépe afiginal histogram is no longer
preserved. This section details how to transform a soustednam so that is shape is preserved. The
interpretation of a histogram under transformation thasprves shape is discussed and compared to

computing the histogram of the transformed source datatpoi

The idea of a shape preserving histogram transformatioovisimtroduced with an example in 1D.
A 1D histogram with bins of unit size counts the valugdor thexth bin so thatr — 1 < ¢ < x where
2 is an integer bin index in the rande .. 255. The lower bin boundary for theth bin is defined by
I = = — 1 and the upper bin boundary is definedigy= z. For a given transform, the bin boundaries,
u, andl,, are transformed to give new bin positions, the bin countheftransformed histogram are
reassigned to the bins of a target histogram with unit sizetiansformed bin lies within a single bin in
the target histogram its count is assigned to this bin; hewéithe transformed bin spans more than one
bin in the target histogram its count is assigned propoafigto the spanned bins. This simple procedure
preserves the shape of 1D histograms for monotonic tramsfdhe same principle of transforming bin

boundaries and re-assigning bin counts can be extended#m@BD histograms if required.

The correction transform is a model for the sources of caloewnsistency between the source and
target data. Computing the histogram of the transformedcsodata does not give the same histogram
as the shape preserved histogram. It is important to aatiedhe difference between these approaches
and relate them back to the colour inconsistency problene mbtivation for using shape preserved
histograms is that the gaps and spikes in a 1D transforméazbhngsn do not appear and disappear in a
predictable manner. Spikes and gaps in histograms of temsfl data are likely to appear at different
bins in the histograms being compared, this means thatgneto metrics that compare corresponding
bins will be perturbed by these effects. The spikes and gapgenuinely present in the histogram of
the transformed data. Given the source colour values, éimsfiormed histogram represents an inference
about the distribution of colour values that would be olgdiminder a different set of experimental
conditions. The assumption that the transformed histograrst retain the same shape as the source
histogram is a strong assumption; it says that if furthereoketions of the same set of objects are
available under the target lighting and camera conditions,could expect the histogram of these values
to follow the shape of the preserved histogram. As a greaterber of colour values of the same
objects are observed, the gaps in the target histogram vbeuitied and spikes would be smoothed out.
One problem with the shape preserving procedure is thanisnteoduce a non-monotonic relationship
between the source and target histogram that is not spebifidtk original transformation model. For
example, if alinear correction is computed where the miidégive componentis greater than 1 the shape
preserving procedure introduces a one to many mapping freimgge bins in the source histogram to
multiple bins in the target histogram. This adjustment @ress the histogram shape but a 1 to many

relationship between source data-point values and taajeés is now introduced, there is no way to
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know how to transform the individual data-points withoutther information.

In conclusion, the shape preserved histogram minimizexsfthat are likely to cause perturba-
tions in common histogram alignment metrics. However, na@ming the shape constraint introduces
a deviation away from the computed colour inconsistencyemion transform. This can be seen be-
cause the histogram of the transformed data-points is novagnt to the shape preserved histogram.
The shape preserved histogram is of use when the source rgied figstogram shapes exhibit similar
structure and deformations are moderate. In this case,dventages of avoiding problems with his-
togram comparison metrics outweigh the introduced dewidtiom the colour inconsistency correction.
When the source and target histograms contain complex shtqeeshape preservation procedure may
not be appropriate as it is likely to model significant dewias from the computed colour inconsistency

transform.

3.3 Summary Conclusions

This chapter has introduced a method for removing coloumsistencies called feature based histogram

registration. The contributions of the method are:

e the introduction of an automatic feature detection andnatignt approach. The feature based
approach makes it possible to align the local structuresibgrams using point alignment trans-
forms. Point alignment transforms include correlated potyials and can account for a wider
range of variations than is possible when aligning the mdmehthe distribution using multi-

plicative or linear transforms.

¢ the introduction of a novel feature detector that exhili#ble performance over multiple execu-
tions. The detector does not require the number of clustdys specified and makes no parametric

assumptions about the form of the data.
¢ the introduction of two automatic feature matching strege@CEM andCEM-DC.

FBHA has been evaluated in a purely qualitative manner te thig reader and understanding and feel for
the steps of the algorithm, the 1D and 2D deep structureredktectors are shown to work well. The
3D version of the feature detector does not work well enoodadilitate automatic feature detection and
matching. Nevertheless, automatic feature based alighafdid and 2D histograms is useful because
1D and 2D data is common in machine vision applications. 1BI&kBas been shown to work on the
red, green and blue channels of an image. 2D FBHA has showaorioan the red-green histograms, an
RGB image can be manipulated by applying 2D FBHA on the resbigichannels and 1D FBHA on the
blue channel. The next chapter develops a quantitativessssnt of colour inconsistency removal and

evaluates the automatic FBHA approaches that haves beeduced.
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Figure 3.1: Example of the local maxima in a one dimensioigtbgram. 3.1(a) shows a histogram
obtained from the green channel of an image of skittles ininfege database. All local maxima are
shown as red dots, maxima in low level noise is highlightetl)asd multiple local maxima on a cluster

are highlighted as 2). 3.1(b) shows a zoomed view of the lmeadima in the cluster labelled 2).
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Figure 3.2: 3.2(a) shows a representation of the scale spdloe histogram in Figure 3.1(a); horizontal
slices indicate histograms blurred at increasing scaleimgdvom bottom to top, denser regions of the
scale space are rendered closer to white and local maxinaglaseale are drawn as circles. The maxima
form paths across scales, with paths from less significaaltgending earlier in the scale space. 3.2(b)

shows the persistent maxima usifig= 20.
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Figure 3.3: The source image in 3.3(a) and target image ifbBeXhibit colour inconsistency. 3.3(c)
shows the colours of the source image transformed using 1BAFBith a linear transform in each

channel.
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Figure 3.4: Source and target histograms are shown as gedrlme plots in the top portion of each
sub-figure. The red plots show the target histogram in thehedinel 3.4(a), green channel 3.4(b) and
blue channel 3.4(c). The corresponding blue plots show tliece histograms. Detected features are
marked on the source and target histograms with a star. Tienb@ortions of each sub-plot show an

exploded view of the source and target histograms and thehadfeatures.
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Figure 3.5: Exploded view of the histograms of the corredath plotted with the solid line and the
target histogram plotted with the dotted line. The aligneattdires are shown using a line to connect
the aligned feature and target feature. Subfigures 3.5&(h)3and 3.5(c) show the red, green and blue

channels respectively.
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Figure 3.6: Image of plastic skittles. Figure 3.6(a) shdwesdource image and figure 3.6(b) shows the
target image where a red light modifies the appearance okitikes. Figure 3.6(c) shows the modified

source image where 2D FBHA is used in the RG channels and 1DARBHsed in the blue channel.
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Figure 3.7: Sub-figure 3.7(a) shows the square root of RGdriatn for the source image in Figure
3.6(a) and sub-figure 3.7(b) shows the square root of the RBdram for the target image in Figure
3.6(b). Taking the square root of the histograms allows tizges of local features at different scales to

be observed more easily on a single plot.
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Figure 3.8: Feature detection and matching for the sourddamget RG histograms shown in Figures
3.7(a) and 3.7(b). The source RG histogram in 3.7(a) is stasem intensity plot in sub-figure 3.8(a),
dense regions of the histogram are shown closer to white essldense regions are shown closer to
black. The target RG histogram in 3.7(b) is shown as an iitieptot in 3.8(b). Matched detected
features are shown with a green cross, detected featuresethain unmatched are shown with a red
cross. A blue line is drawn on the target RG histogram fromrmtlaéched feature on the target histogram

to the position of the matched feature on the source histogra
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Chapter 4

An image database for testing RGB colour

alignment

This chapter introduces an image database for evaluatilogicmconsistency removal methods. The
database is structured to investigate different sourceslofir inconsistency. A quantitative methodol-
ogy for evaluating and ranking different colour alignmerdthods is introduced. The methodology is

used to compare FBHA and alternative methods.

4.1 Database design

This section motivates and describes the image databaseideo the task of removing the colour in-
consistency between the two images in Figure 4.1. The plasts in 4.1(a) are illuminated with ambient
lighting, 4.1(b) shows the same objects illuminated by aditazhal red light. A colour inconsistency
removal method should find transformations of the image#abthe individual colours of the yellow
skittles, blue skittles, green balls and grey backgroursd$ éoecome more coherent in colour space.
Trivial solutions such as setting colours to the same vaheeilsl be ignored. Recall that colour incon-
sistencies are non-unique mappings from the material ptiep®f an object to observed colours. A fair

comparison of methods should evaluate when the colours fremogeneous materials become more

(@ (b)

Figure 4.1: Two images of plastic toys on a grey cardboaréigracind. In 4.1(a) the scene is lit using

clear bulbs, in 4.1(b) a red bulb is placed above the scene.
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self similar while remaining distinct from the colours ohet materials. The database contains images

that:
1. are composed of a low number of simple objects that cotdaie regions of homogenous colour.
2. are captured under different experiment conditionsitepb different colour inconsistencies.
3. vary the relative scale of the different materials présethe image.
4. are labelled so that colours corresponding to differestenials can be identified.

The subsequent subsections describe more details abautthetion for these choices.

4.1.1 Objects

Four different sets of objects are chosen to create imagesdimtain 2 to 4 different materials. Scenes
with low numbers of distinct materials are chosen becauseattows the behavior of the colour clusters
that correspond to different scene materials to be studiddalarity. Notice that it is the number of
distinct materials in the scene that is important and nohtimaber of objects.

The objects are:
1. Red and cyan paper strips shown in Figure 4.2(a). Twordiffematerials are present.
2. Red, green and blue paper strips shown in Figure 4.2(bgeldifferent materials are present.

3. Purple, yellow and green plastic skittles and balls on reluttered grey background shown in

Figure 4.2(c). Four different materials are present.

4. Brown, yellow and red stuffed animals arranged on an utecked grey background shown in Fig-
ure 4.2(d). Four different materials dominate the imagesjraber of different materials occupy
a small fraction of the image. These are the black eyes ofdtiéear, the white and black labels

and the flag on the chest of the red bear.

The images of paper provide examples of a planar objectjastéipobjects provide examples of specular
reflections and the teddy bears are diffuse reflectors. Eigu8 shows the database hierarchy, this

structure groups similar variation types together.

4.1.2 Capture conditions

The database contains images of four different objectetadst are captured by varying four different

experimental conditions. The experimental conditiongechare:
1. The camera used.
2. The local illuminating light.
3. The ambient illuminating light.

4. The scale of the objects in the image.
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Figure 4.2: Typical images from the four different objectegories used in the colour alignment
database; for each object category, objects are imaged diffbrent scale, lighting and camera con-
ditions. Image 4.2(a) shows a representative image frorseh&ed and Cyan paper set. Image 4.2(b)
shows an image from the set of red, green and blue paper.sinige 4.2(c) shows and image of the
plastic skittles and ball on a grey background. Image 4.8fdws an image from the set of stuffed

animals.
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The first three experimental conditions lead to observeribundinant colour inconsistencies. Object

scale variation is a common confounding condition that realtgect matching problems harder. There-
fore, it is important that colour inconsistency removal hoets can handle data with scale variations.
Colour inconsistency removal methods can be tested on twoove images of the same object type
from the database. The difference in experimental conttimetween any pair of images is known, so it

is possible to test whether specific experimental conditmonfound specific methods.

UCLColVariationLib

RedCyanPaper
4{ ScaleVar1 ]
-FujiFilm
4{ HomeLoungelighting }7 -Nikon

-Olympus
4{ OfficeAmbientLighting }7
" Scaievarz

Skittles
TeddyBears
ThreePapers

Figure 4.3: Organisation of the UCL colour variation dathaThe directory structure under each of
the four object type folders is identical. The unique pafthe hierarchy are shown. At the lowest level
of the hierarchy there are three folders correspondingéaddtfierent cameras; each camera directory

contains five images corresponding to five different loagiting conditions.

Each of the sets of objects are imaged using:
¢ 3 different cameras.
o 2 different object scales.
o 5 different local lighting conditions.
o 2 different ambient lighting conditions.

These combinations lead to 60 images per object set and 24efentire database. The three cameras
used to capture the pictures are shown in figure 4.6. The flashswitched off for each camera and
automatic settings were used, a tripod was used to mininaind Bhake and the camera was allowed to
focus first by pressing the shutter down half way before @k picture.

The object scale in the image was varied by moving the camadjasting the zoom and readjusting
the positions and numbers of objects where appropriate.obfeets were imaged under two different
sets of scale conditions; human judgement was used to keepeldtive composition of objects and
background approximately constant across different caraed lighting conditions. Figure 4.4 shows

example images from the four different object classes irdageler 2 different scale conditions.
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Images are captured using five different local lighting dbad conditions and two ambient lighting
conditions. The two ambient conditions were created bywan all images in an office with a high
degree of florescent lighting shown in Figure 4.5(b) and mdjwoom with a large window shown in
Figure 4.5(a). The office environment lighting provides stant ambient lighting, whereas the living
room lighting varied significantly over the capture periagedo larger changes in sunlight and clouds.
Readings from a light meter shown in figure 4.5(d) were usaettify this. For each camera, scale and
ambient lighting condition, a scene was imaged under fivierdift local lighting conditions. Figure
4.5(c) shows the four different coloured bulbs used: 1) arcted 60W bulb, 2) a frosted green 60W
bulb, 3) a frosted yellow 60W bulb, 4) a clear 40W bulb. Thehfifghting condition was due to the
ambient lighting only. A dimmer switch set up was used to adhe bulb brightness to avoid high
degrees of over-saturation in the image; this was partigulmmportant when using a clear bulb and
highly reflective paper. Objects were placed on the floor Ardtbloured bulbs were attached at a fixed
distance above the floor. All images are captured in Jpegdgmasers of the database should be aware
that Jpeg is a lossy format. The Jpeg format is less relifiale tormats such as Tiff in areas of spatial

detail. The use of Jpeg does not affect the ability to tesohram alignment algorithms.

4.1.3 Object labeling

Each image in the data-base has an associated layered melskager in the mask is a binary image that
defines a polygon or polygons that mark regions of the imagfe dmogenous material properties. The
polygons were marked up manually for each image region imelhes. The colours of each material
can be accurately compared across imaging conditions hegaty and comparing pixels from each
mask layer. Figure 4.7 shows examples of the image regianaoted by using the associated masks,

the masks do not approach the object boundary too closelyofd ambiguous pixels.

4.1.4 Image variation sets

The termimage variation setss introduced here to refer to the set of all image pairs wigagticular
combination of imaging conditions changing between theitwages in the pair. There are 60 images
associated with each set of objects so theré’atg = 1770 image pairs in total. When transforming
a single image in the pair to match the other image in the pairetare 3540 possible source to target
image pair combinations. Table 4.1 lists the different imagriation sets along with a short hand code

and the number of image pairs in each set.

4.2 Existing Colour Datasets

There are a number of freely available computer vision @ésas his section identifies these data-sets,
their design rationale and what they are used for. The rsasty these data-sets are not appropriate
for the investigations performed in this thesis are idegdifithis motivates the need for the new image
data-base presented in this chapter.

The existing image data-bases are:

1. The University of East Anglia(UEA) colour constancy dmtse [73]. It contains images of vari-

ous kinds of wallpapers captured under different lightingditions and from different cameras.
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Figure 4.4: Images from the four different image sets itating the different scale variations captured
and categorised in the database. The red and cyan piecepexfqacupy roughly equal portions of the
image in 4.4(a), the cyan paper occupies a larger portioheoirhage in 4.4(b). The red, green and blue
strips are arranged to occupy approximately a third of thegeneach in 4.4(c); 4.4(d) shows a scale
adjustment of the red and blue paper. Images 4.4(e) and #ldgfrate scale variation in the skittles set.

Images 4.4(g) and 4.4(h) illustrate scale variation in teddly Bears set.
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Figure 4.5: Locations and equipment used to create diffdighting conditions. 4.5(a) shows the
naturally lit lounge and 4.5(b) shows the office lit by florestbulbs. 4.5(c) shows the bulbs and dimmer

switch used create local lighting variation, 4.5(d) sholss light meter used to approximately monitor

the ambient lighting conditions.

@) (b) (©

Figure 4.6: The three different cameras used to acquiredloeicvariation database. These are 4.6(a):
a Nikon Coolpix 4600, 4.6(b): an Olympus Camedia C40 Zoombdc): a FujiFilm FinePix 6900

Zoom.
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Figure 4.7: Example masked regions from sample images fnenfiaur different object types. Images
4.7(a), 4.7(c), 4.7(e) and 4.7(g) show numbered distinak@a regions for the corresponding images in
4.7(b), 4.7(d), 4.7(f) and 4.7(h).
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Figure 4.8: Two images from the UEA uncalibrated colour Hase. Both images are of wall paper
under the same lighting and camera conditions. The da&-tm@#ains the same images taken under

different combinations of lighting and camera changes.

Figure 4.9: Different objects in the SOIL database.



4.2. Existing Colour Datasets 82

Table 4.1: The image variation sets in the UCLColvariatiatatbase. Each variation set refers to a subset

of the image pairs for an object type in the database, theemags in the subset differ in experimental

capture conditions as described. The short hand codeseddasefer to these image variation sets.

