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 Abstract 

 
 
 

This thesis reports the results of neutron diffraction studies and first principles ab initio 

simulations of two salt hydrates in the Na2SO4 – H2O and MgSO4 – H2O systems, namely 

mirabilite (Na2SO4·10H2O) and meridianiite (MgSO4·11H2O). Neutron diffraction experiments 

of deuterated mirabilite were carried on the High Resolution Powder Diffractometer (HPRD) 

at the ISIS spallation neutron source to measure its thermal expansion from 4.2 - 300 K and its 

incompressibility from 0 – 0.55 GPa. A detailed analysis of both the thermal expansion and 

incompressibility data is presented including determination of the thermal expansion tensor 

and elastic strain tensor. First principles ab initio calculations were also carried out on both 

materials to complement the experimental studies and to extend the study to higher pressures 

outside the experimental range. Mirabilite was simulated from 0 – 61 GPa; at least two new 

phases were detected resulting from first-order phase transformations. Meridianiite was 

simulated from 0 – 11GPa; this material shows one transition to a higher pressure phase 

(probably second-order).Finally, a simple model has been developed, incorporating the density 

of mirabilite determined in the experiments, to study the size and ascent speed of diapiric salt 

hydrate structures as they interact with, and travel through, a more viscous overburden layer 

within the upper crust of Earth, Mars and Ganymede, a large icy satellite of Jupiter. 

 

 

 

 

 

 

 

 

 

 

 

 



 

3 

 

 

 

 

 

 

 

 

 

 

 

 

 

“There is a theory which states that if ever anybody discovers exactly what the 
universe is for and why it is here, it will instantly disappear and be replaced by 

something even more bizarre and inexplicable. 
 
 
 
 
 
 
 
 
 

There is another theory which states that this has already happened.” 
 

 

 

 

 

 

Douglas Adams, The Restaurant at the end of the Universe. 
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This thesis describes an investigation into the properties of the salt hydrates, mirabilite and 

meridianiite; it includes determination of thermoelastic properties using a combination of both 

computer simulation and experimental work, and the application of these properties to 

modelling geological processes which may shape the surface and interiors of the Earth and 

other planetary bodies throughout the solar system.  

 

This introductory chapter is laid out as follows: Section 1.1 gives a very brief introduction to 

evaporitic deposits (settings in which salt hydrates may be important), their formation, 

evolution, economic concerns and eventual removal from the geological record, both on Earth 

and throughout the solar system; Section 1.2 introduces the mineralogy of the main materials 

of study in this thesis, the salt hydrate component of the evaporite deposits and the motivation 

for their study in this context; Section 1.3 reviews previous studies of these salt hydrates, 

leading to Sections 1.4 and 1.5 where the techniques and layout of this thesis are outlined.  

 
1.1 Introduction to evaporites: terrestrial and planetary settings and perspectives. 
 

1.1.1 Terrestrial evaporites. 

  

One of the most widespread types of sedimentary rocks on Earth and throughout the solar 

system are the evaporites. Evaporites form abundant deposits on the Earth in a wide range of 

geological settings both as primary evaporite deposits such as those found in hypersaline lake 

environments such as the salt lakes of Utah, and in geological settings such as salt domes, 

hydrocarbon reservoirs (Coleman et al., 2002), and even as a component of cold desert salt 

deposits (Keys and Williams, 1981). Indeed, it is estimated that up to 30% of the continental 

United States may be underlain by evaporite deposits (Warren, 2006), and yet there is still a 

great deal about this type of rock that we do not know.  

 

An evaporite is a deposit of soluble salts, which precipitate as a result of the removal 

(evaporation), of H2O. For the purposes of this study, the term “salt” is used to indicate a rock 

body which is composed of halite, gypsum or other salt hydrates. Evaporites form in a variety 

of environmental settings and this climatic diversity is reflected and recorded in their wide 

range of mineralogical compositions. Evaporation is a vital part of the water cycle on Earth. It 

occurs naturally on the surface of Earth through the action of solar energy warming oceans 

and lakes. As evaporation of a body of water proceeds and the amount of water decreases, 

certain minerals dissolved in the water, reach the limits of their solubility. Evaporites are an 
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indicator of the removal of large amount of water from a specific environment in a relatively 

short amount of time. For example 1 litre of saline water can produce up to 35g of evaporitic 

NaCl salt. 

 

Initially, to form a primary evaporite, the evaporation of sea water leads to the deposition of 

calcium carbonate as micritic limestone, but this is not the end of the sequence of 

precipitation. With a large (> 80%) decrease in the volume of water available, a selection of 

other precipitates will occur in accordance with the solubility of the mineral species. Salt 

hydrates represent the end of the sequence – either very low liquid water concentrations, or 

extreme supersaturation of the salt. The first salts to precipitate after the CaCO3 will be 

gypsum (CaSO4.2H2O) and anhydrite (CaSO4) when 80% of the water has evaporated. This is 

followed by halite (NaCl), at levels where > 90% of the water has been removed. Halite is the 

most common evaporitic salt on Earth due to the relative enrichment of the terrestrial crust 

with respect to chlorine; the Cl:S ratio in chondrites is ~0.01, making sulfur-containing 

compounds a much more common phenomena in other parts of the solar system. The final 

salts in the sequence, at extremely low water concentrations are Mg, Na and K salts such as 

epsomite, the so-called “bittern” salts (Warren, 2006).  

 

Traditionally, evaporite formation is thought to result from evaporation in an aerian 

environment; thus, the primary zones of evaporite formation are at the margins of bodies of 

water, lakes, oceans, or where water exists seasonally in more arid areas. Horst and graben 

structures at continental spreading ridges provide an ideal locality as the flooded sections of 

the rift get cut off from their primary water source. However, if the evaporite deposit is not a 

primary deposit, all that may be required for formation might be the removal of water from the 

environment. Thus, it is also possible to form evaporitic salt-hydrate minerals in areas such as 

dehydrating sections of subducting slabs and as the alteration products of alkaline volcanic 

deposits. It is also common for evaporite materials such as the bittern salts to be mobilised, 

localised and redeposited (recrystallised) by hydrothermal activity and so another geological 

setting for their occurrence is in hydrothermal or volcanic areas (Hardie, 1991).  

 

The stability fields over which different evaporitic mineralogical phases can persist can be so 

small that their presence can serve as a climactic indicator. However, by the same measure, 

this also means that just because they are a certain phase today does not mean they were 

originally deposited as that phase. Salt hydrate recrystallisation is common and results in 

many of the internal textures of evaporite deposits reminiscent of those found in intrusive 

igneous rocks.  
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Compared to most sediments, evaporitic salts have a relatively low density e.g. gypsum has a 

density of 2317 kg m-3 (Schofield et al., 1996), and mirabilite, a density of 1490 kg m-3 (this 

work), compared to 2800 kg m-3 for basalt (Beyer et al., 2000). As with all materials deposited 

on the surface, over time evaporites will be buried by younger deposits. This may lead to a 

density inversion when evaporites are buried beneath denser sediments. Evaporitic materials 

are also mechanically weak compared to other sediments and so will flow under relatively low 

loads (Hudec and Jackson, 2007). The combination of these two properties makes salt layers 

mobile with respect to the sediments around them. This can have two consequences depending 

on the rheology of the surrounding sediments and their ability to constrain the salt movement: 

firstly, in orogenic settings such as the edge of the Pyrenean fold and thrust belt in northern 

Spain, where the salt is constrained by the surrounding sediments, evaporitic layers can act as 

dislocation surface for thrust planes, promoting regional shortening (Pinto et al., 2002). 

Secondly, if the salt layers are able to move relatively freely with respect to surrounding 

sediments, as is seen in another more distal part of the same sequence in Spain, the salt 

buoyancy can allow the salt to move and produce a variety of geological structures (see Figure 

1.1) typified by  salt diapirs. 

 

 

 

 
Figure 1.1: Schematic shapes of salt structures. Maturity of the structures increases away from the 
reader. Series a) are features arising from line sources akin to a dyke and b) are features produced by a 
point source. From Hudec and Jackson (2007), after Jackson and Talbot (1991). 

 
 

The term “diapir” literally means upwelling. It can be equally well applied to volcanic 

material as it travels up through the crust or to an evaporite moving through overlying 
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sediments. In both cases, the underlying cause of the diapir is a density contrast between 

adjacent materials. Density inversions within sedimentary sequences provide an opportunity 

for underlying sediments to deform those above them and can have a significant effect on the 

evolution of geological structures within a planetary crust. Diapiric structures are also of 

significant interest to economic geologists as they can provide both a means of transporting 

hydrocarbons, often found in association with evaporite deposits, toward the surface and their 

movement can set up the conditions for structures which trap said hydrocarbons, as is 

frequently seen under the North Sea and in the gulf of Mexico (Waltham, 1996).  

 

Initiation of a diapir occurs when Rayleigh-Taylor instabilities, small perturbations of the 

interface between a low-density layer and the denser rocks above lead, to an upwelling. This is 

typically seen in sedimentary sequences which contain evaporites, and these have been studied 

most extensively on the Earth, due mainly to their association with economic concerns such as 

oil and gas. Salt domes are the surface expression of a rising diapir of halite. Once these 

diapirs reach the surface, they may then extrude salt material onto the surface forming salt 

glaciers. Figure 8.2 shows a Landsat image of a series of outcropping salt diapirs in central 

Iran highlighting typical terrestrial diapir length scales of a few hundred metres to a few 

kilometres. Typical diapir ascent times are of the order of 104-106 years. The Zagros mountain 

belt in central Iran is a classic salt diapir locality, it is of alpine age and contains a wide variety 

of salt structures.  

 

 
Figure 1.2: Landsat image of salt diapirs in the Zagros mountains of central Iran. Image: USGS/NASA. 
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1.1.2 Martian evaporitic settings. 

 
Evaporitic deposits are likely to be a constituent of the geological record wherever water is, or 

has been, a major component of the environment. Whereas on Earth liquid water is active 

currently, the climactic conditions at the surface of Mars today are prohibitive to the long term 

survival of liquid water. However, there is evidence to suggest that in the past (on a geological 

timescale at least) Mars was a warmer and wetter place (Kargel, 2004) thus allowing water to 

be stable at the surface of Mars for longer periods. Moreover, there is evidence for liquid (and 

solid) H2O in the near surface and subsurface of Mars today. This, together with the recent 

findings of the TEGA (Thermal and Evolved-Gas Analyzer) instrument on NASA’s Phoenix 

lander, makes it likely that evaporites will be present in the sedimentary record of the Martian 

subsurface. Furthermore, ice is likely to be a major component of the near-surface regolith, 

particularly at high latitudes. Figure 1.3 shows an image of the Martian polar caps which are 

formed of alternating layers of dust, H2O ice and CO2 ice. Both ice and mineral hydrates 

(epsomite, MgSO4·7H2O, meridianiite, MgSO4·11H2O, mirabilite, Na2SO4·10H2O, and 

gypsum, Ca2SO4·2H2O) are believed to be present, based on in situ observations by landers 

and rovers, and from remote neutron and gamma-ray spectroscopy. Another important source 

of salt hydrates on Mars is likely to be from alteration of basaltic bedrock. There are extensive 

basalt flow fields on the surface of Mars which have been eroded and reworked by millennia 

of exposure to the Martian atmosphere. 
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Figure 1.3 Mars Global Surveyor MOC image of the northern polar cap of Mars taken in early Martian 
northern hemisphere summer. The light coloured material is residual water ice that persists through the 
summer. The surrounding circular dark material is made up of wind-formed sand dunes. In this image 
the polar cap is approximately 1100 km across. Image credit: NASA/JPL/MSSS. 
 

There have been several different studies to investigate the likely composition of a Martian 

evaporite deposit, including experiments on meteorites of Martian origin (Bridges and Grady, 

2000) and  experimental studies of Mars-analogue brines (Bullock et al., 2008); these 

concluded that the most abundant evaporite on Mars would be gypsum, due to its relative low 

solubility. A similar conclusion was drawn by Kargel (1991) for the same reasons, that 

gypsum is likely the bedrock in the icy satellites with Mg and Na rich salts concentrating as 

the components of the metasomatic fluid. 

 

With regard to diapiric structures on Mars, Beyer et al. (2000) have modelled a halite salt 

diapir under Martian conditions, as there has been some debate as to the origin of several 

surface features which appear reminiscent of the morphology of terrestrial diapirs e.g. the 
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plentiful circular features in Figure 1.4 (an updated version of an image from Beyer et al., 

2000). 

 

 
Figure 1.4 HiRISE image of Western Candor Chasma, Mars. The image is approximately 15 km across. 
Image credit: NASA/JPL/University of Arizona. 
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1.1.3 Application of evaporitic studies to the icy satellites of Jupiter. 

 

Figure 1.65 shows the four large satellites of Jupiter (the Galilean satellites) of which three, 

Europa, Ganymede and Callisto, are icy. These images show the vast difference in surface 

appearance between the satellites. Io is characterised by volcanoes and their deposits, Europa 

has a bright surface criss-crossed with darker lineations, while Ganymede has a mixture of 

dark and light terrain and Callisto has a surface dominated by impact craters. These 

differences hint at differences in the processes which have shaped the interiors of these moons 

as a result of their positions in relation to, and tidal interactions with, Jupiter. However, even 

though these moons are now very different in appearance and internal structure, they are likely 

to have formed from material of the same composition in the same part of the proto-solar 

nebula. 

 
Figure 1.5 the Galilean satellites of Jupiter. Image credit NASA/JPL. 
 

The satellites of the Jovian system are likely to have formed with an initial composition 

analogous to that of carbonaceous chondrite meteorites. They would have formed on the warm 

side of Jupiter’s snow line (Kargel, 1991). The primary phases in chondritic meteorites are 

similar to those seen in terrestrial crustal rocks and include species such as olivine, pyroxene, 

feldspar and sulphides. There would have been no volatile ices within these early bodies and 

they would have had an initial elemental involatile content equal to the solar value, with a 

volatile content that was slightly raised with respect to the solar value (Kargel, 1991). 
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The salt fraction in materials forming the Jovian satellites is dominated by metal sulfates, 

particularly epsomite (MgSO4.7H2O), and other Mg bearing sulfates, closely followed by Ca 

and Na sulfates and then their carbonates (Kargel, 1991). Any CaSO4 present is likely to have 

been precipitated in situ, probably in the form of gypsum, and remained so over time rather 

than being mobilised by hydrous activity in the body, due to its sparing solubility. Carbonates 

are likely to be less plentiful than sulfates as carbonates are less soluble than sulfates. Salt 

hydrates within the body may have condensed directly into the chondrite or may be the 

products of secondary alteration processes, such as leaching. The most important leachates 

from chondritic meteorites are those which fall into the MgSO4-Na2SO4-H2O system. As there 

is a negligible solid solution between MgSO4 and Na2SO4 (the difference in valence states 

means the cations are not interchangeable), only combinations of MgSO4 – H2O and Na2SO4 – 

H2O need be considered, rather like K and Ca in feldspars. 

 

Unlike the satellites of Saturn, it is thought that Jupiter’s satellites would have formed in a 

largely ammonia free region of the solar system as the temperature in this part of the proto-

solar nebula is likely to have been high enough to prohibit the condensation of ammonia 

hydrates (Kargel, 1991). This means that the majority of the nitrogen in this region would be 

in the form of molecular N2 rather than NH3 and so ammonium sulfates are probably rarer in 

this region of the solar system than further out from the sun. 

 

More detailed descriptions of the compositions of the three icy Jovian satellites at the present 

time are given below. 

 
1.1.3.1 Present composition of Europa 

 
Measurements of the moment of inertia of Europa, together with density and gravity field 

measurements suggest a differentiated four layer body (Anderson et al., 1997). The internal 

structure of Europa is suggested to be a silicate core with a salt-hydrate mantle below an ocean 

and icy crust (Kargel, 1991). There is a great deal of debate as to the thickness of this icy crust 

(Bray, 2008). It is though that the near surface composition of Europa is likely to be either a 

frozen/partially molten eutectic mixture of ice and hydrated Mg-Na salts or hydrated H2SO4 

and that there may be solid anhydrous Mg–Na sulfates near the base of the crust (Kargel, 

1991). The Near Infrared Mapping spectrometer (NIMS) spectrum at Europa is a good fit for a 

mixture of salts which appear concentrated in the lineaments and chaotic terrain. (McCord et 

al., 1998). 
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1.1.3.2 Present composition of Ganymede. 
 

 
Ganymede is the largest satellite in the solar system. It is thought to have a 300 km thick crust 

composed of a 10:1 mixture of ice : Na2SO4.10H2O; this crust overlies a 500 km thick mantle, 

which could be 1:1 ice : hydrated Mg-Na sulfates (Kargel, 1991). From NIMS data it appears 

that the salt hydrates at the surface are clustered in dark and chaotic terrain with both 

amorphous and crystalline ice concentrated at the poles. NIMS data also suggests that the 

Ganymede surface material is either less hydrated than that at Europa, or of a smaller grain 

size (McCord et al., 1998).   

 
 

1.1.3.3 Present composition of Callisto. 
 
 
Callisto is the furthest of the Galilean satellites outward from Jupiter. Unlike the other 

Galilean satellites, the surface of Callisto is heavily cratered and shows little evidence of 

recent resurfacing. This is unexpected as it is comparable in size to Ganymede and so would 

be expected to be active. There is much speculation as to the state of differentiation of the 

interior of Callisto The moment of inertia measurement can be interpreted by assuming that 

the interior can be represented by anything between a completely differentiated three-layer 

model to an undifferentiated body with random mass anomalies. However the flattening of 

impact craters suggests that the upper 10 km at least are “mechanically dominated” by ice so 

this region at least must be partially differentiated. IR measurements suggest there is water and 

other non-ice material at the surface but that overall Callisto is 50/50 rock: ice. There is likely 

to be 10 – 50% free ice at the surface (Kargel et al., 1991). 
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1.2 Mineralogy of evaporitic sulfate hydrates. 

 

1.2.1 Na2SO4 – H2O system 

 

The majority of this thesis is concerned with the determination of the thermoelastic properties 

of mirabilite, the decahydrate of the Na2SO4–H2O system. As we have seen in the preceding 

sections of this chapter, the Na2SO4–H2O system is of great importance to the study of 

terrestrial and Martian evaporites and the interiors of the icy satellites of Jupiter. To this end, 

this section describes the mineralogy and crystallography of these materials in detail. 

 

1.2.1.1 Anhydrous Na2SO4 

 

The Na2SO4 - H2O system has a seeming dearth of hydrates, compared to other candidate salt-

hydrate systems such as the MgSO4 - H2O system (three phases versus eight). This, combined 

with the comparative ease of growing single crystals, and the low decomposition temperature 

of mirabilite (32.4°C), has meant that anhydrous sodium sulfate has received more attention 

than anhydrous magnesium sulfate in the literature. Nonetheless, the structures and phase 

transitions of anhydrous sodium sulfate have not been studied fully, mainly due to the 

complexity and metastability of the phase relations. The physical properties of this substance 

have also been neglected. Several studies have concentrated on the ionic conduction and 

electrical properties of sodium sulfate (Ahmad, 2006), but ignored the thermo-elastic 

properties. The only investigations of the phase diagram of sodium sulfate (Pistorius, 1965) 

were to 45 kbar using a piston-cylinder cell and an investigation of the elastic properties of 

thenardite using interferometry (Von Bayh, 1966). 

 

Anhydrous sodium sulfate is thought to have as many as eight polymorphs up to 4.5 kbar  

(Pistorius, 1965) (Figure 1.6), but to date only four of these have been structurally 

characterised: I, II, III and V (Rasmussen et al., 1996), (the latter being the naturally occurring 

phase called thenardite). Phase I, which occurs above 510 K, is hexagonal, space group 

P63/mmc and is characterized by complete orientational disorder of the SO4 tetrahedra (Eysel 

et al., 1985). Phase II is orthorhombic, space group Pbnm but is only stable over a very small 

temperature range (503 – 510K) and has been considered by some to be metastable (Wang et 

al., 1999) Phase III (orthorhombic, space group Cmcm) is stable between 473 and 503 K at 

atmospheric pressure, whilst the room P,T form of Na2SO4, thenardite, is phase V 

(orthorhombic, space group Fddd (Hawthorne and Furguson, 1975; Nord, 1973)). There is still 

some debate in the literature as to the existence of a phase IV as there have not been any 
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studies which report this phase. The higher pressure polymorphs, VI, VII, and VIII, have yet 

to be investigated. 

 

The structure of the ambient phase of Na2SO4, thenardite, consists of sheets of octahedra 

which are connected by direct coordination of the sodium atoms by the sulfate oxygens. This 

is also true of the other anhydrous phases of Na2SO4. 

 

 

 

Figure 1.6 Pressure –Temperature phase diagram of anhydrous Na2SO4 from 0 – 4.5 kbar and 100 – 450 
oC. Redrawn from Pistorius (1965). 
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1.2.1.2 Sodium sulfate heptahydrate and octahydrate.  

 

Figure 1.7 shows the phase diagram for the Na2SO4 – H2O system. A metastable phase, 

Na2SO4·7H2O, is known at room pressure and temperature (Löwel, 1851, 1853, 1857; 

Viollette, 1866; Tomlinson, 1868, 1871; de Coppet, 1907; Hartley et al., 1908; Wuite, 1914; 

Hills & Wills, 1938; Washburn & Clem, 1938; Braitsch, 1971; Gans, 1978; Balarew, 2002; 

Rijniers et al., 2005; Genkinger & Putnis, 2007), although Löwel (1850) described an 

octahydrate, detailing the growth of large and beautiful prismatic crystals, and Genkinger & 

Putnis (2007) report a phase which does not match the X-ray diffraction patterns of either the 

decahydrate or heptahydrate; these lesser hydrates, or indeed other hydration states may 

become stable at higher pressures (e.g. Hogenboom et al., 1999).  The metastable 

heptahydrate - ice Ih eutectic is at 269.60 K, 12.8 wt. % Na2SO4, and the incongruent melting 

point of this phase is at 296.615K (Washburn & Clem, 1938). Most recently, sodium sulfate 

heptahydrate was fully characterised for the first time (Hamilton & Hall, 2008; Hall & 

Hamilton, 2008), and sodium sulfate octahydrate was identified as an exclusively high-

pressure phase (Oswald et al., 2008). 

 
Figure 1.7 T-X phase diagram of the binary system sodium sulfate – water at room pressure showing 
stable phase boundaries (solid lines) and metastable phase boundaries (dashed lines). E1 and E2 are the 
mirabilite - ice and the Na2SO4·7H2O - ice eutectics, respectively. P1 and P2 are the peritectics 
Na2SO4·10H2O(s) ↔ Na2SO4(s) + liquid (L) and Na2SO4·7H2O(s) ↔ Na2SO4(s) + L respectively.  The 
solid vertical line at 44.09 wt. % Na2SO4 corresponds to the composition of mirabilite, and the dashed 
vertical line at 52.97 wt. % corresponds to the heptahydrate. Redrawn after Negi and Anand (1985) with 
solubility data tabulated in Garrett (2001). 
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1.2.1.3 Mirabilite 
 

Sodium sulfate decahydrate — Na2SO4·10H2O — mirabilite — is the stable phase in contact 

with an equilibrium mixture of Na2SO4 and H2O at room temperature and pressure (Figure 

1.7); the synthetic form of the substance is referred to as Glauber's salt, after its first 

manufacturer (Glauber, 1658); and the naturally occurring form is the mineral mirabilite (e.g. 

Palache et al., 1951).  The eutectic between mirabilite and ice Ih is at 271.85 K, 4.15 wt. % 

Na2SO4, and the solubility increases rapidly with temperature up to the peritectic at 305.534 

K, 33.2 wt. % Na2SO4 where mirabilite undergoes incongruent melting to anhydrous sodium 

sulfate (orthorhombic phase V, Fddd, thenardite). This is the highest dissociation temperature 

amongst the isostructural decahydrates of Na2SO4, Na2SeO4, Na2WO4, Na2VO4, or Na2MoO4. 

Above this point, the solubility is retrograde, reaching a minimum near 400 K.   

 

Mirabilite easily forms as large (cm sized) prismatic crystals from a saturated solution of 

Na2SO4 in water. Typical daily temperature variations in most climates are enough to promote 

the growth of such large crystals over relatively short timescales (days to weeks). Mirabilite 

crystals are monoclinic, space-group P 21 / c (Z = 4), with unit-cell dimensions a = 11.512(3) 

Å, b = 10.370(3) Å, c = 12.847(2) Å and β = 107.789(10)° at 4.2 K (Levy and Lisensky, 

1978). Throughout this work the atom labelling scheme of Levy and Lisensky (1978) has been 

used. In this scheme, the sulfur atom is labelled S1, the sodium atoms are Na2 and Na3, the 

oxygens number from O4 to O17 and finally the hydrogens are labelled with respect to the 

oxygen with which they form a water molecule, for example the O8 water molecule will 

include O8, H8a and H8b (see Fig. 1.8d).  

 

The structure of mirabilite is illustrated in Figure 1.8, which shows views along each of the 

crystallographic axes and Figure 1.9 which shows a connectivity map for mirabilite. As shown 

in Figure 1.8a, the structure of mirabilite consists of edge sharing Na(H2O)6 octahedra 

arranged in sinuous ribbons extending along the c-axis, with a net stoichiometry of Na2(H2O)8. 

The octahedra comprise H2O molecules, labelled as O8, O9, and O12-O17, with O12-O15 

forming the shared edges. These ribbons of octahedra alternate with chains of sulfate 

tetrahedra (oxygens O4-O7) and the two are linked together by the remaining water molecules 

(labelled O10 and O11), that are not coordinated to Na. The alternating ribbons of Na2(H2O)8 

and SO4 tetrahedra + H2O thus form a flat sheet extending in the b - c plane (Figures 1.8b, 

1.8c).  The sheets are stacked A—B—A—B along the a-axis, being connected by a 

combination of orientationally ordered and disordered hydrogen bonds.  This layering 

accounts for the perfect cleavage on {100} (Palache et al., 1951, pp 439-442). Figure 1.9 is a 

connectivity map revealing the patterns of bonding between the various structural elements. 
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There is extensive hydrogen bonding within the structure as might be expected with such a 

highly hydrated salt (Ruben et al., 1961). 

 

 

 
Figure 1.8 Polyhedral representation of the ambient pressure, low temperature, mirabilite structure, with 
the unit cell outlined in black: a) view along the a-axis, b) along the b-axis, and c) along the c-axis; the 
labelling of the atoms is shown in d) in an enlarged section of the structure as in a). The Na(H2O)6 
octahedra are shown in dark blue and the SO4 tetrahedra in orange.  The interstitial H2O molecules are 
shown, but the H-atoms bonded to the Na(H2O)6 octahedra have been omitted for clarity. 
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Figure 1.9 Connectivity map illustrating the relationship between structural elements in mirabilite. Note that the disorder involving the sulfate tetrahedron (and 
associated hydrogen bonds) as described by Levy and Lisensky (1978) has been left out; the hydrogen bond structure depicted corresponds to the fully ordered 
sulfate orientations obtained in this work. 
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The heat capacity data for mirabilite (Pitzer & Coulter, 1938; Brodale & Giauque, 1972) 

were used by Ruben et al., (1961) to infer that hydrogen bonds in the mirabilite structure 

were disordered, and that this disorder became frozen-in at limiting low temperatures. In 

their single-crystal study, Levy and Lisensky (1978) identified two areas of orientational 

disorder, the first associated with a pair of square rings between adjacent octahedral apices, 

and the second associated with the sulfate tetrahedra.  The square rings involve the molecule 

pairs O8/O16 (ring 1, shown in Figure. 1.10) and O9/O17 (ring 2) which form the apices of 

Na octahedra and donate hydrogen bonds to sulfate oxygens O5 and O7 (ring 1) and O4 and 

O6 (ring 2). 

 

Each corner of the ring donates and receives one hydrogen bond from a neighbouring 

corner, with two possible orientations denoted 'b' and 'c' (the 'a' hydrogen are donating bonds 

to the sulfate oxygens).  In any one ring, all hydrogens must all be on either the 'b' sites or 

all on the 'c' sites, although a small fraction of rings will contain a mixture of 'b' and 'c' 

orientations. Thermally activated hopping between sites means that the time- and space-

averaged structure sensed by diffraction experiments will observe two partially occupied 

sites (both 'b' and 'c') along each O···O vector of the ring.  Complete orientational disorder 

corresponds to 50:50 occupancy of the 'b' and 'c' sites, whereas complete orientational order 

corresponds to either 100:0 or 0:100 occupancy of these sites. Levy and Lisensky (1978) 

refined this ratio to be equal to 50:50 at room temperature. 
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Figure 1.10 One of the square rings of water molecules in mirabilite involving disordered hydrogen 
bonds.  The two-fold axis of rotational symmetry passes through the middle of the ring. 
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Levy and Lisensky also identified disorder over two orientations of the sulfate tetrahedra, 

which they denoted with 'prime' and 'double-prime' superscripts.  The two orientations, 

related by a rotation of about 30° about the S···O5 vector (Figure 1.11), generate pairs of 

partially occupied sulfate oxygen sites (O4'/O4", O6'/O6", and O7'/O7" in their notation), 

which Levy and Lisensky (1978) found to be occupied in the ratio ≈ 25:75 (Figure 1.11b).  

The sulfate apices accept hydrogen bonds from neighbouring water molecules. The bonds 

donated to the O5 apex (from H8a, H10a, and H12b) are fully ordered.  The bonds to the 

partially occupied apical sites are a mixture of ordered hydrogen bonds (donated by H10b, 

H11b, and H14b) and disordered hydrogen bonds (donated by H9a'/H9a", H16a'/H16a", and 

H17a'/H17a"). In Levy and Lisensky’s refinement of the structure the occupancies of these 

hydrogen sites share the same occupancy as the apical oxygen sites; i.e., the 'primed' sites 

are ~ 25 % occupied, and the 'double-primed' sites are ~ 75 % occupied. Notice that the 

proposed switch in orientation from 'prime' to 'double-prime' involves breaking of the 

hydrogen bonds donated by H9a', H16a', and H17a' (the thicker, long-dashed bonds in 

Figure 1.11a), and the formation of new hydrogen bonds from H9a", H16a", and H17a" (the 

thin, short-dashed bonds in Figure 1.11a). Levy and Lisensky (1978) used the room 

temperature occupancies to determine the energy difference between the two orientations as 

2713 ± 197 J mol-1, which is approximately 10 % of the energy contained in a single 

hydrogen bond. 
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Figure 1.11 The two orientations of the sulfate tetrahedron described by Levy and Lisensky (1978) as viewed down the rotation axis (the S···O5 vector) - 
orientation relative to the crystallographic axes is shown by the legend in 1.8(a). The hydrogen bonds donated to the ordered apex (O5) are shown with solid grey 
rods; those donated to the lesser occupied apices (O4', O6', and O7') are depicted as thinner, short-dashed rods; those donated to the more fully occupied apices 
(O4", O6", and O7") are depicted as thicker, long-dashed rods. 
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1.2.2 MgSO4 – H2O system 

 

1.2.2.1 Anhydrous MgSO4 

 

There are three known polymorphs of anhydrous MgSO4, two that are stable at relatively low 

temperatures (but formed by different methods), and one that is stable at high temperatures.  

The phase which is grown from a solution of MgO in H2SO4 at ambient conditions is α-

MgSO4.  It has the CrVO4-type structure and it is orthorhombic, space-group Cmcm, a = 

5.17471(3) Å, b = 7.87563(5) Å, c = 6.49517(5) Å, V = 264.705(2) Å3 [ρcalc = 3020.29(2) kg 

m-3] at 300 K (Fortes et al., 2007). Another phase may be formed, either by dehydration of 

MgSO4-hydrates or by heating α-MgSO4 to 595°C (Yamaguchi and Kato, 1972); this is β-

MgSO4 which has the ZnSO4-type structure; it is orthorhombic, space-group Pbnm, a = 

4.74608(7) Å, b = 8.58317(10) Å, c = 6.70931(10) Å, V = 273.313(4) Å3 [ρcalc = 2925.17(4) 

kg m-3] at 300 K (Eysel et al., 1985). β-MgSO4 can be quenched easily to room temperature, 

and commercially available MgSO4 is the β-phase. A third phase, γ-MgSO4, has been 

discovered at temperatures above ~1000°C (Daimon and Kato, 1984; Rowe, 1967) but its 

structure remains unknown.  

 

Very little work exists on the bulk properties of MgSO4 and its phase transition behaviour. 

The structures and thermal expansivities of the α- and β-phases were measured by powder 

neutron diffraction methods from 4.2 – 300 K (Eysel et al., 1985) but work on the high 

temperature phase transitions and determination of the γ-MgSO4 structure is outstanding. 

Livshits et al. (1963) compressed MgSO4 to ~3 GPa, although it is possible that the material 

they report to be anhydrous was in fact the monohydrate (kieserite). Wang et al. (1999) 

compressed β-MgSO4 to 7.7 GPa at 1800°C (MgSO4 melts at ~1950°C at 7.7 GPa); upon 

quenching, they observed an X-ray diffraction pattern from α−MgSO4. 
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1.2.2.2 Hydrated phases of MgSO4. 

 
The MgSO4 – H2O system is far more extensive than the Na2SO4 - H2O system. There are 8 

phases: anhydrous MgSO4, the monohydrate - kieserite, the dihydrate - sanderite, 

MgSO4·4H2O - starkyite, MgSO4·5H2O - pentahydrite, MgSO4·6H2O - hexahydrite, 

MgSO4·7H2O - epsomite, and finally MgSO4·11H2O - the undecahydrate meridianiite 

(MS11). The ambient pressure phase diagram of MgSO4 - H2O between 260 and 350 K with 

variation in MgSO4 concentration is shown in Figure 1.12. Of the hydrated phases, only 

MS11 is discussed in detail here as it is the only MgSO4 phase to be studied in this thesis. 

 

 
Figure 1.12 T-X phase diagram of the binary system magnesium sulfate – water at room pressure 
showing stable phase boundaries. From Grindrod et al. (2008), after Hogenboom et al. (1995) and 
Petersen and Wang (2006). 
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1.2.2.3 MgSO4.11H2O – Meridianiite. 

 

MgSO4·11H2O (MS11) is the most water-rich of the MgSO4 hydrates; it was made in 

synthetic form by Fritzsche in 1837 and subsequently named after its discoverer (Fritzsche’s 

salt). It was recently found as a naturally occurring deposit at a frozen brine pond in Canada 

(Peterson et al., 2007), and the natural mineral was called meridianiite after a possible locality 

on Mars. 

 

MS11 crystals are triclinic, space group P ī, (Z = 2) with a = 6.72746 (6) Ǻ, b = 6.78141 (6) 

Ǻ, c = 17.31803 (13) Ǻ, α = 88.2062 (6) °, β = 89.4473 (8) °, γ = 62.6075 (5) ° and V = 

701.140(6) Ǻ3 at 4.2 K (Fortes et al., 2008). The atom naming scheme used throughout this 

work is a variation of the scheme used in Fortes et al. (2008) modified to make it similar to 

the naming scheme used for mirabilite. Figure 1.13 is a connectivity map showing the 

bonding scheme in MS11 and Figure 1.14 is a polyhedral representation of the MS11 

structure. Oxygen atoms O1 – O4 are the sulfate oxygens, O5 – O10 are Mg-coordinated 

oxygens and the remaining 5 oxygens, O11 – O15 are the free water molecules. The hydrogen 

atoms are named for their associated oxygen atoms, for example the water molecule 

containing O11 will then also contain H11a and H11b. In this scheme, the water molecule 

with the bifurcated H – bond (see Fortes et al., 2008) is denoted O14. The Mg-octahedra and 

sulfate tetrahedra are connected through the five free water molecules. Figure 1.13 shows that 

the two Mg- octahedra are symmetry independent and have differing bonding schemes. The 

water molecules coordinating Mg1 are H-bonded to both the free water and the sulfate 

tetrahedra, while those forming the octahedron around Mg2 are only hydrogen bonded to the 

interstitial water molecules (Fortes et al., 2008). The sulfate tetrahedra in MS11 accept fewer 

(10 vs. 12) hydrogen bonds than the tetrahedra in mirabilite, presumably as a result of the 

difference in electron density between the Mg and Na cations. 
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Figure 1.13 Connectivity map for MS11 at zero pressure, after Fortes et al. (2008) 
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Figure 1.14 Polyhedral representation of the ambient pressure, low temperature, meridianiite 
structure, with the unit cell outlined in black: a) view along the a-axis, b) along the b-axis, and c) 
along the c-axis. The Mg(H2O)8 octahedra are shown in dark green and the SO4 tetrahedra in orange.   
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1.3 Previous studies of evaporitic salt hydrates. 
 

1.3.1 Previous studies of mirabilite. 
 

To date there have been few structural studies of mirabilite. The crystal system and unit cell 

shape were known from early goniometric analysis (e.g., Brooke, 1824: see  Groth, 1908, 

pp371-372). The earliest X-ray data are presented by Hanawalt et al. (1938), in the form of 

relatively inexact d-spacings vs. intensity. The unit-cell dimensions and space-group were 

determined using single-crystal X-ray methods by Alietti (1959) and Cocco & Rossetti 

(1959), and the heavy atom structure was later solved, apparently independently, by Ruben 

et al. (1961) and by Cocco (1962).  Both studies obtained the same structure, although the 

latter displaces the unit-cell origin by 0, 0, ½. Levy & Lisensky (1978) carried out a single-

crystal neutron diffraction study, publishing accurate hydrogen atom positions and 

describing orientational disorder within the structure. 

 

No values of the incompressibility or thermal expansion as a function of temperature had 

been published before this study began. In light of the association of hydrated salts with 

extraterrestrial applications, there has been an interest within the planetary science 

community in measuring the solubility and density of mirabilite at non-ambient conditions 

(e.g., Hogenboom et al., 1999; Dougherty et al., 2006) to extend earlier high-pressure 

investigations of the pressure dependence of the ice-mirabilite eutectic in the range from 0 < 

P < 0.8 GPa and 263 < T < 343 K (Block, 1913; Geller, 1924; Tammann, 1929; Tanaka et 

al., 1992; Kryukov & Manikin, 1960). 
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1.3.2 Previous studies of meridianiite. 

 

As with mirabilite, there have been relatively few structural studies of meridianiite; indeed, 

until 2006 it was thought that this compound was not the undecahydrate but the 

dodecahydrate of magnesium sulfate. The phase relations of MS11 were first investigated 

around the turn of the 20th century by Cottrell and reported in Van’t Hoff (1901). The crystal 

structure of meridianiite was determined by Petersen and Wang (2006) who also recorded 

the first discovery of naturally occurring MS11 in Canada (Petersen et al.,2007). There 

have, as yet, been no studies of the compressibility of MS11 although the thermal expansion 

was recently measured using neutron diffraction techniques (Fortes et al., 2008). 

 

Recently, there has been a renewed interest in MS11 in light of the discovery of multiply 

hydrated Mg-sulfates at the surface of Mars. The densities and solubilities at planetary 

conditions have been of particular interest (Hogenboom et al., 1995); Grasset et al., 2001; 

Fortes et al., 2006; Dougherty et al., 2007) and it was suggested that the volume change by 

dehydration of MS11 could be responsible for rifting on Ganymede (Day et al., 2002; 

Hogenboom et al., 2002). High pressure studies of meridianiite have focused on the 

rheology of eutectic MS11- H2O mixtures (McCarthy et al., 2007).  
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1.4 Aims and methodologies of this thesis. 

 
It is clear that there is a great deal still unknown about mirabilite and meridianiite even 

though these materials and their properties are important in a wide range of geological 

situations and processes. The objectives of this work were to obtain the thermoelastic 

properties over a range of temperatures and pressures which are relevant to both industrial 

and planetary processes and then to apply these properties to appropriate simulations of 

those processes. More specifically, the work aimed to quantify the thermal expansion and 

compressibility of mirabilite from 0 – 5.5 kbar and 4.2 – 300 K and the compressibility of 

meridianiite from 0 – 5.5 kbar.  

