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Abstract 
 
 

This paper investigates the geometrical basis of regular corrugations, 

with specific emphasis on Developable Double Corrugations (DDCs), 

which form a unique sub-branch of Origami Folding and Creasing 

Algorithms.  The aim of the exercise is three fold – (1) To define and 

isolate a ‘single smallest starting block’ for a given set of distinct and 

divergent DDC patterns, such that this starting block becomes the 

generator of all DDCs when different generative rules are applied to it. 

(2) To delineate those generic parameters and generative rules which 

would apply to the starting block, such that different DDCs are created 

as a result (3) To use the knowledge from points (1) and (2) to create 

a complete family of architectural forms and shapes using DDCs. For 

this purpose, a matrix of 12 underlying geometry types are identified 

and used as archetypes. The objective is to mathematically explore 

DDCs for architectural form finding, using physical folding as a 

primary algorithmic tool. Some DDCs have more degrees of freedom 

than others and can fit varied geometries, while others cannot. The 

discussion and conclusions involve - (a) identifying why certain DDCs 

are ideal for certain forms and not others, when all of them are 

generated using the same/or similar starting block(s), (b) discussing 

the critical significance of flat-foldability in this specific context and (c) 

what we can do with this knowledge of DDCs in the field of 

architectural research and practice in the future. 
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1   Introduction 
 
1.1  Biomimetics, The Act of Folding & the Algorithmic Process  
 

Kostas Terzidis defines the act of folding rather well in his seminal book ‘Expressive 

Form’, and it is apt to begin this paper with his words - 

 

‘Folding is the process of laying one part over another. While the 

outcome of folding may appear as a replication of shapes, 

theoretically, folding is a self-referential process : no elements are 

added or subtracted from the folding scene. The form inverts, reverts, 

and entangles in multiple ways revealing repetitive patterns. Folding is 

an intricate process that addresses one of form’s most existential 

qualities : the cross from one dimension into another. It is a process 

that involves changes that extend the geometrical properties of an 

object while preserving its topology. A piece of aluminium foil, for 

instance, when crumpled to form a ball-like shape, embodies the 

properties of a three dimensional solid object despite the fact that it is 

a two dimensional surface.’ (pg. 45, Terzidis, 2003) 

 

 

Terzidis goes on to argue that the essential need for folding arises with most 

processes and forms in nature. The argument is that all morphogenesis and 

evolution in nature is in fact an attempt to constantly improve upon the act of folding 

and unfolding to allow for more desirable and suitable connections, efficient forms 

and useful motions. He gives the example of our limbs, the digits of our hands and 

the thumb to elucidate his argument. Thus he is essentially building an implicit case 

where researching folding implies Bio-mimetics. The next chapter (Two) discusses a 

unique example of recent research linking folding mathematics with nature.   

 

But presently, the question arises as to how, a physical act like folding (say, of a 

material such as paper) becomes relevant to an MSc. program which emphasizes 

Adaptive Architecture, Computation and the Algorithmic Process?  

 

Sophia Vyzoviti provides us with an insight  – ‘Repetitive paper folding performances 

evolve initial intuitive responses into primary techniques – triangulation, stress 
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forming, stratification of folds, folds within folds and patterns…generative 

transformations are structured in [paperfold] sequences…the succession of 

transformations resulting to the paperfold artefact as a genetic algorithm of form. The 

task in this phase is to decipher the paperfold algorithm as a morphogenetic 

mechanism.’ (pg. 9, Vyzoviti, 2003/2006)  

 

Is it a proposition then, that paper folding is a kind of algorithmic, computational 

model. But how exactly is it so?  

 

Humaiki Huzita has described six axioms that plot points and lines, to help draw and 

explain folding schemes. (pg. 37-70, Huzita, 1992) Hatori has added a seventh axiom 

to this list (pg. 31–38, Hull, 1995). These axioms (to be explained in some detail in 

the next chapter) prove, that folding is an accurate, precise, and quantifiable 

operation. In the geometry specific to paper folding or origami, a straight line 

becomes a ‘crease’ or ‘fold’. Instead of drawing straight lines, one may fold a piece of 

paper and flatten the crease. Although this act may seem basic and overly simplistic, 

its value corresponds with performing Euclidean geometrical operations using a 

straight edge (without markings) and a compass. Mathematicians have proved that 

certain geometrical problems, such as trisecting an angle and doubling a cube, for 

instance, are impossible with the straight edge and compass, yet possible with paper 

folding. Because of its accuracy, simplicity, and economy, paper-folding can 

contribute to the generation, analysis, and understanding of complex shapes and 

diagrams. 