Varied Conditions Code | Num image pairs
Scale 000(S) 60
Ambient Lighting 00(L-AL)O 60
Local Lighting 0(L-LIH0O 240
Camera (C)oo0 120
Ambient lighting and Scale 00(L-AL)(S) 60
Local lighting and ambient lighting O(L-LI)(L-AL)O 240
Camera and local lighting (C)(L-LNOO 480
Camera and ambient lighting (C)O(L-AL)O 120
Camera and scale (©)00(S) 120
Local lighting and scalg O(L-LDO(S) 240
Camera, Local lighting and ambient lighting (C)(L-LI)(L-AL)O 480
Local lighting, ambient lighting and scale O(L-LI)(L-AL)(S) 240
Camera, ambient lighting and scale (C)O(L-AL)(S) 120
Camera, local lighting and scale (C)(L-LDO(S) 480
Camera, local + ambient lighting and scaléC)(L-LI)(L-AL)(S) 480

Figure 4.8 gives an example of two images of different wadlggpatterns taken under the same
lighting and camera conditions. Images of these and othBpayser patterns are captured under
three different lighting conditions and by four differergroeras. The UEA data-base has been
used to test image retrieval performance in the presenceloficinconsistencies [46]. The de-
sign of the data capture for UCLColVariationLib follows tb&A design by varying lighting and
camera conditions systematically. The UEA data-base doesamtain examples with low num-
bers of material properties, also the relative amounts @fdifferent materials are not varied so
that the effect of scale changes in the corresponding chistea histogram can be examined.
UCLColVariationLib introduces these examples so that tbleavior of colour inconsistency re-

moval algorithms can be studied on simple examples.

. The SOIL database from Surrey university [74] containsimmnly obtained supermarket items
imaged under lighting and pose changes. Figure 4.9 illiestithe objects present in the database.
The Soil database varies the 3D viewpoint, the illuminafidensity, occlusion and scene dis-
tracters and structural appearance variation and has Isednaitest object recognition algorithms
[75]. The scene objects are captured against a black baskdrand occupy a small fraction of
the image. The objects typically have multi-coloured tdte patterns and logos that are common

on product packaging. The high number of different coloweglons mean that these objects
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Figure 4.10: Sample images from the SFU database.

present a more difficult colour inconsistency removal tdelntthe objects in the UCLColvaria-
tionLib data-base. Again, the strength of UCLColvarialiidmis that it allows the simple cases to

be studied first.

3. The Simon Fraser University(SFU) database [76] is smtdahe SOIL database in design. It
divides images into a training set of objects with fixed posé ehanging illuminant and a test
set with random pose under the same illuminants. Examplgesiare shown in Figure 4.10.
The SFU data-base has been used to evaluate colour constgodghms [77]. The objects are
multi-coloured with small detailed regions, like the SOlatabase these coloured regions lead
to scattered small regions in the colour histograms. The 8&tidbase does not introduce scale
variation in a systematic way. These factors mean that the@dG/ariationLib is a better starting

point for investigating colour histogram alignment meteod

This section has presented existing data-bases that haneshecessfully used in colour inconsistency
research, because of the reasons mentioned these dasadbas® match the requirements of simplicity
and systematic object scale variation that the study intki@sis requires. To summarize, the advantage
of UCLColVariationLib is that it introduces colour incosgencies for very simple objects so that the
differences between the colour inconsistent histograegmre easily interpreted than those from these

existing data-bases.

4.3 Histogram alignment metrics

One way to obtain quantitative measures of colour transfgfopmance is to compare histograms of the
transformed images. This section lists a variety of mefiachistogram comparison and studies their
properties on simple synthetic histograms. The histograatmios fall into three categories: 1) Bin-Bin

metrics, 2) Cross-Bin Metrics and 3) Manually defined mstric

4.3.1 Binto Bin Measures

Bin to Bin metrics are based on comparisons between thegmoneling bins in histograms. Common

examples are the Bhattacharyya distance [78], Mutual in&tion [79] or the Kullback-Leibler (K-L)
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divergence [79]. Bin to Bin measures are not discrimindireéhistograms containing non overlapping
or sparse data; also, comparisons between multi-modakctuare biased by the largest overlapping
clusters. This section introduces two popular bin to bin soeas for comparing a histograsnwith
another histogram; s, is binz in s andt, is the corresponding bin it The histograms contain the

same number of bins over the dom&n The Bhattacharyya coefficient is

B(Sat) = Z VSxtx, (4.1)
xeX
and the K-L divergence is
Sx
KL(slt) = };(sx log o (4.2)

The Bhattacharyya coefficient is used extensively due taiitglicity and numerical stability when
dealing with zero bins [78]. The K-L divergence is an asynmn@beasure known as the relative entropy
in information theory, its numerical computation requitesslating all histogram bin values away from

zero to avoid division by zero.

4.3.2 Cross-Bin Measures
Cross bin measures [80][81][82] compute a metric based orgsponding and non-corresponding his-
togram bins, they have been used successfully in visiorebdatabase lookup applications to alleviate
biases in bin-bin comparisons when comparing partially @r-overlapping clusters of different size.
Colour histograms are commonly sparsely populated, s@ triosmeasures are a robust choice for com-
paring them. The Earth Mover’s Distance is perhaps the fiainple of a cross-bin measure that has
found applications in Computer Vision; it is computed asrtirimum work required to transform one
distribution to another when posed as the transportatioblem in linear programming. The EMD has
O(n?®) complexity wherer is the number of histogram bins; because of this computattiexpense the
EMD is typically used to compare simple histograms. Subsatwork has sought to replicate the ben-
efits of the EMD within a computationally efficient framewodkamples are the pyramid match kernel
[81] and the diffusion distance [82]. The diffusion distarig of particular interest because of its simplic-
ity and speed of computation. The diffusion distance carsithe difference between two distributions
as

d=t-s (4.3)

where the corresponding bins ofare subtracted from. d is blurred by convolution with a Gaussian
kernelG(.; 0); the L1 norm is computed between the blurred distance andiaxmézero entries. The

is repeated over a range of kernel width® ¢ and the results are summed as

Y L1(d*G(;0)). (4.4)

4.3.3 Manually defined metrics
The termmanually defined metrids introduced to describe metrics that are computed fromléabdata
that is obtained from the marked up masks associated with iea&ge in the database. There ate

different labels attached to the dafaindexes the labels. Two different manually defined metries a
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described here. The first metric is the total Euclidean distebetween labeled clusters, the mean of
the colours labeled is q; for the source distribution and; in the target distribution. The L2 norm is
computed between corresponding means and the resultsramneextiover all labels, as,

m

E =Y L2(q;,w;). (4.5)

j=1
The Euclidean metric is not discriminative for changes irstér orientation at fixed distances between
cluster centres; the second metric reduces this probleconiputes an average Mahalanobis distance

over the clusters. The Mahalanobis distance in both doestior thejth label is,

¢j = \/(qj —w;) "1 3q; (a4 — wy) (4.6)

and

pi = \/(Wj =)' Bw, (W) —qj), (4.7)
whereX,; andXy,; are the covariances gth source and target components respectively. For each pair

of corresponding components the average of these distencesputed as,

J; = w (4.8)
The average Mahalanobis metric is computed as the sum oféneges ofs,, ands,,,
L
> . (4.9)
n=1

4.3.4 Empirical comparison of metrics

This section develops an intuitive notion of how differergtbgram alignment metrics vary. Synthetic
source and target histograms are generated from a parammatdel, the parameters of the model are
specified so that they correspond to intuitive geometriosi@mations. Then, metrics are computed
for a sequence of histogram pairs. The pairs are generatedjbgting the model parameters to in-
vestigate different forms of alignment. One motivationdsunderstand the effects of overlapping and

non-overlapping clusters on the behavior of the metrics.

Model
A two dimensional Gaussian Mixture Model (GMM) is specifiegrd in terms of a set of intuitive
parameters. The GMM is a weighted sum of Gaussian distabstieach Gaussian is usually specified
in terms of its mean, a scaling parameter and a covariancexm&ne problem with specifying the
shape of each mixture component with a covariance matrhaisit does not relate clearly to an intuition
about manipulating the model. This formulation defines daahssian component with its mean at the
origin, the standard deviations along the x and y axes awfgke shape of the component. A rotation
of each componentin the X-Y plane is then specified. Thislswbiange in parametrization allows one
to think in terms of rotating, stretching and translatingleaomponent.

Each histogram is generated by a mixture model as a lineabic@ation ofrn component densities,

p(z|j). A mixture model has the form:

plx) =Y pl=li)P), (4.10)
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where the coefficient®(j) are called the mixing parameters. The mixing parameteisfpat

> P3G =1, (4.11)
Jj=1

and
0< P(j) <1. (4.12)

The component densitiegz|;j) are normalised such that

/p(:v|j)d:v =1 (4.13)

The component densities can take any parametric form. bk, each component is aw dimen-

sional anisotropic Gaussian distribution,
p(alj) = (2m) M2 [Slexp(—(x — ) TS (x — u)/2), (4.14)

whereN = 2. The covariance matrix; is expressed in terms &f o, ando, using a singular value
decomposition,
> =UsVvT, (4.15)

S is a diagonal scaling matrix. The diagonal entries spebimariance along the x and y axes of a zero

mean Gaussian. In terms of standard deviatiepsindo,, this is
S — z ) (4.16)
0

The Gaussian is rotated counter-clockwAsgegrees in the X-Y plane. This is specified by setfihgo

a standard rotation matrix so,

cosf) —sinf

U= , (4.17)

sinf  cosf
andU = V.
Method

A sequence of source and target histograms are generataglthsimodel, the sequence of parameters
is chosen to investigate a particular experimental hymighe\ histogram in the sequence is generated
by specifying each if itsn clusters. Thejth cluster in thelth source histogram is specified by five
parameters asy;; (P (j), u, 0, ox, 0y). The corresponding cluster in the target histogram is ifledtas

Ty (P(5), 1,0, 0%, 0y).

Five metrics are computed from each histogram pair in theesgeg, these are:
1. The Bhattacharyya coefficient (eqn:4.1).
2. The Kullback-Leibler distance (eqn:4.2).
3. The Diffusion distance (eqns:4.3.2, 4.4).

4. The total Euclidean distance (eqgn: 4.5).
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5. The average Mahalanobis distance (eqn: 4.9).

The results for the sequence are plotted for each metricmAtrics are normalized to the rangel.
The Bhattacharyya coefficient is normally in the rafgé where a score of indicates the highest level
of similarity. Bhattacharyya coefficient scores are refidabout the axig = 0.5 so that) indicates the
highest level of similarity. After these steps, all scorasd sequence are shown in the rafgé and a

lower score indicates a greater degree of similarity betwastograms.

Experiments

This section describes the empirical results obtained tloee different sequences of histograms. The
sequences are designed to show the effects of non-overtaglpisters and the bias of larger overlapping
clusters on the metrics.

Sequence 1. Comparison of single mode variations Bin to bin metrics only consider the relationship
between the corresponding bins in the histogram. This leatle presupposition that bin to bin metrics
will not discriminate between changes in orientation whendegree of cluster overlap is low.
Hypothesis: Bin-Bin metrics are not discriminative at large distances.

Sequence: The source and target histogram contain a single clustédr. eBlee sequence is generated
by iterative rotation and translation of the target clustére rotations aré; = 0, 5 = 20, 65 = 45,

6, = 90, and the means of the target histogram clusterafe= [0, 0], uz = [5,0], uzg = [10,0],

ug = [15,0], us = [20, 0], ug = [25,0], uy = [30,0], us = [35,0]. The source histogram does not
change throughout the sequence, ibig(1, u1, 61, 0, 0y). 0, = 10 ando, = 30 for all histograms.

The target histogram sequence is described by the pseut#oirtalgorithm 3.

Algorithm 3 GenerateH HistoSequencel
count <1

foro=1to8do
forp=1to4do
Teount1(1, Ug, Op, 0x, 0y)
count < count + 1
end for

end for

Results Figure 4.11 shows the values of the metrics for the sequelRepresentative transformations
from the sequence are illustrated in Figure 4.12. The md#teeble observation is that none of the met-
rics varies smoothly across the sequence. The total Eatlidistance is the only metric that exhibits a
uniform repeating pattern. The total Euclidean distandglets a step like response as it does not regis-
ter the changes in target orientation but registers theggnanmean. The average Mahalanobis distance
changes smoothly in response to orientation changes whkatusters are close and with more variation
when the clusters are far apart. The Bhattacharyya coeftjdi@illback-Leibler and Diffusion distance
all vary in a highly non-uniform manner across the sequemhbe.Kullback-Leibler stops discriminating

between changes in target orientation at positidrin the sequence and the Bhattacharyya coefficient
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stops at positior20. The Diffusion distance continues to discriminate betwdgferent orientations
when the distance between clusters is large.

Conclusions The results show that the KL-Divergence and Bhattacharyryolbin metrics are not dis-
criminative when the degree of cluster overlap is low. Thigriportant because according to these met-
rics two overlapping clusters that differ significantly inemtation score higher than two non-overlapping
clusters that share the same orientation. Furthermorse tlesults highlight the value of using manually
defined metrics such as the total Euclidean distance andwbmge Mahalanobis distance; the advan-

tage of these metrics is noted even though the distributiongared only contain a single cluster.
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Figure 4.11: Distance metric comparison for the histogramparisons described in Experiment 1.

Sequence 2: Overlapping cluster bias for increasing total cluster distance The metrics are commonly
used to compare multi-modal histograms. The bias towardslapping clusters demonstrated in se-
quence 1 motivates an exploration of what happens in thei-moldlal case. Since the metrics sum-
marize the alignment of multiple clusters using a single hemthe effect of relative improvements in
individual clusters is explored.

Hypothesis: When comparing multi-modal histograms, changes in highériapping clusters dominate
changes in clusters with lower overlap.

Sequence: Both source and target histograms contain 2 clusters edtbluéters are the same size and
shape. Both the source and target histograms have the paranf1) = 0.5, P(2) = 0.5, 0, = 10
ando, = 30. The orientatiord is set to0 for all clusters. The source histogram has cluster cenix€3 (
and (50,0). The sequence of cluster transformations forattget histogram is shown in table 4.2. The
sequence of four source and target histogram pairs are simodi6(a),4.16(b), 4.16(c), and 4.16(d).
The sequence is designed so that the total Euclidean déstagtoveen the corresponding clusters in-
creases in the sequen@gl0, 15,20. The 3rd pair in the sequence increases the distance betiveen
1st component clusters and keeps the second cluster inree@asition. The 4th pair in the sequence
decreases the distance between the 1st component clustiéreeeases the distance between the second

component clusters.
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Figure 4.12: Contour plots of source (blue) and target (@al)ssian distributions for a target Gaussian
translation of 5 on the x-axis. Target valuesidfiustrated are 0 4.12(a), 20 4.12(b), 45 4.12(c) and 90

4.12(d). The complete sequence repeats these targetrchistiions at different translated positions.

© (d)

Figure 4.13: Contour plots of source (blue) and target (béhodal distributions. In 4.13(a) the dis-

tributions are identical, 4.13(b) moves the 2nd targettelulsy 10 along the x axis. 4.13(c) moves the
1st target cluster by 5 along the x-axis, keeping the secaraier displacement at 10. 4.13(d) aligns
the first cluster components and displaces the second chystedistance of 20. The total distance be-
tween corresponding clusters is increasing across thesequvhich allows the bias of metrics towards

movement in the overlapping clusters to be investigated.
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Table 4.2: Cluster Positions for the target histogram.

Component 1 meaAm Cluster 2 mean
(0,0 (0,50)
(0,0) (0,60)
(0,5) (0,60)
(0,0 (0,70)
1r /
/
0.8F
<
§, 0.6
3
T
€ 0.4r
< Bhattachayya Coefficient
0.2 —Total Euclidean
- - -Average Mahalanobis
Diffusion Distance
‘ Kullback Leibler

Histogram Index

Figure 4.14: Distance metric comparison for the histogramparisons described in Experiment 2.

Results Figure 4.14 shows plots of the metrics. Representativestoamations from the sequence are
illustrated in Figure 4.13. The second cluster becomesawenlapping at position 4 in the sequence.
The Diffusion distance and the Kullback Leibler distancerdase from the 3rd to 4th position. All other
metrics increase between these positions. The Bhattaghaoefficient only increases a small amount,
the total Euclidean and Average Mahalanobis give the satnesacross the the sequence because there
is no difference in the orientation of the clusters.

Conclusions The Kullback-Leibler and Diffusion distance metrics shoeathy bias from the non-
overlapping cluster, the decrease in the value of theseigaatontradicts the increase shown by the
other metrics. The bin-bin and cross-bin measures can liewisen it is acceptable to heavily penalise
non-overlapping clusters. Manually defined metrics haearcbenefits when considering clusters that
do not always overlap because they discriminate betwegnrant improvements of non-overlapping
clusters.

Sequence 3: Large cluster bias variation under equivalent trandation Multi-modal histograms com-
monly contain clusters that are different sizes. Dependimghe application, the smaller clusters in a
histogram may represent very important information. Wheingia metric to summarize the alignment
of multiple modes it is important to understand how the ngettianges with movement of the larger
clusters.

Hypothesis: Transformation of the larger clusters in a multi-modalddgam comparison has the great-
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est effect on the metric.

Sequence: Both source and target histograms contain 2 clusters edaghfirt cluster in both histograms
has the mixing parameteP,(1) = 0.7. The second cluster in both histograms has a mixing paramete
P(2) = 0.3. All clusters user,=10,0,=30. The mean of the 1st cluster in the source histograma@s, (0,
the mean of the second cluster is (0,50). The sequence ¢échasans for the target histogram is shown
in table 4.3. Figure 4.16 shows contour plots of the ovedayistograms for the sequence.

Results Figure 4.15 shows plots of the metrics. At position 2 in thgusmce the larger cluster is offset
by 5 units, at position 3 the smaller cluster is offset by &sinThe Kullback-Leibler distance and the
Diffusion distance exhibit a large variation due to the nroeat of the different sized clusters. The
variation in the Bhattacharyya coefficient is smaller, bigsent. The manually defined metrics show
invariance to the movement of different sized clusters.

Conclusions When comparing multi-modal histograms movement of thedstrglusters dominates the
scores computed by the bin-bin and cross bin metrics. Mandefined metrics alleviate this problem
and are a good choice when manual labeling is possible asdhitgortant to consider the alignment of

a number of metrics irrespective of their individual sizes.