 

The techniques used in this work involve both computational and experimental methods as a 

means of investigating the pressure-temperature-volume space. These techniques are 

explained in detail in Chapter 2: Neutron diffraction studies I, and Chapter 4: Ab intio 

simulations I, but there follows here a brief overview and explanation of the reasoning 

behind the selection of the particular methodology. 

 

1.4.1 Computer simulation techniques 

 

Computer simulations are an exceedingly valuable tool in the investigation of planetary 

materials. Three major advantages of using simulations are:  

 

1. There are no constraints on the pressures and temperatures that can be simulated.  

 

2. The primary output from a simulation is usually the relationship between the energy and 

the volume (an E-V curve), for the material under simulation and most physical properties 

which are relevant to Earth and planetary scientists can be derived from this, thereby 

reducing the experimental need for an array of different set ups to measure each class of 

physical property. 

 

3. Errors encountered in theoretical simulations (e.g., statistical errors in molecular 

dynamics methods, system size and k-point sampling convergence in ab initio calculations) 

although present, are quantifiable.  

 

There have traditionally been two computational approaches employed in the simulation of 

materials. The first of these uses classical relations to represent the interactions between 

constituent atoms as a potential function; the second, which is becoming increasingly 
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popular as the available computational power increases, is to use quantum mechanical first 

principles relations to describe the interactions between atoms.  

 

Relatively complex systems such as salt hydrates present a challenge to potential 

calculations as both bonded and non-bonded interactions must be accounted for by any 

potential model. The potential models that have been developed are adapted versions of 

models applied to ionic materials. Hydrated sulfates have yet to be represented in 

interatomic potential calculations due to the added complexity brought by the water 

molecule to the interatomic interactions.  

 

The earliest investigation of anhydrous sulfates (Meenan, 1992) developed potentials for 

potassium sulfate, which were then transferred to sodium sulfate. However, these potentials 

did not discriminate between the bonded and non-bonded interactions present in the 

structures. A subsequent study by Allan et al. (1993) did distinguish between these 

interactions through the inclusion of a Morse potential and was successful in simulating a 

range of anhydrous sulfates, including MgSO4 and Na2SO4. Most recently, Jackson (2001) 

modified the results of Allan et al. (1993) by including a harmonic potential (in place of the 

Morse potential) to represent the S-O interaction. However, neither Allan et al. (1993) nor 

Jackson (2001) refitted the sulfate potentials to reflect a change in cation; only the cation – 

oxygen interaction has been modified with each new sulfate system modelled.  

 

Potential calculations, although generally adequate for simulating the bulk lattice parameters 

of the sulfates as a group, are not sufficiently robust to represent accurately the complexity 

of the multiple phases for each different cation sulfate system. Appendix 1 details an 

attempt to use interatomic potential calculations to simulate Na2SO4 (there is a companion 

study for MgSO4 but this has not been included). This work has not been presented in the 

main part of the thesis as the results are not considered sufficiently reliable. 

 

Quantum mechanical ab initio calculations have long been employed to simulate materials 

of geological interest. They have been used successfully to simulate a wide range of 

materials such as iron in the Earth’s core (e.g. Alfè et al., 2004; Belonoshko et al., 2000; 

Laio et al., 2000), copper (Moriaty et al., 1986; Belonoshko et al., 2000; Vočadlo et al,. 

2004) polymorphs of H2O (Fortes, 2004) and multiple hydrates such as epsomite 

(MgSO4.7H2O) (Fortes, 2006a) and ammonia hydrates (Fortes, 2004). Within the umbrella 

of “ab intio calculations” there are a large variety of flavours of calculation depending on 

the assumptions which go into the energy minimisation and determination. 
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Ab initio methods have been used to simulate both mirabilite and meridianiite, as, although 

they are somewhat more computationally expensive than classical methods, they have 

proved superior in the simulation of multiply hydrated compounds such as these (Fortes et 

al., 2006b). 

 

1.4.2 Neutron diffraction techniques. 

 

Diffraction is an extremely powerful diagnostic tool in the study of materials. Thanks to the 

properties of quantum mechanics, in particular to wave-particle duality, particles such as 

neutrons and electrons can produce diffraction effects. Neutrons are particularly useful for 

the study of crystalline solids for several reasons. Firstly, as with X-rays, neutrons can be 

produced with a wavelength of approximately 1Å; this is comparable to the interatomic 

distances within the materials of interest. Secondly, neutrons are scattered by the nucleus, 

rather than by electrons, so the scattering cross-section is relatively small which allows the 

neutrons to penetrate the whole sample rather than just the surface layer as in X-ray 

diffraction. Thirdly, the neutron scattering factor of an atom is not related proportionally to 

atomic number and, therefore, neutron diffraction can “see” lighter elements such as 

hydrogen much better than X-ray diffraction where the scattering factor is linked in this 

way. 
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1.5.Thesis Outline 

 

This thesis is divided into two main sections: Chapters 2, 3 and 4 are experimental and 

Chapters 5, 6 and 7 describe ab initio calculations. In particular, Chapter 2 describes the 

background and experimental methodology employed in the neutron diffraction experiments 

carried out here. Chapter 3 reports the results of the first of these neutron diffraction 

experiments, an experiment to determine the thermal expansion of mirabilite, one of the 

candidate salt hydrates, over a temperature range of 4.2 – 300 K at ambient pressure. 

Chapter 4 describes a neutron diffraction experiment to measure the compressibility of 

mirabilite from 0 – 0.55 GPa at 260 K and 80 K. Chapter 5 describes the ab initio 

methodology using the Vienna Ab initio Simulation Package (VASP) to simulate the 

structures and in compressibilities. The results of these simulations for mirabilite (0 – 60 

GPa) and MS11 (0 – 11 GPa) are given in Chapter 6 and Chapter 7 respectively. The final 

chapter then summarises the results obtained from the experiments and simulations, and also 

describes details of a preliminary investigation in which the thermoelastic properties of 

some of the salt hydrates have been used to model diapiric structures on Earth, Mars and the 

icy satellites. 
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Neutron diffraction studies I: Methodology 
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2.1 General introduction to diffraction. 

 
Diffraction arises from the interaction of waves with periodically repeating objects; it 

provides an extremely powerful diagnostic tool for the study of the structure and properties 

of materials. The basic principle of diffraction can be most easily visualised by considering 

a “diffraction grating”, essentially a regularly spaced set of holes. When a wave approaches 

such a barrier containing regularly spaced gaps similar in separation to the wavelength of 

the incoming wave, each gap will act as a new wave source, producing a secondary wave.  

As the secondary waves radiate away from the regularly spaced gaps and interact with each 

other there will be some directions where waves constructively interfere and some where 

they destructively interfere. This effect is observed for any type of wave, or group of waves, 

provided the wavelength of the incoming wave is smaller than that of the periodic spacing in 

the obstructing object.  

 

Crystalline solids can act as 3-dimensional diffraction gratings as they are built up of a 

regular repeating set of base blocks - their unit-cells; now, the secondary waves are 

produced by scattering of the radiation by the atoms within the crystal. Incorporating three 

dimensions of diffraction complicates the resulting pattern significantly but we can simplify 

the problem using Bragg’s law. In this approach, the incoming waves are, in effect, reflected 

from planes of atoms within the crystal (see Figure 2.1) and constructive interference (i.e., a 

diffraction maximum) will occur when each successive scattered wave is exactly one 

wavelength out of phase with the preceding one. For this to be true, Equation 2.1 must be 

satisfied: 

 

2dsin (θ) = λ  Equation 2.1 

 

where λ is the wavelength of the incoming radiation, θ is the angle of incidence (which is 

equal to the angle of reflection), and ‘d’ is the spacing between the planes of atoms in the 

crystal structure. 
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Figure 2.1: Schematic illustrating the geometry of Bragg’s law. The green circles represent atoms in a 
crystal. The blue arrow is an incident wave and the black arrows are scattered waves. The dashed 
lines are planes within the lattice and “d” is the perpendicular distance between the planes. 
 
 
Practically, in a diffraction experiment, it is the intensity of the diffracted waves with 

varying d-spacing and/or 2θ which is recorded by detectors around the sample. The 

crystalline samples used in diffraction experiments can be either powders or single crystals. 

Powders have the advantage over single crystals that the experiments are simpler to 

perform, particularly in controlled sample environments, although interpretation of the data 

may be more difficult. Statistically, in a well-randomised powder, every possible 

crystallographic orientation is represented; however, preferred orientation effects, which can 

alter the observed intensities, cannot always be avoided.  

 

If diffraction is to be used to analyse the structure of crystalline materials, the incoming 

wave must have a wavelength less than twice the distance between the planes within the 

crystal; this length-scale is of the order of 1 Ǻ. In the electromagnetic spectrum, this 

wavelength is within the X-ray region and X-rays are widely used in diffraction 

applications. However, thanks to the properties of quantum mechanics, in particular wave-

particle duality, particles such as neutrons can also be used to form diffraction patterns from 

crystalline materials. 
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2.2 Neutron diffraction 

 

Neutrons can be produced artificially with wavelengths of the same order as the interatomic 

distances within the lattices of typical crystalline solids and so these are ideal particles to 

use in the study of these materials. There are significant differences between the interactions 

and behaviour of X-ray radiation and neutrons that make each suited to different 

applications. Neutron diffraction is more suitable for investigating the large-unit-cell salt 

hydrate compounds of interest to this study for several reasons: 

 

Neutrons are scattered by the nucleus, rather than by the electron cloud, so the neutron 

scattering cross-section is relatively small. This allows the neutrons to penetrate further into 

the sample rather than just the surface layer, as is the case in X-ray diffraction. Neutrons are 

also more readily able to penetrate sample containers and other components used to generate 

the sample environment. 

 

The neutron scattering factor of an atom is not related proportionally to atomic number; 

therefore neutron diffraction allows us to “see” lighter elements better than X-ray diffraction 

where the scattering factor is linked to the number of electrons in the atom. Hydrated 

compounds, and others with large amounts of hydrogen in their structures, therefore benefit 

greatly from a neutron approach. Similarly, whereas the X-ray scattering factor can be very 

similar for neighbouring atoms and is identical for isotopes of the same element, for 

neutrons it can be very different, so it is easy to distinguish between neighbouring atoms in 

the periodic table using neutrons. An example of this is the disparity between the coherent 

scattering lengths of hydrogen and deuterium (- 0.374 x 10-12 cm and + 0.667 x 10-12 cm 

respectively (Neutron News, Vol. 3, No. 3, 1992, pp. 29-37). Variations in neutron 

scattering factor also means that combinations of particular isotopes and elements can be 

used to produce null scattering materials such as alloys of Ti and Zr where the negative and 

positive (respectively) coherent scattering amplitudes cancel each other out and the resulting 

alloy is effectively invisible to neutrons. Such materials are excellent for fabricating sample 

environment equipment as they will not interfere with the passage of the neutrons. 
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2.2.1 Neutron diffraction and hydrated materials. 

 
As well as a difference between the coherent scattering lengths for isotopes of hydrogen, 

there is also a large difference between their incoherent scattering cross sections. The 

hydrogen atom has a large incoherent neutron scattering cross section, 79.9 x10-24 cm2, 

while deuterium has a much smaller one, 2.0 x10-24 cm2 (Neutron News, Vol. 3, No. 3, 1992, 

pp. 29-37). This is exemplified in Figure 2.2, which shows a neutron powder diffraction 

pattern for a) a protonated Antarctic ice sample and b) a deuterated ice sample. It is clear 

that protonation has a significant effect on the amount of background recorded. To avoid 

this effect, deuterated samples are commonly used in neutron powder diffraction 

experiments and, therefore, for the experiments reported in this thesis a perdeuterated 

mirabilite analogue has been used in order to achieve good signal to noise in the measured 

diffraction data (e.g., Finney, 1995). Deuteration is likely to have a minimal impact on the 

properties under investigation here; by comparison with water ice, we would expect the unit 

cell of the deuterated isotopomer to be slightly larger (order 0.1 %), and the bulk modulus to 

be slightly smaller (order 1 %) than for the hydrogen-bearing analogue. The work of Röttger 

et al. (1994) does not show a significant difference in volume thermal expansion between 

D2O and H2O.  
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Figure 2.2 A comparison of the diffraction patterns of a) Antarctic H2O ice (Fortes et al. (2004)), and 
b) a pattern for D2O collected upon warming ice II through the transition to Ice Ic (at 160 K) on 
HRPD . 
 

 

2.3 Generation of neutrons. 

 

There are two ways of producing neutrons that are regularly used at research facilities 

engaged in crystallographic studies. The first is to use a nuclear reactor, as at the Institute 

Laue-Langevin (ILL) in Grenoble, or the OPAL reactor in Sydney, where fission generated 

neutrons are moderated to suitable wavelengths and then directed to the various instruments.  

 

The second method of neutron production is spallation, which is the method employed by 

the ISIS facility at the Rutherford Appleton Laboratories in Chilton, Oxfordshire, where the 

diffraction experiments presented here were carried out. Spallation production of neutrons 

uses an accelerator to generate neutrons as the product of the collision of an accelerated 

particle beam with a heavy metal target; the neutrons are then moderated en route to the 

individual instruments. Reactor neutron sources are generally more powerful than spallation 

sources but the pulsed nature of a spallation source allows for a similar data collection rate 

via application of the time-of-flight method (See Section 2.6). 
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Figure 2.3 shows the layout of the experimental hall at the ISIS facility. At ISIS, to generate 

neutrons, first a beam of H- ions is accelerated to high speeds with resulting energies of  ~70 

MeV, in a linear accelerator. This beam is then injected at a frequency of 50 Hz into a 

synchrotron. On entry, both electrons are removed from the H- beam, converting it to a 

proton beam, which is then accelerated further to increase the energy of the particles to 

around 800 MeV over the course of approximately 10,000 revolutions in the accelerator. 

The beam is then fed from the synchrotron to the experimental hall where it collides with 

the tantalum-clad tungsten target at the centre of the hall. This collision excites the nuclei of 

the target causing them to release neutrons as a means of losing energy.  

 

Neutrons produced at spallation sources in this way will have a range of very high velocities 

and energies. Thus, the neutrons must be moderated to a suitable energy range before being 

used by the instruments. The moderated neutron beam may require further conditioning. 

This is performed, as necessary, at instrument level, by devices termed “choppers”. At 

spallation sources, chopper blades, made of neutron-absorbing material not only block high 

energy neutrons and gamma radiation, another product of the fission process which would 

cause severe background and damage the sample, but also curtail slow neutrons from the 

previous pulse. 

 

At ISIS, there are 31 instruments arranged at different distances and orientations from the 

target around the ISIS experiment hall. Each instrument has unique capabilities and so each 

is used for a distinctive set of research activities and was specifically designed for that 

purpose. Once the neutrons arrive at the instrument and interact with the sample, detectors 

arranged at instrument-specific values of 2θ relative to the incoming beam, record the 

diffracted neutrons. The majority of the instruments at ISIS use the neutrons, but five are 

dedicated to the study of muons, which are produced by interaction of the proton beam with 

a graphite intermediate target. There are six instruments whose primary activities are 

crystallographic, and of these HRPD – the High Resolution Powder Diffractometer - is the 

most powerful in applications to structural studies of the type described here. 
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Figure 2.3 The layout of the experimental hall at the ISIS neutron spallation source at the Rutherford 
Appleton Laboratory showing the location of the heavy metal target and the HRPD instrument. 
 
 
 

2.4 HRPD – The high resolution powder diffractometer. 

 

The High Resolution Powder Diffractometer (HRPD) is set outside the main experimental 

hall at ISIS. This affords HRPD an unusually long neutron flight path (95m). This, 

combined with almost constant resolution (∆d/d = 4x10-4 in the backscattering detectors, 2θ 

= 168.33°) across all d-spacings, makes HRPD ideally suited to the rapid and accurate 

determination of cell parameters. Moreover, the instrument is sensitive to shifts in peak 

positions roughly two orders of magnitude smaller than the nominally stated resolution. 
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2.5 Time-of-flight neutron diffraction. 

  

The most common diffraction method employed at pulsed neutron sources is that of time-of-

flight (t-o-f), neutron diffraction. By equating quantum mechanical momentum with 

classical momentum and incorporating Bragg’s law, it is possible to derive an expression in 

which the d-spacing within a crystal is proportional to the t-o-f of the diffracting particle. 

Thus: 

 

The quantum mechanical momentum of a particle is defined by: 

 

ħk = mv  Equation  2.2 

 

where ħ = h/2π (h is Planck’s constant), k is the angular wavenumber, k = 2π/λ (λ being the 

wavelength);  the velocity of the particle, v, is simply L, the distance travelled, divided by t, 

the time of flight (v = L/t). 

 

Equation. 2.2 becomes: 

 

h k / 2π = mL / t  Equation 2.3 

 

and, 

 

h / λ = mL /t   Equation 2.4 

 

 

which becomes, 

mL

ht=λ    Equation  2.5 

 

Therefore, if we combine this with Bragg’s law, Equation 2.1 becomes: 

 

mL

ht
d =θsin2   Equation  2.6 

 

and finally t
mL

h
d ⋅=

θsin2
 Equation  2.7 
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Therefore the d-spacing of the diffraction peak is proportional to the t-o-f, t, which can be 

determined to extremely high accuracy. T-o-f experiments are carried out at constant 2θ. On 

HRPD, data can be collected in the backscatter (2θ = 168.4 °), 90 degree and low angle 

(2θ = 30°) banks. To obtain results with low d-spacing, the higher the value of 2θ, the 

better. Correspondingly, the low angle banks provide data at longer d-spacings. As well as 

the d-spacing range, the other primary characteristic of each detector bank is the resolution 

it provides in the diffraction pattern. Clearly, since dd/dt is proportional to 1/sinθ, the 

highest resolution will be obtained in backscattering geometry. 

 

2.6 Data refinement. 

 
The data analysis was carried out using the Rietveld method implemented in the General 

Structure Analysis System (GSAS) package (Larsen and Von Dreele 2000) with the 

EXPGUI user interface (Toby, 2001). The intensities of the peaks of a diffraction pattern are 

related to the atomic arrangement and unit-cell parameters by a Fourier transform. Rietveld 

refinement is a specific application of a least-squares approach for crystalline materials 

which refines a theoretical diffraction profile until it matches the measured profile (within a 

certain tolerance).  This is illustrated below in Figure 2.4 which is an example of the 

graphical output from GSAS, showing a portion of a typical diffraction pattern. The red dots 

are the observations, the green line the calculated profile, the red and black tick marks 

below the pattern show the position of the peaks expected from the 2 phases present, and the 

purple trace at the bottom of the figure is the difference between the calculated and observed 

profiles. 
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Figure 2.4 Reitveld refinement of mirabilite using GSAS. For clarity, only a limited d-spacing range 
is shown.The red dots are the observations, the green line the calculated profile, the red and black tick 
marks below the pattern are expected peaks for the 2 phases present and the purple trace at the bottom 
of the figure is the difference between the calculated and observed profiles. 
 
 

The intensity of a diffraction pattern received at the detectors of a diffractometer at any 

point is a combination of the background scattering and contributions from nearby 

reflections so both must be accounted for in any calculated pattern and subsequent 

refinement. In GSAS a generalised least squares refinement is used whereby a fit is obtained 

by minimisation of the sum of the squares of the differences between observed and 

calculated values at each point recorded in the diffraction pattern. In the case of a set of 

crystallographic observations, the equations governing the diffraction intensities are 

transcendental, the minimisation function non-linear and so any refinement requires an 

initial estimate for all variables.  

 

Often, in the first instance it is advantageous to use what is termed a Le Bail fit to the 

diffraction data. A Le Bail fit is a modification of the Rietveld method, which uses the 

diffraction intensities to fit the pattern to the unit cell parameters, without taking into 

account the contribution from the atoms within the unit cell.  This allows fitting of the 

“whole” pattern and background, which can then be fixed in subsequent refinements 

involving other elements of the structure. In theory, a Le Bail fit is the best possible fit to a 

particular spacegroup, however, it has been shown that it is inaccurate in dealing with the 

detail of large-volume, low-symmetry structures such as the salt hydrates of interest here 
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(Petersen, 2005). This is because the powder diffraction patterns from these materials 

contain a very high density of peaks which Le Bail refinements struggle to fit.  

 

A key advantage of Rietveld refinement over structural refinement methods which preceded 

it was the ability of this method to account for overlapping reflections in a powder 

diffraction pattern. The quantity minimised in Rietveld refinement is: 
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where Wi is statistical weighting of the i th observation yi
obs; yi

calc is the calculated intensity at 

the position of observation, i, and c is the scale factor relating the observed and calculated 

intensities. Since crystallographic refinements are not linear, several cycles of refinement 

are needed to achieve convergence. 

 

A measure of how the refinement is progressing can be gleaned through the “goodness of 

fit” χ2 . χ2 is defined as: 

 

 χ2 = M / (Nobs – Nvar)  Equation 2.9 

 

where Nobs is the total number of observations and Nvar the number of variables in the least 

squares refinement. Other useful indicators of the goodness-of-fit can be obtained from the 

“R-factors” which are defined as follows:  

 

∑
∑ −=

0

0

I
II

R c
P   Equation 2.10 

∑
= 2

c

P
wp wI

MR    Equation 2.11 

 

∑
∑

−

−⋅−

=
b

bc

pb II
I

IIII

R
0

0

00

  Equation 2.12 

 



Chapter 2: Neutron diffraction studies I 

55 

( )( )

( )∑
∑

−







 −−

= 2
0

2

0

00

b

bc

wpb IIw
I

IIIIw
R   Equation 2.13 

 

In these equations, Mp is the contribution to the minimisation function for powder data, w is 

the weighting, I is the intensity of the contribution with the subscripts “o” denoting 

observation, “c”, the calculated intensity and “b” describes the background contribution. 

 

As stated previously, the intensity of the peaks in a diffraction pattern received at the 

detectors of a diffractometer at any point is a combination of the background scattering and 

contributions from nearby reflections. Background intensity is accounted for in GSAS using 

a combination of an instrument parameter file and a generated profile. This component of 

the instrument parameter file is essentially a diffraction pattern for that particular instrument 

and beam current conditions obtained by running an empty sample can.  The instrument 

parameter file also includes values for parameters such as the primary and secondary flight 

paths of the diffractometer which have been determined by running a standard sample 

(typically Si powder); such parameters can be varied during a refinement but there is rarely 

a need to do so. In GSAS, the background profile can be fitted using a variety of functions 

depending on the pattern. These functions include: power series, logarithmic interpolation or 

shifted Chebysechev polynomials; if all else fails, the background profile can be fitted 

graphically by the user.  

 

The intensity that an individual Bragg peak will contribute to the intensity of a pattern, Yh , 

depends largely on its structure factor, multiplicity and the amount of a particular phase. In 

addition, the intensity of a peak can also be affected by the shape and width of the peak 

relative to its position as well as other important factors such as absorption, extinction and 

preferred orientation. Thus (Von Dreele and Larsen, 2004), 

 

 

Yh = S F2
h (T-Th) Kh  Equation 2.14 

 

Where S is the scale factor for the phase, Fh is the structure factor for the reflection, H(T-Th) 

is a peak shape function for the reflection at the position T, when the peak centre is located 

at Th. The term Kh is the product of the other intensity correction factors mention above, 

which depend on the geometry of the sample and environment and the type of radiation 

used, and is given by: 
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   Kh = (Eh Ah Oh mh L )/ V  Equation 2.15 

 

Eh is an extinction correction, Ah is an absorption correction, Oh is the preferred orientation 

correction, mh is the reflection multiplicity, L is the angle-dependent Lorentz factor and V is 

the unit-cell volume for the phase (Von Dreele and Larsen, 2004). 

 

Extinction, Eh, may be observed in strong Bragg reflections; effectively the strength of the 

reflection attenuates the incident beam as it passes further into the powder sample, and so 

the observed reflection appears weaker than might otherwise be expected. Extinction is 

strongly dependent on wavelength. If it is not properly accounted for, extinction in powders 

can lead to the erroneous values for atomic temperature factors and may also produce small 

shifts in atomic coordinates The correction to account for extinction used in GSAS was 

developed by Sabine (1985) and Sabine et al. (1988).  The absorption factor, Ah, determines 

the absorption by the sample and again is wavelength dependent. L, the Lorentz factor is an 

additional factor to account for the variation of intensity with wavelength.  

 

Preferred orientation, Oh, refers to a preferential alignment of crystals within a sample. In 

the case of a well-randomised powder, there should be little or no preferred orientation. 

However, if there is any recrystallisation during the course of an experiment then it is likely 

that there may well be preferred orientation produced within the sample. There are two 

types of preferred orientation correction in GSAS and in these experiments a spherical 

harmonic function, which takes into account the symmetry of the sample environment and 

the crystal, is used. 

 

The shape of the peaks in a diffraction pattern is refined in GSAS using a set of profile 

coefficients. Typically the peak shape can be adequately represented by only refining a 

limited number of key coefficients, usually only those denoted σ1 and γ1. σ1 and γ1 adjust the 

shape of the peaks (Von Dreele and Larsen, 2004). There are further coefficients which can 

be used for more complex cases. 

 

 

GSAS also allows users to apply constraints and restraints to the model of the structure that 

is being fitted.  Though these parameters sound similar, they are not. Soft-bond restraints are 

used to limit the distances between bonded pairs of atoms to a certain length, within a 

tolerance specified by the user. Soft-bond restraints are weighted to reflect the effect of the 
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restraint component on the minimisation function and are usually balanced against each 

other and the diffraction pattern to ensure that the restraints do not overwhelm the other 

contributions to the minimisation function. Constraints can be used to confine a variety of 

properties of an atom, or group of atoms, to a particular value or relative value. They are 

imposed on parameters which would normally be unrelated, but for some presumed relation 

within the structure. Constraints which can be included are applied to the values of 

fractional occupancies, isotropic displacement parameters (temperature factors) and atomic 

positions. The exact detail of the restraints and constraints used in each experiment are 

explained at the start of the relevant chapter. 

 
 
 
 
 
 
 
 
 
Summary 
 
This chapter summarises the key aspects of diffraction experiments and their application to 

the study of hydrated materials. I have described the production of neutrons at spallation 

sources such as ISIS and the time-of-flight methodology which is typically used at such 

facilities. The results of the following chapters (3 and 4), will be analysed using a Rietveld 

refinement package called GSAS which employs a least-squares fitting approach to the 

refinement of a diffraction pattern. Chapters 3 and 4 detail the results of two experiments 

carried out to determine the thermal expansion and compressibility of mirabilite at 

temperatures and pressures relevant to planetary applications (0 – 0.55 GPa and 4.2 – 300 

K). 
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The thermal expansion of mirabilite from 4.2 – 300 K 
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For this thesis two powder neutron diffraction experiments were carried out on HRPD at 

ISIS. The first, in July 2006, was a three day experiment to measure the thermal expansion 

of the salt-hydrate, mirabilite (Na2SO4.10H2O), over a temperature range of 4 – 300 K at 

ambient pressure.  

 

To measure the thermal expansion of a material we may simply monitor its unit-cell volume 

over a range of temperatures. To date, there have been no measurements of the thermal 

expansion of mirabilite (see Chapter 1, Section 1.4 for a description of the previous work on 

this material).  

 

The work from this chapter has formed the basis of a paper, published in Physics and 

Chemistry of Minerals (Brand et al., 2009). 

 

3.1 Sample preparation and data acquisition 

 

3.1.1 Sample preparation 

 

To make the sample, crystals of perdeuterated mirabilite were grown from a supersaturated 

solution of Na2SO4 (Sigma Ultra) in D2O (Aldrich, 99 wt. % D) in a sealed flask. Large (~1 

cm3) crystalline lumps of mirabilite were extracted from the mother liquor and characterised 

by powder X-ray diffraction at University College London prior to the ISIS experiments to 

confirm their phase identity.  

 

At ISIS, solid lumps of mirabilite were extracted from the liquor, dried on filter paper, and 

then quickly powdered in the ISIS cold room (to prevent dehydration which occurs at 305 

K), using an agate pestle and mortar; the resulting coarse powder was loaded into an 

aluminium-framed slab can (sample size 25x18x10 mm) with vanadium windows (see 

Figure 3.1). During the data analysis (see section 3.1.3. below) it was discovered that a 

small amount (order 1 wt. %) of D2O ice Ih was present in the sample, which probably 

originated from aqueous solution adhering to the polycrystalline chunks after extraction 

from the mother liquor. Any ice formed from atmospheric water vapour would contain a 

large amount of 1H, resulting in an incoherent contribution to the background that is not 

apparent.  
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Figure 3.1 The aluminium-framed, vanadium-window slab can used in this experiment. 
 
 
Gadolinium foil shielding was screwed over the front face of the can whilst a small electric 

heater and a RhFe temperature sensor were inserted into holes drilled in the aluminium 

frame to enable accurate measurement and control of the sample temperature.  The sample 

can was screwed onto a cryostat centre stick and quenched to liquid nitrogen temperatures 

before being placed in a pre-cooled OC50 'Orange' cryostat (AS Scientific, Abingdon, U.K.) 

mounted on the HRPD beamline. 
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3.1.2 Thermal expansion data acquisition. 

 

The sample temperature was reduced to 4.2 K and data were collected in the backscattering 

detector banks (2θ = 168°), the 90° banks, and the low angle banks (2θ = 30°), over the 

time-of-flight range 30 – 130 ms for 100 µAhr.  

 

Data were then collected upon warming of the sample from 10 K to 300 K in 10 K 

increments, counting for approximately 20 minutes (7 µAhr), at each datum, and allowing 

10 minutes equilibration time. At 300 K, another long count (100 µAhr) was undertaken to 

obtain another structural data set. Preliminary LeBail profile refinement of the warming data 

showed an abrupt change in the behaviour of the unit cell parameter β near 150 K (see 

Figure 3.6); it was therefore decided to collect further data whilst the sample was slowly 

cooled to 4.2 K (in 10 K steps interleaved between the warming points), again counting for 

20 minutes (7 µAhr), with 10 minutes of equilibration at each point. Further structural 

datasets (100 µAhr) were collected at 4.2 K after the slow cooling, and at 150 K during a 

subsequent (second) slow warming run. 

 

Data were normalised to the incident monitor spectrum and corrected for detector efficiency 

using a vanadium standard. After normalisation, the data were truncated to yield diffraction 

patterns over the d-spacing ranges 0.726 – 2.480 Å (backscattering), 1.017 – 3.180 Å (90° 

banks), and 2.724 – 9.300 Å (low-angle banks), although additional 'clipping' at the shortest 

and longest flight time edges of the t-o-f windows was done during refinement to eliminate 

some residual normalisation errors.  

 

3.1.3 Thermal expansion data refinement - GSAS and least-squares fitting. 

 

The data analysis was carried out using the Rietveld method implemented in the General 

Structure Analysis System (GSAS) package (Larsen & von Dreele, 2000) with the EXPGUI 

user interface (Toby, 2001). Starting with the 4.2 K quenched dataset, the unit cell (a,b,c,β) 

and structural parameters (x,y,z,Uiso) of mirabilite, the unit cell of ice Ih (a,c), scale factors 

and phase fractions, background coefficients (12 term shifted Chebyschev polynomial), and 

profile coefficients (σ1 and σ2, γ1, L11, L22, L33 and γ1ec) were refined; the initial atomic 

coordinates were taken from Levy and Lisensky (1978) for mirabilite and from Fortes et al. 

(2004) for ice Ih.  
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Soft bond length restraints were imposed upon the sulfate tetrahedra and the water 

molecules, fixing S – O = 1.47 (2) Å and O – O = 2.39 (2) Å (the latter forcing ∠O–S–O = 

109 ±4°), O – H = 0.99 (2) Å and H – H = 1.56 (2) Å (forcing ∠H–O–H = 105 ±6°), with a 

χ2 weighting FACTR = 200. Isotropic temperature factors (Uiso) for “like atoms” were 

constrained to be identical, these being grouped as: 1; Na atoms (Na2 and Na3), 2; S atoms, 

3; sulfate oxygen atoms (O4 - O7), 4; water oxygen atoms coordinated to Na (O8, O9, O12 - 

O17), 5; other water oxygen atoms (O10 and O11), 6; deuterons H-bonded to sulfate 

oxygens (H8A, H9A, H10A, H10B, H11A, H11B, H12B, H13B, H14B, H15B, H16A and 

H17A), 7; deuterons H - bonded to free water molecules (H12A, H13A, H14A, H15A) and 

8; protons in the disordered ring  (H8B, H8C, H9B, H9C, H16B, H16C, H17B and H17C).  

 

Sample texture was refined using the spherical harmonic model implemented in GSAS (10 

terms for mirabilite only). Although the sample was not strongly textured, this term was 

found to have a significant effect on the refined values of the structural parameters, and gave 

improved agreement factors. Finally, it was found that it was necessary to include an 

extinction correction to avoid negative temperature factors; this is likely due to the coarse 

nature of the powder produced in an effort to avoid dehydrating the sample by excessive 

grinding.  

 

It was found that the use of a single set of texture parameters for all three detector banks 

introduced bias into the refinements since the 90° and low-angle detectors, unlike the 

backscattering detectors, do not sense the whole Debye-Scherrer powder ring; for any 

structural model, the agreement of fit for each bank could be improved if the texture index 

for that bank was allowed to refine. 

 

It was decided, therefore, that the backscattering data alone should be used for refinement of 

the structural model since the vast majority of the Bragg reflections (3911) were observed in 

the highest resolution backscattering data, whereas the 90° data contained only an additional 

37 reflections (1291 reflections in total in the 90o banks from mirabilite) and the low angle 

bank an additional 50 mirabilite reflections (only 96 reflections in total in this bank).  

However, as a final check of the validity of this procedure, the structural model obtained by 

fitting to the backscattering data was then fixed and used to fit the 90° and low-angle data 

varying only the background and peak profile coefficients, scale factors, the diffractometer 

constants DIFA and DIFC, and spherical harmonic texture coefficients.  
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In the later stages of the refinement, the fractional occupancies of the disordered atoms 

described by Levy and Lisensky (1978) – see Chapter 1, Section 1.3.1.3 for a full 

description of the structure of mirabilite and Figure 3.2 below as an aide memoir - were 

allowed to vary.  As with the similar ring of water molecules seen in the ice Ih structure, the 

square ring of Na-coordinated water molecules within the mirabilite structure is formed of 

disordered hydrogen bonds, each O···O vector having two half-occupied hydrogen sites at 

high temperatures. The occupancies of these sites (constrained to sum to 1) were refined to 

obtain consistent and physically meaningful results (see Chapter 1, Section 1.3.1.3 ). 

 

 
Figure 3.2 One of the square rings of water molecules involving disordered hydrogen bonds. The 
twofold axis of rotational symmetry passes through the middle of the ring, although not quite 
perpendicular to the plane of the page, as shown by the unit-cell axes. 
 

 
Levy and Lisensky (1978) also identified two orientations for the sulfate tetrahedra in the 

structure (See Figure 3.4 in the results section of this Chapter) with occupancies of ~ 75:25 

at room temperature, with correspondingly occupied sites for the hydrogen atoms bonded to 

the sulfate oxygens.  However, refinement of the sulfate site occupancies in the present 

study resulted in a shift from 75:25 to 100:0.  This occurred in all four structural datasets. 

Great care was taken to test the effect on χ2 of fixing partial occupancies on these sites; the 

data are only consistent with ordered sulfate tetrahedra and ordered hydrogen bonds donated 

to the tetrahedra's apices (Section 3.2.1). 

 

The quality of all the fits to the long count data, as exemplified by the 4.2 K slow cooled fit 

in Figure 3.3 and reported as Rietveld powder statistics in Table 3.1, is very good, even in 

the 90° and low-angle banks where the structural model was fixed; Rp values are all below 3 
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% for the 4.2K slow cooled data.  The texture index of mirabilite is ≈ 1.01, indicative of a 

well randomised powder, and the refined phase fraction of mirabilite is 0.986(3). Note that 

the extinction coefficient is much higher at 300 K than it is at lower temperatures; this is 

probably due to grain growth since the specimen was above its binary eutectic temperature 

and a small amount of partial melting must have occurred; this is also reflected in an 

increase and change in form of the background in the diffraction pattern at 300 K. 
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Figure 3.3 Neutron powder diffraction patterns of slowly cooled mirabilite at 4.2 K (i, ii and iii), 150 K (iv, v and vi) and 300 K (vii, viii and ix) obtained on HRPD; i, iv and 
vii are from the backscattering banks, ii, v and viii are from the 90° banks and iii, vi and ix are from the 30o banks. In each case the red circles are the observations, the green 
line the fit to the observations and the pink line below is the difference between the fit and the observations. The lower set of black tick marks denote the positions of the 
mirabilite peaks and the upper set of red tick marks are the positions of D2O ice Ih peaks 
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Table 3.1 Refinement statistics of the four long long count datasets. 
4.2 K slow cooled 

Fitted Minus Background 
Histogram 

No. of 
reflections χ² wRp Rp wRp Rp 

Backscattering banks 3911 2.569 2.6% 2.2% 2.9% 2.4% 
90 degree banks 1291 18.110 2.9% 2.2% 2.8% 1.5% 
Low angle banks 51 4.015 3.4% 2.9% 3.5% 2.3% 
Total 5253  

150 K 
Backscattering banks 4108 1.942 2.4% 2.1% 2.9% 5.2% 
90 degree banks 1278 15.570 2.9% 2.2% 2.9% 1.7% 
Low angle banks 58 8.564 6.9% 5.6% 10.8% 8.9% 
Total 5444  

300 K 
Backscattering banks 4144 1.182 1.9% 1.7% 2.4% 2.2% 
90 degree banks 1676 12.360 2.6% 2.3 % 2.3% 2.3% 
Low angle banks 96 1.419 8.0% 7.0% 9.8% 8.7% 
Total 5916  
 
4.2 K quenched 
Backscattering banks 4108 2.676 2.7% 2.3% 3.0% 2.6% 
90 degree banks 1630 16.90 2.9% 2.2% 2.7% 1.7% 
Low angle banks 63 4.044 3.9% 3.2% 4.2% 6.5% 
Total 5801  
 
 4.2 K slow cooled 150 K 300 K 4.2 K quenched 
Extinction (μm²) 245.24 295.00 926.77 265.33 

Texture indices  1.0087 1.0115 1.0924 1.0094 
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3.2. Thermal expansion results 

 

During the course of this experiment, while most of the data were collected in short, 7 µAhr 

per temperature sections, there were 3 temperatures in addition to the initial 4.2 K dataset at 

counts of the order of 100 µAhr which produced high resolution structural data sets: a 

second 4.2 K data set (after slow cooling), a 150 K data set and a 300 K dataset. It is these 

long-count datasets and their findings that are reported and analysed firstly in section 3.2.1, 

before section 3.2.2 discusses the thermal expansion behaviour of the mirabilite structure. 

 

3.2.1 Structure and disorder of mirabilite. 

 

The unit cell dimensions obtained from the four structural refinements at 4.2 (slow and 

rapidly cooled), 150 and 300 K are shown in Table 3.2; atomic coordinates, and selected 

interatomic bond distances and angles at each temperature are given in Table 3.3 below.  

Whilst these results do not offer a significant improvement in uncertainty on the atomic 

coordinates over Levy and Lisenky's (1978) single-crystal study, they do allow the 

determination of the temperature dependence of key structural parameters which may be 

related to the anisotropy of the thermal expansion, as described in the subsequent section.  

The agreement between the 300 K deuterated unit cell measured here and the 298 K 

hydrogenous unit cell (Levy & Lisensky, 1978) is excellent; only β differs by more than 2σ. 

 
 
Table 3.2 Comparison of the unit cell dimensions of mirabilite at 4.2 K (slow cooled and quenched), 
150 K and 300 K with the published values of Levy and Lisensky (1978). 

 
4.2 K 

Quenched 
4.2 K 

slow cooled 
150 K 

 
300 K 

 
298 K 

L & L (1978) 
a (Å) 11.44190(6) 11.44214(4) 11.46417(5) 11.51473(7) 11.512(3) 
b (Å) 10.34307(5) 10.34276(4) 10.34689(5) 10.36496(6) 10.370(3) 
c (Å) 12.75316(6) 12.75468(6) 12.77201(6) 12.84653(7) 12.847(2) 

β (°) 107.838(1) 107.847(1) 107.826(1) 107.7545(1) 107.789(10) 
Volume (Å3) 1436.714(8) 1436.794(8) 1442.266(8) 1460.20(1) 1460.3(5)  
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Table 3.3 Sulfate bond angles and lengths in the mirabilite structure at 4.2 K, slow cooled and 
quenched, 150 K and 300 K. 