 

It is clear then, that the physical act of folding (as a design tool, and as a 

mathematical tool) solves many problems of geometry, while offering unique insights 

into complex forms and shapes. Paper folding as an algorithmic approach becomes 

clearer with Terzidis’s explanation -  ‘…because of its step-by-step, codifiable, 

rational, and modular process, paper-folding may be regarded as an algorithmic 

mechanism for exploration of formal systems. In that sense, folding and unfolding 

become encoded processes through the logic of algorithmic computation.’ (pg. 49, 

Terzidis, 2003) 

 

He elaborates this point further by citing the act of unfolding, as a counterpoint to 

folding – ‘While the term unfolding may be understood as literally the reverse process 

of folding, its connotations extend beyond simple reversion. It suggests disclosure, 

revelation, elucidation, clarification and explanation. For instance, after unfolding a 
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paper model until it reaches a flat configuration, a clearly defined crease pattern [and 

in fact folding pattern also] is revealed. This pattern is the imprinted revelation of a 

process. Conversely, a folded model is not a composition…but rather the 

encapsulation of intricate series of folding transformations.’  (pg. 51, Terzidis, 2003) 

 

Figure 02 below shows an old Persian manuscript page copied from an earlier Arabic 

text where a simple folding pattern is explained algorithmically as a series of six  

geometric transformations, generating a square tile at the lower right hand corner of 

the page.  Nine tiles generate a regular creasing pattern known today in origami as 

the ‘Alligator’. (pg. 30, Engel, 1994) 

 

 

 

 

 

  

 

 

 

 

 

 

One of the underlying themes of this paper is to therefore clearly demonstrate (using 

the research of Developable Double Corrugations as a backbone), that the physical 

act of folding [paper], is in fact a powerful and illustrative algorithmic and 

computational process and should be used as a starting point and as a design tool 

for developing computational models for folding in/of architecture. 

 

1.2  Folding and Kinematics 
 

The next theme is the somewhat unformulated and ill-defined relationship between 

kinematics and folding. Form (especially architectural form) is usually perceived as 

permanent and static. This is not always true (for instance with retractable roofs or 

digital architecture etc.). The execution of physical folding exercises during this 

project have revealed fundamental relationships between folding and kinematics - 

studying the kinematics of folding structures reveals that each one of the units (a 

term called ‘kernel’ will be defined in due course in the paper), which springs from the 

 
 Figure 02 : An early example of a geometric algorithm for a regular tessellated folding pattern 
 (Source : Peter Engel, Origami from Angel Fish to Zen, pg. 30) 
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intersection of crease lines in the folded arrangement, performs, as part of a 

mechanism, and the entire structure can be described as a single machine with many 

moving parts, with a series of interconnected relationships. Therefore, minor changes 

in the single unit or the overall creasing pattern, completely changes the relationship 

of the units, and therefore the design and performance of the machine. A nuanced 

differentiation between the act of folding and the final folded artefact is the only way 

to be able to comprehend this correlation. Kinematics changes the folding, which 

changes the folded object. So the act of folding is dynamic, the folded artefact as an 

end product is static, but the dynamism is embedded in it, and therefore the artefact 

can change when this dynamism is called into play. The best analogy from the world 

of physics would seem to be how kinetic energy is stored as potential energy in an 

object at rest.    

 

Although kinematics (as an essential by-product of folding, and as an embedded 

feature of the folded artefact) is not one of the prime foci of this paper, yet, the way in 

which kinematics informs the static and final form of the folded object, is in itself 

sufficient grounds to overview this relationship in a little more detail.  

 

‘…kinematics opens up a more intricate relationship between folding and 

motion…rather than conceiving of folded structures as static configurations or 

dynamic expressions, they may instead be…transformational mechanisms. 

Folds…are not only mechanisms for structural, static, or dynamic support, but also 

means of kinematic exploration…for instance, in a symmetrical asynchronous 

sequential configuration, distinct steps follow a propagation effect, whereas in a 

synchronously deploying structure all tiles [meaning single blocks of the folded 

artefact] move at the same time and the motion of one affects the motion of all other 

tiles adjacent to it.’ (pg. 51, Terzidis, 2003) 

 

This therefore is the second underlying theme that runs through the entire paper and 

finds explicit expression in Chapters 4 and 5 (Observation and Discussion).  

 

 

1.3  Footnote to Sections 1.1 and 1.2 
 

An anecdotal simile from ‘The Atlas of Novel Tectonics’ is a somewhat eccentric but 

apposite footnote to sections 1.1 and 1.2 which (a) introduced the philosophy of 

‘folding’ in architectural discourse and (b) explained the raison d’ etre for the thematic 
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contours of this paper. The following sections introduce DDCs, and elaborate on 

specific aims and objects, laying down the hypotheses. 

