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ABSTRACT 
 
Travel demand models are often estimated using cross-sectional data. Although the use of 
panel data has recently increased in many areas, there are still many aspects that have not 
been analyzed fully. Some examples of unexplored topics are: the optimal length of panel 
surveys and the resulting issue of how to model panel data correctly in the presence of 
repeated observations (for example, several trips per week, by people in a panel with waves 
every six months) and whether, and to what extent, this affects the efficiency of the estimated 
parameters and their capability to replicate the true situation. In this paper we analyse this 
issue and test the effect of including journeys made, with the same characteristics, several 
times in a week. A broad variety of models accounting for fixed parameters but also for 
random heterogeneity and correlation among individuals were estimated using each of real 
and synthetic data. The real data come from the Santiago Panel (2006-2008), while the 
synthetic data were appropriately generated to examine the same problem in a controlled 
experiment. Our results show that having more observations per individual increases the 
probability of capturing effects (different types of heterocedasticity), but having identical 
observations in a data panel reduces the capability to reproduce true phenomena. 
Consequently, the definition of panel survey duration requires us to consider the implicit 
level of routine that is present as represented in the proportion of identical observations. 
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1. INTRODUCTION 
 
For many years, travel demand models have been estimated using mainly cross-sectional data 
involving the collection of information, at a single time, over a large number of individuals. 
One problem with this data structure is that it does not allow to model user’s behaviour in the 
presence of temporal effects. Only recently, the increased need for better understanding of 
individual behaviour and the parallel advances in travel demand modelling techniques and 
computational power has made it possible to re-discover panel data. In this case, different 
from cross-sectional data, data are collected at a number of successive times following the 
same individuals through for the series of surveys. 
 
Panels can be classified into two categories: “long survey panels” and “short survey panels” 
(see Yáñez et al., 2009a). The first are the most common in the literature and consists of 
repeating the same survey (i.e. with the same methodology and design) at distinct times, for 
example once or twice a year for a certain number of years, or before-and-after an important 
event. The second type of panel consists of multi-day data where repeated measurements on 
the same sample of units are gathered over a period of time (e.g. seven or more successive 
days), but the survey is not repeated in subsequent years. Some recent examples of panel data 
gathered over a continuous period of time are the two-day time-use diary for the US National 
Panel Study of Income Dynamics (2002) and the six-week travel and activity diary data 
panels collected in Germany (Axhausen et al., 2002) and Switzerland (Axhausen et al., 
2007). One of the most recent panels is that gathered in Santiago (2006- 2008), which 
combines both the “short” and “long” survey panel approaches. In fact, the Santiago Panel 
(Yáñez et al., 2009a) is a five-day pseudo diary which has also four waves that include before 
and after the implementation of a radically new and much maligned urban public transport 
system (Transantiago). 
 
Panel data offer major advantages over cross-sectional data because repeated observations 
from the same individual generally allow for more accurate measurements of changes in 
individual mobility. In particular, a “long survey panel” including data for the same 
respondents at separate times allows us to study dynamic effects over waves, such as habit 
formation, learning and the reaction to important policies (Yáñez and Ortúzar, 2009; Yáñez et 
al., 2009b). A “short survey panel”, on the other hand, such as a multi-day panel over only 
one continuous period of time allows to detect effects such as rhythms of daily life 
(Axhausen et al., 2002), to explain current behaviour on the basis of the individuals’ history 
and experience (Cirillo and Axhausen, 2006) and to account for interpersonal variability and 
correlation across individuals over different time periods (Cherchi and Cirillo, 2008). 
 
Although panel data have many advantages, they can also suffer from certain specific 
problems, such as: 
 
- Attrition bias: associated with the fact that some respondents may drop out among waves; 

the problem is that usually this does not occur randomly but might be depend on the 
person´s socio-economic characteristics, causing a bias in the results (Ruiz, 2006). 

- Panel effect: participating in a panel may affect individual decisions as panel members 
become more conscious about their own behaviour. 

- Fatigue effect: respondents tend to show, for example, declining trip rates and omit short 
trips or journeys using slow modes; this error tends to increase with the number of days of 
the diary (Van Wisen and Meurs, 1989). 

 
Another problem (specific to successive multi-day panel data), which is important to take into 
account in order to establish the survey length, is the presence of repeated observations. It is 



usual to expect that individuals, in different days, may repeat exactly some trips (typical cases 
are the systematic trips to work that are often made every day with the same attributes: time, 
cost, purpose, mode, and so on). The problem arises when these data are used for model 
estimation, as the way in which repeated information is treated may affect the estimation 
results. 
 
In this paper we analyze the effect of repeated observations in a panel context, specifically, 
the problem of how repeated data should be treated in model estimation and whether, and to 
what extent, this affects the efficiency of the estimated parameters and their capability to 
replicate the true phenomenon. In fact, the way a panel data model is specified affects model 
estimation because the above assumptions imply substantial differences in model 
specification, data variability, degree of correlation over individuals and different sample 
dimensions. In particular, using simulated data we analyse the impact of multi-day-panel-
survey duration on the capability of models to recover the known parameter values. 
 
The analyses were carried out using real data from the second wave of the Santiago Panel 
and also using synthetic data generated to test, in a controlled experiment (free of unknown 
effects), the effect of the repeated observations on the efficiency of the model parameters. 
Efficiency is measured in this case by the Fisher information matrix; this is inversely related 
to sample size, to the values of the attributes associated with the estimated parameters and to 
the probability associated with the chosen option (McFadden, 1974). Rose and Bliemer 
(2008) analysed the effect of the number of options, attributes, and attribute levels on the 
optimal sample size for stated choice experiments in MNL models, as part of their search for 
the experimental design with highest asymptotic efficiency of the estimated parameters. They 
found that only the range of attribute levels could offer an explanation for some problems of 
convergence encountered in their experiments. In line with these analyses on experimental 
design, Cherchi and Ortúzar (2008) demonstrated that while efficiency clearly improves with 
sample size, data variability does not always increase it; rather, in some cases there might not 
be benefits in increasing data variability or it might be better to have a smaller range of 
variation. 
 
In contrast, the repeated observations in a panel will increase the number of observations but 
might reduce data variability, because observations that are identical do not bring new 
information about attribute trade-offs. Thus, when using panel data it is important to 
understand how efficiency is influenced by the repeated observations and up to what point 
these are beneficial. This last result is also crucial to determine the length of a multi-day 
panel survey which is something that has not been explored up to date. Moreover, as in the 
case of panel data the same individual provides more than one observation, we need to 
account for correlation among these, which obviously has a different effect depending on 
how the repeated observations are treated. Cherchi and Cirillo (2008) found that the effect of 
correlation is, to a large extent (at least 50%), given by the repeated observations; however, 
they only compared the case with and without repeated observations and did not explore the 
effect on the efficiency of the parameters and on the capability of a flexible model, such as 
Mixed Logit (ML), to reproduce the true phenomenon. 
 
The rest of the paper is organised as follow. In section 2 we briefly discuss the issue of 
modelling with panel data and the effect of repeated observations on the efficiency of the 
estimated models. In section 3 the main features of the Santiago Panel data are described, 
and the results of several models estimated with these data are reported. Section 4 reports the 
same type of analyses but using synthetic data, in order to test also the capability of the ML 



model to reproduce the true phenomenon in the presence of panel data and repeated 
observations. Finally, section 5 summarizes our conclusions. 
 