 
4.2 K 
quenched 

4.2 K slow 
cooled 150 K 300 K 

Levy and 
Lisensky 
(1978) 

Length (Å) 
S-O4          1.467(2) 1.466(2) 1.467(2) 1.467(1) 1.487(6) 
S-O5  1.466(2) 1.467(2) 1.466(2) 1.467(1) 1.481(7) 
S-O6 1.468(2) 1.469(2) 1.468(2) 1.467(1) 1.467(7) 
S-O7      1.467(2) 1.468(2) 1.466(2) 1.467(1) 1.486(7) 
          

Angle (°)         
O4-S-O5     109.3(2) 109.5(2) 109.4(2) 109.5(2) 109.7 (4) 
O4-S-O6 109.6(2) 109.6(2) 109.5(2) 109.5(1) 110.0 (5) 
O4-S-O7 109.5(2) 109.6(2) 109.5(2) 109.5(1) 109.4 (5) 
O5-S-O6 109.3(2) 109.4(2) 109.4(2) 109.4(1) 109.0 (4) 
O5-S-O7 109.9(2) 109.8(2) 109.8(2) 109.5(1) 108.7 (5) 
O6-S-O7 109.2(2) 109.0(2) 109.3(2) 109.5(1) 110.0 (5) 

 
Length (Å)  
Na2-O12 2.432(9) 2.433(9) 2.418(10) 2.416(16) 2.450 (7) 
Na2-O13  2.413(9) 2.409(9) 2.414(10) 2.451(16) 2.440 (7) 
Na2-O14 2.413(10) 2.403(9) 2.392(11) 2.409(16) 2.390 (6) 
Na2-O15         2.374(10) 2.378(9) 2.410(11) 2.391(16) 2.402 (6) 
Na2-O16  2.444(9) 2.429(9) 2.438(10) 2.460(17) 2.454 (8) 
Na2-O17 2.383(9) 2.390(9) 2.397(10) 2.467(17) 2.425 (8) 
  
Na3-O8 2.381(9) 2.386(8) 2.417(10) 2.433(14) 2.385 (7) 
Na3-O9 2.357(8) 2.369(8) 2.345(9) 2.321(14) 2.389 (7) 
Na3-O12  2.439(9) 2.459(8) 2.457(9) 2.534(15) 2.450 (6) 
Na3-O13 2.424(9) 2.409(8) 2.430(9) 2.363(16) 2.474 (6) 
Na3-O14 2.371(9) 2.354(8) 2.360(9) 2.425(14) 2.420 (6) 
Na3-O15         2.424(9) 2.418(8) 2.406(10) 2.407(15) 2.432 (7) 
 

Angle (o) 
O12-Na2-O14  91.9(3) 91.9(3) 92.6(4) 92.4(6) 91.8 (2) 
O12-Na2-O15 86.3(3) 86.2(3) 86.1(3) 87.2(5) 86.3 (2) 
O12-Na2-O16 88.6(3) 88.7(3) 88.2(3) 91.1(5) 91.0 (3) 
O12-Na2-O17 89.0(3) 88.4(3) 88.2(4) 88.7(6) 88.7 (3) 
O13-Na2-O14 85.9(3) 86.1(3) 86.1(3) 85.4(5) 87.1 (2) 
O13-Na2-O15 95.6(3) 95.6(3) 94.9(4) 95.0(6) 94.7 (2) 
O13-Na2-O16 86.6(3) 86.9(3) 87.9(4) 87.5(6) 86.6 (3) 
O13-Na2-O17 95.9(3) 96.1(3) 95.7(4) 92.7(5) 93.7 (3) 
O14-Na2-O16 88.8(3) 89.0(3) 89.7(3) 90.1(5) 91.3 (3) 
O14-Na2-O17 92.4(3) 92.9(3) 92.9(4) 91.1(6) 90.5 (3) 
O15-Na2-O16 87.5(3) 87.6(3) 87.2(3) 88.3(5) 86.7 (2) 
O15-Na2-O17 91.3(3) 90.5(3) 90.2(3) 90.5(6) 91.6 (3) 
 
O8-Na3-O9 93.5(3) 93.4(3) 93.7(3) 93.1(4) 92.9 (3) 



Chapter 3: Neutron diffraction studies II 

69 

O8-Na3-O12 92.9(3) 92.4(3) 92.7(3) 88.9(5) 92.1 (3) 
O8-Na3-O13 88.3(3) 88.5(3) 88.0(3) 90.2(5) 89.0 (2) 
O8-Na3-O14 92.1(3) 92.0(3) 91.6(4) 90.1(5) 92.3 (2) 
O9-Na3-O12 87.4(3) 86.7(3) 87.0(3) 87.0(5) 87.5 (2) 
O9-Na3-O13 89.6(3) 89.6(3) 89.9(3) 91.8(5) 89.6 (2) 
O9-Na3-O15 90.4(3) 90.1(3) 90.8(4) 93.5(6) 91.6 (3) 
O12-Na3-O14 96.3(3) 96.4(3) 96.7(3) 94.2(5) 97.1 (2) 
O12-Na3-O15 85.0(3) 84.7(3) 85.4(3) 84.2(5) 85.7 (2) 
O13-Na3-O14 86.6(3) 87.2(3) 86.5(3) 87.0(5) 85.8 (2) 
O13-Na3-O15 94.0(3) 94.6(3) 94.2(3) 96.8(6) 93.5 (2) 
O14-Na3-O15           84.2(3) 84.7(3) 84.1(3) 83.4(4) 83.4 (2) 

 
3.2.1.1 Hydrogen bond lengths in the long-count datasets. 

 

There are four types of hydrogen bond in the mirabilite structure, which may or may not 

behave differently with temperature; these are 1) those donated by Na-coordinated waters to 

other Na-coordinated waters (i.e., those involved in the square rings), 2) those donated by 

Na-coordinated waters to interstitial waters, 3) those donated by Na-coordinated waters to 

sulfate oxygens and finally 4) those donated by interstitial waters to sulfate oxygens. It is 

interesting to note that the deuteron disorder is confined to the type 1 bond. 

 

At 4.2 K H-bond types 1 - 4 have mean lengths of 1.797(2) Å, 1.840(3) Å, 1.859(3) Å, and 

1.848(2) Å, respectively. At 300 K, the mean lengths of these bonds are, respectively, 

1.7995(4) Å, 1.8508(5) Å, 1.8500(4) Å, and 1.910(3) Å, The difference in the mean length 

of hydrogen bond type 1 is not significantly different from zero (0.003 ± 0.002 Å),  and in 

the type 2 and 3 bonds it is very small (0.010 ± 0.004 Å). However, the type 4 H-bonds, 

those donated by interstitial waters to sulfate oxygens, exhibit a significant increase in their 

mean length on warming from 4.2 - 300 K (0.062 ± 0.005 Å).  This behaviour is similar to 

that observed in MgSO4·11D2O where the water - water H-bonds do not change in length, 

but the water - sulfate H - bonds weaken significantly upon warming (Fortes et al., 2008b). 

 

The type 1 hydrogen bonds which form the disordered ring structure exhibit insignificant 

differences in length between quenched and slow cooled specimens. The average quenched 

and slow cooled values of bond lengths are 1.802(3) Å and 1.797(2) Å, respectively.   

 

Considering the hydrogen bond angles (∠ O-D···O), type 2 are the most linear (172 ± 0.2°) 

and type 1 are the least linear (164 ± 0.2°) at 4.2 K. This bond angle does not change 

significantly with temperature across types 1―3 (< 1%). However, the average value for 

type 4 H-bonds changes by 6(1)° (4%) revealing that much of the strain in the structure is 

accommodated by bending of bonds donated by interstitial water molecules. 
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3.2.1.2 Disorder within the mirabilite structure. 

 

The existing mirabilite heat capacity data (Pitzer & Coulter, 1938; Brodale & Giauque, 

1972; Ruben et al., 1961) have been used to infer that hydrogen bonds in the mirabilite 

structure were disordered, and that this disorder became frozen-in at limiting low 

temperatures. In their single-crystal study, Levy and Lisensky (1978) identified two areas of 

orientational disorder, the first associated with a pair of square rings of water molecules 

between adjacent octahedral apices, and the second associated with the sulfate tetrahedra.   

 

The results at 300 K show complete orientational disorder of the water molecules in the 

square rings; the occupancy ratios of the deuterons in the 'b' and 'c' sites in both rings are 

49.5(8):50.5(8). As the temperature is reduced slowly, the trend is towards greater 

orientational order, the 'b' site having the larger occupancy. On the timescale of these 

experiments, full orientational order was not achieved at liquid helium temperatures, the 

'b':'c' occupancy ratio being ~ 70:30 (see Table 3.4), although it is possible that sufficiently 

long timescales at low temperatures (e.g., on the surfaces of icy moons in the outer solar 

system) will permit full ordering of these sites to be attained.  This is in agreement with 

measurements of the heat capacity as a function of temperature (Pitzer & Coulter, 1938; 

Brodale & Giauque, 1972; Ruben et al., 1961).  More rapid cooling (in this instance, 

quenching in liquid nitrogen) results in a non-equilibrium value for the occupancies 

becoming frozen-in.  The refined occupancies from the quenched sample measured at 4.2 K 

are the same as those observed in the slow-cooled sample measured at 150 K (see Table 

3.4).  As discussed in section 3.2.2.1 below, the variation of the unit-cell parameter β 

appears to support the hypothesis that this orientational disorder becomes frozen in near 150 

K when mirabilite is quenched rapidly. 

 
Table 3.4 The refined fractional occupancies (constrained to sum to unity) of deuterons in the square 
rings defined by oxygen atoms O8/O16 (ring 1) and O9/O17 (ring 2) as a function of temperature 
which were constrained to be the same in both rings.   
 

Species 300 K 150 K 

 
Slow cooled  
at 4.2 K 

Quenched 
4.2 K 

'b' 0.494(6) 0.652(5) 0.693(4) 0.654(5) 
'c' 0.506(6) 0.348(5) 0.307(4) 0.346(5) 

 
 

Levy and Lisensky also identified disorder over two orientations of the sulfate tetrahedra, 

which they denoted with 'prime' and 'double-prime' superscripts.  The two orientations, 

related by a rotation of about 30° about the S···O5 vector (Figure 3.4), generate pairs of 
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partially occupied sulfate oxygen sites (O4'/O4", O6'/O6", and O7'/O7" in their notation), 

which Levy and Lisensky (1978) found to be occupied in the ratio ≈ 25:75 (Figure 3.4b).  

The sulfate apices accept hydrogen bonds from neighbouring water molecules. The bonds 

donated to the O5 apex (from D8a, D10a, and D12b) are fully ordered.  The bonds to the 

partially occupied apical sites are a mixture of ordered hydrogen bonds (donated by D10b, 

D11b, and D14b) and disordered hydrogen bonds (donated by D9a'/D9a", D16a'/D16a", and 

D17a'/D17a"). In Levy and Lisensky’s refinement of the structure the occupancies of these 

hydrogen sites share the same occupancy as the apical oxygen sites; i.e., the 'primed' sites 

are ~ 25 % occupied, and the 'double-primed' sites are ~ 75 % occupied. Notice that the 

proposed switch in orientation from 'prime' to 'double-prime' involves breaking of the 

hydrogen bonds donated by D9a', D16a', and D17a' (the thicker, long-dashed bonds in 

Figure 3.4a), and the formation of new hydrogen bonds from D9a", D16a", and D17a" (the 

thin, short-dashed bonds in Figure 3.4a). Levy and Lisensky (1978) used the room 

temperature occupancies to determine the energy difference between the two orientations as 

2713 ± 197 J mol-1, which is approximately 10 % of the energy contained in a single 

hydrogen bond. 
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Figure 3.4 The two orientations of the sulfate tetrahedron described by Levy and Lisensky (1978) as 
viewed down the rotation axis (the S···O5 vector) - orientation relative to the crystallographic axes is 
shown in (a).  The hydrogen bonds donated to the ordered apex (O5) are shown with solid grey rods; 
those donated to the lesser occupied apices (O4', O6', and O7') are depicted as thinner, short-dashed 
rods; those donated to the more fully occupied apices (O4", O6", and O7") are depicted as thicker, 
long-dashed rods. 
 
In the present study, refinement of these site occupancies yielded ratios of 'prime':'double-

prime' = 0:100 at all temperatures and this was confirmed by production of a Fourier map of 

the neutron scattering density in GSAS. This map can be seen in Figure 3.5; the plane of the 

map is defined by the three oxygen atoms O4, O6 and O7, and the centre of the map is 

defined by the position of the sulfur atom, with the viewing direction normal to the plane 

which contains the O4, O6 and O7 atoms. This corresponds to looking directly down from 

the O5 vertex of the sulfate tetahedron. The map shows no “extra” observable peaks which 

could be coincident with the alternative ‘double primed’ oxygen sites. This is the sole point 

of significant disagreement between the present work and that of Levy and Lisensky; it is 

plausible that the difference is the result of deuteration, or that it is due to the thermal 

history of the sample during the diffraction data collection, or some other aspect of the 

crystal growth or sample preparation prior to the start of the experiment.  
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Figure 3.5 Fourier (Fobs) map produced from the long-count data at 300 K showing the observed 
scattering density as a function of position within part of the mirabilite unit-cell. 
 
 
The volume and distortion parameters of the two symmetry-independent Na(H2O)6 

octahedra as a function of temperature are given in Table 3.5. These octahedra have a 

volume ~ 65 % greater than in Mg-sulfate hydrates, but exhibit the same trend towards 

smaller volume and less distortion with increasing hydration number; room temperature data 

for thenardite are compared in Table 3.5. Upon cooling to 4.2 K, the Na2 octahedron 

increases in volume by 0.7 % whereas the Na3 octahedron shrinks by 2%, the former being 

similar to the increase in volume (1-2 %) in the MgO6 octahedra observed in epsomite and 

meridianiite (Fortes et al., 2006b, 2008b). The Na-O distances between apical oxygens, and 

shared-edge oxygens follow the same trend, the former shrinking from a mean of 2.420(8) Å 

at 300 K to a mean of 2.394(4) Å at 4.2 K (∆L/L = -1.1 ± 0.1 %); the latter shrink from a 

mean of 2.425(5) Å at 300 K to a mean of 2.408(3) Å at 4.2 K (∆L/L = -0.7 ±0. 2 %). 

 

Since the S-O bond lengths and angles in the sulfate tetrahedron were restrained, it is not 

possible to draw any conclusions as to the temperature dependent behaviour of this unit; 

however, Fortes et al. (2008b) note the trend of negligible change in volume with 

temperature in a range of anhydrous and hydrated Mg-sulfate crystals. 
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Table 3.5 Changes in the size and shape of the octahedra in mirabilite and NaO6 octahedra in 
thenardite with temperature. Volumes and distortion parameters (as defined by Robinson et al., 1971) 
were calculated using the program DRAWxtl (Finger et al., 2007). 
 300 K 150 K Slow cooled 4.2 K Quenched 4.2 K 

Na2 octahedron  

Volume (Å3) 19.719 19.854 19.813 19.854 

Na3 octahedron  

Volume (Å3) 20.317 19.977 19.913 19.918 

Thenardite(a)  

Volume (Å3) 25.500 - - - 
(a) Rasmussen et al., (1996). 

 

3.2.2 Thermal expansion of the mirabilite structure. 

 

Lattice parameters (a, b, c, β) for mirabilite were obtained at 31 temperatures from 4.2 K to 

300 K (in 10 K increments) during slow warming of the initially quenched sample, and at 30 

temperatures from 300 K to 4.2 K (also in 10 K increments) during slow cooling; these data 

are shown in Figure 3.6 and shown in a table in Appendix 2. Rietveld refinement of these 7 

µA hr datasets yielded unit-cell parameters with a precision of ~ 3 parts in 100,000, which is 

comparable to the precision achieved in earlier studies of MgSO4·7D2O (Fortes et al., 

2006b) and MgSO4·11D2O (Fortes et al., 2008b). 
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Figure 3.6 The temperature dependent variation of the unit cell parameters; a) a-axis; b) b-axis; c) c-
axis; d) monoclinic angle β; e) unit cell volume, over the temperature range 4.2 - 300 K. Values 
obtained upon warming of the quenched specimen are shown as filled diamonds, and those obtained 
during subsequent slow cooling of the specimen equilibrated at 300 K are shown as open squares. 
Standard errors are comparable in size to the symbols used.  The solid lines shown in a) – c) and e) 
are Einstein model fits to both data sets (Eqs. 3.9 and 3.10) and the lines shown in d) are polynomial 
fits. See Section 3.2.2.4. 
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3.2.2.1 Axial thermal expansions of mirabilite. 
 
During the first warming run, the unit-cell parameter β (see Figure 3.6) was observed to 

show relatively little variation with temperature up to 150 K (-5 ± 1 x10-5 deg. K-1), 

whereafter the angle began to decrease at a much larger rate (-7.2 ± 0.2 x10-4 deg. K-1). The 

decrease ceases at ~ 250 K whereupon the angle reaches a limiting value of ~107.75°.   The 

behaviour at 150 K suggests that the initial quenching of the specimen to 80 K had locked-in 

the dynamic disorder (either of the deuterons or the sulfate tetrahedra) described by Levy 

and Lisensky (1978).  As a result, a second series of data were collected upon slow cooling.  

Above 150 K, the behaviour of β during slow cooling is very similar to that on warming. 

However below 150 K, β continues to increase, in what is considered a 'normal' fashion, and 

reaching a value at 4.2 K that is ~ 0.01° larger than the quenched value. This small 

difference (~10 % of the total variation over the range 4.2―300 K) is nonetheless clearly 

resolvable. 

 

Given that no evidence for disorder of the sulfate tetrahedron and its related hydrogen 

bonds, has been observed, it can be concluded that the behaviour of β at 150 K during 

warming is due to 'unlocking' of deuteron disorder in the square rings.  The change in β 

during continued warming can be inferred to be a proxy for the change in occupancy, the 

observed saturation of β above 250 K being due to complete disorder (50:50 occupancy of 

the 'b' and 'c' sites) being achieved.  Since the two-fold axis of rotational symmetry passes 

through the centre of these rings, it is logical that changes in the shape of the rings 

(mediated by changes in site occupancies) should influence the monoclinic angle. 

 

The axial expansivities are largely positive over the temperature range investigated, 

although the b- and c-axes display a small amount of negative thermal expansion at low 

temperatures (below ~50 K). This behaviour is common to a number of sulfates, including 

CuSO4·5D2O, (Schofield and Knight, 2000), MgSO4·7D2O, (Fortes et al., 2006b) and 

MgSO4·11D2O, (Fortes et al., 2008b) each of which has one axis which displays negative 

thermal expansion. There is little discernible hysteresis between the warming and cooling 

data for the a- and c-axes. The small amount of hysteresis in the length of the b-axis may be 

related to the variations in β noted earlier. Overall, the expansivities of the a- and c-axes are 

of similar magnitude, whilst the b-axis shows a much smaller thermal expansion. In order to 

arrive at a better understanding of how the thermal expansion is related to structural 

elements in the crystal and the bonding between them, the next step is to derive the 

coefficients of the thermal expansion tensor, as discussed in Section 3.2.2.4. 
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3.2.2.2 Unit cell volume thermal expansion of mirabilite. 

 

Using the results obtained from the refinements of the powder diffraction data the volume 

and axial thermal expansivities of mirabilite were calculated over the temperature range 4.2 

– 300 K. The volume thermal expansion is positive and behaves normally above 40 K, 

below which it is slightly negative, as can be seen in Figure 3.7 where the volume thermal 

expansion coefficient αV, for deuterated mirabilite from Debye (solid line) and Einstein 

(dotted line) models are shown, together with the experimental values.  The dashed line 

shows the volume thermal expansion of meridianiite (Fortes et al., 2008b) for comparison. 

 

 
Figure 3.7 Comparison of the volume thermal expansion coefficient V, for deuterated mirabilite: a) 
as calculated via equation 3.2 and the heat capacity data (dotted line) b) via the Einstein model (solid 
lines; Eq. 3.9 and 3.10), fitted to both data sets. The points shown were obtained from simple point by 
point numerical differentiation of the refined unit-cell volumes; values upon warming of the 
quenched specimen are shown as filled diamonds and those obtained on subsequent slow cooling as 
open squares.  Note the misfit below 40 K.  The dashed line shows the volume thermal expansion of 
meridianiite (Fortes et al., 2008b) for comparison. 
 
 
For the purpose of making a simple density calculation (e.g., for planetary interior 

modelling), a 3rd order polynomial was fitted to the density of mirabilite calculated from the 

unit-cell volume between 50―300 K of the form ρ/ρ0 = AT3 + BT2 + CT + 1.  The 

coefficients obtained are: A = 2.9(1)  x 10-11 K-3, B = -3.19(5) K-2, C = 1.61(5) K-1 with ρ0 = 

1527.85 kg m-3 for deuterated mirabilite (R2 = 99.986 %) and the maximum density 

difference between the observed data and those from the polynomial fit is 0.012 %). 
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Assuming that the unit cell volume of hydrogenous mirabilite shows the same temperature 

dependence as the deuterated isotopomer, then for Na2SO4·10H2O ρ0 = 1489.63 kg m-3. 

 

The unit-cell volume thermal expansion is negative below 40 K and reaches a maximum 

value of αV ≈ 110 x 10 −6 K at 300 K.  Although the volume thermal expansion near 300 K 

gives no indication of impending dehydration, there are subtleties in the thermal expansion 

tensor (as described in Section 3.2.2.4); in particular, α2 exhibits a very large rate of 

increase approaching 300 K.   

 

3.2.2.3 Fitting of the cell parameters of mirabilite using the Grüneisen 

approximation. 

 

The temperature dependence of the unit-cell volume from 4.2 - 300 K is well represented by 

a simple polynomial of the form V (Å3) = -4.143(1) x10-7 T3 + 0.00047(2) T2 - 0.027(2) T + 

1437.0(1) Å3 (R2 = 99.98%). However, a more physically meaningful interpretation of the 

thermal expansion curve can be obtained by using Grüneisen approximations for the zero-

pressure equation of state (see Wallace, 1998), in which the effects of thermal expansion are 

considered to be equivalent to elastic strain induced by the thermal pressure. These take the 

form, to first order, 

0
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U
VTV

γ+=   Equation. 3.1 

and to second order, 
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where Q = (V0 K0 / γ ) and b = ½ ( 0K ′  -1); V0 is the unit-cell volume at zero pressure and 

temperature, K0 is the zero pressure and temperature bulk modulus, 0K ′  is its first derivative 

with respect to pressure (also evaluated at P = 0 and T = 0), and γ is a Grüneisen parameter 

(assumed constant).  
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The internal energy of the crystal, U(T), may be calculated via the Debye approximation 

(Cochran, 1973), 
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where θD is the Debye temperature, N is the number of atoms per unit cell, kB is the 

Boltzmann constant, and x = ħω/kBT. Note that the vibrational zero-point energy of 

9NkBθD/8 is included in equation 3.2 via the term V0. The integral in Equation. 3.3 may be 

evaluated numerically. 

 

Least-squares fitting of the first-order approximation (Equation. 3.1) to the V(T) data 

yielded the parameters θD = 529(8) K, V0 = 1436.72(4) Å3, Q = 5.56(7) x 10-17 J. This value 

of Q gives a value of K0 / γ = 39(1) GPa. 

 

When the second-order approximation was fitted, the values of the variable parameters were 

found to be θD = 441(3) K, V0 = 1436.66(3) Å³, Q = 7.3(3) x 10 -17 J and b = 11(2); these 

imply K0 / γ = 51 (2) GPa and K0′ = 23(4). In both of these approximations the values of K0 

(and also of K′0 in the second case) are much higher than might reasonably be expected and 

so, in order to try to obtain more realistic elastic parameters, Equation 3.2 was employed but 

with the internal energy term calculated via the measured heat capacity data (Brodale & 

Giauque, 1957; note, however, that these values are for hydrogenous, rather than deuterated 

mirabilite). In order to do this it is necessary to have an integratable expression for Cv (T). A 

fit of the heat capacity data to a single Debye model proved poor so a three-region empirical 

polynomial approach was employed, the coefficients of which are reported in Table 3.6;  

U(T) was then determined  by integration of these polynomials. Before fitting, the published 

Cp values were converted to Cv values using the expression Cp = Cv (1+ αv γ T); the values 

of αv(T) were taken from the present work and γ was assumed to be 1.3. Figure 3.8 shows 

the fit of these polynomials to the modified heat capacity data.   

 
 
Table 3.6 Coefficients of the polynomial fits to the heat capacity data (see Figure 3.8). Data were 
converted to units of Joules per unit-cell per Kelvin in preparation for use in Equation 3.2. 
Temperature range A (K) B  (K-1) C (K-2) D (K-3) E (K-4) 

0 - 25.5 K 0 0 -1.38753x10-26 2.27323x10-26 -3.78677x10-28 

25.5 - 120.5 K -1.30744x10-22 5.97279x10-24 3.79132x10-25 -4.02835x10-27 1.31661x10-29 

120.5 - 300 K -3.88657x10-22 2.57786x10-23 -8.0734x10-26 1.72849x10-28 -1.29846x10-31 
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Figure 3.8 Fit of experimental heat capacity data (converted to Cv values), taken from Brodale & 
Giauque (1957) using a multiple fits of third-order polynomials for different temperature ranges. 
Coefficients of the fits are given in 3.7. 

  

With U(T) calculated from the specific heat data, the second-order approximation gave good 

agreement with the data above 40 K; below this temperature it is unable to accommodate the 

negative thermal expansion of the crystal (see Figure. 3.7). The values of the fitted 

parameters were: V0 = 1436.41(7) Å3, Q = 4.2 (1) x 10-17 J and b = 9(2), leading to values 

for K0 / γ = 29(1) GPa, and 0K ′  = 19(4). Once again, the values of K0 / γ and 0K ′  are much 

higher than might be expected but are comparable to those previously obtained by Fortes et 

al. (2006b) using a similar procedure for epsomite where it was found that K0 / γ = 31.9(3) 

GPa and 0K ′  = 26(1). The failure of this approximation to produce realistic values of K0 and 

0K ′  is interesting as for non-molecular solids such as FeSi, (Vočadlo  et al. 2002) and 

KMgF3 (Wood et al. 2002), this technique has been used successfully, producing physically 

reasonable elastic parameters. It is possible that epsomite and mirabilite show a greater 

temperature dependence of γ and K0, which are both assumed to be constant in this 

approximation. Further high-pressure measurements upon mirabilite, specifically of the bulk 

modulus and its pressure and temperature derivatives are presented in Chapter 4. 
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3.2.2.4 The thermal expansion tensor of mirabilite. 

 

The thermal expansion of a monoclinic crystal is described by a symmetrical second rank 

tensor of the form: 
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where α13 = α31. Using the Institute of Radio Engineers' convention for the orthonormal 

tensor basis, where e3 ║ c, e2 ║ b* , and e1 ║e2 × e3, (see Figure 3.9), then the Lagrangian 

thermal expansion tensor coefficients for a monoclinic crystal with b as the unique axis may 

be written in terms of the unit-cell parameters as shown below (Schlenker et al., 1975): 
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Figure 3.9 Diagram illustrating the relationship between the unit-cell axes (purple dashed lines), and 
the directions of the principal axes of the orthonormal thermal expansion tensor (black full lines). 
Note: e1 is in the a-c plane. 
 

In order to derive the components of the thermal expansion tensor via equations (3.5) – (3.8) 

it is necessary to obtain suitable differentiable representations of the cell parameters as a 

function of temperature. This has been done by using a modified Einstein oscillator model 

to fit the unit-cell data as a function of temperature rather than by using the Debye 

approximation described previously. Although the latter provides a more physically correct 

model of the behaviour of the solid than the mathematically simpler Einstein model, the 

functional form of the Einstein model is such that a better fit to the experimental data was 

obtained (particularly in the regions of negative axial expansion), as required for proper 

determination of the coefficients of the thermal expansion tensor.  The derivation of the 

modified Einstein model is discussed elsewhere (see Fortes et al., 2008b); using this 

approach the temperature dependencies of the unit cell parameters a, b, and c, are described 

by an expression of the form, 
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+=    Equation. 3.9 

 

where X0 is the value of the fitted parameter at 0 Kelvin, θE is a characteristic Einstein 

temperature = ħωE/kB, and E is the internal energy of the crystal multiplied by KT/γ (where 

KT is either a volumetric or axial incompressibility and γ is a Grüneisen parameter).  For 

mirabilite, a sufficiently good fit (with the correct asymptotic behaviour as T > 0) can only 

be obtained when the parameter E is allowed to vary as a function of temperature: 
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and the thermal expansion coefficient α = X-1(∂X/∂T) is then: 

 

( )( )( ) ( ) ( )( )( )( )
( )( )2

E

01
2

2
3

3E
2

E12
2

3E

1TθexpX

eTeTeTeTθexpTθeT2eT3e1Tθexpα
−

++++++−=    Equation. 

3.11 

 

It has been observed previously (Fortes et al., 2008b) that the temperature dependence of E 

may be understood in terms of the Grüneisen ratio being negative at low temperatures and 

positive at higher temperatures, giving a reasonable match to γ(T) in ice Ih despite the ad 

hoc nature of the parameterisation. 

 

 
Table 3.7 Parameters obtained by fitting equations 3.9 and 3.10 to the unit-cell volume and cell edges 
of mirabilite. Note that the unit of X0 are Å3 for the volume, and Å for the parameters a, b, and c: the 
units of e0, e1, e2, and e3 are Å3, Å3 K-1, Å3 K-2, and Å3 K-3, respectively, for the unit cell volume, and 
follow the same system in Å for the axes. 

 Volume 
(warming) 

Volume 
(cooling) 

a-axis 
(warming) 

a-axis 
(cooling) 

b-axis 
(warming) 

b-axis 
(cooling) 

c-axis 
(warming) 

c-axis 
(cooling) 

X0 1436.70(2) 1436.77(3)  11.4421(1)  11.4425(1) 10.3428(2) 10.3429(1)  12.7533(2)  12.7548(2)  

θθθθE (K) 85(11) 78(11) 234(7) 233(6) 76(16) 92(14) 87(22) 80(17) 

e0 -3.8(6) -3.4(6) 1.3(1)x10-1 1.26(9)x10-1 -8(2)x10-3 -1.1(2)x10-2 -1.9(7) x10-2 -1.6(5) x10-2 

e1 8(1)x10-2 7(1)x10-2 -5.1(6)x10-4 -4.6(5)x10-4 1.0(3)x10-4 1.2(2)x10-4 3.3(1)x10-4 2.8(9)x10-4 
e2 -2.5(5)x10-4 -2.0(5)x10-4 1.2(1)x10-6 1.1(1)x10-6 -1.7(5)x10-7 -1.9(4)x10-7 -1.0(4)x10-6 -8(3)x10-7 

e3 3.3(7)x10-7 2.7(7)x10-7 - - - - 1.4(7)x10-9 1.1(4)x10-9 

 
 
The parameters obtained from fitting equation 3.9 (and 3.10) to the unit-cell volume and 

axial lengths are listed in Table 3.7. The resulting curves are shown in Figures 3.6 (axial 

lengths) and 3.7 (unit-cell volume).  For the cell parameter β, polynomial functions were 

used. The values of β on warming were fitted with a linear expression from 4 - 140 K, β(T) 

= a0T + β0, with a0 = -5(1) x 10-5 deg. K-1 and β0 = 107.8387(8)°. Above 140 K, a 

polynomial of the form β(T) = a0T
3 + a1T

2 + β0, with a0 = -6.1(4) x 10-6 deg. K-3, a1 = 1.4(1) 

x 10-8 deg. K-2, and β0 = 107.920(6)° was used.  The data collected on cooling were fitted 

from 4 - 300 K with a function of the form β(T) = a0T
6 + a1T

5 + a2T
4 + a3T

3 + β0, with a0 = -

3.1(4) x 10-15 deg. K-6, a1 = 2.3(3) x 10-12 deg. K-5, a2 = -5.4(7) x 10-10 deg. K-4, a3 = 3.1(6) x 

10-8 deg. K-3, and β0 = 107.8474 (9) °.   
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Fitting the data across the full temperature range produces very large uncertainties in some 

of the fitted parameters, resulting in the propagation of large errors onto the thermal 

expansion coefficients. Better estimates of the uncertainty on these coefficients were found 

by linear fits to short segments of the cell parameter data; estimated 3σ values in the thermal 

expansion coefficient are ± 1.65 x 10-6 K-1. The Einstein temperatures obtained here are very 

similar to those found by fitting the same expressions to the unit cell of MgSO4·11D2O 

(Fortes et al., 2008b), θE from the volume data being ~ 90 K for both.  This temperature 

corresponds to very low-frequency vibrational modes, (wavenumbers of ~ 60 cm-1), which 

dominate the low-temperature thermal expansivity; they have not been observed directly, 

but may be detectable in the phonon dispersion spectrum. 

 
The modified Einstein fits to the a-, b-, and c-axes, and the polynomial fits to the angle β, 

were then used to calculate the magnitudes of the thermal expansion tensor coefficients 

(from Equations 3.5-8) as a function of temperature. Decomposition of the tensor matrix 

(Equation 3.4) yields the magnitude (eigenvalues) and orientation (eigenvectors) of the 

thermal expansion along the principal axes, α1, α2, and α3. The temperature dependence of 

coefficients α11, α22, α33, α13, and the principal axes α1, α2, and α3 is shown in Figure 3.10; 

θ is the angle between α1 and e1. 
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Figure 3.10 Panels a - d (left): temperature dependence of the thermal expansion tensor coefficients, 
α11, α22, α33 and α13.  Panels e-g (right): temperature dependence of the principal axes of the thermal 
expansion tensor, α1, α2, and α3, and (panel h, right) the angle between α1 and e1. The dotted lines are 
the warming, the bold lines the slow cooling data. 
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Figure 3.11 Projections of the thermal expansion coefficient representation surface on the y-z (b-c) planes (top), x-z (e1-c) plane (middle), and the x-y (e1-b) plane 
(bottom) at 50 K, 100 K, 200 K, and 300 K. Solid green lines indicate positive values, and dotted red lines indicate negative values. The corresponding projections 
of the mirabilite structure are shown on the left. 
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Projections of the representation surface of the expansion coefficients onto the three 

orthogonal planes, y-z (e2-e3), x-y (e1-e2), and x-z (e1-e3), at a range of temperatures from the 

slow cooled data are shown in Figure 3.11. 

 

Principal axes α1 and α3 exhibit mostly positive thermal expansion at all temperatures 

greater than ~50 K, although the values of α1 are roughly an order of magnitude greater than 

α3. However, α2 is mostly negative, and its temperature dependence is a mirror image of α1.  

The main difference between the warming and cooling data is a temperature offset between 

the two which becomes significant above 150 K; in the quenched sample, α1 and α3 have 

smaller values than the slow-cooled sample at a given temperature (above 150 K), whereas 

α2 has a more positive value.  The orientation of the expansion tensor does not differ 

between the two data sets;  α1 appears to be saturating at high temperature but the large 

changes in α2 (increase) and α3 (decrease) may be signalling the impending dehydration at 

305 K. 

 

The orientation of the thermal expansion tensor undergoes a major shift (as manifested by 

the angle θ between e1 and α1), swinging through ~80° near 50 K.  After this reorientation 

the value of θ increases very slowly from +40° to +50° over the temperature range 100 

K―300 K. 

 

It is clear that the volumes of the various polyhedra within the mirabilite structure do not 

contribute greatly to the thermal expansion; as in other salt hydrates that have been recently 

studied, the subtleties of the thermal expansion are controlled by the hydrogen-bond 

network. In gypsum, for example, the orientation of the water molecules determines the 

direction of maximum thermal expansion (Schofield et al., 2004), and in meridianiite it is a 

weak bifurcated hydrogen bond which dominates the orientation of the expansion tensor 

(Fortes et al., 2008b). In mirabilite, much of the interlayer hydrogen bonding is aligned with 

the a-axis; it is therefore slightly surprising to find that the direction of maximum thermal 

expansion is inclined by more than 30° to this direction. It is possibly of relevance that the 

hydrogen bonds donated by the two interstitial water molecules O10 and O11 are more 

closely aligned with α1 and α2, as shown in Figure 3.12. 

 



Chapter 3: Neutron diffraction studies II 

88 

 

 
Figure 3.12 Orientations of the O10 and O11 hydrogen bonds with respect to the direction e1, 
illustrating the similarity between the orientation of these bonds and the orientation of the thermal 
expansion tensor. 
 

It is possible that the reorientation of the expansion tensor is the result of shifts in the 

relative strength of hydrogen bonds donated by these two molecules to neighbouring sulfate 

tetrahedra.  Further detailed study of the anisotropic vibrational behaviour of the deuterons, 

using single-crystal neutron diffraction techniques, may yield insights into the factors 

controlling the orientation of the thermal expansion tensor. 
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Summary 

 

Time-of-flight powder neutron diffraction has been used to measure the crystal structure and 

thermal expansion of Na2SO4.10D2O from 4.2―300 K under ambient pressure conditions. 

No evidence was observed of the sulfate disorder reported previously by Levy and Lisensky 

(1978). The volume thermal expansion is positive above 40 K, and similar in magnitude to 

that of other multiply-hydrated salts such as epsomite and meridianiite. A second-order 

Grüneisen model fitted to the data gives estimates of the elastic properties; however, as has 

also been found for epsomite, the values of K and K0′ obtained are too high. Further neutron 

powder diffraction measurements, combined with ab initio calculations, were, therefore, 

necessary to obtain details of the elastic strain tensor at high pressure, and to determine γ(T) 

and the Anderson-Grüneisen parameter, δT; details of such experiments and simulations can 

be found in following Chapters of this work. 
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This chapter describes a high pressure neutron diffraction experiment, carried out on HRPD 

at ISIS in March 2008, designed to measure the compressibility of mirabilite from 0 – 5.5 

kbar at temperatures from 80 – 260 K.  

 

4.1 Method: measuring the compressibility of mirabilite. 

 

Measuring the compressibility of a material is a similar process to that of measuring the 

thermal expansion. It is achieved through observation of the variation of unit-cell 

parameters over a range of pressures. However, the experimental requirements for 

generating and maintaining high pressures are somewhat more involved than for low 

temperature experiments.  

 

4.1.1 Sample preparation and loading. 

 

The sample used for high pressure experiments came from the same supersaturated solution 

of Na2SO4 in D2O as was used for the thermal expansion experiment. To prepare the sample, 

solid lumps of mirabilite were again extracted from the liquor, dried on filter paper, and then 

quickly powdered in an agate pestle and mortar, which had been cooled in solid carbon 

dioxide (since no cold room facilities were able at ISIS at the time of the experiment). 

Roughly 1 cm3 of the resulting coarse powder was loaded into a TiZr gas-pressure cell, 

which had also been cooled in solid CO2. This pressure cell allows for continuous 

hydrostatic loading of the sample up to ~ 5.5 kbar.   

 

These experiments were carried out after HRPD had undergone a major upgrade in 2007 

with the installation of a new high-reflectivity supermirror guide in the primary flightpath. 

This produced substantial gains in flux compared with the old guide (between a factor of 10 

to 40 times greater across the incident wavelength range). Despite this, however, the 

observed diffraction patterns (see Sections 4.1.2 and 4.1.3) were much weaker than were 

expected on the basis of previous high-pressure studies of MgSO4.7D2O, epsomite, (Fortes 

et al. 2006a) carried out with a TiZr pressure cell on HRPD before the upgrade. The reasons 

for this are still not clear; experiments on MgSO4.11D2O, meridianiite, subsequent to this 

study of mirabilite have also been similarly affected.  