 

‘Architects work with matter like a chef who manages the complex ‘unfoldings’ of food 

chemistry very precisely but without necessarily knowing the science of the chemistry 

itself. One does not, for instance, need to know how an ovalbumen protein 

coagulates in order to make a superior omelet [see illustration below]. Architects, too, 

are in large part the managers of processes they do not, and cannot, fully 

comprehend.’ (pg. 168, Reiser and Umemoto, 2006) 

 

 

 

 

 

 

 

 

 

 

 

 

 

As a corollary to this anecdote, it can be said that in the process of designing, 

architects juggle with geometry on a routine basis, yet, most architects are only 

peripherally aware of the generative algorithmic sequences that underline nearly all 

geometrical resolutions. 

 

This is especially true for the act of folding – an endeavor is made in this paper to 

delve beyond architectural problem solving and investigate the algorithmic 

machinations of form-making, with folding, as a primary process. And further, within 

the paradigm of folding, paper folding or Origami, and specifically Developable 

Double Corrugations, provide an exciting meeting point for Architecture, Mathematics 

and the Algorithmic technique – this is the juncture at which a simple ‘kernel’ of 

triangles (defined in Section 3.3), permutes and combines with itself in scores of 

ways to create myriad strings of valleys and mountains, creating striking visual 

complexity (figure 04 below), but with a geometric regularity most sublime. This 

paper is foremost an attempt, at demystifying that magic. 

Figure 03:  
How the Ovalbumin denatures during 
the heating process leading to the 
coagulation of liquid egg into solid 
omelette.  
(Source : Reiser+Umemoto, The Atlas of Novel 
Tectonics, page 169) 
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Figure 04 : Developable Double Corrugations – a grid of folded paper models   
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1.4  What is a DDC? 
 

A ‘Corrugation’ is defined as a wrinkle, fold, furrow or ridge. To ‘corrugate’ means to 

draw or bend into folds or alternate furrows or ridges. (Source : www. 

Dictionary.reference.com/browse/corrugation) 

 

In existing geometrical discourse, a Developable Double Corrugation (or DDC) is 

defined ‘as the repetition of a fundamental region consisting of four identical 

parallelograms…[and] a generalized surface which includes various shapes 

depending on its parameters.’ (pg. 138-139, Miura, 2002) Generically in the field of 

Origami, when DDCs are made by folding paper, they are referred to as Miura-Ori. 

This definition will be clarified and extended in this paper via folding experiments and 

analysis.   

The term ‘Double’ in Developable Double Corrugations refers to the direction of the 

corrugations in the sheet. Crease lines in DDCs usually exhibit a variety of 

orientations in three dimensions, with at-least two orientations in plan (to the X and Y 

directions for instance). In contrast, in Developable ‘Single’ Corrugations or DSC 

surfaces, all corrugation lines are aligned to only one direction. The term DSC is not 

commonly used. Figure 05 below indicates the difference between regular DSC and 

DDC patterns.   

 

         

 

 

 

 

 
The term ‘Developable’ in Developable Double Corrugations refers to a surface that 

has zero Gaussian curvature, such as a cylinder, a cone, a hyperbolic cylinder or 

most ruled surfaces.  

(Weisstein, http://mathworld.wolfram.com/DevelopableSurface.html, accessed on 21.06.09)  

 

This means that the surface does not bend or twist out of its plane. In the specific 

context of a Developable Double Corrugation, it means that the overall form of the 

DDC may or may not be approximating the curvature of a non-developable surface in 

space, but each constituent surface of which the corrugation is composed, is free of 

   
Figure 05 : Developable Single Corrugation (DSC)  & Developable Double Corrugation (DDC) 
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bending, shear or twisting, and lies in a single plane. This means that a straight line 

can define that constituent plane by lying on it.  

 

A simpler explanation of this would be that a developable form can be unrolled into a 

flat sheet of only two dimensions. This is definitely true with reference to DDCs 

(figure 06 below). On the other hand an un-developable surface has 

compound/double curvatures, such as a hull surface or a sphere, and can never be 

unrolled out into a flat sheet of two dimensions accurately. It can at best be a rough 

approximation. 

 

 

 

 

 

 

 

 

 

 

 

 

1.5 Aims and Objectives 
 

- To critically overview the ‘state of the art’ in the field of Origami (paper folding)  

- To explore as many known ‘regular tessellation’ folding paradigms in the field 

of Origami as possible – relevant to Developable Double Corrugations 

(DDCs) and Flat-foldability 

- To find a ‘single fundamental starting block’ that is the genesis of all known 

DDCs 

- If there is more than one ‘fundamental starting block’, to catalogue all the 

possible ‘block entities’ from simplest to most complicated – akin to the 

elements on a periodic table 

- To explore how the ‘fundamental starting blocks’ grow into a full corrugated 

sheet – the mathematics of Creasing Patterns and Folding Sequences by 

physical folding exercises  

- To document all the rules (shape grammar and iterative-algorithmic) that are 

involved during the generation process 

 
Figure 06 : A flat sheet (left), once creased using an appropriate folding pattern, can 
approximate a non-developable (almost) spherical form (right), using Developable Double 
Corrugations – the individual surfaces of the spherical form are all flat two dimensional 
triangular planes.  
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- To approximate families of architectural geometries by using a large family of 