2. MODELLING WITH PANEL DATA 
 
Although panel data models have been estimated using fairly typical discrete choice 
functions, the presence of repeated observations makes it more appropriate to use a Mixed 
Logit (ML) formulation accounting for correlation among observations belonging to the same 
individual. As is well known, a ML probability is the integral of standard logit probabilities 
with respect to the distribution of parameters (Train, 2003). In particular, when more than one 
observation per individual is available, we need to take into account the sequence of choices, 
made by the respondent. Revelt and Train (1998) proposed a framework that accommodates 
inter-respondent heterogeneity but assumes intra-respondent homogeneity in tastes, including 
the effect of the repeated choices by assuming that tastes vary across respondents in the 
sample, but stay constant across observations for the same respondent. In this popular 
framework the ML panel probability is given by the product of ML probabilities: 
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where t
qiV  is the observable component of the utility of option i for individual q at time t; and 

t
qA  is the choice set of individual q at time t. T is the number of periods, f is the mixing 

distribution with means µ and covariance matrix Ω (i.e. the so-called “population 
parameters”) of the coefficients to be estimated in V. 
 
We also tested a generalised approach suggested by Hess and Rose (2009), which relaxes the 
assumption of intra-respondent homogeneneity of tastes and where the choice probability is 
given by: 
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where µ is now a function of qα  which varies over respondents with density ( )qh
α

α Ω , and 

tq ,γ  which varies over all choices with density ( ),q tg γγ Ω . This model has two integrals, one 

inside and one outside the product over choices; the outside integral accounts for inter-
respondent heterogeneity as in the traditional model (Revelt and Train, 1998), while the 
inside integral accounts for intra-respondent heterogeneity. Due to the limitations of currently 
available software, we used a simplified version (R-T-M in the notation of Hess and Train, 
2009) available in BIOGEME (Bierlaire, 2003). 
 
To analyse the effects generated by variability and repeated observations in model structure 
we used the typical t-test and LR test (Ortúzar and Willumsen, 2001). To check whether the 
estimated parameters differed significantly among specifications (i.e. different sample sizes), 
we used the t*-test (Galbraith and Hensher, 1982): 
 

( )
( )

( ) ( ) ( )
,

, ,
1

t
qj q

t
qi q

q q t
t
q

VT

qj q t q t q qV
t

i A

eP g d h d
e

μ

γ αμ
α γ

γ γ α α
=

∈

⎛ ⎞
⎜ ⎟
⎜ ⎟Ω = Ω Ω
⎜ ⎟
⎜ ⎟
⎝ ⎠

∏∫ ∫ ∑



 * 1 2
2 2
1 2

ˆ ˆ
t β β

σ σ

−
=

+) )
  (3) 

 

where îβ  is the estimated parameter in specification i and ˆiσ  is its standard error. 
 
The t-test is also inversely related to the Fisher information matrix that, as well known, 
measures the efficiency of the estimated parameters. In maximum likelihood estimation the 
expected value of the variance of the kth estimated parameter (i.e. the kth element of the 
diagonal of the Fisher information matrix) is given by: 
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where ln qjty
qjtq

p= ∏l  is the log-likelihood function with respect to the parameters (β) 

evaluated at their true values, pjq is the probability that individual q chooses alternative j 
among the alternatives belonging to her choice set (Aq), xjq are the level-of-service and socio-
economic attributes, and yjq equals one if j is the alternative actually chosen by individual q 
and zero otherwise. 
 
Equation (4) shows that the efficiency of the estimated parameters depends on sample size, 
the values of the attributes associated with the estimated parameters and the probability of the 
chosen alternative. In particular, the logit probability depends, among other things, on the 
data variability and on the variance of the error term (through the scale factor); thus, 
understanding the sensitivity of the efficiency of the estimated parameters is a complex task. 
Cherchi and Ortúzar (2008) analysed how the efficiency of the estimated parameters varied 
for RP and SP data. Here we extend their analysis to the case of panel data. 
 
Equation (4) and equations (5) and (6) below show the expression for a single element of the 
Fisher information matrix. These expressions are convenient for our theoretical discussion 
because they illustrate what elements influence the matrix. However, in practice it would be 
better to measure the statistical efficiency of the expected outcomes of models estimated on a 
given dataset as in the experimental design literature (Rose and Bliemer, 2009); this can be 
done by computing the negative inverse of the Fisher information matrix (i.e. the asymptotic 
covariance matrix, AVC), and then computing the D-error which is equal to 1/det( ) kAVC  
(with k the number of the parameters): smaller D-error yields more efficient estimates. 
 
Let us consider, for simplicity, a binary choice logit model (i.e. with “fixed” parameters). The 
variance of the parameters estimated with panel data is analogous to the case with SP data: 
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where 2
qjtxΔ  is the attribute difference between the alternatives in period t. However, in 

contrast to the case of SP data, when using information from a “short survey panel” the 
attribute values do not vary over periods as they are identical for the same individual. Thus, 
in this case we have that qjt qjx x tΔ = Δ ∀  and the variance becomes: 
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These equations show that the variance depends clearly on the number of repeated 
observations as well as on the data variability and number of observations. However, as noted 
by Cherchi and Ortúzar (2007) “… the efficiency of the parameter increases with the 
variability of the attribute but only for scale factors over 0.5. This effect, that might seem 
counterintuitive, is due to the effect that the scale factor has on the variability of the data, 
because efficiency reduces as data variability diminishes; and is also due to the second order 
function of the probability that tends to zero as the probability of the chosen alternative 
approximates one.” It is important to note that a panel with identical repeated observations 
for each individual is a special case. In fact, in terms of the above discussion having equal 
observations repeated a certain number of time increases only marginally the variability of 
the attributes. In particular, if N is the number of observations and R is the number of times 
these are repeated for each individual, the variance of the attributes ( )qjxΔ  for N and RN 
observations is related by the following expression: 
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Hence, identical repeated observations should not in theory influence the efficiency of the 
estimated parameters. This result was also confirmed by computing the D-error typically used 
to generate efficient experimental designs (Rose and Bliemer, 2008). 
 
The extension of this result to the MNL and ML cases is not difficult. In the ML model, the 
variance of the mean of the random parameters is more complex, but the structure is basically 
the same (Cherchi and Ortúzar, 2008). It is still inversely related to the square value of the 
attributes associated with each parameter (as in the case of the fixed parameters model), to 
the number of repeated observations, and is also a function of the probabilities (Bliemer and 
Rose, 2010). 
 
 
3. EXPERIMENTS WITH REAL DATA 
 
The real data set used in this paper comes from the second wave of the Santiago Panel, which 
included four waves around the introduction of Transantiago (full details can be found in 
Yáñez et al., 2009a). One important characteristic of this panel is that people were asked only 
about their work trips in the morning peak period, but it was also enquired if this trip was 
repeated identically during other working days of the week and, if not, respondents were 
asked to report on the alternative trips for other days of the week. 
 
In the Santiago Panel the sampling unit is the individual. The initial sample consisted of 303 
individuals who lived in Santiago and worked full-time at one of the six campuses of the 
Pontificia Universidad Católica de Chile (see Figure 1). The information sources used in the 
panel were: 
 
(a)  Face-to-face interviews with the aid of palm-top recording devices. The questionnaire 

had the following sections:  
i. Socioeconomic characteristics: age, sex, income, education, car ownership, work 

hours in a week, possession of a driving licence. 



ii. Characteristics of the trip to work: mode (could differ in different days), departure 
and arrival times, travel times per trip stage, fares. 

iii. From the second wave onwards, subjective perception of the performance of the new 
public transport system (Transantiago). 