Table 4.3: Cluster Positions for the target histogram.

Component 1 meaAm Cluster 2 mean
(0,0) (0,50)
(0,5) (0,50)
(0,0 (0,55)
(0,5) (0,55)
Bhattachayya Coefficient
1.20 —Total Euclidean
' - - - Average Mahalanobis
Diffusion Distance
o ir Kullback Leibler
3
0 0.8+
3
é 0.6F
S q
0.4
0.2
O £ L L J
1 2 3 4

Histogram Index

Figure 4.15: Distance metric comparison Experiment 3.
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Figure 4.16: Contour plots of source (blue) and target (béaipdal distributions. For both histograms
the first cluster has a weight of 0.7 and the second clustea lesight of 0.3. 4.16(a) shows the his-
tograms perfectly overlapping. In order to investigate s on metrics of the larger overlapping
clusters the large and small clusters are individuallysiaed (in 4.16(b) and 4.16(c)) before moving
both clusters together 4.16(d). 4.16(b) moves the largestet, 4.16(c) moves the smaller cluster and

4.16(d) moves both clusters together.

4.3.5 Discussion

The empirical evaluation highlights a number of advantagegbe manually defined metrics over the
more commonly used bin-bin and cross-bin metrics. The nibndafined metrics discriminate be-
tween alignments when the corresponding clusters are fat,apey also evaluate the movement of
overlapping clusters and larger clusters more fairly thembiin and cross-bin metrics. The average
Mahalanobis distance is the best metric for evaluatingpgistm alignment in a colour inconsistency
removal application. This is because clusters may not apexhd can be of different sizes, the average
Mahalanobis distance can rank alignments that producernmental improvements fairly. The average
Mahalanobis distance is chosen over the total Euclidedardis as it considers the orientations of the

corresponding clusters.

4.4 Quantitative evaluation of RGB colour alignment

This section uses the UCLColVariation database and thdafze® methodology to improve the current
understanding of colour inconsistency removal methodso@anconsistency removal transformations
are comprehensively evaluated and FBHA is compared to ctingpapproaches. Additionally, two
assumptions of the FBHA approach are investigated. Theafigimption is that point alignment trans-
forms give better performance than non-point alignmentdi@rms, it is important to investigate this
assumption because a key benefit of FBHA is the ability to wset@lignment transforms. However,
the extra work to perform automatic feature detection antthiag is only justified if the point alignment

transforms show superior performance. Second, the clos@$tEuclidean distance matching strategy
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used by FBHA is investigated; the mean colours of manuabglied regions are used as ground truth
features to check that matched results are sensible. ¥ittadl performance of FBHA is evaluated and

its behavior is explored.

4.4.1 Experiment 1. Feature Based Alignment Hypothesis
Aims:
This experiment compares different colour inconsistemegaval transforms on the UCLColVariation
data-base. The comprehensive ranking of these transfaron&ps important information about the
best ways to remove colour inconsistencies. Addition#llg,ranked transforms allow point alignment
transformations to be compared to alternatives. If poiignahent transforms perform best then this
motivates the FBHA approach.
Hypothesis:
Transformations that align local histogram features gettds alignment scores than transforms that use
global properties of the histograms when applied to images rathe alignment database.
Method:
This experiment extracts all 1770 image pairs for each olsjelc For each image pair, one image is the
source image and the other is the targetimage. A listwhnsforms are used to produe¢ransformed
images for each source image. Each transformed image isarechjo the targetimage using the average
Mahalanobis metric to produeeresults scores per image pair. Results are grouped by dramsind
image variation set for comparison, the distribution ofitessfor each transform are compared to produce
a ranking of the transformations under the experimentatiitioms of the image variation set.

The list of transforms is presented here. For detailed nagitieal descriptions refer back to section
2.5. Parameters are specified along with a short-hand codelisequent identification. The non feature-

point transforms used are:
1. Identity Transform. Code: Untouched.

2. Additive alignment of the 1st momentin each channel using equations 2.11 and 2.12. Code:
Moment1-ShiftEachChan.

3. Multiplicative alignment of the 1st momentin each colour channel using equation 2.13. Code:
Moment1-MultEachChan.

4. Alignment of 1st and 2nd momentsin each colour channel using linear transforms computed
using equations 2.14, 2.15 and 2.16. Code: Moment1-2-BhiftiEachChan.

5. Histogram equalization performs a standard histogram equalisation in each cha@odke: His-

tEgData, described in section 2.5.2.

6. Histogram matching finds the monotonic transform in each channel that matcleesdtrce and

target histograms in each channel. Code HistMatchDatayithesl in section 2.5.2.
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7. SVD based principal axis alignment.The method of Xiao and Ma [53] computes a homogeneous
rotation, scaling and translation that aligns the prinkcgpaés and means of a source and target
data-set. Code: SVDSimilarityTrans, described in secién?.

The feature point alignment methods use the mean RGB cadxtnacted from the training region
of the marked up polygons associated with each image. Theadarés are considered to be the best
ground truth available because they are obtained from msgid the image manually annotated by a
human, the feature correspondences are also known from dnle wp data. Features are manually

provided in this experiment to test the experimental hypsith The feature point transforms are:
1. Multiplicative feature point alignment using equation 2.18. Code: AlignPtsGain.
2. Additive feature point alignment using equation 2.17. Code: AlignPtsShift.
3. N by N feature point alignment using equation 2.21. Code: AlignPtsNbyN.

4. Independent linear feature point alignmentusing equation 2.19 with = 1. Code: NDIndep-
PolyOrderl.

5. Independent quadratic feature point alignmentusing equation 2.19 witd = 2. Code: NDIn-

depPolyOrder2.

6. Independent Cubic feature point alignmentusing equation 2.19 with = 3. Code: NDIndep-
PolyOrder3.

7. Independent quartic feature point alignmentusing equation 2.19 witti = 4. Code: NDIndep-
PolyOrder4.

8. Correlated linear feature point alignment using equation 2.20 withi = 1. Code: NDCorrPoly-

Orderl.

9. Correlated quadratic feature point alignment using equation 2.20 with = 2. Code: NDCor-

rPolyOrder2.

10. Correlated cubic feature point alignmentusing equation 2.20 withi = 3. Code: NDCorrPoly-
Order3.

11. Correlated quartic feature point alignment using 2.20d = 4. Code: NDCorrPolyOrder4.

Investigation of the distribution of average Mahalanoliésahces for each transform reveals that the re-
sults histograms for a transform are highly skewed and nausGian. Ranking the transforms requires a
meaningful ordering of these results distributions. Fousaéan distributions a paired t-test is commonly
used; however, the non-Gaussian form of these distribsitiogan that the t-test is inappropriate.
Non-parametric boot-strap statistics are a computatimedhod of performing statistical inference
that are based on random re-sampling with replacement afrijmal data. The boot-strap procedure

allows confidence intervals to be constructed when a paranfetmula is not available to describe
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the data; a key advantage of the approach is that it is simglaplement. Efron [83] provides a de-
tailed coverage of boot-strap methods. In this work the Istraip procedure compares the distribution
means; to achieve this, results distributions are compgayedmputing a confidence interval around the
sampled mean of each distribution. Histogram alignmentases as the Mahalanobis score decreases,
so if the mean of a results distribution for a transfadnis significantly lower the mean of the results
distribution for transformB then transformA performs better with a degree of confidence. The pseudo-
code in algorithm 4 outlines the steps to determine whetearesformA or B scores better. Going
through the steps in the pseudo-cordg,is a vector of all scores for transforsh andrg is a vector

of all results of transfornB. The next loop computes estimates of the distribution ma&&e. function
RandomSampW ithReplacement takes the vector of scores and produces a new sample withitie s
number of elements, the new sample is produced by repeataligling a randomly selected value from
the vector until a new sample of the same size is collected.oFiginal vector remains untouched. The
expectation operatiof() computes the mean value of the re-sampled set of valuestaiteeation and
assigns mean values to tith element of the arrayBootStrapMean A and BootstrapMeanB. After

the loop, the next line computes a vector of differendgshat contains the difference between the cor-
responding elements @ootstrapMeanA and BootstrapMeanB. cdf (d) computes the cumulative
histogram of the difference valuesdnthen the functioon fidencelntervals extracts the confidence
interval limitsi, andu, at theC confidence level. If zero falls between these limits themah&no sig-
nificant difference between the distributions. If zero doeesfall between these limits then the transform
with the lower average score is the best. The overall ranfiingess is described by the pseudo-code in
algorithm 5, the number of times that each transform scogtiethan all other transforms is counted. A
higher count indicates a superior ranking between transfpall transforms are ranked and ties between
transformations are allowed. Position 1 is used to inditadest transform and thus the highest count.
Results: The total processing time to compute all transformed imagekresults scores for all image
pairs from each of the four object data-sets was approxignatmonth on a Dell Inspiron 1525 laptop
with a 2Ghz dual core processor and 2GB of RAM; a single promresore was used for the compu-
tations. A comprehensive list of transformation rankingsuged by variation set and object group is
shown in Appendix 9.2. Each ranking is displayed using awotoded format where a different colour
is used for each transform, Figure 4.17 shows the colours imseeach transform. Figure 4.18 shows
the coloured coded ranking for transformations from thgl(&@))(L-AL)(S) image variation set using
the red-cyan paper data-set. Each colour coded box corgainmber that indicates the ranking of the
transform where 1 is the best and lower positions are wohgefittst position is always shown as the
bottom box and the last position is shown as the top box. Nwatepositions 2,9,10,11 and 12 are occu-
pied by multiple transforms in this example, this means tlwasignificant performance difference was
detected by the procedure at these respective positiol irahking. Subsequent positions down the
ranking are interpreted as being significantly worse at deniie levelC’ according to the comparison
procedure. This section presents ranked transforms fodffferent image variation sets. These sets

are chosen as illustrative examples of the main points, fipeAdix 9.2 should be consulted as required.
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Algorithm 4 ScoresBetter(A, B) : Test if methodA scores better than methétl
r4 < Average Mahalanobis scores for methéd

rp < Average Mahalanobis scores for methBd
for it = 0 to NumBootstaplts do
BootstrapMeanAlit] = E(RandomSampWithReplacemenit(r4))
BootstrapMeanB|it] = E(RandomSampWithReplacement(rg))
end for
d = BootstrapMeanA — BootstrapMeanB
[y, up) = Confidencelntervals(cdf (d), C)
if I, <=0 <= uy then
Bootstrap distribution means are not significantly différe
elseif E(ra) < E(rp) then
Method A results significantly better than method B resulth wonfidence”
else
Method A results significantly worse than method B resulthiwonfidence”

end if

Algorithm 5 Rank all alignment methods
for T1 = 1to NumTransforms do

for T2 = 1to NumTransforms do
if 71! = T2 then
Results(T1,T2) = ScoresBetter(AllScores(T1), AllScores(T2))
end if
end for
end for
GroupResults by transform type and sort from lowest(best) to highestéjor
Count the number of transforms outperformed for each toansto give the final ranking. Ties are

allowed.
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Figure 4.17: Colour coding scheme to represent the diffedggnment transforms.

The highlighted results are:
1. Allimage pairs (all variations) in Figure 4.19,
2. (C)(L-LI)(L-AL)(S) in Figure 4.20,
3. O(L-LI)(L-AL)Oin Figure 4.21,
4. O(L-LI)(L-AL)(S)in Figure 4.22,
5. 00(L-AL)O in Figure 4.23.

A further break down of the structure of the transform ragkmriation on an image by image basis for
the Red-Cyan data-set is shown in Figure 4.24(a). Figu2¥d) to 4.24(f) show the transformations
that ranked in the 1st to 6th positions respectively for @@ image pairs. A coloured square is used to
represent the transform and show how transform performaamdes on an image by image basis.
Conclusions: Two key findings from this experiment are: 1) Transformat@nformance varies sig-
nificantly across capture conditions and data-sets, 2uFeabint transforms robustly align colour his-

tograms with the highest degree of alignment. Elaboratmthese findings:

1. Transformation performance variation The transformation rankings computed using the boot-
strap statistic procedure show that feature point transfgrerform well. Also, a transformation
that performs well under one set of experimental conditimm gerform badly under another. For
example, the NDCorrPolyOrderl transform performs wellrendkittles data-set under O(L-LI)(L-
AL)O, O(L-LI)(L-AL)(S) and 00(L-AL)O0 variations shown inigures 4.21(b), 4.22(b) and 4.23(b)
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Figure 4.18: Ranked transformation methods with (C)(LALAL)(S) variation : 1) Red-cyan paper

respectively. However, Figure 4.20(b) shows the same flvtemsperforming very badly under
(C)(L-LI)(L-AL)(S) variation. This performance variatiotells us that the best transformations
must be chosen on a per data-set and experimental variadigia to give the most significant
levels of performance improvement. Transformation raggidiffer across data-sets and exper-
imental conditions, a change in scene objects leads to tigebi variation in the performance
of the transformations. Observe that selecting an indegrichear point alignment transform
(NDIndepPolyOrderl) gives robust performance improvemenross the data-sets and experi-

mental conditions.

Recall that the boot-strap ranking procedure is necesszeguse of the high variability of the

results for each transform, the ranking shows that theregeréormance hierarchy among the
transforms. However, transform performance can vary Saamitly on an image by image basis.
Figure 4.24(a) provides an intuition for how variable theulés are, it shows that no single method
performs best across the different image pairs. By contrase the existence of structure in
the first and second positions in Figures 4.24(a) and 4.2d{&)rder increases from the first to
sixth position in 4.24(f) where no transform ranks consiifein sixth position. This tells us

that the best histogram alignment transform varies betvilage pairs, even when the images
are of similar objects. This is an important result for congpwision designers seeking colour

inconsistency removal transforms. It means that it is fixds$0 select a transform that performs
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reasonably well over a range of conditions, but the besstomm for an image pair must be found
on a case by case basis. Also, the experiment has shown tthiat oesults are typical across
the different transforms; a transform that performs wellboe image pair can perform badly on

another with seemly innocuous differences in experimearapture condition.

2. Feature point transforms The results demonstrate that a point feature based aligninzers-
form always performs better than the next best non-pointifesbased method. However, not
all point feature transforms outperform non-point featbased methods; in particular, third and
fourth order polynomial transforms are susceptible to grenfng badly due to over-fitting the
data. This supports the idea that a well chosen feature ptigriment transform can robustly
align histograms; the original hypothesis that all poesttire transforms perform better than non-
point feature methods cannot be supported as we find someehfarm badly. The correlated
polynomials give some of the best alignment scores but aeegtible to failing poorly under
some conditions such as the skittles data-set in 4.19(l8 limbar correlated polynomial is robust
across different conditions where the camera is held consthis hints that correlated transforms
could be of greater use when calibrating between colouraa&ined from the same camera (this

argument could extend to cameras of the same make and model).
Other observations are:

e The SVD alignment method of Xiao and Ma [53] (Code:SVDSimi{erans) performs badly
across all examples. This shows that aligning the two nmtidal colour distributions using
rotation, scaling and translation based on the principasaf the distributions is not a good idea
if alignment of the individual modes is the desired goal. Tasults presented in the original
paper offer no quantitative validation and it is thought ttés method may be of value aligning

uni-modal or near uni-modal distributions.

e Histogram equalization (Code:HistEqData) and matchingdgCHistMatchData) perform uni-
formly badly. In particular, histogram equalization haskmowledge about the target distribution.

Both methods give poor alignment of the distribution modes @eed not be considered further.
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Figure 4.19: Ranked transformation methods for all 177@jienaairs from : 1) Red-cyan paper 4.19(a),
2) Skittles 4.19(b), Teddy bears 4.19(c) and three papiesstr19(d).
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Figure 4.20: Ranked transformation methods with (C)(LALIAL)(S) variation : 1) Red-cyan paper
4.20(a), 2) Skittles 4.20(b), Teddy bears 4.20(c) and theger strips 4.20(d).
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Figure 4.21: Ranked transformation methods for image pitts O(L-LI)(L-AL)O variation for: 1)
Red-cyan paper 4.21(a), 2) Skittles 4.21(b), Teddy be@Xd) and three paper strips 4.21(d).
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Figure 4.22: Ranked transformation methods for image paeitts O(L-LI)(L-AL)(S) variation for: 1)
Red-cyan paper 4.22(a), 2) Skittles 4.22(b), Teddy be@2(d) and three paper strips 4.22(d).
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Figure 4.23: Ranked transformation methods for image paits00(L-AL)O variation for: 1) Red-cyan
paper 4.23(a), 2) Skittles 4.23(b), Teddy bears 4.23(c}tare paper strips 4.23(d).
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The ranked transformations for each image pair in the setaresented usingzax z colour coded
matrix. For thenth ranked position, the matrix tells us which transformskeghat thenth position for
the different source and target alignments. Rows indexdhbiece images and columns index the target
images. The upper triangular part of the matrix is populatezbrding to the colour scheme described
in figure 4.17. Black entries in the matrix indicate that remsformation and evaluation was performed
for the indexed source and target image combination. Paifigy the transformations indicated by the
non-diagonal black entries would reveal whether the atineadf the results is symmetric, it is suspected

that such an investigation would reveal a non-symmetniccstire.

4.4.2 Experiment 2: Closest Euclidean Feature Match Hypotesis

Aims: This experiment tests whether the minimum total Euclidaatadce matches features correctly.
This is tested because FBHA uses this during the matchipg $tee features used in the evaluation are
the mean RGB colours of the hand marked up regions for eaadei(ttee ground truth features)
Hypothesis: The correct match between ground truth features can be foyctoosing the match with
the minimum total Euclidean distance between points.

