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Abstract

Myotonic dystrophy type 1 (DM1) is an autosomal dominant disorder caused by

expansion of an unstable CTG repeat within the 3’UTR of the DMPK gene, which

expands further in length during transmission from generation to generation. Prenatal

diagnosis is available, although the decision for pregnancy termination can be difficult

due to the variable phenotypic expression of DM1. In vitro fertilisation with

preimplantation genetic diagnosis (PGD), offer another reproductive option for affected

couples, which involves genetic analysis and selection of an unaffected embryo to

establish a pregnancy. These technologies have also provided access to human gametes

and preimplantation embryos and encouraged research aimed at understanding the

molecular pathways controlling human preimplantation development.

The first part of this study focused on the improvement of existing techniques for PGD

and the development of universal multiplex fluorescent PCR PGD protocols for the

efficient and accurate diagnosis of DM1. The second part of the study involved follow-

up analysis of DM1 affected and unaffected embryos donated for research with the aim

to investigate transmission of the CTG repeat from the affected and unaffected parent to

the preimplantation embryo. The final objective was to obtain a global gene expression

profile by microarray analysis of human oocytes and blastocysts, with a focus on

important functional pathways.

The protocols developed achieved high efficiency and accuracy of diagnosis, reduced

the genetic work-up time, overall supporting PGD for DM1 as an effective and practical

alternative to prenatal diagnosis. This study also adds to current evidence regarding

CTG repeat transmission and provides information on repeat expansion and embryo

quality in DM1. A comparison of expression in the healthy oocyte and blastocyst is

presented, including the identification of oocyte-unique and blastocyst-unique genes.

The microarray data from this study will guide experiments to identify cases where

normal gene expression is disrupted.
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1. Introduction
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1.1 Preimplantation genetic diagnosis

Preimplantation genetic diagnosis (PGD) involves testing of the preimplantation stage

embryo, created with in vitro fertilisation (IVF) technology, for inheritable

chromosomal abnormalities or single-gene defects and transfer of unaffected embryos to

the womb to establish a pregnancy. PGD requires a multidisciplinary approach. Couples

receive an initial counselling by a clinical geneticist and disease specialists. Following

that, doctors and embryologists of the IVF clinic are responsible for counselling on the

IVF aspects and performing a successful IVF treatment, while the genetics team are

responsible for counselling on PGD and developing and applying a reliable and efficient

diagnostic protocol for the embryo stage. PGD is not an easy reproductive option and

several difficulties may be encountered during the whole procedure. These include the

considerable cost per cycle, the chance of misdiagnosis and the low success rate. In

addition, commencing treatment does not guarantee the availability of embryos for

transfer. This can be the result of poor ovarian response, failed fertilisation, poor quality

embryos, diagnosis of all embryos as affected or having inconclusive results (Sermon et

al., 2004). Despite these potential difficulties, PGD is a very appealing option to many

patients, particularly those with moral or religious objections to termination of

pregnancy (TOP) and those having undergone several TOPs. In fact, in one of the early

studies reporting on the patient’s view on PGD, 86% of women stated that avoidance of

TOP was the main advantage they saw in PGD (Pergament, 1991). This was confirmed

in a later study reporting the views of patients who had actually experienced PGD

(Lavery et al., 2002). Another group of patients who may choose to undergo PGD are

those with infertility problems who therefore have an independent indication for IVF

treatment and also carry a genetic disorder (Delhanty et al., 1994;Delhanty and Wells,

2002).

The first established pregnancies following PGD were reported in 1990 for two couples

with X-linked recessive disorders, adrenoleukodystrophy and X-linked mental

retardation. In these cases diagnosis involved sexing of the foetus by amplification of a

Y-specific DNA sequence and selection of female embryos for transfer (Handyside et

al., 1990). The first clinical application of PGD for monogenic disorders was for cystic

fibrosis in 1992 (Handyside et al., 1992). It is estimated that over 7000 PGD cycles have

been carried out to date. During the last eighteen years the practice of PGD has changed
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considerably, not only from the technical point of view but also regarding its general

application, often being the centre of ethical debates (Kuliev and Verlinsky,

2005;Kuliev and Verlinsky, 2008). PGD is no longer limited to conditions that present

at birth, but has also been applied for the diagnosis of late-onset disorders with genetic

predispositions, as a screening test for various high-risk population groups

(preimplantation genetic screening, PGS) or even for non-disease associated human

leukocyte antigen (HLA) testing in order to obtain compatible offspring to affected

siblings who require transplantation therapy (Fiorentino et al., 2004;Rechitsky et al.,

2004;Delhanty, 2006;Mantzouratou et al., 2007; Renwick et al., 2007). Legislation for

PGD practice differs between countries (Soini, 2007). In the UK PGD is strictly

regulated by the Human Fertilisation and Embryology Authority (HFEA) and,

internationally, PGD data are collected by the European Society for Human

Reproduction and Embryology (ESHRE). Over 2000 children have been born

worldwide and to date studies on the health of PGD and PGS children have not

indicated the PGD procedure to be unsafe (Banerjee et al., 2008;Goossens et al.,

2008b;Nekkebroeck et al., 2008).

1.1.1 Embryo biopsy and diagnosis

The first step of the PGD procedure involves puncture or removal of part of the zona

pellucida, the thick membrane that surrounds the oocyte or embryo, in order to obtain

the cells for genetic analysis (biopsy procedure). Biopsy can be performed using acid

Tyrode’s solution, laser or mechanical means, at different stages of development, either

around the time of fertilisation of the woman’s oocyte with her partner’s sperm, to allow

testing of the polar bodies, or during the cleavage or blastocyst stages of

preimplantation embryo development, to obtain blastomeres or trophectoderm cells

respectively (Boada et al., 1998;Inzunza et al., 1998;Harper and Thornhill, 2001) (figure

1.1).
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Figure 1. 1: Sequence of events following human oocyte fertilisation. A: Mature oocyte (MII) with
first polar body present, surrounded by cumulus cells. B: Fertilisation: formation of the male and female
pronuclei (2PN) and extrusion of the second polar body. C: Human zygote. D: First mitotic division. E-F:
Mitotic divisions leading to a 4-cell and an 8-cell embryo. G: Morula stage of preimplantation
development. H: Blastocyst stage embryo where cells have differentiated into the trophectoderm (the
surrounding cells) and inner cell mass.

Polar body (PB) biopsy is the only option available in countries where diagnosis at the

embryo stage is not legal; an example of this is Germany, though it is interesting to note

that the German public opinion differs to the government regulation (Borkenhagen et al.,

2007). PB biopsy is labour-intensive as it requires removal and testing of the first polar

body, produced after completion of the first meiotic division, while confirmation of

findings is possible by subsequent removal of the second polar body, produced after

fertilisation (Sermon et al., 2004). In the case of a maternal defect or an X-linked

disorder, PB biopsy permits detection of the mutation-free oocytes; embryos derived

from these do not require further testing. With PB biopsy, however, paternally-inherited

abnormalities or other defects originating following fertilisation cannot be detected,

while, for single-gene disorders PB diagnosis may be associated with problems arising

due to meiotic cross-over (Swanson et al., 2007). Additionally, for X-linked or recessive

conditions, some of the oocytes that are discarded as “affected”, could lead to

unaffected embryos depending on the paternal genetic contribution (Soini et al., 2006).
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Cleavage stage embryo biopsy is the most common method used in PGD. It involves

blastomere removal on day 3 of development, when the embryo is at the 6-8 cell stage.

This is generally considered as the best approach, as the cells at this stage are regarded

as totipotent, compaction has not yet occurred and there is sufficient time for the

diagnostic protocol to be carried out prior to embryo transfer on day 4 or day 5 (De Vos

and Van Steirteghem, 2001). The main debate regarding this method of obtaining cells

has been directed on whether one or two blastomeres should be biopsied. Investigators

have assessed the impact of one or two-cell biopsy on the diagnosis rate, the risk of

misdiagnosis, embryo development and implantation potential. At the present time, as

there are not any specific practice guidelines on this issue, each PGD centre follows its

own guiding principles when performing cleavage stage biopsy (Lewis et al.,

2001;Goossens et al., 2008a;Dreesen et al., 2008).

Finally, blastocyst stage biopsy may be performed on day 5, by removing several cells

from the trophectoderm layer, which gives rise to the placental membranes. The

availability of more than one cell facilitates diagnosis and increases the overall

diagnosis rate, though the occurrence of mosaicism could have consequences on PGD

accuracy, particularly for the diagnosis of chromosomal disorders (Kokkali et al., 2007).

Higher implantation rates are generally achieved with transfer of human blastocysts

rather than transfer of day 3 embryos (Gardner et al., 1998a;Gardner et al., 1998b;Blake

et al., 2007). Transfer of blastocysts following blastocyst biopsy has also been

associated with an improved implantation rate compared to transfer of blastocysts where

cleavage stage biopsy was performed, although notably only 40-50% of embryos

develop to the blastocyst stage by day 5 (Kokkali et al., 2007;McArthur et al., 2008).

Additionally, with blastocyst stage biopsy, embryo cryopreservation may be necessary

to allow time for the diagnosis to be completed (Wilton et al., 2001; McArthur et al.,

2005;Magli et al., 2006).

Following embryo biopsy, the polymerase chain reaction (PCR) is commonly used for

the diagnosis of single gene disorders. This is discussed in more detail below. The main

method for detection of chromosomal abnormalities has been the fluorescence in situ

hybridization (FISH) technique, performed on human blastomeres since 1992 (Griffin et

al., 1992). This technique requires fixing the single blastomere on a slide prior to
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labelling with chromosome-specific fluorescent probes. FISH allows detection of

abnormalities that may arise in embryos of carriers of Robertsonian or reciprocal

translocations as well as other chromosomal rearrangements such as inversions,

insertions, deletions, or the formation of ring chromosomes. The technique has also

been employed as a screening test to detect numerical chromosomal abnormalities in

embryos from couples of advanced maternal age (AMA), or couples with repeated

failed IVF cycles (three or more) or repeated miscarriages, as the above have been

associated with chromosomal aneuploidy. This test is known as preimplantation genetic

screening (PGS) (Fragouli, 2007). The main drawback with FISH has been the restricted

number of probes that can be used in the same experiment (up to 5). Several PGS

protocols have been reported, generally allowing for testing of up to 15 different

chromosomes following consecutive FISH rounds on a single blastomere (Baart et al.,

2007a;Baart et al., 2007b;Mantzouratou et al., 2007). The anticipated positive clinical

benefit of the PGS treatment has been under debate (Cohen et al., 2007). To overcome

the limitations of FISH, a technique known as comparative genomic hybridization

(CGH), which allows the simultaneous analysis of all chromosomes in a cell, has been

optimised to work on single cells (Wells et al., 1999). The technique has been applied to

blastomeres from day 3 embryos, as well as to polar bodies and blastocyst stage

embryos (Wells and Delhanty, 2000; Wilton et al., 2001;Wells et al., 2002; Fragouli et

al., 2006a;Fragouli et al., 2006b;Fragouli et al., 2008). Its main limitations have been

the long time required to obtain a result (4-5 days) and the need for particular expertise

to accurately carry out the analysis. To allow enough time for completion of the analysis,

embryos are cryopreserved and, following diagnosis, the selected embryos are thawed

for transfer in a new treatment cycle. This methodology has been associated with

reduced implantation of thawed embryos, but the constant improvement of

cryopreservation techniques is gradually overcoming this drawback (Sher et al., 2009).

Another more recent development, array CGH (aCGH), overcomes the above

limitations as the results can be obtained within 24 hours and the analysis can be easily

automated (Hu et al., 2004;Le et al., 2006). aCGH, using oligonucleotide probes, has

already been applied clinically (Hellani et al., 2008). Other microarray platforms have

also become available for the detection of aneuploidy, although further work is needed

to optimise their use and overcome problems associated with variation in performance,

resolution, diagnostic accuracy, interpretation of results and high cost, to encourage

their wide clinical application (reviewed in Wells et al., 2008). It is, however,
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noteworthy that the single nucleotide polymorphism (SNP) arrays present an

opportunity for simultaneous detection of chromosomal and single gene disorders,

which has traditionally been a challenge for PGD.

1.1.2 PGD for single gene disorders

Following embryo biopsy the PGD procedure involves gentle lysis of the membranes of

the biopsied cells in order to make the DNA accessible. Since the advent of PGD,

various protocols have been tested for their efficiency in single cell lysis. Methods of

lysis prior to performing PCR for the diagnosis of single gene disorders have included

consecutive rounds of freezing and thawing in distilled water, boiling, the use of

alkaline lysis buffers (ALB), or the use of buffers containing proteinase K (PK) and

detergents. The ALB and PK lysis methods are currently the most widely used

(Thornhill et al., 2001). Following cell lysis, PCR is used for amplification of the DNA,

around 6pg from a single cell, to a level where mutation detection techniques can be

applied. Through the years, the single-cell PCR strategies have evolved with the

purpose of achieving better diagnostic efficiency, more accurate diagnostic results and,

consequently, a lower misdiagnosis rate.

The main aim has been to minimise the PCR problems that are exacerbated when

amplifying from a single genome, as opposed to highly-concentrated DNA samples

used in routine PCR. These include amplification failure, allele dropout or

contamination and can result either in failure to make a diagnosis or in misdiagnosis.

Bearing in mind that single-cell PCR amplification can be performed only once, taking

measures for prevention of the above becomes critical, especially as several

misdiagnoses have been reported since the introduction of PGD (Goossens et al., 2008a).
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1.1.2.1 Single-cell PCR features

1.1.2.1.1 Amplification failure

The most common causes for amplification failure include loss of the cell during

transfer to the PCR tube, biopsy of an anucleate or poor quality (lysing or degenerating)

cell, inadequate cell lysis or use of a suboptimal PCR protocol. Amplification failure

reduces the numbers of diagnosed embryos and therefore, the chances of embryo

transfer, implantation and pregnancy. Care should be taken during protocol design for

PGD, so that lack of amplification does not mimic an ‘unaffected’ result, in order to

avoid misdiagnosis. Standard PGD practice should, therefore, entail careful monitoring

of the cell status during the biopsy procedure, as well as cautious single-cell

manipulation and use of optimised and well tested single-cell protocols. In most studies,

the amplification success rate for single buccal cells or single lymphocytes is around 90-

95% and, similarly, amplification failure has been estimated to occur in approximately

10% of isolated blastomeres (Harper and Wells, 1999).

1.1.2.1.2 Allele dropout (ADO)

ADO is a phenomenon generally affecting 5-20% of single cell amplifications, whereby

one of the two alleles in a heterozygote sample fails to amplify to a detectable level. The

cause of ADO is mainly technical, due to inefficient priming during PCR, and has also

been associated with poor embryo quality. ADO can affect either of the alleles in a

heterozygous cell. When it occurs on amplification of the mutated region, it can be

responsible for false negative and false positive diagnostic results. ADO of the mutant

allele during PGD for a dominant disorder can lead to transfer of an affected embryo. In

PGD for recessive disorders, ADO of the unaffected allele can reduce the number of

heterozygous (carrier) embryos detected (figure 1.2). For recessive disorders that are

due to a combination of two different mutations (compound heterozygotes), an embryo

might be given a carrier rather than affected diagnosis in case of allele dropout at one of

the loci (Wells and Sherlock, 1998).
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Figure 1. 2: Allele Dropout (ADO). Failure of amplification of the normal allele mistakenly leads to
erroneous interpretation as a homozygous affected genotype. When the mutant allele fails to amplify the
genotype appears to be that of a homozygous unaffected individual.

Various techniques aimed at reducing the chance of ADO have been applied in PGD,

for example increasing the PCR denaturation temperature for the first ten amplification

cycles or using alternative cell lysis buffers (Ray and Handyside, 1996;el Hashemite

and Delhanty, 1997;Piyamongkol et al., 2003). In addition, the highly sensitive

technique of fluorescent PCR (F-PCR), where primers in a PCR reaction are end-

labelled with fluorescent molecules and products are analyzed on a fluorescent capillary

detector, has been used to detect cases of preferential allele amplification, which, with

conventional PCR, would appear as ADO (Findlay et al., 1995). Finally, the use of

multiplex PCR allows the simultaneous amplification of a polymorphic intragenic or

linked marker along with the mutated region. The marker’s phase allele, the allele

inherited on the same chromosome with the mutation, is detected by linkage analysis

and its presence confirms the presence of the mutation (Rechitsky et al., 1998;Sherlock

et al., 1998). It is important that linked polymorphic markers are in close proximity to

the gene to ensure that the chance of the mutation and the phase allele having separated

by meiotic recombination is reduced. The higher the number of linked polymorphic

markers available for the gene under study, the higher the chance that, should ADO of

the mutant allele occur, it will be detected (figure 1.3).
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Figure 1. 3: Detection of the phase allele in a two-generation family. D indicates the presence of the
disease and 1-5 indicate different sized alleles of the linked polymorphic marker. The proband (affected
mother) is heterozygous at the disease (D/d) and the linked polymorphic marker locus (alleles 2/4).
Marker allele 2 is present in the mother’s affected father and her two affected children. The unaffected
child has inherited allele 4 from the mother. It can, therefore, be inferred that allele 2 is inherited along
with the disease allele (D), i.e. allele 2 is the phase allele. Detection of allele 2 in an embryo would
therefore be associated with the presence of the mutated allele.

A combination of multiplex and fluorescent PCR is possible as technological advances

have allowed the simultaneous analysis of up to five fluorescent dyes at a time. Products

of different size can be differentiated even if labelled with the same fluorescent dye so

this further increases the number of primers that can be multiplexed in a single F-PCR

reaction.

Finally, it should be noted that other events can also make a heterozygous sample

appear as homozygous and give the appearance of ADO, such as chromosomal

mosaicism, the presence of haploid cells, mitotic nondisjunction or anaphase lagging by

which monosomy can occur (Dreesen et al., 2008). A well-designed multiplex PCR

PGD protocol may differentiate between the above and true ADO.
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1.1.2.1.3 Contamination

Contamination is a major problem with single cell PCR, mainly because of the large

number of cycles (40-65) needed for sufficient amplification from a single genome.

Measures to prevent contamination are, for example, separating the single cell PCR set-

up and analysis areas, performing PCR in a laminar-flow hood, using dedicated

equipment for single cell work, carrying out filtration and testing of reagents as well as

UV irradiation of all equipment and consumables prior to use. Apart from extraneous

contamination, another source of contamination in PGD comes from sperm or cumulus

cells embedded in the zona pellucida (ZP) that can get released during the biopsy

procedure. To prevent this, the cumulus cells are removed from around the oocyte and

the embryo before biopsy, while intracytoplasmic sperm injection (ICSI) is used for

fertilisation instead of standard IVF, to ensure there is no excess sperm present (De Vos

and Van Steirteghem, 2001). In addition to these precautions, biopsied cells are usually

washed in 2-3 droplets of buffer medium that has been cleared of contamination, before

transfer to the PCR tube (Thornhill et al., 2005).

Subsequent to the biopsy and transfer procedures, contamination can also occur during

PCR set up. It is, therefore, important that a stringent optimised single cell PCR

protocol is run with appropriate positive and negative controls so that any contamination

can be detected. Moreover, multiplex PCR PGD protocols involve the simultaneous

amplification of polymorphic markers, often referred to as ‘contamination markers’ as

they can be used to indicate the presence or absence of contamination (Harper and

Wells, 1999). An informative polymorphic marker, one for which all parental alleles are

of different size and can easily be differentiated, can be used to determine not only the

origin but also the purity of DNA from amplified single cells (figure 1.4).
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Figure 1. 4: Example of polymorphic marker informativity in four couples, indicating all possible
embryo genotypes. The different polymorphic marker allele sizes are indicated by the numbers 1, 2, 3
and 4. A) Fully informative marker. All parental alleles are of different size. B) Informative marker with
unaffected partner homozygous for the marker alleles. Maternal and paternal alleles differ. C) Semi-
informative polymorphic marker. The couple shares one of the marker alleles and D) Uninformative
marker. The couple shares all of their alleles. Polymorphic markers with informativity similar to
examples B and C may be of use in a diagnosis in case the marker is linked and the phase allele can be
identified, however, in both cases, contamination may not be detected and these markers, should,
therefore, be used in conjunction with another fully informative polymorphic marker.

The polymorphic marker can be intragenic, linked, or non-linked to the gene of interest.

An intragenic or linked marker can also provide confirmatory results to mutational

analysis and, therefore, increase the reliability of the diagnostic strategy (Piyamongkol

et al., 2001a;Dhanjal et al., 2007).

Finally, carry-over contamination, the accidental amplification of DNA fragments

generated during previous experiments, is also a major source of false positive results.

The technique of nested PCR has been used to reduce the risk of carry-over

contamination. It involves two sequential amplification reactions, where the larger

fragment produced in the first PCR round is used as a template for the second round of

amplification. Since a different set of internal (nested) primers is used in the second

PCR, the outer first round products cannot get amplified by the second reaction. The

two amplification rounds of a nested PCR significantly increase the efficiency of DNA

amplification from a single cell. Lower stringency is usually employed during the first
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round of PCR and higher stringency in the second round (Wells and Sherlock, 1998)

(figure 1.5).
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Figure 1. 5: Schematic representation of nested-PCR. The technique involves two sequential
amplification reactions. The first amplification reaction employs the outer set of primers to amplify the
sample DNA template. An aliquot of the PCR product is taken to set up the second amplification reaction,
where the inner set of primers is used. “X” indicates the mutated region.

Contamination is monitored during a PGD case by obtaining and testing negative

controls (blanks) from the last wash of each biopsied cell and from the PCR mix to

allow testing of the PCR reagents. The general contamination risk may also be assessed

during workup by testing tubes that have been left open for some time into the room and

hood where the single cell PCR is set up (Thornhill et al., 2005).
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1.1.2.2 Mutation detection in PGD for single gene disorders

The ideal PGD protocol needs to be simple, sensitive, quick, accurate, and fairly

inexpensive. Several analysis techniques have been applied in PGD for single gene

disorders, depending on the nature of the mutation. Size differences are the easiest to

detect and are usually analyzed by F-PCR. Other techniques have been used to detect

substitutions, deletions or insertions, for example, amplification refractory mutation

system (ARMS), restriction fragment length polymorphism (RFLP), single stranded

conformational polymorphism (SSCP) and heteroduplex analysis (HA) techniques. A

modification of the sequencing technique, known as “mini-sequencing”, has also been

performed for direct mutation detection and is becoming common practice in PGD ( Ao

et al., 1998; Abou-Sleiman et al., 2002; Harper et al., 2002; Bermudez et al., 2003;

Fiorentino et al., 2003; Moutou et al., 2003;Moutou et al., 2007). More recently,

quantitative real-time PCR and linear after the exponential-PCR (LATE-PCR) have also

been used on single cells to allow accurate quantification of the number of copies of an

amplicon present in a sample (Rice et al., 2002;Pierce et al., 2003).

Designing, optimising and validating a PGD protocol on single cells can take months.

Attempts have been made to establish more universal PGD protocols to bypass the need

for development of mutation-specific tests, and decrease the workup times. The linkage

strategy, based on detection of the linked markers’ phase alleles, as previously described,

is an indirect mutation detection method that can be applied to more than one family

affected with mutations in the same gene, even if the causative mutation is different.

Unfortunately, the optimisation of multiplex PCR protocols for the co-amplification of a

number of markers linked to the disease gene can be very difficult and time-consuming

when working with single cells. Whole genome amplification (WGA), which allows

non-specific amplification of the entire genome, overall increasing DNA concentration

and providing sufficient templates for many subsequent PCR analyses, has been used to

overcome these difficulties. Several WGA techniques have been developed and applied

on single cells or low amounts of DNA template, for use in preimplantation and non-

invasive prenatal diagnosis. Examples include the primer extension preamplification

(PEP) method, degenerate oligonucleotide primed PCR (DOP-PCR), tagged random

primers PCR (T-PCR), linker- adaptor PCR (LA-PCR), the T7-based linear

amplification of DNA (TLAD) and multiple displacement amplification (MDA)

(reviewed in Peng et al., 2007, Spits and Sermon, 2009).
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PEP was the first WGA method with clinical application in PGD for the diagnosis of a

dominant cancer predisposition syndrome, familial adenomatous polyposis coli (Ao et

al., 1998). Following that, DOP-PCR and CGH was performed on single polar bodies

and blastomeres, while MDA was first applied for PGD for beta-thallasaemia and cystic

fibrosis (Wells et al., 2002;Hellani et al., 2005). More recently, MDA was also used as

the first step in preimplantation genetic haplotyping (PGH) by linkage analysis, which

allows bypassing the need for development of patient specific tests for carriers of the

same monogenic disease (Renwick et al., 2006). It should, however, be noted that

linkage analysis cannot be applied in cases of de novo mutations or when there are no

family members available. Testing of single sperm cells or polar bodies has been

performed to enable linkage analysis in these couples (Spits et al., 2006). However,

even when the phase alleles are known, diagnosis may still not be possible if the couple

is uninformative for the polymorphic markers.

According to the most recent report of the ESHRE PGD consortium (data collection

VIII), the most common indication for PGD for autosomal dominant diseases is

myotonic dystrophy type I (76 cycles), followed by Huntington’s disease (HD) (44

cycles, plus 12 cycles for Huntington exclusion testing). In total, ESHRE data

collections I-VIII have reported 393 PGD cycles for DM1 and 326 cycles for HD and

HD exclusion testing (Goossens et al., 2008b).
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1.2 Myotonic dystrophy type I

1.2.1 Clinical characteristics

Myotonic dystrophy type I (DM1, Online Mendelian Inheritance in Man database

(OMIM) number 160900) is also known as dystrophia myotonica, myotonia atrophica

or Steinert disease. DM1 shows autosomal dominant inheritance and is the most

common adult muscular dystrophy. Its prevalence varies between different areas but is

generally estimated at 1:8000 worldwide, the highest being 1:500, in the Saguenay-Lac-

Saint-Jean region of Quebec, Canada (Meola, 2000;Yotova et al., 2005).

The clinical findings have been categorized into three overlapping phenotypes, the

classic form (adult-onset, appearing in late 20s or early 40s, or late-onset, appearing

after 40 years of age), the juvenile-onset (appearing after birth and in teen years), or the

congenital form (present from birth). The classic form of DM1 was first described in

1909, the disorder was characterized as ‘multisystemic’ in 1936 and the congenital form

of DM1 (CDM1) was described in 1960 (Schara and Schoser, 2006). Patients with DM1

present with changes in muscle but in addition, and in contrast to other types of

muscular dystrophy, multiple organs and tissues are affected, for example, the eyes,

heart, endocrine system, central and peripheral nervous systems, gastrointestinal organs,

bone and skin. DM1 manifests with cataracts and myotonia (tonic muscle spasm with

delayed relaxation) in the late-onset form, muscle weakness, muscle wasting,

cardiomyopathy and cardiac conduction abnormalities, in the juvenile form, and

additional baldness, bowel dysmotility, gall stones, or diabetes in the adult-onset form.

Infantile hypotonia, respiratory and feeding difficulties, delayed motor and speech

development and mental retardation are described in the congenital form. At least 20%

of CDM1 infants die in the neonatal period (Edstrom, 1999;Salehi et al., 2007). In the

other DM1 forms, sudden death may occur due to the cardiac complications or due to

respiratory insufficiency following weakness of the diaphragm (Schara and Schoser,

2006).

DM1 has also been associated with reduced fertility in men, due to testicular atrophy

and oligozoospermia (Sarkar et al., 2004). A recent analysis of 44 PGD cycles from 22

couples with DM1 indicated ovarian dysfunction, poor response to ovarian stimulation
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and production of lower grade embryos in affected women following ICSI/PGD

treatment compared to controls (Feyereisen et al., 2006). Poor response to ovarian

stimulation of PGD patients with DM1 was also reported in a subsequent study of 15

PGD cycles from 15 couples with DM1, though no differences in embryo quality and

also in oocyte quality compared to controls were observed (Sahu et al., 2008). In

contrast to the above, a larger study on DM1 and female fertility (78 couples with DM1,

205 cycles) did not support an impaired gonadal function in the female patients with

DM1 undergoing PGD; the authors attributed their findings to the smaller study

population of the previous studies (Verpoest et al., 2008).

1.2.2 Molecular characteristics: a triplet repeat disorder

DM1 belongs to the class of triplet repeat disorders. The first trinucleotide repeat

expansions were identified in 1991, when the mutations causing fragile X syndrome and

spinal and bulbar muscular atrophy were described (Kremer et al., 1991;La Spada et al.,

1991;Verkerk et al., 1991). It is now known that tetrameric, pentameric and

dodecameric repeats can also expand, associated with myotonic dystrophy type 2,

spinocerebellar ataxia type 10 and progressive myoclonus epilepsy respectively, but the

largest class of human diseases caused by repetitive element instability involves

trinucleotide repeat expansions (Lalioti et al., 1997; Matsuura et al., 2000;Liquori et al.,

2001;Gatchel and Zoghbi, 2005). Based on the relative location of the trinucleotide

repeat to a gene, triplet repeat disorders can be categorized into two subclasses. The first

subclass involves repeat expansion in non-coding sequences, resulting in altered RNA

function, whereas the second subclass is characterized by (CAG)n repeats within gene

exons that code for polyglutamine tracts, resulting in altered protein function. The

repeats observed in subclass I disorders are usually larger (showing hundreds of triplets)

and their exact size is not always known, whereas in subclass II disorders, the repeats

are much smaller in number and variation, and repeat sizes fall into well-defined ranges

(Cummings and Zoghbi, 2000;Everett and Wood, 2004).

The mutation causing DM1 was identified in 1992, as an expansion of a CTG repeat,

mapped on the long arm (q) of chromosome 19 in the 3’ untranslated region of the
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myotonic dystrophy protein kinase (DMPK) gene, at 19q13.3 (Brook et al., 1992; Fu et

al., 1992;Mahadevan et al., 1992;Mahadevan et al., 1993a). The CTG repeat is highly

polymorphic and relatively stable within the general population, ranging from 5-37

repeats. Alleles between 38-54 repeats are known as premutation alleles and they are

very unstable and liable to frequent expansions. Alleles greater than 55 repeats are

associated with disease and are also highly unstable in the germline; they can expand to

several hundreds or even thousands of copies. The larger expansions are generally

associated with more severe symptoms and an earlier age of onset, evident from

generation to generation. This characteristic of trinucleotide repeat disorders is

commonly referred to as ‘anticipation’ and the most striking example of this is of an

individual with the classic form of DM1 having a congenitally affected child.

Anticipation was first described in 1918 for myotonic dystrophy and has since been

observed in all dominant trinucleotide repeat disorders, i.e. except for Friedreich’s

ataxia (FRDA), which is recessively inherited (Schara and Schoser, 2006).

A second type of myotonic dystrophy was first described in 1994 and the mutation, a

CCTG expansion, was mapped in 1998 to the long arm of chromosome 3 (3q21), in

intron 1 of the zinc finger protein 9 (ZNF9) (Ranum et al., 1998;Ricker et al., 1999;

Liquori et al., 2001). The condition was identified as myotonic dystrophy type II (DM2)

in 2001 and has a prevalence of 1:1000 (Liquori et al., 2001;Schara and Schoser, 2006).

DM1 and DM2 (OMIM number 602668) both demonstrate an autosomal dominant

mode of inheritance, are both the result of a repeat expansion (CTG or CCTG), share

many clinical features, for example myotonia and cataracts, but also have some

important differences. For example, the severe congenital form and mental retardation

have only been reported in DM1. Anticipation has generally only been observed in

DM1, although recently the lack of anticipation in DM2 has been questioned as a case

of a 2-year old boy born in a family with DM2 history was described. The patient had a

14.5 kb CCTG expansion detected by Southern blotting in ZNF9, while expansion of

the DMPK CTG repeat was excluded. The CCTG expansion was similar to the

expansion in the mother, although such comparisons are complicated by the presence of

somatic heterogeneity (Kruse et al., 2008). Muscle weakness is predominantly of distal

muscles in DM1 and of proximal muscles (body trunk) in DM2 (hence commonly

known as PROMM or proximal myotonic myopathy), while muscle pain is a

characteristic of DM2. In addition, only few patients with DM2 become severely
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disabled by the 6th-8th decade of life, respiratory problems do not normally occur and

sudden cardiac death does not seem common in DM2. Finally, repeat size correlates

with age of disease presentation in DM1, but not in DM2 (Day et al., 2003;Kurihara,

2005).

Patients with symptoms related to myotonic dystrophy and lacking the DM1 and DM2

mutations have been identified by several investigators. A third locus of myotonic

dystrophy has been suggested on chromosome 16p, although this study is still ongoing

(Udd et al., 2006). Another unusual multisystemic myotonic dystrophy disorder was

described in 2004. Following molecular analysis, no mutations were detected in

chromosomes 3 or 19, while a linkage to chromosome 15 was observed. It was

suggested that this new type of myotonic dystrophy is referred to as myotonic dystrophy

type 3 (DM3), however it was subsequently shown that the reported family had a

disease known as inclusion body myopathy with Paget disease and frontotemporal

dementia (IBMPFTD) that had not been previously strongly associated with the

observed symptoms (Le Ber et al., 2004).

1.2.3 DM1 inheritance

1.2.3.1 DMPK haplotype and transmission of the DMPK repeat

A 1kb insertion/deletion polymorphism (Alu+/-) located approximately 5kb telomeric to

the DMPK mutation has been closely associated with the larger repeat alleles, therefore

supporting a haplotype founder effect regarding transmission of the DMPK alleles

(Mahadevan et al., 1993b). In most populations, 5 CTG repeats, the most common

repeat allele present in unaffected individuals, are associated with the Alu+

polymorphism allele, 11-13 CTG repeat alleles are associated with the Alu- allele and

alleles larger than 19 repeats are associated with the Alu+ allele. Two evolution models

have been proposed, one suggesting that 19CTG/Alu+ alleles occurred from expansion

of 5CTG/Alu+ alleles and a second one suggesting that both 5CTG/Alu- and

5CTG/Alu+ haplotypes are present, with 5CTG/Alu+ being the most common, and that

repeat alleles independently expanded from both haplotypes with a different rate of
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expansion (Imbert et al., 1993;Neville et al., 1994;Deka et al., 1996). Analysis of many

populations of different ethnic groups has indicated that the prevalence of DM1 in a

population correlates well with the frequency of large unaffected repeat sizes detected in

the population sample (Pan et al., 2001;Culjkovic et al., 2002;Alfadhli et al.,

2004;Acton et al., 2007).

Because of the low reproductive fitness associated with DM1, it has been suggested that

preferential transmission of large alleles must be what maintains the frequency of DM1

in the population. Transmission ratio distortion (TRD) may result from meiotic drive,

gametic selection or postzygotic viability and has generally been observed in humans,

for example, in retinoblastoma, cone-rod retinal dystrophy and several of the

trinucleotide repeat disorders, such as dentatorubral-pallidoluysian atrophy (DRPLA),

Machado-Joseph disease (MJD), and fragile X mental retardation syndrome (FRAXA)

(Evans et al., 1994;Ikeuchi et al., 1996; Riess et al., 1997; Drasinover et al., 2000;

Girardet et al., 2000;Zollner et al., 2004).

Several studies have investigated the transmission of the DMPK repeat alleles and

report segregation distortion of repeat alleles away from Mendelian predictions, though

data has generally been contradictive. Early studies of healthy individuals heterozygous

for the DMPK repeat region supported a hypothesis for meiotic drive and preferential

transmission of alleles over 19 repeats mostly by males (Carey et al., 1994;Hurst et al.,

1995). Investigations on sperm, however, did not show any evidence for altered

segregation patterns or an effect of alleles on sperm viability, though a selective

advantage of sperm carrying large alleles during fertilisation remained a possibility

(Leeflang et al., 1996). Chakraborty et al., (1996) reanalyzed the previous data and

performed additional investigations of transmission to children, overall reporting

preferential transmission of large alleles during female, and not male, meiosis. It was

also suggested that TRD mechanisms might differ between the different repeat classes.

More recently, Dean et al., (2006a) investigated the transmission of normal DMPK

repeats in preimplantation embryos from general IVF patients and observed TRD in

maternal transmissions of large normal alleles and also TRD preferentially to the female

embryos.

In addition to the studies on unaffected individuals, other studies focused on the

transmission of expanded DMPK alleles, reporting preferential transmission of the DM1
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expansion (Gennarelli et al., 1994;Zatz et al., 1997;Magee and Hughes, 1998). Contrary

to these initial results, however, a subsequent study, which investigated the transmission

of mutated alleles from prenatal molecular studies of 83 fetuses from 62 affected

mothers and 21 affected fathers, excluded preferential transmission of the expanded

allele (Zunz et al., 2004). The findings in the latter study were attributed to the use of

prenatal data contrary to pedigree analysis that only investigates offspring that survive

to term.

Another prenatal diagnosis study confirmed these results, excluding preferential

transmission of the DM1 gene, and also observed a much higher intergenerational

expansion when the transmitting parent was the mother compared to when it was the

father (Martorell et al., 2007).

1.2.3.2 Repeat instability

1.2.3.2.1 Intergenerational instability

Intergenerational instability has been shown at the level of offspring both for mutant

alleles but also for DMPK repeats in the normal range (Dean et al., 2006b). Imbert et al.,

(1993) predicted 19 CTG repeats to be the point at which further instability begins,

leading to disease. Expansion of the CTG repeat tract during parent-offspring

transmission is thought to occur in two stages. First, a moderate repeat expansion occurs

from the normal to the premutation state and this increases the chances that the repeat

will further expand to the full mutation state in the next generation (Martorell et al.,

2001;Nag, 2003).

For many trinucleotide repeat loci, instability varies depending upon the sex of the

transmitting parent. For example, CAG expansion diseases tend to be more unstable on

paternal transmission, while in FRAXA, the passage from pre-mutation to full-mutation

status occurs most commonly with transmission from the mother and FRAXA males

carrying a full mutation in their somatic cells usually transmit a premutated allele to

their daughters (Nolin et al., 2003;Zeesman et al., 2004;Wheeler et al., 2007). For DM1,

the effect of parental gender on repeat instability varies depending upon the CTG tract
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length. For CTG lengths of around 200-600 repeats, a bias for expansion is seen in both

paternal and maternal transmissions, while for lengths greater than 600 CTG repeats,

there is a bias for maternal transmission of very large (>1000) repeat expansions in a

single generation, resulting in the severe CDM1 (Lavedan et al., 1993). Cases of

asymptomatic women giving birth to CDM1 children and rare instances of paternally

transmitted CDM1 have, however, also been reported (Nakagawa et al., 1994;Die-

Smulders et al., 1997;Tanaka et al., 2000).

Contraction of the repeat size during transmission has been reported in DM1 as well as

other trinucleotide repeat disorders, for example in FRDA, spinocerebellar ataxia 8

(SCA8) and spinobulbar muscular atrophy (SBMA) (Cleary and Pearson, 2003). In a

study of DM1 parent-offspring pairs, the frequency of contraction was 6.4% (data from

1489 DM1 offspring) and was found to be mostly associated with paternal rather than

maternal transmissions (Ashizawa et al., 1994). A similar finding was reported in a

study of human gametes and embryos, where a larger number of contractions was

detected in spermatozoa and embryos from affected males than in oocytes and embryos

from affected females (De Temmerman et al., 2004). A complete reduction of the repeat

size back to the normal range, referred to as reverse mutation, is rarer than a partial

reduction in the repeat. Reversion into the normal range is a male germline specific

phenomenon (Monckton et al., 1995). An example of reverse mutation was seen in a

case where a 200 repeat expansion from a father affected with DM1, reverted back to a

normal size of 30 repeats when transmitted to the child (Amiel et al., 2001).

The above observations have raised several hypotheses, for example that some affected

individuals might have a predisposition to reduction during transmission, that a male-

specific factor might contribute to repeat deletions, or that there might be a negative

selection against sperm carrying the largest expansions.

1.2.3.2.2 Somatic instability

Variability of repeat length also emerges in different cells and tissues of an individual.

As a general rule, both the somatic heterogeneity and expansion size increase with age

(Wong et al., 1995;Martorell et al., 1998). The rate of instability has been estimated by

testing samples from the same individual taken over a period of time. In DM1 the
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expansion is thought to be 50-80 repeats per year, contrary to DM2 where a 2000bp

expansion was observed over 3 years in an individual (Martorell et al., 1998;Liquori et

al., 2001). The level of mosaicism depends on the patient’s age, repeat number and type

of tissue. In DM1, repeat expansions are found to be smallest in blood and largest in the

cardiac muscle, skeletal muscle, brain (except cerebellar cortex), skin and kidney

(Monckton et al., 1995;Zatz et al., 1995;Abe, 2002). This tissue-specific somatic

instability complicates the evaluations of genotype-phenotype correlation (Marchini et

al., 2000). The presence of larger mutant alleles in skeletal muscle, the primary affected

tissue, weakly correlates with clinical findings (Zatz et al., 1995). On the other hand, a

significant correlation has been found in cases with small expansions between repeat

size in lymphocyte DNA and patient’s age at time of disease onset (Martorell et al.,

1995;Hamshere et al., 1999).

Somatic instability has implications for the analysis of intergenerational transmissions,

which are usually investigated by blood DNA analysis of parents and offspring. Careful

investigation is needed to distinguish true repeat contractions from cases where the

germ-line expansion has been masked by the age-dependent somatic expansion in the

parent (Martorell et al., 2000).

1.2.3.2.3 Mechanisms of repeat instability

Suggested mechanisms of repeat instability in DM1 relate to the processes of DNA

replication, repair and methylation.

Experiments in vitro have shown that repeat sequences are able to form structures

comprising both Watson-Crick (WC) and non-WC base pairs, for example hairpins,

tetrahelical structures, triplexes or duplexes (Baldi et al., 1999; Mankodi et al.,

2000;Heidenfelder et al., 2003;Sarkar et al., 2004;Savouret et al., 2004;Ranum and Day,

2004). CUG repeats, in particular, can form hairpins with U-U mismatches and G-C

base pairs that can have an effect during DNA replication, leading to instability. The

effect is dependent on the repeat orientation, i.e. whether it is in the template strand or

the Okazaki fragment, or its proximity to the replication origin (Yang et al.,

2003;Mirkin, 2006). Hairpin formation can lead to both contractions and expansions,

either by replication across the hairpin structures or by DNA slippage, respectively

(Heidenfelder et al., 2003). DNA slippage causes the DNA polymerase to dissociate and
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re-associate with the template strand. During re-association, a misalignment between the

template and the newly synthesized strand would generate a single-strand loop that can

form a hairpin structure, which is thought to protect the expansion from repair activities

of the cell, including mismatch repair and flap endonuclease. The hairpin structures can

trap the MSH2/MSH3 dimers of the mismatch repair complex, therefore impairing its

ATPase activity and as a result stabilizing the repeats. In addition, the formation of

hairpin structures during gap repair DNA synthesis can prevent the function of flap-

endonuclease 1 (FEN1), therefore predisposing alleles to further expansion (Mirkin,

2006).

The replication model might explain the differences between male and female

transmission of CTG repeats, since, for example, spermatogenesis is characterized by

more mitotic cell divisions than oogenesis (Jansen et al., 1994). Expansion during

mitosis was also observed in cultured fibroblasts and lymphoblastoid cell lines.

Expanded cells of the lymphoblastoid cell lines had a growth advantage over those with

smaller expansions or contractions, attributable to increased cell proliferation, but lower

survival rate (Zatz et al., 1995;Khajavi et al., 2001). In addition, larger CTG expansions

have been observed in tumours of patients with DM1 relative to their nonneoplastic

tissue suggesting that expansion can also occur during acquired cell proliferation (Yang

et al., 2003). Finally, increased stability in mutants (Fen1/rad27) deficient in Okazaki

fragment processing also favors the replication model (Callahan et al., 2003;Yang and

Freudenreich, 2007).

Evidence supporting the involvement of the DNA repair mechanism has come from

experiments on DM1 mice where it has been shown that the absence of Msh2 shifts the

instability from expansions to contractions, both in somatic tissues and through

generations. Therefore, in DM1, Msh2 appears to be required for the formation of

somatic and intergenerational expansions (Savouret et al., 2003;Savouret et al., 2004).

Msh3 and Msh6 deficiency, both partners of Msh2, have the effect of completely

blocking the instability or encouraging the expansion respectively (van den Broek et al.,

2002). Mouse models have also indicated the mismatch-repair gene, Pms2, as a major

component of the expansion pathway; its deficiency decreased the rate of CTG repeat

expansion but also increased the frequency of deletions (Gomes-Pereira et al., 2004).
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Finally, the involvement of CpG methylation, which is highly regulated in a tissue- and

development-specific manner, in repeat instability, restricted to specific loci and tissues

and occurring only during specific developmental stages, has also been suggested

(Cleary and Pearson, 2003). Methylation status may affect the rate and fidelity of DNA

polymerases synthesis, thereby influencing DNA replication and favouring or not the

formation of mutagenic intermediates, such as slipped structures (Nichol and Pearson,

2002). DM1 cells with large expansions over 1000 repeats were previously found to be

hypermethylated at the CpG island 5’ of the CTG repeat (Steinbach et al., 1998). Two

CTC-binding factor (CTCF) binding sites flank the CTG repeat forming an insulator

unit, which has a role in either blocking enhancers from regulating promoters or

protecting from gene silencing. CTCF binding protects the DM1 region from

methylation. Expansion in CDM1 is associated with loss of CTCF binding, spread of

heterochromatin and regional CpG methylation. Contrary to this, the CpGs of the repeat

region are not methylated in classic DM1 (Filippova et al., 2001;Cho et al., 2005).

1.2.3.2.4 Timing of CTG repeat instability

The size of the CTG repeat has been shown to be particularly unstable during

spermatogenesis and oogenesis. Male DM1 patients with large repeats in their

lymphocytes showed even larger expansions in their mature sperm, while expansion has

also been detected in oocytes before completion of the second meiotic division

(Abbruzzese et al., 2002;Dean et al., 2006b).

Postzygotically, blastomeres from the same embryo show comparable repeat sizes on

analysis but further expansion has been detected to have occurred between day 3 and

day 4 in an embryo, though more research is needed to confirm this (Dean et al., 2006b).

A pre- and post- zygotic expansion model has also been suggested for another triplet

repeat disorder, Fragile X (Florencia et al., 2006).

Expansion is more pronounced during the early embryonic stages. The first wave of

somatic instability has been suggested to occur between 13 and 16 weeks of gestation,

leading to major heterogeneity between the tissues (Martorell et al., 1997). The second
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wave of instability persists throughout adulthood and the remaining life of an affected

individual (Martorell et al., 1998).

1.2.4 Mechanisms of DM1 pathogenesis

The first two models of DM1 pathogenesis proposed a mutation effect altering DMPK

transcription or retaining transcripts in the cell nucleus or causing changes in chromatin

configuration, leading to either a decrease in the amount of the DMPK protein (DMPK

haploinsufficiency) or disrupted expression of neighbouring genes, the SIX5

(homologue of Drosophila sine oculis homeobox 5- SIX5) and DMWD (dystrophia

myotonica-containing WD repeat motif). Though expression of the SIX5 is suppressed

in affected individuals, experiments on Dm15 knock-out mice (the mouse DMPK

homolog) and six5 knock-out mice, provided evidence for only some of the

multisystemic features of DM1, namely skeletal muscle weakness, abnormal cardiac

conduction and cataract formation, while DMPK-over expressing mice showed skeletal

muscle fiber degeneration (Jansen et al., 1996;Berul et al., 1999;Sarkar et al.,

2000;Klesert et al., 2000;O'Cochlain et al., 2004;Bates and Gonitel, 2006).

At the same time, the fact that a different repeat mutation (DM2), in a different gene on

a different chromosome also caused the predominant clinical features of DM,

questioned the DM1 equivalence of both of the above models (Ranum and Day, 2004).

Most studies, therefore, have focused on detecting the common pathogenic mechanism

between DM1 and DM2 by investigating the potential effect of their common feature,

the mutant expanded RNA. Mice expressing mRNA with extended CUG repeats

developed myotonia and characteristic DM1 histological features as well as

intergenerational repeat instability (Mankodi et al., 2000;Seznec et al., 2001;Gomes-

Pereira et al., 2007). Since then, the formation of long hairpin loops by mutant RNA has

surfaced as a major factor in DM1 pathogenesis (Sobczak et al., 2003). The expanded

CUG repeats are unable to exit the nucleus and as a result accumulate in nuclear foci,

where they sequester essential RNA binding proteins, for example CUG binding protein

1 (CUGBP1), muscleblind-like 1 protein (MBNL1) as well as transcription factors (TFs)

and prevent their function (Ranum and Cooper, 2006).

CUGBP1 appears to be upregulated in the presence of extended CUG repeats, while two

transgenic mouse models of CUGBP1 over-expression develop muscle phenotypes
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(Timchenko et al., 2001;Timchenko et al., 2004;Wang et al., 2007). MBNL specifically

binds long CUG tracts and colocalizes in vivo with repeats, leading to the depletion and

loss of the protein function (Fardaei et al., 2001). Mbnl knock-out mouse models show

several features of DM, for example DM-like eye and muscle phenotypes (Kanadia et

al., 2003;Hao et al., 2008).

The CUGBP1 overexpression and MBNL loss are responsible for the splicing

misregulation of a wide group of developmentally regulated genes in DM1. These

include the insulin receptor (IR), cardiac troponin T (c-TNT), muscle chloride channel

(CLCN1), MBNL1, the dystrophin gene in skeletal muscle, the microtubule associated

protein Tau, the N-methyl-D-aspartate receptor NR1 subunit, the amyloid precursor

protein in the brain as well as RYR1, SERCA1, SERCA2 and myotubularin related

protein 1 (MTMR1) (Mankodi et al., 2002;Ho et al., 2004;Dansithong et al.,

2005;Osborne and Thornton, 2006;Guiraud-Dogan et al., 2007;Nakamori et al., 2007;

Wheeler and Thornton, 2007). The disrupted regulation of alternative splicing results in

the preferential expression of fetal or neonatal isoforms, inappropriate for a particular

tissue (Botta et al., 2008). Overexpression of CUGBP1 has also been suggested to result

in binding to inappropriate target mRNAs, enhancing deadenylation and inducing their

decay (Moraes et al., 2006).

The binding of TFs by mutant RNA induces their redistribution from chromatin toward

a ribonucleoprotein fraction of the nuclear matrix, causing disrupted gene expression

patterns, including that of TFs themselves. The multisystemic and multisymptomic

nature of DM1 findings can be explained by a common requirement for basic TFs in

different tissues. Transcription factor specificity protein-1 (SP1) is one of the TFs most

affected by mutant RNA binding (Ebralidze et al., 2004).