 
(b) Very precise measurement of level-of service variables using state-of-the-art technology, 

such as GPS and geocoding of origin-destination pairs. 
 
The design of the survey was based on the 2002-2006 Great Santiago Origin-Destination 
survey (DICTUC, 2003; Ampt and Ortúzar, 2004) and considered 12 modes. As illustrated in 
Figure 2, the mode chosen most frequently was car driver followed by bus. 
 
3.1 Modelling Results with Real Data  
 
We are interested in the effects of the multi-day-panel-survey length. Thus, using data from 
the second wave of the Santiago Panel, we considered five sample specifications, each one 
having 1, 2, 3, 4 and 5 observations (working days) per individual respectively. It means that 
the first specifications lose part of the information contained in the data, as 12% of the users 
selected more than one mode per week. 
 
In summary, in the first specification, as in any cross-sectional dataset, we have only one 
available observation per individual, while in the other four specifications we have a panel 
data context, due to the multiple available observations per individual. However, each group 
of observations from the same individual has a rather low variation. This was expected as we 
have travel information for one working week and also because the members of the Santiago 
Panel have a fairly static routine. The main reason for this is that all of them work at least 
eight hours per day at the same place. This behaviour is similar to what was found by Cherchi 
and Cirillo (2008) in the six-week data panel from the Mobidrive (2000) survey, i.e. choices 
are much more persistent for tours the main activity of which is work or study. This feature 
reminds us of an important issue in panel data: the presence of habit or inertia in choice 
making behaviour (Cantillo et al., 2007). 
 
Models of increasing complexity were estimated, starting with the simplest multinomial logit 
(MNL), followed by nested logit (NL) structures ending with a flexible random parameters 
mixed logit (ML) specification. We assumed that individuals chose their mode among a finite 
set of alternatives and that this choice set could vary over working days and individuals. For 
space reasons we will only present here the best models found, and we will leave out several 
specifications tested (i.e. MNL models with systematic taste variations and models featuring 
the introduction of additional activities1) as they came out as no improvement (i.e. using the 
likelihood ratio test) over their restricted versions. 
 
Table 1 and Table 2 show the model results obtained for each data specification. In particular, 
and with the aim of simplifying the analysis, Table 1 presents the results of simple models 
which assume fixed parameters (MNL and NL), while Table 2 presents the results of the two 
selected ML models, based on the previous simple models, for each sample specification. The 
corrected ρ2 index (Ortúzar and Willumsen, 2001) is provided for each case in order to 
account for the differences in terms of number of estimated parameters. 
 
All of models incorporate systematic heterogeneity around the alternative specific constants 

                                                 
1  The panel survey also enquired about all activities involved in the tour that had work as its main purpose; this 

allowed us to incorporate the effect of additional activities in the choice of mode. 



(ASC) through the introduction of two variables related to the start of Transantiago2. The first 
was needed to represent the effect of the new payment system, which featured an integrated 
fare for bus and Metro trips (which did not exist in the old system) and which allows a time 
window of two hours to make an interchange. For this we introduced a binary variable that 
indicates if the individual was a new Metro user (Transantiago relies on Metro as its 
backbone), with an expected positive effect in the utility function. The second variable was 
needed to represent the comfort perceived by public transport users; this became especially 
important after the inauguration of Transantiago as the levels of overcrowding in the buses 
and the underground were extreme when the system started (although this has improved a lot 
after two years of operation, at least in the Metro, it is still higher than before). Regrettably, 
the initial survey design did not consider the inclusion of latent variables so we could not 
predict the importance of the above effects. Nevertheless, we obtained valuable information 
about the subjective perceptions of individuals, and we used these to create a binary variable 
that took the value of one for respondents stating that comfort was the attribute that worsened 
the most after Transantiago. The expected sign of the coefficient of this variable is positive, 
as users chose the mode despite declaring a reduction in comfort. It is important to remark 
that these two new variables obtained high t-ratios for every model and data specification. 
Moreover, when they were not considered the models presented problems with the signs of 
key policy variables. 
 
To facilitate comparisons, all models presented have the same “root” defined by MNL. 
Therefore, they all started with the same utility function. The differences are: 
 

- the NL model also considers a hierarchical structure, nesting the modes involving the 
use of a bus, 

- the ML_INTER model allows for random variation in the cost attribute3, which also 
includes inter-respondent heterogeneity4, and 

- the ML_INTER_INTRA model is based on ML_INTER, but also includes intra-
respondent heterogeneity via the error components. 

 
The signs of all estimated parameters are consistent with microeconomic theory. However, 
the expected relationship between time coefficients ( timewaittimewalktimetravel    βββ << ) is 
achieved only in the case of ML models for the specification with five observations per 
individual, and in the case of ML models that do not include nested structures for the other 
sample specifications. 
 
Although the influence of repeated observations (i.e. inter-respondent heterogeneity in tastes) 
can be considered via the estimation of random coefficients (cost coefficient), we believe 
there might be extra correlation across repeated observations besides the effect of the random 
cost coefficients. Thus, even though random parameters and error components might induce 
confounding effects, they might also account for slightly different effects. In fact, as long as 
both effects are significant, the pure error-panel component accounts for correlation in the 
preference for the alternative, while the random cost coefficient accounts for correlation in 
tastes; we provide an analytical explanation below. 

                                                 
2  It is important to note that the second wave was taken just three months after the introduction of 

Transantiago, when the situation was still chaotic in the city. 
3  The Cost attribute was specified divided by the wage rate. This parameter has a Log-Normal distribution 

because this gave a superior fit. Nevertheless, we first used a Normal distribution and checked that the 
proportion of individuals with incorrect sign was in fact minimal (Sillano and Ortúzar, 2005). 

4  We also tested for the presence of inter-respondent heterogeneity in tastes for the rest of the explanatory 
variables, but this effect was only significant for cost. 



 
We postulated the following utility function: 
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As β have mean ijβ  and standard deviation ijqμ  we can rewrite the utility function as: 
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where d
ijqX  stands for level-of-service attribute j of option i for individual q on day d. 

 
Equation (9) shows that both random coefficients and error components are separable. 
Indeed, the random coefficients assume inter-respondent heterogeneity5. It means, they allow 
tastes to vary across respondents in the sample, but stay constant across observations for the 
same respondent (Revelt and Train, 1998). On the other hand, the “pure” error components 
(which also capture heterogeneity) affect the values of the ASC. Thus, the error component 

d
qυ  has the power to increase/decrease the relative weight of the ASC in relation to the 

explanatory variables in the utility function. Now, confounding effects are implicit in the ML 
structure and should not strictly depend on whether we account or not for random tastes. On 
the contrary, our experience (Cherchi and Ortúzar, 2008) is that decomposing randomness in 
as many components as possible helps to reveal the confounding effects. 
 
Another important issue regarding panel correlation has to do with estimation using available 
software. The usual way to incorporate panel correlation under the pure error-components 
approach consists of adding an error component to (n-1) of the available alternatives, 
otherwise for identifiability reasons the model cannot be estimated (Walker, 2001). However, 
this methodology may lead to biased results as it requires choosing, arbitrarily, a reference 
alternative for the error-component (i.e. one not having a pure panel error-component). 
Equation (8) allows us to see that this is equivalent to assuming that this reference alternative 
has the same ASC for all observations, while the remaining alternatives have different values 
for the ASC among observations. Moreover, even using the best normalization (i.e. selecting 
as error-component reference alternative that option with the minimum variance), this 
methodology leads to a type of NL model, as it correlates the (n-1) alternatives including 
error component. To avoid this problem, in this paper we modified the traditional estimation 
method by randomly selecting the error-component reference alternative for each 
observation. 
 