Method The CEM feature matching method described in section 3slt@sted. For each of the 1770
image pairs in all four object sets the mean RGB colours ofntlasked regions for both images are
computed. The first image in the pair hasnean RGB coloursy, and the second image hasnean
RGB colours,Q. The masks always contain the same number of marked up gom = b for
each image pair. All possible matches are enumerated anotti&uclidean distance between matched
points is computed for each match. The match with the minirtatal Euclidean distance is compared
to the correct match known from the mask mark-up.

ResultsAll 1770 matches for all four object data-sets matched atlyre

ConclusionsThe correct match is picked correctly in all cases by the mimn total Euclidean dis-
tance. The strength of this constraint is surprising, esfigagiven the different types of variation in
the database. The success of this test indicates that ifisgt@gham features can be found robustly and
accurately then the minimum total Euclidean distance betwfeatures is a good constraint to match

with.

4.4.3 Experiment 3: FBHA comparison

Aims This experiment compares FBHA to alternative transformgefiment 1 demonstrates that fea-
ture point alignment transforms perform well when usingdeas computed from labeled masks. First,
FBHA is compared to the entire list of candidate transformsduin Experiment 1, this contrasts the
impact of manually defined features with features that ateraatically detected and matched. Second,
FBHA is compared to transforms that can be used without mamegavention or other forms of image
based feature processing. This shows how FBHA comparesdiréct competitors.
HypothesisAutomatic FBHA methods perform better than manually spedifilternatives.

Method Three FBHA configurations are run on three different imaggatian sets for all four object
data-sets. The bootstrap transformation comparison guveeés run to compare all transforms listed in

Experiment 1 with the three FBHA configurations.
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(e) ®

Figure 4.24: Colour coded matrices indicating the trameftiions that ranked 1st 4.24(a), 2nd 4.24(b),
3rd 4.24(c), 4th 4.24(d), 5th 4.24(d) and 6th 4.24(f). Theme60 images in this set, a coloured entry in
theith row andjth column indicates the transform that mappedithémage to theth image in the set

and gave an average mahalanobis score that ranked at thiepospresented by the matrix. The colour

coding scheme is shown in Figure 4.17.
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The three FBHA configurations were used in section 3.2, tbetdtand codes for these are:

1. (Code: [1D-Maxima]-[1DSS-[1]]-CEM). 1D deep structure featuretélction in each of the red,
green and blue source and target histograms. Featureidatpatameters arg = 0.005, T = 9
and a path is followed in the scale space if connected by 1¢#M feature matching is performed

and a linear feature point transform aligns the source agét@oints in each channel.

2. (Code: [1D-Maxima]-[1DSS-[1]]-CEMDC). This configuration is threame as ([1LD-Maxima]-
[1DSS-[1]]-CEM) except CEMDC feature matching is used. sTimatching strategy eliminates

matches that do not preserve rank ordering.

3. (Code: [RG2D-B1DMaxima]-CEM2D-CEMDC). The deep structure faatdetection on the RG
histogram uses = 0.0002 andT = 11. The connectivity rule for the path following step connects
a local maxima to a current path if the local maxima is in theemeighbouring bins at the end of
the path. The 1D FBHA in the blue channel uses: 0.005 andT = 9. CEM matching is used
in the RG channels anGEMDC matching is used in the blue channel. Detected and matched
features are used to compute a linear feature point trangfaat aligns source and target points in

each channel.

The image variation sets used are O(L-LI)(L-AL)O , O(L-ILBAL)(S), (C)(L-LI)(L-AL)(S). The
variation set O(L-LI)(L-AL)O is chosen to examine the effeof lighting variation and O(L-LI)(L-AL)(S)
is chosen to see whether object scale effects the resules tirelsame colour inconsistency conditions.
(C)(L-LI)(L-AL)(S) is used to compare the transforms whéineaxperimental conditions are varying.
The second part of the experiment compares FBHA againstodsthat do not use the labeled data
from the image mask, these methods are focussed upon babaysmmpete directly with FBHA. The

methods from Experiment 1 that require no manual intereerdre:
1. Multiplicative alignment of the 1st moment. Code: MonteMultEachChan.
2. Additive alignment of the 1st moment. Code: Moment1-&#athChan.
3. Alignment of 1st and 2nd moments. Code: Momentl-2-MuiftEachChan.
4. Histogram equalization. Code: HistEgData.
5. Histogram matching. Code: HistMatch.
6. SVD based principal axis alignment. Code: SVDSimildrigns.

The bootstrap procedure is used to compare this list offmams with the FBHA methods, the number
of times that a transform performs best is counted. This ieedwecause initial tests showed that FBHA
does not perform well when using the full ranking procedimstead a simple count is used to show the
number of times that a FBHA method performs best. The cases\wWBHA performs worse than all
other methods in the list are classified as failure casesetbases are inspected manually and catego-

rized. The failure case categorization is valuable as ilidgts assumptions of the FBHA method that
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are not applicable to the data.

Results

Figures 4.30, 4.31 and 4.32 show the ranked results for thd j(L-AL)O, O(L-LI)(L-AL)(S) and
(C)(L-LI)(L-AL)(S) variation sets respectively. The rainks do not show a consistent performance
advantage of FBHA over the other automatic methods and sinitied hypothesis is rejected. The per-
formance of FBHA is found to be highly variable across théedént image variation sets and object
sets. For example, 1D FBHA outperforms a multiplicativgmatent of the means for the skittles data-
set under O(L-LI)(L-AL)O and O(L-LI)(L-AL)(S) variation e&ts shown in Figures 4.30(b) and 4.31(b)
respectively; however, 1D performs poorly under (C)(L{LPAL)(S) variation show in figure 4.32(b).

Other observations are:

1. The performance of the FBHA approach is not comparableatufe point alignment that use

features computed from the manually labeled masks.

2. 1D FBHA methods perform better than the hybrid ([RG2D-BAdaxima]-CEM2D-CEMDC)

method.

3. FBHA transforms perform better than some transformsdbatot require manual intervention,

but the ordering of the rankings varies considerably betveifferent conditions and data-sets.

Figures 4.33 and 4.34 show bar charts of the number of tine@thautomatic transform performs
best for the O(L-LI)(L-AL)O variation set for all object dasets. The count is normalised between the
0-1 range. Figures 4.35 and 4.36 show the counts for the Q(L-HAL)(S) variation set for all ob-
jects. Figures 4.37 and 4.38 show the (C)(L-LI)(L-AL)(S)yiadion set results. Transform performance
varies between variation set conditions and differentagets, the transforms that perform best most
frequently are Moment1-2-MultShiftEachChan and MomedtiltEachChan. Interestingly, the identity
transform (Untouched) performs best for the (0)(L-LI)(IL-}® and (C)(L-LI)(L-AL)(S) variation sets
with the red, green and blue paper strips data set; this mbahghe histograms of the images in this
variation set are in better initial alignment than the hgstons transformed by either the FBHA method
or moment based transforms. The FBHA method [1D-Maxim&g§$-[1]]-CEM performs best under
O(L-LI)(L-AL)(S) variation for the red-cyan data set. Atihgh a single FBHA does not perform better
than the alternatives in a consistent way, the different RBiethods perform better than the alternatives
approximately 30 percent of the time on average and betwesmge of approximately 10 to 55 percent.

The list of FBHA failure cases compiled by hand illustratesew FBHA fails and why this is so,
they also illustrate when the structure of the histogranmsigsnatched according to the FBHA assump-
tions. These failure cases are an important contributiotheg identify specific problems that must
be solved by future work to improve the FBHA framework. Thiui@ case categories are identified
from image pairs with poor alignment scores when using the&ABiethods, the cases are categorized

according to:

1. Correctness of the feature detection step.
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2. Correctness of matching step.
3. Match between structural features of the histograms.
The cases highlighted using 1D FBHA with CEM matching, thease

1. False negative feature detection and incorrect matchingFigure 4.25 shows an example of a
false negative feature detection that typically resultemthe deep structure path threshdidjs
set too high. Recall that a single set of threshold valuessed across all experimental conditions
and data-sets. Although picking a single threshold hasgroasonably robust, feature detection
failures can occur. Figure 4.26(a) highlights the positbthe missing feature and figure 4.26(b)
shows the resulting matched features. The result is tharédfisant peak in the target histogram

plays no part in the alignment.

2. False positive feature detection and incorrect matchingAn irrelevant feature can be detected
at erroneous feature points, this can happen at regionsdhédin spikes in the histograms. Fig-
ure 4.26(b) shows an example of the false positive featufigginme 4.26(a) that leads to a false
match in figure 4.26(b). Another example of the potentiallyastrophic effects on the matching
of misplaced features is shown in figure 4.27, figure 4.29(ajvs the detected features and high-
lights two features that have been detected at almost the pasition. Figure 4.27(b) shows the
resulting matches from these features, they do not presankéng ordering and result in poor
alignment. The CEM-DC drops these matches but then can igotthlese parts of the histogram
as a result. False positive features can be mitigated bgasang the deep structure threshold,
a balance exists between removing these features and maigtaobust detection of the true

features.

3. Correct feature detection, incorrect matching, structural mismatch between 1 pair of corre-
sponding clustersFigure 4.28 shows how a mismatch in the structure of corredipg clusters
can confound FBHA. The centre cluster in the source histagnas two peaks and the centre
cluster of the target histogram has one. The CEM matchingraehassociates each peak in the

centre cluster of the source histogram to two differentteltssin the target histogram.

4. Correct feature detection, incorrect matching, structural mismatch between multiple pairs
of corresponding clusters.Figure 4.29 shows how mismatches in the structure of maltptre-
sponding clusters can confound FBHA. The source and taigtegnams show a matching cluster
on the left side of the plot, the source histogram clustetlWagpeaks and the corresponding target
histogram cluster has one. The centre target cluster hapeaks and its corresponding cluster in
the source histogram has one. The corresponding clustths gght hand side of the source and
target plots also have a different number of peaks. Thetaffebese structural mismatches in the
histograms is that matched features lead to mismatchesbatthe clusters as shown in figure

4.27(b).
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Figure 4.25: Example of false negative feature detectiahiacorrect matching. 4.26(a) shows source
(blue plot) and target histograms (red plot) in the blue cighfor the teddy bears data set. The location
of the missing feature in the target histogram is highlightg the black box. 4.26(b) shows the final

matches produced by CEM.
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Figure 4.26: Example of false positive feature detecticshianorrect matching. The left most match is

deemed to be incorrect. 4.26(a) shows the detected featnde$.26(b) shows the matches.
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Figure 4.27: Example of false positive feature detectiosulteng in catastrophic matching failure.

4.27(a) shows the detected features and 4.27(b) shows tichesa
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Figure 4.28: Example of correct feature detection, inadrmneatching and a structural mismatch in 1
cluster. Source and target histograms from the green claphémages of the red,green and blue
paper strips are shown in 4.28(a), the red plot is the targdbdram and the blue plot is the source
histogram. Detected features are shown as crosses. 4t®flvs an exploded view of the source and

target histograms and the final correspondences genenated CEM matching step.
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Figure 4.29: Example of correct feature detection, inadrmneatching and a structural mismatch in 2
clusters. Source and target histograms from the green elsmphimages of the red,green and blue
paper strips are shown in 4.28(a), the red plot is the targdbdram and the blue plot is the source
histogram. Detected features are shown as crosses. 4st®flvs an exploded view of the source and

target histograms and the final correspondences genenated CEM matching step.
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ConclusionsThe initial hypothesis that FBHA performs better than corap& alternatives is rejected
because FBHA does not perform robustly across the rangdadicimconsistency conditions and data-
sets tested. This means that FBHA cannot be substitutednipdes but more robust transforms such
as moment alignment transforms under the conditions testedever, closer inspection of the results
shows that FBHA methods give the best performance in 30 peofecases on average and up to 50
percent of cases under some conditions. The overall ramdfiR@HA is low when the failure examples
are considered because catastrophic alignment failugedrgly results when one of the FBHA failure
cases occurs.

The investigation into why FBHA can fail has led to importantimportant discovery about colour
inconsistent data. This is that for colour inconsistentgegmof simple object sets, the clusters that
correspond to each scene colour can vary in unpredictabfs.win particular, it is not sufficient to
assume that a single peaked cluster will appear in the cblistwgram for each material type present
in the imaged scene. A single peaked colour cluster in adnato from one set of conditions can
map to a cluster with multiple peaks across apparently sinshhnges in colour inconsistency. The
most significant conclusion of this is that a peak matchimgtsgy is not sufficient to ensure correct
associations between corresponding clusters. It has bessibybe to discover this because the feature
detection step robustly detects features across a wide raihgonditions given the same parameters.
Although false positive and false negative feature detestioccur in this experiment, the structural
mismatches between clusters and the inability of FBHA tolkesthese are the dominant effect that
negatively effects the robustness of FBHA in the experiment

In summary, FBHA can robustly detect and match histograrkgesing the same set of parameters
across a wide range of colour inconsistent data. For casesevthe corresponding histogram clusters
have a single significant peak, the FBHA approach produced ggsults and provides a distinct advan-
tage over other methods. However, structural mismatchiéeinorresponding clusters occur frequently
in colour inconsistent data so more robust performanceonily be achievable if extra steps are taken
to reason about what constitutes a single cluster. Suggesdior future work that may lead to improved

FBHA robustness are discussed in Chapter 6.

4.5 Conclusions

This chapter makes four key contributions:

1. A freely available data-base for evaluating colour inconstency correction methods is in-
troduced by the author. The data-base is unique because it contains examples afréntmn-
sistency for simple scenes containing a low number of eadégtified material properties; this
data-base structure allows the colour histograms to béestwdth reasonable expectations about
the number of clusters present. The data-base introduffesedit physical sources of colour in-
consistency so that different physical situations can bdistl. Because the data-base contains
ground truth labels for each image, it could be useful foteating the performance of clustering

algorithms.
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Figure 4.30: Rankings of FBHA and the competing methodsuatat! in experiment 1 in section 4.4.1.
Shows O(L-LI)(L-AL)O variation for: 1) Red-cyan paper 4(&), 2) Skittles 4.30(b), 3) Teddy bears
4.30(c) and 4) three paper strips 4.30(d).

2. Existing histogram metrics are critiqued and a new metric fa labeled data is introduced.
Quantitatively ranking the alignment performance of difet algorithms requires a metric to score
results. Different classes of metrics have been evaluatedhe pros and cons of each metric have
been explored. A new histogram comparison metric for labelgta is introduced, the average
Mahalanobis distance. This metric discriminates betwéignmentimprovements of overlapping

and non-overlapping clusters in multi-modal histograms.

3. Colour inconsistency removal transforms are quantitativdy ranked. This work compares a
large number of transforms that have been used in diffe@puc inconsistency removal appli-
cations. The evaluation performed is independent of aqaati application and so it informs
the behavior of these transforms in a wide range of situatiétoint alignment transforms of la-
beled ground truth data are shown to align histograms bié@rnon-point alignment transforms,
this validates the need for automated methods that can @ppiy alignment transforms to align

histograms. One surprising finding that emerged from theltess the variability of transform
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Figure 4.31: Rankings of FBHA and the competing methodsuastat in experiment 1 in section
4.4.1.Shows O(L-LI)(L-AL)(S) variation for: 1) Red-cyamaper 4.31(a), 2) Skittles 4.31(b), 3) Teddy
bears 4.31(c) and 4) three paper strips 4.31(d).

performance; this means that the best transformation toverolour inconsistencies varies on a
case by case basis even for similar colour inconsistentstdata Nevertheless, the bootstrap con-

fidence tests show that a dominant ordering of the transfermesges for the majority of cases.

4. FBHA is quantitatively compared substitutable alternativesFBHA is evaluated on the data-
base. The experiments tell us that FBHA performs well whégmnalg histograms that contain
corresponding clusters that have 1 significant peak; incée FBHA uses linear point alignment
transforms to align histograms so performance is compaitabpoint alignment transforms that

use features from manually marked up regions.

This work has identified that colour inconsistencies carseaunpredictable variations in the local
peak structure of clusters, in particular a change in theesire of a cluster across different condi-
tions confounds the FBHA algorithm presented. This knogéethforms future work, and shows
that it is not sufficient to align point based features to reencolour inconsistency. It is thought

that future work should attempt to map detected featuretusiars before matching the clusters
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Figure 4.32: Rankings of FBHA and the competing methodsuatat! in experiment 1 in section 4.4.1.
Shows (C)(L-LI)(L-AL)(S) variation for: 1) Red-cyan pap132(a), 2) Skittles 4.32(b), 3) Teddy bears
4.32(c) and 4) three paper strips 4.32(d).

between histograms, it is likely that topological reasgnaiout the histograms is necessary if

further progress is to be made. Chapter 6 discusses sonsfatqaossible future exploration.



4.5. Conclusions 119

[RG2D-B1DMaxima] 10 I ]

[1D-Maxima]-[1DSS-[1]]-CEMDCg | A

[LD-Maxima]-[1DSS-[1]l-CEM g _ i

SVDSimilarityTrans 7} 4

HistMatchData

HistEgData
Moment1-2-MultiShiftEachChan
Moment1-ShiftEachChan
Moment1-MultEachChan

Untouched

0 01 0.2 0.3 0.4 05 0.6 0.7
Number of times transformation is best in class (Normalised to 0.0-1.0)

@

[RG2D-B1DMaxima] 10 - p

[1D-Maxima]-[1DSS-[1]]-CEMDC 9| 1

[1D-Maxima]-[1DSS-[1]]-CEM 8 _ 1
SVDSimilarityTrans Tr 1
HistMatchData 6 _ 1
HistEqData 51 1

Moment1-2-MultiShiftEachChan

Moment1-ShiftEachChan

Moment1-MultEachChan

Untouched

0 0‘.1 0‘.2 013 O‘.4 0.5
Number of times transformation is best in class (Normalised to 0.0-1.0)

(b)

Figure 4.33: Normalised counts showing the number of tinaeh ¢ransformation method performs best
against the others with O(L-LI)(L-AL)O variation for: 1) Recyan paper 4.33(a) and 2) Skittles 4.33(b).