 

Figure 4.1 shows the high-pressure gas cell used to contain the sample: a) shows an internal 

cross section of the pressure cell; b) is a photograph of the pressure cell taken during the 

loading of an experiment on HRPD, showing the position of the copper rings and 
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temperature sensors. The copper rings, clamped to the top and bottom of the pressure cell, 

carry small electric heaters and RhFe temperature sensors inserted into holes drilled in the 

copper to enable accurate measurement and control of the sample temperature.   

 

The sample volume in this pressure cell is of the order of 1 cm3, five times less than in the 

vanadium sample can used for the thermal expansion measurements. Once the sample was 

loaded, the cell was then screwed onto a cryostat centre stick, sealed under a nominal 

pressure of 478 bar of He gas, and placed in a closed cycle refrigerator (CCR), with a 100 

ml tail, which was masked with gadolinium foil, and mounted on the HRPD beamline. 

Throughout the experiment, the pressure of helium gas on the sample was maintained using 

an intensifier. 

 

 

 

Figure 4.1 The pressure cell used to measure the compressibility of mirabilite on the HRPD beamline. 
Insert a) shows an internal plan view and is redrawn after Kuhs et al. (2005), b) is a photograph of the 
pressure cell taken during loading of another experiment on HRPD. 
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4.1.2 Data acquisition. 

 

In devising the pressure-temperature pathways which were followed in this experiment, care 

was taken to ensure that the temperature remained well below the dehydration limit of 

mirabilite (305 K at atmospheric pressure). Another important consideration when working 

with this experimental setup is the pressure melting curve of helium. Fluid helium is used as 

the pressure medium in these experiments and it would not be advantageous to solidify the 

helium in the pressure system. Figure 4.2 shows the helium melting curve from 0 – 10 kbar 

as determined by Spain and Segall (1971), with annotation to show the temperature at which 

the helium would freeze under the highest pressures attained in these experiments.  

 

 

 

Figure 4.2 The melting curve of helium at high pressure. The blue line and points are the data from 
Spain and Segall (1971), the solid green line is the maximum pressure attained during these high 
pressure experiments and the dashed line shows the corresponding melting (freezing) temperature of 
helium at this pressure. 
 

The signal received at the HRPD detectors from a sample in a TiZr gas cell is much smaller 

than that received from a thin-walled vanadium slab can. In these experiments the signal 

from the backscattering and low-angle banks of HRPD were too weak to be useful and so 

only the data collected in the 90 degree detector banks  were analysed.  
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With the sample initially at 260 K and 478 bar, data were collected in the 90° banks in the 

time of flight window of 60 – 160 msec for approximately 2 hours (70 µAhr). The sample 

was then compressed from 478 bar to 5415 bar in ~500 bar increments, counting for 

approximately 2 hours (70 µAhr), at each datum. After counting for 70 µAhr at 5415 bar, 

the sample was cooled to 80 K in 20 K steps, counting for 60 µAhr at each step, with 10 

minutes equilibration time at each temperature set-point. Over the course of this cooling, the 

pressure on the sample decreased marginally to 5338 bar. The sample was then 

depressurised from 5338 bar to 20 bar at 80 K in steps of approximately 600 bar, again 

counting for 60 µAhr at each pressure. 

 

4.1.3 Compression data refinement - GSAS and least-squares fitting. 

 

The data analysis was carried out using GSAS. Because of the very poor quality of the data 

(see Figure 4.3), with weak peaks on a high background, it was decided that it would be 

futile to attempt to refine the atomic coordinates and temperature factors; the following 

procedure was, therefore, adopted. Starting with the 478 bar, 260 K dataset, the unit cell 

(a,b,c,β), scale factors, background coefficients (13 term shifted Chebyschev polynomial), 

and profile coefficients (σ1 and  γ1), of mirabilite were refined; the atomic coordinates were 

taken from the 300 K long-count data obtained in the earlier thermal expansion experiment; 

as before, the sulfate disorder described by Levy and Lisensky (1978), was not included 

following the results obtained in the thermal expansion experiments (see Chapter 3). The 

fractional occupancies of the disordered hydrogen atoms were constrained to their 300 K 

values (b = 0.494 and c = 0.506) and were not refined. Isotropic temperature factors (Uiso) 

were constrained to be 0.025 Å2 (the GSAS default value), and not refined. Sample texture 

was modelled using the spherical harmonic model implemented in GSAS (4th order - 8 

terms). The sample was found to be slightly more textured than in the thermal expansion 

experiment (texture index of 1.89 at 478 bar, 260 K), most likely as a result of the time 

constraints placed on the sample preparation by the need to keep the sample cool without 

access to a suitably temperature controlled sample preparation laboratory.  

 

Table 4.1 shows the Rietveld powder statistics and Figure 4.3 shows the fit to the data at 

478 bar and 260 K which is typical of the set as a whole. In the powder statistics, if only the 

value of χ2 is considered, the quality of the fits would seem not as good as for the thermal 

expansion experiments; however, the values of the residuals are still all below 8 %, 

indicating that in the case of this experiment, χ
2 is not necessarily the sole quantity which 

should be used in the determination of the agreement of the fit.   
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Table 4.1 Refinement statistics at 478 bar, 260 K. 
 
478 bar, 260 K  

Fitted Minus Background 
Histogram 

No. of 
reflections χ² wRp Rp wRp Rp 

90 degree banks 1146 62.74 3.2 % 1.7 % 7.0 % 2.8 % 
 

As seen in Figure 4.3, there were a small number of additional peaks evident in the 

diffraction pattern, the majority of which were successfully modelled as ice Ih at a 

concentration of approximately 6%. These peaks disappear between 1500 and 2000 bar, 

corresponding to an intersection with the solidus of D2O (Bridgman, 1935). It was expected 

that these peaks would reappear either as Ice V at higher pressures (~4 kbar), as Ice II on 

cooling, or as Ice Ih again on decompression, however, there was no evidence of this in later 

refinements. The 3 remaining unfitted peaks at d = 2.1 Å, d = 2.355 Å and d = 2.55 Å, 

marked with arrows in Figure 4.4, are likely the result of materials comprising the sample 

environment; the d = 2.1 Å peak is, probably, due to the presence of vanadium but is 

resistant to being fitted as such in GSAS. These regions were excluded in subsequent 

refinements. 
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Figure 4.3 Neutron powder diffraction patterns of mirabilite at 480 bar, 260 K obtained on HRPD 
from the 90° banks. The red circles are the observations, the green line the fit to the observations and 
the pink line below is the difference between the fit and the observations. The lower set of black tick 
marks denote the positions of the mirabilite peaks and the upper set of red tick marks are the 
positions of D2O ice Ih peaks. The black arrows denote peaks unaccounted for by either ice or 
mirabilite. 
 

With the decrease in temperature at maximum pressure, a few new peaks appear in the 

diffraction pattern at 240 K which have proved difficult to identify (see Figure 4.4). These 

peaks are much less evident in subsequent refinements at decreased temperatures and 

pressures. They cannot be accounted for simply by using a single phase of: (i) any of the 

known materials from the sample environment equipment (e.g. vanadium, gadolinium or 

aluminium), (ii) any of the phases of ice for which structural information is available or (iii) 

the anhydrous (thenardite), or lesser hydrated (the hepta- or octa-hydrate) phases of Na2SO4. 

From this point, (5338 kbar and 240 K), these regions were excluded. The data were then 

refitted including additional profile coefficients in the refinement, namely, γ1, σ2, g1ec and 

rsca. Attention was paid to the phase diagram of ice (see Chapter 1) throughout the 

refinement process and at appropriate pressure-temperatures where phase boundaries within 

the structure might be expected to be encountered, the appropriate phases were reintroduced 

to the GSAS file. However, none of these fits were successful. 
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Figure 4.4 Neutron powder diffraction patterns of mirabilite at 5338 bar, 240 K obtained on HRPD 
from the 90° banks. The red circles are the observations, the green line the fit to the observations and 
the pink line below is the difference between the fit and the observations. The lower set of black tick 
marks denote the positions of the mirabilite peaks. The black arrows denote peaks unaccounted for by 
using a single phase of: (i) any of the known materials from the sample environment equipment (e.g. 
vanadium, gadolinium or aluminium), (ii) any of the phases of ice for which structural information is 
available or (iii) the anhydrous (thenardite), or lesser hydrated (the hepta- or octa-hydrate) phases of 
Na2SO4. the gap in the data is the previously excluded region at 2.55 Å (see text). 
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4.2 Results 

 

4.2.1 The incompressibility of mirabilite. 

 

The equation of state of a material is a relation that describes how that material behaves 

under a set of variable conditions. Traditionally, thermodynamic equations of state describe 

the changes in the volume (or density) of a material with variations in pressure and/or 

temperature. The pressure volume relationship, the incompressibility of the material, can be 

expressed using an isothermal equation of state. Here a 3rd-order Birch-Murnaghan equation 

of state (3BMEOS), (Birch, 1952), has been used to fit to the data. This equation of state is 

of the form: 
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Equation 4.1 

 

Where P is the pressure, V is the unit-cell volume and V0 the unit-cell volume at zero 

pressure. The quantity “K0” is the incompressibility at zero pressure, with “ K0′ ” its first 

derivative with respect to pressure (also evaluated at zero pressure). The incompressibility 

(also known as the bulk modulus), is defined as: 
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VK   Equation 4.2 

 

Expressions similar to Equation 4.1 were also used to fit the unit-cell axes as a function of 

pressure; the axes, as opposed to their cubes, were fitted and thus the axial 

incompressibilities quoted are of the form 
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  Equation 4.3 

 

It was found that the variation of the monoclinic angle with pressure could be adequately 

represented by a straight line. 
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4.2.2 Bulk and axial incompressibility of mirabilite at 260 K and 80 K. 

 

The refined values of the cell parameters and cell volumes obtained in this high-pressure 

study are shown in the table in Appendix 4. Figure 4.5 shows the volume and axial equation 

of state fits along the 260 K and 80 K isotherms. It was necessary to constrain the value of 

K0′ to ensure it remained positive. It was therefore fixed at the value obtained in the ab initio 

calculations performed as part of this thesis (Chapters 5-7, K0′ = 5.6) for both isotherms. 

This fit yields values at 260 K of V0 = 1456.7(6) Å3 and K0 = 18.0(5) GPa; at 80 K the 

corresponding values areV0 = 1440.2(4) Å3 and K0 = 22.7(6) GPa. These values are similar 

to the experimental incompressibilities obtained for epsomite (Fortes et al. 2006a) for which 

K0 = 21.5(4) GPa at 290 K and K0 = 24.9(8) GPa at 50 K. The V0 values at both 

temperatures are within 0.2% of the zero pressure values obtained during the thermal 

expansion experiment described in Chapter 3 (0.155% at 260 K and 0.189% at 80 K). 

Although these differences are small, there is clearly a systematic error between the slab can 

used in the thermal expansion experiments and the TiZr pressure cell used in the high 

pressure experiments. This is probably due to a difference in the position of the sample 

within the diffractometer, although it may possibly have arisen from the recent recalibration 

of HRPD following the installation of the new beamguide. This offset is taken into account 

in later sections as appropriate. 
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Figure 4.5 Unit-cell parameters of mirabilite as a function of pressure at 260 and 80 K. i) to iii) are 
the unit-cell axes, iv) is the beta-angle and v) is the unit-cell volume. In each case, the full lines and 
open circles are the 260 K data and the dashed lines and filled circles, the 80 K data. Note that panels 
i) to iii) have been plotted on the same vertical scale to facilitate comparison of the relative 
incompressibility of each axis. The lines are 3rd-order Birch-Murnaghan EoS fits to the unit-cell axes 
with linear fits to the beta-angle. 
 
 

The unit-cell parameters of mirabilite, referred to orthogonal axes, (Figure 4.5, Table 4.2), 

were also fitted with 3rd-order Birch-Murnaghan expressions to obtain the axial 

incompressibilities. The K0′ values were again fixed (at 16.8 – three times the bulk value of 

K0'), to ensure that they remained positive. As a check, the zero-pressure bulk modulus was 

calculated, yielding: K = [(Kasinβ)
-1 + (Kb)

-1 + (Kc)
-1]-1 = 18(1) GPa at 260 K and 23(1) GPa 

at 80 K, which is in excellent agreement with the values obtained from the bulk 3BMEOS 

fits.  
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The relative axial behaviour of mirabilite on compression is similar to the relative axial 

thermal expansion behaviour; for both isotherms the c-axis is the most compressible, with 

the asinb direction intermediate and the b-axis stiffest of the three axes along both isotherms 

and showing the least variation between the two temperatures. It is surprising to find that the 

most compressible direction is along the c-axis; is this due to the co-location of the 

Na(H2O)6 octahedra along this axis and are they able to accommodate compression by 

folding at the shared hinges? As these experiments give us no detail about changes in the 

positions of the atoms within the mirabilite structure, no structural mechanisms to explain 

this axial heterogeneity can be determined from these experiments. However, the ab initio 

calculations described in later chapters do yield such information and so further discussion 

of this can be found in Chapter 6. 

 

Table 4.2 The axial compressibility of mirabilite at 260 and 80 K. 
260 K 80 K  
asinb b c asinb b c 

a0 (Å³) 10.948(1) 10.364(1) 12.839(3) 10.9090(1) 10.349(1) 12.756(3) 
K0 (GPa) 64 (2) 87 (3) 34 (1) 75 (2) 83 (3) 54 (2) 
K0′ 16.8 16.8 16.8 15.9 15.9 15.9 
 
 
 

4.2.3 Derivation of the elastic strain tensor of mirabilite. 
 
 
The unit-cell dimensions as a function of pressure have also been used to determine the 

coefficients of the elastic strain tensor using the method described by Hazen et al. (2000) 

implemented in a custom spreadsheet; a similar procedure was used in the analysis of the ab 

initio computer simulations of mirabilite at high pressure (see Section 6.5 in Chapter 6). The 

eigenvalues and eigenvectors of the strain tensor are obtained by matrix decomposition, 

yielding the magnitudes and orientations of the principal axes of the strain ellipsoid. The 

magnitudes of the principal axes are strains per unit stress, and are effectively the axial 

compressibilities, and their sum is the bulk compressibility. The ellipsoid is constrained by 

the symmetry of the crystal. In this monoclinic case, the ellipsoid is constrained to rotate 

only about the two-fold axis and the convention that the principal strain axis e2 is parallel to 

the b-axis of the crystal has been adopted. 

 
Strains were calculated using the raw unit-cell dimensions directly output from the structural 

refinements in GSAS, and also using equations of state fitted to the same output. The solid 

lines in Figure 4.6 are the strains obtained from the various EoS fits; only for the volumes 

are the raw strains shown since the strains computed from the 'raw' unit-cell dimensions are 

very noisy. As in Figure 4.5, the full lines show the 80 K results and the dashed lines the 
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260 K results. Also shown in Figure 4.5 is the angle between e3 and the crystallographic c-

axis. The strain ellipsoid is very sensitive to the uncertainties in the EoS fitting, particularly 

to the order of the fit to the beta-angle. 

 

The most obvious feature of note in the strain plots is that the e2 strain magnitude behaves in 

a manner contrary to e1 and e3; upon cooling e2 softens rather than stiffening as is usual. The 

overall volume compression stiffens on cooling and so the e2 softening must be 

compensated by the other principal axes. In this case the softening is more than 

compensated for by e3 which shows the largest change, by an order of magnitude, between 

260 and 80 K. 

 
Figure 4.6 Panels (i) to (iii) show the magnitudes of the principal axes of the strain tensor, e1, e2 and 
e3 as a function of pressure. Their sum, the volume compressibility, is shown in (iv), and the angle 
between e3 and the crystallographic c-axis is shown in (v). In each case, the full line represents the 80 
K results and the dashed line the 260 K results. 
 



Chapter 4: Neutron diffraction studies III 

103 

4.3 The thermal expansion of mirabilite at 0.55 GPa. 

 

During the high-pressure HRPD investigation of mirabilite, data were collected at 20 K 

intervals as the sample was cooled from 260 K to 80 K under a load of 0.55 GPa. Although 

there are only 10 points in this data set and the high pressure sample environment prohibits 

collection of data detailed enough to extract atomic positions, these data can still be used to 

extract bulk properties. However, these fits should not be extrapolated above 260 K or 

below 80 K and are not quite truly isobaric as the pressure varies by 77 bar over the 

temperature range.  

 

Figure 4.7 shows the variation of the unit-cell volume with temperature at 0.55 GPa, 

compared to a section of the thermal expansion data from the previous chapter measured at 

zero pressure. The high-pressure results lie on a shallower and more linear curve than the 

zero pressure data, as might be expected. The lack of data and lower accuracy of the high 

pressure experiment makes it impractical to fit the complex relations which were applied to 

the thermal expansion data so a 2nd order polynomial has been fitted to the 0.55 GPa data, 

giving the relation: V = -2.107 x 10-5 T2 + 4.858 x 10-4 T + 1406.01 (R² = 99.84%).  

 

 
Figure 4.7 Thermal expansion of mirabilite at 0 and 0.55 GPa. The crosses are the zero pressure data 
and the blue filled circles the 0.55 GPa data. In both cases the line through the data points is a 2nd 
order polynomial fit to the data. The errors in the measurements are of the same order as the size of 
the symbols. 
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The data at high pressure have been used in combination with the thermal expansion data 

from Chapter 3 to determine a series of bulk moduli at temperatures from 260 – 100 K. For 

each temperature, a 3BMEOS was fitted to the data at 0 and 0.55 GPa (with K0′ fixed at 5.6, 

see above). Since each fit is only to two points the resulting isothermal moduli are extremely 

imprecise. To improve the accuracy as much as possible, VP,T has also been calculated using 

the smoothing polynomials reported above.  The results can be seen in Figure 4.8 which 

shows the variation in K0 with temperature in comparison to the same property determined 

in this way for epsomite (Fortes et al. 2006a). The results for mirabilite are very similar in 

magnitude to those for epsomite. The mirabilite results are less linear than for epsomite, 

although this may be an artefact of the fitting to such sparse data. 

 

 
Figure 4.8 Variation of the bulk modulus K0, with temperature between 260 and 80 K. The data points 
and full line are the mirabilite data from this study. The two data-points marked by square markers 
are the well constrained values of K0 from the two main compression experiments; the circles indicate 
the more unconstrained points determined upon cooling of the sample. The dashed line is the same 
property for epsomite. 

 
 

The final information which has been extracted from this compression and cooling data is 

the relation between the isothermal bulk modulus and thermal expansivity through the 

Anderson–Grüneisen parameter, δT, defined by: 
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where αV is the thermal expansivity (Anderson and Issak, 1993). As for the variation of KT 

with temperature, δT was calculated by instantaneous differentiation of the KT points 

calculated in Figure 4.8, as well as using the smoothed expression for KT. The values of αV 

were taken from the thermal expansion experiments of chapter 3. Figure 4.9 gives a 

comparison of the mirabilite values of δT with the epsomite value over a similar temperature 

range. It is interesting that the values of δT for mirabilite and epsomite start at very similar 

magnitudes at ~ 100 K but mirabilite soon overtakes epsomite and at 260 K is more than six 

times the epsomite value reflecting the greater temperature dependence of KT.  

 

 

 
Figure 4.9 The Anderson- Grüneisen parameter for mirabilite (circles and full line) compared to 
epsomite (dashed line). 
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Summary 

 

This chapter reports the results of neutron diffraction experiments to determine the 

compressibility of mirabilite from 0 – 5.5 kbar at 80 and 260 K. The bulk moduli at 80 K 

and 260 K are found to be 22.7 (6) GPa and 18.0 (5) GPa respectively when K0′ is 

constrained to the ab initio value of 5.6 obtained in Chapter 6. Further comparison between 

these data and the ab initio simulations of mirabilite will be drawn in the relevant section of 

Chapter 6. The variation in the bulk modulus with temperature has also been studied, with a 

view to investigating the pressure-volume-temperature parameter space of mirabilite. The 

variation in K0 with temperature is similar to that of epsomite over the same temperature 

range but mirabilite shows a less linear relation; the incompressibility of mirabilite is more 

temperature sensitive than that of epsomite. However, the number of data-points is very 

limited and further measurements at intermediate temperatures and pressure are required 

before these data can be properly put into context. 
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 Ab intio simulations I:  

Methodology. 
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In the experimental studies described in the previous three chapters we have seen how 

challenging it can be to attain and maintain the conditions of pressure and temperature 

relevant to investigation of the material properties of salt hydrates in planetary settings. 

Calculations offer a solution whereby difficult environmental conditions can be investigated 

with relative ease. In these simulations, we aim to determine physical properties, such as the 

equation of state and elastic properties of the material, from the total energy of the system as 

a function of volume. There are two computational approaches used to find total energy that 

have been considered in the present work. The first uses interatomic potentials and classical 

equations of motion to represent the interactions between atoms; this approach was used 

initially, but was found to be inadequate, mainly due to the difficulty of constructing suitable 

interatomic potentials (see Appendix 1). The second approach, described below, uses 

quantum mechanics (ab initio simulations) to describe interactions between electrons and 

ions within a system.  

 

Sulfate hydrate structures are a very challenging proposition for calculations. They typically 

consist of large, low symmetry, unit cells with many hydrogen atoms and associated 

hydrogen bonds. These hydrogen bonds mean that the binding energy of the crystal will be 

low. This tends to make the total energy, as a function of the system variables, a very flat 

hypersurface containing many weak minima. When simulating such a system, care must be 

taken to ensure a true minimum in the energy surface has been found.  

 

The first calculations carried out as part of this project were classical simulations of 

anhydrous sulfates, with a view to adapting and transferring the potentials to hydrated 

sulfates. Descriptions of these interatomic potential calculations of anhydrous NaSO4 can be 

found in Appendix 1. Despite considerable effort, it was not possible, using this approach, to 

calculate sufficiently accurate elastic constants, and so it seemed unlikely that empirical 

potentials capable of being transferred to the mirabilite structure would be obtained in this 

way. Subsequently, therefore, quantum mechanical methods were used; although they are 

more computationally expensive than classical methods, they are more reliable since they do 

not depend on the transfer of fitted parameters from one material to another.  

 

This chapter explains some of the theory behind the ab initio methodology and its 

application to planetary ices, before describing the specific set up of the calculations for 1) 

mirabilite and 2) MS11. 
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5.1 Theoretical background to ab initio calculations. 

 

This section serves as a brief overview of the main concepts of ab initio calculations. It is by 

no means exhaustive and for more in-depth reviews please refer to Payne et al. (1992) and 

Gillan (1997).  

 

In quantum mechanics, the energy of a non-relativistic system is determined through the 

approximate solution of the time-independent Schrödinger equation. 

 

iii EH ψψ =ˆ
 Equation 5.1 

 

where Ei is the energy of the i th state, ψi is the wavefunction of that i th state and Ĥ is the 

Hamilton operator. The Hamiltonian is a differential operator, a rule book which describes 

how particles interact with each other. The wavefunction describes the particular 

configuration of the system under investigation and cannot be directly observed. The 

wavefunction depends on the coordinates and spin state (in the case of the electrons) of all 

the particles in the system. The square of the wavefunction determines the probability of 

finding an electron with a specific wavefunction within a given volume, drn , (Equation 5.2). 
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The Hamiltonian can be written as (Fortes (2004)): 
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Equation 5.3 

 

where there are N electrons in the system and M nuclei. The electrons are denoted with 

subscripts i and j and the nuclei with subscripts A and B. MA is the mass of nucleus A and ZA 

its charge. RA and r i denote the spatial coordinates of the relevant species. The first two 

components of Equation 5.3 are the kinetic energies of the electrons and the nuclei, the third 
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is the electrostatic attraction between electrons and nuclei and the final two components are 

repulsive potentials between like species of electrons and nuclei (Fortes, 2004a). 

 

The Hamiltonian and the wavefunction are not tractable for systems with more than one 

electron so approximations are employed in quantum mechanical simulations to overcome 

this difficulty (see below).  

 

5.1.1 Born-Oppenheimer Approximation. 

 

The first approximation is the Born-Oppenheimer approximation. This states that as there is 

such a large difference in mass between nuclei and the electrons, the electrons will react 

much more quickly than the nuclei, almost instantaneously by comparison. This allows the 

nuclei and the electrons of a system to be considered separately in the calculation of the 

Hamiltonian (and the wavefunction). The nuclei are treated as "static" and so their kinetic 

energy component is no longer necessary in the Hamiltonian and only the dynamics of the 

electrons need be considered. This then reduces the Schrödinger equation to: 

 

elecelecelecelec EH ψψ =ˆ
    Equation 5.4 

Note: Subscript elec refers to the electronic contribution. 

 

And the total energy of the system, Etot, becomes: 

 

nucelectot EEE +=   Equation 5.5 

 

With Enuc , the energy of the nucleus, being simplified to just the electrostatic repulsion 

between the nuclei as described in Equation 5.3 and equal to: 
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This then reduces the Hamiltonian to the electronic Hamiltonian, Ĥelec: 
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However, it is still the case that this Hamiltonian can be calculated exactly and the 

Schrödinger equation solved only if there is just one electron in the system. If, as is usually 

the case, there is more than one electron in the system, another important part of the 

Hamiltonian which must be addressed is the electron-electron interaction, i.e. the third 

component of the Hamiltonian in Equation 5.7, the Coulomb interaction between the 

electronic charges:  

 

5.1.2 Exchange and correlation 

 

To take into account the Coulombic interaction we must consider the wavefunction of the 

electrons, Ψe, which depends on not only the position, r, of the electron, but also on the spin 

state of that electron. The component of the angular spin of an electron along a given 

direction can only have values of ± ½ ħ2 (Gillan, 1997), represented as up, ↑, and down, ↓, so 

the probability of finding an electron at point r with its spin pointing up is: 

 

( ) 2
r↑   Equation 5.8 

 

The Pauli Exclusion Principle states that no two identical fermions can occupy the same 

quantum state simultaneously; two electrons cannot have the same spin and occupy the same 

space. If two electron positions are interchanged, their wavefunctions must change sign. This 

is known as exchange symmetry. Exchange symmetry results in a lowering of the energy of 

a system as it keeps the electrons apart. The effect of exchange symmetry can be 

demonstrated if we consider two electrons which both have their spins up. The combined 

wavefunction of these two electrons is the product of their individual wavefunctions: 

 

( ) ( ) ( ) ( )1221 rrrr baba ↑↑−↑↑ ψψψψ  Equation 5.9 

 

If we place the electrons in the same place, i.e. if r1 = r2, then the wavefunction vanishes and 

there is zero probability that the electrons exist at the same position. Equation 5.9 is termed 

an “antisymmetrized” product of the wavefunction and its inclusion allows the exchange 

symmetry behaviour of the electron to be addressed. This is Hartree-Fock theory.  

 

Another consequence of the Pauli Exclusion principle is that the movement of an electron 

within a system is related – correlated – to the movements of the other electrons in that 
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system in an effort to prevent two electrons occupying the same space and spin state. Both 

exchange and correlation work to lower the energy of the system as they both result in the 

electrons avoiding each other. This reduction in energy is denoted Exc, the exchange-

correlation energy. 

 

Hartree-Fock theory does not address the correlation portion of the exchange-correlation 

problem, so additional measures are needed to do this. It is possible to represent the 

movement of the electrons through a static potential and correlation can be included as a 

modification to this potential. This is the main premise of Density Functional theory (DFT). 

 

Density functional theory (DFT) assumes that the electron density, n(r), can be used as a 

proxy for the positions of the electrons. This leads to the expression: 

 

  ( ) ( )( )drrnrnE xcxc ε⋅= ∫  Equation 5.10 

 

where the amount of exchange-correlation energy, Exc in a unit volume is n(r)εxc(n(r)). This 

expression is termed the local density approximation; it has more recently been extended to 

include gradients of n(r), giving rise to the generalised gradient approximation (GGA) 

(Perdew 1986).  

 

The key statement of DFT (Hohenberg and Kohn 1964, Kohn and Sham 1965) is that Exc can 

be expressed as a function of the electron density. Hohenberg-Kohn (1964) (H-K theory) and 

later developments such as those by Kohn and Sham (1965), allow the construction of a 

rigorous many-body theory using the electron density as the fundamental quantity.  

 

 

5.1.3 Plane waves, Pseudopotentials and the PAW method. 

 

The next step in solving Schrödinger’s equation is to represent the wavefunction of the 

system. One way in which this may be done is by means of plane-waves. This methodology 

says that electrons within condensed matter can be treated as though they were free particles 

and so can be represented as such. The wavefunction of a free electron is exp ik Ar
` a

, where 

k is the wavevector of the de Broglie wave. The total wavefunction is then: 

 

( ) ( )rk
k

K ⋅=∑ icr ii expψ  Equation 5.11 
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Where cik are coefficients to be varied until the energy of the system is minimized and 

therefore the electrons are in their ground state. The set of functions which represent φ
a

r
` a

, 

the atomic wavefunction, are known as “basis-sets” and form the repeating basis of the 

wavefunction. 

 

In reality, this representation of atoms and electrons in matter is not necessarily a realistic 

one. Probabilistically, not all electrons are “free” to move throughout a structure. The inner 

electrons of the atoms, closest to the nucleus, have high energies and are tightly bound, not 

generally taking part in bonding. The physical properties of solids rely on the interactions 

and bonding of the outer valence electrons. This suggests, therefore, that it would be simpler 

to represent the core electrons as a bound unit and then consider the valence electrons as a 

separate entity. This representation can be achieved through replacement of the core 

electrons and the strong nuclear potential by a weaker pseudopotential which acts on a set of 

pseudo wavefunctions rather than the true valence wave function (Payne et al., 1992). 

 

Figure 5.1 shows a schematic of this, where ΨPseudo is a pseudowavefunction which 

substitutes for the true wavefunction of the valence electrons (ΨV), in the core region (r < rc). 

In the core, ΨV oscillates rapidly so ΨPseudo substitutes a smoother wavefunction. Beyond rc, 

the two potentials are identical. 
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Figure 5.1 Schematic illustration of the generated pseudopotential wavefunction, ΨPseudo,  in relation 
to that of the valence electrons, ΨV, and the corresponding potentials Vpseudo and Z/r. rc represents the 
point at which ΨV and Ψpseudo are identical. 
 
 

However, this representation is not without complications. Elements in the first row of the 

periodic table have limited numbers of core electrons (in the case of hydrogen – none); in 

such cases ΨV tends to be large and so there must be a large cutoff in the plane wave basis 

set to compensate, i.e., a large number of plane waves are required. However, non-norm 

conserving ultrasoft pseudopotentials have been developed which are able to adequately 

represent systems containing atoms of low atomic numbers using a lower cutoff (e.g. 

Vanderbilt, 1990).  

 

In the calculations reported here, an alternative, more recently developed approach, the 

Projector Augmented-Wave (PAW) method (Blöchl, 1994) has been used. PAW is a 

combination of density functional theory techniques, combining the true all-electron 

wavefunction (i.e., treating the core region with planewaves) with pseudopotentials so as to 

better represent the core region and obtain smoother pseudowavefunctions. This combination 

is achieved by relaxation of the norm-conservation of the wavefunctions. This creates a 

deficit between the all-electron and pseudopotential wavefunctions which is compensated for 

by the introduction of augmentation charges.  
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5.2 Vienna Ab initio Simulation Package (VASP) setup. 

 

The calculations carried out here used VASP – the Vienna Ab initio Simulation Package 

(Kresse and Furthmüller, 1996). VASP calculations are based on DFT (Hohenberg and 

Kohn, 1964) within the GGA (Wang and Perdew, 1991) using the PAW method (Blöchl, 

1994) to calculate the total energy of each system. The details of the computational setup are 

detailed in the sections below and the results reported in Chapters 6 and 7 for mirabilite and 

MS11 respectively. 

 

5.2.1 Inputs and outputs. 

 

VASP requires four files to form an input. The first of these is the POSCAR file. This file 

gives the position and number of atoms within the structure to be studied as well as the unit-

cell dimensions and angles. As the name suggests, the KPOINTS file gives the configuration 

of the electronic k-points to be sampled by this calculation. The INCAR file consists of a list 

of switches which tell VASP the limits and specifications of the calculations. The detailed 

options which were employed during the calculations reported in this thesis will be discussed 

below in section 5.3.1.2 for mirabilite and 5.3.2.1 for MS11. The final input file required by 

VASP is the POTCAR file. This file contains all the PAW information for the atoms within 

the structure to be studied and so, for mirabilite, it is a concatenated file containing such 

information for sodium, sulfur, hydrogen and oxygen.  

 

Depending on the calculation, VASP produces a large swathe of output files. The most 

important of these for the work presented here are the OUTCAR and CONTCAR files. The 

OUTCAR file contains a large amount of information including the final positions of the 

atoms, the forces on each of them, the eigenvalues and energies of the system and technical 

details of the computer run-time required to carry out the calculation. The CONTCAR file 

contains a record of the atomic positions obtained in the final minimisation step carried out 

by VASP. Another useful output from VASP is the OSZICAR file which contains a 

summary of the minimisation cycles. 
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5.2.2 Sampling of k - points. 

 

The KPOINTS file specifies how many k-points will be used in a calculation and in what 

arrangement. The k-points are the points in reciprocal space over which the energy of the 

structure will be calculated. The chosen positions and number are heavily dependent on the 

shape and size of the unit-cell and thus on the symmetry of the crystal. VASP can be set up 

to either generate a grid of k–points in reciprocal space, or the user can specify particular 

points for sampling. Ideally, to get the best results, there would be an infinite number of 

these k-points. However, the computational cost of such a simulation would be astronomical 

as the calculation must be performed over each of these k-points. Therefore, there is a trade-

off between having enough k-points to have a sufficient degree of accuracy while not having 

a very computationally expensive calculation. To achieve this, the number of k-points is 

selected after a series of tests with varying numbers and configurations of k-points to ensure 

convergence. For these calculations, VASP was set to automatically generate the k-point 

grid, sampling the Brillouin zone using the Monkhorst-Pack scheme, (Monkhorst and Pack 

(1976)). 

 

5.2.3 Ionic relaxation within VASP. 

 

To ensure that the structure being simulated is fully minimised, it must undergo ionic 

relaxation as well as electronic minimisation. This means that the atoms are allowed to move 

until they are in their lowest-energy state. The movement of the atoms is described by 

Newton’s equations of motion such that the atomic positions, Ri, obey:  

 

i
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    Equation 5.12 

 

Where M i is the mass of atom i, and Fi is the force on the atom. As the atoms move, the 

electrons respond and move in turn. At each timestep, the ground state and the forces on the 

atoms are recalculated until an energy minimum within a chosen tolerance is achieved. The 

shape and size of the unit cell are also parameters which can be optimised and so the same 

process can be applied to these.  
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 5.2.4 Hydrogen bonding in DFT 

 

The bonding schemes of mirabilite and meridianiite described in chapter 1 are dominated by 

hydrogen bond interactions and so a suitable description of such interactions is important for 

any simulation of these materials. Simulating hydrogen bonds is not a straightforward 

prospect with both experiments and calculations finding it difficult to determine the strength 

and geometry of hydrogen bonds (Ireta et al. 2004, Perrin and Nielson 1997, Muller-Dethlefs 

and Hobza 2000). 

 

There have been several studies on the accuracy of a variety of DFT techniques to represent 

hydrogen bonding within a range of different materials (e.g. Ireta et al. 2004, Laasonen et al. 

1992, Tuma et al. 1999, Hamann 1997 and Tsuuki and Luthi 2001). These have shown that 

the ability of a particular functional to describe hydrogen bonding can vary greatly for 

different systems. In general hydrogen bond interactions are not formally accounted for in 

current DFT functionals. However, GGAs have been shown to offer a good compromise 

between computational efficiency and accuracy (Silvestrelli 2009), in the simulation of 

hydrogen bond interactions over a range of materials (Tsuki and Luthi, 2001), more 

accurately describing the interaction than LDAs. Such functionals have also been 

successfully employed to represent other hydrogen bonded salt hydrates such as epsomite 

(Fortes et al. 2006).  

 

 
 

5.2.5 Tests on Ice VIII. 

 

In order to gain familiarity with the process of using both VASP and the super-computer 

interfaces necessary for carrying out ab initio calculations, simulations were first performed 

on a substance with a “simpler” hydrogen bonded structure, one of the polymorphs of ice, ice 

VIII. Ice VIII has previously been simulated through ab initio calculations using VASP 

(Fortes, 2004a) and so it is a good material for an initial venture into ab initio simulation 

techniques.  

 

Ice VIII is stable above ~2 GPa and below about 270 K, as can be seen in the ice phase 

diagram (Figure 5.2). Ice VIII (Figure 5.3) is tetragonal (space group I41/amd), with 24 

atoms in the unit-cell (8 water molecules). However, unlike the structurally-similar 

polymorph Ice VII, Ice VIII is fully ordered and can also be represented by two 

interpenetrating cubic ice structures. 
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Figure 5.2 Phase diagram of Ice, after Fortes (2004a). 
 
 
 

 
Figure 5.3 The structure of Ice VIII viewed along the b-axis. The grey bonds are the molecular 
hydrogen bonds and the blue bonds the intermolecular H-bonds. 
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A series of fixed volume calculations were performed over a range of volumes from 67 Å3 to 

118 Å3. The atomic positions were kept constant, the objective being to successfully set up 

and run a series of calculations to produce an E-V curve rather than to fully relax the 

structure. The calculations were carried out using the same conditions as Fortes (2004a). 

These included 45 irreducible k-points on a 6x6x5 grid, energy cutoffs of 800 eV in both the 

plane waves and augmentation charge and convergence in the total energy to within 1 x 10-6 

eV. Figure 5.4 shows the E-V curve obtained in these calculations compared to that of Fortes 

(2004a); clearly the results have been successfully reproduced.  

 

As a further check of consistency with previous work, the energy–volume points from these 

simulations were also fitted with a third order Birch-Murnaghan equation of state (see 

section 5.4). Table 5.1 shows a comparison of the equation-of-state parameters with those of 

Fortes (2004a). Within error, the results obtained here are identical, as indeed they should be. 

 
Figure 5.4 E-V curve of Ice VIII. The circular points are the test calculations carried out here. The full 
line is the calculations of Fortes (2004a).  
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Table 5.13BMEOS fit parameters for Ice VII obtained in this study and Fortes (2004a). 

 

 This study Fortes (2004) 
V0 (Å³) 166 (4) 163 (2) 

K0 (GPa) 13 (3) 14 (1) 
K’ 6.0(4) 6.0 (1) 

E0 (eV) -118.29(5) -118.22(2) 
 

 

5.3 VASP Setup for this study. 

 

The calculations in this work were carried out using HPCx, the UK's national high-

performance computing service, which is based at the STFC’s Daresbury Laboratory. HPCx 

is a cluster of 2608 CPUs. Each calculation submitted in this project was carried out over 16 

processors (the minimum number), and was initially given 8 hours to run. This represents a 

significant amount of CPU time which was the limiting factor on how many volumes were 

simulated. 

 

In general, because of the step-wise running of the simulations, where the structure from the 

previous volume was used as the starting point for the next, the calculations converged well 

within this 8 hour window. In fact, in the case of the fine scale volumes between V/V0 0.991 

– 1.009, the calculations all converged within an hour.  

 

For the smallest volumes, where V/V0 < 0.88, it was necessary to restart the calculations to 

allow a second session of 8 hours for convergence due to the large difference in volume 

between the initial structural input and the volume to be simulated, but after this time they 

had all converged successfully. 

 

 

5.3.1 Simulations of mirabilite. 

 

Mirabilite forms a low symmetry crystal structure with a large primitive unit-cell. The unit-

cell volume is over 1400 Å³ and the cell contains 148 atoms (Z = 4), all of which are in 

general positions. Thus, care was taken to thoroughly test the mirabilite structure to ensure 

that full convergence was achieved during the minimisation. The following sections describe 

the simulation setup for mirabilite and the testing undertaken. 
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5.3.1.1 POSCAR setup. 

 

The POSCAR file determines the structure of the system and atomic positions. The first line 

of the POSCAR file is a comment line, allowing the user to add a memorable description for 

this particular calculation. The next line specifies the unit cell volume; this may be done in 

one of two ways: the value entered is either a chosen multiplier for the cell parameters or, if 

preceded by an en-dash, the total volume of the cell. In the mirabilite calculations, the initial 

volume was set at that determined from the present neutron diffraction experiments at 4.2 K. 