The ML models were estimated varying the number of draws to test for the presence of 

                                                 
5  It is also possible to accommodate intra-respondent heterogeneity in the random parameters (Hess and Rose, 

2009), but in this case the best models accounted for inter-respondent heterogeneity by the cost parameter, 
and intra-respondent heterogeneity via the error components which, at the end, affect the ASC. 



empirical identification problems (Walker, 2001). It is important to note that in this case we 
did not find any such problems. All ML models estimated with repeated observations 
accounted correctly for correlation over a given individual. 
 
Although the repeated observations problem has been widely studied in the literature, 
because it is especially relevant for SP data with multiple answers (Abdel-Aty et al., 1997; 
Cirillo et al., 2000; Ortúzar et al., 2000; Revelt and Train, 1998; Yen et al., 1998), in this 
case we are working with RP data. Moreover, as every data specification effectively 
represented the real series of choices observed in the sample (considering different number of 
days), the amplification effect was not artificial. 
 
As expected, the models with repeated observations have parameters with higher t-ratios in 
all the model formulations estimated. However, the key travel time variable is not significant 
in the first two specifications. 
 
Table 1, which presents the results of the simple models, shows that NL is significantly better 
than the restricted MNL for all sample specifications (the LR values are clearly larger than the 
critical value 84.32

1%,95 =χ ). Furthermore, the likelihood improvement is even larger for 
specifications with more observations. Contrariwise, Table 2 shows two singularities for the 
larger sample specification (i.e. 5 observations per individual). First, the NL version of the 
best ML model is not significantly better than its restricted version. Second, only the best 
model (ML_INTER_INTRA) allows us to include both inter-respondent heterogeneity via the 
cost parameter and also intra-respondent heterogeneity via the error component. This 
particular result suggests that the model capability of including simultaneously inter and 
intra-respondent heterogeneity depends on the number of observations. Actually, we suspect 
that this is related to empirical identifiability issues, as all five specifications are theoretically 
able to accommodate both types of heterogeneity but the empirical results show that the 
contribution of the intra-respondent heterogeneity is significant only for the largest sample 
specification. Additionally, the inclusion of intra-respondent heterogeneity improves model 
fit only in the presence of inter-respondent heterogeneity. Indeed, the models that allow only 
intra-respondent variation are not significantly better (according to the LR test) than their 
restricted versions, even for the largest sample specification. 
 
In conclusion, the number of observations does not affect significantly the structural 
definition of models which do not include panel correlation as in all cases, no matter the 
number of observations per individual, the LR test indicates that the NL model is significantly 
better than its restricted (MNL) version. However, the presence of more observations seems 
to provide more evidence to discriminate between models if heterogeneity is accounted for 
correctly.  
 
Agreeing with other findings reported in the recent literature (Cherchi and Cirillo, 2008; Hess 
and Rose, 2009), we confirm that the introduction of correlation is the main improvement 
factor in terms of fit. Moreover, this difference becomes higher with the number of repeated 
observations. Complementary, if we compare the likelihood value for the market share 
models (i.e. only with ASC) we could, in some sense, isolate our analysis taking out the 
influence of the other variables. In this way, we could confirm that the difference between the 
various models tested is mainly due to panel correlation. 
 
Regarding the error components, there are two important points to mention: first, the 
inclusion of inter-respondent heterogeneity via an error component was tested using the 
individual effect ( qυ ), but for every specification the contribution was not significant. 



Second, the error component d
qυ , which accommodates intra-respondent heterogeneity was 

found to distribute Normal among observations with mean zero and standard deviation as 
reported in Table 2. 
 
In line with Hess and Rose (2009), we also observed a higher significance for inter-
respondent heterogeneity. Anyway, we expected a lower level of intra-individual variation, as 
the second wave of the Santiago Panel shows a strong presence of routine. So, a higher 
variation in tastes across respondents rather than variation across observations is consistent 
with our previous assumptions. 
 
As the final aim of this paper was to analyse the impact of the length of multi-day-panel-
surveys, it is also important to compare the values of the estimated parameters. Thus, on the 
basis of equation (3), we found that: 
 

- If we vary the sample specification of any model, we only get significant differences 
in the parameter value of the variable associated with new Metro users (i.e. 
TRANSANTIAGO), and only between the first specification (i.e. one observation per 
individual) and the rest of the sample specifications. 

- Only a few parameters show significant differences among models for a given sample 
specification; for example, comparing the ML models with their restricted versions 
(MNL and NL), the specifications with 3, 4 and 5 observations per individual present 
significant differences for the parameter values of mean cost and the time-related 
variables (travel, waiting and walking time). 

 
 
4. SIMULATED EXPERIMENTS 
 
Following the tradition of Williams and Ortúzar (1982), a collection of datasets were 
generated in which pseudo-observed individuals behaved according to a choice process 
determined by the analyst. Simple samples, with three alternatives, two generic attributes 
(travel time and cost) and a Gumbel error (εq) term were generated. The marginal utility of 
travel time (βqt) was varied such that the generated sample showed random heterogeneity in 
tastes which was generic among alternatives. In all experiments, the attributes and the travel 
time parameter were generated according to a censored Normal distribution to avoid mass 
points on the truncations that can induce estimation problems (Cherchi and Polak, 2005). 
 
The datasets were generated according to the following utility functions: 
 

 3 1 3 1 3 1 3 1

2 1 2 1 2 1 2 1

( ) 1.5 ( )

( ) 1.5 ( )
q q qt q q q q q q

q q qt q q q q q q

U U Time Time Cost Cost

U U Time Time Cost Cost

β ε ε

β ε ε

− = − − − ⋅ − + −

− = − − − ⋅ − + −
     (10) 

 
where individuals q are assumed to evaluate only one choice task as in a RP data set. Several 
samples were generated with the characteristics illustrated in Table 3, but varying the sample 
dimensions: 5,000; 1,000; 500; 250 and 125 observations, the last four corresponding to 
random samples of the original 5,000 observations (and these also were varied up to four 
times). Finally, each sub-sample was randomly generated 10 times with different seeds for 
the random terms, yielding 40 samples in the last four cases and 10 in the first one. 
 
In a second stage we assumed more than one observation for each individual, as in panel data, 
but that all observations belonging to the same individual were identical (i.e. as in 88% of 
cases in the Santiago Panel). Starting from the above samples (excepting that with 5,000 



observations), 16 synthetic panel datasets were generated varying the number of identical 
observations from the equivalent to a 2-day panel up to a 5-day panel. The data for each panel 
was generated repeating the same observations t times (t =2, 3, 4, 5). Note that the sample 
size and the number of identical observations were appropriately chosen in order to test, also, 
the effect of identical observations independently from the effect of the panel length. 
 
4.1 Modelling Results  
 
For each dataset above, several ML models allowing for random heterogeneity in the travel 
time parameter were estimated. In particular, Table 4 shows the values of the mean, standard 
deviation and coefficient of variation (CV) of the estimated parameters over the 10 samples 
generated with different seeds (we tested if there were variations for the four subsamples of 
each case with less than 5,000 observations, finding that these occurred only in one of the 40 
sets for the 125 size case with no repeated observations). Table 5 in turn, shows the minimum 
and maximum values (over the 10 samples) of the t-tests against zero; for space reasons we 
do not report the results with three repeated observations, which followed the trend. 
 