Finally, DMPK is thought to be indirectly involved in cell cycle checkpoints and

chromosome segregation, accounting for the fact that DM1 patients can present with

clinical syndromes commonly associated with chromosomal abnormalities, in particular

chromosome loss, chromosomal numerical syndromes, or chromosome instability

(Rolland et al., 1999;Asano et al., 2000;Casella et al., 2003). It has also been suggested

that the DMPK expansion might alter some normal functions, such as telomere function,

thereby leading to mitotic instability of chromosome 19. This theory is supported by the

fact that several of the genes associated with some of the DM1 symptoms, for example
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changes in cholesterol metabolism and insulin resistance associated with the low density

lipoprotein (LDL) receptor gene or the insulin receptor gene, are located on

chromosome 19 (Francke et al., 1984;Yang-Feng et al., 1985).

1.2.5 DM1 management

At present, there is no causative therapy for DM1 and clinical management is aimed at

the early detection of complications and treatment of the symptoms. This may involve

pulmonary and cardiac investigations, orthopaedic surgery, physiotherapy, management

of motor and mental handicaps, cataract and ptosis surgery, pacemaker implantation, or

treatment with antimyotonic or anti-diabetic drugs (Kurihara, 2005;Schara and Schoser,

2006). Psychological and pharmacological intervention has also been suggested to DM1

patients for preventing or reducing problems of social isolation, anxiety and depression

(Antonini et al., 2006;Laberge et al., 2007).

The extreme variability of the DM1 phenotype, the incidence of anticipation and the

impact of the affected parent’s sex on repeat transmission, raise difficult issues for

genetic counseling, particularly with regards to family planning. The diagnosis of DM1

has a major impact on future pregnancies, offspring as well as other family members. It

is often the case that very mildly affected individuals remain subclinically affected and

the disease is only diagnosed after the birth of an affected infant, resulting in the

parents’ families being screened for disease (Fokstuen et al., 2001). On the other hand,

individuals with slightly more expanded repeats might not transmit the disease if repeat

contraction takes place. The clinical signs, age of onset and family history, along with

results from molecular analysis determining a patient’s repeat expansion size, all play a

role in assessing the risk of having an affected child (Magee et al., 2002). It is worth

noting that a familial predisposing effect has been observed where affected sisters give

rise to children affected with the same type of the disease (Lavedan et al., 1993).

CDM1 can be suspected prenatally in the late mid- or early third trimester of pregnancy,

as certain obstetric complications can be identified sonographically, such as

polyhydramnios, talipes, ventriculomegaly or reduced fetal movements. Because these

features can be present in other conditions as well, the presence of a DM1 family history
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is necessary to support a CDM1 diagnosis. As CDM1 inheritance is mostly associated

with maternal transmission, testing for maternal grip myotonia is recommended in these

cases, as an additional diagnostic aid in identifying fetuses at risk (Zaki et al., 2007).

Definitive diagnosis during pregnancy is possible by prenatal diagnosis (PND). This is

performed by obtaining fetal cells invasively by chorionic villus sampling (CVS) or

amniocentesis (AC), and applying PCR protocols to amplify the non-expanded repeat

alleles (<100bp) or Southern blotting to allow an estimation of the expanded repeat size

(Zuhlke et al., 2000). Less-invasive PND of DM1 has also been reported, where

trophoblast cells are retrieved from the lower part of the uterine cavity or foetal DNA is

isolated from maternal plasma (Massari et al., 1996;Amicucci et al., 2000).

Because of the unpredictability in DM1 inheritance and the consequent difficulties

associated with PND and pregnancy termination, PGD might offer a better reproductive

option for DM1 patients.

1.2.6 Preimplantation Genetic Diagnosis for DM1

Due to the very limited amount of DNA obtained from a single cell, routine techniques

used for PND, such as Southern blotting for estimation of the repeat size in DM1,

cannot be applied to PGD.

The first clinical application of PGD for DM1 was reported in 1997. A hemi-nested

PCR protocol was used for amplification of the non-expanded DMPK allele from the

affected parent, since the expanded allele cannot be amplified by conventional PCR.

This protocol could be used for diagnosis of fully informative couples only, where the

healthy DMPK allele of the affected parent was different from the alleles of the

unaffected parent so that both parental alleles could be clearly distinguished in the

embryo (Sermon et al., 1997). Following amplification, PCR products were separated

on agarose gel. Results indicated a high ADO rate of 24 and 32% on research

blastomeres and clinical DM1 cases respectively. This initial hemi-nested PCR protocol

was later replaced by a more sensitive fluorescent PCR protocol, also amplifying the
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non-expanded DMPK alleles, which allowed a statistically significant reduction of ADO

to between 5.2 to 6.5% (Sermon et al., 1998a). Following this, and in order to provide

PGD for couples that were either non-informative or semi-informative for the DMPK

region, the same group (Centre for Medical Genetics, Brussels University) optimised,

for use at the single cell level, the triplet repeat-primed PCR (TP-PCR) protocol, which

had been introduced in 1993 for amplification across expanded repeat regions (Warner

et al., 1996;Sermon et al., 2001).

A PGD misdiagnosis occurred when using the first hemi-nested protocol, reported in

1998, where contamination was the possible cause of misdiagnosis in an embryo where

only one cell had been analysed (Sermon et al., 1998b). Since then it was decided that

diagnosis with protocols based on sole amplification of the DMPK repeat region, should

incorporate results from two cells from an embryo. This practice is supported by two

studies investigating the risk of misdiagnosis in PGD using PCR, proposing that

accurate and reliable diagnosis may be possible if results of two genotypes (either two

genotypes in a single cell, or a single genotype in two cells) are acquired (Lewis et al.,

2001;Navidi and Arnheim, 1991). The incidence of misdiagnosis underlined the

importance of using multiplex PCR to allow co-amplification of polymorphic markers

along with the mutated region in order to increase the chances of detecting cases of

contamination. This led to the development of multiplex PCR protocols for PGD for

DM1 (Spits and Sermon, 2009).

The first clinical experience using a multiplex fluorescent PCR protocol, was described

in 2001 and aimed not only at reducing the risk of misdiagnosis but also at increasing

the diagnosis rate by using a marker linked to the disease gene. Two single-cell PCR

protocols were developed where diagnosis was based on co-amplification of DMPK

with the APOC2 linked polymorphic marker or with the D21S1414 unlinked

polymorphic marker depending on patient informativity for the short tandem repeat

(STR) markers (Piyamongkol et al., 2001b;Harper et al., 2002). At the same time,

another group reported on the use of two rounds of PCR to allow amplification of the

DMPK region and one of two closely mapped, highly heterozygous, STRs on

chromosome 19, D19S219 and D19S559 (Dean et al., 2001). D19S207 has also been

used in a two-round multiplex PCR protocol for PGD for DM1 (Fiorentino et al., 2006).

Aside from improving on the diagnosis of DM1, current research focuses on

understanding more about the development and progression of the disease. A main part
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of this research has been the identification of characteristic gene expression changes in

affected samples. This work has so far mainly involved experiments on affected adult

tissue or animal models, as described above. More recently, an embryonic stem cell line

was derived from DM1 affected PGD embryos that may be used as a tool to further

study the behaviour of CTG repeats (Mateizel et al., 2006). Additional to the stem cell

lines, it would be of great interest to further investigate the expression patterns in human

embryos during the preimplantation stage of development. A focus on DM1-associated

genes may provide some information regarding the impact of the presence of expanded

repeats in a cell.
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1.3 Investigation of gene expression in preimplantation development

1.3.1 Human oocyte to blastocyst development

The development of the human oocyte occurs in parallel with the development of the

surrounding follicular granulosa cell (GC) layers and communication between the two is

vital. The GCs comprise of the mural granulosa cells that line the follicle wall, and the

cumulus cells that remain in close proximity to the oocyte during growth and following

ovulation. The oocyte secretes factors that act on the granulosa cells to induce the

expression of genes that regulate all stages of follicle development, and, concurrently,

the granulosa cells supply the nutrients that support oocyte growth (Dekel and Beers,

1980;Larsen et al., 1986;Buccione et al., 1990;Zhang et al., 2005). Oocyte-secreted

factors include members of the transforming growth factor β (TGF-β) superfamily, for

example the bone morphogenic protein- 15 (BMP-15) and growth differentiation factor-

9 (GDF-9), that act via downstream SMAD2/3 or SMAD1/5/8 pathways to control

cumulus cell lineage and expansion. The impact of these on oocyte growth has been

demonstrated by in vitro maturation experiments, while the importance of GC-oocyte

interactions has been underlined by experiments on mice homozygous for mutations in

BMP-15 and GDF-9, which found a phenotype of infertility and defective follicular

development (Li et al., 2008). The human oocyte is very active in transcription and

translation throughout its growth phase, but becomes transcriptionally inactive late in

oogenesis, when it reaches its maximal size (approximately 100µm in the human).

Some of the synthesized messenger RNAs (mRNAs) are used for immediate translation,

but a large number of them accumulate in the oocyte cytoplasm, stored in an inactive

form, and are only recruited when needed at later stages to support maturation,

fertilisation and early development (Assou et al., 2006).

During most of folliculogenesis the human oocyte is held in meiotic arrest, at the

diplotene stage of the first prophase. Prior to ovulation into the oviduct, following a

surge of luteinizing hormone (LH) from the pituitary gland, the oocyte completes the

first meiotic division, extruding the small first polar body, and re-arrests at the

metaphase stage of the second meiotic division (oocyte maturation). Oocyte maturation

is characterized by the disappearance of the large nucleus of the arrested immature

oocyte, the germinal vesicle (GV), a process known as GV breakdown (GVBD) to
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allow progress into the next steps of meiosis I (MI). A sequence of other events takes

place in the MI oocyte, such as chromosome condensation, spindle formation, and

separation of homologous chromosomes, overall resulting in the mature meiosis II (MII)

oocyte. Apart from the nuclear changes, cytoplasmic changes also take place, including,

for example, the maturation of cortical granules, which is responsible for the block to

polyspermy (Abbott et al., 1999).

Both meiotic arrest and meiotic maturation are mediated by the communication between

the oocyte and the layers of granulosa cells that closely surround it (Corn et al.,

2005;Andreu-Vieyra et al., 2006). High levels of LH activate molecular pathways

leading to cumulus cell expansion and production of hyaluronic acid (McKenzie et al.,

2004;Mehlmann, 2005;Picton et al., 2008). These events are regulated by oocyte-

secreted factors that induce the expression of the appropriate cumulus cell genes. The

progress from GV to MII is mediated by a decrease in intracellular cAMP in the oocyte,

though it still remains unknown exactly how the LH surge stimulates resumption of

meiosis, especially since the oocytes lack LH receptors (Kawamura et al., 2004;Jones,

2008).

When the mature oocyte is fertilised, the second meiotic division is completed and the

second polar body is released. A series of chromatin modifications guide the formation

of two haploid pronuclear masses of equal size, the maternal and paternal, within 3-10

hours post-insemination. In several occasions, during IVF, pronuclei might not be seen

in the fertilised oocyte or the oocyte might be abnormally fertilised with a variable

number and appearance of pronuclei (Verlinsky and Kuliev, 2000). The pronuclear

stage is followed by formation of the zygote, which approximately 20 hours post-

insemination starts undergoing mitotic divisions every 12-18 hours (cleavage stage),

reaching the morula and eventually the blastocyst stage, of 100-200 blastomeres, prior

to implantation. Embryonic transcription is not required for cleavage to occur, as the

initial stages of development are dependent on the proteins and transcripts that

accumulated in the oocyte during its long developmental arrest in the prophase of

meiosis I. In humans, embryonic genome activation (EGA) occurs at the 4-8 cell stage

(48-72 hours post-fertilisation), while in the mouse it occurs at the 2-cell stage (24-48

hours) (Braude et al., 1988;Nothias et al., 1995). At the point of EGA the genes that are

required for growth and differentiation in the embryo are expressed for the first time. At

the blastocyst stage, the cells have differentiated into the outer epithelial trophectoderm
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(TE), the surrounding cells that initiate implantation and form extra-embryonic

structures, such as the placenta, and a small group of cells called the inner cell mass

(ICM), that has the capacity to form all the tissues of the fetus (Duranthon et al., 2008).

Fertilisation and early development are controlled by genetic and epigenetic

mechanisms, in which DNA methylation, the addition of methyl groups to cytosine

residues, plays a major part. DNA methylation controls the allele-specific expression of

imprinted genes, as well as X-chromosome inactivation (lyonization), which occurs at

the 10-20 cell stage in humans (Dobson et al., 2004). DNA methylation is mediated by

the DNA methyltransferases (DNMTs) including DNA methyltransferase 1 (Dnmt1),

the maintenance enzyme responsible for methylation of hemimethylated CpG

dinucleotides, and Dnmt3a and Dnmt3b, responsible for de novo DNA methylation of

unmethylated regions during development. Dnmt1o and the recently identified Dnmt1s,

are Dnmt1 isoforms, detected in oocytes and preimplantation embryos (Hirasawa et al.,

2008). Another protein, Dnmt3L has no DNMT activity, but colocalizes with Dnmt3a

and Dnmt3b and is thought to be essential for establishing methylation imprints in the

female germ line (Suetake et al., 2004). Expression of the Dnmt3L gene is essential

during murine oogenesis, while in the human transcripts of the DNMT3L gene are only

detected after fertilisation, suggesting different imprinting mechanisms between the two

species (Huntriss et al., 2004).

The correct pattern of DNA methylation is required for normal mammalian

development. In summary, remodelling of the sperm chromatin after fertilisation, which

involves removal of protamines and replacement by acetylated histones, is followed by

an active demethylation of paternal DNA which is completed before DNA replication.

At the same time the maternal genome exhibits a relatively high level of DNA

methylation and undergoes de novo methylation in human zygotes. During the first

cleavages, a passive DNA demethylation of the whole embryonic genome progressively

occurs, resulting in a low methylation level at the morula stage, followed by differential

de novo methylation at the blastocyst stage (Monk et al., 1991;Reik et al., 2001;Fulka et

al., 2004).
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1.3.2 Gene expression studies

Experiments defining the gene expression profile for each of the stages of

preimplantation development, aimed to provide an insight into the molecular pathways

that control them. Earlier attempts involved the use of real-time PCR to provide

information on gene expression of several genes at a time (Steuerwald et al., 2000;Liss,

2002;Cauffman et al., 2005). Other techniques included serial analysis of gene

expression (SAGE) or construction of cDNA libraries and investigation of expressed

sequence tags (ESTs) (Adjaye et al., 1997;Neilson et al., 2000; Stanton et al., 2007).

Interesting findings include the abundance of SUMO mRNAs in oocytes, that probably

have an important role in both maturation and development, the role of CaSR in the

control of meiosis resumption, the association of BRCA1 with chromatin remodeling,

and the role of germ specific Y-box protein (MSY2) in the control and translation of

maternal mRNAs (Li et al., 2006;Dell'Aquila et al., 2006). The expression pattern of

certain genes during development has also given some interesting results. OCT4 is

abundantly expressed in the oocyte but its expression varies between blastomeres of the

same embryo (Cauffman et al., 2005;Hartshorn et al., 2007). RB1 is low in oocytes and

other preimplantation stages but high in blastocysts, potentially indicating a role in

apoptosis and differentiation of TE and ICM. Beta-actin (ACTB) is high in both oocytes

and blastocysts, which might be related to the role in the cytoskeleton, while DNA

repair is generally high in the oocytes, decreases during development and increases

again in the blastocysts, though different genes seem to function at each of these stages

(Wells et al., 2005b;Hamatani et al., 2006).

More recently, microarray technology has enabled the analysis of many thousands of

genes from a sample, accelerating the progress of discovery in this area (Bermudez et al.,

2004;Dobson et al., 2004;Assou et al., 2006;Kocabas et al., 2006;Li et al., 2006).

Because of the small amount of RNA that can be obtained from human oocytes and

embryos, 55-100pg from an oocyte and around 20pg from day 3 embryos, an RNA

amplification step is required to provide enough RNA for the microarray setup (Neilson

et al., 2000;Dobson et al., 2004;Kocabas et al., 2006;Jones et al., 2007). Even though

microarray analysis has been performed on individual oocytes following RNA

amplification, most work has involved pooling several samples together in order to

improve detection of low template mRNA. It has been recommended that a minimum of
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three oocytes are pooled prior to RNA extraction and amplification (Jones et al., 2007).

If the oocytes are from different donors, this methodology also allows overcoming the

individual variation and obtaining a general profile for the tested sample.

Both real-time and microarray results require a kind of normalization prior to analysis,

in order to correct for inter-sample variation and other differences involving the quantity

and quality of input RNA, efficiency of reverse transcription and amplification

processing as well as handling errors. Techniques of normalization include the use of

reference genes, RNA mass quantity or exogenous template (Mamo et al., 2007;Mamo

et al., 2008). Commonly used reference genes are the so –called housekeeping genes

(HKGs), which are responsible for maintaining basic cell functions and are thought to

be expressed highly and stably in a variety of tissues. It is important that their

expression profile is validated relative to the cell type, stage, or experimental conditions,

prior to use for normalization of gene expression results.

Most of the microarray work to date has involved human cumulus cells and oocytes

from the GV to MII stage, while limited microarray work has been done on human

embryos, as these are more difficult to obtain. Cumulus cells display a very different

transcriptome compared to the oocytes. For example, they are more active in cell-to-cell

communication, which is in keeping with their very different biological function (Assou

et al., 2006). On the other hand, oocytes overexpress genes that are involved in DNA

and RNA metabolism, microtubule activity, ubiquitin ligase complex and chromatin

modification, as these functions are necessary for the process of meiosis, for

remodelling of sperm chromatin upon fertilisation and also metabolizing RNA to

support fertilisation and early development (Wassarman and Kinloch, 1992;Kocabas et

al., 2006). Other important oocyte pathways are associated with cell maintenance, cell

cycle, cell proliferation, apoptosis, energy metabolism and mitochondrial activities

(Wells et al., 2005b;Zhang et al., 2005). GVs and MIs have shown similar expression

profiles in contrast to MIIs, where many genes are found under- or over-expressed in

comparison. This expression pattern, however, may reflect changes due to the

completion of meiosis or due to the longer incubation time (Andreu-Vieyra et al., 2006).

Finally, investigation of oocytes that failed to fertilize has indicated increased

expression of genes for immunological and ribosomal proteins, indicative of shock and

defense, elevated inhibin beta-a and beta-b subunits and increased interleukin-1 (Zhang

et al., 2005).
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The least amount of information is available for human blastocyst stage embryos. It has

generally been shown that the blastocyst ICM and the TE express common but also

distinct genes and synthesize different proteins, reflecting their ability to differentiate

into different cell lines (Adjaye et al., 2005). As indicated in mouse embryos, imprinted

X inactivation of the paternal X chromosome occurs in early embryos and is maintained

in the trophectoderm, while cells of the ICM undergo reactivation of the paternal X

chromosome and random X inactivation (Mak et al., 2004). Mouse blastocysts show

increased levels of genes involved in adherens junction, glycolysis and glyconeogenesis

and work on human blastocysts has indicated that genes differentially expressed

between dormant and activated blastocysts are involved in cell cycle, energy and

metabolic pathways, including calcium signalling and adhesion molecules (Hamatani et

al., 2006).

Another important aim of the gene expression work has been to identify markers that

may indicate oocyte fertilisation potential and embryo development. The selection of

best quality oocytes and embryos during IVF, would aim to not only increase the chance

of a successful pregnancy, but also move towards single embryo transfer and reduce the

incidence of multiple gestations, that are associated with increased fetal morbidity and

mortality as well as obstetric complications to the mother (Pinborg et al., 2003;Walker

et al., 2004). Findings include the association of pentraxin 3 (PTX3), hyaluronic acid

synthase 2 (HAS2) and gremlin 1 (GREM1) cumulus cell transcript levels or of the

oocyte BCL2 and proliferating cell nuclear antigen (PCNA) family expression levels

with oocyte fertilisation and embryo development. Additionally, the expression of

cumulus cell glutathione peroxidase 3 (GPX3), chemokine receptor 4 (CXCR4), cyclin

D2 (CCND2) and catenin delta 1 (CTNND1) has been correlated with early-cleavage

rates, a marker of predicting pregnancy (Yan et al., 2001;Zhang et al., 2005; Cillo et al.,

2007;van Montfoort et al., 2008). More recently, the genes BCL2L11, PCK1 and NFIB,

which are also expressed in cumulus cells, were identified as biomarkers for pregnancy

outcome (Assou et al., 2008). Markers of DNA damage have also been investigated and

abnormal embryo morphologies have been associated with changes in gene expression

of several genes, such as TP53 (Wells et al., 2005b;Wells et al., 2005a). Recent

advances have also led to the development of methods for proteomic analysis of oocytes

and embryos, looking into changes in post-translational events rather than the number of

mRNA transcripts (Patrizio et al., 2007).
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Further research aiming to determine the expression levels of groups of genes of a

certain molecular function or involved in particular biological processes in healthy,

normal embryos should enable to define cases where the normal expression is disrupted.

This is facilitated by available databases, for example PANTHER or Gene ontology,

that provide a description of gene products in terms of the process in which they are

involved or their activity at the molecular level, while also allowing an association

between the two, as a gene product may be active in one or more biological processes

and perform one or more molecular functions (www.pantherdb.org,

www.geneontology.org).

Many interesting molecular pathways remain to be investigated in human oocytes and

embryos. Expression studies on human embryonic stem cells (hESCs), derived from the

ICM of human blastocysts with the potential to differentiate into a variety of specific

cell types, might provide interesting data for comparison with preimplantation stage

embryos (Thomson et al., 1998). Genes encoding components of the microRNA

processing machinery are also of interest. MicroRNAs have been shown to regulate up

to one third of human genes by repressing the expression of complementary messenger

RNAs, thereby controlling many biological processes in development, differentiation,

growth and metabolism (Bartel, 2004;Lewis et al., 2005). Additionally, microRNAs are

also known to play a critical role in mouse oocyte maturation and embryo development

and have been shown to be implicated in ESC differentiation (Murchison et al.,

2007;Tang et al., 2007;Laurent et al., 2008). The expression of genes involved in the

microRNA processing pathway has not been previously investigated at the human

preimplantation stage.

A comparison of the normal to disease state expression is also possible due to the

availability of embryos from PGD patients and may facilitate assessment of disease

mechanism for many different disorders.

http://www.pantherdb.org/
http://www.geneontology.org/
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1.4 Aims of this study

The first aim of this study was to identify the most favorable strategies for the

development of single-gene PGD protocols, with a focus on the development of

protocols for PGD of DM1, aiming to achieve optimal diagnostic efficiency and

accuracy. The ultimate aim was to design a universal protocol for the diagnosis of

DM1, to reduce time for single-cell optimisation and reduce patient waiting time for

treatment. Follow-up analysis of embryos following PGD was performed for all

DM1 PGD cycles.

The second aim was to investigate the transmission of the DMPK repeat in

preimplantation embryos. This required initial assessment of the TP-PCR protocol

in estimating the size of the CTG repeat allele on genomic DNA, single buccal cells

or single lymphocytes, and subsequently on single blastomeres from DM1 PGD

cycles. Additionally, analysis of data from diagnosis and follow-up was used to

investigate the potential occurrence of transmission ratio distortion, as well as the

timing of the expansion, and to detect whether differences exist in preimplantation

embryo development of DM1 affected and unaffected embryos.

Finally, the third aim was to generate gene expression data and define the

molecular portrait of human blastocysts, where limited information is currently

available, in comparison to the human oocyte, using microarray technology. The

microarray data was used to further investigate the level of expression of genes

implicated in specific pathways of interest, in human oocytes and embryo

blastocysts.
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2. Materials and Methods
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An overview of the PGD workflow and general code of practice will be presented at

first. Following that, the Methods section has been organized into the following

subsections, to describe the procedures associated with each of the aims of this study:

 Sample collection and preparation: includes all methods used for PGD-related

work, for example nucleic acid extraction or single-cell isolation procedures, as

well as collection of samples donated for research from patients undergoing

PGD (aims 1 and 2) and collection of samples donated for the expression work

(aim 3).

 Sample processing: describes all methods used for DNA amplification,

including primer design (aims 1 and 2), followed by a description of techniques

for RNA isolation, reverse transcription and RNA amplification (aim 3).

 Sample analysis: describes the techniques used for analysis of fluorescent-PCR

products, together with DNA sequencing, employed for investigation of allele

transmission (aims 1 and 2), and concludes with the microarray experiments

(aim 3).

 The methods used throughout for assessment of sample quality and integrity, as

well as details of statistical analysis performed, are described last (aims 1-3).

All plastic consumables (tubes, racks, Pasteur pipettes, tips, filter tips) were obtained

from VWR International Ltd. The nuclease-free 0.2/0.5ml PCR tubes were obtained

from Molecular BioProducts, Inc, UK. Chemicals were purchased by BDH (now

merged with VWR International Ltd.) and Sigma-Aldrich, Inc. Enzymes were obtained

from Roche Diagnostics Ltd. UK (High Fidelity polymerase and Expand Long

Template polymerase) and Applied Biosystems Inc., UK (for Amplitaq Gold). Details

for preparation of work solutions and constituency of other reagents are provided in

appendix 1 (A1).



61

2.1 Summary of the PGD procedure

2.1.1 Patient referral

Overall, twenty-three couples at risk of transmitting DM1 to their offspring underwent

PGD between June 2004 and June 2008.

The PGD procedure involved an initial consultation with a genetic nurse specialist to

provide general counseling on both IVF and PGD procedures, followed by reproductive

assessment (semen analysis, assessment of ovarian reserve) to ensure a couple’s

suitability for treatment. Blood samples were then taken and work-up for the PGD

protocol was initiated. Couples received a final “full consultation” with the genetics

team and fertility specialists. Any other necessary health tests (for example

cardiological assessment) were completed prior to commencing IVF/PGD treatment.

2.1.2 PGD Workup

Five millilitres (ml) of blood was collected in tubes containing 15% ethylene-diamine-

tetraacetic acid (EDTA) from the patient, the unaffected partner and affected or

unaffected family members when possible. Buccal cell swabs were used to obtain DNA

from young children. In some cases, where DNA from previously terminated

pregnancies was available, this was also tested to obtain additional information for the

PGD work-up for that couple. The genomic DNA extracted from each partner and any

relatives was used for the preliminary genetic analysis of the mutated region, along with

an assessment for polymorphic markers closely linked to the mutated gene. Each PGD

protocol was optimised on genomic DNA and then on single cells, which were either

single buccal cells or single lymphocytes. Following optimisation, the final protocol

was tested on at least 50 single cells to determine the efficiency of diagnosis prior to

clinical application.
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2.1.3 IVF/PGD cycle

The IVF treatment was performed at the Assisted Conception Unit, University College

London Hospital. In summary, it involved gonadotropin administration to induce the

development of multiple follicles as described by Sahu et al., 2008. Ultrasound-guided

vaginal oocyte collection was performed at 37 h post-human chorionic gonadotropin

(hCG) injection. Oocytes were denuded from their surrounding cumulus cells at 40 h

post-hCG, by treating with hyaluronidase, HYASETM-10x (Vitrolife, UK), according to

the manufacturer’s instructions. ICSI was performed instead of classical IVF, at 41 h

post-hCG, in order to prevent contamination with sperm. Fertilisation was evaluated at

18–20 h post-insemination. Embryos were cultured in IVF medium (GIII series,

Vitrolife, UK) and embryo development was evaluated on day 2 and then again on day

3, prior to embryo biopsy. Embryo biopsy was performed in calcium- and magnesium-

free biopsy medium (G-PGD, Vitrolife, UK), using either acid Tyrode’s solution (in the

early PGD cycles) (MediCult (UK) Ltd.) or a 1.48µm diode laser (OCTAX Laser

shot™ system, MTG – Medical Technology Vertriebs-GmbH, HUNTER Scientific

Limited, UK), for breaching of the zona pellucida, followed by aspiration of the

blastomeres through the hole using a biopsy pipette.

Two cells were removed from embryos with six or more blastomeres on day 3, whereas

one cell was biopsied from embryos that had five cells or less. If the embryos

undergoing protocols that required results from two cells for diagnosis had not grown to

at least the six-cell stage by day 3, their biopsy was either deferred to day 4, or

proceeded with the removal of one cell; embryos with an unaffected result from this

single cell were re-biopsied on day 4 to obtain a second-cell confirmation. Deferred

biopsy or re-biopsy, were also generally performed for slow-growing embryos and

embryos with inconclusive results. The single biopsied blastomeres were analysed using

the already determined patient-specific PGD protocol. If available, a maximum of two

unaffected embryos were transferred into the uterus on days 4 or 5 post-insemination

and in one case on day 6. Supernumerary unaffected embryos that had reached the

blastocyst stage of development were cryopreserved.
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2.2 General code of practice

2.2.1 Work-flow

The areas for general laboratory work, nucleic acid isolation, setting up PCR and

product analysis were physically separated in order to prevent contamination. The

direction of the workflow was always from the main laboratory area to the analysis area.

Each of these areas had dedicated pipettes and laboratory coats, as well as reagents and

equipment as necessary.

2.2.2 Single cell work

Single cell work practice followed guidelines as described by Thornhill et al., 2005. All

single cell work was carried out in a positive pressure room, used only by authorised

personnel, which maintained twenty complete air changes per hour to reduce the

accumulation of DNA. Designated reagents and other consumables were kept inside the

room. Latex or nitrile gloves, hair cover and dedicated disposable lab coats were worn

at all times and changed frequently. The room was equipped with a Microflow advanced

Bio-safety cabinet class II for setting up single cell PCR. The class II hood was

equipped with a UV bulb to allow decontamination of the PCR workspace, pipettes, tips

and tubes, at 254nm. Other plastic consumables, cold racks and trays were cleaned with

ethanol and exposed to UV irradiation at 254nm in a Template Tamer (Qbiogene, UK)

prior to performing PCR. All work surfaces were cleaned with ethanol and dilute bleach

weekly and prior to a PGD case. The tubes used for single cell isolation were 0.2ml

thin-wall PCR tubes, certified DNA-, DNase-, RNase- and pyrogen-free (Molecular

BioProducts, Inc, UK), provided in small bags of 100 pieces to further minimise the risk

of contamination. The 0.5ml centrifuge tubes used for PCR setup were also certified

DNA-, DNase-, RNase- and pyrogen-free (Molecular BioProducts, Inc, UK).
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2.3 Sample collection and preparation

2.3.1 PGD-work

2.3.1.1 DNA extraction protocols

Details of solutions used in DNA extraction are shown in appendix 1, section A1.2.1.

2.3.1.1.1 DNA extraction from blood

DNA extraction was performed as described by Lahiri and Nurnberger, Jr., 1991. Five

milliliters of blood were transferred into a 15 ml centrifuge tube and 5 ml of TKM1

were added. The cells were lysed by adding 125 µl of IGEPAL® CA-630 (Sigma-

Aldrich chemical company). The mixture was centrifuged at 2500 rpm for 10 minutes

(Heraeus Labofuge 400 Benchtop Centrifuge) and the supernatant was carefully

discarded. The nuclear pellet was washed in 5 ml of TKM1 buffer, 125 µl of IGEPAL®

CA-630 was added again and the tube was centrifuged at 2500 rpm for another 10

minutes (Heraeus Labofuge 400 Benchtop Centrifuge). The TKM1 and IGEPAL® CA-

630 washes were repeated until the pellet became white, indicating that all the red blood

cells were removed. After the last wash, the supernatant was again discarded. The pellet

was gently resuspended in 100µl of TKM1, to which 800 µl of high concentration salt

buffer TKM2 and 50 µl of 10% sodium dodecyl sulphate (SDS) were added to lyse the

white blood cells. The solution was thoroughly mixed by pipetting up and down several

times using a 1ml Pasteur pipette (Alpha Laboratories Limited, UK) and then

transferred, using the same pipette, into a 1.5ml microcentrifuge tube. The mixture was

incubated at 55°C in a waterbath for approximately 2h until the pellet had completely

dissolved and then 300µl of 6 M NaCl were added. The solution was mixed well by

tilting the tube several times before centrifuging at 12000 rpm for 5 minutes

(MicroCentaur Sanyo MSE). The supernatant was transferred to a new 1.5ml centrifuge

tube and the precipitated protein pellet was discarded. Two volumes of 100% ice-cold

ethanol were added at room temperature (RT) to the supernatant containing DNA. The

tube was inverted several times until the DNA was precipitated and then centrifuged at

1200 rpm for 10mins (MicroCentaur Sanyo MSE). The DNA pellet was resuspended in

1 ml of ice-cold 70% ethanol and the mixture was centrifuged at 12000 rpm for 5
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minutes (MicroCentaur Sanyo MSE). The supernatant was discarded and the DNA

pellets were air-dried. Each of the pellets was dissolved in 200 μl of 1xTE buffer and

stored at 4C until further use.

2.3.1.1.2 DNA extraction from buccal cells

The buccal cell sample was obtained by gently scraping the inside of the cheek with a

sterile mouth swab (VWR, UK) and the cells were suspended in 500µl phosphate

buffered saline (PBS) (Sigma Chemical Company, UK) in a 1.5ml microfuge tube. To

this, 5µl of 2.6mg/ml recombinant, PCR grade, Proteinase K (PK) (Roche Diagnostics

Ltd, UK) and 15µl of 10% SDS (Sigma® Chemical Company, UK) were added and

mixed well. Cell lysis was performed by heating at 37C for 1hr in a waterbath.

Following that, the tube was heated at 96C for 15min in a thermal cycler, in order to

inactivate the PK, and 150µl of 6M NaCl were added. After mixing well, the tubes were

spun at 12,000 rpm for 5min (MicroCentaur Sanyo MSE). The protein pellet was

discarded and a volume of ice-cold 100% ethanol, equal to [2x volume of the

supernatant], was added to the supernatant and mixed by inversion. The tube was then

centrifuged for 5min at 13,000rpm (MicroCentaur Sanyo MSE). The supernatant was

removed and the remaining precipitated DNA was washed in 1ml of ice-cold 70%

ethanol. After spinning for 5min at 10,000rpm, the supernatant was removed and the

pellet was left to air-dry. DNA was suspended in 50µl TE buffer and stored at 4C until

further use.

2.3.1.2 Isolation of lymphocytes from blood

The lymphocyte isolation procedure was based on a protocol described by Boyum, 1968.

Fresh blood was collected in Lithium Heparin tubes. Six millilitres of 0.9% NaCl were

mixed with 6ml blood in a 14ml centrifuge tube by inversion. Eight millilitres of the

diluted blood was gently pipetted using a Pasteur pipette (Alpha Laboratories Limited,

UK) in another tube already containing 6ml of Ficoll-Paque Plus (GE Healthcare Life

Sciences, UK) so that the blood formed a layer on top of Ficoll without mixing with it.

In order to do that, the tube containing Ficoll was tilted and the blood was slowly
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trickled in the side of the tube. Tubes were centrifuged for 30min at 1300rpm at room

temperature (Heraeus Labofuge 400 Benchtop Centrifuge). The centrifuge brake was

turned off to permit slow deceleration at the end of the centrifugation cycle and allow

slow separation of the lymphocytes (figure 2.1). After separation, the lymphocyte layer

(buffy coat) was carefully removed using a clean Pasteur pipette and transferred to a

clean 14ml tube which was then filled up with 0.9% NaCl. The solution was mixed well

and centrifuged, as previously, at 1300rpm for 15 minutes at room temperature with the

centrifuge break allowed back on to hasten centrifuge spin-down. The supernatant was

discarded and the cell pellet was resuspended in 14ml of 0.9% NaCl and again spun at

1300rpm for 15min with the break on. Washing of the pellet with 0.9% NaCl was

performed twice before resuspending in 2ml of 0.9% NaCl. The lymphocyte suspension

was stored at 4C and kept for subsequent isolation of single lymphocytes for up to a

maximum of three days.

Figure 2. 1: Procedure for isolation of lymphocytes using Ficoll-Paque PLUS (GE Healthcare Life
Sciences, UK). 1. Fresh blood, diluted with NaCl, is layered on top of Ficoll and the tube is centrifuged
for a short period of time. 2. Differential migration during centrifugation results in the formation of
distinct layers containing different cell types. Lymphocytes are found between plasma and Ficoll along
with other slowly sedimenting particles. The lymphocyte layer is carefully removed, placed in a clean
centrifuge tube and subjected to several washing steps.
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2.3.1.3 Isolation of cell clumps and single cells

Buccal cells were obtained as previously described using a sterile mouth swab (VWR,

UK) and the cells were suspended in 1ml of calcium- and magnesium-free PBS

containing 0.1% w/v polyvinyl alcohol (PVA) (Sigma® Chemical Company, UK). The

lymphocyte suspension was isolated from blood as previously described (section

2.3.1.2).

A cell aliquot (buccal cell or lymphocyte) was placed on a Petri dish, on a drop of either

PBS/PVA or dissociation buffer (DB) containing 4% bovine serum albumin (BSA)

(section A1.2.3), depending on the type of lysis (as described on section 2.3.1.5),

(Sterilin, Bibby Sterilin Ltd, UK) and observed under a dissecting microscope (x100

magnification). Another Petri dish containing several 10l droplets of either PBS/PVA

or DB/BSA was also prepared and the cells from the initial aliquot were passed through

at least three fresh droplets, using a mouth pipette and a 0.2μm diameter microcapillary

(Biohit, UK). In this way, either clumps (3-5 cells) or single cells were isolated. Each

clump or single cell was washed at least three times in three clean buffer droplets and

then transferred to a 0.2ml PCR tube containing the lysis solution. An aliquot from the

last washing droplet was also transferred in another lysis buffer tube to serve as a

control.

2.3.1.4 Isolation of single blastomeres for PGD

A new sterile 0.2μm diameter microcapillary (Biohit, UK) was used for blastomere

manipulation from each embryo. Each single blastomere was washed in a separate clean

petri dish containing droplets of the appropriate wash buffer as previously described

(section 2.3.1.3) and then transferred into a transparent 0.2ml microcentrifuge tube

containing the lysis buffer.

A small volume of washing medium from the last wash droplet of each single

blastomere was transferred in a separate lysis buffer tube and served as a negative

control to monitor for PCR contamination.
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2.3.1.5 Single cell lysis

Single cell lysis was performed with either PK or an alkaline lysis method following

cell isolation as described in section 2.3.1.3. Prior to PK lysis the cells were isolated in

droplets of PBS/PVA buffer, while for subsequent alkaline lysis the cells were isolated

in DB/BSA buffer. Details of each method are described below.

Proteinase K (PK) lysis: The isolated cells were transferred in 0.2ml sterile thin-walled

microcentrifuge tubes containing 3l of the PK lysis buffer (section A1.2.3). Samples

and blanks were incubated at 37C for 1 hour. Following this, PK was inactivated by

incubation at 95C for 15 minutes. All cells were stored at -80C for 1.5 hours prior to

performing PCR or for up to a few months until further use.

Alkaline lysis: The cells were transferred in 0.2ml thin-walled microcentrifuge tubes

containing 2.5 l of the alkaline lysis buffer (ALB) and kept at -80C for 1 hour if they

were to be used immediately or up to 2 weeks until further use. Subsequently cell lysis

was achieved by heating the sample at 65C for 10minutes. The tubes containing the

lysed cells were then transferred to a 0.2ml PCR Cooler (Eppendorf UK Limited) to be

kept cold while setting up the PCR. Before PCR amplification the sample was

neutralized by adding 2.5l of 200mM Tricine (Sigma® Chemical Company, Poole,

Dorset) into the PCR master mix (Cui et al., 1989).

2.3.2 Collection of samples donated for research from PGD patients

All patients attending the Assisted Conception Unit (ACU), University College London

Hospital, were given an information sheet with details on all ongoing research projects.

All embryos and oocytes for this project were collected after patients had given their

informed consent (Human Fertilisation and Embryology Authority license number

RO113). Donated samples were transported from the ACU to the Human

Preimplantation Genetics Group and processed immediately (within 30 minutes).

Assessment of oocyte maturational status and embryo morphology was performed by
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the ACU embryologists. All samples were re-evaluated at the time of processing, to

ensure the accuracy of information.

2.3.2.1 Collection of spare embryos following PGD for PCR analysis

Spare embryos following PGD included embryos diagnosed as affected and/or

unaffected embryos unsuitable for embryo transfer or cryopreservation. Several drops of

either PBS/PVA or DB/BSA were placed on a petri dish, as previously described

(section 2.3.1.3), and a drop of acidified Tyrode’s solution (MediCult Ltd, UK) was also

added to a separate site on the petri dish. Samples were first placed in the drop of

Acidified Tyrode’s and observed under a dissecting microscope until the zona pellucida

had dissolved. The process was facilitated by in- and out- pipetting with the aid of the

0.3μm microcapillary (Biohit, UK), overall taking between 10-30 seconds. On several

occasions the blastomeres were easily removed with embryo manipulation from within

the zona through the biopsy hole, therefore, use of acid Tyrode’s was avoided.

After complete separation of the zona from the embryo, the embryos were then

immediately transferred to the clean droplets of wash buffer (PBS/PVA or DB/BSA) on

the dish and washed thoroughly as previously described. Embryos were either tubed

intact or disaggregated into blastomere clumps or single blastomeres using a 0.2μm

microcapillary (Biohit, UK). The capillary was regularly rinsed with wash buffer

between each blastomere manipulation.

The single isolated blastomeres, blastomere clumps or whole embryos were transferred

in a minimal volume of buffer into individual 0.2ml PCR microcentrifuge tubes

containing the lysis buffer. A control blank was taken from the last wash drop as

previously described.
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2.3.2.2 Collection of cumulus cells and oocytes for PCR analysis

All oocytes were treated with hyaluronidase (HYASETM-10x supplied by Vitrolife, UK),

as previously described (section 2.1.3), to allow their separation from the surrounding

cumulus cells prior to ICSI. When needed, these cumulus cells were collected and

isolated in clumps or single cells according to the standard procedure. Acidified

Tyrode’s was used to enable lysis of the oocyte zona.

Donated immature oocytes were separately washed and then transferred to separate

microcentrifuge tubes containing PBS/PVA and stored at -80C until further use.

2.3.3 Collection of samples for gene expression work from general IVF
patients

2.3.3.1 Precautions

Every effort was made to maintain strict aseptic techniques throughout all gene

expression-related work, i.e. cell isolation, RNA isolation or RNA amplification

procedures. Pipettes and tube racks used were designated for RNA work only. All work

surfaces and equipment were cleaned with ethanol, then with RNase ZAP (Ambion, Inc.,

UK), rinsed with distilled water and dried so as to eliminate RNase contamination.

Sterile tubes and filtered pipette tips were utilized and gloves were worn at all times and

frequently changed. All reactions of the RNA amplification protocol were set up in a

Microflow bio-safety cabinet class II.

2.3.3.2 Collection of oocytes and embryos for gene expression analysis

Donated oocytes and embryos were collected in sterile conditions and processed rapidly

to minimize RNA degradation. Removal of cumulus cells and the zona pellucida was

carefully performed as previously, to prevent contamination with nucleic acids. Samples

were rapidly washed in PBS containing 0.1% PVA and 0.3 U/μl of RNasin Plus RNase

inhibitor (Promega, UK Ltd). Following washing, oocytes and whole embryos were
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transferred to DNA-, DNase-, RNase-free microcentrifuge tubes in approximately 1μl of

fluid and then immediately stored at -80°C prior to use.

Fifteen immature human oocytes (MI) were collected from twelve IVF patients with

primary or secondary infertility, following patient consent. For four of the couples there

was a male factor for infertility (abnormal sperm parameters), while in another couple

the female had polycystic ovarian syndrome. There was no known cause for infertility

for the remaining seven couples.

All oocytes had matured (MII) in culture and were randomly pooled together in groups

of three prior to processing (samples MIIa, MIIb, MIIc, MIId and MIIe). The mean

maternal age of all oocytes collected was 36.5yrs±4.47. A more detailed age range for

each of the three oocyte sample sets is indicated below:

MIIa: (40+36+36) yrs, MIIb: (36+35+35) yrs, MIIc: (35+40+37) yrs,

MIId: (30+43+39) yrs, MIIe: (25+40+40) yrs.

Similarly, twelve cryopreserved IVF blastocyst stage embryos were thawed following

patient consent and pooled together in groups of three prior to processing (samples Ba,

Bb, Bc and Bd). Three fresh DM1 affected blastocyst stage embryos, were also donated

for research by patient no. 22, affected with DM1, who had undergone two cycles of

PGD for DM1. These three DM1 blastocysts were also pooled together (sample DMa).

2.4 Sample processing

2.4.1 Polymerase chain reaction

Polymerase chain reactions were set up on ice in a laminar flow cabinet (Microflow

advanced Bio-safety cabinet class II) using dedicated pipettes, sterile pipette filter tips

and certified RNase-, DNAse-, DNA- and pyrogen-free microcentrifuge tubes (ABgene,

Surrey, UK). Thermal cycling was carried out in Applied Biosystems 0.2 or 0.5ml

GeneAmp® PCR System 9700 or the 0.2/0.5ml Eppendorf Mastercycler® Gradient.
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For PGD workups, PCR was initially performed using genomic DNA as the template

and the genotypes of each family member were determined for the mutated region as

well as for several polymorphic markers (linked, such as APOC2 and D19S112 or

unlinked markers). All diagnostic protocols involved direct analysis of the mutated

region along with simultaneous amplification in a multiplex PCR of one or two

polymorphic markers. Each protocol was first tested on control genomic DNA, and

occasionally on diluted genomic DNA (up to a 1/1000 dilution, achieving a

concentration of approximately 0.7ng/μl), before being optimised on single cells. The

final protocol was tested on at least 50 single cells prior to clinical application in order

to determine the percentage of amplification and allele dropout rate (ADO). The

percentage of ADO was estimated by counting the number of heterozygote cells

whereby only one of the two alleles had amplified, and dividing this by the total number

of cells that showed positive amplification. Human blastomeres were also used on two

occasions to confirm the single cell amplification efficiencies and allele-dropout rates

prior to the clinical application but this practice was stopped, as mentioned in section

4.1.

 Oligonucleotides

Oligonucleotides were ordered from Eurogentec Ltd, UK or Applied Biosystems, UK

and supplied as dry pellets, which were reconstituted to a concentration of 50 or 100μM

with nuclease-free water (Promega Corp., UK). Details of primer sequences, primer

binding sites and product sizes are shown in tables A1.1, A1.2, A1.3 in appendix 1.

Aliquots of the stock solution, 20μl each, were prepared in 0.2ml PCR tubes and diluted

to a final concentration of 50μM with nuclease-free water. The pre-aliquoting of the

stock solution was done in order to prevent repeat freeze-thawing cycles that would

have been necessary if aliquots were prepared from the primer stock on an ad-hoc basis.

Working aliquots were stored at -20°C and the remaining primer stock solution was

stored at -80°C.

 Oligonucleotide design

Genomic DNA sequences were obtained from the Ensemble Genome Browser website,

ensembl release 50 (http://www.ensembl.org/).

The DNA sequence incorporating the mutation or polymorphism was transferred into

the Primer3 program via a web interface (http://primer3.sourceforge.net/), and the

targeted region was specified. The Primer3 program allowed selection of the best primer
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pair for amplification, according to criteria such as primer length (18-30 bases long),

primer melting temperature (Tm) (55-65°C) and guanine-cytosine base content (40-

60%). Primers were chosen to have minimal self-complementarity and minimal

complementarity to each other at their 3’-ends. Specificity of the selected primers was

verified using a Basic Local Alignment Search Tool (BLAST) program, BLASTN, in

the Ensemble BlastView in order to search for nucleotide sequence similarities against

the entire human genomic DNA sequence. The Ensembl database also provided

information for the location of single nucleotide polymorphisms (SNPs) in the gene

sequence (Ensembl genomic sequence information, transcript information and gene

variation info). Oligonucleotide primers were designed to avoid any SNPs within the

primer, to prevent interference with primer annealing. SNPs within the PCR product

were also avoided, so as not to affect mutation detection or the annealing of any inner

primers where required.

The oligonucleotides for amplification of the short tandem repeat (STR) polymorphic

markers were obtained using the Ensembl Genome Browser or the GDB Human

Genome Database (the latter subsequently shut down on 1st June 2008). Specificity of

the STR primer pairs was verified on Ensembl, as above.

2.4.1.1 Standard PCR

The approximate annealing temperatures for the oligonucleotide primers were estimated

to be 5°C below the temperature of the primer melting point (Tm). This was calculated

using the formula: Tm= 2(A+T) + 4(G+C). The working optimal annealing

temperatures were determined empirically by gradient PCR reactions with temperatures

either side of the original estimate using the Mastercycler Gradient® thermal cycler. A

temperature gradient of ±10°C from the calculated Tm was applied across the block,

allowing testing of 12 different temperatures in a single experiment. The temperatures

giving the most intense amplified products, as determined by agarose gel

electrophoresis, were chosen as the working annealing temperatures.

A variety of conditions were tested during PCR optimisation for PGD protocols. These

included testing different cell types (buccal cells/lymphocytes) or lysis conditions

(PK/ALB), performing a series of modifications in the PCR reaction components, such
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as MgCl2 , deoxyribonucleotide triphosphate (dNTP) and primer concentrations or type

of enzyme, use of chemical additives in the PCR reaction such as dimethyl sulfoxide

(DMSO) and glycerol or modification of the PCR cycling conditions.

A standard PCR mixture consisted of 0.1-0.6M of each primer, 0.2-0.7mM for each of

the dNTPs, (deoxyadenosine triphosphate (dATP), deoxyguanosine triphosphate

(dGTP), deoxycytidine triphosphate (dCTP) and deoxythymidine triphosphate (dTTP)),

(Promega, Madison, USA), 1x PCR buffer (Amplitaq Buffer, High Fidelity (Hifi)

Buffer 2 or Expand Long Template (ELT) Buffer 3), 1.5-4mM MgCl2, 1.25-2 units

DNA Polymerase (Amplitaq Gold/High Fidelity or Expand Long Template

polymerases), and was made up to a total volume of 24µl with nuclease-free water

(Promega, Madison, USA). High Fidelity and Expand Long Template enzymes and

buffers were purchased from Roche Diagnostics Ltd. UK. Amplitaq and Amplitaq Gold

were purchased from Applied Biosystems Inc., UK.

A PCR “master mix” was prepared to cover the volume of reagents required for all

samples and 24µl of the mix were aliquoted into each of the nuclease-free thin-wall

0.2ml PCR tubes. One microlitre of genomic DNA (approximate concentration 0.5-1

µg/µl), was added to each 24µl reaction mix. An extra tube with no DNA was taken as a

PCR-mix negative control for each reaction. During PCR set-up for a PGD case two

PCR-mix negative controls were made, one after preparation of the PCR master mix and

prior to aliquoting the mix into the single-cell tubes, and one at the end of all aliquoting.

In cases where contamination was detected the two negative controls provided

information on whether the contamination had occurred during cell tubing/PCR set-up

or during PCR aliquoting.