The next section of the POSCAR file is the unit-cell parameters expressed as a three lattice 

vectors, followed by the number of each atomic species within the unit-cell. These must be 

in the same order as the concatenated POTCAR file. The next instruction, “direct” or 

“Cartesian”, tells VASP whether the atoms are specified in terms of fractional coordinates or 

physical values in Angstroms on orthogonal axes.  The final section of the POSCAR file is a 

list of the atomic coordinates for each species; again, these must be in the same order as 

listed in the POTCAR file.  

 

The fractional atomic coordinates used to start the calculations were taken from Levy and 

Lisensky (1978). However, since VASP is unable to incorporate disorder into calculations of 

the energy of a crystal it was necessary to “select” an ordered state for the structure. The 

disorder within the mirabilite structure, and the investigation of it, is described fully in 

Chapters 1 and 3. In the case of the ring disorder involving the O8/O16 (ring 1, shown in 

Chapter 1 and here again for reference as Figure 5.5), and similarly for O9/O17 (ring 2) we 

have “selected” the more occupied hydrogen atom site as determined from the experiments 

described previously; this is the “b” orientation as given by Levy and Lisensky (1978). Both 

orientations were initially simulated but there was no significant energy difference between 

them. 
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Figure 5.5 One of the square rings of water molecules involving disordered hydrogen bonds. The 
twofold axis of rotational symmetry passes through the middle of the ring, although not quite 
perpendicular to the plane of the page, as shown by the unit-cell axes. 

 
 

 

The second type of disorder described by Levy and Lisensky (1978) involves the sulfate 

tetrahedra (see Figure 5.6). The neutron diffraction experiments show no evidence of partial 

occupancies of the sulfate tetrahedral sites over the temperature range observed and so in 

these calculations was assumed that the oxygens in the sulfate tetrahedra are fully ordered in 

the “double-primed” sites.  
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Figure 5.6The two orientations of the sulfate tetrahedron described by Levy and Lisensky (1978) as 
viewed down the rotation axis (the S···O5 vector) - orientation relative to the crystallographic axes is 
shown by the legend in (a).  The hydrogen bonds donated to the ordered apex (O5) are shown with 
solid grey rods; those donated to the lesser occupied apices (O4', O6', and O7') are depicted as thinner, 
short-dashed rods; those donated to the more fully occupied apices (O4", O6", and O7") are depicted 
as thicker, long-dashed rods 
 

5.3.1.2 INCAR setup. 

 

The INCAR file contains instructions that VASP needs to run the calculations. There are 

many switches and options which can be set in VASP through the INCAR file; however, the 

optimum values of many of these are set as defaults within VSAP.   

 

The mirabilite INCAR file is listed here and followed by a brief explanation of each entry: 

NPAR = 8  
NBANDS = 280 
ENMAX = 800 
ENAUG = 800 
ISIF = 4 
IBRION = 2 
LWAVE=.FALSE. 
LCHARG=.FALSE. 
ALGO=Fast 
NSW = 150 
 

NPAR 

The calculations were run on HPCX and HECToR, both parallel architecture computers; 

NPAR defines the number of nodes over which the calculation is run, in this case 8. 
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NBANDS 

The number following the tag of NBANDS denotes the number of bands over which the 

calculation is to be split. VASP needs there to be at least one empty band. Therefore, the 

number of bands > the number of ions in the unit cell. 

 

ENMAX 

ENMAX is the kinetic energy cutoff for the planewave basis set (in eV); for the way in 

which this value was tested and set, see sections 5.3.1.3 for mirabilite and 5.3.2.1for MS11. 

 

ENAUG 

ENAUG is the kinetic energy cut off for augmentation charges. See section 5.3.1.3 below for 

further explanation of ENAUG testing for mirabilite (and section 5.3.2.1 for MS11). 

 

ISIF 

The ISIF tag determines whether the stress-tensor is calculated; it also determines which 

parameters (ionic positions, cell volume, cell shape etc.) are relaxed. Here ISIF = 4 is used 

which means that VASP will calculate the forces and the stress tensor and allow relaxation 

of the ionic positions, cell shape and cell volume. 

 

IBRION 

This tag tells VASP how to move and update the ionic coordinates. IBRION = 2 selects a 

conjugate gradient algorithm to ensure convergence of a system which may prove 

challenging.  

 

 

LWAVE and LCHARGE 

These two tags (respectively) tell VASP, whether to write the WAVECAR and CHGCAR 

output files. The entry “TRUE” instructs VASP to write these files. 

 

 

ALGO 

The ALGO switch tells VASP which algorithm to use for the energy minimisation. The 

FAST setting uses two different algorithms, allowing a mixture of the two to mix the 

advantages of each algorithm throughout the calculation. 
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NSW 

NSW tells VASP how many ionic steps to run (unless convergence is achieved), in effect 

how many times to carry out the calculation. In the case of mirabilite, NSW is set to 150 

steps. NSW should be set to more steps than it is expected that the structure will take to 

converge.  

 
 

5.3.1.3 ENAUG and ENMAX tests. 

 

ENMAX and ENAUG are the kinetic energy cut-offs of the plane-wave basis set and 

augmentation charges respectively. As we shall see, their value can have a significant effect 

on the outcome of a set of simulations, so it is imperative that their value is optimised. This 

optimisation is achieved by the observation of the systematic variation of the minimised 

energy as each quantity is changed. Here, the values of ENMAX and ENAUG have been 

varied from 200 eV to 1200 eV in 200 eV steps, repeated at two volumes. It is important to 

consider the convergence in pressure as well as in energy.  

 

Firstly, the effect of changes in ENMAX, the kinetic energy cutoff of the plane-wave basis 

set is considered. Figure 5.7 shows the variation in (a) energy and (b) pressure with the value 

of ENMAX at V=V0.  

 

In these calculations, the important quantity to converge is the difference in energy between 

two volumes (per atom), V1 and V2, in the unit cell. This difference will be denoted ∆E (∆E 

= E2-E1), from here onwards. Table 5.2 shows E1, P1, E2, P2, ∆E and ∆P (∆P = P2-P1) as a 

function of ENMAX, for the volumes, V1 = V0 and V2 = 0.993V0. ∆E is very small at all but 

the first value of ENMAX, typically 1-2 meV. Table 5.1 therefore suggests that values of 

ENMAX > 600 eV will give sufficient convergence in energy. ∆P shows that, although the 

absolute pressures vary slightly, the pressure difference between the two sets of simulations 

converges for ENMAX < 800 eV; it was therefore decided to use a value of ENMAX = 800 

eV in the production runs.  
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Figure 5.7 Variation in (a) Energy and (b) pressure with the value of ENMAX, the kinetic energy 
cutoff of the plane-wave basis set. 
 

Table 5.2 Variation of energy and pressure with ENMAX at two volumes, together with ∆E and ∆P. 
V = V0 V = 0.993 V0 ENMAX 

(eV) Energy (eV) Pressure (kbar) Energy (eV) Pressure (kbar) 

∆E per atom 
(eV ) ∆P (kBar) 

200 -761.879762 -1323.68 -760.625665 -1263.99 0.008474 59.69 
400 -754.238526 -38.66 -753.982214 -32.97 0.001732 5.69 
600 -753.867652 1.86 -753.638057 8.74 0.001551 6.88 
800 -754.312145 4.21 -754.083309 11.35 0.001546 7.14 

1000 -754.336281 5.15 -754.106765 12.33 0.001551 7.18 
1200 -754.363502 5.06 -754.133863 12.24 0.001552 7.18 

 

The same procedure was carried out with ENAUG, the augmentation charge cutoff, and 

Table 5.3 shows the results. The augmentation charge cutoff value has a similar effect on the 

energy and pressure outputs from the calculations as the ENMAX cutoff. ENAUG was fixed 

at 800 eV for the calculations of mirabilite. 

 

Table 5.3 Variation of energy and pressure with ENAUG at two volumes, together with ∆E and ∆P. 
V = V0 V = 0.993 V0 ENAUG 

(eV) Energy (eV) Pressure (kbar) Energy (eV) Pressure (kbar) 

∆E per atom 
(eV ) 

∆P  
(kBar) 

200 -754.327812 4.06 -754.116737 10.91 0.001426 6.85 
400 -754.347711 4.24 -754.120228 11.35 0.001537 7.11 
600 -754.319882 4.22 -753.638057 8.74 0.004607 4.52 
800 -754.312145 4.21 -754.083309 11.35 0.001546 7.14 

1000 -754.307056 4.18 -754.079148 11.32 0.001540 7.14 
1200 -754.306516 4.19 -754.078834 11.33 0.001538 7.14 
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5.3.1.4 Testing of k-points. 

 

Tests were carried out with varying numbers and configurations of k-points from 1-16 in the 

symmetry irreducible wedge in reciprocal space; the results are shown in Table 5.4. The 

difference in energy obtained using 1 kpt and 16 kpts is so small (~0.2 meV/atom) as to be 

negligible, and therefore single gamma point calculations were performed. The results from 

these calculations on mirabilite can be found in Chapter 6. 

 

 

Table 5.4 k-point testing results for mirabilite. Note that these simulations were carried out before any 
of the other tests had been performed and so the energies reported here are significantly different from 
the final energy values given in the next chapter. 

Grid Geometry Number of k-points Energy (eV) 
Energy per atom 

(eV per atom) 

111 1 -751.361764 -5.0767687 

222 2 -751.396900 -5.0770061 

323 5 -751.3968909 -5.0770060 

324 6 -751.3966915 -5.0770047 

333 10 -751.396975 -5.0770066 

434 16 -751.396948 -5.0770064 

444 16 -751.397015 -5.0770069 
 
 

5.3.2 Simulations of Meridianiite, MS11. 

 

Much of the technical detail of the simulation methods used for MS11 has already been 

described in depth for the simulations of mirabilite. The following sections describe where 

the MS11 calculations differ from the mirabilite calculations. 

 

Structurally, MS11 is simpler than mirabilite in that it has fewer (78) atoms in the unit-cell 

and does not have any of the fractional occupancy or disorder of mirabilite. However, it is 

triclinic, a lower symmetry than mirabilite, which potentially makes it computationally more 

expensive as a larger k-point grid may be required to adequately represent it. 
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5.3.2.1 INCAR setup. 

 

The INCAR file for MS11 (shown below) is broadly the same as for mirabilite; however, 

there are a couple of important changes. Firstly, NBANDS is reduced to 150; this is possible 

because there are fewer atoms in the unit-cell. The other changes are in the value of 

ENAUG, which is discussed below, and the inclusion of the EDIFF tag. EDIFF gives the 

order of magnitude of the error allowed in the total energy, i.e. it defines the convergence 

criteria of the simulation. In this case, the value of EDIFF has been decreased by an order of 

magnitude (which increases the accuracy by an order of magnitude), from the VASP default 

value to ensure sufficient accuracy in convergence. 

 

NBANDS = 150  

ENMAX = 800 

ENAUG = 1200 

ISIF = 4 

IBRION = 2 

NSW = 150 

EDIFF=1E-5  

LWAVE=.FALSE. 

ALGO=FAST 

LCHARGE=.FALSE. 

 

ENMAX and ENAUG testing was carried out in the same manner as for mirabilite and again 

an ENMAX value of 800 eV was used. ENAUG for MS11 required a higher value, 1200 eV. 

 

5.3.2.2 Testing of k-points. 

 

k-point testing for MS11 again produced results showing only a very small difference for 

calculations using a different number of k-points. Table 5.5 shows the results of the k-point 

testing for MS11. In this case, there was a relatively large difference between the use of 1 kpt 

and 4 kpts; the latter was adopted in subsequent calculations. The results from the 

simulations of MS11 can be found in Chapter 7. 

 

 

 



Chapter 5: Ab initio simulations I 

129 

Table 5.5 k-point testing results for MS11. 

Grid Geometry Number of k-points Energy (eV) 
Energy per atom 

(eV per atom) 

111 1 -403.069035 -5.167552 

222 4 -403.606556 -5.174443 

323 9 -403.607436 -5.174454 

332 9 -403.607297 -5.174453 

324 12 -403.608597 -5.174469 

333 14 -403.603516 -5.174404 

444 32 -403.601231 -5.174375 
 
 
 

5.4 Obtaining an equation of state from the total energy of a system. 

 

In Chapter 4 of this thesis, an isothermal equation of state, the 3rd order Birch-Murnaghan 

equation (3BMEOS; Birch, 1952) was applied to the pressure-volume data from the t-o-f 

neutron diffraction experiments described there. The 3BMEOS (equation 5.14), can also be 

fitted to the results of the ab initio simulations, by integrating it so as to obtain an energy-

volume relation rather than a pressure-volume relation.  
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The First and Second laws of Thermodynamics tell us that: 
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The 3BMEOS can thus be integrated to give: 
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Another EOS, the 4th order logarithmic equation of state (4LNEOS) (Poirier and Tarantola, 

1998), has also been used, which was originally published in its integrated form: 

 



























+









+









+=
4

ln

3

ln

2

ln 040302

00

V

V
c

V

V
b

V

V
a

VEE   Equation 5.18 

 

where: 

 

TKa ,0=   Equation 5.19 
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Summary 

 

This chapter describes one of the ways in which quantum mechanics may be used to 

determine material properties. It summarises the application of density functional theory, 

implemented in the VASP program using the generalised gradient approximation and the 

projector augmented wave method. The particular setup and specifications of the two 

material simulations reported in Chapters 6 and 7 are set out and explained, as well as the 

post-processing of these simulations to produce equations of state. 
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This chapter describes computer simulations of the behaviour of mirabilite as a function of 

pressure. The total energy of the mirabilite was calculated (athermally) using density 

functional theory methods (Hohenberg & Kohn, 1964; Kohn & Sham, 1965) implemented 

in the Vienna Ab initio Simulation Package, VASP (Kresse & Furthmüller, 1996) as 

described in Chapter 5. The chapter is arranged as follows: Section 2 describes the 

computational method, paying particular attention to how the disorder in the mirabilite 

crystal structure was handled within these static calculations; Section 3 reports the results 

and analysis of the calculations, Section 4 discusses the results and, finally, Section 5 

summarises this study. 

 

6.1 Simulations of the structure of mirabilite 

 

The structural relaxations were begun using the atomic coordinates determined from neutron 

single-crystal diffraction analysis by Levy and Lisensky (1978), which were the most 

precise available at the time when the calculations were made. These calculations were 

carried out before the thermal expansion experiments of Chapter 3. Using these coordinates 

and cell parameters, the athermal simulations were begun by relaxing the crystal structure 

and cell parameters until a minimum energy was found with zero pressure on the unit cell; 

this point corresponded to a unit-cell volume of ~1470 Å3. Starting from this structure, a 

series of relaxations were then performed with the unit-cell volumes fixed both at 

successively smaller and successively larger volumes; in each case the unit cell (subject to 

the constraint of fixed volume) and atomic coordinates were relaxed. With one exception 

(see Section 6.3), the simulations were performed stepwise, with the structure from the 

previous simulation used as the starting structure for the next. 

 

6.2 The zero-pressure, zero-temperature structure of mirabilite. 

 

Tables 6.1 and 6.2 report comparisons of the calculated bond lengths at zero-pressure in the 

athermal limit with the experimentally observed bond lengths in mirabilite at atmospheric 

pressure and 4.2 K (From Chapter 3).  It should be noted, however, that the difficulty of the 

neutron powder refinement (with respect to the large number of refined variables) required 

heavy bond-length restraints on S-O and O-D bond lengths and angles (see Chapter 3 for a 

full discussion of the refinement process) which will bias the experimental values.  Table 

6.1 shows that both the calculated S-O bond lengths, and the Na-O bond lengths (with two 

exceptions), are systematically 2-3 % longer than is observed experimentally. This means 

that the zero-pressure volume of the SO4 tetrahedron, 1.7358(5) Å3, is 7.0 % greater than the 
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experimental value. Similarly, the volumes of the Na2 and Na3 octahedra, 21.17(7) Å3 and 

22.0(2) Å3 respectively, are 6.9 % and 10.5 % greater than the equivalent experimental 

volumes.  Indeed, of the 31.8 Å3 difference between the experimental and DFT unit-cell 

volume, fully 43 % is due to over-inflation of the NaO6 octahedra, and just 1.4 % is due to 

over-inflation of the SO4 tetrahedra. 

 

Table 6.1 Comparison of the S-O and Na-O bond lengths (in Å) of the ambient-pressure phase of 
mirabilite obtained computationally with the experimental values from the deuterated isotopomer at 
4.2 K (Chapter 3). 

  
Experimental at 4.2 K 

 
DFT calculations at 0k, 0 GPa. 

 
Difference (%) 

S-O4           1.466(2) 1.5060(2) 2.7(1) 
S-O5  1.467(2) 1.5015(2) 2.4(1) 
S-O6 1.469(2) 1.5017(2) 2.2(1) 
S-O7      1.468(2) 1.4952(3) 1.9(1) 

 
Na2-O12 2.433(9) 2.479(3) 1.9(4) 
Na2-O13  2.409(9) 2.470(2) 2.5(4) 
Na2-O14 2.403(9) 2.393(2) -0.4(4) 
Na2-O15        2.378(9) 2.414(3) 1.5(4) 
Na2-O16  2.429(9) 2.513(2) 3.5(4) 
Na2-O17 2.390(9) 2.461(2) 3.0(4) 

 
Na3-O8 2.386(8) 2.437(1) 2.1(3) 
Na3-O9 2.369(8) 2.422(1) 2.2(3) 
Na3-O12  2.459(8) 2.466(1) 0.3(3) 
Na3-O13 2.409(8) 2.485(2) 3.2(3) 
Na3-O14 2.354(8) 2.420(2) 2.8(4) 
Na3-O15        2.418(8) 2.481(2) 2.6(3) 
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Covalent bond lengths, O-H(D) Hydrogen bond lengths, H(D)···O Hydrogen bond angles ∠∠∠∠ O-H(D)···O 
Experiment Calculation Experiment Calculation Experiment Calculation 

 

O-D O-H 

 
Difference 

(%) 
D···O H···O 

 
Difference (%) 

∠ O-D···O ∠ O-H···O 

 
Difference 

(%) 
O8-H8b···O16 0.9897(21) 1.0048(1) (+) 1.5(2) 1.842(6) 1.705(1) -7.4(3) 157.7(5) 171.0(2) 8.4(3) 
O9-H9b···O17 0.9899(21) 1.0034(2) (+) 1.4(2) 1.786(6) 1.711(3) -4.2(4) 168.8(6) 170.6(3) 1.1(4) 
O16-H16b···O8 0.9886(21) 1.0005(2) (+) 0.6(2) 1.766(6) 1.726(3) -2.3(4) 171.6(5) 160.8(2) -6.3(3) 
O17-H17b···O9 0.9924(21) 1.0072(1) (+) 0.2(2) 1.753(6) 1.678(1) -4.3(3) 167.5(5) 169.9(2) 1.4(3) 
             
O12-H12a···O10 0.9845(21) 0.9913(2) 0.7(2) 1.863(6) 1.835(2) -1.5(3) 177.7(5) 178.9(2) 0.7(3) 
O13-H13a···O11 0.9842(21) 0.9892(2) 0.5(2) 1.866(6) 1.880(3) 0.8(4) 177.0(5) 178.3(2) 0.7(3) 
O14-H14a···O10 0.9876(21) 0.9937(2) 0.6(2) 1.802(6) 1.782(4) -1.1(4) 168.1(4) 171.7(2) 2.1(3) 
O15-H15b···O11 0.9865(21) 0.9939(2) 0.8(2) 1.829(6) 1.788(5) -2.2(4) 166.5(4) 172.5(3) 3.6(3) 
             
O10-H10a···O5 0.9864(21) 0.9903(2) 0.4(2) 1.839(5) 1.857(8) -1.0(5) 170.4(4) 170.9(2) 0.3(3) 
O10-H10b···O4 0.9836(21) 0.9885(2) 0.5(2) 1.849(5) 1.837(2) -0.6(3) 170.2(4) 170.3(2) 0.1(3) 
O11-H11a···O4 0.9856(21) 0.9887(2) 0.3(2) 1.848(5) 1.859(5) 0.6(4) 174.8(5) 176.8(2) 1.1(3) 
O11-H11b···O6 0.9860(21) 0.9901(2) 0.4(2) 1.855(5) 1.862(6) 0.4(4) 165.9(4) 169.5(3) 2.2(3) 
          
O9-H9a···O4 0.9851(21) 0.9893(2)  (-) 0.4(2) 1.764(6) 1.753(5)   * -0.6(4) 174.8(4) 175.2(3) 0.2(3) 
O8-H8a···O5 0.9845(21) 0.9876(2)  (-) 0.3(2) 1.811(6) 1.804(6) -0.4(5) 165.7(4) 166.7(1) 0.6(2) 
O12-H12b···O5 0.9813(20) 0.9824(2)  (-) 0.1(2) 1.946(5) 1.977(3) 1.6(3) 170.7(5) 170.7(3) 0.0(3) 
O13-H13b···O6 0.9869(20) 0.9832(2)  (-) -0.4(2) 1.938(5) 1.937(5) -0.1(4) 171.6(4) 172.9(1) 0.8(2) 
O17-H17a···O6 0.9847(21) 0.9863(2)  (-) 0.2(2) 1.941(6) 1.898(2) -2.2(3) 170.5(5) 171.7(3) 0.7(3) 
O14-H14b···O7 0.9901(21) 0.9862(2)  (-) -0.4(2) 1.828(5) 1.816(1) -0.7(3) 168.3(5) 171.49(4) 1.9(3) 
O15-H15a···O7 0.9892(21) 0.9849(2)  (-) -0.4(2) 1.825(5) 1.808(3)   * -1.0(3) 167.4(4) 167.2(1) -0.1(2) 
O16-H16a···O7 0.9850(21) 0.9855(2)  (-) 0.0(2) 1.821(5) 1.828(7) 0.4(5) 165.4(5) 161.3(4) -2.5(4) 
Table 6.2 Comparison of the O-H(D) and H(D)-O bond lengths (in Å) of the ambient-pressure phase of mirabilite obtained computationally with the 
experimental values of the deuterated isotopomer at 4.2 K (Chapter 3).  Note that these have been grouped as follows; hydrogen bonds involved in forming the 
square rings in the low-P phase (first four rows); hydrogen bonds donated to interstitial waters (rows 5 - 8); hydrogen bonds donated by interstitial waters (rows 9 
- 12); all other hydrogen bonds, Na-coordinated waters donating to sulphate oxygens.  In column 3, the symbol (+) indicates that the bond increases in length as a 
function of pressure, (-) denotes a decrease in length with pressure, and the absence of a symbol indicates a negligible change in length with pressure (see text for 
further discussion).  In column 6, asterisks mark the two hydrogen bonds which are exceptionally stiff in comparison to all the others (see text). 
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In Table 6.2 the experimental and computational bond distances involving the hydrogen 

atoms are compared; it can be seen that, with the marked exception of the hydrogen bonds 

in the square rings (i.e. those involving H8b, H9b, H16b and H17b), the agreement between 

calculation and experiment is excellent.  Covalent O-H bonds are generally longer by 

approximately 0.5 %; given the restraints employed in the neutron powder refinement, this 

difference is not considered to be significant. The calculated hydrogen bonds (H···O) are 

slightly stronger, resulting in bond lengths which, for the most part, are shorter by 0.5 to 2% 

than is observed experimentally.  Nonetheless, the correlation between the calculated and 

experimental H···O bond lengths is high (excluding the square ring H···O bonds, the 

correlation coefficient = 0.935), showing that the pattern of hydrogen-bonding has been 

faithfully reproduced in spite of the lack of van der Waals contributions in the DFT 

approximation.  This is supported by an examination of the hydrogen-bond angles (∠ O-

H···O), reported in Table 6.5; with the exception of two outliers, both of which are involved 

in the square rings, and which differ by > 5 %, the correlation coefficient between the 

calculated and observed bond angles is 0.869.  All but three of the H-bonds in the DFT 

structure are straighter than in the observed structure at 4.2 K (i.e., bond angles closer to 

180°), with the differences in angle in the range 0 - 3.3 %.  However, this difference in the 

bending of the H-bonds is not responsible for the remaining 55 % of the volume difference 

not already accommodated by over-inflated SO4 and NaO6 polyhedra. In fact, the 

straightening of the bonds is offset by the shortening of the H···O contact, resulting in 

calculated O—O distances which differ by barely 0.5 % from experiment. 

 

The major difference between experiment and DFT calculation is found in the O-H and 

H···O bonds involved in the square rings.  These O-H bonds are roughly 1.5 % longer than 

any of the other O-H bonds in the DFT structure, and the H···O bonds are significantly 

shorter.  The difference in H···O bond length between experiment and calculation is also 

large (average 4.5 %). These differences are most likely due to the elimination of the 

partially ordered 'c' hydrogen sites in the structure; the orientational disorder of the O8/16 

and O9/17 water molecules certainly contributes additional volume in the form of Bjerrum 

defects, and these are wholly lacking in the simulated structure.  This difference between the 

observed and simulated structure also affects the behaviour under pressure, as described in 

the following section. 
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6.3 Possible phase transformations in mirabilite at high pressure 

 

The total energy per unit-cell was calculated as described above at a series of fixed unit-cell 

volumes in the range 682 < V < 1810 Å3 (0.78 < (V/V0)
1/3 < 1.08); the corresponding 

pressure range is 61.0 < P < -2.7 GPa.  The volume dependence of the total energy, E(V), is 

shown in Figure 6.1.  Clearly, there is a break in slope at V ≈ 1200 Ǻ3 which is indicative of 

a phase transition. Closer inspection of this figure also reveals that for ~1080 Å3 < V < 

~1200 Å3 the relationship between energy and volume is linear; since P = - (∂E/∂V)T, this 

region is, therefore, isobaric, indicating that the phase transition must be first-order in 

nature, i.e. V(P) is discontinuous. 

 

This first phase transition is more clearly seen in Figure 6.2, which shows the behaviour of 

the unit-cell volume as a function of pressure (the pressure values used were taken from the 

VASP output). The discontinuous nature of the phase transition means that the material 

would not exist in nature in the volume range from ~1080 Å3 < V < ~1200 Å3; the four 

simulations performed in this region thus correspond to transition states between low- and 

high-pressure phases. The transition pressure determined from the slope of the isobar on the 

E(V) curve is 5.7 ± 0.2 GPa, in fair agreement with the mean pressure from the four VASP 

outputs (7.7 ± 1 GPa).  
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Figure 6.1 Total energy curves as a function of volume from ab initio calculations; panel (a) shows the entire range of volumes investigated, and panel (b) shows 
an expanded view of the low-pressure region. The ambient-pressure phase is represented by open diamonds and the highest-pressure phase by open squares; the 
intermediate-pressure phases are indicated by filled diamonds and open circles; the “transition region” is indicated by filled squares (see text). The solid lines 
shown are 3rd-order Birch Murnaghan EoS (see text).  A 4th-order logarithmic EoS was also fitted to the low-pressure results but the two lines are 
indistinguishable in these figures. For ~1080 < V < ~1200 Å3 the points lie on a straight line (shown as a dashed line in the figures) and are therefore isobaric (see 
text). 
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Figure 6.2 V(P) curves for mirabilite showing the full range of the calculations in (a) and an expanded view of the low-pressure region in (b). The ambient-pressure 
phase is represented by open diamonds and the highest-pressure phase by open squares; the intermediate-pressure phases are indicated by filled diamonds and open 
circles; the “transition region” is indicated by filled squares (see text). The pressure values shown are the VASP output pressures. The strongly discontinuous 
transition at ~7.7 GPa is indicated by a vertical line. The solid line shown for the low-pressure phase is a 3BMEOS fitted to P(V), i.e. to the VASP output pressures 
(V0 = 1459.2(1) Å3, K0 = 23.4(3) GPa,  K′0 = 5.8(1)). For the high-pressure phases, 3BMEOS were fitted to the data (with K′0 fixed at 5.8, the value for the low-
pressure phase) to act as guides for the eye. 
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Examination of the pressure dependence of the individual unit-cell parameters, shown in 

Figure 6.3, however, strongly suggests that a further first-order phase transition occurs at a 

pressure between 15 and 20 GPa. This transition is most clearly seen in the behaviour of the 

monoclinic angle, β (Figure 6.3d), which takes a value of ~108° in the ambient pressure 

phase; at the first phase transition (P ~7.7 GPa on Figure 6.3d) β falls discontinuously to 

~99° and at the second transition, which occurs between 18 GPa and 21 GPa, there is a 

further drop to ~92°. A similar large discontinuous reduction (of ~0.6 Å) is observed in the 

a-axis between 18 and 21 GPa, following a drop of ~0.75 Å at the first phase transition. The 

b-axis shows a discontinuous increase of about 0.05 Å at the lower-pressure transition and 

0.15 Å at the higher one, whereas the c-axis shrinks by ~1.3 Å at the first transition but 

shows little, if any, discontinuity at the second. The combined effect of these changes in the 

cell parameters is such that no obvious discontinuity in the unit-cell volume is apparent.  

 

Analysis of the relaxed atomic coordinates using the computer program “Endeavour” (Putz 

et al., 1999) indicated that the structures at ~13.4 GPa (intermediate phase) and 61 GPa 

(high-pressure phase) both retain the P21/c symmetry of the ambient-pressure phase of 

mirabilite. This is unexpected as there is no requirement for the VASP simulations to adopt 

any particular space-group. This is discussed further in Section 6.7.3, below, which 

describes the details of the major structural re-organisations that occur at high pressure.  
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Figure 6.3 Calculated unit-cell axes of mirabilite as a function of pressure. The ambient-pressure 
phase is represented by open diamonds and the highest-pressure phase by open squares; the 
intermediate-pressure phases are indicated by filled diamonds and open circles; the “transition 
region” is indicated by filled squares (see text). For the low-pressure phase, the solid lines shown are 
3rd-order Birch-Murnaghan EoS fits to the cubes of the unit-cell axes (with a 3rd-order polynomial 
fit for β). For the high-pressure phases the lines shown correspond to Murnaghan integrated linear 
equations of state (with a linear expression for β); in the intermediate-pressure phase the value of K′0 
for the a-axis was arbitrarily fixed at that found for the c-axis to prevent the fit converging to 
physically meaningless values. 

 
 

These calculations also suggest that there may be a second stable, or metastable, phase of 

mirabilite in the pressure range from 8 GPa to 21 GPa. In Figure 6.1, it can be seen that two 

data points, having different energies, are shown for a unit-cell volume of 1012.8 Å3. The 

point indicated by a “filled diamond” was obtained by relaxing the structure starting from 

the point at higher volume immediately preceding it; the point indicated by the “open circle” 

was obtained by relaxing the structure with next-lower volume (the three other points 

plotted in this region were all obtained by relaxing the structure from a higher volume). 

Examination of the SO4 polyhedral volume of these two relaxed structures clearly shows 

that they have different hydrogen bond schemes (see Section 6.7.1 below). However, the 

difference in internal energy between them is very small, ~ 4 meV atom-1 (the enthalpy 

difference is ~39 meV atom-1) and, although the data point marked by a “open circle” is of 
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marginally lower internal energy and enthalpy, all of the other VASP simulations in this 

volume range converged to the structure marked by the “filled diamonds”. The values of the 

unit-cell volume and cell parameters for this second intermediate-pressure phase have been 

included in Figures 6.2 and 6.3 (marked by an “open circle”) and  its crystal structure is 

discussed in Section 6.7.3; however, no attempt has been made to further investigate its 

stability field; the reasons for this are discussed in Section 6.8. 

 

6.4 The equation of state of the low-pressure phase of mirabilite. 

 

The E(V) values shown in Figure 6.1 for the low-pressure phase were fitted with an 

integrated form of the third-order Birch-Murnaghan equation of state (Birch, 1952; referred 

to as 3BMEOS; see Chapter 5 for details) and an integrated form of the 4th-order 

logarithmic equation of state (Poirier & Tarantola, 1998; referred to as 4LNEOS). Both 

equations were fitted to E(V) values in the range 1231.78 < V < 1810.61 Å3, (0.95 < 

(V/V 0)
1/3 < 1.08).  As expected, the E(V) curves are very flat, so the parameters obtained 

from these fits exhibit greater uncertainties than those obtained in earlier work on smaller 

systems with higher symmetry. The fitted parameters are given in Table 6.1; note the 

agreement in all of the parameters for the low-pressure phase between 3BMEOS3 and 

4LNEOS4. The value for the second pressure derivative of the incompressibility, (∂2K/∂P2)0 

or K0", for the 3BMEOS given in Table 6.3 was calculated from: 
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The E(V) curve shown in Figure 6.1 is that for the 3BMEOS; the two equations of state are 

indistinguishable to the eye in this Figure.  
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 Low pressure phase 
3BMEOS 

Low pressure phase 
4LNEOS 

V0 (Å
3) 1468.6(9) 1468.4(8) 

E0 (eV per unit cell) -754.374(5) -754.370(5) 
K0 (GPa) 22.21(9) 21.7(3) 
K' 5.6(1) 5.9(2) 
K" (GPa-1) -0.37(2)* 0.0(2) 

Table 6.3 Parameters obtained by least-squares fitting of the 3rd-order Birch-Murnaghan equation of 
state (3BMEOS), and the 4th-order logarithmic equation of state (4LNEOS), to the E(V) curve of the 
low-pressure phase of mirabilite (unit-cell volume range: 1231.78 < V < 1810.61 Å3). 
*Derived from K0 and K' - see text. 

 

The method described above will give the most reliable equation of state parameters and the 

hence best estimate of V(P) for the low-pressure phase of mirabilite. The pressure-volume 

curves shown in Figure 6.2, however, were plotted using the VASP output pressures, so as 

to keep a common pressure scale for the full range of the simulations; the line for the 

3BMEOS given in Figure 6.2 was, therefore, obtained by fitting the P(V) values shown in 

the Figure directly (the fitted parameters, which differ slightly from those shown in Table 

6.1 are listed in the Figure caption).  

 

The unit-cell volume and the cell parameters corresponding to the calculated V0 are 

compared with the experimental values measured at 4.2 K using neutron powder diffraction 

(from Chapter 3) in Table 6.4. The agreement between the DFT values and the experimental 

values is very good, and comparable with much of the earlier work on hydrogen-bonded 

solids (see Chapter 1).  The difference in volume (∆V/V ≈ 2.2 %) corresponds to a 

difference in pressure of only 0.51(1) GPa, which is small, both in absolute terms and 

relative to the incompressibility of the material. 

 
Experimental 

at 4.2 K 
 

DFT calculations 
at 0 K 

Difference (%) 
 

V (Å3) 1436.794(8) V0 (Å
3) 1468.6(9) 2.21(6) 

a (Å) 11.44214(4) aO (Å) 11.539(2) 0.85(3) 
b (Å) 10.34276(4) bO (Å) 10.415(8) 0.70(8) 
c (Å) 12.75468(6) cO (Å) 12.828(11) 0.57(8) 

β(°) 107.847(1) β(°) 107.74(3) -0.10(3) 

b/a 0.903918(5) bO /aO 0.9026(7) -0.14(8) 
c/a 1.114711(7) cO /aO 1.1120(10) -0.27(9) 
b/c 0.810899(5) bO /cO 0.8119(9) 0.13(11) 

Table 6.4 Comparison of the unit-cell dimensions and axial ratios of the ambient-pressure phase of 
mirabilite obtained computationally with the experimental values of the deuterated isotopomer at 4.2 
K (from Chapter 3). The computational V0 is from the 3BMEOS fit to the E(V) curve (see Table 6.1), 
and the cell parameters are from independent 3BMEOS fits to the relaxed unit-cell dimensions as a 
function of the EoS-derived pressure scale (axial K and K' from these fits are cited in the text), with β 
taken from a 3rd-order polynomial fit; note that the computational unit-cell dimensions give V0 = 
1468(2) Å3. 
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There are, as yet, no published experimental measurements of the incompressibility of 

mirabilite and so the only values with which these calculations can be compared are those 

presented in Chapter 4 of this thesis. The value of K0 obtained from the VASP simulations, 

22.21(9), is in very good agreement with the experimental value from the HRPD data at 80 

K, 22.7(6), but the poor quality of the experimental data has prevented any comparison of 

the values of K0′. It is interesting to note that the elastic moduli of mirabilite are remarkably 

similar to those found in recent experimental and ab initio studies of epsomite (for 

MgSO4·7D2O and MgSO4·7H2O, respectively) by Fortes et al. (2006b). For epsomite, DFT 

calculations in the range -2 < P < +6 GPa give an incompressibility of K0 = 23.2(2) GPa, 

with K′0 = 5.3(2), in the athermal limit, whereas fits to neutron powder diffraction data in the 

range 0.01 < P < 0.55 GPa at 50 K gave K0 = 24.9(8) GPa, with K′0 = 6(3), and at 290 K 

gave K0 = 21.5(4) GPa, with 0K ′  = 6(1).  Despite major differences in the structures of 

epsomite and mirabilite, they clearly have similar bulk elastic properties, both as a function 

of pressure and of temperature (see Chapter 3).  

 

6.5 The equations of state of the high-pressure phases of mirabilite. 

 

The instability at low pressures of the two proposed high-pressure phases of mirabilite 

prevents the calculation of the total energy of either of these phases in the region of their 

value of V0. It has not, therefore, been possible reliably to fit their equations of state. For 

example, if the E(V) results for the highest-pressure phase (i.e. the four points for which V < 

~882 Å3, (V/V 0)
1/3 < 0.85) are fitted to an unconstrained 3BMEOS, the values V0 = 1460 Å3, 

K0 = 7.6 GPa, 0K ′ = 6.8 and E0 = -746.9 eV are obtained (no errors are given as the number 

of data points is equal to the number of fitted parameters); however, if K′0 is fixed at the 

value obtained from the low-pressure phase (K′0 = 5.6), very different values of V0 =1333 

(27) Å3, K0 = 14.625(8) GPa, and E0 = −744.9(9) eV result. For the intermediate-pressure 

phase, the corresponding sets of values are V0 = 1461 Å3, K0 = 14.7 GPa, K′0 = 4.2 and E0 = 

-752 eV (free refinement), and V0 = 1334 Å3, K0 = 19 GPa and E0 = -748.5 eV (with K′0 = 

5.6). Thus, no firm conclusions can be drawn as to the values of the 3BMEOS parameters. It 

is interesting to note, however, that for all of the fits described above, the values of V0 

obtained were less than the value of V0 for the low-pressure phase, as one would expect of a 

more densely packed structure; also, the value for V0 that is found with 0K ′  fixed at 5.6 is 

identical to that which is obtained by applying the relative volume change at the ~7.7 GPa 

phase transition to the value of V0 for the low-P phase.   
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Since reliable equation of state parameters cannot be obtained for the high-pressure phases, 

the lines shown in Figure 6.2, which are fits to the 3BMEOS with K′0 fixed at the value for 

the low-pressure phase (see Figure caption), should be considered as merely providing a 

method of smoothing the data for use in later analysis (see Section 6.6). 

 

6.6. Derivation of the elastic strain tensor of mirabilite. 

 

In the first instance, the unit-cell parameters of the low-pressure phase of mirabilite (Figure 

6.3) were also fitted with 3rd-order Birch-Murnaghan expressions in order to obtain 

information about the axial incompressibilities. Referred to orthogonal axes, the zero-

pressure axial incompressibilities and their first pressure derivatives were found to be, 

K0asin = 76(1) GPa, K0'asinβ = 17.9(5), K0b = 92(4) GPa, K0'b = 21(2), and K0c = 55(2) GPa, 

K0'c = 10.4(9),  these incompressibility values being in good agreement with those found 

experimentally at 80 K (see Table 6.5).  

 

ab initio calculations 80 K experimental data from Chapter 4  
asinb b c asinb b c 

a0 (Å³) 10.99(1) 10.14(1) 12.83(2) 10.9090(1) 10.349(1) 12.756(3) 
K0 (GPa) 76(1) 92(4) 55(2) 75 (2) 83 (3) 54 (2) 

K0′ 17.9(5) 21(2) 10.4(9) 15.9 15.9 15.9 
Table 6.5 The axial compressibility of mirabilite from the ab initio calculations in comparison to 
experimental values at 80 K from Chapter 4. 
 