The models shown allow us to appreciate how results vary with the number of repeated 
observations. They also allow us comparing the effects on models estimated with samples of 
comparable size (i.e. a sample of 1,000 individuals with five identical observations each is 
comparable to a sample of 5,000 individuals with only one observation). All models were 
estimated varying the number of Halton draws of the simulated maximum likelihood 
procedure between 125 and 4,000 and, analogously to our real data set, we did not find 
estimation problems except for the single case mentioned above where we encountered an 
empirical identification problem. As results did not change much, those reported in the tables 
are based on only one of the four subsamples generated in each case. 
 
Looking at the models estimated with only one observation per individual, the t-tests against 
zero correctly diminish with sample size because the standard deviation is inversely related to 
the dimension of the sample. This result is in line with the analyses computed on the Fisher 
information matrix. The D-error decreases with sample size, varying from 0.128 for the 
samples with 125 observations to 0.0052 for those with 5000 observations. The model 
capability to recover the true parameters also depends on the sample size. Table 6 shows the 
scale factors computed for each estimated parameter (i.e. the means and standard deviations 
over the 10 samples). As can be seen, while the parameters are recovered correctly on 
average (i.e. the ratios between the estimated and true parameters averaged over the 10 
samples are similar to the true scale factor used to generate the EV1 error), the standard 
deviation of the scale factors over 10 samples clearly increase as sample size decreases, 
indicating that the number of cases where the true values are not correctly recovered 
increases. In fact, for a sample size of 5000 individuals, all estimated parameters in the 10 
samples (i.e. 30 parameters) are between ±20% of the true values, but as the sample size 
decreases the number of estimated parameters falling outside this range increases: four for the 
sample sizes of 1,000 individuals, five for the sample sizes of 500 and 250 individuals, and 
20 for the sample sizes of 125 individuals. 
 
Models ML6 to ML17 report the results for the panel with identical observations. As can be 
seen, including identical observations yields better t-test against zero only when this increases 
the sample size (compare for example model ML2 with models ML6-ML8). However, if we 
compare models estimated with the same “sample size”, but composed of different numbers 
of individuals and different numbers of identical observations (e.g. models ML2 vs. ML9-
ML13), the t-tests of the panel data worsen, although the effect is not always clear. This 



result seems to depend on the estimation process, and maybe on the simulation involved in 
the estimation, because the D-error computed with the simulated data gives, as expected, the 
same result for a sample with 5000 observations and a sample of 1000 observations repeated 
5 times each. Note that, although the data variability is the same in both types of samples 
(e.g. 1000 individuals with 1 observation each, and 500 individuals with 2 observations each) 
having identical observations does not add new information for estimation. 
 
More importantly, including identical observations is not beneficial in terms of the model 
capability to recuperate the true parameters. In fact, the standard deviation of the scale factors 
increases as the number of repeated observations increases while keeping the sample size 
unchanged (compare models ML2, ML9 and ML13). This clearly means that having repeated 
observations does not allow one to reduce sample size. 
 
We wish to emphasize that these results do not depend on the richness of the data (Cherchi 
and Ortúzar, 2008), because all samples have the same average travel time and cost even 
when the repeated observations are accounted for. 
 
The third test performed consisted in estimating a weighted utility function where each 
individual utility was multiplied by the number of identical trips (R) made during the panel 
period. For space reasons we do not report the results here, but will only comment them. We 
found that weighting the utility of each individual by R gives exactly the same statistical 
results as estimating a model with N individuals and R repeated identical observations, as 
would be expected. However, as also expected, the capability to reproduce the true 
parameters improves, because weighting individual utilities is equivalent to increasing the 
weight of the systematic component of utility over the random part.  
 
When simulated data are used, it is possible to test the capability of the ML to reproduce the 
true phenomenon using the marginal square error (MSE) computed for each estimated model: 
 

 ( )2
2ˆ ˆ( ) ( )trueMSE μ β β σ β= − +   (11) 

 

where 2ˆ ˆ( ) and ( )μ β σ β  are the estimated mean and variance of each parameter. 
 
The MSE tends to zero as the estimated mean approaches the true mean and its standard 
deviation equals zero. This test allows verifying whether the estimated means and standard 
errors are close enough to the true parameters. However, as all parameters estimated in a 
discrete choice model are scaled by an unknown factor (λ) proportional to the inverse of the 
standard deviation, the MSE was also computed de-scaling the estimated parameters. Results 
for the de-scaled MSE are reported in Table 7. In line with the above comments, the MSE 
values (especially the de-scaled ones) are fairly close to zero for almost all models up to a 
sample size of 500 individuals (ML1-ML3), but increase drastically for smaller size of 
samples with repeated identical observations, no matter how many repeated observations are 
used for each individual. 
 

5. CONCLUSIONS 
 
We have analysed the problem of how to model panel data in the presence of repeated 
observations and to which extent repeated observations affect the efficiency of the estimated 
parameters and their capability to reproduce the true phenomenon. In particular, we tested the 
impact of sample size and repeated observations in a “short-survey-panel” context. The effect 
of the repeated observations was tested using both real data from the Santiago Panel and 
synthetic data generated especially with the aim of complementing the real case. 



 
As in previous works, we were able to confirm that the largest improvement in model fit 
statistics is due to the panel correlation contribution. Considering the different ways to 
accommodate heterogeneity discussed above, we believe that it is crucial to analyse 
empirically (i.e. for each application case) the most appropriate ways to achieve this. 
 
In our particular case, and also in the case recently studied by Hess and Rose (2009), the 
effect of inter-respondent heterogeneity is dominant. In fact, this constitutes empirical 
evidence of the advantages of the panel approach, as it allows the inclusion of correlation 
among the answers from the same individual, which as we said in the previous paragraph, is 
normally responsible for a large increase in likelihood. 
 
Our empirical results for real data show that the inclusion of intra-respondent heterogeneity 
requires more observations, which means that the repeated observations can affect the 
definition of model structure. Therefore, we could say that a potential benefit of considering a 
longer multi-day survey in a short panel context is the highest probability to capture the 
different kinds of heterogeneity among observations. 
 
The results from the simulated data show that having repeated observations in a data panel 
increases the efficiency of the estimated parameters only because this increases the sample 
dimensions. Therefore, based on our results from real and synthetic data, we can say that 
there is a trade-off between the higher probability of capturing effects (different types of 
heterocedasticity) in a longer multi-day-panel sample and the risk of a decreased capability of 
reproducing true phenomena (as this worsens in the presence of repeated observations). 
 