PCR for single cells was performed according to the standard PCR protocol, the only

difference being that the reagent mixture was made up to a total volume of 21.5μl or

22μl with nuclease-free water (depending on the method of cell lysis, section 2.3.1.5). A

volume of 21.5μl or 22μl was added in each of the 0.2ml microcentrifuge tubes already

containing the lysed single cells as well as in each of the cell-negative control tubes,

containing ~2µl of solution from the last wash drop of each cell. All tubes were

centrifuged briefly and then placed in the PCR cycler to start the amplification.
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The general conditions of PCR amplification involved an initial denaturation step to

activate the enzyme, performed at 94C for 12 minutes when using Amplitaq Gold

polymerase or 95C for 2 minutes for High Fidelity and Expand Long Template (ELT)

polymerases. This was followed by denaturation at 96C for 15-45 seconds (94C after

the first ten cycles), annealing at 52-65C for 45s to 1 min and extension at 72C for 45s

to 1 min. Each step was repeated for 15, 40 or 46 cycles depending on the PCR protocol.

This was followed by a final extension at 72C for 5-10min.

The exact PCR conditions for all protocols with clinical application are given in

appendix table A2.2.

For other single PCR reactions, the PCR mixture consisted of 0.1M of each primer,

0.2mM for each of the dNTPs, (Promega, Madison, USA), 1x Hifi buffer, 1.5mM

MgCl2, 1.25 units High Fidelity DNA Polymerase and was made up to the required

volume with nuclease-free water (Promega, Madison, USA). The following PCR

program was performed: 95C for 2min, (96C for 15secs, TmC for 45secs, 72C for

45seconds) x 10cycles, (96C for 15secs, Tm for 45secs, 72C for 45seconds) x 30

cycles. Melting temperatures for DMPK7/8, ACTB4/5 and AMELXY primers were

57C, 62C, 59C respectively, and 60C for other remaining polymorphic markers.

Primer details and cycling parameters for detecting expression of β-actin were as

described in Salpekar et al., 2001.

2.4.1.2 Multiplex PCR

Multiplex PCR allowed amplification of the mutation marker and one or two

polymorphic markers at the same time. The reaction mixture and conditions were

similar to those of standard PCR, but more than one set of primers were added in the

PCR mixture. The concentration of primers, other PCR reagents and annealing

temperatures were modified as necessary during PCR optimisation to achieve optimal

amplification efficiency of all targeted regions.

A “split PCR” reaction was performed to allow better overall amplification. This

involved an initial multiplex PCR amplification for 15 cycles, followed by a second
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round of individual PCR reactions for each of the oligonucleotide sets included in the

first round, and performed for an additional 40 cycles. The reaction mixture for second

round PCRs was made up to 22μl, to which 3μl of the first round PCR product were

added prior to amplification.

2.4.1.3 Fluorescent PCR

Labeling of the forward or the reverse primer used in the amplification reaction with a

fluorescent dye, allowed detection of the PCR product on an automated laser

fluorescence sequencer (ABI 310, 3100 or 3730 Genetic Analyzer); table 2.1 provides

information on commonly used fluorescent dyes. The PCR mixture preparation was the

same as for the standard PCR protocol (section 2.4.1.1).

In a multiplex fluorescent PCR, where more than one primer pairs were co-amplified,

care was taken to label primers giving an overlapping product size with different

fluorescent labels, in order to allow differentiation of the products.

The primer set being amplified under the least favorable conditions in the multiplex

reaction, and therefore giving the lowest intensity product, was labeled when possible

with a dye of higher fluorescence intensity.
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Table 2. 1: Details of absorbance and emission wavelengths for chemical dyes used in fluorescent-
PCR. The size of the colour marker in the first column indicates the relative fluorescence intensity
(information from Applied Biosystems Inc. and Eurogentec Ltd., www.appliedbiosystems.com,
www.eurogentec.com).

Relative
Intensity

Dye Chemical Name Absorbance
maximum

Emission
maximum

(6, 5)
FAM™

Fluorescein, derivatized as
NHS ester via a carboxyl at
position 5 or 6

495nm 520nm

HEX™ Hexachlorofluorescein, NHS ester.
Can only be used on 5' end of oligo

535nm 555nm

JOE™ 6-carboxyl-4',5'-dichloro-2',7'-
dimethoxyfluorecein, NHS ester

529nm 555nm

ROX™ Carboxy X-rhodamine, NHS ester 588nm 608nm
TAMRA™ Carboxy tetramethyl rhodamine,

available as NHS ester, or direct
linked

559nm 583nm

TET™ Tetramethyl fluorescein. NHS ester.
Can only be used on 5' end of oligo.

522nm 539nm

NED™ ABI proprietary "yellow" 553nm 575nm

Dragonfly
OrangeTM

Eurogentec Ltd, UK alternative to
NED

554nm 576nm

VIC® ABI proprietary "green".
Same emission wavelength as JOE,
but narrower spectral peak and
brighter signal

538nm 554nm

Yakima
Yellow®

Eurogentec Ltd, UK,
alternative to VIC

530.5nm 549nm

PET™ ABI proprietary "red" 558nm 595nm
LIZ™

ABI proprietary "orange" 638nm 655nm

2.4.1.4 TP-PCR

The triplet primed PCR, specifically used for the amplification across the CTG repeat of

the DMPK gene, was carried out according to Warner et al., (1996) with some

modifications. Primer P2 was a fluorescently-labeled primer complementary to a

sequence close to the CTG repeat that was used in combination with a pair of primers,

P4CAG and P3R. P4CAG consisted of a 3’-end sequence containing a tandem repeat of

5 CAG trinucleotides, and a 5’ tail of 21bp with no homology to the human genome.

Primer P3R was only represented by the 21bp sequence of primer P4CAG (figure 2.2).

http://www.appliedbiosystems.com/
http://www.eurogentec.com/
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Figure 2. 2: Primers of the TP-PCR method (P2, P3R and P4CAG) used for amplification along the
expanded region. Primer P3R was complementary to the 21bp unique sequence of primer P4CAG (black
bar).

2.4.1.5 Whole-Genome Amplification

Whole genome amplification (WGA) was performed by isothermal strand displacement

using the GenomiPhi HY DNA amplification kit (GE Healthcare UK Limited) for

confirmation of diagnosis in some of the PGD spare embryos. Following blastomere

isolation in DTT/KOH lysis buffer (appendix section A1.2.3), DNA was briefly

denatured by heating to 95°C for 3 minutes, and then cooled to 4°C in buffer containing

random hexamers that non-specifically bind to the DNA. A master-mix containing

Phi29 DNA polymerase, additional random hexamers, nucleotides, salts and buffers was

added and isothermal amplification was performed at 30°C for 6 hours. Following

amplification, the enzyme was heat-inactivated by incubating at 65°C for 10 minutes, in

order to prevent degradation of the amplification product. Amplification products were

stored at -20°C.
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The WGA products were tested for the amplification of the DMPK triplet repeat region,

APOC2, D19S112 and AMELXY polymorphic markers (appendix table A1.1).

2.4.2 Processing of samples for gene expression analysis

2.4.2.1 RNA extraction

Total RNA was isolated from clumps of lymphocytes, single oocytes, and whole

embryos using either the Absolutely RNA NanoPrep Kit (Stratagene- Agilent

Technologies UK Limited) or the AllPrep DNA/RNA Micro kit (Qiagen Ltd., UK),

according to the manufacturer’s instructions. Centrifugation steps were performed using

a Hettich® MikroTM 200R benchtop refrigerated centrifuge.

The Absolutely RNA NanoPrep Kit was used for RNA isolation during optimisation of

the RNA extraction technique from single cells. In summary, the Absolutely RNA

NanoPrep Kit protocol (Stratagene, UK) employs a lysis buffer that contains a strong

protein denaturant, the chaotropic salt guanidine thiocyanate, to lyse cells and prevent

RNA degradation by ribonucleases (RNases). Following cell lysis, the sample was

transferred to an RNA-binding nano-spin cup sitting within a 2-ml collection tube to

enable the RNA to bind to a silica-based fiber matrix. A DNase digestion step,

performed at 37C for 15 minutes, removed contaminating DNA and then a series of

washes removed the DNase and other proteins. Lastly, 10l of elution buffer (low-

ionic-strength buffer), pre-warmed to 60C, was added directly onto the fiber matrix

inside the spin cup and the sample was incubated at room temperature for 2 minutes.

The purified RNA was eluted in the collection tube by centrifugation at ≥ 12,000x g for

5 minutes, then transferred to a 0.2ml microcentrifuge tube and stored at -20C for up to

one month or at -80C for long-term storage.

RNA was extracted from all samples used for microarray analysis using the AllPrep

DNA/RNA Micro kit (Qiagen Ltd., UK). Oocytes and blastocyst-stage embryos from

different patients were randomly pooled together in groups of three, prior to RNA
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extraction. Each set of samples was first lysed in a highly denaturing guanidine-

isothiocyanate–containing buffer in order to inactivate DNases and RNases and ensure

isolation of intact DNA and RNA. The lysate was first passed through an AllPrep DNA

spin column that binds genomic DNA of an average length of 15-30kb. Ethanol was

added to the flow-through from the AllPrep DNA spin column to provide appropriate

binding conditions for RNA. The samples were then applied to an RNeasy MinElute

spin column, where total RNA, longer than 200 nucleotides, was bound to the

membrane, allowing contaminants to be efficiently washed away. High-quality RNA

was eluted in approximately 14 μl water. This procedure allowed RNAs smaller than

200 nucleotides, (such as 5.8S rRNA, 5S rRNA, and tRNAs, which together comprise

15–20% of total RNA) to be selectively excluded, therefore, providing an enrichment

for mRNA. Despite the limited starting material, no carrier RNA was used during the

purification process, in order to escape interference with the reverse transcription step

and oligo-dT primers of the amplification procedure.

2.4.2.2 Reverse transcription

Reverse transcription was performed following RNA extraction with the Absolutely

RNA NanoPrep Kit (Stratagene- Agilent Technologies UK Limited) for initial single-

cell RNA work practice.

Five microlitres of each RNA sample (extracted with the Absolutely RNA NanoPrep

Kit) was mixed in a 0.2ml microcentrifuge tube with 1μl 10mM dNTPs (Promega, UK),

1μl random hexamers (50ng/μl) (Superscript III First Strand Synthesis System for RT-

PCR, Invitrogen) and nuclease-free water to make final volume up to 10μl. The mixture

was incubated at 65C for 5 minutes and then placed on ice for at least one minute. 10μl

of cDNA synthesis mix was then prepared for each reaction, comprising of 2μl 10x RT

buffer (Superscript III First Strand Synthesis System for RT-PCR, Invitrogen Ltd., UK),

4μl 25mM MgCl2, 2μl DL-Dithiothreitol (DTT) (0.1M), 1μl RNaseOUT (40 U/μl) and

1μl Superscript III RT (200U/μl; Superscript III First Strand Synthesis System for RT-

PCR, Invitrogen Ltd., UK). This was added to each RNA/primer mixture, mixed gently,

collected by brief centrifugation and then incubated at 25C for 10 minutes followed by

50 minutes at 50C. The reaction was terminated by incubating at 85C for 5 minutes
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and then placing on ice. The reactions were collected by brief centrifugation. 1μl RNase

H (Invitrogen Ltd., UK) was added to each tube followed by incubation at 37C for 20

minutes. The resultant cDNA samples were stored at -20C or used for PCR

immediately.

The primers for cDNA amplification were designed to span one intron of each genomic

sequence tested, in particular intron 4-5 of the ACTB gene and intron 7-8 of the DMPK

gene. In this way, genomic contamination could be detected by giving a larger PCR

product size than the product generated from the cDNA. Primer details are provided in

the appendix table A1.3. Exon/intron positions were confirmed using the Ensembl

database, release 53 (ACTB Ensembl transcript ID ENST00000331789 and DMPK

Ensembl transcript ID ENST00000291270).

Total HeLa RNA (provided in the Superscript III First Strand Synthesis System for RT-

PCR, Invitrogen Ltd. UK) was used as a positive control to confirm successful reverse

transcription and cDNA amplification. Two negative controls were tested alongside

each amplification; an RNA negative control, which contained HeLa RNA with no

reverse transcriptase enzyme, and a PCR negative control, containing all PCR reagents

with no cDNA. Nuclease-free water was added instead of RNA/cDNA in the negative

control samples.

2.4.2.3 RNA amplification

RNA extracted with the AllPrep DNA/RNA Micro kit (Qiagen Ltd., UK) was amplified

in a two-round in vitro transcription procedure and converted into digoxigenin (DIG)-

labeled complementary RNA (cRNA), using the NanoAmp RT-IVT Labeling kit

(Applied Biosystems,UK) according to the company-provided protocol (figure 2.3).

Each round of amplification was completed within 6 hours, followed by an overnight

incubation step and the two rounds were completed within three consecutive days (~15

hours). Three to four samples were processed at a time. All reagents, apart from the

enzymes, were vortexed using Vortex Genie-2 Scientific Industries Inc (VWR

international, UK) and briefly centrifuged prior to use (MicroCentaur Sanyo MSE).

Standard laboratory practices for RNA-work were followed (section 2.3.3.1) and

nuclease-free tips and reagents were used throughout. All steps requiring incubation at
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temperatures between 25ºC and 70ºC were carried out in the GeneAmp® PCR System

9700 (Applied Biosystems, UK) thermal cycler.

The first round of amplification involved reverse transcription using T7-Oligo (dT)

primers to make single-stranded complementary DNA (cDNA). This was performed at

25°C for 10 minutes, 42°C for 2 hours, followed by 5 minutes at 70°C to inactivate the

reverse transcription enzyme (NanoAmp RT-IVT Labeling kit, Applied Biosystems,

UK) and an indefinite hold at 4°C. The reaction tube (20μl cDNA mixture) was kept

cold on a 0.2ml PCR Cooler (Eppendorf UK Limited), while the components for setting

up the first-round second-strand synthesis were added to make a final volume of 100μl.

The second-strand synthesis reaction was performed at 16°C for 2 hours followed by 5

minutes at 70°C for enzyme inactivation as before. The double stranded cDNA was

purified using the DNA purification columns provided with the kit, according to the

protocol provided. The next step involved an in vitro transcription (IVT) labelling

reaction, which was set up at room temperature by adding 4μl of each of the reaction

components (10x IVT Buffer, NTP mix, IVT enzyme mix) to the cDNA output and

performed overnight, at 37°C for 9 hours to obtain cRNA.

The cRNA was purified using the RNA purification columns and eluted in 100μl of

nuclease-free water in a RNA collection tube. The purified cRNA was concentrated by

vacuum centrifugation (Concentrator plus, Eppendorf Limited, UK), using the 4°C

temperature setting, to achieve a final volume of approximately 10μl.

The entire volume of concentrated purified cRNA (10μl) was used in the second round

of amplification, similarly comprising of reverse-transcription, second-strand synthesis,

cDNA purification and second-round IVT labelling (overnight reaction). During the

second round of amplification, Digoxigenin-11-uridine-5'-triphosphate solution (DIG-

UTP) (Roche Molecular Biochemicals) was incorporated into the IVT labelling reaction,

permitting subsequent chemiluminescent detection after hybridization to a Human

Genome Survey Microarray v2.0 (Applied Biosystems, UK). The amplified labelled

cRNA was purified and its integrity and concentration were assessed as described in

section 2.5.4.
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Figure 2. 3: Summary of the Nano-Amp RT-IVT labelling protocol for RNA in vitro transcription
and amplification. Two rounds of reverse transcription, second strand synthesis and in vitro transcription
were completed. The 1st round cRNA was concentrated using speed vac centrifugation so that the whole
amount could be used in the 2nd round of amplification (Concentrator plus, Eppendorf UK Limited).
Labeled nucleotides were incorporated into the RNA during the second amplification step to allow
detection following hybridization on the microarrays.
ss-cDNA: single stranded complementary DNA. ds: double-stranded, O/N: overnight
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2.5 Product analysis

2.5.1 Analysis of fluorescent PCR (F-PCR) products

The genomic-DNA F-PCR amplification products were diluted to a ratio 1:10 with

nuclease-free water prior to fragment analysis. This was done in order to prevent the

appearance of artifactual peaks and corruption of the automatic sizing and analysis that

are observed with very strong fluorescent signals. The control DNA included in every

PCR, not only served as a positive control for the PCR amplification but also allowed

monitoring of sizing precision during analysis.

2.5.1.1 F-PCR analysis using ABI Prism 310

A mixture of 1.5l diluted fluorescent PCR product, 12l Hi-Di Formamide (Applied

Biosystems, UK) and 0.5l of GenescanTM 500 TAMRA, GenescanTM 350 TAMRA or

GenescanTM 500 ROX size standard (PE Applied Biosystems, Warrington, UK) was

prepared in a 0.5ml genetic analyzer sample tube (Applied Biosystems, Warrington,

UK). Hi-Di formamide was frozen in aliquots at -20°C to prevent degradation due to

multiple freeze-thawing cycles. The sample tube was capped with rubber septa (the

rubber septum was squeezed to make sure the hole of the lid that the genetic analyzer

capillary goes through for sample collection, was open). Samples were denatured at

95C for 5 minutes and kept on ice for a short time prior to loading on to a 48-tube

autosampler tray of the ABI PrismTM310 sequencer (PE Applied Biosystems,

Warrington, UK). Samples were injected into the single 30cm capillary for 5 sec at

15,000 V. Separations were performed at 15,000V for 24min with a run temperature of

60oC using 310 Genetic Analyzer performance optimised polymer POP-6TM (Applied

Biosystems, UK) and 1x Genetic Analyzer Buffer with EDTA. Two matrix standard

sets were used to generate a spectral matrix for the following dye sets 6’-FAM™,

HEX™, TET™ and TAMRA™ or 6’-FAM™, NED™, VIC® and ROX™.
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2.5.1.2 F-PCR analysis using ABI Prism® 3100/3730 Genetic Analyzers

The samples were prepared for analysis in a MicroAmp™ Optical 96-Well Reaction

Plate (Applied Biosystems, UK). Similar to the preparation of samples for the ABI

Prism® 310, 1l of diluted fluorescent PCR product was added to 12l of Hi-Di

Formamide (Applied Biosystems, UK) and 0.5l of a size standard, either GenescanTM

500 ROX for use with the ABI Prism® 3100 or GenescanTM 500 LIZ for the ABI

Prism® 3730. Samples were injected onto the ABI 3100 16-capillary array for 5 sec at

1,000V or onto the ABI 3730 96-capillary array for 5 sec at 2,000V. Separations were

performed at 15,000V for 22 min, with a run temperature of 60oC, using the POP-6TM

sieving polymer for 3100 or POP-7TM polymer for the 3730, 1x genetic analyzer buffer

with EDTA and a 36cm array. The data was analysed using Genemapper analysis

software version 3.5 (PE Applied Biosystems, Warrington, UK). The matrix standard

set was used to generate a spectral matrix for the five dyes 5’-FAM™, NED™ or

Yakima Yellow®, VIC® or Dragonfly Orange™, PET™ and ROX™.

2.5.2 Preparation of PCR amplified template for DNA sequencing

DNA sequencing allowed sizing of the CTG repeat on the non-expanded DMPK allele.

Primers DMPK2 and DMPK3 were used to amplify the DMPK repeat region, at a

concentration of 0.2μM each in a standard PCR using High Fidelity polymerase (Roche

applied science, UK). The PCR product was purified using Centricon®-100 columns

(Applied Biosystems, UK) and the DNA quality was assessed on an agarose gel. The

sequencing reaction was set up in 20μl reactions containing 0.15μM of either DMPK2

or DMPK3 sequencing primer, 0.5x BigDye® Terminator sequencing buffer (5x), 0.5x

BigDye® Terminator ready reaction mix, with up to 10ng of PCR product according to

the BigDye® Terminator v1.1 sequencing kit (Applied Biosystems, UK) protocol. The

sequencing reaction program involved an initial denaturation at 96°C for 1min, followed

by 25 cycles of [96°C for 10 seconds, 50°C for 5 seconds, 60°C for 4 minutes].

Extension products were purified following an Ethanol/EDTA/sodium acetate

precipitation method according to protocol, in order to remove unincorporated dye
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terminators prior to electrophoresis. Each sample pellet was dried by heating at 37°C for

5-15 minutes, then resuspended in 10μl Hi-DiTM Formamide (Applied Biosystems, UK)

and transferred onto a MicroAmp® 96-well reaction plate (Applied Biosystems, UK).

Sample electrophoresis was performed on the ABI Prism® 3100 Genetic Analyzer

using POP-6TM polymer.

2.5.3 Microarray analysis

Eight microarrays were run with human MII oocytes and human blastocyst-stage

embryos. A highly sensitive microarray platform was employed, the Applied

Biosystems Human Genome Survey Microarray v2.0, which has 32,878 60-mer

oligonucleotide probes for the interrogation of 29,098 genes. Prior to hybridization, the

labelled cRNA product was fragmented by mixing 90μl of 5 or 10μg cRNA product and

nuclease free water with 10μl of cRNA fragmentation buffer (Chemiluminescence

detection kit, Applied Biosystems) and incubating at 60°C for 30 minutes. The reaction

was neutralized by adding 50 μl of the cRNA Fragmentation Stop Buffer from the kit

and keeping on ice. Hybridization of the sample to the microarray, antibody binding and

the chemiluminescent reaction were performed as described in the Applied Biosystems

Chemiluminescent detection kit. Detection of chemiluminescence, image capture and

processing was performed on the Applied Biosystems 1700 Chemiluminescent

Microarray Analyzer (Expression Array System Software v1.1.1). Microarray

hybridization and image acquisition was carried out by Dr Paul Smyth (Molecular

Histopathology laboratory, Trinity Centre for Health Sciences, Dublin, Ireland).

2.5.4 Sample assessment

2.5.4.1 DNA and RNA agarose gel electrophoresis

A 2% agarose gel was prepared by heating 1g of agarose type I (Sigma® Chemical

Company, Poole, Dorset) in 50ml 1xTBE (appendix 1, section A1.2.4). The mixture

was brought to boiling using a microwave oven at medium intensity for 1-2 minutes

with 30 second intervals to mix until the agarose was dissolved completely. The
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dissolved solution was left to cool, then 8-10l of 10mg/ml ethidium bromide (Sigma®

Chemical Company, Poole, Dorset) was added into it, and it was subsequently poured

into a mini gel tank with a 16-well gel slot former and left to set for 30 minutes at room

temperature. The stoppers and comb were then carefully removed and 50ml of 1xTBE

added to the electrophoresis apparatus.

A 5-10l aliquot of each PCR product, of negative control or 2μl of labelled cRNA was

mixed with 1-2μl of agarose gel loading buffer (appendix 1, section A1.2.4) and loaded

into the well slots. A DNA molecular weight marker, HyperLadder VI, (Bioline

Research) or an RNA molecular weight marker, 0.5-10kb RNA Ladder (Invitrogen Ltd,

UK) was loaded alongside the PCR products or labeled cRNA to allow evaluation of the

DNA/RNA fragment size respectively. The RNA ladder was denatured at 72°C for 10

minutes prior to loading. Electrophoresis was performed at 60 Volts for approximately

30 minutes. The gels were examined under a UV transilluminator (Alpha Innotech

Corporation, MultiImage Light Cabinet, Flowgen Staffordshire).

2.5.4.2 Assessment and analysis of whole genome amplification products

The range of DNA fragment sizes produced following WGA was determined by

electrophoresis on a 1% agarose gel stained with ethidium bromide as previously

described (section 2.5.4.1). Electrophoresis also revealed whether or not any of the

degenerate or semi-degenerate primers used had preferential annealing sites within the

genome, indicated by distinct bands on the gel. The intensity of fluorescence observed

on the gels was an indication of the amount of amplification.

2.5.4.3 NanoDrop® ND-1000 Spectrophotometer

1.2μl of the labeled cRNA sample was loaded on the NanoDrop® ND-1000

Spectrophotometer, providing accurate concentration readings (ng/μl) as well as a

260/280 and a 260/230 nm ratio giving further information on cRNA quality. RNA

samples were considered of good quality for further analysis only if the absorbance ratio

at wavelengths of 260/280 nm was greater than 1.8, indicative of little DNA

contamination. Samples with a lower than 1.8 260/280 ratio may indicate the presence

http://www.nanodrop.com/
http://www.nanodrop.com/
http://www.nanodrop.com/
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of protein, phenol or other contaminants that absorb strongly at or near 280nm. 260/280

ratios over 2.1 indicate the presence of degraded RNA, truncated cRNA transcripts

and/or excess free nucleotides. In addition, samples with a low 260/230 ratio (less than

1.8) were avoided as the low ratio indicates a significant presence of the reagents used

in RNA extraction, which absorb light at 230nm wavelength, and would interfere with

the downstream processes.

2.5.4.4 Agilent Bioanalyzer 2100

The quality and size of each labelled cRNA, as well as the absence of DNA

contamination or RNA degradation, were verified using the Agilent bioanalyzer 2100

(Agilent Technologies UK Limited). Extracted RNA from all samples prior to RNA

amplification was tested by analyzing on a Eukaryote Total RNA Pico Series II chip,

while amplified RNA was tested on a Eukaryote Total RNA Nano Series II chip. The

RNA concentration, rRNA ratio (28s/18s) and RNA Integrity Number (RIN) were

recorded. An rRNA ratio greater than 2.0 indicates little RNA degradation. The RIN

number is assigned by the Agilent Bioanalyzer software to assess RNA quality in terms

of degradation and allow comparison between samples. It is based on a numbering

system from 1 to 10, with 1 being the most degraded profile and 10 being the most

intact (Schroeder et al., 2006).

2.5.5 Statistical and microarray analysis

The binomial test and Fisher’s exact test were mainly used for analysis of data from

PGD cases, as indicated in the results sections 3.1 and 3.2. Values of p <0.05 were

considered statistically significant.

For the expression work, analysis of data was performed using Spotfire© Application

Package for Data Analysis of the Applied Biosystems 1700 Chemiluminescence

Expression System. Signals from each microarray were subjected to quantile

normalization and filtered for signal to noise ratios < 3 and flags over 5000

(detectability filter). After normalization, the data for each gene were reported as a

logarithm of the expression ratio, i.e the normalized value of the expression level of the



89

gene divided by the normalized value of the control. The experimental factor of the

analysis was the cell type. Data from blastocyst embryos was compared to the data from

the MII oocytes, which were used as controls. Relative fold changes were calculated for

comparison of individual samples. A t-test analysis was performed and genes were

characterized as differentially expressed for p-values <0.05 (the initial array analysis

was performed by Dr Paul Smyth).

A dendogram was produced with agglomerative hierarchical clustering, to allow visual

interpretation of the results and identify genes showing similar patterns of expression.

Additionally, data from each gene was reported as a logarithmic value (log2) of the

expression ratio (log2(ratio)), i.e. the ratio of the expression level of the particular gene

in the test sample (blastocyst) divided by its value for the control. According to this, a

gene upregulated by a factor of 2 (ratio=2) would have a log2 (2) of 1, whereas a gene

downregulated by a factor of 2 (ratio=0.5) has a log2 (0.5) of -1. Genes expressed at a

constant level (ratio=1), would have a log2 (1) of zero. An example is also provided in

table 2.2. The log transformation of the microarray data is commonly performed to

allow easier association of the fold change with the “expression distance value” between

two genes.

The functions of genes were deduced using the online tool PANTHER Classification

System, supported by Applied Biosystems Inc., UK, (http://www.pantherdb.org/)

(Thomas et al., 2003). The PANTHER database was also used to assign expressed genes

to different categories based upon biological or molecular function (Mi et al., 2005;Mi

et al., 2007). The number of genes in each category was compared to a reference list

comprising all of the genes in the human genome using a binomial test available on the

online database and applying the Bonferroni correction for multiple testing. By

identifying over- and underrepresented classes of genes, an indication of processes

activated or repressed within the oocytes and blastocysts was obtained.

For further analysis, the raw microarray data was entered into a Microsoft Office Excel

2007 spreadsheet and filtered, as before, for signal to noise ratios < 3 and flags over

5000. Lists of gene groups of interest were obtained from the PANTHER database,

based on their Celera ID, and loaded onto a separate Excel spreadsheet. A Visual Basic

for Applications language program was used to identify whether the genes of interest

http://www.pantherdb.org/
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appeared on the microarray expression list, and also whether their expression differed

significantly between blastocysts and oocytes.

Table 2. 2: Logarithmic transformation of the microarray data. The log2 ratio facilitates the
interpretation of fold change and difference in expression between two genes. The negative values
indicate under-expression of a gene relative to a control.

Expression ratio Log2 of expression ratio

Gene 1
(10 fold
increase)

10 3.32

Gene 2 1 0

Gene 3
(10 fold

decrease)
0.1 -3.32
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3. Results
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3.1 PGD for DM1

3.1.1 Protocol development

3.1.1.1 Patient details

All patients with DM1 referred for PGD, went through an initial consultation and

provided blood samples for testing of genomic DNA, however, not all of them

proceeded with the IVF/PGD treatment due to personal or medical reasons (Methods,

section 2.1.1). The twenty-three patients and their partners who started IVF treatment

with an aim to undergo PGD for DM1 are discussed here.

Out of the 23 patients, there were 19 affected females and 4 affected males. One patient

was asymptomatic but the remaining 22 patients showed clinical signs of DM1. The

most common reason for referral was the presence of a family history of DM1. Overall,

22 out of 23 patients had DM1-affected family members. Fourteen out of the 23 couples

had not experienced a pregnancy, either because of their choice to avoid an affected

pregnancy, or due to their inability to conceive naturally (seven couples). One couple

had a natural unaffected pregnancy occurring after referral for PGD. The remaining

eight patients with their partners had a personal experience of an affected pregnancy. In

particular, two couples had lost a congenitally affected child, five had undergone

termination of pregnancy (TOP) following Prenatal Diagnosis and one couple had an

affected daughter and had also had two TOPs (figure 3.1, table 3.1). In the case of

couple number 10, it was the birth of an affected child following the birth of two

unaffected children that prompted the diagnosis of DM1 in the mother.

Figure 3. 1: Reasons to opt for PGD in our group of patients: Family History: 22 referred couples had
one to seven affected relatives. Affected pregnancy: TOP: termination of pregnancy (six couples). Three
couples had experienced one TOP, two couples had had two TOPs and another couple had three TOPs.
One of the couples who had a TOP also had an affected daughter. Two other couples had a CDM1 baby.

Affected
pregnancy

Number of
affected relatives

Number
of

couples
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Table 3. 1: DM1 patient history: The number of known affected relatives is shown for each patient and
the number of these relatives who were first-degree is shown in brackets. Cases where an affected relative
was an offspring are specified in the reproductive history column. Affected pregnancies are indicated in
bold type. F: Female, M: Male, TOP, termination of pregnancy; CDM1, congenital myotonic dystrophy
type 1; CVS, chorionic villus sampling; FSHD, facioscapulohumeral muscular dystrophy.

Patient
number

Affected
Partner

Total number of
affected relatives

(1st degree relatives)
Reproductive History

1 F 5 (3)
No previous pregnancies,

infertile
2 F 1 (1) Two TOPs following CVS

3 M 1 (1)
No previous pregnancies;

partner infertile
(low sperm count)

4 F 1 (0) No previous pregnancies

5 F 1 (1) One TOP following CVS

6 M 0
Four pregnancies, three TOPs,

one unaffected child

7 F 3 (2)
One TOP; infertile

(female anovulatory,
partner has low sperm count)

8 F 2 (2) No previous pregnancies
9 F 5 (2) No previous pregnancies

10 F 1 (1)

Three pregnancies;
two unaffected children

(one from previous partner);
One CDM1 baby with current partner died

11 F 4 (2) No previous pregnancies

12 M 1 (1)

No previous pregnancies;
partner infertile (azoospermia);

used egg donor to avoid FSHD carried by
partner

13 F 6 (2) One TOP following CVS

14 F 5 (2)
No previous pregnancies;

partner infertile
(severe oligospermia)

15 F 2 (2)
One CDM1 son died at 18 hours;

early miscarriage in second pregnancy

16 F 2 (2)
Natural unaffected pregnancy

(occurred after referral for PGD)

17 M 2 (2) No previous pregnancies

18 F 4 (4)
No previous pregnancies, infertile

(has endometriosis and tubal disease)
19 F 1 (1) No previous pregnancies
20 F 1 (1) 2 TOPs following PND, affected daughter
21 F 7 (1) No previous pregnancies
22 F 6 (2) No previous pregnancies

23 F 3 (2)
2 year history of subfertility
(depleted ovarian reserve)
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3.1.1.2 Genomic DNA PCR analysis

Genomic DNA from affected individuals and their partners was tested for the DMPK

repeat expansion as well as polymorphic markers linked or unlinked to the DMPK gene.

Figures 3.2 and 3.3 show examples of fluorescent PCR analysis for the main markers

used (section 2.4.1, table A2.1).

Figure 3. 2: ABI 3100 fluorescent PCR results for DMPK, APOC2 and D19S112 polymorphic loci
for couple number 19 (affected female). The x-axis shows the length of the PCR product in base pairs
and the y-axis shows the fluorescence intensity in relative fluorescence units (RFU). The affected female
shows only the non-expanded allele at the DMPK locus, as the allele with the expansion is refractory to
PCR amplification. The markers are labelled with different fluorescent dyes to allow simultaneous
analysis and can also be differentiated by their stutter pattern.Allele sizes are indicated in base pairs (bp)
next to the corresponding peaks.

♀

♂

♀

♂

♀

♂
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Figure 3. 3: Example of results from the TP-PCR protocol. Unaffected and affected individuals are
differentiated by the number of peaks detected after amplification of the CTG repeat region. x-axis: PCR
product size in bp, y-axis: fluorescence intensity (RFU).

Appendix table A2.1 shows the genetic analysis results for the DMPK mutated region as

well as APOC2 and D19S112 polymorphic markers for 23 couples (46 individuals) and

36 relatives. In an unaffected partner the two non-expanded alleles might be either of

the same (homozygous) or of different (heterozygous) size. Examples of this are the

unaffected males of couples 1 and 2 respectively (table A2.1). A summary of findings

from marker analysis is given in tables 3.2 and 3.3 below. The F-PCR results for the

other polymorphic markers tested are not shown here as they did not have clinical

application.

Table 3. 2: Polymorphic marker analysis for 23 patients, their partners and relatives Thirty-seven
out of the 82 individuals tested were unaffected (23 partners and 14 relatives). Heterozygosity for the
triplet repeat region was calculated from the unaffected individuals only.

Marker
Homozygous

(two same-size
alleles)

Heterozygous
(two different-size

alleles)

CTG repeat

Unaffected partners only

All unaffected partners and relatives

6/23 (26.1%)

12/37 (32.4%)

17/23 (73.9%)

25/37 (67.6%)

APOC2 13/82 (15.9%) 69/82 (84.1%)

D19S112 13/82 (15.9%) 69/82 (84.1%)



96

A couple was said to be informative, semi-informative or uninformative for a specific

locus, based on the following definitions:

Informative: the couple have no alleles in common at a given locus. This allows clear

differentiation of the maternal and paternal alleles in an embryo (e.g. couple no. 10 in

appendix table A2.1 is informative for APOC2 and D19S112 markers).

In several cases where a couple had no alleles in common at a specific locus, one or

both of the partners were homozygous for the marker tested. In these cases, the couple

was still considered to be informative as the maternal and paternal contribution would

be identified in an embryo, however, detection of contamination would not be possible

if testing only for that marker.

Semi-informative: the couple share one of their alleles at a given locus (e.g. couple

number 1 is semi-informative for both APOC2 and D19S112 markers).

Linkage analysis was performed for informative or semi-informative linked markers and,

where the identified phase allele was not a shared allele, the use of these markers

enabled indirect mutation detection.

Uninformative: the couple share all of their alleles at a given locus (e.g. couple no.12 is

uninformative for DMPK).

Table 3.3 summarises the marker results regarding informativity for each of the couples,

based on the information provided in the appendix table A2.1. Eleven out of 23 couples

were informative for the DMPK repeat region, fifteen couples were informative for the

APOC2 polymorphic marker and thirteen couples were informative at the D19S112

locus. DNA from family members was available for 19 out of the 23 couples. In 2 cases

CVS samples from previous pregnancies were available and in another two cases DNA

was extracted from buccal cells of two affected children (couples no.5, 6, 10 and 20,

appendix table A2.1). The phase of the linked markers, i.e. the allele that segregates

along with the affected copy of the gene, can be detected by testing of affected or

unaffected relatives, only for couples who are informative or semi-informative for the

linked marker. The phase allele was not known for patients 1, 3, 11 and 23, as DNA

from a relative was not available for the analysis. Similarly, the unaffected relative of

patient 14 shared the same alleles for both markers as the patient, so the phase was not

identified. For eight of the patients the phase alleles were identified at both marker loci,

APOC2 and D19S112, according to results on table A2.1.
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Examples of the process of determining the phase are shown in figures 3.4 and 3.5.

Apart from confirming the presence or absence of the mutation, polymorphic markers

also allow detection of contamination and are therefore necessary in a PGD protocol in

order to reduce the chance of misdiagnosis.

Table 3. 3: Marker informativity for the CTG repeat region, APOC2 and D19S112 polymorphic
markers Only one couple (no. 10) was informative for both the repeat region and the polymorphic
markers. Overall, the phase allele for the D19S112 locus was known in 18/23 cases and this facilitated the
diagnosis for those couples. hm: indicates cases where one or both of the partners were homozygous for
the marker alleles.

Couple
No.

Polymorphic marker

CTG repeat APOC2 D19S112 Phase

known

1 Informative Semi-informative Semi-informative no

2 Semi-informative Informative Informative yes

3 Informative Informative (hm) Semi-informative no

4 Semi-informative Informative Informative yes

5 Informative Informative Informative (hm) yes

6 Informative Informative Semi-informative yes

7 Uninformative Informative Semi-informative yes

8 Uninformative Informative Semi-informative yes

9 Uninformative Semi-informative Semi-informative yes

10 Informative Informative Informative yes

11 Informative Informative (hm) Semi-informative no

12 Uninformative Semi-informative Informative yes

13 Semi-informative Semi-informative Informative (hm) yes

14 Uninformative Informative Informative (hm) no

15 Semi-informative Informative Informative yes

16 Semi-informative Informative Informative (hm) yes

17 Informative Uninformative (hm) Semi-informative yes

18 Informative Uninformative (hm) Informative yes

19 Informative Informative (hm) Semi-informative yes

20 Uninformative Semi-informative Informative yes

21 Informative Semi-informative Informative yes

22 Informative Informative Semi-informative yes

23 Uninformative Informative (hm) Informative (hm) no
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Figure 3. 4: Determining the phase for the affected female of couple no.21 The patient inherited the
affected chromosome (*) from her father. Haplotype analysis shows that the affected female could only
have got the 151bp and 128bp alleles from her affected father. Therefore, the APOC2 151bp marker allele
and the D19S112 128bp allele seem to have segregated along with the affected copy of the gene.
Detection of these alleles would confirm diagnosis of an affected embryo. It is advisable to test as many
relatives and family generations as possible, in order to confirm the phase in a particular family.
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Figure 3. 5: Example of DM1 triplex PCR results for a couple and an affected relative (this couple
chose not to undergo IVF treatment and is therefore not included in the list of patients in tables 3.1 or
A2.1). x-axis: PCR product size in bp, y-axis: fluorescence intensity (RFU). Lane 1: APOC2 locus, lane
2: DMPK, lane 3: D19S112. The affected female shows only the single non-expanded allele at the DMPK
locus compared to her unaffected partner who has two normal-sized alleles of 122bp and 176bp size. The
affected female and her affected relative share the 128bp allele at the D19S112 locus (underlined phase
allele). The couple is semi-informative for APOC2. The affected female and her affected relative are
uninformative for APOC2 so the phase cannot be determined. The allele peaks are highlighted and the
remaining peaks are stutters. Different stutter patterns are observed for each marker.

Based on the parental genotype and information on the phase alleles, all possible

embryo genotypes can be predicted prior to the PGD case. Any deviation from the

expected genotypes could indicate PCR contamination, allele dropout or cross-over

events (figure 3.6).
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Figure 3. 6: Possible embryo genotypes for couple no. 20. The marker alleles on the affected copy of the gene were identified by PCR analysis of DNA from the affected daughter.
Exp:expansion
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3.1.1.3 Single cell optimisation

Each PGD protocol was optimised on single buccal cells or single lymphocytes using

two different methods of lysis, either Proteinase K/SDS or alkaline lysis. The efficiency

of diagnosis was determined by testing the final protocol on at least 50 cells prior to

clinical application. The results from testing the protocol on single buccal cells or single

lymphocytes for the five protocols with clinical application for the diagnosis of DM1

are shown in table 3.4 below (protocols 1-5) and details of the single-cell optimised

PCR conditions are shown in table A2.2 of the appendix.

Optimisation involved modifications in the PCR program, concentration of reagents, as

well as the incorporation of chemical additives, such as glycerol and DMSO in the PCR

(Methods, section 2.4.1.1).

Differences were observed depending on the method of cell lysis and the type of cell

used. A better amplification was achieved in protocol 2 (DM1/D19S112), when using

ALB rather than PK/SDS lysis (testing on single buccal cells). In particular, DM1 and

D19S112 amplification was 89.2% and 98.3% respectively with PK/SDS lysis vs. 96%

and 100% respectively, when ALB lysis was used. The ADO rate following PK/SDS

lysis was 28.97% for DM1 and 17.59% for D19S112, while following ALB lysis, the

rate was reduced to 10% and 8% respectively. The drop in ADO at the DMPK locus

with ALB vs. PK lysis was found to be statistically significant (p<0.05, Fisher’s exact

test).

In addition, amplification from single lymphocytes was higher and ADO rate was lower,

compared to results from single buccal cells (table 3.4). The highest amplification

(100%) was achieved for all loci of protocol 3 (DM1 triplex: DM1/APOC2/D19S112),

following testing of single lymphocytes lysed with ALB. The ADO at the DM1 locus

was 3.64%, lower than the ADO for DM1 when the same protocol was applied on

single buccal cells (11.3%). The lowest ADO (0%) was achieved for the APOC2 and

D19S112 loci, contrary to the buccal cell results, which were 3.78% and 5.67% ADO

respectively. TP-PCR amplification (protocol 4) was 99% from testing on single

lymphocytes and 81.2% from single buccal cell analysis. This difference was also found

to be statistically significant using the Fisher’s exact test (p<0.05).

Protocols 3 (DM1/APOC2/D19S112) and 5 (TP-PCR/DM1/D19S112, described in

more detail in the next section) involve multiplexing of more primer sets in a single

PCR reaction compared to the other protocols. These new protocols minimised the

work-up time for all patients with DM1 to less than one week. Following the initial
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DNA extraction of parental or relative DNA, an appropriate protocol was selected

depending upon the informativity of the couple.

Some protocols required results from two blastomeres of an embryo in order to achieve

a diagnosis. A one-cell diagnosis could be obtained only for couples informative for the

DMPK region and one or more of the linked markers, where the phase allele was also

known.

A larger number of cells were tested with protocols number 4 (TP-PCR) and 5 (TP-

PCR/DM1/D19S112) of table 3.4, due to several difficulties encountered with the TP-

PCR protocol. In brief, suboptimal amplification and difficulties with sample analysis

and scoring were observed, depending on the cell type and the size of the CTG repeat

that was amplified. These are discussed further in sections 3.1.1.4 and 3.1.1.5. Results

from two cells were always required for reaching a diagnosis when using any TP-PCR

protocol.



103

Table 3. 4: Results from PCR analysis of single lymphocytes or single buccal cells for the five protocols with clinical application in PGD for DM1. Amplification and allele
dropout rates were generally improved when using ALB rather than PK/SDS lysis, as well as when using single lymphocytes compared to single buccal cells. The protocols with the
highest amplification efficiency and lowest allele dropout rates are highlighted in bold typing. *TP-PCR protocols are discussed in more detail in the following sections.

Protocol No.
(markers)

Cell lysis Cell type
No. of
Cells
tested

Amplification (%) Allele dropout (ADO) (%)

P2/P3R/
P4CAG
(TPPCR)

DM1 APOC2 D19S112 DM1 APOC2 D19S112

1
(DM1/APOC2)

PK/ SDS buccals 69
68/69

(95.6%)
67/69

(97.1%)
7/68

(10.3%)
9/67

(13.4%)

PK/ SDS buccals 120
107/120
(89.2%)

118/120
(98.3%)

31/107
(28.97%)

19/108
(17.59%)

2
(DM1/

D19S112) ALB buccals 50
48/50
(96%)

50/50
(100%)

5/50
(10%)

4/50
(8%)

ALB buccals 53
53/53
(100%)

53/53
(100%)

53/53
(100%)

6/53
(11.3%)

2/53
(3.78%)

3/53
(5.67%)

3
(DM1/

APOC2/
D19S112) ALB lymphocytes 55

55/55
(100%)

55/55
(100%)

55/55
(100%)

2/55
(3.64%)

0/55
(0%)

0/55
(0%)

ALB buccals 345
280/345
(81.2%)4*

(TP-PCR)
ALB lymphocytes 109

108/109
(99%)

5*
(TP-PCR/

DM1/
D19S112)

ALB lymphocytes 224
224/224
(100%)

224/224
(100%)

223/224
(99.6%)

1/89
(1.12%)

3/148
(2.03%)
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3.1.1.4 Standard PCR vs. TP-PCR

The techniques of standard PCR and TP-PCR were evaluated in terms of their ability to

detect both normal-range and expanded CTG repeat alleles.

Standard PCR

With standard PCR amplification, the electropherogram of heterozygous unaffected

individuals displayed two fluorescent peaks, representing the two non-expanded

different-size alleles. Homozygous unaffected individuals (for example 12/12 CTG)

showed one peak on analysis, as the amplification products from the two alleles were of

equal size (in this example, two products of 143bp each). Although the expansion size

of most affected individuals from our group of patients was not known, they were

presumably all over 100 repeats, as no large alleles were detected by standard PCR.

Therefore, for affected individuals (e.g. 12 CTG/expansion), where only the non-

expanded allele could be amplified by standard PCR, electropherograms displayed only

one peak (143bp) on analysis.

Standard PCR, therefore, cannot distinguish between homozygous unaffected samples

from affected samples carrying the same size non-expanded allele.

TP-PCR

Amplification of unaffected heterozygous samples by TP-PCR produced a ladder,

where the two main peaks, showing increased fluorescence signal, could be clearly

visualized. Fluorescence intensity dropped to zero almost immediately beyond the

larger allele peak. Contrary to standard PCR, TP-PCR could differentiate between the

homozygous unaffected and affected genotypes by producing a characteristic

amplification pattern from the expanded allele. The affected individuals, with over 100

CTG repeats present, gave a pathognomonic continuous ladder appearance following

TP-PCR. An example of TP-PCR amplification of an affected sample was shown in

figure 3.3. Figure 3.7 below gives a comparison of an affected vs. an unaffected sample,
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carrying a large repeat allele and figure 3.8 indicates the TP-PCR ladder pattern for an

individual carrying a 22 CTG repeat and a 50 CTG repeat allele.

Figure 3. 7: TP-PCR amplification of a sample with a large DM1 allele and of an affected sample.
x-axis: PCR product size in bp, y-axis: fluorescence intensity (RFU). In the first lane, the two DM1
alleles are indicated by the peaks of higher fluorescence, one near 95bp and the second one near 240bp.
The fluorescence intensity reduces to zero shortly after the second high peak. In contrast, the affected
sample, lane 2, shows the diminishing ladder pattern as in figure 3.3.

Figure 3. 8: TP-PCR amplification of a sample with 22/50 CTG repeat alleles. x-axis: PCR product
size in bp, y-axis: fluorescence intensity (RFU). The two DM1 alleles are indicated by the peaks of higher
fluorescence, one near 119bp and the second one near 207bp. The fluorescent intensity reduces to zero
shortly after the second high peak.
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The typical three-base pair ladder appearance of TP-PCR was not detected on analysis

of the 5 CTG repeat homozygous samples. The presence of 5 repeats in the amplified

region, corresponding to the 5 repeats of the P4CAG TP-PCR primer as in table A1.1,

produced one peak, rather than a peak ladder, following amplification. This pattern

could be mistaken for overall amplification failure (amplification of a degenerate or

anucleate cell) or a case of ADO of a larger or maybe affected allele. The apparent lack

of amplification in these cases was described as an inconclusive result, thus rendering

TP-PCR diagnosis of 5 CTG repeat homozygous samples, problematic (figure 3.9).

Figure 3. 9: TP-PCR of a 5 CTG repeat homozygous sample and a negative control. x-axis: PCR
product size in bp, y-axis: fluorescence intensity (RFU). Top lane: the presence of the 5 CTG repeat is
indicated by the 68bp amplification product. A triplet repeat ladder pattern is not detected. Bottom lane:
the negative sample does not show amplification of the high 68bp peak. Random peaks, possibly primer-
dimers, may appear in some negative controls. A triplet repeat ladder is not detected.

3.1.1.5 Multiplex TP-PCR/DM1/D19S112 PGD protocol (mTP-PCR)

Standard PCR and TP-PCR were combined in a single reaction in order to overcome the

difficulties in diagnosis associated with each method, as described above. The standard

PCR DMPK2 primer and the TP-PCR P2 primer were each labelled with a different

fluorescent dye so that the resulting electropherograms allowed detection of the
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genotype by both methods (figure 3.10). In this way, diagnosis of 5 CTG homozygous

samples, where the ladder pattern was absent following TP-PCR giving the impression

of failed amplification, was supported by the simultaneous evidence of a single

amplified peak with the “standard PCR” amplification.

Because of the P2 and DMPK2 primers both being fluorescently labeled, the

P2/DMPK2 product, as in figure 3.10, was seen in both the green and blue colours on

analysis. Highly concentrated samples demonstrated additional bleed-through of the

green into the blue fluorescent dye during fluorescent analysis. Dilution of the PCR

product overcame this problem. Examples of results are shown in figure 3.11.

Following initial testing of the DM1/TP-PCR protocol on genomic DNA and single

cells, the D19S112 linked marker was also incorporated in the reaction. This new

protocol (mTP-PCR) provided additional information on contamination, ADO as well

as enabling detection of the “phase allele”, where possible (figure 3.12).
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Figure 3.10: TP-PCR/standard PCR multiplex protocol design showing location of primers relevant to the triplet repeat region (underlined sequence). This protocol allows
simultaneous TP-PCR amplification (primers P2, P4CAG, P3R) and standard PCR amplification of non-expanded alleles (P2/DMPK2 primers).
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Figure 3.11: Results of TP-PCR and DM1 multiplex amplification. TP-PCR P2 primer is labelled in
FAM fluorescent dye (blue colour) and DMPK2 primer is labelled in VIC (green colour). x-axis: PCR
product size in bp, y-axis: fluorescence intensity (RFU). The 5 CTG repeat homozygous sample on the
left side, indicates the presence of a 68bp peak with no triplet repeat ladder and a 122bp product with
standard PCR amplification. A range of peaks is detected at TP-PCR for the 122/140bp sample (right
side, top) while a diminishing ladder pattern is detected for the 149bp/expansion affected sample. *
indicate the P2/DMPK2 standard PCR peaks that are detected in both the green and the blue fluorescent
dye.