As a further check, the zero-pressure bulk modulus was computed from the expression K0 = 

[(K 0asinβ)
-1 + (K0b)

-1 + (K0c)
-1]-1, giving a value of K0 = 23.0(4) GPa, which is in fair 

agreement with that found earlier. It is surprising to find that the most compressible 

direction is along the c-axis; this is most likely due to the softness of the NaO6 octahedra 

rather than any propensity to accommodate compression by folding at the shared hinges (see 

section 6.7.1).  

 

This simple analysis of the elastic anisotropy does not reveal the changes in elastic 

behaviour brought about by the significant structural changes as a function of pressure. The 

relaxed unit-cell dimensions (Figure 6.3) were therefore used to determine the coefficients 

of the elastic strain tensor as a function of pressure using the method described by Hazen et 

al. (2000). The eigenvalues and eigenvectors of the strain tensor were obtained by matrix 

decomposition, yielding the magnitudes and orientations of the principal axes of the strain 

ellipsoid. The magnitudes of the principal axes are strains per unit stress, and are effectively 
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axial compressibilities; their sum is the bulk compressibility. The ellipsoid is constrained by 

the symmetry of the crystal to rotate only about the two-fold axis and the convention has 

been adopted that the principal strain axis e2 is parallel to the b-axis of the crystal. 

 

Strains were calculated using the relaxed unit-cell dimensions directly output by VASP, and 

also using equations of state fitted to the same output. For the low-pressure unit-cell, it was 

possible to fit BMEOS3 expressions to the a-, b-, and c-axes, together with a 3rd- order 

polynomial to represent the behaviour of the monoclinic angle, β.  Due to the limited 

number of high-pressure points, Murnaghan integrated linear equations of state (MILEOS, 

Equation 6.2) were fitted to the unit-cell axes of the two high-pressure phases, and linear 

expressions for the β-angle (see Figure 6.3 for details).   

 

 

′















′+
=

01

00

0
0

K/

PKK

K
XX   Equation 6.2 

 

The solid lines in Figure 6.4 are the strains obtained from the various EoS fits; only for the 

volumes are strains computed from the 'raw' VASP output shown, since the strains 

computed from the 'raw' unit-cell dimensions are very noisy.  Also shown in Figure 6.4 is 

the angle between e3 and the crystallographic c-axis. 
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Figure 6.4 Panels (a) to (c) report the magnitudes of the principal axes of the strain tensor, e1, e2 and 
e3 as a function of pressure (all on a common scale). The angle between e3 and the crystallographic c-
axis is shown in (d) and the volume compressibility is shown in (e). 
 

Bearing in mind that the strain ellipsoid for the high-pressure phase is quite sensitive to the 

uncertainties in the EoS fitting, Figure 6.4 reveals significant discontinuities in all three 

principal axes. In each of the axes the three separate phases, low, intermediate and high 

pressures are clearly visible, with a smaller offset at the transition from intermediate to high 

pressure than from low to intermediate pressure phases.  

 

The calculated volume strain per unit stress has been used to determine the pressure 

dependence of the bulk modulus for the low-pressure phase as the volume strain per unit 

stress is effectively [K]-1; the values K0 = 22.99(1) GPa, K0' = 4.95(1), and K0" = -0.171(2) 

GPa-1 were obtained which agrees very well indeed with the EoS parameters reported in 

Table 6.1. 
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The orientation of the strain ellipsoid in the a-c plane changes considerably as a function of 

pressure (Figure 6.4e). At P = 0, e1 is closely aligned with the crystallographic a-axis, and e3 

is consequently tilted ~10° from the c-axis towards the +ve a-axis. Under compression, the 

angle between e3 and the c-axis shrinks, passing through zero at ~ 1.2 GPa, and continuing 

to rotate through a further 23° with increasing pressure.  At the transition, the ellipsoid 'slips' 

back, bringing e3 to near coincidence with the c-axis before rotating through ~ 10° until the 

transition to the high pressure structure, at which point the rate of rotation increases and the 

angle rapidly changes as e3 saturates at about 20o from the a- axis. 

 

It has not been possible to identify any single mechanism which might explain the rotation 

of the ellipsoid through ~35° from 0 - 7.5 GPa.  There are very small rotations with respect 

to the crystallographic axes of various structural units (such as the SO4 tetrahedra and the 

square H-bonded rings), but these amount to little more than ~3°. Furthermore, there is no 

evidence of rotation due to kinking of the Na-O chains along the shared hinges.  The 

stiffening roughly along the c-axis is probably due to the expansion and stiffening of the Na-

O polyhedra (see 6.7.1 below) whereas the softening roughly along the a-axis is likely due 

to a reduction in interlayer hydrogen bonding.  

 

The following section reports the agreement between the simulated structure at zero-

pressure and the experimentally observed structure, before going on to describe the 

pressure-dependent changes. 

 

6.7. The Pressure dependence of the structural parameters  

 

In the majority of crystal structures, the application of pressure results in shortening of 

interatomic and intermolecular bonds. However, in hydrogen-bonded crystals it is typical to 

observe lengthening of O-H bonds under pressure as the electron density in the hydrogen 

bond increases. In water ice this results in the hydrogen moving to a position midway 

between neighbouring oxygens at pressures of 60-70 GPa; this is the so-called bond-

symmetric phase ice X. In many other hydrogen-bonded crystals however, proton transfer 

may occur, resulting in a partially or wholly ionic structure. It is therefore of interest to 

establish the pressure dependence of the various bond lengths in mirabilite. 

 

 

 



Chapter 6: Ab initio simulations II 

149 

6.7.1. The SO4 and Na Coordination Polyhedra 

 

3rd-order Birch-Murnaghan expressions have been fitted to the calculated volumes of the 

polyhedral units in the mirabilite structure as a function of pressure; these fits provide the 

zero-pressure volumes reported in Section 6.6, and the polyhedral bulk moduli.  The SO4 

tetrahedron is comparatively stiff, with V0 = 1.7358(5) Å3, K0 = 170(5) GPa, and K0' = 17(3) 

in the low-pressure phase.  When these values are compared to the DFT equation of state of 

the SO4 tetrahedron in epsomite (Fortes et al., 2006b), which has V0 = 1.7374(7) Å3, K0 = 

244(11) GPa, and K' = 25(8), it is apparent that the values of V0 are in very close agreement; 

the only significant dissimilarity is in the stiffness, which is attributable to the disparity in 

electron density around the apical oxygens caused by the difference in the number of 

accepted hydrogen bonds - twelve in mirabilite and eight in epsomite. Thus, although the 

rate at which the SO4 tetrahedron stiffens is structure dependent, the volume that it occupies 

at zero-pressure is insensitive to the crystal structure. This hypothesis is supported by the 

observation that when the number of hydrogen bonds donated to the SO4 tetrahedron in 

mirabilite drops to nine following the first high-pressure phase transition at ~7.7 GPa, the 

volume of the SO4 tetrahedron increases so that it is similar to that predicted by the equation 

of state of the epsomite SO4 tetrahedron (Figure 6.5a). Moreover, at pressures above the 

second phase transition at ~19 GPa, when the number of H-bonds donated to the mirabilite 

SO4 tetrahedron drops to seven and then to five there is a further expansion and stiffening 

(K0 > 550 GPa, with V0 fixed at 1.736 Å3, see above), as shown in Figure 6.5b.  

 

Figure 6.5 also reveals very clearly the difference in crystal structure between the two 

polymorphs found in the pressure range from ~7.7 to ~19 GPa. The majority of the data in 

this region correspond to structures with nine hydrogen bonds donated to the SO4 

tetrahedron, whereas the second polymorph, represented in Figures 6.1 - 6.3 by the single 

data point, has a structure in which ten hydrogen bonds are donated to the SO4 tetrahedron. 
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Figure 6.5(a) Sulphate tetrahedron volumes with increasing pressure for epsomite (red filled squares, Fortes et al., 2006b), and for mirabilite (this work); the 
symbols used for mirabilite are: open diamonds (low-pressure phase), filled squares (transition region), filled diamonds (intermediate-pressure phase), open 
circle (second intermediate-pressure phase), open squares (high-pressure phase). The lone point denoted by the open circle is the “odd” point where the 
calculation was not carried out step-wise (see text). The solid lines are 3BMEOS fits to the SO4 volumes in mirabilite for the low-pressure and high-pressure 
phases, and the dashed line is a 3BMEOS fit to the SO4 volumes in epsomite. 
(b) Variation of the SO4 volume in mirabilite over the entire pressure range simulated. The solid black line and the dashed line are the same as in panel (a).  The 
solid blue line at higher pressure is a 3BMEOS fit to the four values above 20 GPa with V0 fixed equal to 1.736 Å3 (for details see text 
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Similar changes are observed in the NaO6 octahedra under compression.  In the low-

pressure phase, the Na2 octahedron has 3BMEOS3 parameters V0 = 21.17(7) Å3, K0 = 19(2) 

GPa and K0' = 5.6(9), while the Na3 octahedron has 3BMEOS parameters V0 = 22.0(2) Å3, 

K0 = 14(3) GPa and K0' = 4.4(11).  The NaO6 octahedra are roughly an order of magnitude 

softer than the SO4 tetrahedra and indeed are more compressible than the bulk crystal.  The 

only literature reporting the polyhedral bulk modulus of NaO6 octahedra pertains to the 

sodium-bearing clinopyroxenes aegirine and jadeite, where Na+ is coordinated by O2-, rather 

than by neutral H2O; these have bulk moduli of ~67 GPa and ~70 GPa, respectively 

(McCarthy, 2007). Interestingly, in both of these minerals, the NaO6 octahedra are also 

more compressible than the bulk crystal.  However, by applying the theoretical relationship 

of Hazen & Finger (1979), it is possible to make an estimate of the expected 

incompressibilities of the NaO6 octahedra in mirabilite from the incompressibility of the 

MgO6 octahedron in epsomite, which has a value of 52(2) GPa (Fortes et al., 2006b). The 

ratio of the bulk moduli is simply: 
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where zNa and zMg are the formal charges on the ions (+1 and +2, respectively), and 〈Mg-O〉 

and 〈Na-O〉 are the average cation—anion distances in the polyhedra (2.090 Å and 2.454 Å, 

respectively).  Hazen & Finger (1979) observe that the connectivity (i.e., isolated polyhedra 

vs. edge-sharing or face-sharing) does not affect the validity of the relationship.  Using 

Equation 6.3 the ratio of the bulk moduli is 0.309 and therefore the predicted 

incompressibility of the NaO6 octahedra in mirabilite in the low-pressure phase is 16 GPa, 

in excellent agreement with the ab initio calculations.  Analysis of the angles between 

opposing plane faces on the shared hinges reveals that these are extremely stiff, permitting 

no more than 0.3° GPa-1 of tilt between adjacent octahedra in the low-P phase. Hence, in 

this phase, it is solely the compression of these octahedra that is responsible for the softness 

of the c-axis rather than tilting along shared hinges.  

 

As described below, the transitions to the high-pressure phases are characterised primarily 

by a change in sodium coordination, which finally changes the NaO6 octahedra into NaO7 

decahedra, whereupon the volume of these polyhedra increases from ~17 Å3 to ~35 Å3, with 

a consequent stiffening of the polyhedral bulk modulus (see section 6.7.3). 
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6.7.2 The behaviour of bonds involving H atoms in the low-pressure phase. 

 

In the low-pressure phase, the O-H bonds respond to pressure in one of three ways. One 

group of bonds shrinks at a rate of -1x10-3 Å GPa-1; a second group expands at a rate of 1.5 - 

2.0x10-3 Å GPa-1; and a third group exhibits a negligible change in length (10-4-10-5 Å GPa-

1). In Table 6.4, the first group are marked (-), the second are marked (+), and the third have 

no extra mark. It is very clear that all of the O-H bonds which increase in length occur in the 

square rings (O8/16 and O9/17), and all of the O-H bonds which are insensitive to pressure 

either donate H-bonds to interstitial waters, or form the interstitial waters (O10 and O11). 

The remainder of the H-bonds shrink under pressure, which is the opposite response to that 

observed in, for example, water ice. The O-H bonds in the square rings are notable for being 

longer than all of the other O-H bonds at zero-pressure and thus their donation of much 

shorter (and hence stronger) hydrogen bonds. 

 

The pressure response of the hydrogen bonds themselves is quite interesting. If MILEOS 

expressions are fitted to the bond lengths to obtain their linear incompressibility (K = 

x·dP/dx), it is found that there is no correlation between bond length and bond stiffness. Two 

H-bonds (marked by asterisks in Table 6.4) stand out as being exceptionally stiff (K0 = 125-

130 GPa) compared to the average (K0 = 35 ± 12 GPa excluding these two outliers), but it is 

not at all obvious why this should be so. The weakest H-bonds, with linear 

incompressibilities of 17-30 GPa, are those donated by the interstitial waters O10 and O11 

to the sulphate oxygens O4, O5, and O6. 

 

6.7.3 The high-pressure phases of mirabilite. 

 

As described previously, the calculations reveal that mirabilite experiences two phase 

transformations at ~ 7.5 and ~ 20 GPa. In order to appreciate the complex structural changes 

which occur, structure maps illustrating the molecular connectivity are shown below for the 

low-pressure phase (Figure 6.6), the intermediate phase (Figure 6.7), the “odd point” 

described in Section 6.2 (Figure 6.8) and the high-pressure phase (Figures 6.9 and 6.10). 
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Figure 6.6 Connectivity map illustrating the relationship between structural elements in mirabilite at zero pressure; the hydrogen bond structure depicted 
corresponds to the full ordering of the 'b' sites attached to O9/17 and O8/16. 
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Figure 6.7 Connectivity map illustrating the relationship between structural elements in mirabilite at a pressure of 13.4 GPa. 
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Figure 6.8 Connectivity map illustrating the relationship between structural elements in mirabilite in the second intermediate phase (the “odd point”) at a 
pressure of 10.8 GPa.  
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The most notable structural changes at high pressure involve the ribbons of Na ions and 

their coordination polyhedra of water molecules. In the high-pressure phases these ribbons 

become more buckled; this buckling changes firstly the molecules that lie at the vertices of 

the coordination polyhedron of Na2 and then, at higher pressure, the number of vertices in 

both of the polyhedra.  The changes that occur across the 7.5 GPa discontinuity are as 

follows. Although in both the low-pressure and intermediate pressure states the sodium 

atoms are coordinated to 6 oxygens in an octahedral arrangement, in the intermediate-

pressure phase: the water molecule containing O16 now forms one of the vertices of the 

polyhedron around Na2 as well as that around Na3; the interstitial water molecule 

containing O11 moves closer to Na2 and forms another of the octahedral vertices; the water 

molecules containing O8 and O13 move further away (in the second intermediate phase - 

that represented by a single point on Figures 6.1- 6.3 - the same changes in the coordination 

of Na2 occur). In the high-pressure phase, above ~20 GPa, both of the sodium atoms are 

coordinated to 7 oxygen atoms in a decahedral arrangement; Na2 loses the molecules 

containing O11 and O16, replacing them with those containing O8 and O13 (as in the low-

pressure phase), and, in addition, gains the water molecule containing O17; Na3 gains the 

water molecule containing O8. In the low- and intermediate-pressure phases the octahedra 

are edge-sharing, but at high pressures these polyhedra have a pair of shared faces, defined 

by planes joining O12-O15-O17 and O8-O13-O14.  

 

To accommodate the coordination change around the sodium atoms, there must be a major 

reorganisation of the hydrogen-bond framework which forms the 'scaffolding' within which 

sits the Na(H2O)8 ribbons and the SO4 tetrahedra. In the intermediate-pressure phases, the 

square rings involving O8 and O16, and O9 and O17 are preserved, but the transition to the 

high-pressure phase results in the destruction of the square ring involving O8 and O16, 

although the ring comprised of O9 and O17 is preserved. Despite the loss of the O8/16 ring, 

these molecules do form a new square ring (without the 2-fold rotation axis, clearly) 

involving O14 and the interstitial water molecule O10 (Figure 6.11).  Another new square 

ring is also formed from a Na-coordinated water (O12) and an interstitial water (O10), with 

an axis of 2-fold rotational symmetry passing through its centre. Both O8/16 and O9/17 

each swap one of their hydrogen atoms (as marked on Figure 6.11), which is in agreement 

with the observation that these are the only O-H bonds that increase in length as a function 

of pressure. 
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Figure 6.9 Connectivity map illustrating the relationship between structural elements in mirabilite at a pressure of 32.9 GPa. Note changes in the order of the 
sulphate oxygens with respect to Figure 6.7, and also the exchange of hydrogen atoms between O9/17 and O8/16. 
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Figure 6.10 Connectivity map illustrating the relationship between structural elements in mirabilite at a pressure of 61 GPa.  Note that the order of the sulphate 
oxygens differs again from Figures 6.7 – 6.99.  The hydronium ions are marked with black circles, and the hydroxide ions with white circles. 
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The practical effect of this re-organisation is to concentrate hydrogen bonds around the 

Na(H2O)8 ribbon and to reduce the number of H-bonds donated to the sulphate tetrahedron, 

from 12 in the low-P phase to 9 in the intermediate-pressure phase (or 10 in the case of the 

second intermediate phase represented by a single point on Figures 6.1 – 6.3). In the high-P 

phase, this number is further reduced, initially to 7 (Figure 6.9) and then, with increasing 

pressure, to 5 (Figure 6.10).   

 

Even after the hydrogen-bond network has been re-organised, further changes occur within 

the new network up to the highest pressures simulated (61 GPa), shown in the differences 

between Figures 6.9 and 6.10. There are continued changes in the relative strength of the 

hydrogen bonds resulting finally in a step-wise series of proton transfers from each of the 

two interstitial water molecules (O10 and O11) to neighbouring Na-coordinated water 

molecules (O14 and O17). The interstitial waters therefore become hydroxide (OH-) ions, 

and the recipients of these protons become hydronium (H3O
+) ions (Figure 6.10).  

Interestingly, for both O14 and O17, the donation process occurs via an intermediary; in the 

former, O10 donates H10a to O12, and then O12 loses H12b to O14; in the latter, O11 

donates H11a to O9, and then O9 loses H9b to O17. This process also results in a further 

decrease in the number of H-bonds donated to the SO4 unit to only five bonds at the highest 

pressures simulated.  Notice that, of all the water molecules in the structure, only O13 and 

O15 retain their original hydrogen atoms at very high-pressure. 
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Figure 6.11 Schematic illustrating the connectivity in the high-pressure hydrogen-bond network into 
a series of three- and four-sided rings. This format elucidates some of the spatial relationships which 
are difficult to detect in structure maps such as Figure 6.9. Notice that hydronium O14 is directly H-
bonded to the hydroxide ion O10 whereas hydronium O17 is not directly bonded to hydroxide O11. 
 
 

 

Similar (albeit more direct) proton transfers have been seen in ab initio calculations of 

ammonia monohydrate (Fortes et al., 2001), ammonia dihydrate and ammonia hemihydrate 

(Fortes, 2004). These findings have been confirmed computationally, and the occurrence of 

ionisation in solid ammonia demonstrated recently by Pickard and Needs (2008).  It is not 

clear why the structure undergoes proton transfer rather than settling into a hydrogen-bond 

symmetric state, such as is observed in ice X. Possibly the longer range interactions perturb 

the otherwise symmetric potential well between neighbouring oxygens, such that a 

symmetric H-bond is not possible. 
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Previous computational studies have shown that in the gas phase the hydronium ion (H3O
+) 

has a flattened trigonal structure with O-H bond lengths of 0.961 Å, and H-O-H angles of 

114.7° (Hermida-Ramon & Karlström, 2004); in the high-pressure ionised form of 

mirabilite it can be seen that these ions experience considerable geometrical distortion 

(Table 6.6), this being greater for O14 than O17.  The H···O hydrogen bonds donated by 

both H3O
+ ions are significantly shorter (i.e., significantly stronger) than other H-bonds in 

the structure, and this results in the ion's O-H bonds being lengthened significantly above 

the average O-H bond length found in normal water molecules at the same pressure (1.0132 

Å). This is in agreement with the general observation that H3O
+ typically donates very 

strong H-bonds (Markovitch & Agmon, 2007). Hydronium ions are relatively common in 

low-pressure mineral structures, often substituting for Na+ and K+ ions, and well-known 

examples include the hydronium-bearing alunite- and jarosite-group minerals (e.g., 

Ripmeester et al., 1986). 

 

O14 hydronium geometry 
O14-H14a 1.0567 Å H14a···O10 1.2775 Å ∠ H14a-O14-H14b 96.30° 

O14-H14b 1.0815 Å H14b···O16 1.2849 Å ∠ H14a-O14-H12a 109.49° 

O14-H12a 1.0543 Å H12a···O12 1.3136 Å ∠ H14b-O14-H12a 93.47° 

O17 hydronium geometry 
O17-H17a 1.0256 Å H17a···O7 1.3164 Å ∠ H17a-O17-H17b 103.44° 

O17-H17b 1.0571 Å H17b···O9 1.3934 Å ∠ H17a-O17-H9b 101.20° 

O17-H9b 1.0432 Å H9b···O9 1.3712 Å ∠ H17b-O17-H9b 105.01° 

 
O10 hydroxide geometry 
O10-H10b 0.9733 Å H10b···O4 1.4744 Å ∠ O10-H10b-O4 141.19° 

O11 hydroxide geometry 
O11-H11a 0.9763 Å H11a···O5 1.6397 Å ∠ O11-H11a-O5 138.63° 

Table 6.6 Geometry of the ionic species in the high-pressure phase of mirabilite, and their donated 
hydrogen bonds. 
 

Conversely, the OH- ions have much shorter O-H bond lengths than the average (Table 6.6), 

and their donated H···O bonds are both longer and much more bent (O-H-O angles ≈ 140°, 

compared to 160-180° for 'normal' straight H-bonds). The hydroxide ion is known to be a 

very strong hydrogen bond acceptor (e.g., Giguerre et al., 1983) but a very weak H-bond 

donor (e.g., Botti et al., 2004); both of the OH- ions in the high-pressure phase of mirabilite 

accept four H-bonds. 

 

At the very highest pressures, a gradual reduction in the distance between Na2 and the 

sulphate oxygen O6 is observed, and between Na3 and O11. Although the coordination 

polyhedra surrounding the sodium cations are characterised by Na-O bond lengths of ~ 2.1 - 

2.2 Å, the O6 and O11 oxygens are approaching to within 2.3 - 2.4 Å of their respective Na 
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cations. Arguably, these atoms may be considered to be coordinated to the Na cation at this 

(and higher) pressures, forming face-sharing NaO8 triskaidecahedra. Interestingly, direct 

coordination of the Na cation by sulphate oxygens is observed in the newly discovered 

octahydrate of sodium sulphate, which is only stable under high-pressure (Oswald et al., 

2009). 

 

6.8. Discussion 

 

As well as making comparison with the high-pressure neutron diffraction experiments it is 

also of interest to compare the elastic response of the mirabilite structure to pressure with 

the elastic response of the structure to temperature, which has been measured in detail for 

the perdeuterated isotopologue (see Chapter 3).  In this experimental study, an estimate of 

the bulk modulus was obtained by applying a Grüneisen approximation to the thermal 

expansion, with the necessary internal energy contribution calculated from the measured 

specific heat capacity (Wallace, 1998). This procedure gave a value for the ratio of the bulk 

modulus to the Grüneisen parameter, K0/γ = 29(1) GPa; since γ is typically of order 1, it is 

reasonable to predict that K0 ≈ 29 GPa, in tolerable agreement with the results from the ab 

initio calculations and the results from the compression experiments in Chapter 4. 

 

The analysis of the anisotropic thermal expansion given in Chapter 3 showed that the b-axis 

corresponds to the direction of smallest thermal expansion, whereas the principal axis of the 

thermal expansion tensor closest to the c-axis has the largest thermal expansivity and that 

closest to the a-axis an intermediate value. This agrees with the DFT results in as much as 

the least compressible direction in the crystal has the smallest thermal expansion, and the 

most compressible direction has the largest thermal expansion. Furthermore, the 

intermolecular bonds with the largest temperature-dependent changes, those H-bonds 

donated by interstitial waters to sulphate oxygens, are also the most compressible bonds in 

the structure. 

 

Generally speaking, the effect of pressure on highly hydrated crystalline salts is to stabilise 

lower hydrates (e.g., Sood & Stager, 1966; Hall & Hamilton, 2008; Hamilton & Hall, 2008; 

Oswald et al., 2009). For example, epsomite has been shown experimentally to undergo a 

series of polymorphic phase transitions below 5 GPa (Fortes et al., 2006a) and a similar 

series of transformations might be expected in mirabilite, possibly culminating in a 

transformation to a lower hydrate (either by incongruent melting, or solid-state exsolution of 

ice) instead of the transformations reported in this chapter. However, the general structural 
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trends are expected to apply to any high-pressure phases of sodium sulphate hydrates, 

namely the trend towards proton transfer rather than H-bond symmetrisation, the reduction 

in the number of H-bonds donated to the SO4 tetrahedron and a trend towards increasing 

coordination of the Na cation, including coordination by sulphate oxygens as seen in sodium 

sulphate octahydrate.  

 

 

 Summary 

 

This chapter reports the results of the first ab initio density functional theory calculations on 

the ambient-pressure phase of sodium sulphate decahydrate. There is excellent agreement 

between the ab initio calculations and experimental structure; the calculated zero-pressure 

unit-cell volume is over-inflated by approximately 2.2 % compared to that measured at 4.2 

K by neutron powder diffraction, which is similar to other DFT computational results 

obtained recently at UCL for hydrogen bonded molecular crystals (e.g., Fortes et al., 2001, 

2003abc, 2006b).  The agreement with experimentally observed bond lengths and angles, 

particularly the hydrogen-bond network, is extremely good. The only particular area of 

difference involves the square H-bonded rings, within which the calculated structure is 

deliberately missing the partially occupied hydrogen sites. 

 

These calculations have been used to determine the coefficients of the elastic stiffness tensor 

in the range -2.7 < P < 61 GPa. Mirabilite undergoes phase changes at around 7.5 GPa 

(characterised by a change in the water molecules forming the primary coordination 

polyhedron around one of the sodium cations) and at around 20 GPa (characterised by a 

change from 6-fold to 7-fold coordination of both of the sodium cations by water 

molecules). Both transitions involve re-organisation of the hydrogen-bond network. In the 

pressure range 7.5 – 20 GPa there are at least two competing metastable structures which 

have very similar energies and similarly-coordinated Na cations, but distinct sulphate 

tetrahedron coordination numbers. Structural changes continue in the high-pressure phase, 

resulting in a series of proton transfers and the formation of H3O
+ and OH- ions. 
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The MgSO4 – H2O salt-hydrates form another system of importance in terrestrial 

environments and are also a possible component of the mantles of icy moons. In contrast to 

the Na2SO4 – H2O system where there are relatively few hydrate phases, the MgSO4– H2O 

system has a wealth of hydrate phases. Meridianiite, MgSO4.11H2O, MS11, the most water-

rich of these hydrates has also been suggested to be an important mineral phase on Mars 

(see Chapter 1, Section 1.1.2 for more information on the phase relations, crystal structure 

and geological associations of meridianiite). The present chapter reports the results of ab 

initio simulations (using VASP) of the effects of pressure on meridianiite.  

 

7.1 Simulation of the structure of meridianiite. 

 

Structurally, MS11 is simpler than mirabilite, in that it has fewer (78) atoms in the unit-cell 

and does not show any of the fractional occupancy or disorder of the mirabilite structure. 

However, MS11 is triclinic, a lower symmetry than monoclinic mirabilite. The initial atomic 

coordinates for the simulations of MS11 were taken from the 4.2 K structure obtained in the 

time-of-flight neutron diffraction study of Fortes et al. (2008a). Using these atomic 

coordinates and cell parameters, the athermal simulations were begun by relaxing the crystal 

structure and cell parameters until a minimum energy was found with zero pressure on the 

unit cell; this point corresponded to a unit-cell volume of ~701 Å3. Starting from this 

structure, a series of relaxations were then performed with the unit-cell volumes fixed both 

at successively smaller and successively larger volumes; in each case the unit-cell (subject 

to the constraint of fixed volume) and atomic coordinates were relaxed. The simulations 

were performed stepwise, with the structure from the previous simulation used as the 

starting structure for the next. Details of the VASP setup for these calculations are given in 

Chapter 5, section 5.3.2.  

 

It should be noted that for the analysis of these calculations the atom naming scheme of 

Fortes et al. (2008a) has been modified to make it similar to the naming scheme used for 

mirabilite. Oxygen atoms O1 – O4 are the sulfate oxygens, O5 – O10 are Mg-coordinated 

oxygens and the remaining 5 oxygens, O11 – O15 are the free water molecules. The 

hydrogen atoms are named for their associated oxygen atoms, for example the water 

molecule containing O11 will then also contain H11a and H11b. In this scheme, the water 

molecule with the bifurcated H – bond (see Fortes et al., 2008) is denoted O14. 
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Structural relaxations were carried out at a series of fixed unit-cell volumes in the range 547 

< V < 799 Å3 (1.14 < (V/V0)
1/3 < 0.78); the corresponding pressure range is 9.69 < P < -2.05 

GPa.  The volume dependence of the total energy, E(V), and pressure, P(V), from VASP are 

shown in Figure 7.1. There is a break in slope at V ≈ 640 Ǻ3 which is indicative of a phase 

transition. Unlike the simulated phase changes in the mirabilite structure described in the 

preceding chapter, there is no evidence of a large range of volumes where the structure is in 

a transition state from a low-pressure phase to a high-pressure phase; the phase change 

seems to be instantaneous. As for mirabilite, the relaxed atomic coordinates were analysed 

using the program “Endeavour” and again, the higher-pressure phase retains the symmetry 

of the ambient-pressure phase.  

 

The remaining sections of this chapter are laid out as follows: section 7.2 describes the bulk 

compressibility of meridianiite, section 7.3 then reports the axial compressibilities, sections 

7.4, 7.5 and 7.6 describe the various elements of the crystal structure and their variation with 

pressure.  
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Figure 7.1 Energy - Volume and Pressure - Volume curves for calculations of meridianiite. In both cases, the plots are over the entire range of simulated volumes, 547 < V < 
799 Å3 (1.14 < (V/V0)

1/3 < 0.78); the open circles are the calculated values and the full and dashed lines are respectively fits of 3BMEOS and 4LNEOS  (the pressure values of 
the points in the plot are directly from VASP) to the simulations. See Section 5.4, Chapter 5 for definitions of 3BMEOS and 4LNEOS. 
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7.2 The equation of state of meridianiite. 

 

The low pressure section of the E(V) curves shown in Figure 7.1 (1.14 < (V/V0)
1/3) < 0.91), 

was fitted with an integrated form of the third-order Birch-Murnaghan equation of state and 

an integrated form of the 4th-order logarithmic equation of state (as for mirabilite). The 

fitted parameters are given in Table 7.1; note that the agreement in all of the parameters for 

the low-pressure phase between 3BMEOS and 4LNEOS is not as good as for mirabilite but 

is still acceptable. Both fitted curves are also shown in Figure 7.1, the full line is the 

3BMEOS and the dashed line the 4LNEOS; the two equations of state are indistinguishable 

to the eye in this figure over the range in which they have been fitted: 1.14 < (V/V0)
1/3) < 

0.91. The behaviour of the fitted lines outside this volume range highlights that such 

equation-of-state fits should not be extrapolated beyond their boundaries. 

 
 3BMEOS 4LNEOS 
V0 721.6 (3) 722.0 (3) 
K0 23.1 (2) 22.3 (4) 
K0' 3.4 (3) 3.0 (3) 
K0'' -25.253397 1.4 (8) 
E0 -403.668 (2) -403.665 (2) 

Table 7.1 Fitted equation of state parameters for the calculations of meridianiite. For the 3BMEOS 
the implicit non-zero value of K'' was calculated from the expression: 
 ( )( )00000 3K824143K7KKK −
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As for mirabilite, the agreement between the DFT unit-cell parameters and the experimental 

values is excellent. Fortes et al. (2008) found that the unit-cell volume of meridianiite was 

701.140(6) Å3 at 4.2 K; the difference in volume (∆V/V ≈ 3.0 %) corresponds to a 

difference in pressure of only 0.7 GPa, which is small, both in absolute terms and relative to 

the incompressibility of the material. Surprisingly, the incompressibility, K0, and the first 

derivative of the incompressibility, K0′, of meridianiite are very similar to the values for 

mirabilite (see Chapter 6), despite significant differences in interatomic bonding within the 

two structures.  

 
As for the high pressure phases of mirabilite, the instability at low pressures of the high-

pressure phase of meridianiite has meant that it has not been possible to calculate the total 

energy of this phase around its value of V0 and so the high pressure EOS remains 

unconstrained.  Fitting an unconstrained 3BMEOS to the pressure – volume outputs of 

VASP, yields values of V0 = 728 (89) Å³, K0 = 12 (20) GPa and K0′ = 8 (8). A 3BMEOS 

fitted with K0′ fixed at 4, but otherwise unconstrained, yields the values V0 = 684 (4) Å³, K0 

= 27 (1) GPa. 
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The low- and high-pressure structures will be discussed in more detail in Sections 7.4 and 

7.5 but first the axial behaviour will be discussed. 

 

7.3 The axial compressibilities of meridianiite. 

 

The unit-cell parameters of meridianiite (Figure 7.2) were also fitted with 3BMEOS 

expressions in order to obtain information about the axial incompressibilities. In Figure 7.2 

Panels i) – iii) show the a, b and c axes; the points are the simulations and the lines are 

3BMEOS fits to the simulations. The pressure values in all cases are taken directly from the 

VASP output.  The fits are in two sections, a lower pressure section 0.91 < (V/V0)
1/3 < 1.14 

and a high pressure section 0.78 < (V/V0)
1/3 < 0.85. In panel iv) the open squares and dashed 

lines are the α - angle and the filled circles and full line are the β - angle. Panel v) shows the 

variation of the γ - angle. In the angle plots (panels iv) and v)), the lines are fitted to the 

same sections of pressure range as were used for the axes; the low-pressure regions were 

fitted with 2nd order polynomials and the high-pressure regions with straight lines. Table 7.2 

gives the parameters of the low pressure axial EOS fits. 

 a - axis b - axis c - axis 

a3
0 (Å³) 299(1) 326(1) 5304(14) 

K0(GPa) 37 (3) 17 (1) 40 (2) 
K0′ 11 (3) 1.8 (3) 11 (2) 

Table 7.2 Axial incompressibilities of the low pressure phase of meridianiite determined from 
3BMEOS fits to the cube of the lattice parameters. 
 
At low pressures all three unit-cell axes behave normally, decreasing in length with 

increasing pressure. The negative thermal expansion of the c-axis of meridianiite (Fortes et 

al., 2008) is not echoed in the behaviour of this axis under compression.  At the phase 

change, the b and c axes both decrease in length while the a - axis increases in length. All 

three axes then continue to stiffen at a decreased and more linear rate with increasing 

pressure. The greatest changes associated with the phase transition are seen in the behaviour 

of the three angles in the unit cell; α and β behave similarly, with γ compensating by acting 

conversely.  In the low-pressure phase, as pressure increases the α - and β angles increase in 

value to ~ 90o (while γ decreases from ~63 o to ~61o).  There is then an apparent jump in the 

value of all the angles at the phase transition giving a ~1o increase in α and β and a 2o 

decrease in γ, but these apparent discontinuities are likely an artefact of the coarseness of the 

chosen volumes at which the calculations were performed. After the transition, the β – angle 

appears to saturate and the α and γ - angles resume their previous behaviours but at a much 

reduced rate. 
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Figure 7.2 Simulated lattice parameters with pressure for meridianiite. Panels i) – iii) are the a, b and 
c axes; the points are the simulations and the lines are 3BMEOS fits to the simulations. The fits are in 
two sections, a lower pressure section: 0.91 < (V/V0)

1/3 < 1.05 and a high pressure section: 0.78 < 
(V/V 0)

1/3 < 0.85. In panel iv) the open squares and dashed lines are the α angle and the filled circles 
and full line are the β angle. Panel v) shows the variation of the γ angle. In the angle plots (panels iv) 
and v)) the lines are fitted to the same sections of pressure range - the low pressure section with a 2nd 
order polynomial and the high pressure section with a straight line. 
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7.4 The zero-pressure structure of MS11. 

 

Figure 7.3 shows a connectivity map of the structure of MS11 (after Fortes et al., 2008a). 

MS11 is made up of SO4 tetrahedra and Mg(H2O)6 octahedra which are connected through a 

network of hydrogen bonds also involving the five remaining free water molecules. In 

contrast to mirabilite, where the two Na2(H2O)8 octahedra have similar bonding patterns, in 

MS11 the two octahedra exhibit different bonding schemes. The other major feature of the 

MS11 structure which is not seen in mirabilite, but is common in the MgSO4–H2O system, 

is a bifurcated H-bond. MS11 is, however, the only material in the MgSO4–H2O system 

where the bifurcated hydrogen bond is donated to an Mg–coordinated water molecule rather 

than to a sulfate oxygen. 

 
Tables 7.3 and 7.4 show calculated bond lengths at zero-pressure in the athermal limit for 

meridianiite. Table 7.3 shows both the calculated S–O  and Mg–O bond lengths in 

comparison to the 4.2 K neutron diffraction values of Fortes et al. (2008a), while table 7.4 

shows the distances associated with the hydrogen bonding in MS11. The simulated sulfate 

tetrahedra are inflated by 2% in volume compared to the experimental structure and have an 

average bond length of 1.4994 Å, 3% longer. The S-O bond angles in the SO4 tetrahedra 

agree with the published experimental values to within 0.1%. For the Mg(H2O)6 octahedra, 

the average Mg – O distance is 2.0798 Å, 2% longer than the 4.2 K experimental average 

and yet the calculated volumes for the two octahedra are 2 and 4% smaller, clearly the 

simulated angles are smaller than the experimental values.  

S -O lengths (Å) 
 

 This work Experimental 
values at 4.2 K 

S – O1 1.4922 1.453(14) 
S – O2 1.5075 1.390(15) 
S – O3 1.5079 1.503(15) 
S – O4 1.4901 1.459(16) 

Mg1 – O lengths (Å) 
 

Mg2 – O lengths (Å) 
 

 This work Experimental 
values at 4.2 K 

 This work Experimental 
values at 4.2 K 

Mg1 – O5 2.0974 1.998(10) Mg2 – O8 2.0601 2.065(9) 
Mg1 – O6 2.0684 2.080(9) Mg2 – O9 2.1127 2.083(10) 
Mg1 – O7 2.0724 2.057(9) Mg2 – O10 2.0680 2.051(9) 

 
Table 7.3 S - O and Mg - O distances in meridianiite at zero pressure from the simulation compared 
to the 4.2 K experimental values of Fortes et al. (2008a). 
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As for mirabilite, the hydrogen-bond network in MS11 is extensive. Table 7.4 shows the H-

bonds from these simulations and Table 7.5 reports the values from Fortes et al. (2008a) for 

comparison. The average simulated O – H distance is 0.9917 Å. The only significant 

difference between the experiment and the simulation is in the bifurcated hydrogen-bond. 

The O14–H14a bond length is identical (within experimental error), to the experimental 

value but one of the arms (the H14a-O9 bond), of the bifurcated bond (the dashed sections 

of Figure 7.3), is 0.1 Å shorter in the simulations, while both the O–O distances are 

significantly shorter, 0.2 Å and 0.5 Å respectively for O14–O9 and O14–O10, compared to 

the experiments. 

 

Table 7.4 Hydrogen bonding in MS11 at zero pressure from this simulation. Italics are used to 
indicate the bifurcated H-bond; all bond lengths are in Angstroms and angles in degrees. 