Finally, our suggestion on the definition of a multi-day-panel survey length would be to 
consider not only the number of individuals, but also the level of routine expected. This last 
factor seems to be especially important in “short panel” surveys, as they commonly feature a 
large proportion of identical observations, which are actually harmful; we proved that they 
reduce the capability of reproducing the true phenomenon. Thus, even though having more 
observations per respondent requires smaller sample sizes in order to establish the statistical 
significance of the parameter estimates derived from choice data (Rose et al., 2009), our 
results show that this is effectively true if and only if the level of routine is not strong. 
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Table 1. Estimation results for MNL and HL models 

Specification 1 (1 obs.) Specification 2 (2 obs.) Specification 3 (3 obs.) Specification 4 (4 obs.) Specification 5 (5 obs.) 
  MNL HL MNL HL MNL HL MNL HL MNL HL 

No. of observations 231 231 462 462 693 693 923 923 1151 1151 
Number of cars 1.67 1.68 1.67 1.68 1.67 1.68 1.7 1.7 1.79 1.8 
t-test vs 0 2.3 2.35 3.26 3.33 3.99 4.07 4.67 4.76 5.51 5.6 
CW (mean) -0.024 -0.019 -0.024 -0.019 -0.024 -0.019 -0.024 -0.020 -0.023 -0.020 
t-test vs 0 -2.28 -2.15 -3.22 -3.04 -3.95 -3.73 -4.64 -4.41 -5.15 -4.88 
TRAVEL -0.015 -0.008 -0.015 -0.008 -0.015 -0.008 -0.013 -0.008 -0.013 -0.0081 
t-test vs 0 -1.36 -1.12 -1.93 -1.58 -2.36 -1.93 -2.49 -2.14 -2.69 -2.39 
WAITING -0.06 -0.039 -0.064 -0.039 -0.064 -0.039 -0.061 -0.040 -0.057 -0.038 
t-test vs 0 -2.71 -2.09 -3.84 -2.95 -4.7 -3.62 -5.22 -4.41 -5.58 -4.78 
WALKING -0.0656 -0.0619 -0.0656 -0.0619 -0.0656 -0.0619 -0.0654 -0.0622 -0.0639 -0.061 
t-test vs 0 -3.1 -3.27 -4.39 -4.63 -5.37 -5.67 -6.27 -6.61 -6.93 -7.25 
INTERCHANGES -0.47 -0.28 -0.47 -0.28 -0.47 -0.28 -0.44 -0.27 -0.46 -0.31 
t-test vs 0 -1.52 -1.38 -2.15 -1.95 -2.63 -2.39 -2.84 -2.62 -3.41 -3.24 
COMFORT 1.92 1.88 1.92 1.88 1.92 1.88 1.77 1.75 1.68 1.66 
t-test vs 0 3.93 3.93 5.55 5.55 6.8 6.8 7.33 7.34 7.77 7.8 
TRANSANTIAGO 1.92 2.87 3.68 2.87 3.68 2.87 3.48 2.59 3.32 2.44 
t-test vs 0 4.6 3.33 6.51 4.7 7.97 5.76 9.11 6.42 10.02 7.02 
CAR DRIVER -0.553 -0.233 -0.553 -0.233 -0.553 -0.233 -0.509 -0.274 -0.524 -0.317 
t-test vs 0 -0.95 -0.43 -1.34 -0.61 -1.64 -0.75 -1.77 -1.05 -2.06 -1.36 
CAR PASSENGER -0.229 0.177 -0.229 0.178 -0.229 0.178 -0.191 0.119 -0.16 0.117 
t-test vs 0 -0.4 0.32 -0.57 0.45 -0.69 0.55 -0.67 0.44 -0.64 0.49 
SHARED TAXI -0.351 -0.387 -0.351 -0.387 -0.351 -0.387 -0.497 -0.552 -0.637 -0.698 
t-test vs 0 -0.6 -0.69 -0.85 -0.98 -1.04 -1.2 -1.65 -1.92 -2.33 -2.66 
METRO 0.229 0.462 0.229 0.462 0.229 0.462 0.264 0.439 0.216 0.369 
t-test vs 0 0.58 1.31 0.83 1.86 1.01 2.27 1.36 -2.53 1.25 2.4 
WALK 2.08 2.38 2.08 2.38 2.08 2.38 1.89 2.12 1.73 1.93 
t-test vs 0 2.69 3.26 3.8 4.61 4.65 5.65 5.03 5.99 5.23 6.2 
BIKE -1.33 -1.03 -1.33 -1.03 -1.33 -1.03 -1.37 -1.14 -1.46 -1.25 
t-test vs 0 -1.91 -1.51 -2.7 -2.13 -3.31 -2.61 -3.98 -3.43 -4.73 -4.2 



Table 1 (continues). Estimation results for MNL and HL models 

Specification 1 (1 obs.) Specification 2 (2 obs.) Specification 3 (3 obs.) Specification 4 (4 obs.) Specification 5 (5 obs.) 
  MNL HL MNL HL MNL HL MNL HL MNL HL 

PARK’N’RIDE -3.07 -2.82 -3.07 -2.82 -3.07 -2.82 -2.96 -2.75 -2.9 -2.71 
t-test vs 0 -2.53 -2.45 -3.58 -3.46 -4.38 -4.24 -4.9 -4.78 -5.37 -5.26 
KISS’N’RIDE -1.58 -1.32 -1.58 -1.32 -1.58 -1.32 -1.4 -1.21 -1.18 -1.04 
t-test vs 0 -2.24 -2.05 -3.16 -2.9 -3.88 -3.55 -4.17 -3.94 -4.09 -3.94 
SH. TAXI-METRO -0.383 -0.559 -0.383 -0.559 -0.383 -0.559 -0.369 -0.551 -0.329 -0.527 
t-test vs 0 -0.86 -1.49 -1.22 -2.1 -1.49 -2.57 -1.66 -2.89 -1.67 -3.07 
BUS –METRO -0.227 -0.135 -0.227 -0.135 -0.227 -0.135 -0.209 -0.137 -0.169 -0.114 
t-test vs 0 -0.68 -0.74 -0.96 -1.05 -1.17 -1.28 -1.26 -1.44 -1.15 -1.33 
BUS-SH. TAXI -1.62 -0.675 -1.62 -0.675 -1.62 -0.675 -1.49 -0.68 -1.38 -0.679 
t-test vs 0 -2.36 -1.46 -3.34 -2.07 -4.09 -2.53 -4.48 -2.96 -4.84 -3.38 
Phi   0.42   0.42   0.42   0.46   0.48 
t-test vs 0   2.55   3.60   4.41   5.54   6.29 
t-test vs 1   -3.47   -4.90   -6.00   -6.54   -6.86 
L(max) -193.527 -190.874 -387.053 -381.748 -580.58 -572.622 -654.144 -778.484 -999.301 -988.15 
L(max) / Sample -0.838 -0.826 -0.838 -0.826 -0.838 -0.826 -0.709 -0.843 -0.868 -0.859 
L(max) / Residual degree 
of freedom (*) -0.913 -0.905 -0.874 -0.864 -0.861 -0.851 -0.724 -0.862 -0.883 -0.874 

Corrected ρ2 0.239 0.245 0.273 0.281 0.284 0.293 0.276 0.284 0.268 0.275 
Number of parameters 19 20 19 20 19 20 19 20 19 20 
LR test  -5.31  -10.61  -15.92  248.68  -22.30 

Details:  CW = cost/wage rate; Travel, Walking and Waiting Time [min]   
(*) L(max) / Residual degree of freedom = L(max) / (Sample - Number of parameters). This index is close to L(max) / Sample for large sample sizes, but it provides a valuable 
measure of goodness of model fit that is independent of the sample size.   
 