4.5. Conclusions 120

[RG2D-B1DMaxima]
[1D-Maxima]-[1DSS-[1]]-CEMDC
[1D-Maxima]-[1DSS-[1]]-CEM
SVDSimilarityTrans

HistMatchData

HistEqData
Moment1-2-MultiShiftEachChan
Moment1-ShiftEachChan

Moment1-MultEachChan

Untouched

. . . . , .
0 0.05 0.1 0.15 0.2 0.25 3 0.35
Number of times transformation is best in class (Normalised to 0.0-1.0)

(@

[RG2D-B1DMaxima]
[1D-Maxima]~[1DSS~{1]]-CEMDC
[1D-Maxima]-[1DSS-[1]]-CEM
SVDSimilarityTrans

HistMatchData

HistEqData
Moment1-2-MultiShiftEachChan
Moment1-ShiftEachChan
Momentl-MultEachChan

Untouched

0 0.15 0.2

0.05 0.1 0.25
Number of times transformation is best in class (Normalised to 0.0-1.0)

(b)

Figure 4.34: Normalised counts showing the number of tinaeh ¢ransformation method performs best
against the others with O(L-LI)(L-AL)O variation for: 1) didy bears 4.34(a) and 2) three paper strips
4.34(b).
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Figure 4.35: Normalised counts showing the number of tinehdransformation method performs
best against the others with O(L-LI)(L-AL)(S) variationrfdl) Red-cyan paper 4.35(a) and 2) Skittles
4.35(b).
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Figure 4.36: Normalised counts showing the number of tinaeh ¢ransformation method performs best
against the others with O(L-LI)(L-AL)(S) variation for: Teddy bears 4.36(a) and 2) three paper strips
4.36(b).
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Figure 4.37: Normalised counts showing the number of tinshdransformation method performs
best against the others with (C)(L-LI)(L-AL)(S) variatiéor: 1) Red-cyan paper 4.37(a) and 2) Skittles
4.37(b).
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Figure 4.38: Normalised counts showing the number of tinaeh ¢ransformation method performs best
against the others with (C)(L-LI)(L-AL)(S) variation fot) Teddy bears 4.38(a) and 2) three paper strips
4.38(b).
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Chapter 5

Application of feature based histogram

alignment to Buhler Sortex machines

The previous chapter examined approaches to aligning paaslour histograms, this chapter investi-
gates approaches to aligning sets of grey-level histogadtened from video streams of food produce
passing through a Buhler Sortex machine. The Z1 machinérizduced and the existence of colour in-
consistency experienced by the machine is described asogtam alignment problem. Two classes of
approach to solving the histogram alignment are introdacebcontrasted. The first approach involves
segmenting the histograms and then applying piecewissftrans to the portions of the histogram. The
second approach involves transforming the global progpedf the histogram. The feature based his-
togram alignment method is introduced as a non-segmenthtised method and is applied to Buhler
Sortex data. All histogram alignment methods are quaivtitigt compared and the relative merits of

these two approaches are discussed.

5.1 The Buhler Sortex Z-series

This section describes the operation of the Buhler SorteeriZes machine, the grey-level histogram
alignment problem and the current method for aligning tisédgirams. Aligning the histograms corrects
unwanted appearance variation in the products observeldebgnaichine. The Buhler Sortex machine
constrains the imaging environment to label image data elsgpaund or product and defect. Once the
background has been discarded the appearance of the pardilidefect is aligned across the camera
view. Correcting the appearance in this way allows a sifgieshold to be set that separates the accept-
able produce from the defect. The Z series machines are rhomoatic optical sorting machines that
come in different sizes. Figure 5.1 shows the single chutehina and figure 5.2 shows the Z+ three
chute version. All machines operate by filling up the inpupjpers with food produce to be inspected,
a vibrator system then feeds the food product so that it éalisn the chute in a uniform manner. The
product falls past front and rear line scan cameras and asmwnding array of air ejectors. A computer
vision system identifies defective product and fires the eyaite air ejector in order to channel the
defective product to a reject receptacle. Figure 5.3 shoschamatic slice view diagram for a single

chute in a Z-series sorting machine to illustrate the keyatmnal points.
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Figure 5.1: The single chute monochromatic Buhler Sortexs@iing machine. Pictur@copyright

Buhler Sortex Ltd, 2008. Reprinted with permission.

5.1.1 Histogram alignment problem

Each camera used in the Buhler Sortex Z-Series is a monoehimbhme scan camera that produces a
one dimensional 1024 pixel wide image; the 1024 intensityesare then processed by calibration and
sorting algorithms. Figure 5.4 shows a grey-scale imaga¢ipaesents 1024 continuous captures of rice
falling past the 1D 1024 pixel CCD array. All such images iis tfection are portions of a video stream
where the capture rate has been set to sample the objectaatatyas possible as it falls past the CCD
array aperture. Figure 5.5 shows a zoomed portion of theénmag§.4 that illustrates the recorded grey
levels when imaging a few rice grains over a short periodméti

The appearance of the product varies with spatial positiomss the view; evidence of this variation
can be observed by capturing approximately 20 seconds wbdhata from a single camera and com-
puting a histogram of grey level intensities for each pikégure 5.6 shows the histograms..h;gz4 of
the intensities observed in the pixels.p1924, the histograms show clear variation in intensity. Finding
the correction transformations that align the histogranmess the view allows the appearance of the
product to be corrected across the view, this is calledhibtogram alignment problem There is a
scale variation in the relative amounts of product and bamkgd observed by pixels near the centre of
the chute and pixels near the edges. Figure 5.9 shows a pie¢ diistograms from pixel 500 in green
and from pixel 10 in blue. Notice the difference in size of tweresponding peaks, in addition to the

displacement between the two histograms.
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Figure 5.2: The three chute monochromatic Buhler Sortex @ttirgy machine. Picturé&copyright
Buhler Sortex Ltd, 2008. Reprinted with permission.

For any given pixel, there is a significant difference betwie amount of product, background and
defect captured; this large difference means that the tipfetions of the histogram are not visible in
figure 5.6. Figure 5.7 highlights the defect portions of tleédgrams in red and plots the log histograms
to show the variation among the different classes. FiguegpBovides a further sense of the variation
across the within view histograms by plotting the log histogs as a three dimensional height field.
These plots illustrate that the variation in intensity iasenably small between pixels that are close

together and more significant when comparing pixels a latggance apart.

5.1.2 Current Approach and Commercial Confidence

The Buhler Sortex machine corrects appearance variatimssthe view. When produce falls down the
chute it is inspected by a front and rear camera. The aim &égtrproduce that has visible defects when
inspected from either the front or rear. Separate threshaiel applied in each pixel in the front and rear
of the chute, independent spatial processing in the frothraar is used to identify defect regions above
a specified size and fire the air ejectors. Figure 5.10 surzemthese ideas.

The acceptable product is a significant feature of the hiatodgn each pixel, the defect product oc-

curs much less frequently and can be difficult to discern ftieenhistogram. Because of the significant

scale difference between acceptable and defect prodecctept product is treated as the dominant fea
ture of the histograms. Transforms are found that align titeptable product portions of the histogram

in each pixel, the resultant transforms are then used to rsagke threshold value to an appropriate po-
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Figure 5.3: Side view slice of Z series machine chute. Carsgstems inspect both the front and rear
of the rice stream falling down the chute. The informaticonfrthe front and rear views is use to reject
food produce from the stream using air ejectors. Pic@ospyright Buhler Sortex Ltd, 2008. Reprinted

with permission.

sition in each pixel. If different within-view alignmentansforms are compared, a transform that gives
lower acceptable product appearance variability acroswvigw gives mapped thresholds that depend
less on the product appearance variation.

Commercial confidence issues forbid direct disclosure dedtification of the exact calibration
methods used by the Buhler Sortex machines. The work in thapter is based on a detailed inves-
tigation of existing product specifications, conversaianth Buhler Sortex engineers and interactive
investigation of machine behavior. Candidate methodsédofopming within-view calibration are intro-

duced and quantitatively evaluated.

5.1.3 Motivation for improved calibration routines
It is believed that improved calibration procedures witideto improved sorting performance. Buhler
Sortex state, “There is a noticeable variation in perforoeeacross the width of the chute. The potential

benefit from improving the calibration across the view hatsyebd been quantified. An improvement in
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Figure 5.4: A 1024 by 1024 captured image of rice with appr@tely 3 percent defect. Thith column
in the image represents 1024 sequential grey-level capfuoe the pixel in the CCD array at thith

column position. Picturé&)copyright Buhler Sortex Ltd, 2008.

sorting performance of 0.5% or 1% would yield both econonmid anvironmental benefits for world

production of stable crops such as rice and wheat.” [84]

5.2 Product colour inconsistency reduction

This section introduces methods for colour inconsisteadwuction of the product within a single camera
view of the Z1 machine. When inspecting rice falling downthete the camera sees three object classes,

these are:
1. A white plate in the background,
2. the acceptable rice,
3. the defective rice and other contaminants.

During a calibration cycle the feed is stopped and the iritgn§the white background plate is recorded.
The angle of the plate is adjusted so that it is brighter tharrtensity of the acceptable product. Rice

defects are assumed to be darker than the acceptable rie®. cAfibration the three object classes are
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Figure 5.5: A portion of the capture stream that clearly shthve individual grey-levels that are recorded
over a small spatial region and short time frame. Rows inreggie are grey level values captured over

time, columns indicate spatial position across the chutgufe ©copyright Buhler Sortex Ltd, 2008.

ordered from dark to light on the intensity scale as : 1) dsfezpntaminants, 2) acceptable rice and 3)
the white plate. When the feed is turned on, the histodiaim theith pixel of observed intensities is an

additive combination of the histograms of the backgrobpdacceptable produgt; and defect;; so,

With the feed turned offh; = b,. Two contrasting approaches to removing colour incons@sés across
the camera view are introduced in the next two sectionst, Firethods that align global properties of
the histograms are introduced in section 5.2.1; these areettnon-segmentation alignment methods
Second, methods that align local properties of the accEptaioductp; and defect portions of the
histogramd; are introduced in section 5.2.2; these are tersegimentation based alignment methods
The next two sections 5.2.1 and 5.2.2 develop two approaolt@stogram alignment within the view,
the introduced methods have a number of potential sub-coergs. These options are introduced, along

with short hand codes to refer to them.

5.2.1 Non-segmentation alignment methods

This section introduces two non-segmentation alignmenhoas. Methods for applying FBHA across

the view are introduced along with methods to correct théglonoments of the histograms. These
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Figure 5.6: Histograms of product, defect and backgrounthi® 1024 pixels across the view obtained
by computing histograms for the grey level values obsermeazhch pixel. The vertical axis indexes the
256 different grey levels and the horizontal axis indexa&slgosition. The frequency count is displayed

as a grey-value, where high frequencies are rendered dagkite and lower frequencies are rendered

closer to black.
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Figure 5.7: Log of the histograms in figure 5.6 with the defemtions of the histograms highlighted in

red. This shows the distribution of the defect across the despite the large scale variation between

product, defect and background.

methods do not use a separate background intensity estimate

FBHA within a view

Chapter 4 applied FBHA to align paired histograms. In thelBuBortex histogram alignment problem
there is a histogram for each of the 1024 pixels in the cameva T his section describes a procedure to
align histograms from a camera view, the main steps are )riedetection for each histogrdm , 2)
association of all corresponding features and 3) aligrtwegi¢atures. The procedungthinViewFBHA

in algorithm 6 describes these steps as pseudo-cdikbinVievFBHA accepts &55 x 1024 matrix

H where theith column contains théh histogramh;, from the within view data. Alternatives for the

feature detection, feature association and alignmens stepdescribed here in more detail.
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Figure 5.8: Three dimensional coloured height plot of tlgeHstograms across the view displaying grey
levels 100 to 200.

Algorithm 6 WithinViewFBHA(H)
/I Detect and store the features in each pixel

for i = 1to NumPixzelsInView do
F(i).Features = FindPersistent M axima(h;)
end for
Matches = MatchFeaturesWithinVied, MatchStrategy )
Compute alignment transform for each pixel that perfornesdifre based alignment to either a) centre

pixel features (pixel 512) or b) the average matched feataitees.

Feature detection

There are two dominant peaks in the within-view histograackground and acceptable product. The
amount of defect in a typical histogram is not large enougfinit a discernable peak. The persistent
scale space maxima are detected in each pixel. Figure 5alidsshgrey-level histogram obtained from
a pixel within the view and smoothed histograms using medinchlarge scales. Figure 5.12 shows the
scale space of the same histogram. Figure 5.12 shows themlegéma detected at each scale, we see
that two paths persist over the scale space - these cormsptime background and acceptable produce
peaks. Notice that a large number of irrelevant local maxdarabe eliminated by thresholding the scale

space paths.

Feature matching
Three options for associating the detected features attressew are proposed. The pseudo-code func-
tion call MatchFeaturesWithinView(F,MatchStrategy) in algorithm 6 accepts the detected features in

the parametef’ and the parametévl atchStrategy selects one of the following methods for matching
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Figure 5.9: Plots of histograms from pixel 500 near the e=ofrthe chute in green and from pixel 10

near the left edge of the chute in blue.

the detected features:

1. AssociateToTargetPixel (Targetpixel) maps features from all pixels to the features from a target
pixel, Targetpixel. Figure 5.14 illustrates this method by showing a samplessbeiated features
across the view; there are two types of feature, associatgdres of the same type are shown
with a circle or a square. The features for the target pixeldzawn in red and the features for
other pixels are drawn in blue. The features for itiecolumn are matched to the target features
by finding the match that has the minimum total Euclidean besteen the features from thi

column and th&argetpixel column.

2. ThreeStageAssociateFeatures(F, Targetpixel ,EdgeT) is described in algorithm 7. The procedure
associates features in the centre region of the view togétheorking outwards from a centre
pixel, T'argetpizel to two target pixelsEdgeT away from pixelsl and1024 on either side of
the view. The remaining unmatched features on both sidematehed to the target edge pix-
els. Figure 5.15 highlights the stages of the algorithm kjicgdly by colour coding the matched
features across the view according to the stage of the #igorivhen the features are matched.
The procedure avoids directly matching pixels that are fiarisand places less confidence on the

features obtained near the edges of the chute.

3. The procedur&hreeStageAssocAndFixup(F, Targetpixel,EdgeT) associates features wilthree-
StageAssociateFeatures(F, Targetpixel ,EdgeT) then scans across the view for missing features.
Gaps are filled with linear interpolation between the detg&tatures. Extrapolation is used at the
edges if no product features are detected. Figure 5.16 stluoesample of the linear interpolation

step when features are missing from a central portion of i&s.v

Section 5.3.2 shows results that highlight the performafitkeese different approaches.
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Figure 5.10: The logical flow of information from the frontchnear cameras within a chute. Defect

thresholding is performed on the front and rear views inddpatly. The defect information is aggre-

gated by a spatial processing module, the decision to firaitlegector is base on the size of the detected

defect and the machine settings.

Feature alignment

Point alignment transforms are used to align the assocfatdres; for a recap, see section 2.5.2. A

point alignment transformation is found for all pixels irethkiew, the transform in a pixel moves the

associated features to new target positions. The assd@atece features from a pixel are represented

by a2 x 1 vector,s, where each entry indexes the position of the feature indhesponding histogram.

There are three choices for selecting ?he 1 target vectot,

1. the associated features from pixel 512 are used. (Thisrojtreferred to afTarget-512])

2. the average background and product values. All assdcfetgures are represented ag a

1024 matrix, M, where the 1st row represents the associated product itiésrend the 2nd row

represents the associated background intensities. Gingnthe rows ot are computed as the

average of the corresponding rowsMf. (This option is referred to §3arget-MeanCluster])

3. the maximum background and product values. The rowsaoé computed as the maximum value

of the corresponding rows &¥I.

For each pixel, a point alignment transform is found. Thagfarms evaluated are:

1. Additive using equation 2.17.

2. Multiplicative using equation 2.18.
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Figure 5.11: Histogram of grey-level intensities from agéinpixel in blue and its representation at

medium and high levels of blurring (plotted in green and klaspectively).

3. Linear using equation 2.18,= 1.
4. Quadratic using equation 2.10= 2.

5. Cubic using equation 2.18,= 3.
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Figure 5.12: Grey level representation of the scale spa@g#ty-level histogram. Each row in the
image represents the blurred values of the histogram a&trdift scales, higher values are rendered closer
to white and lower values are rendered closer to black. Thedglale index indexes the lowest scale at

the bottom row to the highest scale at the top row.
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Figure 5.14: Associated features across the view usingdsariateToTargetPixel (Targetpixel) method.
Features indicated with a circle are associated togethifieatures indicated with a square are associated

together. Features from the target pixel are drawn in red.
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Figure 5.15: Associated features across the view using THeeeStageAssociateFea-
tures(F, Targetpixel ,EdgeT) method described in algorithm 7. Features indicated withraecare
associated together and features indicated with a squaesaociated together. The initial seed features
are drawn in red, the algorithm associates the featuresrdrablue to the target features in two passes.
First the features on the left are associated by matchinfgtitares in a column to the matched features
in the adjacent column, this process is repeated for theresbn the right of the initial seed features.
The features drawn in green ddgeT pixels away from the side of the chute; the green featureb®en t
left side of the chute are target features for the featurebeteft side of the chute marked in pink, the
green features on the right side of the chute perform the samose for the matched features on the

right side of the chute.
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Figure 5.16: Associated features across the view usirfidhreeStageAssocAnd-
Fixup(F, Targetpixel,EdgeT). The method use§ hreeStageAssociateFeatures(F, Targetpixel ,EdgeT)
shown in Figure 5.15 as a first step, then the algorithm saangdps in the features across the view.
The black line shown indicates the detection of a gap andrttegpolated line between the detected

features.