 O – H H---O O---O ∠∠∠∠ O---H−−−−O ∠∠∠∠ H−−−−O−−−−H 

O5-H5a-O1 0.9832 1.8818 2.8640 176.936 

O5-H5b-O12 0.9887 1.8233 2.8049 171.501 
 108.406 

O6-H6a-O11 0.9955 1.7074 2.6987 173.345 

O6-H6b-O1 0.9798 1.8881 2.8584 170.136 
106.844 

O7-H7a-O11 0.9928 1.7169 2.7066 174.341 

O7-H7b-O1 0.9819 1.8553 2.8241 168.412 
106.857 

O8-H8a-O14 0.9921 1.7393 2.7265 172.865 

O8-H8b-O13 0.9931 1.7318 2.7190 172.194 
106.594 

O9-H9a-O12 0.9961 1.786 2.7671 167.537 

O9-H9b-O13 1.0059 1.6628 2.6673 176.200 
105.430 

O10-H10a-O14 0.9943 1.7505 2.7376 171.356 

O10-H10b-O15 0.992 1.7266 2.7090 169.973 
105.108 

O11-H11a-O4 0.9951 1.7263 2.7199 176.204 

O11-H11b-O2 0.9872 1.8332 2.8093 169.349 
106.831 

O12-H12a-O2 0.9906 1.8057 2.7959 178.037 

O12-H12b-O3 0.9892 1.8583 2.8291 166.308 
106.804 

O13-H13a-O15 1.0032 1.6749 2.6775 177.602 

O13-H13b-O2 0.9924 1.7377 2.7101 165.564 
104.502 

O14-H14a-O9 1.9137 2.8372 154.124 

O14-H14a-O10 
0.9896 

2.5731 2.7376 121.933 

O14-H14b-O3 0.9899 1.8134 2.7969 171.893 

103.692 

O15-H15a-O3 0.9891 1.7637 2.7347 166.293 

O15-H15b-O4 0.9962 1.6748 2.6614 169.940 
107.456 
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Table 7.5 Experimental hydrogen bonding in MS11 at 4.2 K from Fortes et al. (2008a). Italics are 
used to indicate the bifurcated H-bond; all bond lengths are in Angstroms and angles in degrees. 

 O-D D···O O···O ∠∠∠∠ O-D···O ∠∠∠∠ D-O-D 

O5-D5a-O1 0.950(9) 1.946(12) 2.894(16) 174.6(11) 

O5-D5b-O12 0.949(8) 1.929(11) 2.872(13) 172.0(9) 
109.4(12)° 

O6-D6a-O1 0.949(8) 1.851(10) 2.786(10) 167.5(9) 

O6-D6b-O11 0.993(10) 1.760(12) 2.749(16) 174.0(11) 
109.0(11)° 

O7-D7a-O8 0.959(9) 1.784(11) 2.769(17) 175.6(9) 

O7-D7b-O1 0.961(9) 1.993(11) 2.934(11) 165.8(9) 
101.3(12)° 

O8-D8a-O14 0.967(9) 1.794(11) 2.753(15) 169.7(9) 

O8-D8b-O13 0.949(8) 1.716(11) 2.663(13) 176.2(9) 
109.2(14)° 

O9-D9a-O12 0.949(8) 1.833(11) 2.767(12) 168.5(9) 

O9-D9b-Ow9 0.976(10) 1.791(11) 2.763(15) 173.8(11) 
104.7(11)° 

O10-D10a-O14 0.982(10) 1.824(11) 2.838(14) 168.4(10) 

O10-D10b-O15 0.944(9) 1.769(12) 2.695(13) 176.9(9) 
102.7(11)° 

O11-D11a-O3 0.946(8) 1.907(10) 2.838(13) 167.4(8) 

O11-D11b-O4 0.953(9) 1.867(11) 2.818(15) 175.2(10) 
105.3(11)° 

O12-D12a-O2 0.940(9) 1.909(11) 2.829(13) 165.9(10) 

O12-D12b-O3 0.949(10) 1.884(12) 2.833(14) 177.2(12) 
107.9(13)° 

O13-D13a-O15 0.978(7) 1.821(10) 2.798(11) 178.5(8) 

O13-D13b-O3 0.977(7) 1.735(9) 2.703(11) 170.5(5) 
103.2(9)° 

O14-H14b-O3 0.939(7) 1.837(10) 2.775(11) 176.2(9) 

O14-H14a-O9 2.176(13) 3.018(12) 143.1(9) 

O14-H14a-O10 
0.980(8) 

2.530(12) 3.245(13) 129.6(8) 

102.4(10)° 

O15-D15a-O4 0.945(9) 1.742(10) 2.681(14) 171.2(10) 

O15-D15b-O2 0.973(9) 1.851(12) 2.807(16) 166.9(11) 
107.1(11)° 
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Figure 7.3 Connectivity map for MS11 at zero pressure, after Fortes et al. (2008a).   
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7.5 The Pressure dependence of the structural parameters of the SO4 and Mg(H2O)6 
Coordination Polyhedra. 
 
In the simulations of mirabilite, the variation in the volume of the coordination polyhedra 

proved an important quantity in the investigation of structural changes with pressure. Figure 

7.4 shows the volumes of the coordination polyhedra for MS11. The SO4 tetrahedral volume 

is shown in panel i) in comparison to the tetrahedra from epsomite (MS7) over the same 

pressure range. As for mirabilite, the MS11 SO4 tetrahedral volumes have been fitted with a 

3BMEOS over the pressure range 3.647 < P < -2.05 GPa. The SO4 tetrahedra in MS11 show 

very similar values of V0 and K0′ to mirabilite and a K0 value intermediate between 

mirabilite (170 GPa) and epsomite, (244 GPa). The MS11 values are: V0 = 1.7347(4) Å3, K0 

= 187(4) GPa, and K0' = 19(4) in the low-pressure phase (see Table 7.6 below). This 

disparity in stiffness between hydrates has previously been suggested to be due to a 

difference in electron density around the apical oxygens caused by the difference in the 

number of accepted hydrogen bonds (see Chapter 6, Section 6.7.1). These MS11 simulations 

seem to further confirm this as there are twelve such H – bonds in mirabilite, eleven in 

MS11 and eight in epsomite. There is a discontinuous change in the MS11 SO4 volumes 

with pressure which coincides with the phase transition at around 5 GPa. At this point the 

tetrahedra increase in volume and follow a similar trend to the tetrahedra in epsomite. This 

points to a change in the coordination of the sulfate tetrahedra in MS11 at the transition. 

This is echoed in panel ii) of Figure 7.4 which shows a similar, but smaller, discontinuity in 

the volume of the Mg(H2O)6 octahedra. 

 

Table 7.6 EOS fit parameters for the SO4 tetrahedra in MS11 in comparison to mirabilite and 
epsomite (Fortes et al. 2006). 

 MS11 - 
this study 

Epsomite 
 from Fortes et al. (2006b) 

Mirabilite from the ab 
initio simulations of 

Chapter 6. 
V0 (Å³) 1.7347(4) 1.7374(7) 1.7358(5) 

K0 (GPa) 187(4) 244(11) 170(5) 
K0′ 19(4) 25(8) 17(3) 

 
 
Investigation of the bond lengths within the MS11 structure confirms that there is indeed a 

change in coordination. Firstly, the number of hydrogen bonds donated to the SO4 

tetrahedron in MS11 decreases from eleven to ten following the high-pressure phase 

transition at ~5 GPa. At low pressures, the sulfate oxygen, O4, accepts two H–bonds but at 

high pressure it no longer accepts the H–bond from H11a. With increasing pressure, there is 

a rotation of the Mg1 octahedron which facilitates the breaking of the H11b–O4 H – bond. 

The H–bond from H11a then reforms to O5 which is coordinated to the Mg1 octahedron.
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Figure 7.4 Calculated polyhedral volumes for MS11. Panel i) is the SO4 tetrahedral volume for MS11 (open squares and full line), compared to the tetrahedral volume in 
epsomite (MS7 – filled circles and dashed line). Panel ii) shows the volumes of the Mg(H20)6 octahedra, the open diamonds and dashed lines are the volumes of the octahedra 
designated Mg1 while the filled squares and full line are for Mg2. 
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7.6 The Pressure dependence of the bifurcated hydrogen bond 

 

Figure 7.5 shows that the bifurcated H-bond (O14 – H14a) lengthens with pressure.  It is 

common for H–bonds in hydrated materials to lengthen with pressure as a result of 

increased electron density in the bond (Fortes et al. 2008). Unlike the polyhedral volumes 

discussed above, there is no obvious break in slope in the bifurcated bond length to signify a 

phase change.  

 

 
Figure 7.5 Length of the bifurcated H – Bond (O14 – H14a), in MS11 with pressure. 
 

7.7 The high-pressure phase of meridianiite. 

 

At pressures above 5 GPa, the ab initio simulations predict that MS11 will be in the form 

shown in the connectivity map given in Figure 7.6. The major change to the structure from 

that at ambient pressure is the change in the hydrogen bonding network described 

previously in Section 7.5. Meridianiite seemingly undergoes a much simpler structural 

change with pressure than mirabilite, although the pressure range investigated here is not as 

extensive as was used for mirabilite. However, it is likely, as was suggested in the mirabilite 

simulation chapter, that salt hydrates such as meridianiite will dehydrate with pressure 

rather than undergo structural phase transitions and so it is probable that these high pressure 

phases will not exist in nature. 
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Figure 7.6 Connectivity map for MS11 at 8.0 GPa. The bond highlighted in blue indicates the hydrogen bond which forms at pressures > ~5 GPa and the red dashed line is the 
O4 – H11a bond which it replaces. 
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Summary 

This chapter reports the results of ab initio simulations of MgSO4.11H2O, meridianiite. The 

unit-cell volume from these simulations is in good agreement with the published 

experimental 4.2 K structure (Fortes et al. 2008a).  Fitting of a 3BMEOS to the calculations 

yields values of V0 = 723.3 (8), K0 = 20 (1), K0' = 6 (1) and E0 = -403.665 (2). The energy–

volume curve reveals a second-order phase transition at ~5 GPa. Analysis of the structural 

elements with pressure shows this phase transition occurs when lengthening of the 

bifurcated H–bond with pressure, combined with a rotation of the Mg(H2O)6 octahedra, 

prompts a reorganisation of the H–bond network so that an H–bond previously donated to a 

sulfate oxygen is now donated to an oxygen atom coordinated to one of the Mg(H2O)6 

octahedra.  
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This chapter is a summary of the work reported in this thesis, together with future 

applications and uses of the results. It is laid out as follows: Section 8.1 précis the results in 

Chapters 3, 4, 6 and 7, before Section 8.2 suggests further work which is needed to complete 

the understanding of the salt hydrates studied here as well as future work arising from the 

findings of this work. Finally, Section 8.3 briefly describes an example of how this work can 

be applied to geological structures. 

 

8.1 Summary of results 

 

8.1.1 Neutron diffraction experiments to determine the thermal expansion 

of mirabilite. (Chapter 3) 

 
Chapter 3 describes thermal expansion determined via neutron diffraction at the ISIS facility 

at the Rutherford Appleton Laboratory. High resolution neutron powder diffraction patterns 

were collected from Na2SO4·10D2O over the temperature range 4.2 K to 300 K following 

rapid quenching in liquid nitrogen, and over a series of slow warming and cooling cycles. In 

addition, crystal structures were refined to RP values better than 2.5 % at 4.2 K (quenched 

and slow cooled), 150 K and 300 K.  The sulfate disorder reported previously by Levy and 

Lisensky (1978) was not observed in this specimen, although changes with temperature in 

deuteron occupancies of the orientationally disordered water molecules coordinated to Na 

were observed. The coefficient of volume thermal expansion, αV, is positive above 40 K, 

and displays a similar magnitude and temperature dependence to αV in deuterated epsomite 

and meridianiite.  The relationship between the magnitude and orientation of the principal 

axes of the thermal expansion tensor and the main structural elements shows that freezing in 

of deuteron disorder in the quenched specimen affects the thermal expansion, manifested 

most obviously as a change in the behaviour of the unit-cell parameter β. 
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8.1.2. Neutron diffraction experiments to determine the compressibility of 

mirabilite. (Chapter 4) 

 
Chapter 4 reports the results of neutron diffraction experiments to determine the 

compressibility of mirabilite from 0 – 0.55 GPa at 80 K and 260 K. The bulk moduli at 80 K 

and 260 K are found to be 22.7 (6) GPa and 18.0 (5) GPa respectively when K0′ is 

constrained to the ab initio value of 5.6 obtained in Chapter 6. The variation in the bulk 

modulus with temperature has also been investigated. The change in K0 with temperature is 

similar to that of epsomite over the same temperature range but mirabilite shows a less 

linear relation and its incompressibility is somewhat more temperature sensitive than that of 

epsomite. However, the data-points are limited to two temperatures and further 

measurements at intermediate temperatures and pressures are required before these data can 

be properly put into context. 

 

8.1.3. Ab initio simulations to determine the equation of state of mirabilite 

from 0-62 GPa (Chapter 6) 

 
Chapter 6 reports the results of ab initio calculations using density functional theory to 

determine the elastic properties of mirabilite, and to obtain information on structural trends 

caused by the application of high pressure, up to a pressure of ~60 GPa. There are 

substantial isosymmetric discontinuous structural re-organisations at ~ 7.7 GPa and ~ 20 

GPa caused by changes in the manner in which the sodium cations are coordinated by water 

molecules. The low-pressure and intermediate-pressure phases both have sodium in six–fold 

coordination but in the high-pressure phase the coordination changes from six-fold to seven-

fold. These coordination changes force a re-arrangement of the hydrogen-bond network in 

the crystal. The trend is towards a reduction in the number of hydrogen bonds donated to the 

sulfate group (from twelve down to five over the range 0 – 60 GPa, see Figure 8.1) and an 

increase in hydrogen bonding amongst the Na-coordinated water molecules and the two 

interstitial water molecules. Proton transfers from the interstitial waters (forming OH- ions) 

to two of the Na-coordinated waters (forming a pair of H3O
+ ions) are observed at the upper 

end of the pressure range examined. The equation of state in the athermal limit of the low-

pressure phase of mirabilite, parameterised by fitting an integrated form of the 3rd-order 

Birch Murnaghan expression to the calculated energy as a function of unit-cell volume 

yields the zero-pressure unit-cell volume, V0 = 1468.6(9) Å3, the incompressibility K0 = 

22.21(9) GPa and the first pressure derivative (∂K/∂P)0 = 5.6(1). 
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Figure 8.1 a) Connectivity map illustrating the relationship between structural elements in mirabilite 
at zero pressure; the hydrogen bond structure depicted corresponds to the full ordering of the 'b' sites 
attached to O9/17 and O8/16. b) Connectivity map illustrating the relationship between structural 
elements in mirabilite at a pressure of 61 GPa.  Note that the order of the sulfate oxygens differs from 
a).  The hydronium ions are marked with black circles, and the hydroxide ions with white circles. 
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8.1.4 Ab initio simulations to determine the equation of state of MS11. 

(Chapter 7) 

 

Chapter 7 reports the results of ab initio simulations of MgSO4.11H2O, meridianiite. The 

unit-cell volume from these simulations is in good agreement with the published 

experimental 4.2 K structure (Fortes et al., 2008a). Fitting of a 3BMEOS yields values of: 

V0 = 723.3 (8), K0 = 20 (1), K' = 6 (1) and E0 = -403.665 (2). The energy–volume curve 

reveals a second-order phase transition at ~5 GPa. Analysis of the structural elements with 

pressure shows this phase transition occurs when lengthening of the bifurcated H–bond, 

O14–H14a, with pressure, combined with a rotation of the Mg(H2O)6 octahedra prompts a 

reorganisation of the H–bond network so that an H–bond, O4 – H11a, which was previously 

donated to a sulfate oxygen is now donated to one of the oxygen atoms which is coordinated 

to the Mg1 octahedron; the new bond is O5 – H11a. This process is shown in Figure 8.2. 

 



Chapter 8: Summary, application of results and future work 

 

185 

 
Figure 8.2 Connectivity map for MS11 at 8.0 GPa. The bond highlighted in blue indicates the hydrogen bond which forms at pressures > ~5 GPa and the red dashed line is 
the O4 – H11a bond which it replaces. 
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8.2 Future work 

 

The experiments and calculations carried out here provide a significant amount of new 

thermoelastic data for mirabilite. However, there is still a lack of data available for the other 

phases in the Na2SO4 – H2O system, neither are the phase relations of the system fully 

understood at non-ambient pressures. It is imperative for the understanding of deposits 

containing such material that further phase relations and properties over a range of 

temperatures and pressures are determined. It would be interesting, for example, to 

investigate the general structural trends of the high-pressure phases of sodium sulfate 

hydrates, namely the trend towards proton transfer rather than H-bond symmetrisation, the 

reduction in H-bonds donated to the SO4 tetrahedron, and towards increasing coordination 

of the Na cation, including coordination by sulfate oxygens as seen in sodium sulfate 

octahydrate (Oswald et al. 2008).  

 

The structure of mirabilite is now well established in all regards except that of the possible 

disorder in the sulfate tetrahedra. The neutron diffraction experiments of Chapter 3, 

performed on mirabilite do not find any evidence of the sulfate disorder described by Levy 

and Lisensky (1978) - See section 3.1.1.2 in Chapter 3. It is unclear whether this is a result 

of the deuteration of the sample in this experiment, or that it is due to the thermal history of 

the sample during the diffraction data collection or some other aspect of the crystal growth 

or sample preparation prior to the start of the experiment. In addition, morphologically, the 

deuterated crystals seem different from the protonated crystals: the deuterated crystals grow 

as lumps with few well defined crystal faces while the protonated crystals have well defined 

crystal faces.  

 

A proposal to investigate the disorder in mirabilite further by single-crystal neutron 

diffraction was successfully submitted to the ISIS beamtime panel and was scheduled time 

on SXD, the single crystal diffractometer, in March 2009 (see Appendix.5 for beamtime 

application). The proposed experiment was a single crystal study of both a deuterated and a 

protonated crystal of mirabilite at 4 temperatures between 4.2 and 300 K. This would allow 

the temperature evolution of any sulfate disorder to be investigated to determine any 

differences between the two isotopomers. Unfortunately, 1 day into the allocated 5 days, 

there was a problem with one of the ISIS methane moderators which was followed by a site 

wide power cut which put an end to the experiment in this user cycle and so the experiment 

is still outstanding, and scheduled for later this year. 
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The ab initio calculations of MS11 and mirabilite in this study predict new high-pressure 

structures for both materials. Generally speaking, the effect of pressure on highly hydrated 

crystalline salts is to stabilise lower hydrates (e.g. Sood & Stager, 1966; Hall & Hamilton, 

2008; Hamilton & Hall, 2008; Oswald et al., 2009), so it would be of interest to study MS11 

and mirabilite experimentally at these pressures to see if these predicted structures actually 

occur, or whether decomposition into lower hydrates occurs first. This could be achieved 

with a qualitative high pressure diamond anvil study. 

 

The ab initio calculations performed here have also highlighted what may well be another 

common trait in the high pressure behaviour of sulfate hydrates, namely that the rate of 

increase in stiffness of the sulfate tetrahedra is related to the coordination number of the 

sulfate tetrahedra, with the V0 value of the sulfate tetrahedra independent of the crystal 

structure. This is  seen in Figure 8.3 which shows the SO4 tetrahedral volume for mirabilite 

and MS11 (from this work) and for epsomite (Fortes et al., 2006b). A wider study of the 

variation in tetrahedral volume for other hydrated sulfates would be of interest in order to 

see how universal this effect is. 

 

The Na2SO4 – H2O and MgSO4 – H2O systems are both extremely important in the study of 

planetary materials; however, neither of these systems will exist in isolation as other cations 

are likely to be present. While there is little or no solid solution between Mg and Na2SO4, 

there are several ternary systems where solid solutions between all end-members do exist, 

(e.g. K2SO4 – H2O – Na2SO4), the dynamics and phase relations of which must be 

investigated. 
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Figure 8.3(a) Sulfate tetrahedral volumes with increasing pressure for epsomite (red crosses, Fortes et al., 2006b), MS11 (green filled diamonds, this work) and for mirabilite 
(open circles, this work). The lone point denoted by the open triangle is the “odd” point where the calculation was not carried out step-wise (see Chapter  6). The solid lines 
are 3BMEOS fits to the SO4 volumes in mirabilite for the low-pressure and high-pressure phases, and the dashed line is a 3BMEOS fit to the SO4 volumes in epsomite. 
(b) Variation of the SO4 volume in mirabilite, epsomite and MS11 over the entire pressure range simulated for mirabilite. The solid black line and the dashed line are the 
same as in panel (a).  The line at higher pressure is a 3BMEOS fit to the four values above 20 GPa with V0 fixed equal to 1.736 Å3 (for details see Chapter 6). 
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8.3 Application of thermoelastic properties of salt hydrates to geological structures: 

Diapiric modelling. 

 
Once the thermoelastic properties of a material have been constrained, they can be used to 

understand and predict the behaviour of geological structures and processes. Such properties 

can be used in both large, planet-scale, thermal evolution models (e.g. Grindrod et al., 2008) 

and in the modelling of small scale geological features such as diapir evolution (Beyer et al., 

2007). In this final section, a very simple model of the evolution of a diapir of salt hydrate 

material is constructed. It should be noted, however, that such models depend crucially upon 

the values adopted for the viscosities of the materials used; viscosity is a thermoelastic 

property that has proved extremely challenging to measure experimentally. This section is 

laid out as follows: 8.3.1 describes the methodology behind the diapir model, before 

Sections 8.3.2 – 8.3.4 describe the setup and results of application of this model to 

conditions found on Earth, on Mars and on the icy satellites of Jupiter. 

 

8.3.1 Diapiric model methodology 

 

One of the most important properties of evaporitic materials is their ability to flow relatively 

quickly on a geological timescale. The presence of an evaporitic salt hydrate layer may set 

up a density inversion leading to a diapiric uprising. The mechanism for forming diapir 

structures is well known on the Earth; small Rayleigh-Taylor instabilities in the evaporite 

layer at the interface between it and the overlying sediment promote flow and may grow to 

form structures similar to terrestrial salt diapiric features.  

 

The model used and described here is taken from Schubert, Turcotte and Olson (2006). This 

model describes the speed of ascent and likely scale of any surface features produced as a 

result. The first, key assumption of the model is that Rayleigh-Taylor instabilities have 

already given rise to a diapir; there is no consideration of the conditions necessary for initial 

diapir formation. Figure 8.4 shows the initial setup of the model for all environmental 

conditions. Initially, there are two layers of material: a buoyant lower layer overlain by a 

denser overburden layer. The top surface of the overburden is a free surface and is assumed 

to be unconstrained. In contrast, the lower surface of the buoyant layer is assumed to be a 

non-slip contact. Both layers are assumed to be viscous. The properties of the layers, e.g. 

density (ρ), viscosity (η), etc. are denoted with subscript “o”  and “b”  for the overburden 

and buoyant layers respectively. Thus, the thickness of the layers becomes ho and hb.  
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Figure 8.4 Initial layer model. The brown layer is the dense overburden layer denoted by the 
subscript o and the blue layer is the buoyant layer denoted by a subscript b. The thickness of these 
layers is ho and hb. The top boundary of the overburden is a free surface and the bottom of the 
buoyant layer is a non-slip contact. 
 

The diapir formed is taken to be spherical and rising at a uniform rate through a more 

viscous medium (the overburden layer), as seen in Figure 8.5. It is also assumed that the 

diapiric feature has a constant volume and that the system is isothermal. The properties of 

the system are not considered to vary with depth. The model then relates a scale factor R, 

involving the ratio of the viscosities of the buoyant and denser layers and the thickness of 

the buoyant layer, to the speed of ascent.  

 

 

 

 
Figure 8.5 Schematic illustration of the model diapir against the layers from Figure 8.4. The spatial 
scale of the diapir is R and the ascent speed of the diapir is U∞. 
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The first quantity calculated in the model is the spatial scale of the diapir, R, akin to the 

radius of the diapir. 

b
b

o hR ⋅







=

3

1

η
η

   Equation 8.1 

 

Where η is the effective viscosity of the appropriately subscripted layer and hb is the 

thickness of the buoyant layer. This means that the size of the diapir is related to the amount 

of material available in the buoyant layer and the ability of the buoyant layer to move 

relative to the overburden layer. It also tells us that hb, the buoyant layer thickness, is an 

important parameter in the determination of the size of the diapir. Figure 8.6 is a logarithmic 

plot of R against layer thickness at a series of viscosity contrasts; it illustrates just how 

quickly the size of the diapir increases with order of magnitude changes in viscosity 

contrast. Thus, the values adopted for the viscosity of the layers must be chosen with care. 

 

N.B. It is common in planetary dynamics to speak of the viscosity of a material even though 

the term is not fully descriptive of a non-Newtonian rheology.  The “effective viscosity”, 

ηeff, of a material can be used in this way provided that σ, the stress, or ε& , the strain rate 

have been specified, which they will be in this case. ηeff can be defined as: 

 

ε
ση
&3

=eff   Equation 8.2 

 

The factor of 3 in the denominator is due to the flow being axisymmetric and divergent 

rather than along straight, parallel lines (Durham and Stern, 2001). 
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Figure 8.6 Logarithmic plot of diapir size against buoyant layer thickness for different ratios of 
viscosity between the overburden and buoyant layers. 
 

 

The rate at which a sphere of material, with a length-scale R, will rise through a medium 

with viscosity of ηo is equal to the Stokes velocity and can be calculated from: 

 

o

Rg
U

η3

2′
=∞    Equation 8.3 

 

Where R = initial length scale of diapir, U∞ = Stokes velocity, ηo = effective viscosity of the 

overburden layer, and g′ can be defined as: 

 









=′

b

d
gg

ρ
ρ

  Equation 8.4  

 

With,  

bod ρρρ −=    Equation 8.5 

 

(and “g” being the acceleration due to gravity on that particular planetary body) 
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For each planetary scenario as described in the following sections, the material properties 

have been adjusted for the particular environmental conditions of that planetary body. In 

each case, layer thicknesses are varied over the range 100 – 1000 m for both the buoyant 

and overburden layers to explore a parameter space comparable to that found on Earth. The 

range of densities and viscosities used in each of the scenarios can be seen in Table 8.1. The 

viscosities are taken from various sources as described in the caption to Table 8.1 and their 

values have been adjusted for varying temperature on each planetary body as much as is 

possible from available experimental data. The temperature for each layer is taken as the 

temperature at the central depth of the relevant layer for a given geotherm. For example, for 

the Earth a modest crustal geotherm of 25 K km-1 has been used (Best, 2003), together with 

an average surface temperature of 293 K (20oC). 

 

Table 8.1 Density and viscosity values for the materials used in each of the planetary settings. ^ from 
Shukurina et al. (1978), # from Durham et al. (2005), + from Goldsby and Kohlstedt (2001),  * from 
Beyer et al. (2000) & from this work, $ from Shofield et al. (1996) and £ from Fortes (2004). 

Viscosity (Pa Sec)  Density (kgm-3) 
Earth Mars Ganymede 

Gypsum 2317$ 1 x 1016^ - - 
Mirabilite 1490 & 1 x 1012 # 1 x 1014 # 1 x 1016 # 

Ice (1h) 917 £ 1 x 1013 + 1 x 1015 + 1 x 1016 + 
Basalt 2800 * 1 x 1019 * 1 x 1019 * - 

 
 

8.3.2 Diapirs on Earth 

 

The first scenario for which this model will be tested is a basalt overburden layer overlaying 

a salt hydrate buoyant layer composed of gypsum (Ca2SO4·2H2O). Halite and gypsum are 

the most common evaporitic minerals on Earth. Terrestrial salt domes have length scales of 

a few hundred meters to a few km and typically reach the surface in times of order 104-106 

years. Table 8.2 shows the range of values of scale factor determined for all the different 

scenarios. Using this model to create a gypsum diapir from a layer overlain by basalt on 

Earth would give diapirs with a range of length scales from 0.5 – 10 km, in excellent 

agreement with the size of features seen. For example Figure 8.7 shows an image of salt 

diapirs in Iran along with circles of radii 10 and 20 km for comparison. 
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 gypsum - basalt mirabilite - basalt 

R (km) 0.5 - 10 1 - 20 
 

Range of ascent times for given buoyant layer : overburden 
layer thickness ratio (million years) 

hb : ho gypsum - basalt mirabilite - basalt 

1 : 1 3 – 70 0.7 - 15 
2 : 1 1.3 - 16 0.3 - 4 
5 : 1 0.7 - 3 0.15 – 0.6 

10 : 1 0.3 – 0.7 0.08 – 0.15 
Table 8.2 Range of spatial scales and ascent times calculated for diapirs on Earth using layer 
thicknesses of 100 – 1000m for both the overburden and the buoyant layer.. 

 

 
Figure 8.7 Landsat image of salt diapirs in Iran together with scale bar for comparison with simulated 
diapir sizes. Image: USGS/NASA. 
 

It is also interesting to consider the time taken for a diapir to rise up through the overburden 

above it. Diapir ascent time is also reported in Table 8.2. For buoyant layer to overburden 

thickness ratios of 1, there are a range of ascent times from 3 – 70 Ma corresponding to 

thicknesses of the buoyant layer of 100 – 1000m. For a buoyant layer to overburden 

thickness ratio = 5 the time-of-ascent range is reduced to 0.7 – 3 Ma. 

 

However, as we know, gypsum is not the only evaporitic material which can form in thick 

deposits on the Earth. It is not unreasonable to imagine that given the right environmental 

conditions a thick deposit of mirabilite or other salt hydrates could be laid down, buried and 
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form a diapiric structure, so the second scenario is a mirabilite buoyant layer overlain by 

basalt. The results of this are also seen in Table 8.2. The range of sizes of feature produced 

by a mirabilite diapir on the Earth is slightly larger than the range for a gypsum feature. A 

larger density difference between the mirabilite and the basalt overburden layer has 

produced a faster ascent speed for the mirabilite diapir by approximately an order of 

magnitude. This may lead to a mirabilite feature being exposed to erosion at the surface 

earlier in its history, compared to a gypsum body, and so it may not persist as long in the 

geological record. 

 

8.3.3 Diapirs on Mars. 

 

For Mars, the model has been used to simulate firstly, as for Earth, a basalt overburden 

overlying a mirabilite buoyant layer, and secondly, a buoyant ice layer overlain by a basalt 

overburden. Mars is unique amongst the terrestrial planets as a place where the climate 

allows ice layers to persist over geological timescales within the subsurface; currently, ice is 

stable in the Martian subsurface to depths of around 4 km given a crustal geotherm of 12 K 

km-1 (Montesi and Zuber, 2003) and assuming an average surface temperature of 220 K.  

 

The viscosities of the layers used have been adjusted accordingly from terrestrial 

temperature to appropriate Martian values and g, the gravitational constant recalculated. 

Values of 1x1015, 1x1019 and 1x1014 Pa s were used respectively for the viscosities of the ice 

(Goldsby and Kohlstedt, 2001), basalt (Beyer et al., 2000) and mirabilite (Durham et al., 

2005). The densities employed for each layer are, respectively: 917 kg m-3 for ice (Fortes, 

2004), 2800 kg m-3 for basalt (Beyer et al., 2000) and 1490 kg m-3 for mirabilite (this work).  

 

The simulated Martian diapirs have  larger length scales than the terrestrial diapirs (see 

Table 8.3) with the mirabilite diapir approximately doubling in size at Mars compared to 

Earth. The model calculates that ice diapirs ascend quickly and so may have a shorter 

lifetime in the geological record than their salt-hydrate equivalents. For 1:1 layer 

thicknesses the ice diapir ascends in 0.3 – 5 Ma, while the mirabilite diapir ascends in 0.6 – 

13 Ma. A layer thickness ratio of 2:1 yields ascent times of 10,000 years – 1.3 Ma, and a 5:1 

ratio yields ascent times from 50,000 years – 0.2 Ma. This is significantly faster than the 

halite diapirs modelled by Beyer et al (2000), where timescales of 40 – 70 Ma were reported 

for similar conditions. 

 

It is unclear how long the evidence of an ice diapir feature will persist in the Martian 

geological record, but it is possible that there are areas of Mars where suitable amounts of 
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subsurface ice have existed recently enough for features to survive to present day. One such 

area which has been suggested to contain features which might be diapiric in origin is 

Candor chasma, where Beyer et al. (2000) describe features of a similar size to the diapirs 

predicted here.  

 mirabilite - basalt Ice - basalt 

R (km) 2 - 46 1 - 22 
 

Range of ascent times for given buoyant layer : overburden 
layer thickness ratio (million years) 

hb : ho mirabilite - basalt Ice - basalt 

1 : 1 0.6 - 13 0.3 - 5 
2 : 1 0.3 - 3 0.1 – 1.3 
5 : 1 0.13 – 0.5 0.05 – 0.2 

10 : 1 0.07 – 0.1 0.02 – 0.05 
Table 8.3 Range of spatial scales and ascent times calculated for diapirs on Mars using layer 
thicknesses of 100 – 1000m for both the overburden and the buoyant layer. 
 

8.3.4 Diapirs on the icy satellites 

 

This modelling can also be extended to the icy satellites where evaporite minerals are also 

likely to be present. For the diapirs described in the previous sections, the salt hydrate layer 

has always formed the buoyant layer; however, at the icy satellites of Jupiter, it is possible 

that ice may form this buoyant layer, with salt hydrates as an overburden layer. For this 

exercise the properties have been adjusted to values for Ganymede. It is interesting that on 

Ganymede the two layers have the same viscosity, so the size of the diapir is entirely reliant 

on the thickness of the buoyant layer. There is also not as large a density contrast between 

the overburden and buoyant layer in the outer solar system case (see Table 8.1) so the diapir 

will grow more slowly. Table 8.4 shows that this is indeed the case, and that diapirs on 

Ganymede are of the same scale as the buoyant layer thickness and rise at a slower rate than 

those on Mars.  

 Ice - mirabilite 

R (km) 0.05 - 1 

Range of ascent times for given buoyant layer : overburden 
layer thickness ratio (million years) 

hb : ho Ice - mirabilite 

1 : 1 1 - 20 
2 : 1 0.4 - 5 
5 : 1 0.2 – 0.9 

10 : 1 0.1 – 0.2 
Table 8.4 Range of spatial scales and ascent times calculated for diapirs on Ganymede using layer 
thicknesses of 100 – 1000m for both the overburden and the buoyant layer. 
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8.3.5 Discussion 

 

Although the model discussed above illustrates the processes involved in diapir formation 

and gives estimates of the size of the resulting features and the timescales required for 

ascent of the diaper to the planetary surface, it is very simplistic and capable of much 

improvement. Using this simple model the size of the feature produced is very dependent on 

the viscosity contrast between the buoyant layer and the overburden.  In the absence of 

tighter constraints on actual values for material viscosities, to fully investigate the relation 

between the composition of the buoyant layer and the size of the surface feature, a range of 

viscosities for each material will have to be chosen; this would add another dimension to the 

parameter space investigated. In contrast to the size of the feature, which is controlled by the 

buoyant layer thickness, the driving forces which control the speed of ascent of the diapir 

are: 1) the differing density contrasts between the scenarios, and 2) the ratio of layer 

thicknesses within each scenario..  

 

In this simple model it has been assumed that the diapir is initiated solely by compositional 

rather then thermal buoyancy. Future work should address thermal buoyancy, as well as 

accommodating possible phase changes (including change of hydration state) in candidate 

materials under the appropriate conditions. Polymineralic diapirs, incorporating, for 

example, Mg- and Na-sulfate hydrates, might also be considered. Furthermore, a more 

sophisticated linear analysis methodology, which would allow a more complete treatment of 

the dynamics governing the interactions of the buoyant and overburden layers could be 

used. 

 

In the case of most icy satellites, the evaporite layers are likely to form the denser 

overburden overlying less dense ice layers, although on Titan’s surface it is possible that 

low-density organic evaporites will exist where methane-ethane lakes have dried up; in this 

case the overburden might be dominated by solid acetylene and ethylene. Thus, due to the 

temperature ranges encountered on these satellites, in the outer solar system it is important 

to consider also the phase relations of other systems thought to occur on the surfaces of 

these icy bodies, such as methane clathrates and the ammonia-water system. 
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1. Introduction 

 

Sodium sulfates are important geological and engineering materials; on Earth Na2SO4 

occurs in evaporitic sequences as the mineral thenardite or the hydrated mineral mirabilite 

(Na2SO4.10H2O), and often forms in association with dislocations in thrust terrains and as 

the metasomatic products of the weathering of alkaline igneous rocks.1 Moreover, sodium 

sulfates are a major component of the millions of tons of salts found in the dry valleys of 

Antarctica.2 Recently the importance of sulfates throughout the solar system has been 

recognised; Na2SO4 is the second most important leachate after MgSO4 from chondritic 

materials which probably form the rocky cores of the solar system's large icy moons.3  

Mirabilite will therefore be a major rock-forming mineral in the mantles of these icy moons. 

The use of sodium sulphate as an economic resource has been mainly confined to its 

inclusion in building concretes and for this reason information concerning the long-term 

behaviour and weathering of this compound has become sought after. 

The dearth of hydrates in the Na2SO4 - H2O system, compared with the MgSO4 - H2O 

system (one versus eight), the comparative ease of growing single crystals, and the low 

decomposition temperature of mirabilite (30°C), has meant that anhydrous sodium sulfate 

has received more attention than anhydrous magnesium sulfate in the literature. 

Nonetheless, the structures and phase transitions of anhydrous sodium sulphate have not 

been studied fully, mainly due to the complexity and metastability of the phase relations. 

The physical properties of this substance have also been neglected. Several studies have 

concentrated on the ionic conduction and electrical properties of sodium sulphate4, but 

ignored the thermo-elastic properties. The only investigations of the phase diagram of 

sodium sulphate5 were to 45kbar using a piston-cylinder and an investigation of the elastic 

properties of thenardite using interferometry.6Anhydrous sodium sulphate is thought to have 

as many as eight polymorphs up to 4.5 kbar6 (Fig. 1), but to date, only four of these have 

been structurally characterised; I, II, III and V7 (the latter being the naturally occurring 

phase called thenardite). Phase I, which occurs above 510K, is hexagonal, space group 

P63/mmc and is characterized by complete orientational disorder of the SO4 tetrahedra8. 

Phase II is orthorhombic, space group Pbnm, but is only stable over a very small temperature range (503 

– 510K) and has been considered by some to be metastable.5 Phase III (orthorhombic, space 

group Cmcm) is stable between 473 and 503K at atmospheric pressure, whilst the room P,T 

form of Na2SO4 is phase V (orthorhombic, space group Fddd9,10). There is still some debate 

in the literature as to the existence of a phase IV but recent studies have failed to report any 

evidence of this phase. The higher pressure polymorphs, VI, VII, and VIII, have yet to be 

investigated. 
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Figure 1.The P,T phase diagram of sodium sulfate from 370 – 720 K, 0 – 4.5 GPa. After 

Pistorius.8 

 

There have been comparatively few computational investigations of molecular ionic 

materials, such as sulfates. Such complex systems present a challenge to potential 

calculations as both bonded and non-bonded interactions must be accounted for by any 

potential model. The models that have been developed are adapted versions of models 

applied to ionic materials. The earliest investigation of the sulfates11 developed potentials 

for potassium sulfate which were then transferred to sodium sulfate. However, these 

potentials did not discriminate between the bonded and non-bonded interactions present in 

the structures. A subsequent study by Allan et al12. did distinguish between these 

interactions through the inclusion of a Morse potential and was successful in simulating a 

range of sulfates, including MgSO4 and Na2SO4. Most recently, Jackson, (2001)13 modified 

the results of Allan et al.(1993)12 by including a harmonic potential (in place of the Morse 

potential) to represent the S-O interaction. 
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However, neither Allan et al.(1993)12 nor Jackson (2001),16 refitted the sulfate potentials 

to reflect a change in cation; only the cation – oxygen interaction has been modified with 

each new sulfate system modelled. This means that the interactions, although generally 

adequate for simulating the bulk lattice parameters of the sulfates as a group, lack the 

individual complexities needed to represent accurately the multiple phases for each different 

cation sulfate system which may only differ marginally in their parameters. Another 

drawback to their method is that it does not take into account the coulombic interactions 

associated with the sulfate ion itself. 