Figure 3.12: mTP-PCR results: A) 5 CTG repeat homozygous unaffected individual B) heterozygous
unaffected individual C) Affected individual. x-axis: PCR product size in bp, y-axis: fluorescence
intensity (RFU). The size of the last sizeable peak is indicated in base pairs (bp).
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3.1.1.6 Comparison of mTP-PCR with TP-PCR amplification

Amplification with standard TP-PCR and mTP-PCR was compared by the parallel PCR

and analysis of several genomic DNA samples (table 3.5). A similar pattern of

amplification was detected between the two protocols; therefore, the inclusion of the

DM1 and D19S112 markers in the mTP-PCR protocol did not seem to influence the

amplification. For five individuals the size of the DM1 expansion was known, as

indicated in table 3.5. The size of the last ladder peak, as detected by the genetic

analyzer, did not correlate with the expansion size. This observation was made

following amplification for both protocols.

Table 3. 5: Comparison of TP-PCR and mTP-PCR amplification of 16 genomic DNA samples. The
size of the largest sizeable peak at the 310 genetic analyzer is indicated. The size of the last peak of the
TP-PCR ladder that could be seen but not sized by the machine is given in brackets.

Case Number/
DNA source

(number of repeats)
TP-PCR mTP-PCR

4/ Affected female
(580)

169 (174) 165 (171)

8/ Affected female 153 (265) 134 (206)

9/Affected female 162 (392) 177 (279)

9/ Female’s father 246 (263) 302 (317)

10/ Affected female 127 (246) 230 (377)

10/Affected son
(<1000)

186 (306) 183 (275)

13/ Affected female 258 (398) 259 (313)

17/ Affected male
(108)

168 (311) 180 (290)

17/ Male’s brother
(200)

186 (339) 213 (358)

19/ Affected female 134 (191) 126 (130)

19/ Female’s father 127 (251) 210 (250)

20/ Affected female 180 (351) 171 (293)

21/ Affected female 174 (311) 198 (311)

21/ Female’s father 162 (419) 198 (449)

22/ Affected female 155 (251) 173 (298)

23/ Affected female
(250)

195 (389) 177 (310)
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3.1.1.7 Summary of TP-PCR and mTP-PCR protocol optimisation

Figure 3.13 summarizes the steps towards TP-PCR optimisation and development of the

mTP-PCR protocol.

Scoring of unaffected samples following TP-PCR amplification was performed on an

individual-specific basis. A minimum of twenty single cells isolated from each

individual were tested using TP-PCR, to determine the size of the last ladder peak

following amplification, indicating the size of the larger non-expanded allele. Following

the testing on single cells, blind experiments were performed, where cells from a known

unaffected individual were isolated along with cells from affected individuals. The tubes

were randomly labelled by a laboratory colleague so that the results could be scored

blindly following amplification. During blind scoring, any samples showing even a

slightly larger than the expected product size, based on results from prior optimisation

using the known unaffected individual’s cells, were scored as affected. This was

because it was thought that they could indicate suboptimal amplification of an affected

sample, although they could also be due to polymerase slippage or the true presence of a

slightly larger, not in the affected range, repeat.

These false-positive (FP) results, i.e. the number of unaffected cells scored as affected

over the total number of unaffected cells tested, as indicated in figure 3.13, therefore,

include samples where although the TP-PCR ladder did not show the characteristic

diminishing pattern of an affected sample, the last sizeable peak was larger than

expected. The number of these FP results is, therefore, thought to be possibly inaccurate,

especially since TP-PCR scoring generally improved with experience. It is worth

mentioning however, that even at the early stage of TP-PCR testing, buccal cell

amplification with PK lysis produced overall inconsistent results and presented

difficulties with scoring.

Additionally, more FP results were obtained with blind testing of buccal cell

amplification following ALB lysis rather than lymphocytes following ALB lysis.

The uncertainties with scoring were avoided during a PGD case, as corresponding

results from two cells were required for a diagnosis from each embryo.

The false negative (FN) results indicate the number of affected cells scored as

unaffected over the total number of affected cells. FN results were only observed with

buccal cell testing. Multiplex PCR protocols allowing TP-PCR amplification along with

one or two polymorphic markers (initially TP-PCR/DM1 or TP-PCR/D19S112,

followed by mTP-PCR), reduced the number of both FP and FN results to zero.
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Figure 3. 13: Development of the mTP-PCR protocol. Blind scoring tests were performed during initial
testing of the TP-PCR protocol. Scoring improved with the use of single lymphocytes compared to buccal
cells and with experience. Table 3.4 indicates amplification results when using the optimised TP-PCR and
mTP-PCR protocols. * Protocol TP-PCR/D19S112 is not included in table 3.4 as it did not have clinical
application. Amplification results are indicated here. Details of PCR setup and PCR program for all
protocols are indicated in the appendix table A2.2. FP: false positive, FN: false negative.

mTP-PCR protocol
(single cell optimisation involved modifications of dNTP, MgCl2, primer

concentrations, PCR program and incorporation of glycerol)
Protocol results statistics as in table 3.4, PCR conditions as in table A2.2

Buccal cells + PK lysis
TP-PCR protocol

160 cells tested: inconsistent results

Buccal cells + ALB lysis
TP-PCR protocol

Blind scoring test: 99 cells, 16% FP, 9.7% FN

Lymphocytes + ALB lysis
TP-PCR protocol

Blind scoring test: 54 cells, 9.5% FP, 0% FN

Problems with the diagnosis of 122
homozygous samples

PCR modifications did not improve

Lymphocytes+ALB lysis
Optimisation of TP-PCR with D19S112*

43 cells tested (21 affected, 22 unaffected): 97.7% amplification at both
loci, 0% ADO at both loci (0/21 for TPPCR, 0/43 for D19S112), no FP

or FN Incorporation of DM1 in PCR testing on genomic DNA
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3.1.1.8 mTP- PCR and large non-expanded DM1 allele

Patient number 19 had the largest non-expanded DM1 allele from our group of patients,

with 24 CTG repeats. Diagnosis for this patient was performed using the DM1 triplex

protocol, as the couple was informative for DM1 and APOC2 loci, semi-informative for

the D19S112 locus and the phase allele was known. In order to test amplification of

large DM1 alleles with the mTP-PCR protocol, cumulus cells were collected following

egg collection during the patient’s IVF/PGD cycle. Amplification of single cumulus

cells as well as of clumps of cumulus cells, showed lower amplification for the large

DM1 allele (approximately 100 fluorescent units), when compared to the TP-PCR

ladder and the D19S112 marker result (figure 3.14).

Figure 3.14: mTP-PCR amplification of a cumulus cell clump of patient 19. x-axis: PCR product size
in bp, y-axis: fluorescence intensity (RFU). Amplification of the DM1 180bp allele (24 repeats, as sized
by TP-PCR) was compatively low, prompting further investigation by testing of single lymphocytes.

Twenty single lymphocytes were also isolated and tested with the mTP-PCR protocol

from this patient. Analysis confirmed general failure of amplification for the large non-

expanded DM1 allele compared to results from amplification of single lymphocytes
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from other DM1 patients, where the size of the non-expanded DM1 allele ranged from

122bp-149bp (table 3.6). Prior to this observation protocol optimisation had focused on

single cell amplification from these other patients, as they were the ones in need of an

improved PGD protocol because of their uninformativity for DM1 and/or linked

markers. Several cells had also been tested from patient number 22 (affected), who had

a 168bp DM1 allele, but problems with amplification were not observed in this case.

Table 3. 6: mTP-PCR lymphocyte amplification for different sized non-expanded DM1 alleles. Low
amplification was detected for the larger 180bp DM1 allele of patient 19

Non-expanded
DM1 allele of

affected
individual

Cell type
No. of
cells

tested
Amplification (%)

Allele dropout
(ADO) (%)

P2/P3R/
P4CAG

(TP-PCR)
DM1 D19S112 DM1 D19S112

122-168bp
DM1 alleles lymphocytes 224

224/224
(100%)

224/224
(100%)

223/224
(99.6%)

1/89
(1.12%)

3/148
(2.03%)

180bp DM1
allele

(patient 19)
lymphocytes 20

20/20
(100%)

7/20
(35%)

20/20
(100%)

n/a 0/20

Further investigation of amplification of the larger DM1 allele was performed by testing

embryos from this couple that were donated for research following PGD. In particular,

three unaffected 2PN embryos and one unaffected 0PN were re-tested for this

investigation. Spare embryos were disaggregated and single blastomeres were tubed in

either DTT/NaOH or DTT/KOH, to allow comparison of amplification from

blastomeres of the same embryo using either the DM1 triplex protocol

(DM1/APOC2/D19S112) or the mTP-PCR protocol, which required different cell lysis

conditions (table 3.7). Several blastomeres were also saved for MDA amplification.

These are further discussed in section 3.2.1.3.

In summary, four blastomeres were tested with the DM1 triplex and all showed

successful amplification with no allele dropout for all markers. Six blastomeres were

tested with the mTP-PCR protocol and all showed amplification at all loci. No allele

dropout was detected for D19S112, while all cells showed ADO of the large 180bp

DM1. This ADO would not hinder successful diagnosis in any of the cases, due to the
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presence of the D19S112 marker and the absence of the phase allele on analysis.

Amplification from some of the single blastomeres indicated a product over 125bp in

size, which would be the expected for amplification of 24 repeats.

Unfortunately, following this PGD cycle, there were no more cells from a patient with a

similarly large normal DM1 allele available for further testing and optimisation.

Table 3. 7: Testing of blastomeres from four embryos, diagnosed as unaffected during PGD for
patient 19. ADO of the 180bp DM1 allele was observed with the mTP-PCR protocol. The TP-PCR
column indicates the size of the last sizeable peak at the 310 genetic analyzer. Exp: expansion

Cell
number

Protocol
number

F-PCR reading

Parental genotype TP-PCR DM1 D19S112 APOC2
Affected female 186 180/Exp 128/130 157/157
Unaffected male 100 122/148 130/133 129/137

Unaffected
Embryo tested/

PN scoring
1 DM1 triplex 122/180 128/130 129/157
2 mTP-PCR 126 122/ADO 128/1301/2PN
3 mTP-PCR 136 122/ADO 128/130

1 DM1 triplex 148/180 128/133 137/157
2 mTP-PCR 131 148/ADO 128/1332/2PN

3 mTP-PCR 131 148/ADO 128/133

1 DM1 triplex 148/180 128/133 137/1573/2PN
2 mTP-PCR 141 148/ADO 128/133

1 DM1 triplex 122/180 128/130 129/1574/0PN
2 mTP-PCR 134 122/ADO 128/130
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3.1.2 Results and follow-up from DM1 PGD cycles

3.1.2.1 Response to IVF treatment and embryo biopsy

Five out of the 35 IVF/PGD treatment cycles started were cancelled before oocyte

retrieval due to either poor response to the IVF treatment (patient number 5, 14, 17 and

18) or hyperstimulation (patient number 4, first cycle). In another two cycles oocytes

were collected and fertilized but there were only two embryos available for biopsy on

day 3. In both cases PGD was cancelled and the embryos were discarded.

From the remaining 28 cycles, 317 oocytes were collected, 285 of which were mature

and were inseminated and 177 were normally fertilised (2PN) (62.1% fertilisation rate).

The average maternal age was 33.4±3.1 years. Seventy-four oocytes were abnormally

fertilized (sixty-six 0PN, six 1PN and two 3PN), three oocytes cleaved prematurely and

one oocyte was described by embryologists as being “out of the zona membrane”. The

remaining thirty oocytes had disintegrated following insemination (table 3.8).

One hundred and sixty seven out of the 177 (94.4%) of the 2PNs were of sufficient

quality for biopsy on day 3 post fertilisation. Five 0PNs, one 1PN and one 3PN from

four cycles, had grown to the 6-8 cell stage and were also biopsied (table 3.9). The total

number of biopsied embryos was, therefore, 174.
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Table 3. 8: Summary of oocytes collected and inseminated by ICSI for DM1 PGD cycles. The seven
cancelled cycles are marked in red colour. Normally fertilized oocytes showed two pronuclei (2PN) 18-20
hours post-insemination. 0PNs, 1PNs, 3PNs and other abnormalities are also indicated. Thirty oocytes
disintegrated post-insemination. ‘Total’ numbers shown do not include the cancelled cycles. Yrs: years.
Disint: disintegrated, PC: prematurely cleaved, Z: out of zona. *2PN from a giant ovum

Patient
Number/

Cycle

Female
Age
(yrs)

Oocytes
collected

Oocytes
inseminated

2PN 0PN 1PN 3PN Disint. Other

1/1 33 7 7 3 4

2/1 34 10 5 4 1

3/1 28 7 7 2

4/1 27 Hyperstimulation

4/2 27 11 10 7 3 2

5/1 29 Poor response

6/1 36 13 13 11

7/1 35 18 16 10 6

8/1 33 9 9 6 3

8/2 34 16 14 5 4 4 1PC

8/3 35 13 12 3* 7 2

9/1 27 6 5 4 1

9/2 28 13 10 8

9/3 29 7 6 2

10/1 34 9 9 5 2 1 1

11/1 33 14 14 12 1 1Z

11/2 34 19 17 15 2

12/1 35 12 11 3 8 2

13/1 33 13 12 4 3 3 2PC

13/2 33 20 20 10 2 1 7

13/3 34 15 13 4 6 1

14/1 36 Poor response

15/1 39 9 8 6 2

16/1 34 10 10 10

17/1 35 Poor response

18/1 37 Poor response

19/1 30 11 11 6 3 2

19/2 31 12 10 6 2 2

19/3 31 9 8 5 3

20/1 35 6 4 2 1 1

21/1 31 9 9 8 1

22/1 34 16 13 9 2 2

22/2 35 8 6 5 1

23/1 39 4 4 3 1

23/2 39 5 5 3 1 1

Total 33.4±3.1 317 285 177 66 6 2 30 4
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Table 3. 9: Details of embryos biopsied from each of 28 PGD cycles. PN: pronuclei, 2PN: two
pronuclei seen, 0PN: no pronuclei seen

Patient number/
Cycle number

Embryos biopsied

2PN 0PN Other

1/1 3 1

2/1 4

3/1 n/a

4/1 n/a

4/2 7

5/2 n/a

6/1 10

7/1 10

8/1 6

8/2 5

8/3 3

9/1 4

9/2 8

9/3 n/a

10/1 4

11/1 12

11/2 15

12/1 3

13/1 4

13/2 10

13/3 4 3 1 (1PN)

14/1 n/a

15/1 6

16/1 10

17/1 n/a

18/1 n/a

19/1 2

19/2 5

19/3 5

20/1 2 1 1 (3PN)

21/1 7

22/1 7

22/2 5

23/1 3

23/2 3

Total 167 5 2
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Most embryos (119/174, 68.39%) had two cells biopsied. On several occasions,

however, it was necessary to remove more than two cells from a single embryo (figure

3.15).

If during biopsy on day 3 a biopsied cell was found to be anucleate or lysed, then an

additional cell was removed if the embryo development stage permitted (>6 cells

remaining, see methods section 2.1.3). In some cases additional cells were removed on

day 4, if results from previously biopsied cells on day 3 had not yielded a clear

diagnosis (detection of cells showing amplification from one parental genome, cross-

over, allele dropout, contamination or amplification failure) or if the embryo stage on

day 3 had not permitted biopsy of two cells at that time.

In cases where the protocol required results from two cells if, on day 3, the embryo

development stage only permitted the removal of one cell, a re-biopsy was performed

on day 4 to obtain confirmation of diagnosis for embryos with an unaffected result.

Re-biopsy was performed in 6 PGD cycles, for a total of 16 embryos. In four of the 6

cycles this was for confirmation of an unaffected embryo in a two-cell requiring

protocol.

Figure 3. 15: Number of embryos with one to four cells biopsied. Graph includes the sixteen
rebiopsied embryos
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Amplification rate, allele dropout and overall diagnosis rate per protocol used are

summarised in table 3.10. A more detailed analysis of blastomere amplification for each

case and protocol used may be found in the appendix tables A2.3-A2.7. For one couple,

the diagnosis was performed using two different protocols.
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Table 3. 10: Summary of blastomere results from all DM1 PGD cases showing overall amplification, allele dropout and diagnosis rate per protocol. The allele dropout for
the DM1 locus could be obtained only from the unaffected heterozygous cells. A more detailed analysis per case is shown in table A2.3-A2.7 of the appendix. Protocol 1a is a
modification of protocol 1, involving a ‘split PCR’ reaction, which was performed in one PGD cycle, as indicated in the appendix. The best protocols in terms of amplification, ADO
rate and number of markers tested, are indicated in bold typing. H: embryos where the two biopsied cells indicated amplification from only one of the parental genomes *: diagnosis
for cycle 2 of patient no.8 was performed using two different protocols, thus making the total number of cases reported here 29.

Protocol
Number

(markers)

No. of
cases*

No. of
embryos

No. of
blastomeres

Amplification Allele dropout Diagnosis

P2/P3R/
P4CAG

DM1 APOC2 D19S112 DM1 APOC2 D19S112

1
(DM1/

APOC2)

4 30 48
38/48

(79.2%)
35/48

(72.9%)
1/12

(8.3%)
3/29

(10.3%)
19/30

(63.33%)

1a
1 4 6

5/6
(83.3%)

3/6
(50%)

n/a
1/3

(33.3%)
3/4

(75%)

2
(DM1/

D19S112)

2 11 24
21/24

(87.5%)
20/24

(83.3%)
0/3

1/13
(7.7%)

8/11
(72.7%)

3
(DM1/

APOC2/
D19S112)

11 69 122
110/122
(90.2%)

107/122
(87.7%)

107/122
(87.7%)

0/43 0/80 0/70
52/69

(75.36%)

4H
(non-transferable)

56/69
(81.2%)

4
(TP-PCR)

5 37 75
46/56

(82.1%)
30/37

(81.08%)

5
(mTP-PCR)

6 28 60
52/60

(86.7%)
48/56

(85.7%)
52/60

(86.7%)
1/6

(16.7%)
0/40

22/28
(78.57%)

4H
(non-transferable)

26/28
(92.9%)
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All cases where amplification from only one of the parental genomes was detected, are

indicated in the appendix 2 tables A2.3, A2.5 and A2.7. When both of the biopsied cells

indicated alleles from one of the parents only and considering a low chance of ADO

simultaneously occurring at all three amplified loci, the embryo was scored as

potentially indicating monosomy for chromosome 19.

Five multinucleate blastomeres were biopsied in three cycles from patients/cycle

number 6/1, 11/1 and 12/1 (patient 12 had two multinucleate cells biopsied from one

embryo and another multinucleate cell from a different embryo). Additionally, four

binucleate blastomeres were biopsied from patients/cycle number 13/1, 13/2, 19/3 and

22/2, and in another two cases, for patients/cycle number 11/2 and 21/1, micronuclei

were observed during biopsy in all embryos and in one of the biopsied embryos

respectively.

Three out of the five multinucleate cells gave an unaffected result on diagnosis, and the

two cells that were biopsied from the same embryo (patient/cycle 12/1) gave an

inconclusive result (paternal contribution on one marker, shared alleles on the other two

markers). All four embryos, corresponding to these biopsied multinucleate cells, were of

poor quality. Two of them had arrested at the four-cell stage, as scored on day 4 and 5,

and the other two embryos had seven and eight cells on day 4. One of these embryos,

the 8-cell embryo of patient/cycle 12/1, was transferred but a pregnancy was not

established.

Of the binucleate cells, three gave a result on analysis, two of them, patient/cycle 13/2

and 19/3, indicated affected embryos and the third one, patient/cycle 22/2, indicated

amplification of the maternal genome only (affected). Scoring of these three embryos on

day 4 indicated two 6-cell embryos (patients 13 and 22) and a 11-cell embryo (patient

19). The binucleate cell that failed to give a result (patient/cycle 13/1) came from an

embryo where other biopsied cells gave an unaffected result on diagnosis. This embryo

had eight cells on day 4 and was transferred but a pregnancy was not established. One

of the cells where micronuclei were observed did not give a result. In the other case

(11/2) where micronuclei were generally observed during embryo biopsy, there were no

problems with diagnosis; two embryos were transferred on day 5, both blastocysts, both

of which implanted.

Thirty-three cells began to lyse during the embryo biopsy and tubing procedure,

however, the nucleus was seen in all cases by the embryologists and the cells were

tubed without delay. Only four out of these 33 cells failed to amplify. On the contrary,
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forty-two cells were considered to be cytoplasmic fragments or anucleate cells during

the biopsy and all, apart from one, failed to give a result following PCR. Results from

analysis of all cells recorded as fragments and anucleate cells during biopsy were

excluded from the investigation of protocol efficiency and diagnosis rate of table 3.10.

Protocols DM1/APOC2/D19S112 and mTP-PCR provided the most information from a

single cell. These protocols allowed the identification of eight embryos where, in both

cells, only one of the parental genomes was detected. It is likely that these embryos are

true haploid embryos or embryos with monosomy 19, as the results were confirmed

from the amplification of three markers in two cells from each embryo. A diagnosis

rate of 75.36% and 78.57% was achieved with these two protocols respectively (table

3.10 also indicates the potential diagnosis rate of 81.2% and 92.9%, to include the eight

embryos where the presence of only one parental genome was detected).

Protocols DM1/APOC2 (1, 1a) and DM1/D19S112 were associated with low

amplification and diagnosis rate (63.33%, 75% and 72.7% respectively). The TP-PCR

protocol, which is commonly used for DM1 testing, gave a diagnosis of 81.08%,

however this protocol requires results from two cells from an embryo for diagnosis,

while providing no information regarding the presence of contamination.

Overall, from all 28 DM1 PGD cases completed, using all of the above protocols, a

diagnosis was achieved for 129 out of 174 embryos (74.12%). Of these, 55 embryos

were diagnosed unaffected (42.6%) and 74 were diagnosed affected (57.4%). Eight

embryos could not be diagnosed due to the biopsied cells indicating the presence of one

parental genome only. In addition, twenty-seven embryos gave inconclusive results, as

discussed in section 3.1.2.4, while no results were obtained from 10 embryos due to

total amplification failure (5.7%) (figure 3.16).

The impact that a one-cell biopsy practice would have on the diagnosis rate was

investigated by reanalysis of results from the cycles where protocol

DM1/APOC2/D19S112 was used for diagnosis, as this was the protocol most likely to

allow a one-cell diagnosis. One out of the 11 cycles where this protocol was used, was

excluded because diagnosis in that case required results using two different protocols

(table 3.10 and A2.5). Results indicated that if diagnosis was based on results from the

first biopsied cell only, the diagnosis rate from these cycles would drop significantly

from 73.4% to 53.1% (p<0.05, Fisher’s exact test) (table 3.11).
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Figure 3. 16: Number of embryos diagnosed during PGD for DM1. 129 out of 174 embryos gave a
clear diagnosis. Fifty-five embryos were unaffected and seventy-four were affected. Inconclusive results
were due to one of the following: contamination, ADO, marker uninformativity, detection of one parental
genome, result from one cell or other observations as indicated in table 3.15. (Embryos with result from
one parental genome are shown separately).

Table 3. 11: Reanalysis of 10 DM1 PGD cycles to estimate diagnosis rate based on the results of a
single (first-biopsied) cell

Patient
number
/ Cycle

Number
of

embryos

Number of
embryos

rebiopsied

Cells biopsied-
number of embryos

Diagnosis

Diagnosis
based on result
from the first
biopsied cell

1-cell 2-cell 3-cell

10/1 4 2 3 1 0 3/4 1/4

11/1 12 0 2 10 0 8/12 6/12

12/1 3 0 0 3 0 1/3 1/3

11/1 15 0 3 7 5 12/15 8/15

15/1 6 0 5 1 0 1/6 1/6

19/1 2 0 0 2 0 2/2 2/2

22/1 7 2 2 5 0 7/7 4/7

19/2 5 0 0 5 0 5/5 3/5

22/2 5 0 3 2 0 4/5 4/5

19/3 5 0 1 4 0 4/5 4/5

Total 64 4 19 40 5
47/64

(73.4%)
34/64

(53.1%)
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Table 3.12 indicates the number of cases where contamination was detected. This

analysis excludes cases with TP-PCR amplification, where polymorphic marker analysis

for contamination detection was not included in the protocol. A total of 260 single

blastomeres were analysed. Contamination was detected in 8 out of the 260 cells (3%),

and in 14 out of the 260 cell negative controls (5.4%) (overall 19/260, i.e. 8.46%). In

three occasions (patient/cycle number 6/1, 11/1, 11/2) two PCR master mixes had to be

prepared because of the high number of tubes. The PCR master mix negatives indicated

a low level of external contamination in two cases.

Table 3. 12: Detection of contamination in PGD. The PGD results for each of these cycles may be
found in appendix table A2.3-A2.7. External contamination was detected in 7/260 blastomeres. One
blastomere (*) indicated maternal cumulus cell contamination and fourteen cell negatives indicated the
presence of external contamination. Contamination was not detected in a cell and its corresponding
negative control at the same time. Pre- (PCRM) and post-aliquoting (PCRN) negative controls of the PCR
master mix, were obtained from all prepared master mixes.

Patient
Number/

Cycle

Number
of

blastomeres

Cells
with

contamination

Cell negatives
with

contamination
PCRM1 PCRM2 PCR1N PCR2N

1/1 8 0 0 - -
2/1 6 0 0 - -
4/1 14 0 1 - -
6/1 15 1 0 - - - -
7/1 13 0 0 - -
8/1 12 0 3 - -
8/2 8 0 1 - -
8/3 6 1 0 - -
9/1 10 0 0 - -
10/1 5 0 0 - -
11/1 22 1* 2 - - - -
11/2 32 2 4 cont cont cont cont
12/1 6 1 0 - -
13/3 17 0 0 - -
15/1 7 0 0 - -
19/1 4 0 0 - -
19/2 10 2 2 - -
19/3 9 0 0 - -
20/1 8 0 0 - -
21/1 13 0 0 - -
22/1 12 0 0 - -
22/2 7 0 0 - -
23/1 6 0 0 - -
23/2 10 0 1 cont cont
Total 260 8 14
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3.1.2.2 Detection of cross-over

A cross-over event between DM1 and APOC2 was observed during the analysis of the

biopsied cells in one embryo from couple number 6. The maternal DM1 178bp allele

was expected to be transmitted along with the 142bp APOC2 allele, but in this case, the

125bp APOC2 allele was detected instead. This suggested cross-over between the two

alleles. Alternatively the findings could have occurred by the combination of maternal

contamination with concurrent allele dropout of the APOC2 142bp and the DMPK

155bp products, though this is a highly unlikely occurrence. In any case, the paternal

non-expanded 142bp allele was seen in the embryo along with one of the non-expanded

maternal alleles (178bp) and the embryo was therefore considered as unaffected and

suitable for transfer (figure 3.17).

Two embryos were transferred on day 4, including the embryo where cross-over was

detected, leading to the establishment of a clinical pregnancy and the birth of a healthy

male infant.

During PGD for couple number 10, a similar cross-over event was observed in one of

the embryos diagnosed as unaffected (figure 3.18). The embryos were scored on day 5;

a four-cell (with cross-over) and a five-cell embryo were transferred. A clinical

pregnancy was established and a healthy child was born.

Buccal cells were collected from the babies born in both cases and tested using the DM1

triplex protocol. The results confirmed that, in both cases, the implanted embryos were

the ones where the crossover event had been detected (figure 3.19).
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Figure 3. 17: Haplotype diagram for couple 6 (affected father) indicating a cross-over event
detected in embryo 2 during diagnosis. Allele sizes for APOC2 and DM1 are shown. CVS samples
from previous pregnancies were available to allow detection of the phase allele (APOC2 151bp). Exp
indicates the expanded allele which was refractory to PCR. Underlined alleles show the phase. Embryos
6, 8 and 10 were affected; embryos 1, 2, 5 and 11 were unaffected. Cross-over was detected between
DM1 and APOC2 in embryo 2. This was an unaffected embryo, showing the normal paternal alleles for
both DM1 and APOC2 regions however the 125bp APOC2 maternal allele was detected instead of the
142bp allele due to cross-over. Embryos 4 and 7 showed inconclusive results while there was no result for
embryo 3. (Kakourou et al., 2007)
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Figure 3. 18: PGD results for couple 10 (affected mother) where a cross-over event was detected in
embryo 3. Underlined alleles indicate the phase. Embryo 2 was affected, embryos 3 and 4 were
unaffected. Cross-over was detected between DM1 and APOC2 in embryo 3. This was an unaffected
embryo that showed the normal maternal alleles for both DM1 and D19S112 regions whereas the
maternal disease-associated allele was detected for APOC2 (Kakourou et al., 2007)
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Figure 3. 19: Results from buccal cell analysis of two babies born following PGD. x-axis: PCR
product size in bp, y-axis: fluorescence intensity (RFU). A) Buccal cell analysis from baby born
following PGD for couple 6. The results correspond to the genotype of embryo 2, as indicated in figure
3.17 B) Buccal cell analysis from baby born following PGD for couple 10. The results correspond to the
genotype of embryo 3, as indicated in figure 3.18.

3.1.2.3 Pregnancies

Thirty-six unaffected embryos were transferred into the mother’s womb in 20 out of the

28 cycles. In 16/20 cycles resulting in an embryo transfer, two unaffected embryos were

transferred, while in the remaining four cycles transfer of a single embryo took place.

Embryo transfer was on day 4 for nine cycles and on day 5 for another nine cycles. For

couple 16, embryo transfer was on day 6 and for cycle 2 of couple 23 the best quality

embryo was transferred on day 4 and a second embryo was selected and transferred on

day 5.
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There were two additional embryo transfers, both for patient number 8. During the

patient’s second PGD cycle, all five biopsied embryos were diagnosed unaffected. Two

embryos were transferred and two surplus unaffected embryos were cryopreserved. A

pregnancy was not established, so the two cryopreserved embryos were thawed and

transferred in a separate stimulation cycle, following which, implantation was,

unfortunately, again unsuccessful. The same patient had a third treatment cycle, where

she developed ovarian hyperstimulation syndrome (OHSS) after oocyte collection. The

diagnosis was still completed, and the single embryo, diagnosed unaffected, was

cryopreserved, then thawed and transferred in a separate treatment cycle, as before.

Unfortunately an empty sac was detected at the 6 week scan. Another pregnancy was

also lost as patient 23 miscarried in her second cycle at 7 weeks.

In case number 11, both of the transferred embryos implanted, therefore making the

total number of implanted embryos eleven. The implantation rate, defined as the number

of gestational sacs detected per total number of embryos transferred, was 28.2% (eleven

out of thirty-nine embryos transferred overall). Seven pregnancies have led to the birth

of healthy infants, in one case of twins and one pregnancy is ongoing. The clinical

pregnancy rate per embryo transfer, defined as the number of gestational sacs and fetal

heartbeat at 7 weeks detected per cycle with embryo transfer, was 40% (8/20) or 36.4%

(8/22) respectively, including the two embryo transfers of frozen-thawed embryos, and

the pregnancy rate per cycle to PGD was 28.57% (8/28) (table 3.13).
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Table 3. 13: Summary of embryo transfers (ET) and outcome from DM1 IVF/PGD cycles
*cryopreserved/thawed unaffected embryos

Patient
number/

cycle

No. of
embryos

transferred

ET Day Pregnancy Outcome

1 2 4 Y Girl

2 0 n/a n/a

4 2 4 N

6 2 4 Y Boy

7 2 5 Y Girl

8/1 0 n/a N

8/2 2 5 N

2* new cycle N

8/3 hyperstimulation n/a n/a

1* new cycle Y empty sac

9/1 0 n/a n/a

9/2 2 4 N

10 2 5 Y Girl

11/1 2 5 N

11/2 2 5 Y Boy and girl

12 1 4 N

13/1 1 4 N

13/2 0 n/a n/a

13/3 2 5 Y Girl

15 0 n/a n/a

16 2 6 N

19/1 2 4 N

19/2 2 5 N

19/3 2 5 Y Ongoing

20 1 4 N

21 0 n/a n/a

22/1 2 5 N

22/2 1 4 Y Girl

23/1 0 n/a n/a

23/2 2 4+5 Y Miscarried at
seven weeks
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Seven out of the eleven embryos that implanted were at the morula to blastocyst stage,

while the remaining four had 8 cells or fewer at the time of transfer. In two cases

(number 6 and 10), the two embryos transferred had a different genotype and it was

possible to identify which embryo had implanted by testing DNA from buccal cells of

the baby born. In both cases, the embryos that implanted were the ones where a

crossover event between DMPK and APOC2 had been detected during diagnosis. For

patient number 10, the 5-cell embryo that implanted had also been re-biopsied. Re-

biopsied embryos implanted in another two cases (patient 13, cycle 3 and patient 23,

cycle 2), though in one of them the patient subsequently miscarried at seven weeks

(table 3.14).

Table 3. 14: Grade of implanted embryos In cases 6 and 10, it was possible to identify which of the two
transferred embryos had implanted by testing DNA from the baby born. These are indicated in bold
typing. In three cases, the implanted embryos had been rebiopsied (patients10, 13 cycle 3 and 23 cycle 2).
M: morula stage embryo, or B: blastocyst stage embryo, *: rebiopsied embryo

Patient
Number/Cycle

Embryos transferred
(number of cells, grade)

Implanted
Embryo/s

1 1)6-cell, 2+
2)6-cell, 1- *

≤ 8-cell

6 1)7-cell, 1-
2)8-cell, 1-

≤ 8-cell

7 1)Cavitating morula
2)Cavitating morula

M

10 1)5-cell, 1- *
2)5-cell, 1-, arrested

≤ 8-cell *

11/2 1)Blastocyst, 1
2)Hatching blastocyst

B, B

13/3 1)Hatching blastocyst *
2)Morula *

M or B *

8/3 1)Morula M
22/2 1)8-cell, 2+ ≤ 8-cell

23/2 1)Morula *
2)Hatching blastocyst *

M or B *
(miscarried)

19/3 1)Morula
2)Hatching blastocyst

M or B
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3.1.2.4 Analysis of spare embryos for confirmation of diagnosis

Following PGD, most patients consented to the use of their spare embryos either for

retesting and confirmation of diagnosis or for use in other research work.

Out of the 55 embryos diagnosed unaffected, 39 were transferred in 22 ETs and, nine

out of the remaining sixteen embryos, unsuitable for cryopreservation, were retested for

confirmation of diagnosis. Eight embryos were confirmed unaffected whereas one

embryo gave an inconclusive result (detection of one parental genome). Similarly, forty-

five out of the 74 affected embryos were retested, of which forty were confirmed

affected, three gave an inconclusive result and two gave no result.

Moreover, twenty embryos with inconclusive results on diagnosis, five embryos with no

result on diagnosis and seven embryos that had not been suitable for biopsy on day 3

were also tested following PGD. Results are summarised on tables 3.15 and 3.16.

In summary, including results from diagnosis and all follow-up testing, 150 embryos

were diagnosed, of which 67 were unaffected (44.7%) and 83 affected (55.3%). The

difference in the number of affected and unaffected embryos was not found to be

statistically significant (binomial test, p=0.22).

Seven of the couples that had PGD (nine cycles) had previously experienced an affected

pregnancy. From these couples, there were 44 embryos diagnosed, including analysis of

the non-transferred embryos following PGD, of which 27 (61.4%) were affected and 17

(38.6%) unaffected. From all the remaining couples, that did not have a previous TOP

or an affected child, there were 106 embryos, of which 56 (52.8%) were affected and 50

(47.2%) unaffected. In spite of a markedly higher number of affected embryos in the

first group of patients, there was no statistically significant difference (NS) on analysis

(Fisher’s exact test, p=0.37).
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Table 3. 15: Reanalysis of embryos with inconclusive results during PGD *For two embryos where contamination was detected in one cell, the second biopsied cell indicated the
presence of only one parental genome. ** “other”: refers to the detection of odd/unexpected alleles, e.g. two paternal alleles

Table 3. 16: Summary of all spare embryo follow-up analysis following a PGD case. Forty out of the 55 embryos that were diagnosed unaffected were transferred following
PGD and eight out of the remaining 15 embryos were reanalysed. The table indicates results from reanalysis of 86 embryos, 53 of which had received a diagnosis (45 affected/ 8
unaffected) during PGD. ET: embryo transfer.

Results from reanalysis

Inconclusive results Affected Unaffected No result Inconclusive Not Tested
Consent for

other research

Observation
Number of
embryos

Result from one cell 1 1
Detection of one parental genome 8 8
Contamination* 5 2 1 2
Allele Dropout 3 1 1 1
Uninformative markers/ Shared alleles 14 3 7 4
Other** 4 3 1

Total 35 5 4 1 10 1 14

174 biopsied
Embryos

Spares
Consent for

other research
Not Tested

Reanalysed
Embryos

Affected Unaffected
No

result
Inconclusive

Unaffected
55

(40 had ET )
15 5 2 8 7 1

Affected 74 74 24 5 45 40 2 3
Inconclusive 35 35 14 1 20 5 4 1 10

No Result 10 10 4 6 2 3 1

Non-biopsied - 7 7 2 5



135

3.1.3 Summary of findings for section 3.1: PGD for DM1

 Section 3.1.1: Protocol development

o Better amplification and lower ADO was achieved with ALB vs. PK

lysis and with single lymphocytes vs. single buccal cells.

o TP-PCR amplification on buccal cells was very inconsistent, indicating

the impact of DNA quality on amplification.

o TP-PCR can differentiate between the homozygous unaffected and

affected samples but cannot give a clear diagnosis for the 5 CTG repeat

homozygous samples.

o Design of a new protocol, mTP-PCR, to overcome difficulties with

scoring of the 5 CTG repeat homozygous samples. Along with

amplification of the repeat region, this protocol provides additional

information on contamination, ADO and the presence of the phase allele.

o Clinical application in PGD for DM1, of two new optimised protocols,

DM1 triplex and mTP-PCR.

 Section 3.1.2: Results and follow-up from DM1 PGD cycles

o Embryo grade and quality of the biopsied cell (ie. anucleate cell, lysing

cell, cell fragments) reflects amplification rate and overall diagnosis rate.

o Higher diagnosis rate with two-cell vs. one-cell biopsy.

o Detection of cross-over between DM1 and APOC2 markers.

o Overall encouraging diagnosis and pregnancy rates.

o Analysis of spare embryos

 No false positive or false negative results detected in follow-up

study.

 No statistically significant difference in the number of embryos

diagnosed affected vs. unaffected, including results from

diagnosis and follow-up analysis.

 Higher percentage of affected embryos from parents with

previously affected children but not reaching significance.



136

3.2 Investigation of DMPK repeat transmission

3.2.1 Determination of the repeat number by triplet-primed amplification
(TP-PCR or mTP-PCR)

3.2.1.1 TP-PCR on genomic DNA

Unaffected individuals

Amplification of non-expanded alleles (of a maximum of 24 repeats) was generally

consistent and allowed accurate sizing of the repeat, with some variation of ±1-2 repeats

detected (figure 3.20).

Figure 3. 20: Sizing of non-expanded DM1 alleles by TP-PCR. x-axis: PCR product size in bp, y-axis:
fluorescence intensity (RFU). Top lane: genomic DNA TP-PCR amplification of a 12 CTG repeat
homozygous individual. Bottom lane: genomic DNA TP-PCR amplification of a 13 CTG repeat
homozygous individual. The first detected peak indicates 5 CTG repeats. The one CTG repeat size
difference between the two samples is clearly visualized.

Affected individuals

Contrary to the accurate sizing of non-expanded alleles, when expanded repeats were

amplified by either TP-PCR or mTP-PCR, the last sizeable peak of the diminishing

ladder was variable both for genomic DNA and single lymphocytes. The pattern of

triplet-repeat amplification was tested on a number of single lymphocytes from each
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parent prior to PGD, in order to obtain the expected amplification “peak range” for the

expanded repeat.

The triplet primed PCR protocols were also evaluated for their ability to discriminate

between considerably different expansion sizes. Four control DNA samples were kindly

provided by Dr. John Short (S.W. Thames Molecular Genetics Diagnostic Laboratory)

from affected individuals with expansion sizes of 150, 550, 1100 and 1600 repeats. All

sizes had been measured against a DNA ladder on a Southern blot. DNA samples from

several of the DM1 patients, with known expansion size, were also analyzed along with

the control DNA samples. Figure 3.21 gives an example of amplification from the four

control DNA samples, in an attempt to detect some differences in amplification amongst

the different expansions. Current analysis indicates that TP-PCR cannot be used to

discriminate even between the strikingly different expansion sizes.

One consideration was that the different sizes of the non-expanded alleles from each

affected sample could be influencing the pattern of amplification. It was, therefore,

decided that only samples sharing the same non-expanded allele should be compared to

allow detection of differences due to the presence of the expanded allele only. Five

DM1 patients, where the expansion size was also known, shared a 122bp (5 CTG repeat)

non-expanded allele. From all remaining samples, only two patients shared a 146bp

non-expanded allele. Results from amplification for the 122bp/expansion patients are

shown in figure 3.22. The graphs shown in figure 3.22 were also plotted against the log

of the peak height in order to compare the slopes of the linear regression line (figure

3.23).

Modifications of the P2/P3R/P4CAG primer concentration ratio, as well as the PCR

program conditions (shorter annealing and extension times), were attempted to

encourage different amplification depending on repeat number but no differences were

detected. Therefore no conclusions could be drawn from this analysis.
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Figure 3. 21: Amplification of four control DNA samples of known repeat size. x-axis: PCR product
size in bp, y-axis: fluorescence intensity (RFU). Arrows indicate the presence of the non-expanded allele
in each case. The last sizeable peak on analysis was 131bp, 122bp, 116bp and 122bp for controls 1, 2, 3
and 4, respectively. This indicates that amplification is not relevant to the repeat size.

Figure 3. 22: Amplification from 5 DM1 patients, of known expansion size, sharing a common
122bp non-expanded allele. x-axis: PCR product size in bp, y-axis: fluorescence intensity (RFU). All
samples, irrespective of expansion size, showed comparable triplet repeat amplification.
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Figure 3. 23: Regression analysis of figure 3.22 TP-PCR amplification graphs. x-axis: PCR product
size in bp, y-axis: fluorescence intensity (RFU). The 5/150 CTG repeat control was included in the
analysis. All samples shared a 5 CTG repeat allele and had expanded alleles of different size. No
differences were observed between the 6 samples, despite the differences in the size of the DM1
expansion.

3.2.1.2 TP-PCR single cell analysis

TP-PCR and mTP-PCR analysis was performed on single biopsied blastomeres from 11

PGD cycles (7 patients). The standard TP-PCR protocol was used for diagnosis in five

cycles while the mTP-PCR protocol was used in the remaining six cycles. For two of

the patients (number 8 and 13), both standard TP-PCR and mTP-PCR diagnosis was

performed in different IVF/PGD cycles. Table 3.17 presents all fluorescent PCR

blastomere readings, showing the size in base pairs (bp) of the last genetic analyzer

sizeable peak of the ladder pattern, allowing comparison with results from amplification

of single parental lymphocytes and parental genomic DNA. All cell readings presented

in the table are from the 310 fluorescent genetic analyzer, so as to avoid differences in

analysis due to machine variation. Analysis of fifty single cumulus cells was also

performed for four of the patients (number 8, 13, 16 and 23) and results were

comparable to amplification from single lymphocytes.

In the five cycles with standard TP-PCR diagnosis (indicated as 8/1, 9/2, 13/1, 13/2 and

16/1 on table 3.17), lack of amplification, that might indicate a 5 CTG homozygous

sample, was taken as failure of amplification as this was the practice until application of

the new mTP-PCR protocol.
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Overall, all genomic DNA readings indicated a bigger product, i.e. more ladder peaks,

compared to the single cell analysis. Readings from single affected lymphocytes were

obtained from amplification of a minimum of 20 single cells, isolated and tested prior to

each IVF/PGD case. These readings varied from cell to cell for the same individual,

with the maximum difference detected being, on average, 52bp. The last peak of the TP-

PCR ladder also varied from embryo- to embryo and from blastomere-to-blastomere.

Thirty-seven blastomeres were scored as unaffected. Most unaffected blastomeres gave

a similar pattern of amplification between them, with a ± 1-2 CTG repeat difference

detected in some cases. This was similar to amplification from single lymphocytes. In

cycle 2 of patient 23, three single blastomeres from two different embryos showed a

peak pattern unexpected for a 5 CTG homozygous sample, with the triplet repeat ladder

pattern extending to 89bp.

Fifty-eight blastomeres showed the diminishing ladder pattern following TP-PCR or

mTP-PCR, indicating an affected cell. In one cycle, the mTP-PCR protocol enabled

detection of an embryo and a single blastomere showing amplification of one parental

genome only (case number 21/1). The last detected peak of the ladder varied

considerably between the affected blastomeres from an embryo, but was generally

within the expected range as seen from amplification of single affected lymphocytes

(patient specific analysis). Eleven blastomeres showed an increase in the size of the last

detected fluorescent peak. In two out of the 58 blastomeres the product was over 50bp

bigger than the biggest product detected in a single parental lymphocyte.

Follow-up analysis was performed on day 5 for two unaffected embryos (cycles 13/2

and 16/1) and nineteen affected embryos.

One of the unaffected embryos was tubed whole for amplification (patient 16), while the

second embryo was disaggregated and two single blastomeres were isolated and

amplified separately (cycle 2 of patient 13). Amplification from the embryo that was

tubed whole and from one of the single blastomeres showed an increase in the number

of CTG repeats by TP-PCR, of five and nine repeats respectively, compared to their day

3 result. This product was larger than the corresponding genomic DNA result.
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Three out of the nineteen affected embryos that were available for testing, were tubed

whole, a blastomere clump was isolated from another affected embryo and 31 single

blastomeres were isolated from the remaining 15 embryos.

Fifteen of the single blastomeres, as well as the blastomere clump and the three embryos,

showed an increase in the size of the last detected fluorescent peak compared to their

day 3 result. In four of the single blastomeres the increase was over 50bp, compared to

the maximum single lymphocyte parental size, while in a single blastomere from patient

9, the last peak was even larger than the genomic DNA amplification. Additionally,

seven affected blastomeres showed a smaller ladder product on day 5 analysis,

compared to the parental single lymphocytes, although the difference was less than

50bp in size.

Due to the inability of TP-PCR to accurately size the affected-range expanded alleles, as

well as due to the association of poor cell quality with inferior triple-primed

amplification, as detected mostly during buccal cell TP-PCR amplification, the

significance of the above remains unclear.
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Table 3. 17: TP-PCR blastomere results from 11 PGD cycles with follow-up analysis. The size of the last sizeable peak is indicated. Results from blastomeres of the same embryo are put
in brackets. Arrows point to results from follow-up analysis. Bold type indicates unusual observations (red colour for follow up results), *: use of mTP-PCR, rather than TP-PCR, w:whole
embryo, cl:clump, h, H:one or two-cell results respectively showing analysis from only one parental genome

Patient
number/
Cycle

Parental
DMPK
genotype

Unaffected
genomic DNA
(bp)

Unaffected
Lymphocytes
(bp)

Unaffected
Blastomeres
(bp)

Affected
genomic
(bp)

Affected
lymphocytes
(bp)

Range
(bp)

Affected
blastomeres (bp)

Non-biopsied
embryos
(bp)

8/2 96-99 90-93 (93), (93,93) 189-224 147-189 42 n/a
93, 96
(190), (135)

8/3*

122/Exp
122/146

96 93-103 (68,68) 148 125-198 73 (116, 166), (172, 189)

9/2
122/Exp
122/149

96-105 93-105 (96,99), (96,96) 225-258 113-195 82 (183, 199), (201), (189, 260 300)

13/1 93-97 87-94 (87,90) 220-253 142-197
55

(176,194 110,194),
(142,145 152,213)
(152,155, 185194)

13/2 92-94 87-94 (89, 89 116, 89) 195-255 142-197 55

212, (128,156 120),
(194147,151,160,201,231)
(104,128 144,160,163)
(206,215160)
(188,208131)

116
113

13/3*

122/Exp
122/142

90-93 89-93, av. 90 (68,68), (68,68) (92,92) 254-314 132-230 98 (170,223), (204,206)

16/1
139/Exp
122/139

86 89-93
(90,90),
(89,89104w)

263 125-188 63

(149 124, 184, 249), (133270),
(260258w), (188,200246cl)
(204,208252w),
(180258w)
(170131,154,252)

20/1*
141/Exp
122/141

89 87-94 (86,86), (95), (86, 86) 198 129-162+236
33 (159, 162) 104,104

88,88

21/1*
144/Exp
122/147

95 92-101 n/a 224 137-185 48
(153,156), (127,171), (98h,150),
(165,184), (144,165), (160, 180)H 155,187

23/1* 68 (122hm) 68 (122hm) n/a 147-295 170-192
22

(118,149140,143,165),
(148,154143,180)
(125,139 133,183)

23/2*

122/Exp
122/122

68 (122hm) 68 (122hm)
(68,68),(68,68,86,89),
(68,68,86)

253-272 125-133 8 n/a n/a
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3.2.1.3 Assessment of triplet repeat amplification following MDA

Amplification of the triplet repeat region from single cells following MDA was assessed

in several lymphocytes and PGD spare embryos (table 3.18), in order to determine

whether the whole genome amplification PGD methodology could offer any advantages

in the diagnosis of DM1. Though only a few cells were obtained for MDA and post-

MDA testing, i.e. three cells with the DM1 triplex protocol (protocol number 3) and

eight cells with the mTP-PCR protocol (protocol 5), current results indicate generally

poor amplification. A very high allele dropout rate was detected for both protocols used.

Additionally, there seemed to be a bigger size product following triplet-primed

amplification post-MDA, while in one cell there was a difference in sizing of the

D19S112 marker allele, compared to sizing following standard PCR amplification. An

aliquot of some of the MDA products was used for embryo sexing using AMELXY

oligonucleotide pair (primer details in appendix table A1.1).

Table 3. 18: Single cell amplification post-MDA, using the DM1 triplex and mTP-PCR protocols.
Allele sizes for patients 19 and 22 may be found in appendix table 3A.1. Patient 19 embryo results may
be compared to amplification results as shown on table 3.7. Unexpected peak sizes are indicated in red
colour. The TP-PCR column indicates the size of the last sizeable peak at the 310 genetic analyzer.

Patient
Embryo
number

Cell
number

F-PCR readings

TPPCR DM1 D19S112 APOC2 Diagnosis
XY

Result

1 ADO/180 128/ADO ADO/157 Unaffected Male
2PN/1

2 195 ADO/180 128/ADO

1 148/ADO ADO/133 137/157 Unaffected Male-ADO

2 ADO/180 129/ADO 137/157 Unaffected Male-ADO

3 153 148/ADO ADO/139
2PN/2

4 185 ADO/180 129/ADO

2PN/3 1 No result No result No result Unaffected Male-ADO

1 183 124/180 128/130 Unaffected Female

DM1
patient

19

2PN/4
2 Contamination in cell Unaffected Female

1 173 141/168 128/130 Unaffected MaleDM1
patient

22

1
2 176 ADO/168 128/130 Unaffected Male
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3.2.2 Study of allele transmission from follow-up analysis

3.2.2.1 Affected parent to embryo

In twenty-six PGD cycles where the mother was affected, there were clear results on

diagnosis from 145 maternal transmissions. The non-expanded maternal allele was

transmitted in 68 out of 145 embryos (46.9%), while the expanded allele was

transmitted in the remaining 77 embryos (53.1%). In the remaining 2 PGD cycles,

where the affected parent was the father, there were twelve embryos with diagnosis. The

normal paternal allele was transmitted in 8 out of 12 embryos, and the affected allele

was transmitted in the remaining four embryos.