Alignment of global moments

This section enumerates possible transforms for aligiegrioments of the histograms in each pixel.
No background removal segmentation is performed,lie= b; + p; + d;. The different transforms
are:

Global additive transform A global additive(shift) transformation in each pixel magkgrey-level
intensitiesy to ¢ + w;. A shift in each pixel is computed to align the mean value ichgzixel to a target.

The mean in each pixel is computed as,
fi=E(;+pi+d;). (5.2)
The additive transform is computed as,
wi =t — fi (5.3)
Three choices for the targgt are investigated,
e Code: GlobalShiftToMean. y is set to the mean of all histogram means.
e Code: GlobalShiftToMax. y; is set to the maximum of all histogram means.

e Code: GlobalShiftToTarget. 1, is set to the mean of thigh pixel. The pixel is chosen manually.

Global multiplicative transform A global multiplicative transform correction maps all greyel in-
tensitiesg to gg. A separate multiplieg; is computed for each pixel; to align the distribution means.
The mean in each pixel is

fi = E(b; + pi + dy). (5.4)
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Algorithm 7 ThreeStageAssociateFeatufe$érgetpixel, EdgeT)
/I Set targets for the left and right sides.

T, < EdgeT
T, < 1024 — EdgeT

AllMatches(Targetpixzel).Features < F(Targetpizel).Features
LastTargetMatch < AllMatches(Targetpixzel).Features
/I Stage 1: Sweep outward from Target pixel, associatindghtires in each pixel to its neighbouring
pixel.
i = Targetpizel — 1
while ¢ >=T; do
AllMatches(i).Features <= MatchFeatures(F (i).Features, LastTarget M atch).
LastTargetMatch < AllMatches(i).Features
1<=1—1
end while
i = TargetPizel + 1
LastTargetMatch < AllMatches(Targetpixzel).Features
while i <= T, do
AllMatches(i).Features < MatchFeatures(F (i).Features, LastTarget M atch).
LastTargetMatch < AllMatches(i).Features
1<=i+1
end while
TargetMaxima = AllMatches(T}).Features
fortc=1to7; —1do
AllMatches(i).Features < MatchFeatures(F (i).Features, LastT argetMatch).
end for
fori =T, +1t01024 do
AllMatches(i).Features < MatchFeatures(F (i).Features, LastT argetMatch).

end for
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This is used to compute the multiplicative transform

M .
9= (5.5)

The different ways of computing a multiplicative correctio each pixel are:

e GlobalGainToMean: i is set to the mean of all histogram means.
e GlobalGainToMax: p is set to the maximum of all histogram means.

e GlobalGainToTarget: u; is set to the mean of thigh pixel. The pixel is chosen manually.

Global linear transform A linear transformation in each pixel maps all grey-levédimsitiesy to \;q +
w;. The multiplicative component aligns the standard destatf theith pixel with the target standard
deviation, we write this as

Ot

A=t (5.6)

o
The additive component is

wi = e — Nifi (5.7)

The standard deviation in a pixel is computed using all povdoackground and defect intensities ob-
tained andf; = E(b; + p; + d,).
The three transform-target combinations are:

1024

> fi
e Code: MeanVarToMean. The target meary,, is defined ag;; = ‘55~ The target standard

1024
g
deviation,o, is defined ag; = 5

e Code: MeanVarToMax. The maximum mean and standard deviation are used as tatgeby;

andoy;.

e Code: MeanVarToTarget: The mean and standard deviation of fttepixel are the target values,

u: andoy. The pixel is chosen manually.

5.2.2 Segmentation based alignment methods

This section introduces methods to compute a piecewisarabgt of the product portion of the his-
tograms. There are three elements to the segmentation hbgechent approach. First, a background
threshold is used to remove the background portions of $tedniams. Second, an erosion step is applied
to discard the intensities corresponding to edge pixel&dTthe remaining portions of the histograms
are aligned. Background segmentation methods and tranafimn methods are described; different op-
tions are identified for each step so that the performancéfefeint combinations of these options can

be evaluated.
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Methods for Background removal
Two types of background removal method are introduced t,FSegmentation methods based on aver-
age intensity statistics are introduced and second, thldskbased on associated persistent maxima are
introduced.
Average intensity thresholds
With the feed turned off, it is possible to observe the inityrsf the background plate on its own and
compute the average intensity in each pixel. The mean gnesl-Value in theth pixel b; of the back-
ground histogranb; is

b; = E(b;). (5.8)

When the feed is turned on, the average intensity of the lvacdkgl, acceptable produce and defect is
computed in each pixel as,
fi=E(b; + pi +d;). (5.9)

A simple method of thresholding the background is to computaction off; in each pixel. This
threshold is computed as,

= PF (5.10)

whereP is a fraction between 0 and 1. The valuef®is set manually. This method is referred to as
PercMean
A second method is to compute a threshglih each pixel that is an offset from the background

mean by a fixed proportios of the distance between the background meanrandhis is,
ti = bl + d(T‘i — bz) (511)

This method is referred to d3iffOffset. Pixels with grey-levels less than or equaltan the case of
PercMeanthresholding and; in the case oDiffOffset thresholding are classified as product or defect.
A feature of the within view data is that less product is obedrby the edge pixels because pro-
duce bounces off the sides of the chute. The implication igfighthat average intensity thresholds can
misclassify background as product near the edge of the clirigeire 5.17 shows how theiffOffset
threshold,t;, approaches the background mean levgl,on the right hand side of the chute. In this
example the effect is less pronounced on the left hand sitteeafhute. A further processing step termed
ExtrapEdges seeks to replace average intensity thresholds at the edi¢fes chute by using a simple
linear model to perform extrapolation. The procedBr&rapEdgeT hresholds described in algorithm
8 accepts the existing thresholdsor r; depending on the method used. Outlier thresholds are disdar
from both edges of the chute, separate lines are fit to thigsloa either side of the chute using a fixed
window size. The fitted lines are then extrapolated on eatdtsi generate the replacement thresholds.
Figure 5.18 shows the modified thresholds for the ExtrapEHggEsholds procedure.
Persistent maxima offset threshold§ he persistent feature detection and matching step alldvesk:
ground segmentation threshold to be computed without araepbackground estimate. This is per-

formed by
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Algorithm 8 ExtrapEdgeThresholdBEdgeT,Fitsizg
LeftLimit < EdgeT

RightLimit <= 1024 — EdgeT
LeftLine < Fitline to pixels(Le ftLimit + 1)..(Le ft Limit + Fitsize)

RightLine < Fit line to pixels(Right Limit — Fitsize)..(Right Limit — 1)
ExtrapolateLe ftLine to pixel 1, replacing all extrapolated pixels.

ExtrapolateRight Line to pixel 1024 replacing all extrapolated pixels.

1. Finding the persistent deep structure features in eaw. pi
2. Associating features usiithreeStage AssocAnd Fizup(F, Targetpixel, EdgeT)with gap filing

3. In a pixel, we compute a background segmentation thrdshas:
ti =b; — P(b; — pi), (5.12)

whereb; is the detected background featupgjs the product feature anél is a fraction that can

be set from 0 to 1. In this work? = 0.5.

This method is referred to d&3StructMidPoint. Figure 5.19 shows plots of the background features,
the product features and the background segmentatiorhtiidss

Erosion step

Pixels at the edge of the rice grain give inaccurate grey i&taes for the product due to pixels partially
sampling the product and background. These outlying gregtivalues are removed from the product
brightness distribution using an erosion image processgiegation. The edge pixels are rejected by first
producing a binary thresholded image of acceptable andttledeoroduct, the thresholds are computed
using an average intensity thresholding method; orfees€Mean DiffOffset or ExtrapEdgesis cho-
sen. Next, an erosion image processing operator is run taifgedge pixels. These edge pixels are

discarded as they do not represent the intensity of the ptadeil.

Local Transforms
This section introduces transforms to perform alignmernhefproduct portion of the histograms. The
product histograms are the result of applying a backgroentbral segmentation to the within view
histograms and then applying an optional erosion step. &dr gansform the different target alignment
values are enumerated.
Multiplicative correction transform

The appearance of the product and defect distributions@reated across the view by aligning
the means of the combined product and defect distributidmsultiplicative transform correction maps
product grey-level intensitiegto gq. A separate multipliey; is computed for each pixel; to align the

means of the segmented product and defect distributioresnigan in each pixel is

i = E(p; +ds). (5.13)
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Figure 5.17: Thresholds computed within a single chuteguairerage intensity statistics method. The
green plot shows the mean background valtg&qn: 5.8), computed by turning the feed off to inspect
the background. The black plot is the mean vajué each pixel (eqgn: 5.9) with the feed turned on.
The blue plot is the threshold, in each pixel computed witRercMean The red plot is the threshold

t; in each pixel (eqn: 5.11), computed wihiffOffset.

This is used to compute the multiplicative transform

gi =1L (5.14)
Hi

The different ways of computing a multiplicative correctio each pixel are:

1024

Zﬂi

e Code:GainToMean The targety, is the mean of all means. i.g; = —1’1:0124 .

e Code:GainToMax. The maximum mean computed in each pixel is used as the tamget, =

max (), Vi

e Code:GainToTarget The mean of theth pixel is the target valuey;. The pixel is chosen

manually.

Additive correction transform
An additive(shift) transformation in each pixel maps prodgrey-level intensitieg to g + w;. A
shift in each pixel is computed to align the mean value in gaxél to a target. The mean in each pixel
is
pi = E(pi +d;). (5.15)
The additive transform is

Wi = fit = fi- (5.16)
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Figure 5.18: The red plot shows modified thresholds in eagbl pising the ExtrapEdgeThresholds
procedure described in Algorithm 8. The green plot showsiikan background valuels, (eqn: 5.8),
computed by turning the feed off to inspect the backgrourtte Blue plot is the threshold, in each
pixel computed witlPercMean Note that the extrapolated red DiffOffset lines cross treeg plot on

the right hand side. This is undesirable behaviour.

The targetu, is set to the mean of all mean valugdo@e: ShiftToMean), the maximum of all mean
values Code: ShiftToMean) or the mean value from a manually chosen target pi€elde: ShiftTo-
Target).

Linear correction transform

A linear transformation in each pixel maps product greyelévtensities; to A;¢+w;. The multiplicative

component aligns the standard deviation ofitiepixel with the target standard deviation, we write this

as
A= 2L (5.17)
0
The additive componentis
The three transform-target combinations are:
1024
Hi
e Code: MeanVarToMean. The target meany,, is defined agi;; = 55~ The target standard
deviation,oy, is defined ag; = %.

e Code: MeanVarToMax. The maximum mean and standard deviation are used as tatgeby;

andoy. u; = max(u;), Vi andoy, = max(o;), Vi.

e Code: MeanVarToTarget: The mean and standard deviation of fttepixel are the target values,

1y andoy. The pixel is chosen manually.
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Figure 5.19: Persistent deep structure features and baokdisegmentation thresholds computed using
the DStructMidPoint method. Background features are @ibitt green, the blue plot shows the product

features. The red plot shows the background segmentatieshtblds computed in equation 5.12

5.3 Experimental Evaluation

This section experimentally compares the alternativeobistm alignment methods. First, we qualita-
tively investigate the behavior of the persistent maxim&ct&on and association procedures on Buhler
Sortex data. Second, we quantitatively compare the intredwcolour inconsistency corrections. The

next section introduces the data used in the experiments.

5.3.1 Data

This section describes the procedures and system devetiopied) the EngD to capture data from the

Buhler Sortex machine in order to investigate the histogaignment problem.

A new capture system

Figure 5.20 shows the Z1 machine and the real time data eapétup that has been developed by the
author specifically for this project. The architecture dsthave been classified confidential by Buhler
Sortex. The capture setup allows data to be captured fromgdesinonochromatic camera view in real
time. This setup provides significant advantages over pusvtapture setups at Buhler Sortex that had
a 25 second delay between captured frames. The non reahtituee of the previous capture solution
meant that a recirculation rig was needed to recycle to priodiuring a data capture. Figure 5.21 shows
a recirculation rig that pumps the product back up to thetilppper via a mechanical system. With the
previous setup, the rice was physically polished as it recythrough the rig thus changing its brightness

over time. The developed system avoids these problems.
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Figure 5.20: Buhler Sortex Z1 sorting machine and PC bagetdiasystem. Pictur@copyright Buhler
Sortex Ltd, 2008. Printed with permission.

Figure 5.21: Buhler Sortex Z1 sorting machine and reciteuherig. Picture©copyright Buhler Sortex
Ltd, 2008. Printed with permission.
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Figure 5.22: The author operating the touch screen interfat the Buhler Sortex Z1. Picture
(©copyright Buhler Sortex Ltd, 2008. Printed with permission

Figure 5.23: Camera and sorting electronics. Pic@opyright Buhler Sortex Ltd, 2008. Printed with

permission.

All data referenced in this chapter was captured using thecagture system. The development of
this system was a significant undertaking that occupiedrafsignt portion of the 1st year of the project.
All parts were ordered, assembled and custom software wittemvand debugged as part of the project.
The developed system allows real time streaming data toftareal for the first time from Z1 machines,

this ability to capture this data will prove beneficial in aiesy of other projects.

Data capture procedure
The Z1 series machine is first calibrated using the in-bailitbcation routines. Figure 5.22 shows the
author operating the Buhler Sortex Z1 machine. Once fullipcated, the camera is unplugged from
the machine’s internal electronics shown in Figure 5.23@ndged into the custom capture setup. This
does not affect the internal state of the machine.

A continuous flow of rice was created by filling the top inpupper with rice three times, this
was sufficient for calibration and data capture. Notice #ugler positioned next to the Z-Series during

a capture session in Figure 5.20, the top input hopper showrigure 5.24 is filled with rice. Rice is
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Figure 5.24: Top chute to be filled with rice on the Buhler 88 1. PictureCcopyright Buhler Sortex
Ltd, 2008. Printed with permission.

Figure 5.25: Bottom of chute on the Buhler Sortex Z1. Pict@reopyright Buhler Sortex Ltd, 2008.

Printed with permission.
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Figure 5.26: Associated persistent features from the fv@w using an offset of 110 usingssociate-
ToTargetPixel (Targetpixel) in 5.26(a), ThreeStageAssociateFeatures(F, Targetpixel ,EdgeT) in 5.26(b)
andThreeStageAssociateFeatures(F, Targetpixel ,EdgeT) with gap filing in 5.26(c).
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Figure 5.27: Associated persistent features from the riear using an offset of 110 usingssociate-
ToTargetPixel (Targetpixel) in 5.27(a), ThreeStageAssociateFeatures(F, Targetpixel ,EdgeT) in 5.27(b)
and ThreeStageAssociateFeatures(F, Targetpixel,Eadg#aiyap filing in 5.27(c).
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Figure 5.28: Associated persistent features from the fv@mw using an offset of 120 usingssociate-
ToTargetPixel(Targetpixel) in 5.28(a), ThreeStageAssociateFeatures(F, Targetpixel ,EdgeT) in 5.28(b)
andThreeStageAssociateFeatures(F, Targetpixel ,EdgeT) with gap filing in 5.28(c).
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Figure 5.29: Associated persistent features from the riear using an offset of 120 usin§§ssociate-
ToTargetPixel(Targetpixel) in 5.29(a), ThreeStageAssociateFeatures(F, Targetpixel ,EdgeT) in 5.29(b)
andThreeStageAssociateFeatures(F, Targetpixel ,EdgeT) with gap filing in 5.29(c).
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collected at the bottom of the machine as shown in Figure &2 bucket is used to refill the top input
hopper, a separate operator controls the capture softwairggtthis process.

The Z-series has laackground offsgparameter to the calibration routines that can be set fr@n th
graphical user interface. A higher background offset vahgeeases the distance between the product
referencey;, and background mean;, across the view by adjusting the angle of the white calibra-
tion plate during the calibration cycle. Therefore, a higithkground offset value increases contrast
between the background and product grey-levels makingetipgentation more robust. There is a trade
off between setting a high background offset and using ugyimamic range of the camera to record
background and acceptable product grey-levels, a higlisetaheans that there is a smaller range of
grey-levels to discriminate between the acceptable proghat the defect. The capture system can cap-
ture the data feed from only one camera at a time. Americabqied rice is used with 2-3 percent

defect to compare the effects of:
1. Different background offset settings - (110 and 120), and
2. Front and rear views.

White lamps were used in the machine. The data-sets capeed
1. the front view, calibrated with an offset of 110.
2. the rear view, calibrated with an offset of 110.
3. the front view, calibrated with an offset of 120.
4. the rear view, calibrated with an offset of 120.

The offset values of 110 and 120 give a low and high contrastden the background and rice respec-
tively. The offset is commonly set to 110 in production sagtsetups, data is captured with the 120
setting because the product and background peaks arerfagag which should be an easier histogram

alignment task.

5.3.2 Qualitative evaluation of feature detection and assation
Aims

To assess the feature detection and association steps wiBiuhler Sortex view.

Method

For each of the four data-sets, the following steps are padd:
e Compute histograms in each pixel for a portion of the videessh.

e Compute persistent maxima from the histogram in each psiablF'ind Persistent M axima(H)
in algorithm 1 using scales,; = %=1, wherei = 1..T. The scale persistence threshdltljs

setto 17. The noise floor threshotd,is set to 0.001.

e Match the detected features using the three differentmestintroduced in section 5.2.1. These

are:
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— AssociateT oTarget Pizel(Targetpixel), with Targetpixel = 512,

— ThreeStageAssociate Features(F, Targetpixel,EdgeT)  Targetpixel = 512 and
FEdgeT = 30,

— ThreeStageAssociate Features with an additional gap filling step.

Plot the associated background features using a greerbn@ssociated product features using a

blue line.