Our goal is to understand the structure and history of large icy moons from the physical 

properties of the constituent salts; we have recently carried out detailed neutron diffraction 

studies of mirabilite14 and of hydrated magnesium sulfate salts.15  This experimental work is 

complemented by a mixture of computationally expensive high-level quantum mechanical 

(QM) calculations and cheaper interatomic potential (IP) calculations. The objective of this 

paper is to derive Na – O and S – O potentials (without the added complication of bound 

water) from empirical data on the structure of Na2SO4 polymorphs.  In a companion paper16 

we present results from the fitting of potentials to structural data for anhydrous magnesium 

sulfate polymorphs. Such potentials will extend greatly our ability to understand the more 

structurally complex Na2SO4 decahydrate that is so important on Earth and in the outer solar 

system. We then present a comparison of elastic properties from the IP calculations with 

experimentally determined elastic stiffness coefficients. 

 

2. Method 

 

2.1 Fitting of interatomic potentials 

 

The basis for the potentials developed here were parameters calculated by Allan et al. 

(1993)12 Sulfates present a challenge to empirical potential fitting as they consist of a cation 

ionically bonded to a molecularly bonded sulfate. The model employed by Allan et al. 

(1993)12 is a rigid ion model which differentiates between inter- and intra–molecular forces. 

This differentiation allows the sulfate ion to be modelled as a molecular system through the 

use of Morse and three-body (intramolecular) potentials while the intermolecular forces are 

modelled by Buckingham potentials (Table 1). 

Intermolecular interactions 

 

Buckingham potential  Uij 
Buckingham =



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Intramolecular interactions 

 

Morse potential     
Uij 

Morse = ]1)))(exp(1[ 2
0 −−−− rraDe  

 

Three-body potential  Uijk 
three body = 2

02 )(
2

1 θθ −k  

Table 1The forms of the interatomic potentials used, r is the interatomic distance over 
which the potential is operating, q is the atomic charge,θ is the angle between the vectors r 12 
and r 13 while A, ρC, De, a, r0, K2 and θare the coefficients which have been obtained 
through empirical fitting. 
 

The potentials derived here have been fitted to existing structural data for Na2SO4 

phases II, III, and V, ensuring full transferability between polymorphs. To achieve this, the 

input coefficients required by a particular potential were systematically varied until the 

output lattice parameters and unit cell volume agreed with the experimental values to within 

a suitable range (5% for the lattice parameters, 6% for the volume). 

During the fitting processes it was found that moderate variation in the Buckingham and 

Morse potentials and no variation in the three-body potential, from the values established by 

Allan et al.(1993)12 were needed to produce an extremely satisfactory agreement to 

published experimental lattice. The fitting and energy minimization calculations reported 

here were carried out using GULP, General Utilities Lattice Program17 which calculates 

bulk and elastic properties for a given potential. 

 

3. Results 

 

The potential coefficients derived by fitting to the available structural data are given in 

table 2.  The agreement between the calculated lattice parameters in the athermal limit and 

the measured values (at or above room temperature) are presented in table 3.  Structural 

relaxations and calculations of the total energy of the crystal were carried out at a series of 

fixed unit cell volumes. An integrated form of the 3rd order Birch-Murnaghan equation of 

state (BMEOS3)18 was fitted to the E(V) points to determine the zero-pressure volume, V0, 

the zero-pressure bulk modulus, K0, and its first pressure derivative, ( )0P/K ∂∂ or 0K ′ .  The 

lattice parameters as a function of the calculated pressure were also fitted with a 3rd order 

Birch-Murnaghan expression to obtain the axial incompressibilities and their pressure 

derivatives; i.e., Ka = (1 / a3)(∂a3 / ∂P), and aK ′  = (∂Ka / ∂P)T. The parameters resulting 
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from these various fits are given in tables 4, and a discussion of how they compare with 

experimental values follows in Section 4. 

 

Buckingham potentials 

Potential coefficients  

Species  A (eV) ρ (Å) C (eV Å6) 

Cutoffs (Å) 

Na – O 550.0 0.296 0.0 18.0 

O - O 103585.02 0.2 30.0 18.0 

Morse potential 

Potential coefficients  

Species  D (eV) a (Å-2) r0 (Å) 

Cutoffs (Å) 

S - O 5.0 1.2 1.505 1.8 

Three-body potential 

Potential coefficients Species  

θ (°) k2 (eVrad-2) 

Cutoffs (Å) 

O – S - O 109.47 15.0 1.6 1.6 3.2 

Table 2. Empirically derived potential coefficients for Na2SO4. 
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Na2SO4-V (thenardite) 

Lattice parameter IP  

Experimental (Ref. 10) 

(293 K) 

a (Å) 5.9981 5.85820 

b (Å) 11.9194  12.29900 

c (Å) 9.6297 9.81380 

V (Å3) 688.463 707.084 

b/a 1.9872 2.0995 

c/a 1.6055 1.6752 

Na2SO4-II  

Lattice parameter IP  

Experimental (Ref. 10) 

(493 K) 

a (Å) 5.2404  5.30991 

b (Å) 9.5005 9.46928 

c (Å) 6.8246 7.14360 

V (Å3) 339.772 359.188 

b/a 1.8129 1.7833 

c/a 1.3023 1.3453 

Na2SO4-III  

Lattice parameter IP  

Experimental (Ref. 10) 

(463 K) 

a (Å) 5.6800 5.63041 

b (Å) 8.8361 9.04343 

c (Å) 6.7681 7.03771 

V (Å3) 339.684 358.348 

b/a 1.5557 1.6062 

c/a 1.1916 1.2499 

 

Table 3. Comparison of calculated (interatomic potential, IP, and Density Functional 
theory, DFT)  athermal lattice parameters to previously published experimental data for 
three Na2SO4 phases. 
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 Na2SO4-V (IP) Na2SO4-II  (IP) Na2SO4-III  (IP) 

V0 (Å
3) 688.2 339.5 339.5 

K0 (GPa) 45.7 46.7 47.8 

K' 6.2 5.8 5.6 

 

Ka  (GPa) 49.15(16) 42.8(2) 43.1(3) 

K'a 11.278(10) 4.27(4) 6.81(15) 

Kb  (GPa) 67.12 42.3 42.33(8) 

K'b 4.7 3.51 3.51(3) 

Kc  (GPa) 32.45 50.13(15) 61.57(12) 

K'c 4.4 7.70(8) 7.97(5) 

Table 4. The calculated (IP) values for the bulk elastic properties of Na2SO4.  No 
experimental values exist at present. 
 

 

 

 Na2SO4-V 

(thenardite) 

IP 

Na2SO4-V 

(thenardite) 

experimental 

Na2SO4-II 

 

IP 

Na2SO4-III 

 

IP 

cij (GPa)     

c11 85.17 (+6.0) 80.35 78.35 139.97 

c22 117.82 (+11.8) 105.40 77.51 119.81 

c33 74.43 (+10.5) 67.36 87.62 136.61 

c44 15.18 (+2.8) 14.77 24.04 31.92 

c55 18.84 (+4.6) 18.02 15.92 38.64 

c66 31.97 (+35.5) 23.59 31.85 16.83 

c12 38.83 (+30.3) 29.81 34.57 24.90 

c13 23.88 (-6.6) 25.58 29.02 50.42 

c23 45.89 (+174.0) 16.75 35.85 43.64 

     

K0 (GPa) 50.6 42.6 49.0 69.3 

KH (GPa) 52.8 43.4 49.1 69.9 

GH (GPa) 23.3 22.3 23.3 33.5 

E (GPa) 61.0 57.0 60.4 86.7 

ν 0.308 0.281 0.295 0.293 

Ka (GPa) 41.1 48.7 44.3 70.0 
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Kb (GPa) 158.8 57.1 49.9 55.3 

Kc (GPa) 34.9 30.9 53.9 91.7 

θD (K) 331 322 331 396 

Table 5. Calculated (IP) elastic stiffnesses, cij, for three Na2SO4 polymorphs, and some 
derived quantities: K0 is the 'relaxed single crystal isotropic bulk modulus', KH and GH are 
the Hill average bulk and shear moduli, E is the Young's modulus, ν is Poisson's ratio, Ka, 
Kb, and Kc are the axial incompressibilities, and θD is the Debye temperature.  See 
Ravindran et al. (ref. 19) for the derivation of these quantites from the elastic stiffnesses and 
compliances. The experimental values are from Von Bayh (ref. 9), and the numbers in 
brackets in column one give the percentage difference between the calculated and empirical 
stiffnesses. 
 

Additionally, the elastic stiffness matrix is routinely calculated in GULP through the 

second derivatives of the energy density with respect to strain: 

 












∂∂
∂=

ji
ij

U

V
c

εε

21
 Equation 1 

 

where V is the unit cell volume, U the internal energy, ε the strain and cij are the elastic 

stiffness coefficients.  The calculated elastic constants appear in table 5.  Using the method 

described by Ravindran et al.(1998),19 we have also used the elastic stiffnesses (and 

compliances, sij, calculated by matrix inversion) to obtain a number of bulk elastic quantities 

for comparison with experimental data, where available (table 5). 

 

4. Discussion 

 

Table 3 reveals that the IP calculations yield over-inflated unit cells (by ~ 3 - 5 %) at 

zero pressure in the athermal limit. However, the experimental values are at much higher 

temperature (300 - 500 K), so future measurement of the limiting low temperature unit cell 

dimensions will yield much better agreement.  As we found with MgSO4,
16 the unit cell 

shapes (b/a and c/a) are not so well replicated (and this is unlikely to be improved by 

making measurements at low-T), which suggests that some directional aspect of the 

intermolecular interaction is not being correctly modelled by the potentials, and indicates 

that anisotropic properties, such as elastic constants and thermal expansion, will not be well 

reproduced, as discussed below. 

 

Tables 4 presents the bulk elastic properties for the three polymorphs studies. At 

present, there is no high-pressure experimental data with which to compare our calculated 

bulk and axial incompressibilities.  However, we can gain some insight into how well the 
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elasticity is being modelled by comparison of the calculated elastic stiffness matrix (table 6) 

with values determined interferometrically.9 The table indicates the percentage difference 

between calculated and measured values (the experimental uncertainties are 0.5 % on c11, 

c22, and c33, 3 % on c12, c13, and c23, and 2% on c44, c55, and c66), and it is clear that there are 

some extremely large discrepancies - most notably c23, which is nearly three times larger 

than the measured value.  Figure 2 depicts the calculated (a,b) and experimental (c,d) 

elasticity tensor (cij), and a slice in the y-z plane which highlights the difference in shape due 

to c23.  When we calculate bulk properties from these elastic constants we find that the 

greatest effect is upon the stiffness of the b-axis; Kb becomes almost three times greater than 

expected, whereas Ka and Kc agree tolerably well. Indeed a very similar phenomenon is seen 

in our calculation of the elastic constants of α-MgSO4, which yields an a-axis stiffness 

much larger than observed experimentally. For β-MgSO4, by contrast, the elastic constants 

yield Ka, Kb, and Kc, which are in reasonable agreement with the ab initio calculation, so it 

is also possible that the elastic constants for Na2SO4-II and III are well determined. 

 

 

 

Figure 2.The calculated (a and b) and experimental (c and d) elastic stiffness tensor (cij 
surface, units of GPa with a common scale for each panel), with slices in the y-z plane to 
illustrate the shape change brought about by the large difference in c23 between the two. 
 



Appendices 

XII 

It remains to be seen whether the predicted bulk and axial incompressibilities of 

Na2SO4-II, III, and V agree with future experimental data.  Moreover, high P,T studies of 

phases VI, VII, and VIII will help us to elucidate the subtleties of the intermolecular 

interactions due to minor differences in packing arrangements, which present challenges for 

the simplistic potential model employed here in terms of longer-range directional forces. 

 

5. Summary 

 

In this paper we have fitted new interatomic potential models to structural data for 

anhydrous sodium sulfate polymorphs. These models have been used to calculate elastic 

properties, which we have compared with experimentally determined elastic constants. The 

derived potentials are shown to be transferable between polymorphs of the same sulfate and 

the lattice parameters obtained by these potentials agree very well with empirical data. 

The fitting of interatomic potentials provides a more cost effective means of calculating 

structural and elastic properties than quantum mechanical simulation (more so at finite 

temperatures), allows us to investigate P,T space untrammelled by the constraints of 

pressure vessels, cryostats or furnaces, and yields 'single-crystal' data for substances where 

single crystals of the right size are difficult to grow. 

  Sulfates present a particular challenge to empirical potential fitting as they consist of a 

cation ionically bonded to a covalent sulfate group. Thus, any model developed must be able 

to accurately represent a mixture of both bonded and non-bonded interactions over a range 

of polymorphic phases. The anhydrous sodium sulfate interatomic potential refinements 

have shown that GULP is an effective tool to mimic the behaviour of salts; the lattice 

parameters obtained are accurate to within a few percent of the published values.  Further 

application of these potentials in the study of hydrated sulfates will be valuable in 

supporting existing experimental and ab initio data. 
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Appendix 2 

 

 

  

Experimental unit-cell parameters for mirabilite on 

warming and slow-cooling from 4.2 – 300 K from the 

ambient pressure thermal expansion experiment of 

Chapter 3. 
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Warming  

Temperature (K) a-axis (Å) b-axis (Å) c-axis (Å) ββββ-angle (o) Unit-cell volume (Å3) 
4.2 11.4419(1) 10.3428(1) 12.7532(1) 107.838(1) 1436.68(1) 
10 11.44180(2) 10.3426(1) 12.7533(2) 107.836(1) 1436.67(2) 
20 11.4419(2) 10.3428(1) 12.7531(2) 107.838(1) 1436.67(2) 
30 11.4423(2) 10.3426(1) 12.7530(2) 107.838(2) 1436.69(2) 
40 11.4425(2) 10.3420(1) 12.7525(2) 107.836(2) 1436.58(2) 
50 11.4434(2) 10.3418(1) 12.7524(2) 107.835(2) 1436.66(2) 
60 11.4444(2) 10.3418(1) 12.7525(2) 107.836(2) 1436.79(3) 
70 11.4460(2) 10.3415(1) 12.7533(2) 107.837(2) 1437.03(2) 
80 11.4476(2) 10.3421(1) 12.7540(2) 107.836(2) 1437.41(2) 
90 11.4495(2) 10.3425(1) 12.7558(2) 107.834(2) 1437.91(3) 
100 11.4521(2) 10.3429(1) 12.7575(2) 107.834(2) 1438.49(2) 
110 11.4545(2) 10.3437(1) 12.7592(2) 107.831(2) 1439.11(2) 
120 11.4569(2) 10.3443(1) 12.7621(2) 107.833(2) 1439.80(3) 
130 11.4592(2) 10.3454(1) 12.7646(2) 107.829(2) 1440.57(3) 
140 11.4619(2) 10.3461(1) 12.7686(2) 107.832(2) 1441.43(3) 
150 11.4645(2) 10.3467(1) 12.7717(2) 107.829(2) 1442.22(3) 
160 11.4668(2) 10.3482(1) 12.7749(2) 107.821(2) 1443.15(3) 
170 11.4695(2) 10.3493(1) 12.7781(2) 107.811(2) 1444.09(3) 
180 11.4717(2) 10.3511(2) 12.7814(2) 107.804(2) 1445.03(3) 
190 11.4744(2) 10.3521(2) 12.7856(2) 107.794(2) 1446.07(3) 
200 11.4772(2) 10.3536(2) 12.7898(2) 107.791(2) 1447.14(3) 
210 11.4803(2) 10.3544(2) 12.7944(2) 107.783(2) 1448.23(3) 
220 11.4832(2) 10.3562(2) 12.7991(2) 107.777(2) 1449.42(3) 
230 11.4862(2) 10.3572(2) 12.8038(2) 107.770(2) 1450.54(3) 
240 11.4895(2) 10.3585(2) 12.8092(2) 107.763(2) 1451.80(3) 
250 11.4928(3) 10.3597(2) 12.8148(2) 107.754(2) 1453.10(4) 
260 11.4965(3) 10.3606(2) 12.8205(3) 107.750(2) 1454.36(4) 
270 11.5014(3) 10.3612(2) 12.8268(3) 107.753(3) 1454.75(4) 
280 11.5049(3) 10.3624(2) 12.8333(2) 107.750(2) 1457.15(4) 
290 11.5097(3) 10.3637(2) 12.8396(2) 107.754(2) 1458.61(4) 
300 11.5144(3) 10.3650(2) 12.8461(3) 107.751(3) 1460.14(4) 

Slow Cooling 

Temperature (K) a-axis (Å) b-axis (Å) c-axis (Å) b-angle (o) Unit-cell volume (Å3) 
300 11.5149(2) 10.365(1) 12.8466(2) 107.757(1) 1460.22(2) 
295 11.5123(3) 10.3643(2) 12.8439(3) 107.756(3) 1459.49(4) 
285 11.5077(3) 10.3632(2) 12.8363(3) 107.754(2) 1457.91(4) 
275 11.5032(3) 10.3618(2) 12.8304(3) 107.756(2) 1456.45(4) 
265 11.4991(3) 10.3609(2) 12.8241(2) 107.754(2) 1455.12(4) 
255 11.4950(2) 10.3599(2) 12.8183(2) 107.757(2) 1453.77(3) 
245 11.4916(2) 10.3585(2) 12.8127(2) 107.758(2) 1452.51(3) 
235 11.4879(2) 10.3573(2) 12.8073(2) 107.762(2) 1451.21(3) 
225 11.4845(2) 10.3558(2) 12.8024(2) 107.770(2) 1449.95(3) 
215 11.4815(2) 10.3540(2) 12.7973(2) 107.773(2) 1448.73(3) 
205 11.4786(2) 10.3526(2) 12.7931(2) 107.779(2) 1447.63(3) 
195 11.4757(2) 10.351(2) 12.7888(2) 107.785(2) 1446.53(3) 
185 11.4732(2) 10.3503(2) 12.7847(2) 107.793(2) 1445.57(3) 
175 11.4705(2) 10.3487(2) 12.7809(2) 107.799(2) 1444.55(3) 
165 11.4682(2) 10.3480(2) 12.7769(2) 107.814(2) 1443.58(3) 
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155 11.4656(2) 10.3466(2) 12.7737(2) 107.818(2) 1442.65(3) 
145 11.4630(2) 10.3454(2) 12.7711(2) 107.829(2) 1441.78(3) 
135 11.4603(2) 10.3447(2) 12.7677(2) 107.835(2) 1440.92(3) 
125 11.4581(2) 10.3438(2) 12.7649(2) 107.837(2) 1440.18(3) 
115 11.4555(2) 10.3432(1) 12.7624(2) 107.838(2) 1439.46(3) 
105 11.4532(2) 10.3425(1) 12.7590(2) 107.842(2) 1438.73(3) 
95 11.4509(2) 10.3417(1) 12.7579(2) 107.843(2) 1438.15(3) 
85 11.4488(2) 10.3418(1) 12.7565(2) 107.846(1) 1437.70(3) 
75 11.4471(2) 10.3413(1) 12.7553(2) 107.848(1) 1437.28(3) 
65 11.4454(2) 10.3413(1) 12.7541(2) 107.848(1) 1436.93(3) 
55 11.4443(2) 10.3413(1) 12.7541(2) 107.849(1) 1436.78(2) 
45 11.4433(2) 10.3416(1) 12.7538(2) 107.849(1) 1436.67(2) 
35 11.4426(2) 10.3420(1) 12.7541(2) 107.849(1) 1436.65(2) 
25 11.4426(2) 10.3424(1) 12.7542(2) 107.848(1) 1436.71(2) 
15 11.4422(2) 10.3424(1) 12.7547(2) 107.847(1) 1436.75(2) 
4.2 11.4423(2) 10.3425(1) 12.7547(1) 107.849(1) 1436.77(1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendices 

XVII 

 

 

 

 

 

Appendix 3. 

 

 

 H-bond lengths from each of the long soaks in Chapter 3 
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1. Hydrogen bond lengths and angles in mirabilite at 4.2 K slow cooled. 

4.2K Slow cooled O - D D---O O---O O - D --- O 

O8 - D8B---O16 0.9897(21) 1.842(6) 2.748(6) 157.7(5) 

O16 - D16C---O8 0.9880(22) 1.886(6) 2.748(6) 149.6(8) 

O9 - D9C---O17 0.9905(22) 1.757(6) 2.730(6) 166.5(9) 

O17 - D17B---O9 0.9924(21) 1.753(6) 2.730(6) 167.5(5) 

         

O8 - D8C---O16 0.9902(22) 1.766(7) 2.748(6) 170.7(7) 

O16 - D16B---O8 0.9886(21) 1.766(6) 2.748(6) 171.6(5) 

O9 - D9B---O17 0.9899(21) 1.786(6) 2.730(6) 168.8(6) 

O17 - D17C---O9 0.9894(22) 1.816(9) 2.730(6) 159.3(15) 

         

O12 - D12A---O10 0.9845(21) 1.863(6) 2.847(6) 177.7(5) 

O13 - D13A---O11 0.9842(21) 1.866(6) 2.850(6) 177.0(5) 

O14 - D14A---O10 0.9876(21) 1.802(6) 2.775(6) 168.1(4) 

O15 - D15B---O11 0.9865(21) 1.829(6) 2.797(6) 166.5(4) 

         

O8 - D8A---O5 0.9845(21) 1.811(6) 2.775(6) 165.7(4) 

O10 - D10A---O5 0.9864(21) 1.839(5) 2.817(5) 170.4(4) 

O12 - D12B---O5 0.9813(20) 1.946(5) 2.919(5) 170.7(5) 

         

O10 - D10B---O4" 0.9836(21) 1.849(5) 2.823(5) 170.2(5) 

O11 - D11A---O4" 0.9856(21) 1.848(5) 2.831(5) 174.8(5) 

O9 - D9A"---O4" 0.9851(21) 1.764(6) 2.747(6) 174.8(4) 

O11 - D11B---O6" 0.9860(21) 1.855(5) 2.821(5) 165.9(4) 

O13 - D13B---O6" 0.9869(20) 1.938(5) 2.918(5) 171.6(4) 

O17 - D17A"---O6" 0.9847(21) 1.941(6) 2.916(5) 170.5(5) 

O14 - D14B---O7" 0.9901(21) 1.828(5) 2.805(5) 168.3(5) 

O15 - D15A---O7" 0.9892(21) 1.825(5) 2.798(5) 167.4(4) 

O16 - D16A"---O7" 0.9850(21) 1.821(5) 2.785(5) 165.4(5) 
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2. Hydrogen bond lengths and angles in mirabilite at 4.2 K rapidly cooled. 

 

4.2K Quenched O - D D---O O---O O - D --- O 

O8 - D8B---O16 0.9898(22) 1.846(7) 2.755(6) 157.6(6) 

O16 - D16C---O8 0.9877(23) 1.881(6) 2.755(6) 151.1(8) 

O9 - D9C---O17 0.9900(23) 1.781(6) 2.755(6) 167.2(9) 

O17 - D17B---O9 0.9932(22) 1.774(6) 2.755(6) 168.7(6) 

         

O8 - D8C---O16 0.9902(23) 1.773(7) 2.755(6) 170.5(7) 

O16 - D16B---O8 0.9881(22) 1.772(6) 2.755(6) 172.6(6) 

O9 - D9B---O17 0.9886(22) 1.783(7) 2.755(6) 171.1(7) 

O17 - D17C---O9 0.9890(23) 1.804(8) 2.755(6) 162.8(14) 

         

O12 - D12A---O10 0.9869(21) 1.859(6) 2.844(6) 176.6(5) 

O13 - D13A---O11 0.9840(21) 1.862(6) 2.845(6) 176.5(5) 

O14 - D14A---O10 0.9865(21) 1.797(6) 2.769(6) 168.1(4) 

O15 - D15B---O11 0.9843(21) 1.822(6) 2.789(6) 166.5(4) 

         

O8 - D8A---O5 0.9816(22) 1.805(6) 2.767(6) 165.8(5) 

O10 - D10A---O5 0.9874(21) 1.847(5) 2.826(5) 170.7(4) 

O12 - D12B---O5 0.9855(21) 1.935(5) 2.913(5) 171.0(5) 

         

O10 - D10B---O4" 0.9856(21) 1.841(5) 2.816(5) 169.6(5) 

O11 - D11A---O4" 0.9871(21) 1.863(5) 2.848(5) 175.0(5) 

O9 - D9A"---O4" 0.9826(21) 1.763(6) 2.743(6) 174.4(4) 

O11 - D11B---O6" 0.9878(22) 1.846(5) 2.816(5) 166.3(4) 

O13 - D13B---O6" 0.9887(21) 1.944(5) 2.928(5) 172.7(5) 

O17 - D17A"---O6" 0.9855(21) 1.932(6) 2.909(6) 170.7(5) 

O14 - D14B---O7" 0.9888(22) 1.822(6) 2.799(6) 169.3(5) 

O15 - D15A---O7" 0.9868(21) 1.830(5) 2.802(5) 167.4(4) 

O16 - D16A"---O7" 0.9842(21) 1.819(5) 2.779(6) 164.0(5) 
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3. Hydrogen bond lengths and angles in mirabilite at 150 K. 

 

150K O - D D---O O---O O - D --- O 

O8 - D8B---O16 0.9890(19) 1.868(7) 2.715(7) 155.2(7) 

O16 - D16C---O8 0.9893(20) 1.888(7) 2.715(7) 151.4(8) 

O9 - D9C---O17 0.9898(20) 1.748(7) 2.721(7) 166.8(10) 

O17 - D17B---O9 0.9910(19) 1.752(7) 2.721(7) 164.9(6) 

         

O8 - D8C---O16 0.9893(20) 1.732(8) 2.715(7) 171.8(9) 

O16 - D16B---O8 0.9871(19) 1.737(7) 2.715(7) 169.8(6) 

O9 - D9B---O17 0.9913(19) 1.798(8) 2.721(7) 171.4(8) 

O17 - D17C---O9 0.9890(20) 1.830(9) 2.721(7) 160.7(14) 

         

O12 - D12A---O10 0.9881(19) 1.869(7) 2.856(7) 176.8(6) 

O13 - D13A---O11 0.9870(19) 1.870(7) 2.856(7) 176.2(6) 

O14 - D14A---O10 0.9883(19) 1.813(7) 2.787(7) 168.0(4) 

O15 - D15B---O11 0.9860(19) 1.827(7) 2.790(7) 164.8(4) 

         

O8 - D8A---O5 0.9850(19) 1.814(7) 2.774(7) 163.9(6) 

O10 - D10A---O5 0.9889(19) 1.847(6) 2.829(6) 171.4(4) 

O12 - D12B---O5 0.9876(19) 1.943(6) 2.920(6) 169.6(5) 

         

O10 - D10B---O4" 0.9878(19) 1.825(6) 2.802(6) 169.2(5) 

O11 - D11A---O4" 0.9895(19) 1.861(6) 2.848(6) 175.9(5) 

O9 - D9A"---O4" 0.9859(19) 1.777(7) 2.757(7) 172.2(5) 

O11 - D11B---O6" 0.9882(19) 1.842(6) 2.812(6) 166.3(5) 

O13 - D13B---O6" 0.9900(19) 1.946(6) 2.932(6) 173.4(5) 

O17 - D17A"---O6" 0.9872(19) 1.974(6) 2.948(6) 168.6(5) 

O14 - D14B---O7" 0.9897(19) 1.827(6) 2.804(6) 168.7(6) 

O15 - D15A---O7" 0.9883(19) 1.819(6) 2.790(6) 166.7(4) 

O16 - D16A"---O7" 0.9870(19) 1.836(6) 2.798(6) 164.0(5) 
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4 Hydrogen bond lengths and angles in mirabilite at 300 K rapidly cooled 

  

300K O - D D---O O---O O - D --- O 

O8 - D8B---O16 0.9897(15) 1.851(10) 2.716(10) 157.4(8) 

O16 - D16C---O8 0.9903(15) 1.872(9) 2.716(10) 153.0(9) 

O9 - D9C---O17 0.9902(15) 1.813(10) 2.749(12) 163.6(11) 

O17 - D17B---O9 0.9907(15) 1.831(10) 2.749(12) 158.6(10) 

         

O8 - D8C---O16 0.9895(15) 1.741(11) 2.716(10) 167.5(11) 

O16 - D16B---O8 0.9898(15) 1.750(9) 2.716(10) 164.1(12) 

O9 - D9B---O17 0.9899(15) 1.774(11) 2.749(12) 167.5(12) 

O17 - D17C---O9 0.9905(15) 1.764(12) 2.749(12) 172.1(11) 

         

O12 - D12A---O10 0.9897(15) 1.919(10) 2.908(10) 176.3(7) 

O13 - D13A---O11 0.9892(15) 1.843(10) 2.827(10) 173.1(7) 

O14 - D14A---O10 0.9896(15) 1.767(11) 2.746(10) 169.5(6) 

O15 - D15B---O11 0.9897(15) 1.874(12) 2.840(11) 164.5(6) 

         

O8 - D8A---O5 0.9892(15) 1.818(10) 2.782(10) 164.1(7) 

O10 - D10A---O5 0.9888(15) 1.904(10) 2.875(10) 166.7(7) 

O12 - D12B---O5 0.9880(15) 1.961(9) 2.938(9) 169.3(8) 

         

O10 - D10B---O4" 0.9883(15) 1.815(8) 2.799(9) 173.4(8) 

O11 - D11A---O4" 0.9883(15) 1.843(9) 2.831(9) 177.9(6) 

O9 - D9A"---O4" 0.9894(15) 1.831(9) 2.816(9) 172.7(6) 

O11 - D11B---O6" 0.9885(15) 1.838(9) 2.809(10) 166.7(7) 

O13 - D13B---O6" 0.9886(15) 1.965(10) 2.943(9) 169.8(8) 

O17 - D17A"---O6" 0.9891(15) 2.123(10) 3.058(9) 157.1(8) 

O14 - D14B---O7" 0.9898(15) 1.823(9) 2.794(10) 166.2(9) 

O15 - D15A---O7" 0.9899(15) 1.767(9) 2.740(10) 166.6(7) 

O16 - D16A"---O7" 0.9886(15) 1.988(10) 2.929(10) 158.1(8) 
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Appendix 4. 

 

 

Unit-cell parameters for mirabilite determined in the 

high pressure experiment of Chapter 4. 
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Temperature  
(K) 

Pressure 
(GPa) a – axis(Ǻ) b – axis(Ǻ) c – axis(Ǻ) β-angle (°) 

Unit –cell volume 
(Ǻ3) 

260 0.048 11.487(3) 10.359(2) 12.816(4) 107.77(3) 1452.1(5) 

260 0.048 11.489(3) 10.356(2) 12.818(4) 107.78(3) 1452.1(5) 

260 0.103 11.476(3) 10.351(2) 12.799(4) 107.75(2) 1448.1(5) 

260 0.152 11.464(4) 10.346(2) 12.786(4) 107.72(3) 1444.7(5) 

260 0.2 11.460(3) 10.340(2) 12.773(4) 107.70(3) 1441.9(5) 

260 0.248 11.450(3) 10.336(2) 12.759(4) 107.67(3) 1438.7(5) 

260 0.3 11.439(3) 10.331(2) 12.742(4) 107.61(3) 1435.3(5) 

260 0.35 11.425(3) 10.322(2) 12.720(5) 107.60(3) 1429.8(6) 

260 0.393 11.416(3) 10.315(2) 12.697(4) 107.58(3) 1425.3(5) 

260 0.453 11.408(3) 10.312(2) 12.681(4) 107.57(3) 1422.2(5) 

260 0.501 11.399(3) 10.305(2) 12.672(4) 107.57(3) 1419.3(5) 

260 0.541 11.393(3) 10.305(3) 12.662(4) 107.56(3) 1417.3(5) 

240 0.54 11.389(3) 10.300(2) 12.664(4) 107.53(3) 1416.4(5) 

220 0.539 11.386(3) 10.299(2) 12.661(4) 107.57(3) 1415.5(5) 

200 0.538 11.385(2) 10.296(2) 12.659(4) 107.53(3) 1415.0(4) 

180 0.537 11.382(2) 10.292(2) 12.667(4) 107.53(2) 1415.0(4) 

160 0.536 11.380(3) 10.289(3) 12.664(4) 107.53(2) 1414.0(4) 

140 0.535 11.379(3) 10.290(3) 12.659(4) 107.57(2) 1413.2(4) 

120 0.534 11.379(3) 10.287(2) 12.653(4) 107.64(2) 1411.5(4) 

100 0.532 11.373(2) 10.290(3) 12.646(4) 107.61(2) 1410.6(4) 

80 0.473 11.378(2) 10.294(2) 12.649(4) 107.65(2) 1411.7(4) 

80 0.413 11.384(2) 10.297(2) 12.667(4) 107.60(2) 1415.4(4) 

80 0.352 11.394(2) 10.308(2) 12.673(3) 107.64(2) 1418.4(4) 

80 0.293 11.405(2) 10.316(2) 12.694(3) 107.64(2) 1423.3(4) 

80 0.231 11.416(2) 10.322(1) 12.708(3) 107.65(2) 1426.9(4) 

80 0.167 11.423(3) 10.329(3) 12.714(1) 107.67(2) 1429.3(4) 

80 0.105 11.437(3) 10.337(2) 12.732(3) 107.71(2) 1433.8(3) 

80 0.041 11.445(2) 10.344(2) 12.747(5) 107.72(2) 1437.5(3) 

80 0.002 11.452(2) 10.347(1) 12.754(3) 107.73(2) 1439.4(3) 
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Appendix 5. 

 

 

  
Beamtime application to study protenated and 

deuterated mirabilite. 
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Measuring the Grüneisen and Anderson-Grüneisen parameters of 
mirabilite (Na 2SO4.10D2O) 

 

Introduction – scientific rationale 
Multiply hydrated salts, such as hydrated sodium sulfate (Na2SO4.10H2O) - the mineral 

mirabilite –  Epsom salt (MgSO4.7H2O) and Fritzsche’s salt, MgSO4.11H2O are likely to be 
major ‘rock-forming’ minerals in the interiors of the solar system’s large icy moons (Kargel, 
1991). This supposition is supported by observational evidence from the Near Infrared 
Mapping Spectrometer (NIMS) instrument on the Galileo space-craft, which orbited Jupiter 
from 1995 to 2003; NIMS collected multispectral images of the surfaces of Jupiter’s icy 
moons, Europa, Ganymede, and Callisto and these spectra have been interpreted as showing 
deposits of hydrated alkali salts associated with liquids erupted onto the surface (Dalton et 
al., 2005; Orlando et al., 2005). On Earth, mirabilite occurs in evaporites, often forming 
extremely thick deposits which are able to flow and form diapiric structures within 
sedimentary basins (e.g., Colman et al., 2002). 

Whether we wish to model the behaviour of deeply lain evaporites on Earth, or to 
construct geophysical models of icy moons, it is necessary to know the phase behaviour and 
thermoelastic properties of the constituent materials under the appropriate pressure and 
temperature conditions; for the large icy moons we are concerned with pressures up to ~ 5 
GPa, and temperatures from 100 – 300 K. 

In our previous application (RB610128), we applied for four days to measure the 
ambient-pressure thermal expansion, and to study the high-pressure behaviour of mirabilite; 
we were awarded two days and, therefore, were able only to measure the thermal 
expansivity from 4.2 – 300 K (see experimental report RB610128). The purpose of this 
continuation is to request the additional two days necessary to carry out the high-pressure 
study. Since the specific heat of mirabilite is known (e.g. Brodale and Giauque 1957), 
measurements of its incompressibility at different temperatures will allow us to determine 
both its Grüneisen and Anderson-Grüneisen parameters (see below). The latter quantity has 
now been determined for some of the simple inorganic solids, such as magnesio-wüstite 
(MgxFe1-xO), that form major components of the Earth’s mantle; as planetary scientists it is 
of similar importance for us to determine it for the “rock-forming minerals” of the outer 
solar system.   
 
Previous work on mirabilite in the literature. 

Sodium sulfate decahydrate is the stable phase in equilibrium with a saturated solution 
at room temperature and is the only confirmed hydrate of sodium sulfate at ambient 
pressure, although there is some evidence for a heptahydrate (see below). Mirabilite is 
monoclinic, space group P21/c (Z = 4, a = 11.512(3) Å, b = 10.370(3) Å, c = 12.847(2) Å 
and β = 107.789(10) ° at 25.3°C); the structure consists of edge sharing Na (H2O) 6 
octahedra with orientationally disordered interstitial water molecules (Ruben et al., 1960: 
Levy and Lisensky, 1978). Measurements of the heat capacity as a function of temperature 
suggested that the hydrogen bond disorder is frozen-in to limiting low temperatures 
(<150˚K) (Pitter and Coulter, 1938; Brodale and Giauque 1957; Ruben et al. 1960). The 
only high pressure studies have been concerned with the pressure dependence of the ice-
mirabilite eutectic (Tanaka et al., 1992; Hogenboom et al. 1997) and the pressure 
dependence of the incongruent melting point (Tamman, 1929). Tanaka et al. (1992) 
investigated the system to 5 kbar, between 263 K and 343 K, and did not observe any high 
pressure phases; Hogenboom et al. (1997), who worked up to 3.5 kbar, saw evidence of 
other solid phases which they tentatively identified with the purported heptahydrate reported 
by Hills and Wills (1938). 
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Our earlier work on mirabilite. 
Our previous experiment (RB 610128), carried out in July 2006, yielded excellent data 

(e.g., Fig. 1) over the range from 4.2 – 300 K. Samples that were cooled quickly or slowly 
were observed to behave differently (especially in their β angle) and so it was necessary to 
collect data both on warming and on cooling. These data were refined to yield unit-cell 
parameters (Fig. 2) and hence determine the full thermal expansion tensor, αij, as a function 
of temperature. We were also able to measure changes in the occupancy of partially filled 
sulfate oxygen sites (observing different behaviour upon quenching from that obtained 
during slow warming), and to investigate the hydrogen-bond disorder at limiting low 
temperatures.  We have also recently carried out ab initio simulations of mirabilite from 
ambient pressures to 100GPa and these experiments would serve to validate the low 
pressure values of K (22(1)GPa) and K’(5(1)) obtained from these simulations and thus 
allow determination of thermoelastic cross-terms such as the Grüneisen parameter (= 
αKV/CV ). 
 

 
Fig. 1. Diffraction pattern of mirabilite at 4.2 K in the 
backscattering bank of HRPD. GSAS structure refinement 
(green); observed data (red); difference plot (purple). 

Fig 2. The temperature dependence of the a-, b- and 
c-axes. The symbols are comparable in size to the 
standard errors. 

 

The proposed experiment 
The objective of this continuation is to carry out the high-pressure study of mirabilite, 

which will form the final part of the neutron diffraction experiments required for Miss Helen 
Brand’s Ph.D. thesis. 

  Our goals are to, 1) measure the unit cell parameters along two isotherms from 0 – 5.5 
kbar, using a TiZr gas pressure vessel, and 2) measure the unit cell parameters along one or 
more isobars from 150 – 300 K.  This same strategy was employed by us to characterize the 
thermoelastic properties of epsomite (Fortes et al., 2006).  As well as allowing 
determination of the Grüneisen parameter (see above), these measurements will enable us to 
obtain the pressure dependence of the thermal expansivity and the temperature dependence 
of the incompressibility, which are linked by the dimensionless quantity, δT, called the  
Anderson-Grüneisen parameter, defined such that δT = -(∂lnKT/∂lnV) = (∂lnαP/∂lnV). 

Moreover, it is quite possible that there will be either a polymorphic phase 
transformation or a dehydration reaction at high-pressure, either of which would have 
implications for planetary modelling. 

Our earlier experience with deuterated mirabilite suggests that diffraction patterns 
suitable for unit-cell refinement may be collected in the gas cell on HRPD in around 120 
minutes.  The new HRPD beam guide should lead to a considerable improvement in 
counting statistics compared with our study of epsomite (Fortes et al., 2006) and improved 
precision on the unit cell parameters. This experiment would be suitable for the 
commissioning program of the HRPD upgrade. Including temperature equilibration and cell 
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loading, we anticipate that a minimal twenty-two high pressure data points will require 72 
hours to collect. Thus we request a total of 3 days on HRPD to complete this experiment. 
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