The difference in the number of affected vs. unaffected embryos from an affected

mother was not statistically significant (NS, binomial test, p=0.5). Additionally,

transmissions from an affected father did not indicate a statistically significant

difference between the number of expanded and non-expanded alleles detected in the

embryos (NS, binomial test, p=0.38). It should be, however, stressed that only a small

number of embryos were available for this analysis (twelve embryos).

3.2.2.2 Unaffected parent to embryo

Similarly, from 26 PGD cycles, there were 118 heterozygous transmissions from an

unaffected father, where the smaller non-expanded allele was transmitted in 66 embryos

(55.9%) and the larger allele in 52 embryos (44.1%) (NS, binomial test, p=0.23).

From the remaining two cycles, there were results from 8 heterozygous normal maternal

transmissions, where the smaller allele was transmitted in three embryos and the larger

allele in five.

If all cases are grouped together, regardless of individual DM1 status and parental sex,

there were 283 transmissions where the smaller allele was transmitted in 145 embryos

(51.2%) and the larger allele (larger normal or expanded allele) in 138 embryos (48.8%)

(NS, binomial test, p=0.7).

Therefore, there was not any preferential transmission of either the smaller or larger

alleles regardless of affected parent sex.
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3.2.2.3 Grouping by repeat allele class

3.2.2.3.1 Sequencing of CTG repeat

The size of the DM1 expansion, estimated by Southern blotting, was known for only

five of the affected individuals undergoing PGD. Primers DMPK2 and DMPK3

(appendix table A1.1) were used to amplify and sequence the DMPK repeat region of

unaffected homozygous individuals. As indicated in figure 3.24, it was possible to

compare the sequencing results with the results following amplification of the repeat

region for these individuals, using primers DMPK1 and DMPK2. The size of the region

outside the repeat, amplified by the DMPK1 and DMPK2 primers, was 107bp. Based on

this, the size of the non-expanded alleles for all remaining patients and their partners

was estimated using the formula:

Number of repeats= (PCR product size-107)/3.

Non-expanded alleles ranged from 5-24 repeats. Thirty-six out of the 69 (52.2%) non-

expanded alleles had 5 CTG repeats, 27/69 alleles (39.1%) had 10-14 repeats, and 6/69

(8.7%) had other repeat size (figure 3.25).

Figure 3. 24: Sizing of the non-expanded DM1 alleles by sequencing using primers DMPK2 and
DMPK3 The y-axis indicates the level of fluorescence emitted by the incorporation of a nucleotide and
the x-axis shows the order in which the nucleotides were added. Lane 1: 5 CTG repeats, Lane 2: 11 CTG
repeats, Lane 3: 12 CAG repeats (lane 3 sequenced from reverse strand). When DNA was amplified from
each of these unaffected homozygous individuals using primers DMPK1 and DMPK2, the size of the
PCR product was 122bp, 140bp and 143bp respectively. Based on this, and depending on the PCR
product size following DMPK1/DMPK2 amplification, it was possible to estimate the number of repeats
in the non-expanded alleles for each individual, whether unaffected heterozygous or affected.
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Figure 3. 25: Distribution of DM1 CTG repeat alleles amongst the referred couples. Affected
individuals are indicated in the >50 CTG repeat category. The distribution of non-expanded alleles is
bimodal with most alleles having 5 repeats and a second mode at 10-14 repeats.

Repeat alleles were grouped into the following categories: (A) 5-11 repeats, (B) 12-18

repeats, (C) 19-37 repeats and (D) > 50 repeats (Imbert et al., 1993). For the

investigation of allele transmission, every embryo where some indication for allele

transmission could be identified was included, even when diagnosis was incomplete.

3.2.2.3.2 Maternal transmissions

From the 16 couples where the female partner was affected, 10 females (17 cycles) were

of genotype A/D, four females (4 cycles) were of B/D genotype and 2 females (5 cycles)

were of genotype C/D.

There were 96 transmissions from A/D females, leading to 42 unaffected (43.75%) and

54 affected embryos (56.25%) (NS, binomial test, p=0.26). For class B/D, allele B was

transmitted in 6 out of 19 embryos and allele D was transmitted in the remaining 13

embryos (NS, binomial test, p=0.17). Finally, out of 30 transmissions in class C/D the

non-expanded allele (C) was transmitted in 20 embryos and the expanded allele in 10

(NS, binomial test, p=0.09).
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One of the unaffected female partners was a class A/A homozygous, while the other

female had a B/C genotype. In this case allele B was transmitted in 3/8 and allele C in

5/8 embryos (figure 3.26).

Figure 3. 26: Transmissions of repeat alleles from mothers of the genotype: A/D (10 females-96
transmissions), B/C (1 female- 8 transmissions), B/D (4 females- 19 transmissions) and C/D (2 females-
30 transmissions)

3.2.2.3.3 Paternal transmissions

There were 16 couples where the male partner was unaffected. In three of the couples (4

cycles) the unaffected partner was homozygous for class A repeat alleles (5 repeats). In

5 couples (6 cycles), the male was heterozygous but both alleles were in the 5-11 repeat

class (genotype A/A heterozygous). In five out of the six cycles, the protocol used

allowed detection of the smaller allele transmission in 11 embryos, whereas the large

allele was transmitted in 13 cases. Eight unaffected males (16 cycles) were of genotype

A/B. Allele A was transmitted in 55 out of 94 embryos (58.5%) and allele B in the

remaining 39 embryos (41.5%) (NS, binomial test, p=0.12).
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The genotypes of the two affected males, patient number 12 and 6, were A/D and B/D

respectively. Allele transmissions were 2/3 allele A and 1/3 allele D for patient 12, 6/9

allele B and 3/9 allele D for patient 6 (figure 3.27).

Figure 3. 27: Transmissions of repeat alleles from males of genotype: A/A heterozygous (5 males- 24
transmissions), A/B (8 males- 94 transmissions), A/D (1 male- 3 transmissions), and B/D (1 male- 9
transmissions)
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3.2.2.4 Affected and unaffected embryo development

Embryos were scored from day 2 to day 4 or 5 of development. For the purposes of

comparing the preimplantation development of affected vs. unaffected embryos, all

rebiopsied embryos and all embryos biopsied later than day 3 were not included in this

analysis, so that all embryos investigated had undergone exactly the same procedures.

Some embryos were scored both on day 4 and day 5, while other embryos were

excluded from this analysis as they had not been morphologically assessed. Data is

summarised in tables 3.19 and 3.20 and figures 3.28 and 3.29.

A general trend for better development for the affected embryos can be observed. The

group of embryos that had two cells biopsied on day 3 and had been assessed on day 4,

table 3.19, indicated a similar number of affected and unaffected embryos. Comparison

of the development of these embryos showed that more affected embryos developed to

the morula or cavitating morula stage by day 4 compared to the number of unaffected

embryos at the same stage (9/26 vs. 1/25) (p<0.05, Fisher’s exact test).

Table 3. 19: Day 4 scoring of affected and unaffected embryos with one, two or three cells biopsied
on day 3. A statistical analysis was performed for the embryos with two cells biopsied. There was a
statistically significant difference in the number of affected embryos growing to the morula/cavitating
morula stage, compared to the number of unaffected embryos (Fisher’s exact test).

Number of embryos at each developmental
stage

DAY 4 SCORING

Number of
diagnosed and

scored embryos

Number of
cells

biopsied
-

Embryo
diagnosis

2-5
cell

6-8
cell

9 cell-
premorula

Morula/
cavitating

morula

1 cell

5 Affected 3 1 1

3 Unaffected 3

2 cells

26 Affected 5 4 8 9

25 Unaffected 5 16 3 1
p<0.05

3 cells

4 Affected 1 2 1

3 Unaffected 1 2
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The biggest number of embryos where day 5 scoring was available came from the group

that had two cells biopsied on day 3. The majority of these (36/54) were affected and

18/54 were unaffected. More affected embryos in the 2-cell biopsy group developed to

the morula and blastocyst stage (21/36, 58.3%) compared to the number of unaffected

embryos (6/18, 33.3%) but this difference was not statistically significant (Fisher’s

exact test, p=0.15). More data is, however, necessary to allow a more comparable

analysis between the two groups.

Similarly, three out of the four affected embryos that had three cells biopsied on day 3,

had become morulae/blastocysts by day 5, compared to 5 out of the 10 unaffected

embryos that had three cells biopsied. Although the numbers are small, the current

analysis indicates that there is no statistically significant difference between the two

groups (Fisher’s exact test, p=0.58).

Table 3. 20: Day 5 scoring of affected and unaffected embryos with one, two or three cells biopsied
on day 3. Comparison of the affected and unaffected embryos that had two or three cells biopsied on day
3 and grew to the morula/cavitating morula or blastocyst/hatching blastocyst stage by day 5 was
performed, however no statistically significant difference was detected for any group (Fisher’s exact test).

Number of embryos at each developmental stage
DAY 5 SCORING

Number of
diagnosed
and scored
embryos

Number of
cells biopsied

-Embryo
diagnosis

2-5
cell

6-8
cell

9 cell-
premorula

Morula/
cavitating

morula

Blastocyst/
Hatching
blastocyst

1 cell

3 Affected 1 1 1

1 Unaffected 1

2 cells

36 Affected 8 5 2 13 8

18 Unaffected 4 2 6 5 1

3 cells

4 Affected 1 3
10 Unaffected 3 2 2 3
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Figure 3. 28: Day 2 (D2) to Day 4 (D4) scoring of affected embryos at the 2-5 cell stage, 6-8 cell
stage, 9cell-premorula, morula/cavitating morula and blastocyst/hatching blastocyst stage. D3pb:
D3 post-biopsy



152

Figure 3. 29: Day 2 (D2) to Day 4 (D4) scoring of unaffected embryos at the 2-5 cell stage, 6-8 cell
stage, 9cell-premorula, morula/cavitating morula and blastocyst/hatching blastocyst stage. D3pb:
D3 post-biopsy
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3.2.3 Summary of findings for section 3.2: DMPK repeat transmission

 Section 3.2.1: TP-PCR sizing

o TP-PCR allows accurate sizing of non-expanded repeat alleles (up to 24

repeats).

o Inability of TP-PCR to differentiate between even strikingly different

expansions.

o Inconsistent amplification of expanded repeats both on genomic DNA

and single cells.

o Blastomere quality has an effect on TP-PCR amplification.

o Potential expansion of the triplet repeat was suggested on analysis of

blastomeres on day 3, compared to amplification from single

lymphocytes, as well as on analysis of blastomeres from the same

embryo between day 3 to day 5 of development.

o Poor TP-PCR amplification and high ADO rates were observed

following MDA.

 Section 3.2.2: DMPK allele analysis in embryos

o No preferential transmission of expanded DMPK alleles.

o No overall preferential transmission of either smaller or larger alleles,

regardless of affected parent sex or repeat size.

o More affected than unaffected embryos developed to the morula/cavitating

morula stage by day 4 (no impact of the number of cells biopsied on embryo

development).
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3.3. Expression work

3.3.1. Sample processing

3.3.1.1 RNA Isolation results

The procedure for extraction of RNA from single cells was initially optimised using

lymphocyte clumps and single lymphocytes. RNA isolation, reverse transcription and

cDNA amplification was performed as described in sections 2.4.2.1 and 2.4.2.2.

Successful cDNA amplification was achieved from single lymphocytes for ACTB and

for a lymphocyte pellet for DMPK (figure 3.30).

Figure 3. 30: cDNA amplification from lymphocyte clumps and single lymphocytes. A) ACTB
amplification was achieved for lymphocyte clumps and single lymphocytes B) DMPK amplification
was only achieved when the whole lymphocyte pellet, following lymphocyte extraction from blood,
was used. HeLa RNA was used as a positive control. Negative controls included a reverse transcription
negative (RNA –ve), which included RNA but where no reverse transcriptase was added, and a PCR
negative, from the cDNA PCR amplification, where no cDNA was added in the tube (methods 2.4.2.2).
The RNA and DNA product sizes are indicated in base pairs (appendix table A1.3). +ve: positive, -ve:
negative.
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Oocyte and embryo samples for microarrays

RNA was isolated from each oocyte and embryo sample (MIIa-MIIe, Ba-Bd and DMa)

using the AllPrep DNA/RNA Micro kit (Qiagen Ltd., UK) (Methods section 2.4.2.1)

and eluted in 14μl of water. The concentration and integrity of eluted RNA was

measured by loading 1μl on a Eukaryote Total RNA Pico Series II chip on the Agilent

Bioanalyzer 2100 (table 3.21, figures 3.31 and 3.32).

Agilent Bioanalyzer analysis can indicate RNA degradation, genomic DNA

contamination, or the presence of other contaminants, by the absence of 28S and/or 18S

peaks, skewing of the 28S peak or the presence of additional peaks or spikes

respectively. The 28S and 18S peaks were detected in all samples, however, they were

lower for the oocytes because of the lower concentration of RNA isolated from these

samples. RNA contamination or fragmentation products were not detected in any of the

samples. High RIN numbers were given by the Agilent Bioanalyzer for all of the

embryo samples, indicating very good RNA quality (methods section 2.5.5.4).

Table 3. 21: Agilent Bioanalyzer RNA concentration readings for each oocyte and embryo sample
prior to RNA amplification. RIN numbers were assigned by the software for all of the embryos and two
of the oocyte samples only, possibly because of the lower RNA concentration of the oocytes.

OOCYTES EMBRYOS

RNA
concentration

(pg/μl)

RIN
number

RNA
concentration

(pg/μl)

RIN
number

MIIa 78 6.2 Ba 393 10

MIIb 65 n/a Bb 191 9.5

MIIc 48 n/a Bc 63 8.7

MIId 50 n/a Bd 246 10

MIIe 52 7 DMa 120 9.3
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Figure 3. 31: Electropherograms and gel-like images indicating RNA integrity for oocytes MIIa-
MIIe, using the Agilent Bioanalyzer. The visual signs of the 28S and 18S ribosomal units, at the
electropherogram (left) and gel-like image (right) are most important in assessing the quality of RNA. No
contamination was detected in samples MIIa-MIIe. The small peak at around 24-29s (100bp) indicates
small RNAs, (shown on the first lane) such as 5S, 5.8S subunits and tRNAs.
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Figure 3. 32: Assessment of RNA Integrity using the Agilent Bioanalyzer for blastocyst stage
embryos Ba-Bd and DMa. The 28S and 18S ribosomal units are clearly detected and no degradation or
contamination can be visualized.
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3.3.1.2 RNA Amplification results

Nine microlitres of each oocyte and embryo RNA sample was converted into labelled

cRNA by a two-round in vitro transcription using the Applied Biosystems, NanoAmp

RT-IVT Labeling kit (section 2.4.2.3). The concentration and integrity of the labelled

cRNA was tested on the NanoDrop® ND-1000 Spectrophotometer as well as on the

Agilent Bioanalyzer using the Eukaryote Total RNA Nano Series II chip (table 3.22).

The Nano chips were loaded quickly and the working area was thoroughly cleaned.

Bioanalyzer and agarose gel images of amplified cRNA are shown in figures 3.33 and

3.34.

Table 3. 22: Concentration of labelled cRNA samples (Nanodrop and Bioanalyzer readings).

RNA concentration

Nanodrop Bioanalyzer Nanodrop Bioanalyzer

ng/μl ng/μl ng/μl ng/μl

OOCYTES EMBRYOS

MIIa 41.76 36 Ba 59.46 51

MIIb 22.89 18 Bb 126.56 91

MIIc 296.12 292 Bc 232.83 207

MIId 140.18 134 Bd 1115.3 1027

MIIe 206.48 184 DMa 88.26 70

http://www.nanodrop.com/
http://www.nanodrop.com/
http://www.nanodrop.com/
http://www.nanodrop.com/
http://www.nanodrop.com/
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Figure 3. 33: Electropherograms of amplified cRNA on the Bioanalyzer Nanochip. A broad hump
was seen starting at approximately 25 seconds for all samples, diminishing between 40-50 seconds.
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Figure 3. 34: Example of agarose gel analysis of amplified cRNA. Image indicates a 1.5% agarose gel
stained with ethidium bromide. Amplified cRNA was run alongside a 0.5-10kb RNA Ladder (Invitrogen,
UK). A smear was seen starting from <500bp.

Samples MIIa and MIIb that gave the lowest concentration readings after two rounds of

amplification were pooled together into 186μl of sample MIIa+b (93μl each) and

concentrated down to approximately 95μl by vacuum centrifugation (Concentrator plus,

Eppendorf UK Limited). The concentration of the new sample MIIa+MIIb was

54.06ng/μl.

3.3.1.3 Microarray hybridization

The recommended amount of labelled cRNA for hybridization on the array is 10 μg.

Table 3.23 indicates the total yield in microgram (μg) of labelled cRNA for each sample

from a final volume of 95μl based on the nanodrop readings of table 3.22 (5 out of the

100μl of the eluted sample were kept separately for agarose gel and/or concentration

assessment).

10 μg, the recommended amount, was available for three oocyte and three blastocyst

samples and was used to perform hybridizations in triplicate for each sample type.

Five microgram of labelled cRNA was hybridized for samples MIIa+b, Ba and DMa.
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Table 3. 23: Total RNA yield (μg) for each amplified sample available for hybridization on the
microarray. Shaded areas indicate a yield lower than the recommended 10μg.

The following microarray experiments were performed (patient/sample details as in
section 2.3.3.2):

 MII oocyte triplicates
o MIIc
o MIId
o MIIe

 Blastocyst stage embryo triplicates
o Bb
o Bc
o Bd

 Three microarray experiments were performed for samples MIIa+b, Ba and

DMa, by hybridizing 5μg of labelled cRNA due to the lower yield achieved.

Following scanning and analysis, the Expression Array System software of the

Chemiluminescent genetic analyzer produced heat map images, where the processed

samples were grouped based on the similarity of the detected signals (figure 3.35).

Additionally, hierarchical clustering analysis provided a visual representation of the

data, illustrating in a dendogram (tree graph) the grouping of genes based on the

similarity between them. The gene clusters that are closest to each other are combined

into a higher-level cluster (Quackenbush, 2001) (figures 3.36, 3.37).

The level of expression was also indicated by colouring based on the log2 (ratio), as

described in methods section 2.5.6. Log2 values close to zero were coloured black,

values greater than zero (up-regulated genes) were coloured red and values lower than

zero (down-regulated genes) were coloured green. The intensity of the colour also

represented the level of differential expression.

OOCYTES cRNA yield (μg) EMBRYOS cRNA yield (μg)

MIIa+MIIb 5.14 Ba 5.65

MIIc 28.13 Bb 12.02

MIId 13.32 Bc 22.12

MIIe 19.62 Bd 105.95

DMa 8.38
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Figure 3. 35: Heat map for triplicates of oocytes and embryo samples of over 10 μg yield. Colour
coding indicates the degree of similarity. Red colour is a sign of high similarity, with bright red
representing the highest degree of similarity between two samples, while green colour indicates
dissimilarity. As seen in the image, embryo samples Bb, Bc and Bd were successfully identified as being
similar between them (red squares). The same applies for the oocyte samples, MIIc, MIId and MIIe (here
labelled MIc, MId and MIe).
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Figure 3. 36: Hierarchical clustering analysis of oocyte and embryo (>10μg yield) replicate array
experiments. The dendogram shows a grouping of all genes based on the similarity between them. The
oocyte and blastocyst samples were grouped separately by the software. Red colour: upregulated genes.
Green colour: downregulated genes. The level of up- or down-regulation is reflected by the intensity of
the colour. Samples MIIc, MIId and MIIe were noted MIc, MId and MIe, when setting the sample list for
analysis and are indicated as such in this figure produced by the instrument.
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Figure 3. 37: Hierarchical clustering analysis of all array elements (addition of samples MIIab
(labelled MIab in figure), Ba and DMa, to the previous dendogram). Overall, all oocyte and embryo
samples were grouped separately. The DM1 affected embryo sample (circled) showed the least similarity
compared to the remaining embryo samples.
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3.3.2 Gene expression profiling of human oocytes and embryo blastocysts

3.3.2.1 Determining the level of gene expression

The oocyte and blastocyst samples were analyzed independently and genes in each

sample type were classified into groups of high, medium and low expression. In order to

calculate the cut-offs for each category, the top and bottom 5% of all detected signal

values were eliminated at first, so as to avoid any outlier values. Following that, the

number of detected probes was equally split into three groups according to the signal

value as indicated in table 3.24.

Table 3. 24: Oocyte and blastocyst signal intensity units for high, medium and low expression level

Expression
level

Oocyte signal
Intensity units
(probes/ genes)

Blastocyst signal
Intensity units
(probes/ genes)

High >22686
(4088/3870)

> 29526.36
(4591/4303)

Medium 6016.72-
22681.77

(3504/3326)

7254.45-
29525.33

(3935/3700)
Low < 6015.22

(4087/3788)
< 7253.86

(4592/4282)

3.3.2.2 Assessment of microarray results

The level of expression of cumulus cell-specific genes, kit ligand (KITLG),

steroidogenic acute regulator (STAR), gremlin1 (GREM1), prostaglandin-endoperoxide

synthase 2 (PTGS2), pentraxin-related gene (PTX3), amphiregulin (AREG) and

epiregulin (EREG) was investigated in order to exclude contamination from RNA

belonging to cumulus cells (Kocabas et al., 2006;Menezo, Jr. et al., 2007).

KITLG, STAR, GREM1, PTX3, AREG, and EREG were not detected in any of the

oocyte or embryo replicates. PTGS2 was also absent from the oocyte samples and gave

a very low signal (841 intensity units) in only one of the embryo replicates (Bd).
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Further initial analysis involved the investigation of several genes with known

expression levels in oocytes and embryos, as reported by other investigators, as a way of

assessing the accuracy of these results. For example, the results confirmed higher

expression of programmed cell death 5 (PDCD5) and adenomatosis polyposis coli (APC)

in oocytes compared to blastocysts (fourteen and four times higher respectively), and

higher expression of H2A histone family, member Z (H2AFZ) and beta actin (ACTB) in

the blastocyst samples, compared to the oocytes (showing 180 times and 13 times fold

change respectively). In addition, RB1 was not detected in the oocyte samples, but

showed medium expression level (12700 intensity units) in the blastocyst samples

(Dobson et al., 2004;Wells et al., 2005b).

3.3.2.3 Global characteristics of human oocyte and human blastocyst gene
expression

The total number of probes detected after sorting the microarray data by signal-to-noise

ratio and flags, as described in Methods section 2.5.6, were 14662 (MIIc), 16821 (MIId)

and 15062 (MIIe) for the oocyte samples and 15652 (Bb), 17654 (Bc) and 16011 (Bd)

for the embryo samples. Only genes where probes were consistently detected in all three

replicates of a sample were taken as expressed. Overall, an average signal value from

three replicates was available for 11679 probes for the oocytes and 13118 probes for the

blastocyst samples.

The genes detected in the oocyte and blastocyst samples were mapped to the

PANTHER database biological process categories and compared to the list of genes

available on the microarray (using gene expression tools of the PANTHER database).

The proportion of genes belonging to the protein biosynthesis, protein metabolism and

nucleic acid metabolism categories was greater than statistically expected in both

sample types (p<0.001). Other significantly over-represented categories included cell

cycle, DNA metabolism, DNA repair, DNA replication, oxidative phosphorylation,

translational regulation, mRNA splicing, rRNA metabolism (p<0.001).

The oocyte and blastocyst genes were listed by level of expression. The 50 genes with

highest expression in oocytes and blastocysts are listed in tables A3.1 and A3.2 of

appendix 3. These were investigated in more detail as indicators of the most important

processes involved in each developmental stage. A summary of the most represented
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biological function categories from the fifty genes of highest expression is shown in

table 3.25. Oocytes and blastocysts shared only eight probe IDs, within the fifty genes

of highest expression (table 3.26).

Table 3. 25: Classification by biological process of 50 genes with highest gene expression in the
human MII oocyte and human blastocyst

Percentage of genes
Biological Process Oocyte Blastocyst
Biological process unclassified 27.9 6.9
Protein metabolism and modification 26.5 69
Nucleoside, nucleotide and nucleic acid
metabolism

11.8 5.2

Cell cycle 10.3 -
Transport 4.4 -
Cell proliferation and differentiation 4.4 3.4
Developmental processes 2.9 -
Intracellular protein traffic 2.9 5.2
Cell structure and motility 2.9 1.7
Carbohydrate metabolism 1.5 1.7
Homeostasis 1.5 -
Immunity and defense 1.5 6.9
Oncogenesis 1.5 -

Table 3. 26: List of genes shared between the top 50 of highest signal in both oocyte and embryo
samples.

Gene
Symbol

Gene
Name

Biological process Oocyte
Signal
Position

Blastocyst
Signal
Position

FLJ40448 Unassigned Unclassified 5 13
GPR103 G protein-coupled

receptor 103
G-protein mediated
signalling

7 24

RPLP1 ribosomal protein,
large, P1

Protein biosynthesis 9 14

HNRPA1 heterogeneous
nuclear
ribonucleoprotein
A1

mRNA splicing 12 26

RPL7A ribosomal protein
L7a

Protein biosynthesis 15 34

Unassigned Unassigned Biological process
unclassified

33 29

LOC440055 Unassigned Protein biosynthesis 52 28
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3.3.2.4 Differential expression

There was a statistically significant difference in gene expression (p<0.05) between

oocytes and blastocysts for 5243 probes (4910 genes). The majority of the differentially

expressed genes were of unclassified biological function (37.3%) followed by genes

belonging to the protein metabolism and modification class (18.7%), and the nucleic

acid metabolism class (16.7%).

Overall, 2591 probes were underexpressed, and 2652 probes were overexpressed in the

blastocyst compared to the oocyte (based on log2 ratios, as previously described). Most

genes with higher expression in the blastocyst belonged to the protein metabolism and

modification class, with the majority involved in protein biosynthesis. On the other hand,

genes showing higher expression in the oocyte sample were mostly involved in nucleic

acid metabolism, mainly mRNA transcription (figures 3.38-3.40).

0 500 1000 1500

Biological process unclassified

Protein metabolism and modification

Nucleic acid metabolism

Intracellular protein traffic

Signal transduction

Transport

Developmental processes

Cell structure and motility

Immunity and defense

Cell cycle

Apoptosis

Higher in blastocyst

Higher in oocyte

Figure 3. 38: Genes differentially expressed in the blastocyst compared to the oocyte sample
(p<0.05). Genes were identified using the Celera dataset and grouped per PANTHER biological process
category.x axis: number of genes, y axis: PANTHER biological process

Number of genes
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Figure 3. 39: Sub-categories of the protein metabolism and modification biological process. Most
genes showing higher expression in the blastocyst are involved in protein biosynthesis. Most protein
modification genes were downregulated at the blastocyst stage. x axis: number of genes, y axis:
PANTHER biological process
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Pre-mRNA processing
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Figure 3. 40: Sub-categories of the nucleic acid metabolism biological process. The majority of genes
involved in mRNA transcription showed higher expression in the oocyte. Genes involved in pre-mRNA
processing, mostly in mRNA splicing, showed higher expression at the blastocyst stage. x axis: number of
genes, y axis: PANTHER biological process
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When this data were further limited to those probes that showed a 10-fold or higher

level change, 1693 probes were identified. Of these, 722 (679 genes) were

overexpressed (log2(ratio)>3.32) and 970 probes (918 genes) were underexpressed

(log2(ratio) < -3.32) in the blastocyst compared to the oocyte.

The 10-fold change genes were analyzed based on molecular function. The majority of

blastocyst upregulated genes belonged to the nucleic acid binding category (131 genes)

and of these most were annotated “ribosomal proteins”, “other RNA-binding proteins”,

“translation factors”, “histone” or “helicase” (figure 3.41).

Figure 3. 41: Grouping of 131 nucleic acid binding category genes (128 function hits) that were 10-
fold up-regulated in the human blastocyst.

The majority of blastocyst downregulated genes were also of “nucleic acid binding”

molecular function (105 genes), and most were annotated “other DNA-binding protein”,

“nuclease” and “chromatin/chromatin-binding protein” (figure 3.42). The second

biggest category of downregulated genes was the “transcription factor” category,

comprising 100 genes, 53% of them being “zinc-finger transcription factors”.
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Figure 3. 42: Grouping of 105 nucleic acid binding genes (80 hits) 10-fold down-regulated in the
blastocyst

3.3.2.5 Oocyte and blastocyst-specific genes

Genes expressed in oocytes only (maternal) or blastocysts only (embryonic) were

identified. Gene search was performed using the Celera dataset gene ID (PANTHER

database). There were 8772 genes with expression common to MII oocytes and

blastocysts, 1909 genes were expressed in oocytes only and 3122 genes in blastocysts

only (figure 3.43).

Figure 3. 43: Identification of genes unique in oocytes and blastocysts. Genes were identified by their
Celera dataset ID.
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The majority of genes uniquely expressed in oocytes, when grouped by biological

process, were annotated unclassified (45.1%), signal transduction (14.1%), nucleic acid

metabolism (12.3%), protein metabolism (10%) and developmental processes (9.8%).

When grouped by molecular function most genes were either of unclassified function

(43.7%), transcription factors (8%) or involved in nucleic acid binding (7.6%). Finally,

when analyzed by PANTHER pathway, oocyte-specific genes mostly belonged to the

following pathways: Wnt signaling pathway, Inflammation mediated by chemokine and

cytokine signalling pathway, Huntington disease, Interleukin signaling pathway, PDGF

signaling pathway, Angiogenesis, Integrin signaling pathway, TGF-beta signaling

pathway, Cadherin signaling pathway, B cell activation and G-protein signaling

pathway.

Similarly, blastocyst-specific genes, when grouped by biological process, were

annotated unclassified (42.9%), nucleic acid metabolism (15%), protein metabolism

(12.1%), signal transduction (10.6%) and developmental processes (8%). By molecular

function 40.7% of genes were unclassified, 12.9% had a role in nucleic acid binding and

8.7% were transcription factors. Important pathways of blastocyst-specific genes were

annotated in the following order: Wnt signaling pathway, Interleukin signaling pathway,

integrin signalling pathway, inflammation mediated by chemokine and cytokine

signalling pathway, angiogenesis, PDGF signaling pathway, TGF-beta signalling

pathway, EGF receptor signaling, FGF signaling pathway and p53 pathway.

Therefore, the main differences in gene expression that were generally observed

between oocytes and embryos were also reflected in the analysis of oocyte and

blastocyst-specific gene expression. Overall, the Wnt signalling pathway was the most

represented in both oocyte and blastocyst-specific genes. Other oocyte pathways,

particularly the inflammation mediated by chemokine and cytokine signaling pathway

showed expression of a similar number of genes as the Wnt signalling pathway.

In order to identify which genes are most significant at each developmental stage, the

oocyte and blastocyst-specific genes were then separately grouped by expression level

(as in table 3.24). There were 349 of the oocyte-specific genes and 431 of the

blastocyst-specific genes that showed high expression levels listed in appendix 3 tables

A3.3 and A3.4. Figures 3.44 and 3.45 allow a direct comparison of these, both by

biological process and molecular function. On analysis by PANTHER pathway of high
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expression genes, the main pathway for MII oocytes remained the Wnt signaling

pathway, whereas the high expression blastocyst specific genes belonged to the integrin

signaling pathway, cytoskeletal regulation by Rho GTPase, angiogenesis and PDGF

signaling pathway. A summary of sample-specific gene expression, with a focus on

highly expressed genes is given in tables 3.27 and 3.28.

Figure 3. 44: Grouping by A) PANTHER Biological process and B) PANTHER Molecular function
of 349 high expression genes unique in oocytes (categories numbered clock-wise). Percentage of gene
hits per category against total number of genes is indicated in brackets. Categories not detected in the
high expression blastocyst-specific genes are underlined. The five biggest categories are indicated in bold
type.
A) Biological process. 1: Unclassified (42.4%) 2.Carbohydrate metabolism (2%). 3. Cell adhesion

(4.6%). 4. Cell cycle (6.3%). 5. Cell proliferation and differentiation (3.7%). 6. Cell structure and
motility (6.6%). 7. Coenzyme and prosthetic group metabolism (0.6%). 8. Developmental processes
(12.9%). 9. Homeostasis (1.4%). 10. Immunity and defense (4.6%). 11. Intracellular protein
trafficking (5.4%). 12. Lipid, fatty acid and steroid metabolism (3.4%). 13. Muscle contraction
(1.7%). 14. Neuronal activities (2.6%). 15. Nucleoside, nucleotide and nucleic acid metabolism
(12%). 16. Oncogenesis (2%). 17. Other metabolism (1.7%). 18. Phosphate metabolism (0.6%). 19.
Protein metabolism and modification (8.6%). 20. Protein targeting and localization (0.9%). 21.
Sensory perception (1.4%). 22. Signal transduction (15.5%). 23. Sulfur metabolism (1.1%). 24.
Transport (6%). 25. Amino acid metabolism (1.1%). 26. Apoptosis (2.3%)

B) Molecular function. 1. Unclassified (43.3%). 2. Nucleic acid binding (7.4%). 3. Oxidoreductase
(2%). 4. Phosphatase (2.3%). 5. Protease (1.4%). 6. Receptor (8.3%). 7. Select calcium binding
protein (1.1%). 8. Select regulatory molecule (3.7%). 9. Signaling molecule (4.6%). 10. Synthase and
synthetase (0.3%). 11. Transcription factor (7.2%). 12. Transfer/carrier protein (0.6%). 13.
Transferase (2.6%). 14. Transporter (2.9%). 15. Cell adhesion molecule (2.9%). 16. Cell junction
protein (0.6%). 17. Chaperone (0.6%). 18. Cytoskeletal protein (5.2%). 19. Defense/immunity
protein (1.4%). 20. Extracellular matrix (2.6%). 21. Hydrolase (4%). 22. Ion channel (1.7%). 23.
Isomerase (1.1%). 24. Kinase (3.7%). 25. Ligase (0.6%). 26. Lyase (0.9%). 27. Membrane traffic
protein (0.6%). 28. Miscellaneous function (3.7%).

BA
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Figure 3. 45: Grouping by A) PANTHER Biological process and B) PANTHER Molecular function
of 431 high expression genes unique in human blastocysts (categories numbered clock-wise).
Percentage of gene hit per category against total number of genes is indicated in brackets. Categories not
detected in high expression oocyte-specific genes are underlined. The five biggest categories are indicated
in bold type.
A) Biological process. 1: Unclassified (31.3%) 2.Blood circulation and has exchange (0.5%). 3.

Carbohydrate metabolism (5.3%). 4. Cell adhesion (0.9%). 5. Cell cycle (3.9%). 6. Cell proliferation
and differentiation (2.8%). 7. Cell structure and motility (11.8%). 8. Coenzyme and prosthetic group
metabolism (2.3%). 9. Developmental processes (12.5%). 10. Electron transport (2.1%). 11.
Homeostasis (0.7%). 12. Immunity and defense (3.2%). 13. Intracellular protein trafficking (5.3%).
14. Lipid, fatty acid and steroid metabolism (4.2%). 15. Miscellaneous (0.9%). 16. Neuronal
activities (2.1%). 17. Nucleoside, nucleotide and nucleic acid metabolism (15.1%). 18.
Oncogenesis (3%). 19. Other metabolism (2.8%). 20. Protein metabolism and modification
(12.5%). 21. Protein targeting and localization (1.9%). 22. Sensory perception (0.7%). 23. Signal
transduction (9.3%). 24. Sulfur metabolism (0.2%). 25. Transport (5.3%). 26. Amino acid
metabolism (1.4%). 27. Apoptosis (2.3%).

B) Molecular function. 1. Unclassified (30.9%). 2. Nucleic acid binding (16.2%). 3. Oxidoreductase
(4.6%). 4. Phosphatase (1.4%). 5. Protease (1.2%). 6. Receptor (2.8%). 7. Select calcium binding
protein (2.1%). 8. Select regulatory molecule (4.2%). 9. Signaling molecule (2.8%). 10. Synthase and
synthetase (1.9%). 11. Transcription factor (6.3%). 12. Transfer/carrier protein (2.6%). 13.
Transferase (5.8%). 14. Transporter (2.6%). 15. Cell adhesion molecule (0.5%). 16. Cell junction
protein (0.7%). 17. Chaperone (0.5%). 18. Cytoskeletal protein (11.1%). 19. Defense/immunity
protein (0.9%). 20. Extracellular matrix (0.2%). 21. Hydrolase (2.6%). 22. Ion channel (0.7%). 23.
Isomerase (1.4%). 24. Kinase (2.3%). 25. Ligase (1.2%). 26. Lyase (0.9%). 27. Membrane traffic
protein (2.3%). 28. Miscellaneous function (10%).

BA
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Table 3. 27: Grouping of oocyte and blastocyst-specific gene categories by PANTHER biological process. Bold type indicates points of discussion.

Biological Process Main represented gene categories

Oocyte-specific genes High expression oocyte-specific genes
Blastocyst-specific
genes

High expression blastocyst-specific
genes

Carbohydrate metabolism Other polysaccharide metabolism Glycogen metabolism, glycolysis, other Other polysaccharide
metabolism

Glycolysis

Cell cycle Cell cycle control Cell cycle control, mitosis (chromosome
segregation)

Cell cycle control,
mitosis

Mitosis (chromosome segregation)

Cell structure and motility Cell structure Cell motility, cell structure Cell structure Cell structure
Coenzyme and prosthetic group
metabolism

Vitamin/cofactor transport Vitamin/cofactor transport, other Coenzyme metabolism,
Vitamin/cofactor
transport

Porphyrin metabolism, vitamin
metabolism

Developmental processes Ectoderm development Ectoderm development Ectoderm development Ectoderm development
Electron transport Other n/a Oxidative

phosphorylation
Oxidative phosphorylation

Homeostasis Calcium ion homeostasis, other Calcium ion, growth factor homeostasis Other Other
Immunity and defense Stress response Stress response, blood clotting Stress response Blood clotting,

detoxification,macrophage mediated
immunity, stress response

Intracellular protein trafficking Endocytosis Endocytosis, exocytosis Endocytosis (general
vesicle transport)

General vesicle transport

Lipid, fatty acid and steroid
metabolism

Lipid metabolism Lipid, phospholipid metabolism Steroid metabolism
(cholesterol)

Steroid metabolism (cholesterol)

Neuronal activities Synaptic transmission Synaptic transmission Synaptic transmission Other
Nucleoside, nucleotide and nucleic acid
metabolism

mRNA transcription (regulation) mRNA transcription (regulation) mRNA transcription
(regulation)

mRNA transcription (regulation)

Oncogenesis Tumor suppressor Oncogene, tumor suppressor Other Tumor suppressor, other
Protein metabolism and modification Protein modification Protein modification (phosphorylation) Protein modification

(phosphorylation)
Protein biosynthesis, protein
modification (phosphorylation)

Protein targeting and localization Protein targeting Asymmetric protein localization Protein targeting Protein targeting
Signal transduction Cell surface receptor mediated

signal transduction
Cell surface receptor mediated signal
transduction (G-protein mediated)

Cell surface receptor
mediated signal
transduction (G-protein)

Cell communication (cell-adhesion
mediated signaling)

Transport Ion transport (cation) Ion transport (cation) Ion transport (cation) Ion transport (cation)
Amino acid metabolism Amino acid transport Other metabolism Amino acid catabolism Amino acid biosynthesis, catabolism
Apoptosis Inhibition of apoptosis Inhibition of apoptosis Induction of apoptosis Inhibition of apoptosis
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Table 3. 28: Grouping of oocyte and blastocyst-specific gene categories by PANTHER molecular function. Bold type indicates points of discussion

Molecular Function Main represented gene categories

Oocyte-specific genes
High expression oocyte-specific
genes

Blastocyst-specific genes
High expression blastocyst-specific
genes

Nucleic acid binding Other RNA-binding protein Chromatin/chromatin-binding
protein

Ribosomal protein Other RNA-binding protein

Oxidoreductase Dehydrogenase Dehydrogenase, other oxidoreductase Dehydrogenase Dehydrogenase
Phosphatase Protein phosphatase Protein phosphatase Protein phosphatase Other phosphatase
Protease Serine protease Serine protease Serine protease Metalloprotease
Receptor Other receptor (G-protein) Other receptor G-protein coupled receptor Other receptor
Select calcium binding protein Calmodulin related protein Calmodulin related protein Calmodulin related protein Calmodulin related protein
Select regulatory molecule G-protein modulator G-protein, kinase modulator G-protein modulator (G-protein) G-protein, kinase modulator
Signaling molecule Other signaling molecule Growth factor Other signaling molecule Other signaling molecule
Synthase and synthetase Synthase and synthetase Synthase (100%) Synthase Synthetase
Transcription factor Zinc finger transcription factor Zinc finger transcription factor Zinc finger transcription factor Zinc finger transcription factor
Transfer/carrier protein Other transfer/carrier protein Mitochondrial carrier protein Other transfer/carrier protein Other transfer/carrier protein
Transferase Glycosyltransferase Acyltransferase Methyltransferase Methyltransferase
Transporter Other transporter Other transporter Other transporter Other transporter
Cell adhesion molecule Other cell adhesion molecule Other cell adhesion molecule Other cell adhesion molecule Other cell adhesion molecule
Cell junction protein Tight junction, other Tight junction Tight junction Gap junction
Chaperone Other chaperones Other chaperones Other chaperones Chaperonin
Cytoskeletal protein Microtubule family cytoskeletal

protein
Microtubule family cytoskeletal
protein

Intermediate filament Intermediate filament

Defense/immunity protein Immunoglobulin, other Complement component Immunoglobulin receptor family
member

Antibacterial response protein,
complement component, other

Extracellular matrix Extracellular matrix glycoprotein Extracellular matrix glycoprotein Extracellular matrix glycoprotein Extracellular matrix linker protein
Hydrolase Lipase, other hydrolase Other hydrolase Other hydrolase Other hydrolase
Ion channel Voltage-gated ion channel Voltage-gated ion channel Voltage-gated ion channel Voltage-gated ion channel
Isomerase Epimerase/racemase Other isomerase Epimerase/racemase, other

isomerase
Other isomerase

Kinase Protein kinase Protein kinase Protein kinase Protein kinase
Ligase Ubiquitin-protein ligase Ubiquitin-protein ligase Ubiquitin-protein ligase Other ligase, Ubiquitin-protein ligase
Lyase Cyclase Decarboxylase Dehydratase Dehydratase
Membrane traffic protein Membrane traffic regulatory

protein
Membrane traffic regulatory protein,
SNARE protein

Membrane traffic regulatory
protein

Membrane traffic regulatory protein

Miscellaneous function Other Other Structural protein Structural protein
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3.3.3 Investigation of potential housekeeping gene expression

Housekeeping genes (HKG) investigated in human oocytes and embryos included:

 Genes generally involved in maintaining basic cell functions

 Genes common in three published datasets investigating HK gene expression on

differentiated adult tissue, and

 Genes stably expressed in undifferentiated and differentiating human embryonic

stem cells (hESCs)

3.3.3.1 Genes maintaining basic cell functions

The expression of 411 housekeeping genes involved in transcription, transport,

translation and proteolysis was investigated in MII oocytes and blastocyst stage

embryos, with a focus on those genes with a significantly different expression between

the two samples or higher than 10 times fold change (411 genes reported by Zhu et al.,

2008).

For 164 genes the detected signal value showed a statistically significant difference

between oocytes and blastocysts. Most genes (119) were up-regulated in the blastocyst,

while 45 of them were down-regulated. Although most categories indicated both up-

and down-regulated genes, in certain groups, tRNA synthetase, hnRNP and snRNP, all

genes with a significant difference were found up-regulated in the blastocyst (table

3.29).

In contrast, genes belonging to the nuclear pore complex category were found down-

regulated in the blastocyst sample. The genes with over a 10-fold positive or negative

difference in expression between the two samples are also indicated in table 3.29. The

SFRS2 gene, involved in mRNA splicing, is highlighted (table 3.29) for being over 100

times upregulated in the blastocyst sample.
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3.3.3.2 Genes identified as HKG from adult tissue studies

Further analysis involved other genes commonly considered as housekeeping genes

based on information from three previously published datasets investigating HKG in

differentiated adult tissue. Although each dataset provided a list of approximately 500

genes, only 155 were shared between them. The current investigation focused on these

common genes (list kindly provided by Dr. Zhu, personal communication), excluding

those, mainly ribosomal proteins, that had already being included in the previous search

of 411 genes. A total of 125 genes were investigated. Table 3.30 summarizes results. As

previously, the >10-fold up and down-regulated genes are indicated. Similarly, the

majority of genes with differential expression were up-regulated in the blastocyst

sample. Commonly used genes, ACTB and GAPDH, showed over a 10-fold difference

in expression between the two samples.
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Table 3. 29: Investigation of 411 HKGs in human MII oocytes and blastocyst stage embryos. Each
column indicates the number of probe ID and/or number of genes detected. The human oocyte was used
as the control. Genes up-regulated and down-regulated in the human blastocyst are indicated here. +: up-
regulated genes, -: down-regulated genes, FC: fold change

FC >10
(gene symbol)

Gene category
(number of genes)

Oocytes
(number of

probe ID hits/
number of

genes detected)

Blastocysts
(number of

probe ID hits/
number of

genes detected)

p<0.05
(probe ID/

genes
detected)

(number of
genes +/-)

+ -

Transcription pre-
initiation complex

(40)
32/31 32/30

14/14
(5+/9-)

n/a
CDK7,
GTF2B

Transcription elongation
complex

(17)
15/15 17/15

12/10
(7+/3-)

SUPT4H1,
TCEB2, RDBP

CCNT1

Essential splicing factor
(31)

29/24 33/26
13/12

(11+/1-)
SFRS2, SFRS3,
YBX1

n/a

hnRNP
(18)

18/16 21/17
9/9
(9+)

HNRPA3 n/a

snRNP
(32)

29/29 31/31
12/12
(12+)

n/a n/a

Capping related genes
(5)

4/3 5/4
1/1
(1+)

n/a n/a

Cleavage and
polyadenylation complex

(13)
12/10 13/11

6/6
(4+/2-)

FLJ12529,
COLEC12

n/a

Nuclear Pore complex (28) 25/23 25/23
12/11
(11-)

n/a
NUP35,
NUP133

Translation initiation,
elongation and

termination factor
(37)

34/31 40/36
24/22

(20+/2-)

ETF1, E1F5,
E1F4A1,
E1F3S1,
E1F4EBP1

n/a

tRNA synthetase
(20)

17/17 19/19
12/12
(12+)

AARS, WARS n/a

Cytosolic ribosome
(82)

102/68 103/71
31/26

(24+/2-)
MRPS12,
RPL34

n/a

Ubiquitin mediated
proteolysis

(45)
34/33 32/31

15/14
(4+/10-)

CDC23, TCEB2

HERC1,
SKP2,
BTRC,
SKP1A

Proteasome
(43) 31/31 37/35

15/15
(10+/5-)

PSMC3, PSME2 n/a

Total: 411 382/331 408/349
176/164

(119+/45-)
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Table 3. 30: Investigation of 125 HKGs genes, common in three HKG datasets, in human oocytes
and blastocyst stage embryos. +: upregulated genes, -: downregulated genes, FC: fold change

Overall, out of the 536 HKGs investigated (411+125 genes, sections 3.3.3.1 and 3.3.3.2),

427 were detected in the oocyte and 452 in the blastocyst. For 277 of HKGs detected in

the oocytes (64.87%), and 355 of the blastocyst genes (78.5%), the probe signal

detected on analysis was high. 90.9% of the high signal oocyte HKGs (252 genes)

remained of high signal in the blastocyst samples. The genes that maintained a high

signal in both oocytes and blastocysts are listed in table A3.5 of appendix 3.

Figure 3.46 indicates the expression levels in oocytes and blastocysts of several of the

commonly used housekeeping genes and figure 3.47 lists genes found in other studies to

be stably expressed during preimplantation development of the human and other

species’ embryos, and the corresponding results from the analysis of human oocytes and

blastocysts in this study. B2M (a major histocompatibility complex antigen),

HIST1H2AA and HIST3H2A (histones) were only detected at the blastocyst stage.

FC >10
(gene symbol)

Gene
category
(number of genes)

Oocytes
(number of

probe ID hits/
number of genes

detected)

Blastocysts
(number of

probe ID hits/
number of

genes detected)

p<0.05

(probe ID/
genes detected)

(number of
genes +/-)

+ -

125 other common
HK genes

105/96 115/103 52/47
(36+/11-)

ACTB,
ALDOA,
ATF4,
ENO1,

GAPDH,
GPX4,

MRPS12,
MYL6,
NCL,

NONO,
RPL34,

TMSB10,
TUBB2A

FKBP1A
USP11
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Figure 3. 46: Expression levels of selected commonly used HKGs in the human oocyte and
blastocyst. **p<0.01, ***p<0.001

Figure 3. 47: Signal values of genes found to be stably expressed in different species. Blue brackets:
human. Red brackets: mouse. Green brackets: rabbit. Orange brackets: bovine.
*p<0.05, **p<0.01, ***p<0.001
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All detected genes in the parametric comparison were listed based on their differences

in expression between the two samples. The smallest differences in expression levels

were observed for the following 20 genes, most of which are involved in protein and

nucleic acid metabolism biological processes (table 3.31).

Table 3. 31: Genes showing similar expression levels between the human MII oocytes and
blastocysts

Gene Symbol Gene Name

CTNNB1 catenin (cadherin-associated protein), beta 1, 88kDa

EEF1D eukaryotic translation elongation factor 1 delta (guanine nucleotide
exchange protein)

ASCC3L1 activating signal cointegrator 1 complex subunit 3-like 1

WDR57 WD repeat domain 57 (U5 snRNP specific)

PCBP2 poly(rC) binding protein 2

RPL23A ribosomal protein L23a

GTF2A2 general transcription factor IIA, 2, 12kDa

SFRS5 splicing factor, arginine/serine-rich 5

RPL28 ribosomal protein L28

POLR2F polymerase (RNA) II (DNA directed) polypeptide F

CLN5 ceroid-lipofuscinosis, neuronal 5

RPL37A ribosomal protein L37a

TCEB1 transcription elongation factor B (SIII), polypeptide 1 (15kDa, elongin C)

PFDN5 prefoldin 5

CARS cysteinyl-tRNA synthetase

EIF3S5 eukaryotic translation initiation factor 3, subunit 5 epsilon, 47kDa

SNRPD3 small nuclear ribonucleoprotein D3 polypeptide 18kDa

PTDSS1 phosphatidylserine synthase 1

RPS23 ribosomal protein S23

ARF1 ADP-ribosylation factor 1

The first twenty signals of highest intensity out of all investigated genes in both oocytes

and blastocysts are shown in table 3.32 in order of expression from high to low.