Results and conclusions

Figures 5.26 and 5.27 show results for the front and rear,0ffs@t datasets respectively. Figure 5.28
and 5.29 show results for the front and rear, 120 offset d&gasThe most noticeable result from the

plots is that thel'hreeStage Associate Features procedure followed by a gap filling step performs the
best. The problems with the two association methods highlgsues when matching features across
the view. Figure 5.26(a) shows how the minimum Euclideatadise can mismatch features between
histograms that exhibit large deformations. The featunessaich pixel are matched to pixel 512 which

causes mismatches between the background and foregroatndefe at both ends of the chute, this is
because the mismatched features are closest togetheme FE@6(b) shows that finding associations
between neighbouring pixels working out from the centrénefitiew resolves this problem. Two further

problems with the associated features are evident in thehmdtproduct features in figure 5.26(b):

1. Absent features are represented as a zero grey level®dhd glotted feature line drops to zero.
Further investigation of the features in 5.26(b) showedl tth@optimal feature persistence thresh-
old is different for these few pixels. Despite this, we ndiattthe same feature detection parame-

ters are used in all pixels for all four data-sets; only tha@sgels exhibit this issue.

2. Product edge features are frequently not present at tiessext the chute due to low or no product

passing these pixels. This can be seen in figures 5.26()5,5.28(b) and 5.29(b).

We have shown that the combinationBhreeStage Associate Features with gap filling works well

across the data-sets.

5.3.3 Quantitative evaluation of colour inconsistency caections
Aims
The aim of all methods is to minimize the colour inconsisteotthe acceptable food across different

pixels. The product is the focal point of the investigatia@tause the background is removed and the

defect does not form significant peaks in the histogram.

Method

The introduced methods to perform appearance correctithinvg view are comprised of steps with
a number of options. The different combinations are evalliaand all methods are applied to each
data-set. An alignment score is computed after applying) @aethod. The following steps detail the

experimental procedure used to evaluate alignment mettrodach of the four within-view data-sets.
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For each data-set:

1. Divide the video stream into a training and test portion.
2. Compute the histograms for each pixel across the viewgubmtraining set.

3. For each alignment method, compute the alignment tramsfitons in each pixel across the view

using the training set.
4. Apply the computed transformations in each pixel to tise $et data histograms.

5. Use the ground truth labels (see below) to extract theatighistogram data across the view for

each class label.

6. Discard edge histograms computed from pixels that hasergbd insignificant amounts of prod-

uct.
7. Normalize all remaining histograms.

8. Compute the variance of the aligned class histogramg ik summary variance measure de-

scribed in equation 5.21 (see below).

Ground truth

The histogram alignment methods evaluated may containraesgigtion and alignment transform step.
The different methods are compared by evaluating theinglignt performance on a data-set that has
been labeled as the ground truth. To produce an acceptahladtruth, the existing calibration method
is used to label portions of each data-set with the classddh®ackground, 2) Accept product, 3) Edge
Pixel and 4) Defect.

The steps used to compute the four labelled classes are:

1. TheDiffOffset method described in equation 5.11 is used to generate thdssto segment the

background.

2. The background portion of the signal is removed and theaigimg signal is aligned across the
view using the multiplicative correction transform. Thsésdomputed using equation 5.14 and
GainToMax.

3. Afixed defect threshold is applied across the corrected gignal to label the defect. The thresh-

old is adjusted manually until a visually acceptable reisubbtained.

4. The product signal is isolated and used to create binaagé® of the rice. An erosion filter is run

to classify the edge pixels, the remaining non-eroded piaeg labelled as the product.

5. The labelled class information is used to create a fouswreld mask that overlays the original
grey level data. The product regions are inspected by eyaandnual correction is performed.

Missing product pixels are added and false product claasifies are removed.

This procedure produces a highly robust labelling of theeptable product data. The defect portions of

the histograms are not directly studied in this work.
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Metrics
The variance of the transformed ground truth classes telf®w much residual colour inconsistency re-
mains. When making comparisons, a better alignment metfaatito lower variances of each individual
class. First, the data is transformed and then the groutid labels are used to compute class-labeled
histograms in each pixel. Each of t&labels can be used to extract portions of this ground trugh hi
togram. To reduce of the sensitivity of the metric to scaleatmns between different instances of the
same class, the transformed histogram components for é&sshare normalized.

For thecth class, we compute the variance in each grey-level of tiesformed ground truth his-
tograms components labeledFor a set ofV labeled histograms from the CCD pix€ls} we write the
variance of the vector of histogram bin values for ttregrey-level of thetth classg; . as:

N
Yot Gip.e — E(gic))?
N b

var(g;..) = (5.19)

wherep indexes the CCD pixel; , . is the bin-count from théth grey-level of thepth histogram for
classc. The expected grey-level at intensitfor classc is

N
szl Jip.c

E(gi,c) = N

(5.20)

We summarize the grey level variance using a single numbsubyming over all grey-levels according

to,
256

Vo= var(gic). (5.21)
i=1
The different set of pixel§p} that we consider are:
1. From the correction of a single view.
2. From the alignment of front and rear views.

Care must be taken to reject edge pixels that have not olzsgcesfalling past, this can occur at the
edge of the chute due to rice bouncing off the sides; inclydinch pixels in the metric can cause out-
landish results and so we remove the histograms from thesksiom the alignment evaluation. Outlier
pixels are identified by inspecting edge pixels histograntsfiagging those with no product peaks, the

outlier pixels are saved along with the ground truth infatiovaand used during each evaluation.

Experiment 1: segmentation driven within-view alignment

Hypothesis: Alignment of the first two moments of the eroded product dstion leads to the best
alignment score when compared to other product alignmetitads.

Method and ResultsWithin view alignment methods that segment the producribigion and then
align this portion of the distribution are used to align thettset data as described in the previous sec-
tion. The methods evaluated each comprise a product segtimenmethod, a transformation and a
choice of target values. For each data-set we rank the tianations according to the score on the
aligned product portion of the distribution. The best 15res@re displayed as a bar chart for each data-

set in figure 5.30.
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Conclusions Segmentation driven within-view alignment methods that lisear correction trans-
forms outperform methods that use the multiplicative odiom. This is seen by comparing lin-
ear and multiplicative correction results where all othenditions are held constant; for example,
DiffOffsetEros0-93ExtrapMeanVarToMax performs betteart DiffOffsetEros0-93ExtrapGainToMax
in Figure 5.30(a). This pattern is repeated among othesfioams. In addition, the best performing meth-
ods DiffOffsetEros0-93ExtrapMeanVarToMax in Figure §8nd PercMean0-93ErosMeanVarToMax
in Figure 5.30(b) both use the linear correction. This teighat the linear correction reduces the ap-
pearance variance of the product across the view; duringstat thresholding appearance variation in
the product is significant as it affects the effectivenegh@thresholds used across the view. The results
also show the importance of discarding edge pixels to gaiestimate of product brightness as almost
all of the top 15 ranked methods on all data-sets utilize theien step.

Also of note, is the variation in alignment score accordmthe choice at target parameters. For both the
multiplicative and linear transformation there is an adage gained by aligning to the maximum values;
this ensures that the multipliers are positive and the rafigiee bins occupied by product is increasing,
this yields more similar histograms compared with the casere/the range is being reduced. Finally,
the alignment scores are sensitive to the method used toesgdghe product across the view, the best
performing method can vary according to the data-set. Icesés the methods are dependent on product
reference value computed using 5.10 with= 0.93. Individually tuningP may yield improved results

on specific data-sets. A common value was chosen acrosgalsdes for simplicity.

Further individual tuning of this parameter may lead to ioyad results in some cases, however this
parameter is set by observing its effect on aggregate syséfarmance by a Buhler Sortex engineer

during setup.

Experimental 2: global histogram alignment

Hypothesis: FBHA transformations outperform shift, multiplicative lorear alignment of the distribu-
tion moments.

Method and ResultsShift, Multiplicative and linear alignment of the distrition moments are com-
pared against the FBHA procedure with linear, quadraticartc correction transforms. Alignment
scores for the 110 calibration offset data-sets are showra and 5.33 shows the 120 calibration off-
set data-sets. FBHA3MatchMax performs best in all caselsEBHA methods perform better than all
moment based corrections on the front view 110 and 120 ddasathis is seen in Figures 5.32(a) and
5.33(a) respectively. Most FBHA methods perform bettenthrmoment based corrections on the rear
view data-sets shown in Figures 5.32(b) and 5.33(b). Thé&hMeanVarToMax and GlobalMeanVar-
ToTarget methods outperform FBHA1MatchMean for the reanwi10 data-set and they outperform
FBHA2MatchMean and FBHA1MatchMean on the rear 120 data-set

ConclusionsFBHA is shown to be robust and effective, it outperforms otfiebal histogram alignment
methods. The parameters of the algorithm are shown to besteinal features are extracted from the
data in an unsupervised manner. There are no hard wired ptisasin the algorithm about the number

of clusters in the data. The results show an improvementeftignment score from linear through to
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cubic transforms.
The global transformations do not align the individual proddistribution components as well as the
segmentation driven approach. However, the FBHA apprcactore general and aligns the background

components of the distribution as well.

5.4 Summary Conclusions and Discussion

This chapter makes four key contributions:

1. FBHA robustly aligns the appearance of Buhler Sortex in-fed data.

The procedur@ hreeStage Associate Features with gap filling detects and associates features
within the view reliably so that FBHA can be performed. Wertethat correct association of the
features across the view can be achieved by using the knge/ét neighbouring pixels give
rise to similar histograms and edge pixels frequently oleseither low levels of product or no
product at all. FBHA with linear, quadratic and cubic tramrgfiations equalizes the appearance of
the product and background across the view. These comtisatiutperform shift, multiplicative
and linear alignments of the global moments of the histograrigures 5.32 and 5.33 show that
the best global feature based alignment method is FBHA3MA#x on all four data-sets. Feature
based histogram alignment methods that use a third ordgngulial give product variation scores
approximately a factor of two lower than the next best monbased transform GlobalMeanVar-

ToMax. This validates using the feature based approach amdpo moment based approaches.

2. Background removal thresholds are computed using in-feedata. Stopping the feed to inspect
the background plate is a costly procedure because logtgdirne reduces the productivity of a
sorting machine. We have introduced an alternative to tkeea@e intensity statistics method that
does not require separate background estimates with tdetdeeed off. The DStructMidPoint-
ErosMeanVarToMax method processes histograms obtairtadive feed turned on and performs
well on all data-sets; it gives close to the best result iD&@&R 5.30(b) and 5.31(a). It performs
best in 5.31(b), the method works well because it robustiyremts the product and background
across the view before applying the linear correction stejné product. Global moment based
transforms perform worse in most cases because they domsities the multi-modality of the dis-
tributions to be aligned. DStructMidPointErosMeanVarT@itould give superior performance
over long periods of operation compared to the Buhler Saligarithm, this is because the Buhler
Sortex method’s background estimates will become morecumage if the intensity of the back-
ground changes over time. Further tests and data captuleteqlore whether this scenario arises

in production set-ups.

3. Performance effects of component permutations of the BuhleSortex algorithm are evalu-
ated We discover that the erosion step is critical to the perfareesof all segmentation based
methods. The top fifteen segmentation based methods indsS§uB0 and 5.31 all use the erosion
step to discard the edge pixels. We also discover that ndesiragkground segmentation method

performs best across all data-sets, the difference in ptoguiance across the view for the top
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fifteen segmentation based methods is very small compatée @iobal histogram alignment re-
sults. This variation is approximately5 x 10~* between the best and worst results in 5.30(a),
5.30(b) and 5.31(b). The variation is approximatelyx 10~%in 5.31(a). The results contrast sig-
nificantly with the global histogram alignment scores whéch significantly higher for all meth-
ods. The differences between the best global histograrsframation and FBHA3MatchMax, the
best performing global moment based transformation arecappately: 3 x 10 GlobalMean-
VarToMax in 5.32(a)1.75 x 107 in 5.32(b),4 x 10°¢ in 5.33(a) and..5 x 107 in 5.33(b). We note
that all global histogram alignment methods are signifiyambrse than background segmentation

driven methods.

4. Alinear correction of the product appearance is introduced The linear correction gives lower
appearance variation across the view compared to the ricatipe correction. This is significant
because the multiplicative correction has significant suigp the literature [49]. This tells us that
it is worth aligning the mean and variance of a histogram nvalglen the histogram can be reliably
labelled.

Global and segmentation driven local correction transiohave been examined and contrasted.
The controlled environment and constraints ofdlaek sortprocedure mean that alignment of the product
mode of the set of histograms is of utmost importance. Wenldeat in these cases, segmentation driven
algorithms are favorable. We have shown how the new featatection procedure can be used to
perform the segmentation - it is important to realize thatFBHA procedures used have no parameters
to indicate the number of clusters present in the data. Bha key design feature of this approach,
specifying the number of colour clusters frequently leadbrittle assumptions; the bottom up feature
extraction procedure deserves further examination ond8drtex bi-chromatic machines. Future work
may also seek to develop the idea of performing segmentdtigan piece-wise alignments on sets of

2D or 3D colour histograms.
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Figure 5.30: The fifteen best performing within view tramafation methods applied to the front 5.30(a)
and rear 5.30(b) view data-sets with a calibration offset™d. The scores indicate the variance of the
product components of the histograms across the view aftegation. A lower variance indicates better

alignment.
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Figure 5.31: The fifteen best performing within view tramafation methods applied to the front 5.31(a)

and rear 5.31(b) view datasets with a calibration offsetaff.1
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Figure 5.32: Variance of the product components of the pistms across the view after correction with

moment based and feature based global correction transfonndata front the front 5.32(a) and rear

5.32(b) views with an offset setting of 110.
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Figure 5.33: Variance of the product components of the gistms across the view after correction with
moment based and feature based global correction transfonndata front the front 5.33(a) and rear

5.33(b) views with an offset setting of 120 .
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Chapter 6

Conclusions and Further Work

This chapter highlights the commercial relevance of thekviotthis thesis then discusses the empirical
findings presented in Chapters 4 and 5. It considers whatrtipérieal findings tell us about removing
colour inconsistencies using an automatic histogram almt approach. The limitations of the work

are identified and suggestions for future improvements atehsions are discussed.

6.1 Commercial relevance and contributions

This section highlights the commercially relevant achieeats in this thesis

6.1.1 Direct applicability of findings

Chapter 5 provides a detailed investigation of methodsdducing colour inconsistencies in the product
appearance across the view of a Buhler Sortex Z1 machindioBec? reasoned that a performance
improvement that saves just 0.5 percent of the processetviolome will yield an extra 270 tonnes
of product per machine per year. Buhler Sortex engineersvkhat colour inconsistencies are one
significant factor that affect the Sorting performance & tthachines; the introduced linear correction
gives the best segmentation driven alignment and the FBigfamlents gives the best non segmentation
alignment method. Deployment of the calibration algorighinto sorting setups will enable the effect of

the improved calibration on the performance on the foodrepgrocess to be tested.

6.1.2 Future applications

Future work may extend the FBHA approach to work with bi-chatic colour data. The experiments
performed on the image data-base in Chapter 4 provide itssigto the behavior of FBHA in 2D. The
background removal thresholds computed using the deegtsteufeatures proved extremely robust on
the Buhler-Sortex data, the need to perform alignment aiiddal modes motivates the extension of
FBHA to perform piece wise alignment of corresponding @ust The need to segment individual modes
in order to align them well suggests that it would be desedblintegrate calibration and segmentation

into a fully automatic approach.

6.2 FBHA

The feature based histogram alignment approach has beéadafpa database of colour inconsistent

images in Chapter 4 and to grey level video streamed data apt€h5. The deployment of the same
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basic approach on these two different applications wasvatetil by the need for generic colour incon-
sistency removal techniques; FBHA shows itself to be a gergproach to aligning histograms with
corresponding clusters that have a single dominant peaklAHB:=haves in a robust manner on Buhler
Sortex data and a significant number of image pairs in the éndagabase.

The results of the histogram alignment experiments makessiple to draw conclusions about

assumptions made by the FBHA approach. These are:

e Point features. Histogram peaks are good features to match when the comdsppclusters
have the same number of peaks. Small irrelevant peaks aratlsetbaway by the deep structure
feature detection procedure. However, it is unclear howatcndifferent numbers of peaks for the
corresponding cluster. Deep structure feature detecdishawn to robustly find peaks in 1D and
2D histograms, the technique does not generate robustésdgiom 3D histograms of the RGB
data. Itis thought that tracking the connected path of maximthe scale space of 3D histograms
leads to broken tracks as the number of degrees of freedaimef@ath following step is increased.
The deep structure feature detector is useful becausasitks@re not dependent on initial seeding
points as is the case with algorithms such as K-Means anddiagpeEn maximisation mixture
model fitting; the detector does not require the number aftehs to be input in the algorithm and

has proven robust to its input parameters.

e The structure of colour inconsistent histograms.The experiments on the RGB image database
show that high variability between corresponding clustersolour inconsistent histograms is
common. This means that it is difficult to match point feasurerrectly due to these unpredictable
changes in the structure. The FBHA procedure failed moshafn these cases, this shows that
point feature detection and a CEM or CEM-DC matching stratiges not work successfully in
many cases. Ambiguous matches between feature points tabeoresolved if feature points are
associated with a cluster. The lesson here is that matchatgre points alone is not sufficient in
many cases, correct matching can only be achieved in thees by reasoning about the clusters in
the histograms. Section 6.4 discusses potential appreastextend the current FBHA approach

to meet this challenge.

The Buhler Sortex problem did not exhibit the same problefiftstogram structure variation as
the RGB histogram alignment problem. Grey-level histograimtained from the Sorting machine
have clear and unambiguous clusters that enable the FBHAtowell. The stable nature of the
histograms obtained from the Buhler Sortex machines isgiyiytnot surprising, as these machines
are engineered for high performance imaging and use quatigal and electronic components.
However, the commodity cameras used for the RGB image dedatepture are produced with
different aims in mind, in particular they are designed todurce visually pleasing images using

optics and electronics that must be produced at competitjrestreet prices.