 
 
 
 



Table 2. Estimation results for ML models 

Specification 2 (2 obs.) Specification 3 (3 obs.) Specification 4 (4 obs.) Specification 5 (5 obs.) 
  ML HL ML HL ML HL ML HL 

No. of observations 462 462 693 693 923 923 1151 1151 
Number of cars 4.10 4.94 5.38 5.29 4.33 5.11 4.98 4.67 
t-test vs 0 2.34 2.61 3.11 3.20 2.76 3.53 3.84 3.42 
CW (mean) -0.53 -0.48 -0.88 -0.74 -0.75 -0.69 -0.65 -0.92 
t-test vs 0 -4.20 -3.71 -6.19 -4.80 -7.26 -6.15 -9.14 -6.40 
CW (st.dev.) 0.94 0.74 1.64 1.35 1.37 1.22 1.21 1.05 
t-test vs 0 3.78 3.92 5.82 5.10 7.29 6.18 9.48 6.30 
TRAVEL -0.04 -0.01 -0.06 -0.02 -0.05 -0.03 -0.05 -0.03 
t-test vs 0 -2.58 -1.68 -3.57 -1.95 -3.92 -2.82 -4.46 -3.27 
WAITING -0.12 -0.06 -0.14 -0.10 -0.15 -0.10 -0.13 -0.10 
t-test vs 0 -3.82 -2.80 -4.61 -3.57 -5.68 -4.21 -5.80 -4.42 
WALKING -0.11 -0.07 -0.13 -0.10 -0.12 -0.11 -0.12 -0.09 
t-test vs 0 -3.86 -2.77 -5.00 -2.62 -5.53 -5.36 -5.95 -5.97 
INTERCHANGES -0.87 -0.35 -0.72 -0.39 -0.64 -0.41 -0.78 -0.56 
t-test vs 0 -2.56 -1.58 -2.17 -1.87 -2.23 -1.96 -3.23 -2.73 
COMFORT 2.53 1.70 1.98 1.41 2.29 1.54 2.47 1.86 
t-test vs 0 3.05 2.32 2.67 1.99 3.43 2.58 3.91 3.60 
TRANSANTIAGO 3.81 2.83 3.43 2.66 3.00 2.32 2.82 2.31 
t-test vs 0 4.91 3.76 5.23 3.83 6.06 4.58 6.52 5.44 
CAR DRIVER -0.27 0.701 -0.617 -0.0135 -0.482 -0.202 -0.823 -0.259 
t-test vs 0 -0.32 0.89 -0.8 -0.21 -0.76 -0.33 -1.44 -0.5 
CAR PASSENGER -2.32 -1.15 -3.66 -2.51 -2.77 -2.27 -2.77 -2.1 
t-test vs 0 -2.43 -1.21 -4.07 -2.04 -3.88 -3.21 -4.14 -3.43 
SHARED TAXI -0.542 -0.169 -0.43 -0.408 -0.519 -0.353 -0.674 -0.488 
t-test vs 0 -0.65 -0.22 -0.6 -0.53 -0.84 -0.59 -1.09 -1 
METRO 0.694 1.27 0.894 1.31 0.792 1.11 0.588 0.893 
t-test vs 0 0.438 3.57 2.13 2.84 2.23 3.36 1.9 3.14 
WALK -0.275 0.56 -1.47 -0.912 -1.1 -0.95 -1.28 -0.754 
t-test vs 0 -0.24 0.5 -1.34 -0.78 -1.22 -1.14 -1.31 -1.01 



Table 2 (continues). Estimation results for ML models 

  Specification 2 (2 obs.) Specification 3 (3 obs.) Specification 4 (4 obs.) Specification 5 (5 obs.) 
  ML HL ML HL ML HL ML HL 

BIKE -10.4 -11.5 -9.03 -16.9 -15.3 -16.8 -14.8 -11.1 
t-test vs 0 -3.22 -2.44 -4.69 -3.58 -2.85 -4.5 -6.24 -2.89 
PARK’N’RIDE -3.1 -2.14 -2.92 -2.32 -2.69 -2.21 -3.13 -2.17 
t-test vs 0 -2.06 -1.67 -2.13 -1.98 -2.5 -2.16 -3.15 -2.41 
KISS’N’RIDE -1.62 -0.815 -1.45 -0.89 -1.5 -1.07 -1.27 -0.89 
t-test vs 0 -2.46 -1.47 -2.58 -1.53 -3.18 -2.5 -3.18 -2.44 
SH. TAXI-METRO -1.32 -0.175 -0.952 -0.231 -1.06 -0.478 -1.57 -0.548 
t-test vs 0 -1.58 -0.28 -1.37 -0.32 -1.82 -0.91 -3.09 -1.05 
BUS –METRO 0.7 0.794 1.27 1.32 1.15 1.09 1.02 0.946 
t-test vs 0 1.62 2.93 3.01 3.3 3.3 3.84 3.58 4.07 
BUS-SH. TAXI -3.92 -0.716 -3.17 -0.565 -2.86 -1.21 -3.69 -1.61 
t-test vs 0 -2.96 -1.04 -3.1 -0.49 -3.27 -1.44 -5.36 -2.52 

d
qυ              0.213 0.0551 

t-test vs 0             1.99 1.98 
Phi   0.18   0.27   0.51   0.61 
t-test vs 0   1.97   1.89   3.47   4.76 
t-test vs 1   -8.90   -5.08   -3.30   -3.09 
L(max) -292.946 -289.383 -367.971 -360.665 -500.887 -497.22 -623.488 -627.189 
L(max) / Sample -0.634 -0.626 -0.531 -0.520 -0.543 -0.539 -0.542 -0.545 
L(max) / Residual degree 
of freedom -0.663 -0.656 -0.547 -0.537 -0.555 -0.551 -0.552 -0.556 

Corrected ρ2 0.44 0.444 0.536 0.544 0.533 0.535 0.537 0.533 
Number of parameters 20 21 20 21 20 21 21 22 
LR test  -7.126  -14.612  -7.334  7.402 

Details: CW = cost/wage rate; Travel, Walking and Waiting Time [min] 
(*) L(max) / Residual degree of freedom = L(max) / (Sample - Number of parameters). This index is close to L(max) / Sample for large sample sizes, 
but it provides a valuable measure of goodness of model fit that is independent of the sample size.   

 



Table 3. Characteristics of the synthetic samples 

 Mean Standard 
deviation 

Coefficient of 
variation Limits 

Time3-Time1 2.66 0.79 0.30 [1.0; 4.0] 
Time2-Time1 2.85 1.23 0.43 [1.0; 6.0] 
Cost3-Cost -2.34 0.80 0.34 [-4.0; -1.0] 
Cost2-Cost1 -2.67 0.79 0.28 [-4.0; -1.0] 
Time parameter- 5000 obs. (**) -0.86 0.55 0.64 [-0.01; -2.00] 

(**)  These values were computed as the average values over the 10 samples with 5000 individuals. 
The mean and standard deviation of the random travel time parameters were computed for all 
subsamples of 1000, 500, 250 and 125 members (with 1 - 5 observations per individual); figures did not change.  