Amongst these, eight genes were common between the two samples.
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Table 3. 32: List of twenty highest signal probes detected in the human MII oocyte and embryo
blastocyst. Bold type highlights genes present in both sample lists.

Oocyte Blastocyst

Gene
Symbol Gene Name

Gene
Symbol Gene Name

RPLP1 ribosomal protein, large, P1 RPS4X ribosomal protein S4, X-linked

RPLP1 ribosomal protein, large, P1 RPS11 ribosomal protein S11

RPL7A ribosomal protein L7a RPS11 ribosomal protein S11

H3F3B H3 histone, family 3B (H3.3B) RPLP1 ribosomal protein, large, P1

UBB ubiquitin B RPLP1 ribosomal protein, large, P1

SKP2
S-phase kinase-associated
protein 2 (p45) PABPC1

poly(A) binding protein,
cytoplasmic 1

CDK7

cyclin-dependent kinase 7
(MO15 homolog, Xenopus
laevis, cdk-activating kinase) PRDX1 peroxiredoxin 1

EEF1A1
eukaryotic translation elongation
factor 1 alpha 1 RPL24 ribosomal protein L24

RPS12 ribosomal protein S12 ENO1 enolase 1, (alpha)

RPS12 ribosomal protein S12 RPS27A ribosomal protein S27a

RPS11 ribosomal protein S11 RPS27A ribosomal protein S27a

RPS11 ribosomal protein S11 EEF2
eukaryotic translation elongation
factor 2

RPL41 ribosomal protein L41 EEF2
eukaryotic translation elongation
factor 2

EEF1A1
eukaryotic translation elongation
factor 1 alpha 1 RPS7 ribosomal protein S7

SNRPE|
SNRPEL1

small nuclear ribonucleoprotein
polypeptide E|small nuclear
ribonucleoprotein polypeptide
E-like 1 RPLP2 ribosomal protein, large, P2

RPLP2 ribosomal protein, large, P2 RPL18 ribosomal protein L18

RPL41 ribosomal protein L41 RPL18 ribosomal protein L18

RPS23 ribosomal protein S23 RPL5 ribosomal protein L5

EEF2
eukaryotic translation
elongation factor 2 RPL7A ribosomal protein L7a

EEF2
eukaryotic translation
elongation factor 2 ACTB actin, beta

3.3.3.3 Genes identified as HKG from undifferentiated and differentiating stem cell
lines

Synnergren et al., (2007), identified the 24 most stably expressed genes in

undifferentiated and early differentiating hESCs and the expression of these was

investigated in our oocyte and embryo samples. Thirteen out of these 24 genes were

detected (table 3.33). For four of them, underlined in the table, there was a significant

difference (adj. p<0.05) in the signal detected between the two samples. FLJ20186 and
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HDDC2, both of uncharacterized molecular function, were over 10-fold upregulated in

the blastocyst sample.

Table 3. 33: Level of expression in the human oocyte and blastocyst for 13 of the 24 most stably
expressed genes in differentiating hESCs. Underlined gene symbols indicate a statistically significant
difference. The human MII oocyte was used as the control. +FC: up-regulated in the blastocyst, compared
to the MII oocyte, -FC:down-regulated in the blastocyst, compared to the MII oocyte. Bold type indicates
genes that were >10-fold up-regulated.ND: no statistically significant difference observed

Expression level

Gene ID
(Celera ID provided

unless otherwise
indicated)

Gene
Symbol

Gene Name Oocyte Blastocyst
Parametric
comparison
(adj.p value)

hCG32850 CDC14A
CDC14 cell division cycle 14

homolog A

hCG36828 KIAA0141 KIAA0141

hCG1811676 FLJ20186
hypothetical protein

FLJ20186
Low High <0.01,+FC

hCG1983988 RPL7 ribosomal protein L7

hCG14859 NUBP1 nucleotide binding protein 1 Medium High ND

hCG1646292 FLJ33977 DTW domain containing 2

hCG19988 HDDC2 HD domain containing 2 Medium High <0.01,+FC

hCG41427 PLEKHA1
pleckstrin homology domain

containing, family A
High High <0.05,-FC

hCG40180 RIPK3
receptor-interacting serine-

threonine kinase 3
High Medium ND

hCG1999395 RND1 Rho family GTPase 1 Medium Low <0.01, -FC

hCG23905 CPNE2 copine II

hCG1810870 POLE
polymerase (DNA directed),

epsilon

hCG32054 VSNL1 visinin-like 1

hCG2033817 GTF2H3
general transcription factor
IIH, polypeptide 3, 34kDa

hCG18037 ELN elastin n/a Low ND

Entrez: 5728 PTEN
phosphatase and tensin

homolog
High High ND

hCG22397 CA6 carbonic anhydrase VI

hCG23039 SLC5A11
solute carrier family 5

(sodium/glucose
cotransporter), member 11

High n/a

hCG20493 MLH3 mutL homolog 3

hCG15226 STIM1
stromal interaction molecule

1
Medium Medium ND

hCG16633 CREBBP CREB binding protein n/a Medium ND

hCG37392 HM13 histocompatibility (minor) 13 Medium Medium ND

hCG32870 FOXP4 forkhead box P4

Entrez:440026 TMEM41B transmembrane protein 41B Low Medium ND
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3.3.4 Assessment of gene expression for important functional pathways

Further analysis of the gene expression data focused on the investigation of pathways

associated with the disease mechanism in DM1 to identify genes present in oocytes and

embryos that may be affected by the DMPK expansion. Current investigation involved

genes regulating the microRNA processing pathway and methylation.

3.3.4.1 Investigation of genes involved in the microRNA processing pathway

Genes involved in microRNA processing were investigated in the oocyte and embryo

samples (Mtango et al., 2008). Out of the 25 genes examined, 16 were detected in the

oocyte and 17 in the embryo blastocyst sample (table 3.34, figure 3.48).

The investigation of the microRNA processing genes indicated that genes involved in

RNA catabolism, RNASEN and DICER1 are expressed in both oocytes and blastocysts,

with DICER1 showing significantly higher expression at the oocyte stage. High oocyte

activity was also observed for genes involved in mRNA splicing.

GEMIN5, GEMIN2 involved in mRNA splicing, and TNRC6B of the RISC complex

showed higher expression levels in the oocyte. YBX1, GEMIN4 and MOV10, with roles

in regulation of transcription and translation, as well as the exportins XPO1, XPO4 and

XPO5, were significantly upregulated in the blastocyst.
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Table 3. 34: Expression levels of genes involved in the microRNA processing pathway in the human
MII oocyte and blastocyst. +FC: up-regulated in the blastocyst, -FC:down-regulated in the blastocyst,
ND: no statistically significant difference observed

Expression level

Function
Celera
Gene ID

Gene
Symbol

Oocytes Blastocysts
Parametric
comparison

hCG2003777
DROSHA/
RNASEN

High High ND

hCG2001933 DGCR8 n/a Low ND
Microprocessing

hCG24439 DICER1 Medium Medium P<0.05, -FC

hCG1986857 XPO1 Medium High P<0.05, +FC

hCG1774337 XPO4 n/a Medium P<0.05, +FC

hCG19013 XPO5 Low Medium P<0.05, +FC

hCG41537 RANGAP1 n/a Low ND

Exportins

hCG18633 FMR1 Medium Medium ND

hCG18813 ADAR Medium n/a ND
RNA editing

hCG401275 ADARB1 Low n/a ND

hCG21235 SIP1 (GEMIN2) Medium Medium P<0.05, -FC

hCG27817 GEMIN4 Low Medium P<0.05, +FC

hCG1979691 GEMIN5 High Low P<0.01, >100-FC

hCG1818032 GEMIN6 High High ND

hCG22150 GEMIN7 n/a n/a n/a

mRNA splicing

4904 YBX1 High High P<0.01, >10+FC

hCG38282 AGO1/EIF2C1 n/a n/a n/a

hCG18139 AGO2/EIF2C2 High High n/a

hCG1640521 EIF2C3 n/a n/a n/a

hCG1787714 EIF2C4 Low Low ND

hCG33381 RISC/SCPEP1 n/a Medium n/a

hCG41115 TNRC6B Low n/a P<0.05, -FC

hCG38463 MOV10 Low Medium P<0.05, +FC

hCG22573 HIWI/PIWIL1 n/a n/a n/a

RISC complex

hCG1818433 MILI/PIWIL2 n/a n/a n/a
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Figure 3. 48: Expression levels of microRNA machinery genes in human oocytes and embryo
blastocysts.
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3.3.4.2 DNA Methyltransferases in human oocytes and embryo blastocysts

Eighteen enzymes that methylate DNA bases were identified in the PANTHER database,

based on their Celera ID and their expression was investigated. Nine of these were

present in both oocytes and embryos, showing a medium and high expression level.

DNMT3L and METTL4 were detected at the blastocyst stage only. DNMT1, HSMPP8,

MGMT and POLS showed higher expression in the oocyte, while C21orf127, METTL4

and RG9MTD1 gave higher expression signals for the blastocyst sample (table 3.35).

Genes that were not detected included: DNMT2, DNMT3A, KIAA1935, PWWP2,

RG9MTD2 and RG9MTD3.

Table 3. 35: Expression levels of eleven human DNA methyltransferases (Celera database) present
in the human MII oocyte and/or embryo blastocyst. +FC: upregulated in the blastocyst, -
FC:downregulated in the blastocyst, ND: no statistically significant difference observed

Expression level

Celera
Gene ID

Gene
Symbol

Oocytes Blastocysts
Parametric
Comparison

hCG38847 AOF2 High High
hCG401157 C21orf127 Medium High P<0.05, +FC
hCG28474 DNMT1 High High P<0.01, >10 -FC
hCG37138 DNMT3B Medium High ND
hCG401308 DNMT3L n/a High n/a
hCG1774305 HSMPP8 Medium Low P<0.01, >10 -FC
hCG38411 METTL4 n/a Low P<0.05, +FC
hCG39601 MGMT High Medium P<0.05, -FC
hCG24891 PAPD5 Medium Low ND
hCG18366 POLS High Medium P<0.01, >10 -FC
hCG39275 RG9MTD1 Medium High P<0.05, +FC
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3.3.4.3 Other DM1-related genes

Genes with a previously identified role in the DM1 pathogenesis include several

transcription factors, DNA and RNA-binding proteins, mRNA processing and

translation factors, ribonucleoproteins and genes implicated in DNA repair. Genes from

these categories that have shown altered expression in normal vs. affected adult tissue

experiments were investigated here.

MSH2, MSH3, CUGBP1 and SP3 factor showed significantly higher expression in the

MII oocyte, while MBNL3 was the only identified factor significantly upregulated at the

blastocyst stage. Other important DM1-related genes, for example, DMPK, MBNL1,

MBNL2, PMS2 or SP1 were not detected (table 3.36).

Table 3. 36: Expression levels of DM1-related genes (Celera database) in the human MII oocyte and
embryo blastocyst. +FC: upregulated in the blastocyst, -FC:downregulated in the blastocyst, ND: no
statistically significant difference observed

Expression level

Molecular
Function (process)

Gene ID
Gene

Symbol
Oocytes Blastocysts

Parametric
comparison

hCG17836 MSH2 High High P<0.01, -FC

hCG37123 MSH3 Medium Low P<0.05, -FC

DNA-binding
protein
(DNA repair)

hCG2008664 PMS2

hCG28368 RAR,RAB40B

hCG15683 PABPC1 High High ND

hCG25183 CUGBP1 Medium Low P<0.01, -FC

hCG41209 hnRNP,HNRPC High High ND

RNA-binding
protein
(mRNA splicing)

hCG22986 hnRNP,HNRPDL n/a Medium ND

hCG25794 STAT1 Medium Medium ND

hCG1746842 REST n/a Low ND

hCG2007196 RAR,RARA Low Low ND

hCG1813145 STAT3 Low Medium ND

hCG1787889 SP1

hCG17424 SP3 Medium Low P<0.01,>10 -FC

Transcription factor
(mRNA
transcription)

hCG1789927.2 SIX5 Medium Medium ND

hCG27557 MBLL,MBNL2

hCG28028 MBNL1

Double stranded
binding protein
(muscle
development) hCG14618 MBNL3 n/a High P<0.01,>10 +FC

Protein Kinase hCG1996612 DMPK

Translation
elongation factor hCG23415 EF1A
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5 µg hybridizations

A total of 13170 probe IDs were detected in the Ba unaffected sample and 13768 were

detected in the DMa affected sample. For both of these, 5µg labeled RNA was

hybridized on the microarrays. When these two samples were compared using the

PANTHER database gene expression tools, there was a significant over-representation

of the mRNA transcription category in the DM1 affected sample (more genes involved

in mRNA transcription were detected compared to the unaffected sample). No other

differences were observed between the two samples. The two samples with the low

RNA yield both showed expression of some genes, such as SP1, that were not detected

in the 10µg hybridizations.

Even though no further analysis can be performed from the samples of low RNA yield,

due to the lack of replicates, the information obtained can also provide information to

assist further experiments for validation of the results by real-time PCR.
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3.3.5 Summary of findings for section 3.3: Expression work

 Gene expression profiling of human oocytes and embryo blastocysts

o A higher proportion of genes belonging to the nucleic acid metabolism and

protein metabolism categories, in comparison to the other biological process

categories, was detected in both human MII oocytes and blastocysts.

o 5243 genes showed statistically significant differences in expression between

oocytes and blastocysts. Of these, 2591 were under-expressed and 2652 were

over-expressed in the blastocyst compared to the oocyte.

o Genes with higher expression in the blastocyst belonged to the ‘protein

metabolism and modification’ class and were mostly involved in protein

biosynthesis.

o The majority of over 10-fold blastocyst up-regulated genes, when grouped

by molecular function, included “ribosomal proteins”, “other RNA-binding

proteins” or “translation factors”, while most 10-fold blastocyst down-

regulated genes were “other DNA-binding proteins”, “nuclease” and

“chromatin binding” proteins.

o There were 8772 genes common to MII oocytes and blastocysts, 1909 genes

were present in oocytes only and 3122 genes as blastocyst only.

 Investigation of potential housekeeping gene expression

o The majority of genes with a potential housekeeping role were detected

in oocytes and blastocysts with high expression levels

o 90.9% of the high signal oocyte candidate HKGs remained of high signal

in the blastocyst

o Some commonly used housekeeping genes, including some identified to

be stable during preimplantation development in human and other

species, showed significant differences in expression between the two

stages. B2M, HIST1H2AA and HIST3H2A were only detected at the

blastocyst stage. Other genes with most similar expression levels were

identified.

o The majority of genes indicating stable expression during development

according to studies on hESCs, showed significantly different expression

between oocytes and blastocysts.
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 Assessment of gene expression for important functional pathways

o Detection of genes involved in the microRNA pathway, methylation, and

DM1-related genes were identified and their levels of expression

characterised as high, medium or low.



193

4. Discussion
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4.1 Protocol development for preimplantation genetic diagnosis for a
single gene disorder

4.1.1 PGD protocol development: general discussion

Preliminary genetic analysis is the first step in protocol development for PGD and

involves determining conditions for mutation detection on genomic DNA as well as

searching for informative polymorphic markers. When a couple is uninformative for all

linked markers tested, an informative unlinked marker may be multiplexed along with

the mutation primers instead. In this study, mutation detection was performed by F-PCR

analysis to detect differences in size of the DMPK repeat alleles. F-PCR enables a

cheaper, faster and less labour-intensive diagnosis, compared to other techniques, such

as SSCP, RFLP or mini-sequencing. The main aim in protocol development was to

simultaneously maximise PCR efficiency and accuracy. A fast diagnostic protocol is

generally preferred because of the limited time period in which the analysis has to be

performed, since the growing embryos may be held in culture up to day 6. Longer

diagnostic protocols, for example CGH, therefore require embryo cryopreservation,

followed by freezing and transfer in a subsequent cycle, after completion of the

diagnosis.

In one occasion during this study, however, the PGD protocol involved a ‘split PCR’

reaction, to improve protocol efficiency. In ‘split PCR’, an initial multiplex reaction is

performed and aliquots from the first reaction product are re-amplified in subsequent

individual amplification reactions for each locus. This method is generally applied in

PGD for monogenic disorders as it reduces optimisation time, although it increases the

diagnosis time by introducing more amplification reactions.

Another way to reduce optimisation time is by performing blastocyst biopsy, which

involves removal and amplification of more than a single cell for diagnosis so that

protocols do not need to be optimised at the single cell level (McArthur et al., 2008).

Other problems, however, may be encountered with blastocyst-stage biopsy, such as the

smaller number of embryos that reach the blastocyst stage, the reduced time available

for embryo transfer or the requirements for freezing. Additionally, due to time limitation,

re-biopsy and re-testing in case of inconsistencies is not possible.

Overall, ‘split-PCR’ or other long PGD protocols, are used for isolated referred cases of

uncommon mutations in order to reduce optimisation time, while for groups of patients
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with a common mutation, such as the patients with DM1 in this study, efforts were

focused towards establishing a universal, rather than patient-specific, PGD protocol.

This would reduce the time required for workup at the single-cell level prior to PGD

and eventually increase the number of patients that could be treated in a certain period

of time.

Careful assessment of amplification, allele dropout and contamination rates was

performed during optimisation to allow assessment of the risk of misdiagnosis

following results from a PGD case. Several measures were established as standard

practice during clinical diagnosis. For example, single lymphocytic cells from both the

affected and unaffected partner were freshly isolated prior to the relevant PGD case, and

stored at -80°C to be amplified alongside the blastomeres, as an indicator of successful

amplification during the actual diagnosis procedure and to allow comparison of

amplification between the single parental lymphocytes and single embryo blastomeres.

Moreover, two, rather than one, PCR-mix negative controls were obtained during setup.

These were additional to the cell-negative controls for monitoring contamination (table

3.12). The first negative control was obtained following setup of the PCR master mix

and prior to aliquoting into the cell tubes, while the second negative control was

obtained at the end of all aliquoting. The lack of amplification from the first PCR

negative provided evidence that the reagents used for the setup of the PCR reaction

were clear of contamination, while detection of contamination in the second PCR blank,

indicated that contamination had occurred during the aliquoting. Finally, all cells were

kept in the same order as obtained during cell biopsy, up until the last PCR reaction and

analysis of results, so as to reduce the likelihood of handling errors and generally

facilitate with monitoring of the procedure.

Overall, optimisation at the single cell level required the isolation and testing of

approximately 50-200 single cells, while each optimised PCR-PGD protocol was tested

on a minimum of 50 single cells prior to clinical application. At the early stages of

protocol development, human blastomeres were also used on two occasions to confirm

the single cell amplification efficiencies and allele-dropout rates prior to the clinical

application. The amplification results of a number of blastomeres isolated from the

same embryo were combined to identify the expected embryo genotype (as parental

alleles from the IVF patient donors were unknown). Because of the difficulties

associated with obtaining the parental genotype from the blastomere analysis, but also
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identifying true ADO or amplification failure and differentiating from a potential

chromosomal abnormality, this practice was stopped.

The practice of optimisation at the single cell level changed considerably over time,

regarding both the type of cell used and the method of cell lysis.

4.1.1.1 Impact of cell type

The impact of cell type on single cell amplification has been previously investigated.

One study compared the amplification efficiencies from single blastomeres, fibroblasts

and polar bodies, and indicated significantly higher allele dropout (ADO) rates in

blastomeres (Rechitsky et al., 1998). In another study, blastomeres were associated with

slightly lower, but not significantly different, amplification efficiency and ADO rates

compared to buccal cells (Piyamongkol et al., 2003). In our analysis, amplification

efficiency for the single blastomeres was significantly lower compared to results from

single lymphocytes or buccal cells.

At the beginning of this study buccal cells were preferred for protocol optimisation, as

they were more readily available and obtained in a less invasive way. When buccal cells,

however, were compared with amplification from single lymphocytes, results indicated

a lower amplification efficiency and higher ADO rate in the former. An example of this

is seen in the optimised DM1 triplex protocol (protocol 3), where the ADO rate from

fifty-five single lymphocytes was lower (0-3.64% for the three markers) compared to

analysis from fifty-three buccal cells (3.78-11.3%) (table 3.4). This difference is

important considering that the general guidelines for good PGD practice from the

Preimplantation Genetic Diagnosis International Society (PGDIS) (2004) emphasize

that ADO over 10% is the main cause of PGD misdiagnosis. The differences in ADO

detected with the different cell types are possibly the result of differences in cell quality,

as single lymphocytes were in most cases freshly extracted and isolated cells, whereas

buccal cells were often collected by the patients and sent by post (Piyamongkol et al.,

2003).

Most problems regarding the cell type were observed during initial optimisation of the

TP-PCR protocol, which involved the use of single buccal cells. The TP-PCR results

from 160 buccal cells were very poor, inconsistent and generally associated with very

high amplification failure rates. When practice moved over to testing of single



197

lymphocytes, the results were markedly improved. This finding agrees with previously

reported recommendations that DNA of high quality should be used as the template

particularly for TP-PCR amplification (Falk et al., 2006).

As a result, lymphocyte isolation became the standard practice for development of PGD

protocols in general, despite the more time-consuming cell separation from blood and

the generally more difficult isolation of the considerably smaller in size cells (buccal

cell diameter ~65μm vs. lymphocyte diameter ~7 μm) (Ziyyat et al., 1999;Paszkiewicz

et al., 2008). We reserved the use of buccal cells for DNA extraction and single cell

work only for cases where relative’s DNA had to be obtained from very young children

(such as during phase allele investigation), or during follow-up of babies born after

PGD.

4.1.1.2 Investigation of cell lysis methods

The method of cell lysis has also been proven to play an important role on the actual

PCR amplification. Early studies supported ALB lysis for extraction of DNA from

single cells over other methods such as freeze-thawing and the distilled water lysis

method. In another study ALB lysis was associated with allele-specific amplification

failure, which was not noted as a problem with PK/SDS lysis (Gitlin et al., 1996;el

Hashemite and Delhanty, 1997). PK/SDS and ALB lysis were also compared by

Thornhill et al., (2001) who investigated amplification for three genes (CFTR, LAMA3

and PKP1) at different chromosomal loci on single lymphocytes. Amplification

efficiencies were found to be comparable between the two methods but for two out of

the three loci tested there was a statistically significant difference in ADO rates, with

ALB lysis giving much lower ADO. Finally, a more recent study compared

amplification efficiencies and ADO rates between five different cell lysis methods

(liquid nitrogen method, distilled water lysis, alkaline lysis, proteinase K/SDS lysis

buffer and N-lauroylsarcosine salt solution), using single lymphocytes as a template.

The highest amplification efficiency and lowest ADO was observed with alkaline lysis,

followed by PK/SDS lysis (Kim et al., 2008).

Results from the current study are also favourable towards alkaline lysis. The change in

the proteinase K enzyme activity over time, possibly due to freeze-thawing, was one of



198

the difficulties encountered. To confirm that the required PK activity was still attained,

a PK titration step was performed and cells were isolated in different concentrations of

PK/SDS lysis buffers. The lysed cells were amplified using an optimised single cell

PCR protocol, to determine which PK concentration allowed reproducibility of the

results (i.e. expected efficiency, ADO rates). This requirement for adjustments of the

PK enzyme concentration over time was not compatible with complete protocol

standardisation, which is important in clinical practice. Furthermore, single cell

amplification efficiencies were generally lower with PK lysis, compared to ALB (table

3.4).

For all the above reasons, our practice moved towards ALB lysis. The initial set up was

more labour-intensive as it required the preparation and testing of a number of stock

solutions of wash buffer (DB), tricine, BSA and DTT aliquots, as well as NaOH and

KOH. Following this, however, the ALB lysis protocol was faster, requiring a 15min

lysis step compared to 75min with PK. The single cells were almost immediately lysed

when placed into the ALB lysis buffer. In the earlier stages of the study, this was

considered to be a disadvantage, as it did not allow viewing of the cell under the

microscope after tubing. This practice is, however, only considered necessary while

practicing the technique of single cell tubing and is no longer required once proficiency

and confidence in the technique is attained. During the learning curve of the tubing

technique, however, the use of PK lysis, and viewing of the cell in the tube, allowed

confirmation that any subsequent failure of amplification was not due to loss of the cell

during transfer in the tube, thus ensuring that protocol efficiency was accurately

estimated. With ALB lysis, the volume of wash buffer (DB) placed in the tube along

with the cell was also critical and in several cases a large amount of buffer transferred

along with the cell was associated with amplification failure. This difficulty was also

overcome with practice, by ensuring that the single cells were transferred into a small

volume, of just 1-2μl of wash buffer.
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4.1.2 PGD for DM1

The decision to have a family can be very difficult for the DM1-affected individuals due

to the unpredictability in DM1 inheritance, and the consequent difficulties in assessing

the impact of a DM1 diagnosis on future pregnancies, offspring and other family

members (Salehi et al., 2007).

From our group of patients, the major motivator for a DM1-affected couple in pursuing

PGD was the experience of having relatives affected with the condition (22/23 couples).

Because DM1 is a dominantly inherited disorder, couples may be faced with a number

of terminations (TOP) before achieving a normal pregnancy. Overall, eight couples had

experienced an affected pregnancy, and six of them had experienced TOP one or more

times. One of the couples who had a TOP also had an affected daughter, while two other

couples had lost a congenitally affected child. Seven of the referred couples had

infertility problems, though not all necessarily DM1 related.

The main aim of developing PGD for DM1 has been to ensure the availability of widely

applicable and reliable PGD protocols that can minimise the workup time. In this way,

in cases of infertility, where IVF treatment is required, the availability of readily

applicable PGD protocols would render PGD simply an additional step to the standard

IVF procedure.

The emotional difficulties of the IVF/PGD procedure were underlined in this study by

the two couples producing only two embryos following IVF. In both of these cases, the

couples were adamant that they did not wish to proceed with the treatment. They found

the procedure extremely stressful and with only two embryos available for testing they

felt the chances of detecting and transferring an unaffected embryo and hopefully

establishing an unaffected pregnancy were very low.

The emotional, along with the physical burden of the procedure but also the

considerable cost of the IVF/PGD treatment (to cover fertility checks, IVF cycle,

preimplantation testing), further highlighted the requirements for an accurate and

efficient diagnosis, offering the greatest chance for an unaffected pregnancy with the

lowest risk of misdiagnosis.
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4.1.2.1 DM1 PGD protocol development

Since the expanded DM1 allele is refractory to PCR amplification, the DM1 mutation

cannot be directly visualised, making diagnosis more difficult compared to diagnosis for

other single gene disorders. Diagnosis of an unaffected embryo is indicated by detection

of the affected individual’s non-expanded allele, while absence of this non-expanded

allele implies the presence of an unamplifiable expanded allele. Further difficulties

present in cases where the two parental alleles in an embryo are of equal size, where it is

impossible to confirm that the affected partner’s non-expanded allele has been inherited.

In these cases, diagnosis can be facilitated by the incorporation of linked markers and

the detection or absence of the phase alleles.

Previously described PGD protocols have involved the co-amplification of linked

markers, but in cases of patient uninformativity for the linked markers, unlinked

markers have also been used for contamination detection or protocols have involved the

amplification of only the mutated region by TP-PCR.

The unlinked polymorphic markers D21S1414 and D21S11, described in several single-

gene PGD protocols, were tested during initial tests, but were found to be associated

with low amplification and very high allele dropout rates. These protocols were tested

but have not been included here, as they were not optimised to a level considered

acceptable for clinical application. Other previously used linked markers, for example,

D19S207 and D19S219, were also tested during preliminary genetic analysis for several

of the patients. These markers, however, showed low patient informativity, presented

difficulties with multiplexing, as well as yielding difficult to interpret stutter patterns

even on genomic DNA analysis. Possibly for this reason, DM1 PGD protocols from

other centres, using these two markers, have involved hemi-nested PCR reactions, with

an extended time needed for diagnosis (Dean et al., 2001;Fiorentino et al., 2006). These

markers were, therefore, not optimised for use in PGD in our department.

Intragenic markers such as the Alu insertion/deletion polymorphism have also been

described but not applied to PGD, as, although they may be useful in identifying the

expanded allele, they are not suitable for contamination detection (Mahadevan et al.,

1993b). Other intragenic polymorphisms have also been identified within introns and

noncoding regions of the DMPK gene. Some of these alter restriction enzyme

recognition sequences and PCR assays have been developed for their detection.
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However, these polymorphisms are not of use for PGD either, as they are due to single

base changes and cannot allow for contamination detection (Mahadevan et al., 1993a).

The amplification of a commonly used linked marker, either APOC2 or D19S112, along

with the DMPK region was generally preferred for diagnosis in our group of patients.

Protocols 1, 2 and 4 (DM1/APOC2, DM1/D19S112 and TP-PCR), as indicated in table

3.4, are similar to previously described protocols, with some modifications in the

method of cell lysis and concentration of reagents in the PCR reaction. The TP-PCR

protocol was used for couples that were uninformative at DMPK. The 5CTG repeat

allele was present in 10/23 (43.5%) affected and in 17/23 unaffected (73.9%)

individuals, and was shared in 9/23 (39%) couples. This presented problems with

diagnosis for these couples, as TP-PCR could not safely detect the 5 CTG repeat

homozygous embryos.

For couples who were fully informative for the DMPK region, the linked marker

allowed detection of contamination, while providing back up diagnostic information, in

cases where the phase allele was known. For couples partially informative or

completely uninformative at the DMPK locus, only half or none of the normal embryos,

respectively, could be identified by DMPK analysis alone. In these cases, diagnosis was

based solely on assessment of the phase alleles. In this study a cross-over event was

detected between DMPK and APOC2 in two cases. This is related to the greater distance

between DM1 and APOC2, compared to that between D19S112 and DM1 (Kakourou et

al., 2007). A similar event has been reported in another PGD case for Charcot-Marie-

Tooth disease type 1a, where recombination was detected in an embryo that was still

considered unaffected and transferred, leading to an affected pregnancy (Gutierrez-

Mateo et al., 2008). The detection of the crossover underlined the potential danger of

making a diagnosis, solely on the result of the linked marker, and highlighted the

importance of not using the relatively distantly linked APOC2 as the sole marker to

identify the DMPK mutation in semi-informative couples, as has been previously

described (Piyamongkol et al., 2001b). The co-amplification of another linked marker,

on the opposite side of the DMPK gene would provide extra information on the cross-

over event, and could be used as an extra measure to prevent misinterpretation of the

results.

Further protocol development focused on overcoming the problems of misdiagnosis

associated with marker recombination, as well as the TP-PCR scoring difficulties of the
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5 CTG repeat homozygous samples, in order to improve DM1 diagnosis and reduce the

chance of misdiagnosis.

4.1.2.2 New diagnostic protocols for PGD for DM1

The above led to the development of two new protocols, not previously reported in the

diagnosis of DM1. Our strategy was to devise a protocol that could exclude the presence

of the mutant allele but also confirm the presence of the non-expanded allele. The latter

was particularly important especially for the 5 CTG repeat homozygous embryos. The

DM1/APOC2/D19S112 protocol (protocol 3) was a triplex PCR, amplifying the two

commonly used linked markers, APOC2 and D19SS12, which are on either side of the

DMPK gene, along with the mutated region. The mTP-PCR protocol (protocol 5)

allowed DMPK allele amplification both by standard PCR and TP-PCR along with

amplification of a linked marker. In this way mTP-PCR permitted detection of the

expansion and estimation of the repeat number of the non-expanded alleles by TP-PCR,

detection of the 5 CTG repeat allele and other non-expanded alleles by standard PCR,

detection of the phase allele of the linked marker to support the diagnosis and/or

detection of contamination.

The availability of these protocols facilitated diagnosis for all patients. For these reasons

the remaining optimised protocols (1, 1a, 2 and 4) are not currently being used in PGD

for DM1 in our department. Following initial testing of parental DNA, either the DM1

triplex or the mTP-PCR protocol is selected for diagnosis, depending on couple

informativity.

This has had major clinical implications for PGD practice and modified the course of

treatment for all patients with DM1 undergoing PGD, by reducing the time required for

initial genomic DNA testing and eliminating the protocol optimisation step. In previous

practice, blood sample analysis of the prospective parents during the pre-PGD workup,

for the identification of informative polymorphic markers, included testing an average

of seven polymorphic markers per couple (range 4-16) in search of an informative one.

This was followed by setting up protocols for multiplexing the informative marker with

the DMPK region on genomic DNA, testing of additional family members if available,

and single cell optimisation of the new protocol. Currently, genomic DNA testing
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simply involves performing the DM1 triplex and mTP-PCR protocols, and can,

therefore, be completed within a few days.

The approach to IVF/PGD treatment has changed since the beginning of this study

(figure 4.1). Until recently, because of the long time required for protocol optimisation,

protocol workup was initiated immediately after the initial consultation had taken place.

Applications for funding, reproductive assessment and application to the Human

Fertilisation and Embryology Authority (HFEA) were performed only after or near

completion of the workup at the single cell level. Consequently, on several occasions,

though a diagnostic protocol had been optimised, the patients failed to come through for

treatment due to a diminished ovarian reserve, funding problems, or due to change of

mind. Currently, the HFEA application is put forward when the source of funding is

known or after the initial consultation when the patients feel certain that they wish to

proceed with the treatment.

As a general rule, although reproductive assessment is crucial, it is not performed until

after treatment funding and HFEA license have been granted, due to the considerable

cost of these fertility tests. Protocol development is initiated after completion of these

initial fertility checks and may generally increase the waiting time for treatment by a

further 6 months to maybe over a year for new single gene diagnoses.

As the protocols for PGD of DM1 are available for diagnostic application almost

immediately, the couple interested in undergoing PGD can proceed through the

remaining treatment steps without further delays, taking overall approximately 6 months

from referral to treatment for DM1 cases, rather than over 1 year, which is the case for

other single gene disorders.
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IVF/
PGD

treatment

Figure 4. 1: Steps towards IVF/PGD treatment following patient referral. The funding and HFEA applications require a minimum of 5-8 months. Overall, excluding genomic
DNA and single cell workup, the whole procedure can take 6-12 months from referral to the beginning of the IVF treatment (IVF cycle to egg collection: 6 weeks). This study
reduced the PGD protocol workup time (genomic DNA and single cell work) for patients with DM1 to approximately 1 week, compared with new PGD single gene workups, which
can take up to 6-12 months. As the HFEA license for PGD of DM1 has been obtained, HFEA application is also not performed for patients with DM1.
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The mTP-PCR protocol could also be of use in PND. A recent study suggested that

confirmation of diagnosis or prenatal testing for the detection of the DM1 expanded

alleles should involve a two-step protocol, where standard PCR can be used for basic

screening and, following that, the detected homozygous samples can be subjected to

further analysis by TP-PCR to differentiate normal homozygotes from affected

individuals. The suggested method was compared to other protocols available for

detection of the expansion and was found to be the most rapid and least labour intensive,

whilst also offering a straightforward interpretation of results (Falk et al., 2006). With

the mTP-PCR protocol, the two-step protocol is performed in a single step, thereby

saving further on time and cost. Finally, the incorporation of polymorphic markers can

be extended to triplet-primed based protocols for the diagnosis of other conditions, such

as FRDA and several types of SCA.

4.1.3 IVF/PGD practice at the UCL Centre for PGD

4.1.3.1 Embryo biopsy

4.1.3.1.1 One vs. two-cell biopsy

Several studies have attempted to define whether the removal of one or two cells during

embryo biopsy has an impact on the efficiency of PCR-based or FISH-based diagnostic

protocols, embryo development to the blastocyst stage, implantation or live birth rate.

Overall, testing two rather than one blastomere has been recommended as a safer

procedure as far as the diagnostic efficacy goes (Van de Velde et al., 2000). One study

investigating FISH diagnosis suggested that the overall diagnostic efficiency was

similar between the one-cell and two-cell groups, although a false negative result was

detected in the one-cell blastomere group (Emiliani et al., 2004). Goossens et al., (2008a)

analyzed results from 592 ICSI cycles and concluded that the PCR-based diagnosis

showed higher efficiency when two cells were biopsied, while no differences were

detected for all cases with FISH diagnosis. Finally, in another recent study, the biopsy

of a second blastomere was associated with decreased percentage of false positive

results, as well as a reduced chance of misdiagnosis due to ADO (Dreesen et al., 2008).
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Regarding embryo development, it has generally been shown that the more cells

removed from human embryos, the fewer embryos develop to the blastocyst stage by

day 5, although the removal of up to two cells has not been shown to have an adverse

effect on later development (Hardy et al., 1990;Tarin et al., 1992). A similar observation

has been made on mouse embryos, where it was indicated that when up to three cells

were removed from 8-cell biopsied embryos, there was not a significant effect on the

rate of blastocyst formation (Liu et al., 1993). On the other hand, Goossens et al.,

(2008a) suggested that removal of two blastomeres decreases the likelihood of

blastocyst formation, but also observed that the embryo stage and grade on day 3 was a

stronger predictor for embryo development compared to the number of cells removed.

The same study concluded that live birth rates were not significantly different whether

one or two cells were removed (data showed that for every 33 cycles there was one less

delivery following removal of two blastomeres). This is also supported by Fiorentino et

al., (2006), although data from other studies has generally been contradicting

(Vandervors et al., 2000;Spanos et al., 2002;Pickering et al., 2003;Grace et al.,

2006;Feyereisen et al., 2007). Finally, a study on the impact of aneuploidy screening

indicated that the improved implantation rate and lower miscarriage rate, which is the

aim of the screening technique, are not achieved when more than one cell is removed

(Cohen et al., 2007).

The above arguments remain the topic of hot debate; there is, however, a tendency to

support the one-cell biopsy policy, particularly because of the observed, though not

significant, findings regarding live birth rate (Goossens et al., 2008a). Another

important advantage of the one-cell biopsy is that it represents a lower work burden

(Dreesen et al., 2008). It is, therefore, generally agreed that as long as a PGD protocol is

available that can provide accurate diagnosis using a single blastomere, a one-cell

biopsy should be recommended.

In this study, two cells were biopsied from all embryos with 6 or more cells on day 3.

As mentioned previously, where either an informative linked marker was not included

in the protocol, or when diagnosis involved use of the TP-PCR protocol, independent

results from two cells from each embryo were required for diagnosis. In contrast, a

diagnosis could be made on the results from one cell for couples that were informative

for the mutation and one or two linked markers. Even in these cases, however, two cells

were still biopsied. When one of the biopsied cells did not give a diagnostic result, a
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diagnosis could be made from the results of the other cell. As a general rule, when either

none of the biopsied cells gave a clear result or the protocol required a result from two

cells, the embryos were rebiopsied and the protocol was repeated on the rebiopsied cells.

Reanalysis of 10 out of the 11 DM1 cycles where the DM1 triplex (protocol 3) was used

for diagnosis, was performed in order to assess the impact of the numbers of cells

biopsied on diagnostic rate. The DM1 triplex was selected as it was the protocol most

likely to allow a one-cell diagnosis, due to the incorporation of two linked polymorphic

markers, and also because the protocols with TP-PCR analysis required results from two

cells. The one cycle where a combination of two protocols was used for diagnosis, was

excluded from the analysis. Results based solely on the first biopsied cell indicated that

if one-cell biopsy had been performed, the diagnostic rate in these cases would drop

from 73.4% to 53.1%, indicating a statistically significant difference (p<0.05, Fisher’s

exact test). This supports previous findings on increased diagnostic efficiency following

two-cell biopsy.

Because of this impact on diagnosis, the one-cell biopsy has not been implemented in

our department. The main priority has been to obtain a result from every single embryo,

in order to increase the number of unaffected embryos available for transfer. For that

reason, our practice has also included biopsy of additional cells where the first biopsy

yielded anucleate or poor quality cells, as well as rebiopsy or delayed biopsy for slow-

growing embryos. Therefore, in some cases (patient/cycle number 9/1, 8/2 and 23/1)

embryos had up to four cells removed. In two of these cycles (9/1 and 23/1) there was

no unaffected embryo for transfer following PGD. In cycle 2 of patient 8, where a

combination of two protocols was used for diagnosis, there were two embryos with four

cells biopsied each. Of these, one was a morula and was transferred following PGD

along with another unaffected embryo, while the second embryo with four cells

biopsied (a cavitating morula) was frozen and transferred in a subsequent cycle. No

pregnancy was established in either case.

It is, however, expected that the new diagnostic protocols, due to their increased

efficiency and improved diagnostic rate, will not only help reduce the number of

embryos that need to be rebiopsied but also enable one-cell diagnosis for many more

patients than was previously possible. The decision on the number of cells required to

achieve a safe diagnosis may remain patient-specific.
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Finally, it is worth mentioning that our approach in trying to achieve a diagnosis from

every single embryo was independent of the number of the embryos available for biopsy

from that specific cycle. This is contrary to practice from other centres, where when few

embryos are available, embryo biopsy may be cancelled (Grace et al., 2006).

4.1.3.1.2 Number of pronuclei

Biopsy of five 0PN embryos, one 1PN and one 3PN embryo that had grown to the six or

more cell-stage on day 3 was performed in cases where a limited number of embryos

were available for testing (i.e. 2-4 embryos). These non-2PN embryos would be

considered for transfer, if unaffected, only if no other embryos were available.

Despite the failure to detect pronuclei at the time of fertilisation check, which might be

because of the embryo’s accelerated or slow development, 0PN embryos can still cleave

and develop to the blastocyst stage. Evidence from a FISH study has shown that 57% of

0PNs form diploid embryos, and more recently, 0PNs that cleave early have been

associated with high chances of blastocyst development, implantation and pregnancy

(Manor et al., 1996). These 0PN embryos can, therefore, be considered for transfer, but

since it is unknown how many pronuclei were present, it is important to base the

decision for transfer not only on the diagnostic result but also on other indicators such

as the presence or absence of polar bodies, oocyte and embryo morphology, or other

observations. For example, other events and observations detected in this study include

fertilisation of a giant oocyte (cycle 3 of patient number 8), which is associated with

numerical chromosomal abnormalities, or the presence of multinucleated blastomeres,

which have been associated with poor development and lower clinical pregnancy rate

(Tesarik et al., 1987;Jackson et al., 1998;Balakier et al., 2002). All four embryos where

a multinucleate blastomere was biopsied were of poor quality on day 4: two embryos

arrested, and the remaining two were at the 7 and 8-cell stage. One of these embryos

was transferred but a pregnancy was not established. A similar association was observed

for the embryos with binucleate cells, three of which gave a result and were all found to

be affected. Lastly, micronuclei are known to be present in approximately 20-25% of

embryos between days 3 -5 and are thought to possibly arise from chromosome loss

although no significant observations were made on the four embryos in which

micronuclei were observed in this study (Norppa and Falck, 2003;Chatzimeletiou et al.,

2005).
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Over 50% of 1PN embryos from IVF have been shown to be diploid, although the

incidence of diploid 1PNs from ICSI cases is significantly lower (Staessen and Van

Steirteghem, 1997). It has been suggested that ICSI 1PN embryos should not be

transferred because of their higher chance to be parthenogenetically activated, an event

which is, in turn, associated with chromosomal abnormalities and a risk of implantation

failure (Sultan et al., 1995). This should not be a problem particularly with PCR

analysis, as the presence of both parental genomes can be readily identified. It is,

therefore, generally accepted that 1PNs may be transferred when no other embryo is

available, as successful pregnancies with 1PN embryos have been reported (Feenan and

Herbert, 2006).

In contrast to the above, the majority of 3PN embryos are predicted to have a triploid,

greater than triploid, or mosaic chromosome content, which is associated with

spontaneous abortion and neonatal death; transfer of triploid embryos should therefore

be avoided (Feenan and Herbert, 2006).

The removal of the extra male pronucleus in a 3PN dispermic zygote and transfer of the

resulting embryo leading to the birth of a healthy baby boy has been described (Kattera

and Chen, 2003). This limited data is promising. Attempts to recover the abnormally

fertilised oocytes may be particularly important to further increase the chances of an

unaffected pregnancy, in cases of poor response to the IVF treatment and therefore,

limited availability of oocytes and embryos, as has been described in patients with DM1.

This practice should be combined with relevant preimplantation analysis (such as FISH)

to confirm the absence of triploidy in the embryo.

In any case, assessment of fertilisation, embryo development and careful interpretation

of data is vital for both 2PN and non-2PN embryos, as abnormalities are common even

in apparently normally fertilised embryos (Delhanty et al., 1997). An example seen in

our results is the detection of two paternal alleles in one embryo and the detection of

only one parental genome in eight 2PN embryos, when the DM1 triplex and mTP-PCR

protocols were used, which might indicate monosomy for chromosome 19.
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4.1.3.2 Outcome of DM1 PGD cycles

Each couple completed on average 1.5 PGD cycles (fifteen couples had one cycle, four

couples had two cycles and another four couples had three cycles each). For one couple,

the results from their first cycle provided useful information regarding the phase, which

had not been previously available.

The overall diagnosis rate of 74.12% (129/174) is relatively low compared to results

from other studies, where chromosomal and single gene PGD diagnosis ranges from

80.7 to 94.3% (Pickering et al., 2003;Fiorentino et al., 2006;Feyereisen et al.,

2007;Gutierrez-Mateo et al., 2008; Goossens et al., 2008b). Data specific on diagnosis

for DM1 from two of the studies, indicates a diagnosis rate of 85% and 93.3%

(Goossens et al., 2008b;Fiorentino et al., 2006).

It should be noted that our diagnosis rate quoted above includes diagnoses with older

protocols no longer in use in our department. When analysis is limited to results with

the two currently used protocols, 80% of embryos (52/65) were diagnosed with the

DM1 triplex protocol and 91.6% embryos (22/24) were diagnosed with mTP-PCR,

giving overall a diagnosis rate of 83% (74/89 embryos). It is expected that the total

diagnosis rate will increase with future cases, since, following validation of the mTP-

PCR protocol on several cycles, it should be the protocol preferred for diagnosis when

possible.

This study also indicates the importance of carefully assessing the quality of each

embryo and each biopsied blastomere. Diagnostic efficiency can be improved by

ensuring that biopsied and amplified cells are morphologically sound with a clearly

visible nucleus. Our data shows that only 4 out of the 33 blastomeres that were lysing

during the biopsy but in which the nucleus was seen, failed to amplify. On the contrary,

41 out of 42 cells where a nucleus was not seen, failed to give a result following PCR.

This is in keeping with previously reported findings (Piyamongkol et al.,

2003;Gutierrez-Mateo et al., 2008).

Out of the 45 embryos that remained undiagnosed, twenty-seven gave inconclusive

results, ten showed total amplification failure and eight embryos could not be diagnosed

due to the biopsied cell result indicating the presence of a single parental genome. Out

of the 27 embryos with inconclusive results, the lack of diagnosis was due to couple

uninformativity in 51.9% of the embryos (14/27), which included cases completed prior

to the mTP-PCR protocol becoming available, contamination in 5/27 (18.52%), “other”

findings, such as detection of two paternal alleles in 4/27 (14.81%), allele dropout in
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3/27 (11.11%), or, in one of the embryos, result from only one cell when using a

protocol requiring results from two cells for diagnosis (3.7%).

The implantation rate (IR) was 28.2% (11/39 embryos transferred). This is comparable

to results from other studies with IR ranging from 23-28% (Pickering et al.,

2003;Fiorentino et al., 2006;Grace et al., 2006;Goossens et al., 2008b; Gutierrez-Mateo

et al., 2008).

Considering that two cells were biopsied from the majority of embryos, and over two

cells were biopsied from several embryos, it is noteworthy that our IR is much higher

than the reported rate of 12.8% and 14%, from two other groups where two-cell biopsy

was also performed (Feyereisen et al., 2007;Vandervors et al., 2000). Finally, this study

indicates a pregnancy rate per embryo transfer of 36.5%, including the two transfers of

frozen-thawed embryos, where no pregnancy was established. This rate is high

considering that pregnancy rates per ET from other studies have ranged between 21.5-

43.4%, with most being ≤ 33% (Grace et al., 2006;Fiorentino et al., 2006;Feyereisen et

al., 2007;Dreesen et al., 2008;Goossens et al., 2008b; Gutierrez-Mateo et al., 2008).

Pregnancies were established even from embryos considered to be of poor quality. Four

of the eleven embryos that implanted had eight or fewer cells at the time of transfer, and

three of the implanted embryos, including a 5-cell embryo, had been rebiopsied. Post-

natal DNA analysis in case no.10 revealed that it was the slow growing rebiopsied

embryo, that had had two cells removed, that implanted. This differentiation could not

be made for case no.1 as both of the embryos transferred, one of which was rebiopsied

and the other not, had given the same genotype on analysis.
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4.1.3.3 Follow-up analysis

4.1.3.3.1 Analysis of spare embryos

Despite relevant counseling, none of the couples opted for prenatal diagnosis, so as not

to risk losing the precious pregnancy achieved following the physically and emotionally

stressful IVF/PGD cycle. This further underlines the importance of ensuring diagnostic

accuracy during PGD.

Confirmation of diagnosis was routinely performed for all embryos that were affected or

unaffected but unsuitable for cryopreservation, in order to test the validity of the

assessment and estimate the chance of misdiagnosis.

Overall, 86 embryos were available for confirmatory analysis, of which 53 had been

diagnosed as affected or unaffected during PGD, 20 had given an inconclusive result, 6

had no result and 7 had not been biopsied. In most, but not all, cases, confirmation

involved application of the same protocol that was used for genotyping and blastomere

diagnosis, although some follow-up analyses included a combination of the DM1 triplex

and mTP-PCR protocols on single cells or blastomere clumps. When possible,

depending mainly on the number of cells present, both a single blastomere and a

blastomere clump were obtained for reanalysis from each embryo. In cases where the

embryo quality was poor or when disaggregation was difficult because of the embryo

being very compact, the embryo was tubed whole.

Forty-seven out of the 53 embryos where a diagnosis had been obtained were confirmed

during follow-up (7/8 unaffected and 40/45 affected). From the 6 embryos where the

diagnostic result was not confirmed, one unaffected embryo and three affected embryos

gave an inconclusive result during reanalysis. The reasons for these embryos being

inconclusive were the presence of a cell showing amplification from one parental

genome only (one unaffected embryo), ADO (one affected embryo) and contamination

(two affected embryos). The two remaining affected embryos, a three-cell and a four-

cell embryo, failed to amplify on reanalysis. Overall, the reanalysis result concurred

with the primary diagnostic result, i.e. no false negatives or false positives were detected.

The embryos that had not given a result during PGD and the embryos that had not

grown to a stage to allow biopsy on day 3 were tubed whole during reanalysis, and all of

them were successfully analysed and yielded an affected/unaffected result. This

provided additional information on the number of affected and unaffected embryos

obtained from this group of patients. From the twenty embryos tested that had been
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inconclusive on diagnosis, ten remained inconclusive during re-analysis, one did not

give a result (9-cell embryo), while a diagnosis was achieved for the remaining nine.