Applying the same generic approach to colour data fromdiffesources has proved informative.

The results show that a generic approach has value, buboautist be exercised when applying a
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method that works well under one set of acquisition condgitn data-sets that are acquired under

a different set of conditions.

Alignment transforms. FBHA allows point alignment transforms to be used to aligloaphis-

tograms. Previously, this class of transform was restilitbe use by applications that labeled the
colour data using information from the spatial domain. Ba@reple, by extracting the correspond-
ing coloured squares of a MacBeth chart in different imagebusing the mean colours of each
square as the feature points. Point alignment transformp@werful, they can align histograms
more precisely than other commonly used colour transfombk ss moment based alignments.
Section 4.4.1 in chapter 4 investigates the feature bagguhaént hypothesis and finds that point

alignment transforms perform better than all other clas$esethod tested.

Global and piecewise local transforms are investigatetlimthesis. The experiments in chapter
4 transform all colour values using different global trammeis. Chapter 5 evaluates both global
and local transforms on Buhler Sortex data, section 5.328euts experiments that quantitatively
evaluate these transforms. These experiments show tratttacisforms align the appearance
of the rice better than global transforms, they also showpbant alignment transforms are the
best choice among global transforms. It makes sense thegwise transforms that align corre-
sponding histogram clusters can produce better alignntlesitgylobal alignments that aim to align
multiple clusters, this is because piecewise transforjusadach mode of the histograms individ-
ually. Applying piecewise local transforms is difficult lzacse the corresponding clusters must be
segmented prior to computing a local alignment transforhre Buhler Sortex machine utilises a
robust imaging setup so that segmentation of the correspguotliisters is effective. However, it is
more difficult to segment the corresponding clusters of mvareble histograms like those of the
RGB image database. The work in this thesis highlights ti@atignment performance of global
non feature based transforms, global feature based tramsfand piecewise local transforms ex-
ist in a performance hierarchy. Global feature based toainsf perform better than global non
feature based transforms and piecewise local performritbti@ global feature based methods
on the Buhler Sortex data. It is reasonable to infer thatgigge transforms would also improve
the alignment of the RGB image data if suitable segmentatifrihe histograms can be found.
A general observation is that the transforms that perforttebare harder to apply automatically
as incorrect feature detection or segmentation steps asedthem to fail catastrophically. The
results in this thesis suggest that a promising line of futavestigation could seek to unite ideas
from segmentation and calibration into a single framewsdgtion 6.4 discusses some possible

approaches.

Multiple histogram alignments. Chapter 5 demonstrates that multiple histograms can beelig

using the FBHA method. The qualitative assessment of featatection and association in sec-
tion 5.3.2 shows how features from Buhler Sortex within vidata can be correctly associated
using a three stage feature matching procedure. The prozatatches the centre, left and right

edge regions separately. Then, the three regions are atsbai a final step. Attempts to match
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features from all pixels to the features from the centre Ifiéed, this result shows that closest
Euclidean feature matching (CEM) can fail when the incdtyamatching features are close to-
gether. When working with Buhler Sortex data, it is possibleise the knowledge that features
from neighbouring pixels are likely to be more similar thaatures from pixels that are far apart;
the three stage feature association uses this knowledgertorm correct matching. FBHA ex-
periments on the RGB image database focus on matching imeige he performance of the
FBHA method needs to be improved in future work to justifydfgplication to aligning multiple
RGB histograms. Automatic alignment of multiple RGB histmgs is more difficult than the
Buhler Sortex problem because there is no inherent ordarmang the images in the data-set and
correct cluster association is more difficult because ofthéctural variation that exists between

corresponding clusters.

6.3 Existing methods

Experiment 1 in section 4.4 provides a unique evaluatiomofrnonly used colour alignment transforms.
The findings from this work inform machine vision system dasirs to make intelligent choices when
selecting transforms in their work. Particular lessonsaterare that transform performance can vary
greatly for small changes in experimental conditions. Tbkated transform rankings can be used by
practitioners needing to select a transform for an apptinathe rankings give a sense of alignment
performance and robustness. The high variability of tramsfperformance highlights an area for future
work, an automatic transform selection method would berdbk in this case. For automatic model
selection to work an improved non parametric model is negtiédoption is discussed further in section

6.4.

6.4 Further work

The limitations of the work in this thesis suggests four area future research that could advance the
state of the art of automatic histogram alignment algorghrihe ultimate aim is to produce a fully
modularblack boxalgorithm that can be used to remove colour inconsisteriiciaay computer vision
scenario. This section states the research areas alongheitbroblem they should address and some

suggestions for potential lines of investigation. The arfeafurther research are:

1. Extend FBHA to handle topological features.
Problem: Point features are useful when the corresponding clustersin the same number of
significant peaks. However, feature points are not easy tohm@rrectly when the structure of
corresponding clusters is significantly different. Thdidifity of matching the structurally varying
clusters that occur in the RGB database motivates the dawelot or usage of cluster detection
algorithms that are robust to these changes in local topolog
Potential approaches: A cluster detection method is needed that finds significaakgén the
histograms and also the relationship between these peakan€&thod needs to find features that

occur at different and unspecified scales, also the algorghould not require the number of
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clusters or their shape to be specified. Klemela [85] hasdluired a level set tree method for
the visualisation of multivariate density estimates thaiears to meet these criteria. The method
builds a tree structure from the separated parts of levelafea function, this is called a level
set tree. Klemela proposes the method as a way of visualg@ngral multivariate functions
and shows promising results on synthetic histograms gtateresing Gaussian mixture models
in three and four dimensions. Two relevant questions tostigate are: 1) Can level set trees
be used to robustly detect features in the 1D, 2D and 3D histog of images from the RGB
image database?, and, 2) Can level set trees of these histdzg robustly matched? Work on
comparing the topological structure of 3D shapes [86] mayigle some insights into the best

ways to perform the matching.

If this technique is found to work, it would represent a sfigiaint advance. Volume estimates are
computable for each cluster in the level set tree, so it isiptisto express the posterior probability
of each data point belonging to the identified clusters indkiel set tree. A Bayesian expression
that describes the probability that an unseen data-polahge to each of the clusters identified
by the level set tree would be of great value. It would be anahtoext step to develop this

formulation if initial tests on the level set tree are pestiThe Bayesian formulation would make
it easy to combine labeling information from other algamiththat use prior information as label

probabilities can be combined by use of the multiplicatiole r

. Unordered set automatic multiple histogram alignment

Problem: The FBHA approach is not currently tested on the unordergdradtiple histogram
alignment problem. The alignment experiments on the BuBitetex data show how multiple
alignment can be performed but the approach uses the kngathdt neighbouring pixels produce
more similar histograms. The experiments on the RGB databaly test alignments on pairs of
histograms. Future work could explore the challenges ghalig multiple histograms when no
ordering information between the histograms is known.

Potential approaches: A sensible starting point for research on this topic wouldideevise
algorithms to align Buhler Sortex data that do not utilise thherent ordering between pixels.
Potential lines of investigation could take inspiratioorfr work into the alignment of multiple
range views [87] and point sets [88][89]. Attempts couldnttee made to extend the multiple
alignment approach to the RGB data, it is presumed that tiigyao do this successfully is
dependent on the ability to successfully manage the toprabfgatures described in the 1st item

in this list.

. Produce a unified cluster segmentation and alignment routias

Problem: The alignment of corresponding clusters using piece waesforms requires a cluster
segmentation step to be performed before the alignmentdfegk on the Buhler Sortex problem

shows that the segmentation method and alignment are ahwgpelying piece wise transforms

in more general settings (such as the RGB data-base) requithods that integrate ideas from

segmentation and alignment.
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Potential approaches: The problem of dealing with data from multiple sources or tiplé
learned models has been tackled by the machine learning aaitynCluster ensembles [90][91]
are methods to combine multiple partitionings of a set o€otgj into a single consolidated clus-
tering. An insight from the alignment experiments on Bul@ertex data is that a single clustering
is not sufficient to segment all the histograms correctlystdad, it is important to find correct
clusterings in each histogram and the transformationsdmatthese clusterings. It is thought that
development in this area would benefit from development effittst two research items in this

list.

. Extend segmentation framework to allow priors to be seamledy integrated into the labeling
process

Problem: Correct histogram alignment is dependent on correct lap@lf the histograms prior to
alignment, either by feature detection or complete lalgelFully automatic histogram alignment
algorithms do not utilise many powerful sources of priooimfiation in particular problem do-
mains. A challenge for the development of a generic appraatthretain a modular frame work
that allows prior information from other labeling processe be seamlessly integrated.

Potential approaches:The development of Bayesian labelings that do notimposatunal shape
constraints on the distributions would allow prior inforea from other sources to be integrated
probabilistically in a natural manner. In striving for thasal, it is important not to impose dis-
tributions that do not fit the data just because they are eadgploy; for example the Gaussian
mixture model is frequently used to model highly non Gaussiistributions in many computer
vision applications. Advances to research item 1 in thisWiguld naturally lead to these exten-
sions. Information from the spatial or temporal domain jeypowerful cues and should not be
ignored when aiming to build the best systems, it would beredting to integrate generic spatial
segmentation approaches such as graph partitioning [98]the automatic histogram alignment
approach. Additionally, striving for clear modularity Wigad to wider deployment of algorithms

and deeper insights in the future.
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Chapter 7

Summary of Achievements

This chapter summarises the achievements made by this.thgsction 1.3 introduced the automatic
histogram alignment problem and section 1.4 outlined thad tpodevelop unsupervised alignment algo-
rithms that can align the corresponding clusters in colagtolgrams. The achievements that meet these

goals and improve understanding are:

¢ Introduced taxonomy of colour inconsistency removal techiques. Chapter 2 provides a new
way of looking at colour inconsistency correction methoglstganising methods into a taxonomy.
The relationship between apparently disparate methodaderexplicit, common transformations
are identified and related to different methods in the ltte@ The chapter can be used on its own

by anyone interested in an overview of basic colour theodyatour inconsistency removal.

¢ Introduction of a new feature based histogram alignment appoach. Chapter 3 introduces a
new feature based histogram alignment approach. The #igornakes effective use of a scale
space technique to robustly detect features in 1D or 2D cdlistograms. The introduction of the
scale space feature detector solves an important feattgetide problem, it finds histogram peaks
at different scales robustly and efficiently. FBHA can becassfully used to align histograms
that have similar structures using feature point alignntemrtsforms. Feature point transforms
are shown to be a useful and powerful class of transform;iuevcolour inconsistency removal
applications relied on manual labeling or domain specifiorgnformation such as the presence

of Macbeth charts to use these transforms.

e Design and capture of colour inconsistent database3he experimental design and subsequent
data-capture of the RGB image database described in Chaptet the Buhler Sortex video data
described in Chapter 5 were both significant undertakingshé case of the Buhler Sortex data
capture, a new capture system and associated software esgmdd and constructed by the author

as part of this project.

e Introduction of procedures and metrics to rank colour inconsistency removal methods.
Chapter 4 introduces a new metric for evaluating the aligrtnoé labeled or partially labeled
histograms, the average Mahalanobis distance. The metitair way to rank multi-modal align-

ments, its choice is justified by empirical comparison wixfisttng metrics. Chapter 4 also in-
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troduces a ranking methodology based on bootstrap statigtie method produces an ordered
ranking of all methods tested on the RGB image database. ®btstbap methods handle the
highly non-Gaussian nature of the results distributiorisdpeompared with an associated degree

of confidence.

Chapter 5 introduces procedures to rank different colocorisistency removal methods on the
Buhler Sortex methods, these procedures are specific touh&eBSortex data and procedures

and show the methods that give the lowest variation in prbgpgearance across the chute.

Empirical investigation of methods on RGB data-baseChapter 4 provides a comprehensive
comparison of existing colour inconsistency removal mdghoro the author’s knowledge, this
is the first such application independent ranking of its kifithe ranking can be used by other
practitioners as an initial assessment before investmg implementing or using some of the
methods in custom systems. The chapter also investiga@®BHA algorithm on RGB data using
1D and combinations of 1D and 2D histogram alignments; bwrstrengths and weaknesses of

the automatic FBHA procedure are highlighted.

Empirical investigation of methods on Buhler Sortex dataChapter 5 investigates both global
and piece-wise transforms of the data. FBHA with a cubicsfamm is found to be the best global
alignment transform. Also, the feature detection and aston step can be used to segment the
product portions of the distribution without the need topest the background separately. This
functionality alone, could lead to stopping the productféess so that efficiency is increased.
A large number of permutations of system components wetedés this chapter, commercial
confidence means that relative improvementto the systemoateghlighted directly in this thesis.
Relative improvements to the current system can be disdusih the thesis examiners at oral

examination onlyNote: this is a contractual requirement)

Clear positioning of the existing work for future research Significant advances have been made
towards the goal of fully automatic and general histograignahent procedures. Where limita-
tions have been found, they have been exposed, explainesliggdstions for future research have

been made. Hopefully, this approach will facilitate congd progress on this topic.
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Chapter 8

Glossary

BRDF: Bidirectional Reflectance Distribution Function.

CAM : Colour Appearance Model.

CAT: Chromatic Adaptation Transform.

CCD: Charge Coupled Device.

CIECAM97s: A colour appearance model that predicts a number of humlanicappearance phenom-
ena such as chromatic adaptation.

CMOS: Complementary Metal Oxide Semiconductor.

CMYK : Cyan, Magenta, Yellow and Key(black) subtractive colowd®l used in colour printing.

CIE: International Commission on lllumination.

CIE 34 XYZ: CIE colour space based on positive matching functionsaéted using experiments that
use two degrees of visual angle.

CIE 63 XYZ: CIE colour space based on positive matching functiongaeéted using experiments that
use ten degrees of visual angle.

FBHA: Feature Based Histogram Alignment.

EM: Expectation Maximisation algorithm.

GMM : Gaussian Mixture Model

HSV: Hue, Saturation and Value colour space.

HSL: Hue, Saturation and Lightness colour space.

RGB: Red, Green and Blue colour space.

YUV: Colour space defined in terms of luminance (Y) and chrormiadbV).

SIFT Scale Invariant Feature Transform.

SVD: Singular Value Decompoasition.

U-V: The UV plane of the YUV colour space.
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Chapter 9

Appendix

9.1 The Pseudoinverse

The inverseA —! of a matrixA exists only ifA is square and has full rank. In this ca&& = b has the
solutionx = A~'b.The pseudoinversA' is a generalization of the inverse, and exists for any n

matrix. We assume: > n, if A has full rank we define

Af=(ATA)TAT

and the solution oAx = b is x = Afb. The best way to comput&! is using singular value decom-
position. WithA = USVT, whereU andV aren x n orthogonal matrices arfilis anm x n diagonal
matrix with real, non negative singular values.

We find,

Af=v(sTs) 'sTUT.

If the rank of A is less tham, then(STS) does not exist, and one only uses the firsingular values;

S becomes an x r matrix andU andV shrink accordingly.



9.2. Ordering Results 174

9.2 Ordering Results
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Figure 9.1: Ranked transformation methods for image patfs@@0(S) variation for: 1) Red-cyan paper
9.1(a) and 2) Skittles 9.1(b).
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Figure 9.2: Ranked transformation methods for image paitts ®0(S) variation for; 1) Teddy bears
9.2(a) and 2) three paper strips 9.2(b).
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Figure 9.3: Ranked transformation methods for image paiits ®(L-L1)00 variation for: 1) Red-cyan
paper 9.3(a), 2) Skittles 9.3(b), Teddy bears 9.3(c) arekthaper strips 9.3(d).
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Figure 9.4: Ranked transformation methods for image patrs(@)000 variation for: 1) Red-cyan paper
9.4(a), 2) Skittles 9.4(b), Teddy bears 9.4(c) and threepsipips 9.4(d).
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Figure 9.5: Ranked transformation methods for image pdtrs@@(L-AL)(S) variation for: 1) Red-cyan
paper 9.5(a), 2) Skittles 9.5(b), Teddy bears 9.5(c) arekthaper strips 9.5(d).
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Figure 9.6: Ranked transformation methods for image patts{@&)(L-L1)00 variation for: 1) Red-cyan
paper 9.6(a), 2) Skittles 9.6(b), Teddy bears 9.6(c) arekthaper strips 9.6(d).
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Figure 9.7: Ranked transformation methods for image patrs(@)0(L-AL)O variation for: 1) Red-cyan
paper 9.7(a), 2) Skittles 9.7(b), Teddy bears 9.7(c) arekthaper strips 9.7(d).
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Figure 9.8: Ranked transformation methods for image paiits (¢)00(S) variation for: 1) Red-cyan
paper 9.8(a), 2) Skittles 9.8(b), Teddy bears 9.8(c) arekthaper strips 9.8(d).
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Figure 9.9: Ranked transformation methods for image patts@®(L-L1)0(S) variation for: 1) Red-cyan
paper 9.9(a), 2) Skittles 9.9(b), Teddy bears 9.9(c) arekthaper strips 9.9(d).
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Figure 9.10: Ranked transformation methods for image peiifs (C)(L-LI)(L-AL)O variation for: 1)
Red-cyan paper 9.10(a), 2) Skittles 9.10(b), Teddy bea&&) and three paper strips 9.10(d).
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Figure 9.11: Ranked transformation methods for image pétts(C)0(L-AL)(S) variation for: 1) Red-
cyan paper 9.11(a), 2) Skittles 9.11(b), Teddy bears 9) @ three paper strips 9.11(d).
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Figure 9.12: Ranked transformation methods for image pétls (C)(L-LI1)O(S) variation for: 1) Red-
cyan paper 9.12(a), 2) Skittles 9.12(b), Teddy bears 9) He(@ three paper strips 9.12(d).
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