 
Table 4. Mean and standard deviation of the estimated parameters over 10 samples  

  ML1 ML2 ML3 ML4 ML5 ML6 ML7 ML8 ML9 ML10 ML11 ML12 ML13 ML14 ML15 ML16 ML17 
No. of repeated obs. 1 1 1 1 1 2 4 5 2 4 5 2 4 5 2 4 5 
No. of individuals 5000 1000 500 250 125 1000 500 250 125 

Ttime (mean) -1.2286 -1.2262 -1.1497 -1.2386 -1.5156 -1.2263 -1.2263 -1.2262 -1.1497 -1.1497 -1.1498 -1.2384 -1.2383 -1.2383 -1.5160 -1.5149 -1.5150 
Ttime (st.dev.) 0.8478 0.8656 0.7891 0.8582 1.2435 0.8658 0.8658 0.8657 0.7890 0.7891 0.7890 0.8576 0.8576 0.8577 1.2435 1.2426 1.2428 Mean 
Cost (mean) -2.1599 -2.1516 -2.0759 -2.1594 -2.8265 -2.1518 -2.1518 -2.1517 -2.0759 -2.0759 -2.0760 -2.1588 -2.1587 -2.1588 -2.8268 -2.8252 -2.8256 
Ttime (mean) 0.0460 0.0986 0.1544 0.2493 1.0475 0.0985 0.0985 0.0984 0.1543 0.1543 0.1544 0.2490 0.2489 0.2489 1.0503 1.0485 1.0494 
Ttime (st.dev.) 0.0460 0.1361 0.1659 0.3425 0.6152 0.1360 0.1359 0.1358 0.1658 0.1659 0.1660 0.3420 0.3420 0.3420 0.6177 0.6159 0.6164 St.dev 
Cost (mean) 0.0712 0.1879 0.2115 0.4233 1.4848 0.1877 0.1876 0.1875 0.2112 0.2112 0.2114 0.4227 0.4227 0.4227 1.4892 1.4865 1.4885 
Ttime (mean) -0.0375 -0.0804 -0.1343 -0.2013 -0.6911 -0.0803 -0.0803 -0.0803 -0.1342 -0.1342 -0.1343 -0.2010 -0.2010 -0.2010 -0.6928 -0.6921 -0.6927 
Ttime (st.dev.) 0.0543 0.1573 0.2102 0.3991 0.4948 0.1571 0.1570 0.1569 0.2101 0.2102 0.2104 0.3987 0.3988 0.3987 0.4967 0.4957 0.4960 CV 
Cost (mean) -0.0330 -0.0873 -0.1019 -0.1960 -0.5253 -0.0872 -0.0872 -0.0872 -0.1017 -0.1017 -0.1018 -0.1958 -0.1958 -0.1958 -0.5268 -0.5261 -0.5268 

 



 
Table 5. Maximum and Minimum t-test of the estimated parameters over 10 samples  

  ML1 ML2 ML3 ML4 ML5 ML6 ML7 ML8 ML9 ML10 ML11 ML12 ML13 ML14 ML15 ML16 ML17 
No. of repeated obs. 1 1 1 1 1 2 4 5 2 4 5 2 4 5 2 4 5 
No. of individuals 5000 1000 500 250 125 1000 500 250 125 

Ttime (mean) -24.57 -10.75 -6.82 -4.48 -2.85 -15.21 -21.51 -24.05 -9.64 -13.63 -15.24 -6.34 -8.97 -10.03 -4.03 -5.70 -6.38 
Ttime (st.dev.) 15.77 7.98 5.13 3.78 3.12 11.28 15.94 17.83 7.24 10.25 11.46 5.36 7.58 8.47 4.42 6.24 6.99 

Max 
t-test 

Cost (mean) -27.28 -11.62 -7.61 -4.56 -2.96 -16.42 -23.23 -25.98 -10.76 -15.20 -17.00 -6.46 -9.13 -10.21 -4.16 -5.88 -6.58 
Ttime (mean) -26.60 -12.46 -9.21 -6.73 -4.20 -17.63 -24.93 -27.87 -13.04 -18.43 -20.61 -9.53 -13.47 -15.06 -5.94 -8.39 -9.39 
Ttime (st.dev.) 13.94 5.09 3.79 1.89 1.40 7.22 10.22 11.43 5.36 7.57 8.47 2.67 3.77 4.24 1.97 2.79 3.12 

Min 
t-test 

Cost (mean) -30.26 -14.16 -11.18 -7.44 -6.45 -20.02 -28.32 -31.67 -15.80 -22.34 -24.99 -10.53 -14.91 -16.67 -9.12 -12.88 -14.41 
 
 
Table 6. Mean and standard deviation of the scale factor (λ) over 10 samples  

  ML1 ML2 ML3 ML4 ML5 ML6 ML7 ML8 ML9 ML10 ML11 ML12 ML13 ML14 ML15 ML16 ML17 
No. of repeated obs. 1 1 1 1 1 2 4 5 2 4 5 2 4 5 2 4 5 
No. of individuals 5000 1000 500 250 125 1000 500 250 125 

Ttime (mean) 1.42 1.41 1.34 1.40 1.78 1.41 1.41 1.41 1.34 1.34 1.34 1.40 1.40 1.40 1.78 1.78 1.78 
Ttime (st.dev.) 1.54 1.57 1.45 1.53 2.31 1.57 1.57 1.57 1.44 1.44 1.44 1.55 1.56 1.56 2.26 2.26 2.26 

Mean 
(λ) 

Cost (mean) 1.44 1.43 1.38 1.44 1.88 1.43 1.43 1.43 1.38 1.38 1.38 1.44 1.44 1.44 1.88 1.88 1.88 
Ttime (mean) 0.05 0.10 0.16 0.28 1.23 0.10 0.10 0.10 0.16 0.16 0.16 0.28 0.28 0.28 1.23 1.23 1.23 
Ttime (st.dev.) 0.08 0.24 0.30 0.59 1.18 0.23 0.23 0.23 0.31 0.31 0.31 0.61 0.61 0.61 1.10 1.10 1.10 

St.dev 
(λ) 

Cost (mean) 0.05 0.13 0.14 0.28 0.99 0.13 0.13 0.13 0.14 0.14 0.14 0.28 0.28 0.28 0.99 0.99 0.99 
 



 
Table 7. Mean and Standard Deviation of the de-scaled MSE test over 10 samples  

  ML1 ML2 ML3 ML4 ML5 ML6 ML7 ML8 ML9 ML10 ML11 ML12 ML13 ML14 ML15 ML16 ML17 
No. of repeated obs. 1 1 1 1 1 2 4 5 2 4 5 2 4 5 2 4 5 
No. of individuals 5000 1000 500 250 125 1000 500 250 125 

Ttime (mean) 0.003 0.017 0.039 0.170 1.401 0.009 0.005 0.004 0.020 0.011 0.009 0.085 0.043 0.035 0.719 0.354 0.286 
Ttime (st.dev.) 0.004 0.025 0.055 0.240 0.751 0.013 0.006 0.005 0.028 0.014 0.011 0.120 0.060 0.048 0.391 0.189 0.153 

Mean 
t-test 

Cost (mean) 0.007 0.044 0.084 0.487 3.249 0.022 0.011 0.009 0.042 0.021 0.017 0.243 0.122 0.097 1.662 0.819 0.660 
Ttime (mean) 0.002 0.008 0.013 0.023 0.036 0.004 0.002 0.002 0.007 0.003 0.000 0.011 0.006 0.005 0.018 0.009 0.008 
Ttime (st.dev.) 0.003 0.015 0.023 0.049 0.056 0.007 0.004 0.003 0.012 0.006 0.000 0.024 0.012 0.010 0.028 0.014 0.011 

St.dev 
t-test 

Cost (mean) 0.005 0.021 0.031 0.057 0.079 0.011 0.005 0.004 0.016 0.008 0.000 0.028 0.014 0.011 0.040 0.020 0.016 
 



Figure 1. Home locations of the panel respondents 

 
 
 

Figure 2. Distribution of the mode chosen 
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