Most of the embryos that remained inconclusive despite reanalysis came from couples

sharing marker alleles (7 embryos), while two other embryos showed evidence of

contamination in the biopsied cells and one embryo had ADO. Use of the mTP-PCR

protocol in cases of couple uninformativity would reduce the number of undiagnosed

embryos due to inconclusive results.

The data from follow-up analysis using MDA, though limited, gave very poor results.

Further investigation and potential protocol optimisation was not deemed necessary in

this study as the available optimised protocols did not only provide faster results but

also combined direct mutation detection with linkage analysis.

4.2 Investigation of DMPK repeat transmission

4.2.1 Allele transmission

Preferential transmission of large non-expanded alleles at the DMPK locus has been

reported in offspring and human preimplantation embryos, however, results regarding

transmission of the expanded allele have been contradicting (introduction section

1.2.3.1). Investigation of transmission of the DMPK repeat from the affected parent to

the preimplantation embryo has not been previously available. Allele transmission was

investigated by analyzing data in three ways. First of all, observing the number of

affected vs. unaffected embryos on diagnosis. Secondly, separating parental alleles into

‘small’ or ‘large’ (expanded or the larger non-expanded) and finally, by grouping of

parental alleles into different repeat classes to detect potential differences in

transmission depending on allele size.

In summary, transmission ratio distortion (TRD) was not observed from the above

analysis; our results do not support preferential transmission of the expanded repeat

allele to the preimplantation embryo, agreeing with the results from the two prenatal

studies (Zunz et al., 2004;Martorell et al., 2007). This is also indicated by the non-

significant difference in the number of embryos diagnosed as affected and unaffected. It
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should be noted, however, that the level of expansion was unknown in most cases and

this might also influence transmission. Previous investigators similarly reported no

significant TRD for non-expanded 5-18 repeat alleles, but detected preferential

transmission of 19-37 repeat alleles (Dean et al., 2006a). In this study there was

information from a total of 30 transmissions involving alleles of 19-37 repeats, and in

these individuals, the second repeat allele was expanded. Statistical analysis did not

indicate a significant difference in the transmission of these repeat classes (binomial

test) , however, more data would be necessary due to the small sample size.

A similar analysis was performed focusing on results from patients with a previous

history of an affected pregnancy, but, again, there was no statistically significant

difference between the number of embryos diagnosed affected or unaffected from this

group.

4.2.2 Instability of repeat transmission

In a previous study, intergenerational instability at the level of human gametes and

preimplantation embryos was detected by use of a specific PCR for long fragments,

followed by Southern blot analysis for detection of the expansion, as well as a second

round PCR for detection of the smaller alleles. In this way significant increases in repeat

number were detected in oocytes and embryos from female patients with DM1, while

smaller increases were detected in spermatozoa and embryos from male patients (De

Temmerman et al., 2004). It is noteworthy, however, that the technique used had

limitations in detecting large expansions. A subsequent study reported the use of TP-

PCR for sizing of the non-expanded as well as the expanded DMPK repeat alleles, in

both oocytes and embryos, based on the specific ladder patterns produced following

amplification from each sample. In particular, expansions were sized as “maternal-type”,

when the results were similar to amplification from maternal lymphocytes,

“intermediate” and “congenital”, corresponding to precisely 170-190bp, 200-240bp, and

>250bp on F-PCR analysis, based on results from two patients (Dean et al., 2006b). A

variable degree of expansion was detected in preimplantation embryos, with several

indicating expansion in the congenital range. Additionally, instability was seen during

transmission of non-expanded 19-37 repeats from the father to the preimplantation
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embryo, in keeping with previous observations of instability in transmission of normal

alleles at the level of offspring (Dean et al., 2006b).

In this study we attempted to optimise the TP-PCR technique in order to reproduce

similar experiments that would enable detection of instability in our larger group of

patients with DM1 undergoing PGD. The results presented here, however, are

contradicting to the previous study. From our experience, TP-PCR was unable to size

expansions even when comparing control genomic DNA samples with small, medium,

larger and congenital range expansions. This observation was supported by a recent

study concluding that TP-PCR could only accurately size alleles of up to 50 repeats

(Falk et al., 2006). We, therefore, conclude that Southern blotting still remains the best

way to estimate the triplet repeat size.

We also noted that, in affected samples, TP-PCR amplification was extremely variable

even amongst single lymphocytes of the same individual, while the previous study

reported this to be consistent. Differences were also detected when blastomeres from the

same affected embryo were amplified, which could, however, also be due to differences

in cell quality. Regardless of this variation, we described TP-PCR amplification

products in several day 3 embryos as being larger than any of the patient lymphocyte

results. Several day 5 embryos showed bigger amplification products compared to their

day 3 result, which would suggest a case of mitotic postzygotic expansion. Pre- and

post-zygotic expansion of the CTG repeat has also been proposed for Fragile X,

however, the significance of the above observations remains unverified (Ashley and

Sherman, 1995).

On the other hand, TP-PCR was more accurate in sizing non-expanded repeat alleles.

This allowed to detect a potential allele instability in 3/37 (8%) unaffected blastomeres

analyzed. Similar changes in the number of repeat units during transmission (>7%) have

been reported (Dean et al., 2006b).

4.2.3 Embryo development and CTG repeat allele transmission

Embryos were generally scored by the embryologists on day 2, day 3, pre- and post-

biopsy, day 4 and/or day 5. Following diagnosis and follow-up, development of all

known unaffected embryos was compared to the development of affected embryos. To

allow a fair comparison, only embryos biopsied on the morning of day 3 were included
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and embryos that had been rebiopsied were excluded from the analysis. In addition,

most embryos had one to three cells removed, but the majority of them were in the two-

cell category. Development of unaffected embryos with two cells biopsied on day 3 was

compared to development of the affected embryos that had two cells biopsied on day 3.

Results indicate that a greater number of affected embryos developed to the morula or

cavitating morula stage by day 4, compared to the number of unaffected embryos at the

same stage.

This observation is significant as an increased survival of affected DM1 embryos might

indicate a mechanism by which expanded alleles are maintained in the population.

Another study has shown that the presence of large non-expanded alleles, of 19-38

repeats, does not influence preimplantation development however it could be that

different sized repeats might have a different impact on the embryo (Dean et al., 2006a).

It has also been reported that expanded cells of lymphoblastoid cell lines present a

growth advantage and faster cell proliferation over cells with smaller expansions

(Khajavi et al., 2001). The accumulation of more data from DM1 PGD cases is

necessary to further support these findings at the preimplantation stage.

In conclusion, the first part of this study (aims 1 and 2) enabled the development and

clinical implementation of new universal protocols that can be routinely applied for the

diagnosis of DM1 at the preimplantation stage. The results from our 28 DM1 IVF/PGD

cycles, the largest number of cycles in the UK, demonstrate that PGD for DM1 is a

practical, reliable and effective option for couples to avoid passing the disorder on to

their children without the need for termination of affected pregnancies (Kakourou et al.,

2008). The implantation and pregnancy rates have been very encouraging and this is

fundamental to the PGD program. PGD for DM1 can be applied within one month after

patient referral and should be suggested as another alternative to PND during

counselling of couples with increased genetic risk. Furthermore, this study has provided

additional information regarding the impact of the number of cells biopsied, which has

recently accumulated a lot of debate. Since completion of analysis in this study, several

of the patients have had additional IVF/PGD cycles. In particular, patients 8 and 23

have now had a total of 4 cycles each and patient 19 has had a total of 3 cycles. This

emphasizes that these couples are willing to go to great lengths to avoid passing on

DM1 to their children and underlines the importance of obtaining an accurate diagnosis

for every single embryo to improve the chances of a successful IVF/PGD cycle. Both of
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the new optimised protocols, the DM1 triplex and the mTP-PCR, involve a single PCR

amplification step. Therefore, these methods enable a faster and significantly cheaper

diagnosis compared to other described attempts for the establishment of universal PGD

protocols, that involve an MDA approach (Burlet et al., 2006;Renwick et al., 2006).

This study has also provided information from 28 couples regarding repeat transmission

from affected parent to embryos at the preimplantation stage, mostly affected female to

embryo and unaffected male to embryo. Transmission ratio distortion was not observed,

though a growth advantage of DM1 affected vs. unaffected embryos was detected.

Implementation of the new protocols in clinical practice will allow accumulation of data

to further support the findings described in this study regarding allele transmission and

embryo development.

4.3 Expression work

4.3.1 Sample processing for microarrays

The difficulties associated with obtaining and generally working with human oocytes

and embryos pose limitations to research in this field. Several studies have been

conducted using poor quality oocytes and embryos that would be discarded during IVF,

or oocytes that were injected with sperm but failed to fertilise, similarly of no use in

IVF. The human oocytes used in this study were immature at the time of collection, and,

therefore, unsuitable for IVF treatment, but matured in culture prior to processing. The

human embryo blastocysts had been cryopreserved and were donated for research

following the couples’ decision not to use them for embryo transfer.

Microarray work with such precious samples requires great attention to ensure that an

accurate expression profile is obtained. Careful evaluation of the developmental stage of

the sample is essential prior to sample selection, pooling and processing, as well as

complete removal of the zona pellucida, to prevent nucleic acid contamination. Overall

handling should be swift to prevent RNA degradation. Oocyte and embryo samples

were stored at -80°C until enough were collected to be able to pool them in groups of

three. Though a microarray result can also been obtained from a single oocyte, many
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transcripts were not detected due to the lack of sensitivity for low template mRNA. For

that reason, it has been recommended that a minimum of three oocytes are pooled

together for microarray experiments (Jones et al., 2007).

For experimental designs that involve comparison of two groups for differential

expression testing, such as comparison of the blastocyst to the human MII oocyte in this

study, it is indicated that a minimum of five biological cases per group should be

analyzed (Pavlidis et al., 2003). The more biological samples tested, the greater the

significance of the microarray results. Pooling of mRNA from biological replicates

increases the biological sample size without the need to utilise more arrays. The samples

pooled together were from different donors in order to overcome individual variation. In

this way inter-individual variation cannot be assessed, but this practice generates an

overall representative gene expression profile from the tested sample. Biological

replicates are considered essential and should be preferred to technical replicates

(testing of mRNA from a single sample on multiple arrays), as they allow to not only

estimate the effects of measurement variability but also account for any biological

differences (Allison et al., 2006).

Additionally, samples were processed a few at a time in order to minimize the overall

handling time during the RNA isolation particularly in view of the long protocol for the

RNA amplification procedure. Careful planning of each experimental step was essential

in order to avoid unnecessary delays and minimize freezing-thawing of the samples.

The triplicate array experiments for blastocyst-oocyte comparison were all performed

using arrays from a single batch. All arrays were processed at the same time to avoid

influences on the results by other unknown factors.

The experience with single cell work for PGD and the availability of the PGD

laboratory set-up, designed so as to reduce the chances of DNA contamination, along

with the incorporation of practice guidelines specifically for RNA work, provided the

necessary environment for successful processing of the samples to be used for

microarrays. Optimal conditions for working with RNA were first tested on lymphocyte

samples prior to commencing the microarray work. Good practice was then confirmed

by the Bioanalyser results for the samples used for microarrays, indicating good RNA

integrity and the absence of DNA contamination.

Reported estimates of the total RNA amount per human oocyte range between 55-330pg

(Neilson et al., 2000;Dobson et al., 2004;Kocabas et al., 2006). In our study RNA

concentrations extracted from pooled samples ranged between 48-78pg/µl, on average

(from all samples) 58.6pg/µl (14μl of eluted volume for each sample set of three
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oocytes), i.e. 273pg/oocyte (0.27ng/oocyte). The amount of RNA from the human

blastocyst sets (the DM1 affected sample excluded) ranged from 63-393pg/µl, with an

average from all readings, of 223.3pg/µl, i.e. 1042pg/ blastocyst (or 1ng/blastocyst).

As microarrays require at least 10µg RNA for hybridization, the samples were amplified

using a two-round linear RNA amplification protocol, which amplifies more than

100,000 times the initial RNA input, achieving a new RNA concentration range for

pooled oocyte samples between 22.9ng/µl to 296ng/µl and 59.5-232.8 ng/µl for the

embryo samples.

It is noteworthy that the lowest concentrations were obtained from oocytes and embryos

processed in the early part of our experience, indicating the importance of careful set up

and expertise with each new experimental procedure. The three sets of oocytes and

embryos for which hybridization of 10µg was possible for the microarrays were used as

biological replicates. The amplification protocol used has been previously validated by

other investigators and the amplified material is thought to be representative of the

original samples (Bermudez et al., 2004;Patrizio et al., 2007).

This study overcame limitations, such as the use of discarded human oocytes that failed

to fertilise, as well as the lack of sufficient biological and technical replicates. In

addition, the use of a very sensitive microarray platform in this study, allowing the

interrogation of over 29,000 genes has overcome the limited coverage of several

previous array experiments (Kocabas et al., 2006).

4.3.2 Microarray results analysis: general expression profiling

The differences in the number of probes detected between the three replicates for

oocytes and blastocysts can be attributed to the random pooling of samples from

different donors, with a different genetic background, to differences in the

microenvironment of each oocyte and embryo, the time required for collection and

tubing for each sample as well as differences in RNA quality and amplification.

Overall, 11679 probes and 13118 probes were detected in all three replicates of oocytes

and blastocysts respectively. As only the probes common between all samples were

considered for further analysis we assume that sample-specific differences are

eliminated.

Failure to detect expression from cumulus-cell specific genes in the oocytes and

blastocysts was taken as a confirmation that all samples were successfully denuded of
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the zona pellucida. Examples of these included PTGS2, PTX3, GREM1 and STAR,

which are downstream targets of the oocyte-secreted factor GDF9 and have been

described as cumulus cell markers of oocyte competence. Other cumulus cell markers

that were undetected included the KIT ligand (KITLG), which is produced by the

granulosa cells and binds to its receptor on the oocyte surface to stimulate oocyte

growth, as well as epidermal growth factor (EGF)- like proteins of the granulosa cells,

amphiregulin and epiregulin, that have been associated with oocyte maturation

(Mehlmann, 2005;Cillo et al., 2007;Li et al., 2008). The levels of expression of several

genes previously investigated were also assessed in our sample data.

The majority of genes detected in each sample broadly belonged to the nucleic acid and

protein metabolism categories and most genes with highest expression in both samples,

excluding the unclassified function genes, were involved in protein metabolism.

Additionally, the oocyte also showed generally high expression in the categories of

nucleic acid metabolism and cell cycle. Despite the main differences, however, several

genes showed similarly very high levels of expression in both samples, such as the

heterogeneous nuclear ribonucleoprotein A1 (HNRPA1) involved in mRNA splicing,

and the ribosomal protein L7a (RPL7A), involved in protein biosynthesis, suggesting a

fundamental role of these transcripts in preimplantation development.

When the gene expression was compared between the two samples, taking the human

oocyte as the control, 4910 genes showed statistically significant differences in

expression (p<0.05). Of these, 2652 genes were over expressed in the blastocyst and

2591 genes were under expressed in the blastocyst compared to the oocyte. Excluding

the genes of unclassified function, the majority of the remaining genes showing higher

expression in the blastocyst belonged to the protein biosynthesis category, while other

important categories included intracellular protein traffic, transport, and immunity and

defense. On the other hand, genes that showed higher expression in the oocyte are

associated with nucleic acid metabolism, signal transduction, developmental processes

or the cell cycle.

The protein metabolism (higher expression in blastocyst) and nucleic acid metabolism

(higher expression in oocyte) categories were investigated in more detail. Genes over

expressed in the blastocyst were involved in protein biosynthesis, protein folding,

translational regulation, protein complex assembly or amino acid regulation, while most
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protein modification genes showed higher expression in the oocyte. From the nucleic

acid binding category the blastocyst showed higher expression for genes that had to do

with pre-mRNA processing, rRNA and tRNA metabolism, purine and pyrimidine

metabolism, while the oocyte showed higher expression for genes involved in DNA

processing, chromatin packaging and remodeling, RNA localization or metabolism of

cyclic nucleotides.

The genes that showed over a 10-fold difference in gene expression between the two

samples were further analyzed by molecular function. It was found that the blastocyst

showed over expression of ribosomal proteins and translation factors, while the oocyte

showed over expression of chromatin-binding factors, transcription factor, and DNA

methyltransferases.

Overall, the oocyte was rich in genes involved in DNA metabolism, while the blastocyst

was mostly active in protein metabolism. The initial analysis supports previous findings

that human oocytes, though transcriptionally silent, are well equipped with transcripts

and proteins in order to be able to support chromatin remodeling during fertilisation as

well as early preimplantation development until initiation of transcription in the embryo

(Kocabas et al., 2006). On the other hand, the human blastocyst is very active in

synthesizing proteins, but also shows high activity in genes that have to do with DNA or

chromosomes. This has also been previously suggested to be associated with the higher

number of nuclei in the blastocyst sample (Wells et al., 2005b).
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4.3.3 Oocyte and blastocyst-specific genes

Once the genes expressed in a tested sample are known, the next important goal is to

understand the impact of their expression and what function they contribute to

preimplantation development.

For that purpose, we proceeded to investigate the genes that are uniquely expressed in

oocytes and blastocysts, as this might reveal which genes play a critical role in

maturation, fertilisation and development and which genes are expressed as a result of

embryonic genome activation. Previous comparisons of oocytes, of different maturation

stages, with their surrounding cumulus cells, and investigation of genes expressed in

embryos at different developmental stages have provided some additional intriguing

information (introduction section 1.3.2). The investigation and comparison of oocyte

and blastocyst-specific genes, however, possibly indicating genes with important roles

pre- and post- embryonic genome activation, has not been previously reported.

A total of 1909 genes were uniquely expressed in the oocytes, while 3122 were

uniquely expressed in the blastocyst samples. Oocyte-specific genes included the zona

pellucida glycoproteins (ZP1, ZP2, ZP3, ZP4) and members of the TGF-beta

superfamily, such as GDF9 and BMP15, that are known to play a role in follicle growth,

maturation and cumulus expansion (McKenzie et al., 2004). In addition, known germ-

cell specific genes were included in this category, such as factor in the germline alpha

(FIGLA), deleted in azoospermia-like (DAZL), v-mos Moloney murine sarcoma viral

oncogene homolog (MOS), nucleophosmin/nucleoplasmin 2 (NPM2) and H1 histone

family, member O (H1FOO). Genes unique in human blastocysts included annexins A2

and A3 (ANXA2, ANXA3), gap junction protein, alpha 1 (GJPA1), GTP binding protein

4 (GTPBP4), ATPase H+ transporting, lysosomal accessory protein 1 (ATP6AP1).

Uniquely expressed transcription factors represented an important molecular function

category in both sample types.

When grouped by level of expression, 349 of the oocyte-specific genes (18.3%) and 431

of the blastocyst-specific genes (13.8%) showed high expression levels.

Amongst the oocyte-specific genes, high expression was detected for genes regulating

glycogen metabolism, lipid metabolism and calcium homeostasis, while important

molecular function categories involved mitochondrial carrier proteins, cyclases and the

microtubule family of cytoskeletal proteins. On the other hand, the blastocyst-specific
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genes were associated with oxidative phosphorylation, glycolysis, sterol metabolism,

and were rich in RNA-binding proteins, methyltransferases, gap junction proteins and

intermediate filaments.

Experiments on porcine and bovine oocytes have demonstrated the role of lipid

metabolism in the oocyte and the use of triglycerides (TG) as endogenous substrates for

the generation of ATP (Sturmey et al., 2006). TG is stored as lipid droplets, which have

been shown to be in close proximity to the mitochondria, where the free fatty acids are

transported in order to be oxidized by beta-oxidation and the TCA cycle. Mitochondria

actively relocate and surround the newly formed pronuclei, following fertilisation of the

human oocyte, to concentrate ATP and calcium to support normal developmental

processes (Sousa et al., 1997;Sun et al., 2001). In mouse oocytes, the movement of

mitochondria is mediated by microtubules, which also justifies the high expression level

of the microtubule family of cytoskeletal proteins in these cells. The pre-existing

oocyte mitochondrial proteins and transcripts are necessary to generate ATP until new

biosynthetic activity develops following embryonic genome activation. Their significant

role is also underlined by the fact that mitochondrial DNA defects, either pre-existing or

age-related, have been associated with reduced meiotic competence and fertilizability of

the oocyte as well as developmental failure in the preimplantation embryo (Van et al.,

2000). Our findings support that the human oocyte has all the machinery required to

support the synthesis of cAMP, which controls nuclear maturation (Kawamura et al.,

2004;Richard, 2007). This includes receptors, guanosine 5’-triphosphate-binding (G)

proteins, cyclases (which synthesize cyclic nucleotides) and phosphodiesterases

(degrading cyclic nucleotides), which were found to be amongst the oocyte-unique

genes and also of high expression level. The identification of the above unique oocyte

genes is significant and may be further investigated to provide information on the

oocyte quality (Van et al., 2000).

Highly expressed human blastocyst genes were associated with oxidative

phosphorylation as well as glycolysis. These processes control ATP generation during

pre-compaction and cavitation stages respectively (Van et al., 2000). Therefore, these

genes probably exist from the point of embryonic genome activation and onwards. The

blastocyst, contrary to the oocyte, showed high expression in genes involved in the

conversion of acetate to cholesterol. The sterol synthetic pathway has also been shown

in mouse oocytes and embryos not to be operative until the blastocyst stage of

development. These processes were not significantly detected in the oocyte samples,

which is an expected finding as the oocytes can obtain the necessary nutrients from the
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surrounding cumulus cells. For example, BMP15 has been shown to stimulate the

glycolytic activity in granulosa cells since the oocytes are not able to generate ATP

(Sugiura et al., 2007). In addition, mouse oocytes can stimulate cholesterol synthesis in

cumulus cells, which in turn supply the oocytes with cholesterol (Su et al., 2008).

Finally, highly expressed blastocyst genes were involved in the platelet derived growth

factor (PDGF) pathway, which plays a critical role in cellular proliferation and

metabolism, the Rho GTPase control pathway that regulates cytoskeletal changes

occurring during cell growth and development and the Integrin signalling pathway, also

important in actin reorganization. Most oocyte genes, on the other hand belonged to the

Wnt signalling pathway, important in recruitment of membrane proteins and general

transcription regulation.

4.3.4 Investigation of housekeeping gene expression

Housekeeping genes are highly and stably expressed in a variety of tissues and cell

types. Because of their role in regulating basic cell processes, they generally provide

some information on the quality and function of a cell, while their expression might be

indicative of the expression of a number of other genes. Additionally, housekeeping

genes can be used as endogenous standards for normalization of gene expression data

across various samples. This approach requires careful validation of the housekeeping

gene expression under different developmental stages and experimental conditions,

involving, to ensure accuracy, a rather large number of test samples as well as biological

and technical replicates.

The above are difficult with regards to human preimplantation embryo work, where

there is limited availability of material. For that reason, several studies have attempted

different methods of normalization, however, none of them is ideal for working with

minute amounts of RNA. The absolute RNA quantification is impractical for sizing

small samples, while the approach of adding exogenous template has been challenged

for competing for enzyme and nucleotides with the endogenous sequence, while at the

same time increasing the cost and introducing extra procedures (Huggett et al.,

2005;Jeong et al., 2005;Mamo et al., 2007;Mamo et al., 2008).

In this study, microarray data obtained from human oocytes and embryos was analyzed

for the identification of the level of expression of genes with a potential housekeeping
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role. The analysis has identified the genes that are highly expressed in these samples,

which can be taken as an indicator of the different pathways regulating these complex

developmental stages, and also identified several potentially stably expressed genes that

may be further validated.

Five hundred and sixty (560) genes were analyzed in total. Most genes showed high

expression levels in both samples, and 90.9% of the high expression genes of the oocyte

remained of high expression in the blastocyst sample. The majority of these were

ribosomal proteins.

Two hundred and eleven (211) of all detected genes showed significant differences in

expression between the two samples. The majority of them, 155 genes, were up

regulated in the blastocyst, while the remaining ones, 56, showed higher expression in

the oocyte. Most gene groups included both up- and down-regulated genes from the

oocyte to blastocyst stage. Differentially expressed genes from the tRNA synthetase,

hnRNP and snRNP categories were all upregulated in the blastocyst, while differentially

expressed genes from the nuclear pore complex category were all found to be down

regulated in the blastocyst sample. This also underlines the importance of nuclear

transport and cytoskeletal organization in the oocyte and provides another list of genes

with potential significance for the normal function and development of the human

oocyte. On the other hand, the snRNPs and hnRNPs, involved in mRNA splicing and

protein methylation and modification along with tRNA synthetases controlling amino

acid activation and general tRNA metabolism, play a significant role in the growing

blastocyst.

Previous experiments have demonstrated major differences between the housekeeping

genes validated from studies on adult tissue and those from embryonic stem cells or

stages of preimplantation development. Overall, the most frequently used housekeeping

genes, GAPDH and ACTB, have been determined from experiments involving adult

tissues and cell lines. These have shown very high variability both on embryonic stem

cell studies and during human preimplantation development. ACTB showed an over 10-

fold increase in expression in the human blastocyst as compared to the human oocyte.

This difference has also been identified in other human and mouse studies (Wells et al.,

2005b;Mamo et al., 2007). In particular, ACTB has been shown to fluctuate between the

5-10 cell to the morula stage and then rapidly increase in the morula and the blastocyst

(Wells et al., 2005b). In one recent study, comparing the expression of genes on day 3

human embryos to their expression in human oocytes, GAPDH was used as a reference

gene to normalise expression data to control mRNA recovery and reverse transcription
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efficiency; its expression was assumed to be constant, without prior validation (Dobson

et al., 2004). In this study, however, GAPDH was found highly up regulated in the

human blastocyst compared to the human oocyte (table 3.30). ACTB was also suggested

as a control in a mouse preimplantation development study (Willems et al., 2006). From

the current analysis, amongst other commonly used housekeeping genes, eukaryotic

translation elongation factor 1 epsilon 1 (EEF1E1, protein biosynthesis) and ubiquitin C

(UBC, proteolysis) showed the most stable expression, with UBC showing overall

higher expression signals in both samples.

A recent study on immature oocytes and embryo developmental stages using

cryopreserved human embryos, recommended the use of the eukaryotic translation

elongation factor A (EEF1A1) and the proteasome subunit beta, type 6 (PSMB6),

associated with translational regulation and proteolysis respectively, as reference genes

in human preimplantation studies (Zhang et al., 2008). Other preimplantation studies on

mouse, rabbit and bovine embryos have indicated the comparative stable expression of

PPIA, CHUK, TBP, Histone H2A, H2AFZ, YWHAZ and HPRT1 (Robert et al.,

2002;Falco et al., 2006;Willems et al., 2006;Mamo et al., 2007;Mamo et al., 2008).

From all of the above genes, in our analysis CHUK gave a stable signal between the

oocytes and blastocysts, but the remaining genes do not seem to be suitable as control

genes for human preimplantation studies as they showed significant expression

variability.

4.3.5 Assessment of gene expression for other functional pathways

DM1 is a multifactorial disease and affects many different pathways, including some

that play a significant role during preimplantation development, such as methylation.

Other genes, for example genes encoding components of the microRNA processing

machinery, also known to play a critical role in oocyte maturation and embryo

development, have not been previously investigated at the human preimplantation stage

(Murchison et al., 2007;Tang et al., 2007).
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MicroRNAs are short, non-coding endogenous RNAs that bind to conserved sequences

within the 3’ untranslated regions of specific mRNAs and inhibit their translation,

regulating, in this way, the expression of up to one third of human genes (Lewis et al.,

2005). MicroRNAs are derived from long primary transcripts transcribed by RNA

polymerase II (pri-miRNA), cropped by nuclear RNAse III Drosha into 70 nucleotide-

long pre-miRNAs, exported out of the nucleus by XPO5 and cleaved by cytoplasmic

RNAse III DICER into the 17-25 nucleotide-long miRNA duplexes. One strand of the

miRNA duplex is incorporated, along with the Argonaute protein Ago2, into the RNA-

induced silencing complex (RISC), which scans cellular mRNA in an attempt to locate

the miRNA target (Mtango et al., 2008;Schmittgen, 2008). A recent study on human

embryonic stem cells (hESCs) has revealed that most of the hESC miRNAs are located

on chromosomes X and 19 (Cao et al., 2008).

In this study, the expression of genes from this pathway was investigated in the human

MII oocytes and embryos. Significant observations included strong maternal expression

of DICER1 and significant downregulation of GEMIN5, SIP1 and TNRC6B at the

blastocyst compared to the oocyte stage. The expression of RNASEN was high in both

oocytes and blastocysts. On the other hand, YBX1, GEMIN4, MOV10 and the exportin

genes (XPO1, XPO4, XPO5) were all significantly up regulated in the blastocyst.

Several genes were only detected at one of the two stages.

The above results from the human samples can be compared with studies on mouse and

rhesus monkey preimplantation oocyte and blastocyst embryo development regarding

the level of expression of these genes (Zheng et al., 2004;Mtango et al., 2008).

Some similarities and differences are observed in the expression of these genes between

the three species. The expression patterns of RNASEN, DICER1, GEMIN5 and TNRC6B

are similar to the results from the mouse study, while upregulation of YBX1 at the

blastocyst stage was also detected in the rhesus monkey study. XPO4 increased during

development in all three species. PIWIL1 was not detected in either oocytes or

blastocysts, similarly to the other studies. MOV10, which was not detected in the

monkey, was found highly up regulated in the human blastocyst, suggesting that some

of these processes might be controlled differently in different species (Zheng et al.,

2004; Cui et al., 2007;Mtango et al., 2008).



228

Data analysis also identified the expression level of methyltransferases and other DM1-

associated genes, thereby providing a useful foundation of information for experiments

on DM1 affected samples, in comparison to unaffected samples.

Expression of the DMPK gene was not detected in the oocyte or blastocyst samples

tested in this study. However, a previous study reported detection of maternal DMPK

transcripts in two unfertilised oocytes and detection of transcripts from the paternally

inherited allele in 16 out of 19 preimplantation embryos, of up to four blastomeres each,

donated by IVF patients (Daniels et al., 1995). It is unknown whether expression of

DMPK may serve a specific function at this early developmental stage, however,

considering the potential differences in development between affected and unaffected

embryos suggested in this study, this would be something interesting to further

investigate. Additionally, the above give further emphasis to the requirement for

continuation of the microarray experiments using more sensitive analyses, to investigate

the absence of several transcripts. Lack of amplification or underrepresentation of some

transcripts may be associated with the oligo(dT) amplification step performed for

generating the microarray data (Bell et al., 2008).

In summary, this work confirmed several previously described findings from studies on

preimplantation development of human and other species and provided the opportunity

to study the level of expression of a large number of genes, not previously investigated,

in healthy human oocytes and embryos. The identification of genes that maintain high

expression levels during the initial and latest stages of preimplantation development, as

well as genes uniquely expressed at each of these developmental stages, is expected to

be of used in future experiments, potentially providing important information regarding

sample quality. More generally, alterations in the level of expression of the microRNA

processing genes, that play a significant role during development and have an impact in

the expression of other genes, might also be used as an indicator of oocyte and embryo

quality. Additionally, this study identified genes which may show a stable expression

between human oocyte and blastocyst stage and may thus be candidate ‘housekeeping’

genes. Further work on validation of these results is important, especially as it has

recently been recommended that more than one reference genes should be used for

accurate normalization and interpretation of the expression results (Vandesompele et al.,

2002). Finally, the DM1-associated genes detected in the oocyte and embryo samples
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could form the focus of further investigations for the comparison of gene expression

between DM1-affected and unaffected samples.
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4.4 Future work

The results presented in this study have provided the basis for future experiments to

expand on current knowledge of the mechanism and pathogenesis of DM1. The

availability of the new protocols will increase the number of patients with DM1 that can

undergo PGD. The continuing PGD work, combined with analysis of data from

diagnosis and follow-up analysis of embryos unsuitable for transfer, may provide a

clearer picture regarding transmission of different sized repeat alleles, the mechanisms

involved in repeat transmission as well as affected vs. unaffected embryo development.

The results from this study have also raised several questions that could be addressed in

future work. Interesting findings and observations have included abnormally fertilised

oocytes, poor quality embryos and identification of chromosomally abnormal embryos

from patients with DM1. The possible incidence of monosomy 19 could not be

confirmed. The co-amplification of several markers on chromosome 19 may be of use in

identifying cases of monosomy, while testing of markers on different chromosomes may

suggest cases of haploid embryos. However, such an approach would be very difficult at

the single-cell level. For that purpose, chromosomal analysis of embryos from patients

with DM1 and comparison with results from other single gene PGD cases has already

been initiated in our department. It remains to be seen whether a combination of

chromosomal and molecular analysis of the preimplantation embryo will be of benefit

for patients with DM1, in order to enable the identification of embryos more likely to

implant. This analysis has been previously attempted by combining WGA followed by

F-PCR and CGH analysis, and may, in the future, be possible by genetic analysis of

single biopsied cells by DNA microarray technology (Kuliev and Verlinsky, 2008).

Follow-up analysis of spare embryos following PGD may also be extended by

optimising a new protocol at the single cell level, to co-amplify the AMLXY primer

along with the other markers of the DM1 triplex or mTP-PCR protocols. The aim of

this would be to establish whether there is an association between repeat size, embryo

sex and/or embryo development. In this study this analysis was initiated on only a few

embryos following amplification by MDA. Since these results indicated a very high

ADO rate, it is expected that a more accurate and faster at the same time, analysis will

be possible by simple F-PCR. Because of the small product size of the AMXY primer, it
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is anticipated that its amplification on single cells and co-amplification along with the

other markers in a multiplex PCR will not require extensive optimisation.

This study also included testing of buccal cells from two babies born following PGD for

two families. The continuing analysis may provide interesting results regarding the

characteristics and grade of implanting embryos. Additionally, embryo rebiopsy has not

been previously described by another PGD centre; although it increases the rate of

embryo diagnosis further evidence is necessary to investigate the possible impact of

rebiopsy on embryo development and implantation.

Finally, during the course of this study several immature oocytes were collected from

patients with DM1 and stored at -80°C (section 2.3.2.2). These were destined to be used,

following validation of the TP-PCR protocol, for estimation of the repeat size. The aim

was to obtain some indication regarding the timing of the repeat expansion, at the same

time focus on a more patient-specific analysis concerning the size of the expansion and

associate oocyte analysis with remaining embryo diagnosis. Because of the inaccuracy

of sizing by TP-PCR, as found in this study, these oocytes were not processed and may

be used instead for repeat sizing by Southern blotting, as has been previously reported

(De Temmerman et al., 2004). Further work for this may be, however, necessary as

protocols for performing Southern blotting from a single cell have not as yet become

available.

The results from the microarray analysis have provided important information to guide

further experiments by real-time PCR technology. The identification of genes that may

play a significant role at the oocyte and blastocyst stages of preimplantation

development, as well as genes that may indicate good oocyte and embryo quality, will

be of use in future expression studies. The identified list of housekeeping genes with

apparently similar expression between the two stages indicates which genes to further

target for investigation by real-time PCR.

One of the difficulties encountered in this study, due to the limited number of DM1

PGD cases at the time, was the collection of DM1 affected oocytes and embryos.

Hopefully, the collection of more of these samples in the future will enable a

comparison of the normal to the disease state, using the information regarding the
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expression level of relevant genes, as provided by the microarray data and possibly

focusing on transcription factors and microRNA pathway genes. Affected and

unaffected immature oocytes may be identified by isolation of the oocyte polar bodies

and testing each PB using the mTP-PCR protocol. The suggested oocyte genotype may

also be confirmed by simultaneous DNA/RNA isolation of the oocyte and testing of the

DNA using mTP-PCR. Expression studies on the affected and unaffected oocytes may

indicate additional differences in chromosomal constitution or expression.

In summary, future work stemming from this study may involve accumulation of data

from PGD and follow-up analysis, including development of a new mTP-PCR with

AMXY protocol, chromosomal analysis of embryos from patients with DM1 and

comparison with other monogenic disorders, repeat sizing by Southern blotting and real-

time PCR analysis. Understanding the molecular events of early preimplantation

development and investigating the changes that may be associated with the presence of

the CTG repeat expansion may provide a further insight into the mechanisms

controlling DM1 development and progression; genes that play a role in the expansion

pathway may become future targets for therapeutic intervention not only in DM1 but

also other repeat expansion disorders.
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A1. Appendix 1

A1.1 Chemicals

Most chemicals were supplied by Sigma® Chemical company and BDH (later merged

with VWR International) and were of Molecular Biology (for Sigma) or AnalaR Grade

(BDH), unless otherwise indicated. The molecular formula or abbreviation for each

chemical is shown below.

SIGMA® Chemical Company:

Agarose Type I: low EEO, Bovine serum albumin (BSA), Dimethyl sulfoxide >99.9%

(DMSO), DL-Dithiothreitol (DTT) for molecular biology, minimum 99% titration,

ethylenediaminetetra-acetic acid anhydrous 99% (EDTA), gelatine from porcine skin

type A, glucose (anhydrous), Igepal CA-630, mineral oil, phenol red sodium salt,

phosphate buffered saline (PBS), sodium bicarbonate (NaHCO3), sodium chloride

(NaCl), sodium dodecyl sulfate 10% solution 0.2μm filtered (SDS), sodium phosphate

monobasic 99.0% (NaH2PO4), Tricine

VWR International:

Ethanol 99.7-100% v/v, formaldehyde, glycerol, orthoboric acid, potassium hydroxide

(KOH), pottasium chloride (KCl), silver nitrate, sodium borohydride (BNaH4), sodium

hydrogen carbonate (NaHCO3), sodium hydrogen orthophosphate, sodium hydroxide

pellets (NaOH), potassium hydroxide pellets (KOH), sodium thiosulphate pentahydrate

(Na2S2O3 5H2O), Tris (hydroxymethyl) methylamine (TRIS)
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A1.2 Solutions

All solutions were prepared with deionized water and sterilized by autoclaving at 121°C,

1 Bar for 30 minutes (Swiftlock compact autoclave, Astell Scientific Ltd).

A1.2.1 DNA extraction

TKM1

10 mM Tris-HCl (pH 7.6), 10 mM KCl, 10 mM MgCl2, 2 mM EDTA (pH 8.0).

Autoclaved and stored at room temperature.

TKM2

10 mM Tris-HCl (pH 7.6), 10 mM KCl, 10 mM MgCl2, 0.4 M NaCI, 2 mM EDTA (pH

8.0). Autoclaved and stored at room temperature.

10x TE

10mM Tris-HCl (pH 7.4); 0.1M EDTA (pH 8.0). Autoclaved and stored at room

temperature.

6M NaCl

292.2g of NaCl dissolved in 800ml of distilled H2O

10% SDS

100g of electrophoresis-grade SDS dissolved in 900ml of H2O (may need to heat to

68C). Adjust the pH to 7.2 by adding a few drops of concentrated hydrochloric acid

(HCl).

A1.2.2 Lymphocyte isolation

0.9% NaCl

9 g NaCl dissolved in 1000ml H2O. Autoclaved and stored at room temperature.
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A1.2.3 Single cell isolation/lysis

Dissociation buffer (DB)

0.8% NaCl, 0.02% KCl, 0.005% NaH2PO4, 0.1% Glucose, 0.1% EDTA, 0.1% NaHCO3,

0.01% Phenol Red

PK lysis buffer

1.25μg/μl proteinase K, 17.5μM sodium dodecyl sulphate

1M NaOH

8g NaOH were dissolved in 200ml distilled H20. The solution was sterilized by

autoclaving and stored at 4°C

1M KOH

11.2g KOH dissolved in 200ml distilled H20. The solution was sterilized by autoclaving

and stored at 4°C

ALB lysis buffer

200mM NaOH or KOH, 50mM DTT

DTT aliquots of 0.007g each (molecular weight: 154.25) were weighed into sterile

1.5ml PCR tubes and stored at 4°C. The lysis buffer was freshly made by adding 200ml

of the prepared 1M NaOH or KOH solution to the DTT aliquot to use and adjusting to

the final volume of 1ml with nuclease-free water. The volumes of NaOH/KOH and

nuclease-free water varied accordingly depending on the amount of DTT in each aliquot.

The freshly made ALB lysis buffer was stored at 4°C and was used for up to two

consecutive days.

Tricine (200mM)

0.358g of Tricine was dissolved in 10ml distilled H2O and passed through a 0.2μm

sterile filter (Sartorius Minisart®, UK). The solution was aliquoted into 0.5ml PCR

tubes, 200μl each, and stored at -20°C.
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A1.2.4 Electrophoresis

TBE (10x)

90mM Tris-HCl, 90mM boric acid, 2mM EDTA (pH 8.0). Autoclaved and stored at

room temperature.

Loading buffer for agarose gel

40% sucrose; 0.025%w/v bromophenol blue; 0.025% w/v xylene cyanol

Ethidium bromide (stock solution: 10mg/ml)

Diluted to 0.5 μg/ml in 50ml 1X TBE (agarose gel electrophoresis, section 2.5.4.1).
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A1.3 Oligonucleotides

Details for oligonucleotides of tables A1.1 and A1.2 were obtained using Ensembl genome browser website, ensemble version 50
(http://www.ensembl.org) or GDB Human Genome Database for the STR markers, heterozygosity details were from GDB.

Table A1.1: Details of oligonucleotide primers for mutation detection and testing of specific targeted regions (ACTB, AMXY)

Primer details
Modification
(as in section

2.4.1.3)

Primer binding site
Basepairs on chromosome (bp)

Product size
(bp)

Chromosome 7
Beta-actin, ENST00000331789 (august 27th 2008)
ACTB Exon 4/5
ACTB Forward GTTGCTATCCAGGCTGTGCT HEX™ 5534276-5534295
ACTB Reverse CGGATGTCCACGTCACACTT 5534821-5534840

470

Chromosome 19
DMPK gene, Ensembl Sequence ENSG00000104936 (august 27th 2008)
DMPK exon 7/8
DMPK7/8Forward GGAGACCTATGGCAAGATCG FAM™ 50972776-50972795
DMPK7/8Reverse AGCAACCGCTGAATGAAGTC 50972618-50972637

102

DMPK exon 15
DMPK1/Forward GAACGGGGTCGAAGGGTCCTTGTAGC 50965371-50965398
DMPK2/Reverse CTTCCCAGGCCTGCAGTTTGCCCATC VIC® 50965226-50965251

>122 depending
on repeat number

DMPK3/Forward CAGCTCCAGTCCTGTGATCC 50965448-50965467
241bp with
DMPK2

TP-PCR primers
P2 GAACGGGGCTCGAAGGGTCCTTGTAGCCG FAM™ 50965369-50965397
P4CAG TACGCATCCCAGTTTGAGACGCAGCAGCAGCAGCAGCA
P3R TACGCATCCCAGTTTGAGACG

Peak detected
every 3bp

Chromosomes X-Y
Amelogenin gene, Ensembl Sequence ENSG00000125363 (Chr:X), ENSG0000099721 (Chr:Y)(august 27th 2008) Chr: X Chr: Y

AMELX-Y/ Forward ATCAGAGCTTAAACTGGGAAGCTG
NED™

11224997-11225020
6797888-
6797911

105 (chr:X)

AMELX-Y/ Reverse CCCTGGGCTCTGTAAAGAATAGTG 11224915-11224935
6797979-
6797999

111 (chr:Y)

http://www.ensembl.org/
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Table A1.2: Microsatellite markers used in optimised DM1 PGD protocols for detection of contamination

Microsatellite markers

Primer details Modification
Primer binding site

Base pairs on
chromosome (bp)

Product size
(bp)

Heterozygosity
(%)

Chromosome 19
APOC2 gene Ensembl sequence ENSG00000213044 (august 27th 2008)
APOC2 Forward GGCTACATAGCGAGACTCCATCTCC FAM™ 50141347- 50141371
APOC2 Reverse GGGAGAGGGCAAAGATCGATAAAGC 50141216-50141240

134-170 85.2

D19S219 Forward CAGGAAGCGGAGGTTGCAGTGAG FAM™ 50685602-50685625
D19S219 Reverse GTGGAATTGCTGGGTGGACTGGT 50685746-50685768

152-182 77

D19S207 Forward TGCGGTGTTTGAACCCTCGCTG HEX™ 50995802-50995823
D19S207 Reverse ACTGCACTGCAGCCTGAGTGAC 50995932-50995953

135-157 78.4

D19S112 Forward GCCAGCCATTCAGTCATTTGAAG NED™ 51070821-51070843
D19S112 Reverse CTGAAAGACACGTCACACTGGT 51070929-51070950

120-142 86.3

Chromosome 21
D21S11 Forward TATGTGAGTCAATTCCCCAAGTGA FAM™ 19476131-19476154
D21S11 Reverse GTTGTATTAGTCAATGTTCTCCAG 19476331-19476354

172-264 90

D21S1414F AAATTAGTGTCTGGCACCCAGTA FAM™ 19476463-19476485
D21S1414R CAATTCCCCAAGTGAATTGCCTTC 19476140-19476163

291-370 87.5
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Table A1.3: Position of primers for RNA/DNA amplification from ACTB and DMPK genes. Salmon-coloured regions indicate the
position of exons. Yellow sequences represent the primer annealing sites.

ACTB (ENSG00000075624): DNA product size: 547bp, RNA product size: 452bp

5534898 ATGGTGTATCTCTGCCTTACAGATCATGTTTGAGACCTTCAACACCCCAGCCATGTACGT 5534839
5534838 TGCTATCCAGGCTGTGCTATCCCTGTACGCCTCTGGCCGTACCACTGGCATCGTGATGGA 5534779
5534778 CTCCGGTGACGGGGTCACCCACACTGTGCCCATCTACGAGGGGTATGCCCTCCCCCATGC 5534719
5534718 CATCCTGCGTCTGGACCTGGCTGGCCGGGACCTGACTGACTACCTCATGAAGATCCTCAC 5534659
5534658 CGAGCGCGGCTACAGCTTCACCACCACGGCCGAGCGGGAAATCGTGCGTGACATTAAGGA 5534599
5534598 GAAGCTGTGCTACGTCGCCCTGGACTTCGAGCAAGAGATGGCCACGGCTGCTTCCAGCTC 5534539
5534538 CTCCCTGGAGAAGAGCTACGAGCTGCCTGACGGCCAGGTCATCACCATTGGCAATGAGCG 5534479
5534478 GTTCCGCTGCCCTGAGGCACTCTTCCAGCCTTCCTTCCTGGGTGAGTGGAGACTGTCTCC 5534419
5534418 CGGCTCTGCCTGACATGAGGGTTACCCCTCGGGGCTGTGCTGTGGAAGCTAAGTCCTGCC 5534359
5534358 CTCATTTCCCTCTCAGGCATGGAGTCCTGTGGCATCCACGAAACTACCTTCAACTCCATC 5534299
5534298 ATGAAGTGTGACGTGGACATCCGCAAAGACCTGTACGCCAACACAGTGCTGTCTGGCGGC 5534239
5534238 ACCACCATGTACCCTGGCATTGCCGACAGGATGCAGAAGGAGATCACTGCCCTGGCACCC 5534179
5534178 AGCACAATGAAGATCAAGGTGGGTGTCTTTCCTGCCTGAGCTGACCTGGGCAGGTCGGCT 5534119
5534118 GTGGGGTCCTGTGGTGTGTGGGGAGCTGTCACATCCAGGGTCCTCACTGCCTGTCCCCTT 5534059

DMPK (ENSG00000104936): DNA product size: 176bp, RNA product size: 99bp

50973035 AGGGCCCAGAGCTGGTGGGCCCAGAGGGGTGGGCCCAAGCCTCGCTCTGCTCCTTTTGGT 50972976
50972975 CCAGGTGCGGTCGCTGGTGGCTGTGGGCACCCCAGACTACCTGTCCCCCGAGATCCTGCA 50972916
50972915 GGCTGTGGGCGGTGGGCCTGGGACAGGCAGCTACGGGCCCGAGTGTGACTGGTGGGCGCT 50972856
50972855 GGGTGTATTCGCCTATGAAATGTTCTATGGGCAGACGCCCTTCTACGCGGATTCCACGGC 50972796
50972795 GGAGACCTATGGCAAGATCGTCCACTACAAGGTGAGCACGGCCGCAGGGAGACCTGGCCT 50972736
50972735 CTCCCGGTAGGCGCTCCCAGGCTATCGCCTCCTCTCCCTCTGAGCAGGAGCACCTCTCTC 50972676
50972675 TGCCGCTGGTGGACGAAGGGGTCCCTGAGGAGGCTCGAGACTTCATTCAGCGGTTGCTGT 50972616
50972615 GTCCCCCGGAGACACGGCTGGGCCGGGGTGGAGCAGGCGACTTCCGGACACATCCCTTCT 50972556
50972555 TCTTTGGCCTCGACTGGGATGGTCTCCGGGACAGCGTGCCCCCCTTTACACCGGATTTCG 50972496
50972495 AAGGTGCCACCGACACATGCAACTTCGACTTGGTGGAGGACGGGCTCACTGCCATGGTGA 50972436
50972435 GCGGGGGCGGGGTAGGTACCTGTGGCCCCTGCTCGGCTGCGGGAACCTCCCCATGCTCCC 50972376
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A2. Appendix 2

Table A2.1: Results from fluorescent PCR analysis for all DM1 patients and their relatives for the
CTG repeat region, as well as APOC2 and D19S112 polymorphic markers. Underlined alleles
indicate the phase. Exp= expanded allele.

Patient number CTG repeat (bp) APOC2 (bp) D19S112 (bp)

1
affected female 146/Exp 149/151 130/132
unaffected male 122/122 126/149 130/136

2
affected female 122/Exp 126/154 128/130
unaffected male 122/138 142/149 117/123
female's father (affected) 170/Exp 150/154 128/130

3
unaffected female 141/160 127/127 128/132
affected male 122/Exp 150/152 130/132

4
affected female 122/Exp 150/154 130/134
unaffected male 122/146 127/156 118/136
female's cousin (affected) 181/Exp 151/155 128/130

5

affected female 146/Exp 151/153 117/124
unaffected male 143/143 147/149 128/128
affected foetus (CVS) 146/Exp 151/153 117/128

6
unaffected female 154/178 126/143 126/128
affected male 142/Exp 151/153 128/130
affected foetus (CVS) 178/Exp 143/151 128/130

7
affected female 149/Exp 127/143 117/132
unaffected male 122/149 135/154 117/127
female's father (unaffected) 136/136 143/147 117/132
female's uncle (affected) 122/Exp 143/154 123/132

8
affected female 122/Exp 135/149 117/128
unaffected male 122/146 127/147 117/134
female's mother (affected) 152/Exp 135/149 128/128
female's father (unaffected) 123/150 149/152 117/133
female's brother (affected) 150/Exp 135/149 129/133
male's mother (unaffected) 122/122 127/129 117/125
male's father (unaffected) 146/146 148/156 129/134
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Patient number CTG repeat (bp) APOC2 (bp) D19S112 (bp)

9
affected female 122/Exp 127/150 117/132
unaffected male 122/149 150/152 128/132
female's mother (unaffected) 122/145 127/152 117/138
female's father (affected) 145/Exp 148/150 132/134

female’s brother (affected) 122/Exp 127/150 117/132
female’s cousin (affected) 139/Exp 127/150 132/140

10
affected female 145/Exp 148/152 130/134
unaffected male 122/122 127/154 132/136
affected son 122/Exp 147/154 130/132

11
affected female 139/Exp 149/149 125/130
unaffected male 122/142 127/151 128/130

12
unaffected female/ egg donor 122/122 150/152 130/136
affected male 122/Exp 143/151 123/128
male's mother (unaffected) 122/122 147/151 123/134
male's brother (unaffected) 122/145 147/153 117/134

13
affected female 122/Exp 135/153 130/130
unaffected male 122/142 153/153 117/128
female's sister (affected) 139/Exp 153/153 130/130

14
affected female 122/Exp 127/150 130/130
unaffected male 122/122 149/153 132/134
female’s mother (unaffected) 122/122 127/150 130/130

15
affected female 122/Exp 128/152 130/132
unaffected male 122/137 143/150 117/138
female's father (affected) 176/Exp 128/135 128/130
female's grandmother
(unaffected)

122/142 152/159 128/128

female's sister (unaffected) 122/176 135/152 128/132

16
affected female 139/Exp 148/158 129/129
unaffected male 122/139 150/152 127/127
female's father (affected) 122/Exp 148/150 129/136
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Patient number CTG repeat (bp) APOC2 (bp) D19S112 (bp)

17
unaffected female 122/144 150/150 130/137
affected male 170/Exp 150/154 128/130
male's brother (affected) 122/Exp 150/154 118/130

18
affected female 122/Exp 149/149 128/137
unaffected male 140/143 149/153 117/130
female's mother (unaffected) 122/141 149/149 128/137
female's father (affected) 147/Exp 149/149 118/128
female's sister1 (affected) 122/Exp 149/149 128/137
female's sister2 (affected) 122/Exp 149/149 128/137
female's sister3 (affected) 122/Exp 149/149 128/128

19
affected female 180/Exp 157/157 128/130
unaffected male 123/148 129/137 130/133
female's mother (unaffected) 123/180 151/157 128/130
female's father (affected) 144/Exp 149/157 130/130

20
affected female 141/Exp 151/153 118/137
unaffected male 123/141 151/157 129/131
affected daughter 141/Exp 153/157 118/129

21

affected female 144/Exp 129/151 128/130
unaffected male 122/147 151/155 117/136
female's mother (unaffected) 144/144 129/153 130/134
female's father (affected) 140/Exp 129/151 128/130

22
affected female 168/Exp 128/144 117/127
unaffected male 137/140 152/155 117/129
female's mother (unaffected) 122/168 144/150 123/127

23
affected female 122/Exp 151/151 131/131
unaffected male 122/122 147/153 118/118
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Table A2.2 Details of PCR conditions for optimised protocols for PGD for DM1 showing
concentration of PCR reaction components as well as PCR cycle programmes performed. Protocols
1-5 had clinical application 20mM Tricine was added as part of the ALB lysis (NaOH or KOH/ DTT) in
protocols 2-5. Optimisation also required the use of different enzymes, Amplitaq Gold (protocol 1),
Expand High Fidelity (protocols 2 and 3), or Expand Long Template (protocols 4 and 5). In addition,
DMSO or glycerol were added in protocols 4 and 5 to improve amplification.

PCR programProtocol
number/ name

(lysis)

Reaction
Components

Concentration

Temperature Time
Number
of cycles

DM1Forward primer-
FAM (DMPK1)

0.3μM 94°C 12min 11/
DM1/APOC2

(PK/SDS) DM1 Reverse primer
(DMPK2)

0.3μM 96°C 45secs

APOC2 Forward
primer- Hex

0.3μM 60°C 45secs

APOC2 Reverse 0.3μM 72°C 1min

10

10mM dNTP 0.2mM 96°C 45secs

10x buffer (with
15mM MgCl2)

1x (1.5mM
MgCl2)

60°C 45secs

Amplitaq Gold 5U/μl 1.5 units 72°C 1min

30

Nuclease-free water make up to 22μl 72°C 5min 1

DM1Forward primer-
VIC (DMPK1)

0.3μM 95°C 2min 12/
DM1/D19S112
(NaOH/DTT) DM1 Reverse primer

(DMPK2)
0.3μM 96°C 15secs

D19S112 Forward
primer- NED

0.4μM 60°C 45secs

D19S112 Reverse 0.4μM 72°C 45secs

10

dNTP (10mM) 0.2mM 94°C 45secs

10x Hifi buffer II
(with 15mM MgCl2)

1x (1.5mM
MgCl2)

60°C 45secs

Expand High Fidelity
enzyme 5U/μl

1.5units 72°C 45secs

30

Tricine (200mM) 20mM 72°C 7min 1

Nuclease-free water
make up to

21.5μl
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PCR programProtocol
number
(lysis)

Reaction
Components

Concentration

Temperature Time
Number
of cycles

DM1Forward
primer- VIC
(DMPK1)

0.2μM 95°C 2min 1
3/

DM1/APOC2/
D19S112

(NaOH/DTT) DM1 Reverse
primer (DMPK2)

0.2μM 96°C 15secs 10

APOC2 Forward
primer- Fam

0.3μM 58°C 45secs

APOC2 Reverse 0.3μM 72°C 1min

D19S112 Forward
primer- NED

0.3μM 94°C 15secs

D19S112 Reverse 0.3μM 58°C 45secs

dNTP (10mM) 0.2mM 72°C 1min

30

10x Hifi buffer II
(with 15mM

MgCl2)

1x (1.5mM
MgCl2)

72°C 7min 1

Expand High
Fidelity enzyme

5U/μl
1.5units

Tricine (200mM) 20mM

Nuclease-free water make up to 21.5μl

P2 0.2μM 95°C 2min 14/
TP-PCR

(KOH/DTT) P3R 0.2μM 96°C 30secs

P4CAG 0.1μM 65°C 45secs

dNTP (10mM) 0.5mM 72°C 1min

46

Expand Long
Template Buffer 3
(27.5mM MgCl2)

1x (2.75mM
MgCl2)

72°C 5min 1

Expand Long
Template enzyme

5U/μl
2 units

DMSO 5%

Tricine (200mM) 20mM

Nuclease-free water make up to 21.5μl



269

PCR program
Protocol
number

Reaction
Components

Concentration

Temperature Time
Number
of cycles

P2FAM 0.6μM 95°C 2min 15/
TP-PCR/DM1/

D19S112 or
mTP-PCR

(KOH/DTT)

DMPK2 0.3μM 96°C 40secs

P4CAG 0.2μM 59°C 1min

P3R 0.3μM 72°C 1min

10

D19S112F- NED 0.2μM 94°C 40secs

D19S112R 0.2μM 59°C 1min

dNTP (10mM) 0.7mM 72°C 1min

30

Expand Long
Template Buffer 3
(27.5mM MgCl2)

1x (2.75mM
MgCl2)

72°C 7min 1

Extra MgCl2 0.6mM

Expand Long
Template enzyme

5U/μl
2 units

Glycerol 10%

Tricine (200mM) 20mM

Nuclease-free water make up to 21.5μl

6/ P2FAM 0.3μM 95°C 2min 1

(KOH/DTT) P4CAG 0.2μM 95°C 30s

P3R 0.3μM 57°C 45s

D19S112F- NED 0.2μM 72°C 1min

10

D19S112R 0.2μM 95°C 30secs

dNTP (10mM) 0.7mM 57°C 45s

Expand Long
Template Buffer 3
(27.5mM MgCl2)

1x (2.75mM
MgCl2)

72°C 1min

36

Expand Long
Template enzyme

5U/μl
2 units 72°C 7min

Glycerol 10%

Tricine (200mM) 20mM

Nuclease-free water make up to 21.5μl
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Table A2.3: Detailed analysis of blastomere amplification, allele dropout (ADO) and diagnosis rate from five DM1 PGD cases using protocols 1 and modification 1a.
*: semi/uninformative patients, unknown phase, h: detection of blastomeres showing amplification from one parental genome

Protocol
Patient

Number
Number

of embryos
Number of
blastomeres

Amplification ADO Diagnosis

DMPK APOC2 DMPK APOC2

1. DM/APOC2 1 4 8 7/8 5/8 1/4 0/4 3/4

6 10 15 10/15 11/15 0/5 1/9 8/10

7h 10 13 9/13 9/13 0/3 0/6 7/10

8* 6 12 12/12 10/12 n/a 2/10 1/6

1a. DM/APOC2
split

2 4 6 5/6 3/6 n/a 1/3 3/4

Table A2.4: Detailed analysis of blastomere amplification, allele dropout (ADO) and diagnosis rate from two DM1 PGD cases using protocol 2 for diagnosis,
*: semi/uninformative patients, unknown phase

Protocol
Patient

Number
Number

of embryos
Number of
blastomeres

Amplification ADO Diagnosis

DMPK D19S112 DMPK D19S112

2. DM/D19S112 4 7 14 13/14 13/14 0/3 1/13 6/7

9* 4 10 8/10 7/10 n/a n/a 2/4
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Table A2.5: Detailed analysis of blastomere amplification, allele dropout (ADO) and diagnosis rate from eleven DM1 PGD cases using protocol 3 for diagnosis, *:
semi/uninformative patients, unknown phase, †: diagnosis using two different protocols, h: blastomeres with amplification from one parental genome, H: embryo where both of the
biopsied cells indicated amplification from one parental genome only

Protocol
Patient

Number/Cycle
Number of
embryos

Number of
blastomeres

Amplification ADO Diagnosis

DMPK APOC2 D19S112 DMPK APOC2 D19S112

3. DM/APOC2/
D19S112

10 4 5 5/5 5/5 5/5 0/3 0/4 0/4 3/4

11/1h 12 22 21/22 20/22 20/22 0/4 1/16 0/16 8/12

12h 3 6 6/6 6/6 6/6 n/a n/a 0/2 1/3

8*† 5 8 7/8 7/8 7/8 0/2 0/7 0/2 5/5

11/2h 15 32 27/32 25/32 25/32 0/14 0/17 0/17 12/15

15 6 7 6/7 5/7 5/7 n/a 0/2 0/1 1/6 3H

19/1 2 4 3/4 3/4 3/4 0/3 0/3 0/3 2/2

22/1h 7 12 11/12 11/12 11/12 0/3 0/10 0/6 7/7

19/2h 5 10 10/10 10/10 10/10 0/7 0/9 0/9 5/5

22/2 5 7 5/7 6/7 6/7 0/2 0/5 0/5 4/5

19/3h 5 9 9/9 9/9 9/9 0/5 0/7 0/5 4/5 1H
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Table A2.6: Detailed analysis of blastomere amplification, allele dropout (ADO) and diagnosis rate from five DM1 PGD cases using protocol 4. TP-PCR amplification was
scored for non-122 homozygous samples *: semi/uninformative patients, unknown phase, †: diagnosis using two different protocols

Protocol
Patient

Number/Cycle
Number

of embryos
Number of
blastomeres

Amplification Diagnosis

TPPCR

4. TPPCR 9/2* 8 16 9/9 5/8

13/1* 4 10 9/10 4/4

8/2*† 5 4TPPCR 3/4 5/5

13/2* 10 19 12/15 7/10

16/1 10 18 13/18 9/10

Table A2.7: Detailed analysis of blastomere amplification, allele dropout (ADO) and diagnosis rate from six DM1 PGD cases using protocol 5 for diagnosis, h: blastomeres
with amplification from one parental genome, H: embryo where both of the biopsied cells indicated amplification from one parental genome only, *: semi/uninformative patients,
unknown phase

Protocol
Patient

Number/Cycle
Number

of embryos
Number

of blastomeres
Amplification ADO Diagnosis

TPPCR DMPK D19S112 DMPK D19S112

13/3*h 8 17 6/6 14/17 14/17 0/2 0/10 5/83H5.
TPPCR/DM1/

D19S112 20/1 4 8 7/8 6/8 7/8 0/2 0/6 3/4

21/1h 7 13 12/13 9/9** 12/13 n/a 0/8 5/71H

8/3* 3 6 4/4 6/6 6/6 1/2 0/4 3/3

23/1 3 6 6/6 6/6 6/6 n/a 0/6 3/3

23/2 3 10 n/a 7/10 7/10 n/a 0/6 3/3
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A3. Appendix 3

Table A3.1: Summary of the fifty genes with highest level of expression in the human MII oocyte

Gene_
Symbol

Gene_Name Panther_Process Entrez
Gene
ID

Celera
Gene ID

FTL ferritin, light polypeptide Transport|Cation
transport;Homeostasis|Other homeostasis
activities|Ion transport

2512 hCG39405.3

DNMT1 DNA (cytosine-5-)-methyltransferase 1 DNA metabolism 1786 hCG28474.3
Unassigned Unassigned Chromatin packaging and remodeling hCG2000758
CKS1B CDC28 protein kinase regulatory

subunit 1B
Unclassified 1163 hCG1988891.1|

hCG1739274.3|
hCG40061.4|hC
G15521.3

FLJ40448 Unassigned Unclassified 339059
FTL ferritin, light polypeptide Cation transport;Homeostasis| Ion

transport
2512 hCG39405.3

GPR103 G protein-coupled receptor 103 Signal transduction|G-protein mediated
signaling

84109

Unassigned Unassigned Unclassified hCG2040258.1
RPLP1 ribosomal protein, large, P1 Protein biosynthesis 6176 hCG38799.3
FAM44B family with sequence similarity 44,

member B
Unclassified 91272 hCG41131.4

SH3KBP1
|SMC5L1

SH3-domain kinase binding protein
1|SMC5 structural maintenance of
chromosomes 5-like 1 (yeast)

DNA repair|Biological process
unclassified|DNA metabolism|

HNRPA1 heterogeneous nuclear ribonucleoprotein
A1

Pre-mRNA processing|mRNA splicing 3178

LOC400500
|Unassigned

Unassigned Unclassified 400500 hCG1814062.2

Unassigned Unassigned Unclassified hCG1788212.3
RPL7A ribosomal protein L7a Protein biosynthesis 6130 hCG2032998.1|

hCG17890.2
RPL7A ribosomal protein L7a Protein biosynthesis 6130 hCG2001684
PCNA proliferating cell nuclear antigen Unclassified 5111 hCG39115.3
Unassigned Unassigned Intracellular protein traffic|Chromosome

segregation|Cell structure|Cell motility
hCG1995887.1

Unassigned Unassigned Unclassified hCG2011918
UNG uracil-DNA glycosylase DNA repair|Carbohydrate

metabolism;Nucleoside, nucleotide and
nucleic acid metabolism

7374 hCG38494.3

Unassigned Unassigned Protein phosphorylation|Cell cycle
control|Mitosis

hCG39453.2

STELLAR
|DPPA3

developmental pluripotency associated 3 Unclassified hCG1659192.3
|hCG2013511.1

H3F3B H3 histone, family 3B (H3.3B) Chromatin packaging and remodeling 3021 hCG1989319.1
PTTG3 pituitary tumor-transforming 3 DNA repair|mRNA transcription

regulation|Cell cycle control|Chromosome
segregation|Oncogene

26255

PAIP1 poly(A) binding protein interacting
protein 1

Protein Biosynthesis 10605 hCG1751685.2

Unassigned Unassigned Unclassified hCG1820938.2
Unassigned Unassigned Unclassified hCG1820954.2
Unassigned Unassigned Intracellular protein traffic|Chromosome

segregation|Cell structure|Cell motility
hCG1773636.2

C3orf34 chromosome 3 open reading frame 34 Unclassified 84984
Unassigned Unassigned Unclassified
Unassigned Unassigned Translational regulation
Unassigned Unassigned Unclassified hCG18484.4
Unassigned Unassigned Unclassified hCG1820573.1
Unassigned Unassigned Proteolysis hCG1993742.1
Unassigned Unassigned Proteolysis hCG1643561.2
DPPA3 developmental pluripotency associated 3 Unclassified 359787 hCG1659192.3
TMSB4X thymosin, beta 4, X-linked Unclassified 7114 hCG1646598.4
UBB ubiquitin B Proteolysis|Protein metabolism and

modification
7314 hCG1998947

Unassigned Unassigned Protein Biosynthesis hCG1789827.2
TPRXL tetra-peptide repeat homeobox-like Unclassified 348825 hCG2042888
RPL7A ribosomal protein L7a Protein biosynthesis 6130 hCG2032998.1

|hCG2028724.1
EEF1A1 eukaryotic translation elongation factor Biological process hCG2033271.2
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|DKFZP434F0318 1 alpha 1 unclassified|Translational
regulation|Protein metabolism and
modification

Unassigned Unassigned Protein Biosynthesis hCG1820440.2
DPPA5 developmental pluripotency associated 5 Unclassified 340168 hCG22904.2
SKP2 S-phase kinase-associated protein 2

(p45)
Proteolysis;Oncogenesis|Protein
metabolism and modification

6502 hCG36893.3

MORF4L1 mortality factor 4 like 1 mRNA transcription
regulation;Developmental processes

10933 hCG2005375

NALP4 NACHT, leucine rich repeat and PYD
containing 4

Unclassified 147945 hCG1733040.2

UHRF1 ubiquitin-like, containing PHD and
RING finger domains, 1

Nucleoside, nucleotide and nucleic acid
metabolism|Other cell cycle process;Cell
proliferation and
differentiation|Nucleoside, nucleotide and
nucleic acid transport;Transport

29128 hCG23497.3
|hCG23738.3

GTF2B general transcription factor IIB |mRNA transcription initiation; mRNA
transcription regulation|

2959

GDF9 growth differentiation factor 9 Gametogenesis|Developmental
processes|Oogenesis

2661 hCG24129.2

TPT1 tumor protein, translationally-controlled
1

Immunity and defense 7178 hCG32792.2

LOC440055 Unassigned Protein biosynthesis 440055 hCG27404.2
CDK7 cyclin-dependent kinase 7 (MO15

homolog, Xenopus laevis, cdk-activating
kinase)

Cell cycle control|Protein
phosphorylation;Cell cycle|Protein
metabolism and modification|

1022 hCG1988840

EEF1A1 eukaryotic translation elongation factor
1 alpha 1

Translational regulation|Protein
metabolism and modification

1915 hCG2033271.2
|hCG28097.4
|hCG1640413.5

Table A3.2: Summary of the fifty genes with highest level of expression in the human blastocyst

Gene_Symbol Gene_Name Panther_Process Entrez
Gene ID

Celera
Gene ID

LOC440085 Unassigned Cell proliferation and
differentiation

440085 hCG2003508.1|
hCG26572.3

RPL10A ribosomal protein L10a Protein metabolism and
modification

4736 hCG1787790.1

Unassigned Unassigned Protein biosynthesis hCG2000392.1

RPL37P6 ribosomal protein L37 pseudogene 6 Protein biosynthesis 346950 hCG39750.2

Unassigned Unassigned Protein biosynthesis hCG2043433

RPS2 ribosomal protein S2 Protein biosynthesis 6187 hCG1990006|hCG1983409|
hCG2018618.2|hCG201625
0

RPS3A ribosomal protein S3A Protein biosynthesis 6189 hCG33299.3

RPS4X ribosomal protein S4, X-linked Protein biosynthesis 6191 hCG18634.3

Unassigned Unassigned Protein folding|Nuclear
transport|Immunity and
defense

hCG1794401.2

RPL12 ribosomal protein L12 Protein biosynthesis 6136

RPS11 ribosomal protein S11 Protein biosynthesis 6205 hCG16209.3

RPL26 ribosomal protein L26 Protein biosynthesis 6154 hCG1985370

FLJ40448 hypothetical protein FLJ40448 Biological process
unclassified

339059

RPLP1 ribosomal protein, large, P1 Protein biosynthesis 6176 hCG38799.3

Unassigned Unassigned Protein folding|Nuclear
transport|Immunity and
defense

hCG32230.3

LOC401896 Unassigned Protein
biosynthesis|Protein
metabolism and
modification

401896 hCG1775736.1

PABPC1 poly(A) binding protein, cytoplasmic 1 mRNA end-processing
and stability

26986 hCG15683.3

RPS25 ribosomal protein S25 Unclassified 6230 hCG1641401.2
PRDX1 peroxiredoxin 1 Antioxidation and free

radical
removal|Immunity and
defense

5052 hCG1780053.2
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RPL24 ribosomal protein L24 Protein biosynthesis 6152 hCG2023003.1

HSPE1 heat shock 10kDa protein 1 (chaperonin 10) Protein metabolism and
modification

3336 hCG21429.4

Unassigned Unassigned Protein biosynthesis hCG1981229

RPL7|
LOC441896|
EIF3S10

ribosomal protein L7|eukaryotic translation
initiation factor 3, subunit 10 theta,
150/170kDa

Biological process
unclassified|Protein
biosynthesis;Protein
metabolism and
modification|Translationa
l regulation

hCG31916.3|hCG17114.3|
hCG1783090.1|hCG198398
8|
hCG1640398.3

GPR103 G protein-coupled receptor 103 Cell surface receptor
mediated signal
transduction|Signal
transduction|G-protein
mediated signaling

84109

ENO1 enolase 1, (alpha) Glycolysis|Carbohydrate
metabolism

2023 hCG22399.3

HNRPA1 heterogeneous nuclear ribonucleoprotein A1 Pre-mRNA
processing|mRNA
splicing

3178

KRT18 keratin 18 Cell structure and
motility

3875 hCG43757.3

LOC440055 Unassigned| Similar to ribosomal protein
S12

Protein biosynthesis 440055 hCG27404.2

Unassigned Unassigned Unclassified hCG1820573.1

RPS27A ribosomal protein S27a Proteolysis|Protein
metabolism and
modification

6233 hCG1987923

EEF2 eukaryotic translation elongation factor 2 Protein biosynthesis 1938 hCG23520.3

LOC388339 Unassigned | similar to ribosomal protein
S18

Protein biosynthesis 388339 hCG1640711.4

RPS7 ribosomal protein S7 Protein metabolism and
modification

6201 hCG31799.1|hCG2043512|
hCG1639825.4|hCG178426
6.2

RPL7A ribosomal protein L7a Protein biosynthesis 6130 hCG2032998.1|hCG17890.2

Unassigned Unassigned Unclassified hCG1816993.1

RPL7A ribosomal protein L7a Protein biosynthesis 6130 hCG2001684

RPS2 ribosomal protein S2 Protein biosynthesis| 6187 hCG1990006|hCG2018618.
2|
hCG2016250

LOC343384 Unassigned |
similar to peptidylprolyl isomerase A
isoform 1

Protein metabolism and
modification|Nuclear
transport;Immunity and
defense|Protein
folding;Intracellular
protein traffic

343384 hCG1792358.3

RPL37 ribosomal protein L37 Protein biosynthesis 6167

RPLP2 ribosomal protein, large, P2 Protein biosynthesis 6181 hCG1778304.2

Unassigned Unassigned Protein biosynthesis hCG22004.2

HSPE1|
LOC387880

heat shock 10kDa protein 1 (chaperonin 10) Protein metabolism and
modification

hCG2040162|hCG21429.4|
hCG26559.2

Unassigned Unassigned Protein biosynthesis hCG1999595.1

Unassigned Unassigned Biological process
unclassified

hCG1643652.1

LOC401859 Unassigned Protein metabolism and
modification|Nuclear
transport;Immunity and
defense|Protein
folding;Intracellular
protein traffic

401859 hCG1655497.4

LOC391062 Unassigned Protein metabolism and
modification|Nuclear
transport;Immunity and
defense|Protein
folding;Intracellular
protein traffic

391062 hCG1643204.4
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GOLGA8A|
SLC25A6

golgi autoantigen, golgin subfamily a,
8A|solute carrier family 25 (mitochondrial
carrier; adenine nucleotide translocator),
member 6

Protein targeting and
localization|Nucleoside,
nucleotide and nucleic
acid
transport;Transport|Nucle
oside, nucleotide and
nucleic acid metabolism|

hCG1746794.2

RPL18 ribosomal protein L18 Protein biosynthesis 6141 hCG2000370.1

Table A3.3: List of 349 high expression oocyte-specific genes. Genes are listed in ascending order by
their Celera ID.

hCG14713

hCG14841

hCG15000

hCG15050

hCG15108

hCG15138

hCG15256

hCG15364

hCG15438

hCG15525

hCG15532

hCG15558

hCG15574

hCG15670

hCG15959

hCG16030

hCG1639758

hCG1640673

hCG1640820

hCG1640936

hCG1642455

hCG1643224

hCG1645228

hCG1645324

hCG1646184

hCG1646296

hCG1648127

hCG1649960

hCG1652542

hCG16537

hCG1654498

hCG16610

hCG16630

hCG16631

hCG16632

hCG16730

hCG16811

hCG16828

hCG16929

hCG17062

hCG1729956

hCG1733021

hCG17382

hCG1742115

hCG1743207

hCG1743785

hCG1744908

hCG17542

hCG17601

hCG17664

hCG1773636

hCG1773884

hCG1775361

hCG1776311

hCG1777406

hCG1777721

hCG1779020

hCG1779729

hCG1779876

hCG1780614

hCG1781169

hCG1781628

hCG1782268

hCG1784522

hCG1784573

hCG1784779

hCG1785346

hCG1785623

hCG1786105

hCG1786193

hCG1786829

hCG1786864

hCG17871

hCG1788005

hCG1788604

hCG1791825

hCG1792164

hCG1792234

hCG1793655

hCG1796067

hCG1803572

hCG18043

hCG18066

hCG1810759

hCG1810859

hCG1810884

hCG1811008

hCG1811012

hCG1811035

hCG1811036

hCG1811059

hCG1811092

hCG1811301

hCG1811428

hCG1811512

hCG1811857

hCG1811876

hCG1812169

hCG1812722

hCG1813574

hCG1814062

hCG1814125

hCG1814486

hCG1814527

hCG1815686

hCG1817290

hCG1817498

hCG1817751

hCG1817877

hCG1818446

hCG1818459

hCG1820440

hCG1820599

hCG1821231

hCG18324

hCG18601

hCG18988

hCG19156

hCG19212

hCG19607

hCG19614

hCG19657

hCG1979388

hCG1979495

hCG1983051

hCG1983510

hCG1984799

hCG1987869

hCG1988045

hCG1988995

hCG1989524

hCG1990670

hCG1990839

hCG1991018

hCG19911

hCG1991909

hCG1993933

hCG19952

hCG1995942

hCG1997847

hCG2000011

hCG2000584

hCG2001986

hCG2003734

hCG2003750

hCG20042

hCG20064

hCG2006852

hCG2008598

hCG2009388

hCG2009910

hCG2010233

hCG2010889

hCG2011013

hCG20111

hCG2011580

hCG2011781

hCG2012284

hCG2013331

hCG2015975

hCG2016229

hCG2017381

hCG2018215

hCG2020974

hCG2020975

hCG2021087

hCG2022610

hCG2026013

hCG2026687

hCG2027083
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hCG2028192

hCG2029590

hCG2030297

hCG2032408

hCG2032644

hCG2033524

hCG2033819

hCG2036556

hCG2036560

hCG2036573

hCG2036806

hCG2036813

hCG2036869

hCG2038156

hCG2038216

hCG2038584

hCG2038661

hCG2038731

hCG2039068

hCG2039417

hCG2039566

hCG2039875

hCG2039945

hCG2039979

hCG2040243

hCG2040324

hCG2040656

hCG2040899

hCG2040997

hCG2041111

hCG2041254

hCG2041389

hCG2041810

hCG2041922

hCG2042091

hCG2042450

hCG2042571

hCG2042895

hCG2042959

hCG2043425

hCG2045906

hCG2045907

hCG20711

hCG20715

hCG20893

hCG20960

hCG21077

hCG21309

hCG21329

hCG21344

hCG21358

hCG21652

hCG21731

hCG21983

hCG22192

hCG22215

hCG22390

hCG22899

hCG23039

hCG23318

hCG23447

hCG23626

hCG23667

hCG23672

hCG23837

hCG23972

hCG24112

hCG24113

hCG24129

hCG24574

hCG24794

hCG24796

hCG24865

hCG24964

hCG25031

hCG25127

hCG25456

hCG26491

hCG26558

hCG26763

hCG26948

hCG27387

hCG27456

hCG27671

hCG27690

hCG27752

hCG27926

hCG27927

hCG27946

hCG28273

hCG28318

hCG28377

hCG28718

hCG28984

hCG29469

hCG29614

hCG30009

hCG30288

hCG30333

hCG31079

hCG32235

hCG32352

hCG32377

hCG32610

hCG32735

hCG32909

hCG32918

hCG33075

hCG33085

hCG33087

hCG33190

hCG33516

hCG34128

hCG34805

hCG34806

hCG36755

hCG36838

hCG36946

hCG37128

hCG37158

hCG37562

hCG37727

hCG37737

hCG37802

hCG38014

hCG38025

hCG38088

hCG38094

hCG38109

hCG38241

hCG38242

hCG38309

hCG38627

hCG38829

hCG38835

hCG38864

hCG39059

hCG39145

hCG39179

hCG39261

hCG39323

hCG39347

hCG39450

hCG39453

hCG39463

hCG39637

hCG39667

hCG39684

hCG39762

hCG39779

hCG39788

hCG39798

hCG39814

hCG40002

hCG40021

hCG401120

hCG401169

hCG401172

hCG401209

hCG401218

hCG401272

hCG40256

hCG40279

hCG40396

hCG40452

hCG40463

hCG40828

hCG40969

hCG40983

hCG41011

hCG41052

hCG41358

hCG41502

hCG41795

hCG41855

hCG43352

hCG44065

hCG95858

hCG96668
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Table A3.4: List of 431 high expression blastocyst-specific genes. Genes are listed in ascending order
by their Celera ID.

hCG14618

hCG14649

hCG14659

hCG14677

hCG14678

hCG14847

hCG14929

hCG15413

hCG15518

hCG15580

hCG15695

hCG15708

hCG15752

hCG15917

hCG16023

hCG16097

hCG16292

hCG16295

hCG1639748

hCG1639843

hCG1639963

hCG1640153

hCG1640184

hCG1640242

hCG1640272

hCG1640390

hCG1640406

hCG1640549

hCG1640610

hCG1640751

hCG1640879

hCG1640970

hCG1641138

hCG1641204

hCG1641569

hCG1641604

hCG1641789

hCG1641902

hCG1642370

hCG1642703

hCG1643070

hCG1643162

hCG1643175

hCG16432

hCG1643228

hCG1643231

hCG1643466

hCG1643663

hCG1643722

hCG1643895

hCG1644263

hCG1644378

hCG1644435

hCG1644607

hCG1646237

hCG1646720

hCG1647067

hCG1651416

hCG1657259

hCG1660125

hCG16678

hCG16827

hCG1685830

hCG16920

hCG16946

hCG17039

hCG17108

hCG17225

hCG17250

hCG1726843

hCG1730394

hCG1730824

hCG17325

hCG1735238

hCG1736101

hCG1736511

hCG17376

hCG1738619

hCG1739142

hCG1739343

hCG1740373

hCG1741622

hCG1742531

hCG1743761

hCG1743779

hCG1743861

hCG1745153

hCG1746935

hCG1748768

hCG1757059

hCG1759133

hCG17638

hCG1770271

hCG17757

hCG1776197

hCG1776475

hCG1776677

hCG1780024

hCG1780842

hCG1780948

hCG1781103

hCG1781910

hCG1782057

hCG1782327

hCG1782581

hCG17829

hCG1783391

hCG1784039

hCG1784107

hCG1784432

hCG1784504

hCG1785265

hCG1786960

hCG1787379

hCG1787380

hCG1787521

hCG1788236

hCG1788612

hCG1789710

hCG1790391

hCG1792076

hCG1794543

hCG1795423

hCG1795553

hCG1795633

hCG17996

hCG18049

hCG1807414

hCG18100

hCG1810958

hCG1811060

hCG1811095

hCG1811258

hCG1811302

hCG1811547

hCG1812757

hCG1812787

hCG1812951

hCG18135

hCG1814536

hCG18153

hCG1817354

hCG1817472

hCG1817599

hCG1817746

hCG1817985

hCG1818367

hCG1818503

hCG1818525

hCG1818651

hCG1820431

hCG1820468

hCG1820516

hCG1820586

hCG1820647

hCG1820745

hCG1820912

hCG18278

hCG18435

hCG18485

hCG18525

hCG19108

hCG19232

hCG19408

hCG19468

hCG19516

hCG19609

hCG19672

hCG19693

hCG1981097

hCG1981800

hCG1984423

hCG1985920

hCG1986317

hCG1986432

hCG1986580

hCG1987797

hCG1988058

hCG1988300

hCG1988320

hCG1988454

hCG19906

hCG1990963

hCG1990983

hCG1991474

hCG1991560

hCG1992111

hCG1992407

hCG1993582

hCG1994498

hCG19946

hCG1996391

hCG1997251

hCG1998331

hCG1998384

hCG1998392

hCG1999033

hCG1999172

hCG1999887

hCG2002932

hCG2004008

hCG2004157

hCG2004161

hCG2004404

hCG2004932
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hCG2005740

hCG2010765

hCG2011004

hCG2011423

hCG201191

hCG201245

hCG2013610

hCG2013819

hCG20142

hCG2014502

hCG2014568

hCG2014892

hCG2015268

hCG2015274

hCG2016736

hCG2017435

hCG2018184

hCG2019820

hCG2019888

hCG2020139

hCG2020552

hCG2021371

hCG2022032

hCG2022619

hCG2022772

hCG2025279

hCG2025667

hCG2026171

hCG2026794

hCG2027246

hCG2027322

hCG2027596

hCG20299

hCG2030721

hCG2032547

hCG2032955

hCG2033672

hCG2033702

hCG2036618

hCG2036645

hCG2036753

hCG2038863

hCG2039083

hCG2039386

hCG2039420

hCG2039620

hCG2039995

hCG2039996

hCG2040013

hCG20401

hCG2040228

hCG2040233

hCG2040291

hCG2040298

hCG2040351

hCG2040365

hCG2040606

hCG2041332

hCG2042151

hCG2042785

hCG2043046

hCG2043341

hCG2043376

hCG2043377

hCG2043431

hCG2043508

hCG2043539

hCG2043597

hCG20459

hCG20487

hCG20535

hCG20599

hCG20682

hCG20913

hCG21032

hCG21055

hCG21174

hCG21230

hCG21336

hCG21525

hCG21638

hCG21682

hCG21844

hCG21906

hCG21985

hCG21988

hCG22086

hCG22165

hCG22225

hCG22593

hCG22755

hCG22783

hCG22878

hCG23101

hCG23188

hCG23234

hCG23542

hCG23634

hCG23676

hCG23989

hCG24009

hCG24101

hCG24350

hCG24422

hCG24698

hCG25017

hCG25143

hCG25185

hCG25596

hCG25636

hCG25780

hCG25942

hCG26002

hCG26012

hCG26797

hCG27168

hCG27479

hCG27512

hCG27612

hCG27800

hCG27811

hCG27833

hCG28013

hCG28119

hCG28214

hCG28314

hCG28366

hCG28439

hCG28483

hCG28819

hCG29185

hCG29302

hCG29617

hCG30597

hCG30600

hCG30902

hCG31372

hCG31406

hCG31440

hCG31492

hCG31497

hCG31729

hCG31749

hCG32037

hCG32191

hCG32473

hCG32739

hCG32779

hCG33003

hCG33030

hCG33071

hCG33191

hCG34058

hCG34196

hCG34454

hCG36855

hCG37044

hCG37127

hCG37191

hCG37261

hCG37525

hCG37572

hCG37613

hCG37641

hCG37696

hCG37734

hCG37853

hCG37922

hCG37997

hCG38021

hCG38030

hCG38062

hCG38480

hCG38568

hCG38709

hCG38806

hCG38953

hCG38986

hCG39037

hCG39149

hCG39157

hCG39228

hCG39249

hCG39324

hCG39359

hCG39383

hCG39398

hCG39465

hCG39510

hCG39512

hCG39534

hCG39580

hCG39636

hCG39689

hCG39760

hCG39777

hCG39823

hCG39829

hCG39882

hCG39988

hCG39991

hCG40096

hCG401161

hCG401308

hCG40151

hCG40163

hCG40270

hCG40338

hCG40602

hCG40623

hCG40703

hCG40734

hCG40887

hCG40991

hCG41030

hCG41100

hCG41139

hCG41245

hCG41344

hCG41785
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hCG42023

hCG42708

hCG42867

hCG43349

hCG43758

hCG96709
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Table A3.5: Genes with high expression in oocytes and embryos out of the 525 housekeeping genes investigated.

Oocytes
(number of genes)

Blastocysts
(number of genes)

Shared genes of high signal
(number of genes)

Transcription
pre-initiation
complex

CCNH, CDK7, GTF2A2, GTF2B, GTF2E1,
GTF2F2, GTF2H2, MNAT1, POLR2F, POLR2H,
POLR2K, TAF10, TAF12, TAF4B, TAF5, TAF6,
TAF9, TBP (18)

CDK7, GTF2A2, GTF2B, GTF2E1, GTF2E2,
GTF2F2, POLR2B, POLR2E, POLR2F, POLR2G,
POLR2H, POLR2I, POLR2K, TAF10, TAF12, TAF6,
TAF7, TAF9, TBP (19)

CDK7, GTF2A2, GTF2B, GTF2E1, GTF2F2,
POLR2F, POLR2H, POLR2K, TAF10, TAF12, TAF6,
TAF9, TBP (13)

Transcription
elongation
complex

CDK9, SSRP1, TCEB1, WHSC2 (4) CDK9, RDBP, SSRP1, TCEA1, TCEB1, TCEB2 (6) CDK9, SSRP1, TCEB1 (3)

Essential
splicing factor

CCAR1, DNAJC8, FLJ10292, FUS, MAGOH,
NFX1, RBM8A, RNPS1, SF1, SFRS11, SFRS4,
SFRS5, SFRS7, SFRS9, U2AF1, YBX1 (16)

CCAR1, DHX9, DNAJC8, FLJ10292, FUS, MAGOH,
RBM8A, RNPS1, SF1, SF4, SFRS1, SFRS11, SFRS2,
SFRS3, SFRS4, SFRS5, SFRS6, SFRS7, SFRS9,
SRRM1, THOC4, U2AF1, YBX1 (23)

CCAR1, DNAJC8, FLJ10292, FUS, MAGOH,
RBM8A, SF1, SFRS11, SFRS4, SFRS5, SFRS7,
SFRS9, U2AF1 (13)

hnRNP HNRPA2B1, HNRPA3|HNRPA3P1, HNRPC,
HNRPF, HNRPK, HNRPM, PCBP1, RBMX (8)

HNRPA1, HNRPA2B1, HNRPA3|HNRPA3P1,
HNRPC, HNRPD, HNRPF, HNRPH1, HNRPK,
HNRPM, HNRPR, HNRPU, PTBP1, RBMX (13)

HNRPA2B1, HNRPA3|HNRPA3P1, HNRPC,
HNRPF, HNRPK, HNRPM, RBMX (7)

snRNP HNRPC, SF3A3, SF3B1, SF3B2, SNRPB,
SNRPB2, SNRPD1, SNRPD2, SNRPD3,
SNRPE|SNRPEL1, SNRPF|ENO1, SNRPG,
TXNL4A, WDR57 (14)

EFTUD2, HNRPC, LSM2, NHP2L1, SF3A3, SF3B1,
SF3B2, SF3B3, SF3B4, SF3B5, SNRPA, SNRPB,
SNRPB2, SNRPC, SNRPD1, SNRPD2, SNRPD3,
SNRPE|SNRPEL1, SNRPF|ENO1, SNRPG, TXNL4A,
WDR57 (22)

HNRPC, SF3A3, SF3B1, SF3B2, SNRPB, SNRPB2,
SNRPD1, SNRPD2, SNRPD3, SNRPE|SNRPEL1,
SNRPF|ENO1, SNRPG, TXNL4A, WDR57 (14)

Capping related
genes

NCBP1 (1) NCBP2, NCBP1 (2) NCBP1 (1)

Cleavage and
polyadenylation
complex

CPSF2, CPSF4, CSTF1, CSTF2, NUDT21 (5) COLEC12, CPSF2, CPSF3, CPSF4, CSTF1, CSTF2,
CSTF3, FLJ12529, NUDT21, PAPOLA (10)

CPSF2, CPSF4, CSTF1, CSTF2, NUDT21 (5)

Nuclear Pore
Complex

AAAS, NUP107, NUP133, NUP153, NUP35,
NUP37, NUP50, NUP62, NUP85, NUP88,
NUP93, NUP98, NUPL2, RAE1, RANBP2 (15)

AAAS, NUP133, NUP153, NUP188, NUP35, NUP37,
NUP50, NUP62, NUP85, NUP93, RANBP2 (11)

RANBP2, AAAS, NUP133, NUP153, NUP35, NUP37,
NUP50, NUP62, NUP85, NUP93 (10)
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Translation,
initiation,
elongation and
termination
factor

EEF1A1, EEF1B2, EEF1D, EEF1G, EEF2, EIF1,
EIF1AX|EIF1AP1, EIF2B1, EIF2B2, EIF2S1,
EIF3S10, EIF3S12, EIF3S2, EIF3S3,
EIF3S5|LOC339799, EIF3S6, EIF3S7, EIF3S8,
EIF4A1, EIF4A2, EIF4E, EIF5B, WBSCR1 (23)

EEF2, EEF1A1, EEF1B2, EEF1D, EEF1G, EIF1,
EIF1AX|EIF1AP1, EIF2B1, EIF2B2, EIF2B3,
EIF2S1, EIF2S2, EIF3S1, EIF3S10, EIF3S12,
EIF3S2, EIF3S3, EIF3S4, EIF3S5|LOC339799,
EIF3S6, EIF3S7, EIF3S8, EIF3S9, EIF4A1, EIF4A2,
EIF4B, EIF4E, EIF4EBP1, EIF4G1, EIF5, ETF1,
WBSCR1 (32)

EEF1A1, EEF1D, EEF2, EIF1, EIF1AX|EIF1AP1,
EIF2B1, EIF2B2, EIF2S1, EIF3S10, EIF3S12,
EIF3S2, EIF3S3, EIF3S5|LOC339799, EIF3S6,
EIF3S7, EIF3S8, EIF4A1, EIF4A2, EIF4E, WBSCR1
(20)

tRNA synthesis AARS, DARS, EPRS, GARS, NARS, QARS (6) AARS, DARS, EPRS, GARS, GART, KARS, LARS,
MARS, NARS, QARS, RARS, SARS, TARS, VARS,
WARS, YARS (16)

AARS, DARS, EPRS, GARS, NARS, QARS (6)

Cytosolic
ribosome

C15orf15, FAU, LOC387907|RPS7,
LOC388654|LOC388524|LOC387867|LAMR1P15|
RPSA, LOC440520|RPS27, LOC441136|RPL35A,
LOC497661, MRPL13, RPL10A,
RPL13|LOC388344, RPL13A|LOC283340|RP11-
365K22.1, RPL14, RPL15, RPL17|LOC390773,
RPL18, RPL18A, RPL19, RPL23, RPL23A, RPL24,
RPL26, RPL26L1, RPL27, RPL27A, RPL28,
RPL29, RPL3|ZNF114, RPL30, RPL31, RPL35,
RPL36, RPL37A, RPL38, RPL4, RPL41, RPL5,
RPL7A, RPL8, RPL9, RPLP0, RPLP1, RPLP2,
RPS11, RPS12, RPS15|LOC401019, RPS15A,
RPS16, RPS17, RPS18, RPS19, RPS20, RPS21,
RPS23, RPS24, RPS25, RPS27A,
RPS28|LOC441618, RPS29, RPS4X, RPS5, RPS6,
RPS7, RPS8, RPS9, SLC36A2|RPL24, UBA52 (66)

C15orf15, FAU,
LOC388654|RPSA|LOC388954|LOC388122|LOC441
447, LOC440520|RPS27, LOC441136|RPL35A,
LOC497661, MRPL13, MRPS12, RPL10A, RPL11,
RPL13|LOC388344, RPL13A|LOC283340|RP11-
365K22.1, RPL14, RPL15, RPL17|LOC390773,
RPL18, RPL18A, RPL19, RPL23, RPL23A, RPL24,
RPL26, RPL26L1, RPL27, RPL27A, RPL28, RPL29,
RPL3|ZNF114, RPL30, RPL31, RPL35, RPL36,
RPL36AL, RPL37A, RPL38, RPL4, RPL41, RPL5,
RPL7A, RPL8, RPL9, RPLP0, RPLP1, RPLP2,
RPS11, RPS12, RPS14, RPS15|LOC401019, RPS15A,
RPS16, RPS17, RPS18, RPS19, RPS2, RPS20, RPS21,
RPS23, RPS24, RPS25, RPS27A, RPS28|LOC441618,
RPS29, RPS3, RPS4X, RPS4Y1, RPS5, RPS6, RPS7,
RPS8, RPS9, SLC36A2|RPL24, UBA52 (72)

C15orf15, FAU,
LOC388654|RPSA|LOC388954|LOC388122|LOC441
447, LOC440520|RPS27, LOC441136|RPL35A,
LOC497661, MRPL13, RPL10A, RPL13|LOC388344,
RPL13A|LOC283340|RP11-365K22.1, RPL14,
RPL15, RPL17|LOC390773, RPL18, RPL18A,
RPL19, RPL23, RPL23A, RPL24, RPL26, RPL26L1,
RPL27, RPL27A, RPL28, RPL29, RPL3|ZNF114,
RPL30, RPL31, RPL35, RPL36, RPL37A, RPL38,
RPL4, RPL41, RPL5, RPL7A, RPL8, RPL9, RPLP0,
RPLP1, RPLP2, RPS11, RPS12, RPS15|LOC401019,
RPS15A, RPS16, RPS17, RPS18, RPS19, RPS20,
RPS21, RPS23, RPS24, RPS25, RPS27A,
RPS28|LOC441618, RPS29, RPS4X, RPS5, RPS6,
RPS7, RPS8, RPS9, SLC36A2|RPL24, UBA52 (65)

Ubiquitin
mediated
proteolysis

ANAPC10, ANAPC11, ANAPC4, BTRC, CDC20,
CUL1, FBXW11, RBX1, SKP1A, SKP2, TCEB1,
UBE2C, UBE2D1, UBE2D2, UBE2D3, UBE2R2
(16)

ANAPC10, ANAPC11, CDC16, RBX1, SKP1A, SKP2,
TCEB1, TCEB2, UBE2C, UBE2D1, UBE2D2,
UBE2D3, UBE2R2 (13)

ANAPC10, ANAPC11, RBX1, SKP1A, SKP2, TCEB1,
UBE2C, UBE2D1, UBE2D2, UBE2D3, UBE2R2 (11)
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Proteasome PSMA2, PSMA3, PSMA4, PSMA5, PSMA7,
PSMB1, PSMB2, PSMB3, PSMB4, PSMB5,
PSMB6, PSMB7, PSMC1, PSMC2, PSMC4,
PSMC6, PSMD1, PSMD11, PSMD14, PSMD2,
PSMD6, PSMD7, PSME3 (23)

PSMA1, PSMA2, PSMA3, PSMA4, PSMA5, PSMA6,
PSMA7, PSMB1, PSMB2, PSMB3, PSMB4, PSMB5,
PSMB6, PSMB7, PSMC1, PSMC2, PSMC3, PSMC4,
PSMC5, PSMC6, PSMD1, PSMD11, PSMD14,
PSMD2, PSMD4, PSMD6, PSMD7, PSME2, PSME3
(29)

PSMA2, PSMA3, PSMA4, PSMA5, PSMA7, PSMB1,
PSMB2, PSMB3, PSMB4, PSMB5, PSMB6, PSMB7,
PSMC1, PSMC2, PSMC4, PSMC6, PSMD1,
PSMD11, PSMD14, PSMD2, PSMD6, PSMD7,
PSME3 (23)

Other common
HK genes*,
excluding genes
shared with
other datasets

ACTB, ACTG1, ANP32B, ARF1, ARF4, ARPC2,
ATF4, ATP5A1, ATP5G1, ATP5G3, ATP5O,
ATP6V1F, BAT1, CALM2, CANX, CASC3, CLN5,
CLTA, COX4I1, COX6A1, COX7A2, COX7C,
COX8A, CSNK2B, CSTB, CYB5R3, DAZAP2,
DDX39, EEF1A1, ERH, FTH1, GNAS, GNB2L1,
H3F3A, H3F3B, HINT1, HSPA8, HSPCB, JUND,
LDHA, MDH1, NEDD8, PABPC1, PFDN5, PFN1,
PGK1, PRDX1, RAC1, RHOA, RPA2,
RPL3|ZNF114, SEPT2, SLC25A3, SOD1, SRP14,
SSR2, TEGT, UBB, UBC, USP11, VIL2, YWHAB,
ZNF91 (62)

ACTB, ACTG1, ALDOA, ANP32B, APLP2, ARF1,
ARF4, ARPC2, ATF4, ATP5A1, ATP5G1, ATP5G3,
ATP5O, ATP6V1F, BAT1, BCAP31, BTF3, CALM2,
CANX, CD81, CFL1, CLN5, CLTA, COPS6, COX4I1,
COX6A1, COX7A2, COX7C, COX8A, CSNK2B,
CSTB, CYB5R3, DAZAP2, DDT, DDX39, DYNLL1,
EEF1A1, ENO1, ERH, FTH1, G10, GAPDH, GNAS,
GNB2L1, H3F3A, H3F3B, HINT1, HSPA8, HSPCB,
JUND, KARS, LDHA, MDH1, MRPS12, MYL6,
NACA, NCL, NEDD8, NONO, PABPC1, PFDN5,
PFN1, PGK1, PHB2, PRDX1, RAC1, RHOA, RPA2,
RPL3|ZNF114, RPS14, RPS2, SARS, SEPT2,
SLC25A3, SOD1, SRP14, SSR2, TEGT, TMSB10,
TUBB2A, UBB, UBC, VIL2, YWHAB, YWHAQ,
YWHAZ, ZNF91 (87)

ACTB, ACTG1, ANP32B, ARF1, ARF4, ARPC2,
ATF4, ATP5A1, ATP5G1, ATP5G3, ATP5O,
ATP6V1F, BAT1, CALM2, CANX, CLN5, CLTA,
COX4I1, COX6A1, COX7A2, COX7C, COX8A,
CSNK2B, CSTB, CYB5R3, DAZAP2, DDX39,
EEF1A1, ERH, FTH1, GNAS, GNB2L1, H3F3A,
H3F3B, HINT1, HSPA8, HSPCB, JUND, LDHA,
MDH1, NEDD8, PABPC1, PFDN5, PFN1, PGK1,
PRDX1, RAC1, RHOA, RPA2, RPL3|ZNF114, SEPT2,
SLC25A3, SOD1, SRP14, SSR2, TEGT, UBB, UBC,
VIL2, YWHAB, ZNF91 (61)
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