DDCs through experimentation (by physical folding, and by means of a visual 

matrix for analysis) 

- To discuss all the possible applications of DDCs and flat-foldability in 

Architecture 

- To summarise how the research undertaken in this paper can be taken to the 

next level of resolution through simulation and optimization 

 

 

1.6  Hypotheses 
 

One - A fundamental block or block(s) exist(s) (like the unique nucleotides in a DNA 

sequence AGCT - Adenine Cytosine Guanine & Thymine, for instance) which are 

found in all Origami developable tessellations, such as corrugations, and these 

fundamental blocks, by permutation and combination, helping create an entire family 

of tessellations, specifically all Developable Double Corrugations. 

 

Two – It is possible to approximate and recreate all known architectural forms using 

the geometry of DDCs as the building sheets for the process. 
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2     Background and Literature Review 
  

2.1  Origami & Mathematical and Computational Origami 
 

Etymologically, the word Origami [or-rig-gah-mee] originates from the Japanese 

words ori or oru meaning ‘to fold’ and kami meaning ‘paper’.  The Merriam Webster 

Dictionary defines Origami as ‘the Japanese art or process of folding squares of 

paper into representational shapes’. This is however a very limited definition, as we 

shall see during the course of this paper. 

 

While origami was originally popularized largely by Japanese culture, its origins are 

believed to be pre-Japanese, roughly coinciding with the invention of paper itself. 

Paper, in turn, is understood to have been invented by Ts’ai Lun, a Chinese court 

official, in 105 A.D. (pg. 167, Demaine & O’Rourke, 2007). 

 

The history [of Origami] within Japan is well-recorded. Time-honoured origami 

tradition starts with a sheet of paper (usually square). The origamist makes a 

succession of folds, creating a complex of creases that turns the piece of paper into a 

montage of polygonal facets.  

 

The rekindling of interest in origami in the 20th century, and the proliferation of 

origamists throughout the world, is often attributed to the influence of the origami 

artist Akira Yoshizawa (1911–2005), who pioneered the origami notational system of 

dotted lines and arrows in his 1957 book called Origami Dokuhon (Kamakura 

Shobo,Tokyo). 

 

The same system, slightly modified, remains in use today. Origami has an intrinsic 

geometry that is a natural subject of study. The oldest known reference to origami in 

the context of geometry is an 1840 book by Rev. Dionysius Lardner (1840), which 

illustrates several geometric concepts using paper folding. (pg. 168, Demaine & 

O’Rourke, 2007). 

 

Origami has begun to find relevance beyond the merely ornamental (figure 07) and is 

continuing to expand in intricacy. In the last two decades, amazing technical and 

artistic advancements have been made in the field, largely due to a growing 

mathematical and computational understanding and analysis of the subject.  
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In 1936, origami was analyzed in terms of its geometric constructions, according to a 

certain set of axioms, by Margherita Piazzolla Beloch. This was possibly the first 

contribution to ‘origami mathematics’. It was followed later by Huzita’s ‘ six axioms’. 

Several fundamental theorems on local crease patterns around a single flat-folded 

vertex were established by Jun Maekawa, Toshikazu Kawasaki, and Jacques Justin 

thereafter. Mathematical Origami or ‘technical folding’ as it began to be referred to, 

was christened ‘Sekkei’ in Japanese thereafter. Thomas Hull extended this work into 

the area of flat-foldability (Hull 2006).  

 

Robert Lang developed an algorithm around 1993 and a software program thereafter 

for designing origami, which he called the Tree Maker, because it is based on a kind 

of graph theory that resembles a tree analogically. He has recently published Origami 

Design Secrets (Lang 2003) unfolding a computational approach to origami design.  

 

Mathematical origami research generally coalesces roughly around two foci - 

foldability and design (pg. 170, Demaine and O’Rourke, 2007).  

 

The first focus - origami foldability, generally asks which crease patterns can be 

folded into origami that uses exactly the given creases, no more and no other. The 

 
Figure 07 : 32 ways of folding an origami elephant,  
Source : John Lang, Origami Design Secrets  
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simplest forms occur when all creases are parallel (as the DSC described in section 

1.4) or when the crease pattern has a single vertex. In these cases, we can 

completely characterize which CPs and FPs together would lead to a successful flat 

folded state.  

 

The problem arises with crease patterns which have many vertices, all multi-pointed. 

This is where origami sekkei, or ‘technical folding’ begins to play a part. Through 

Sekkei, the four flat-foldability theorems were proved (to be discussed in section 2.4).   

 

The second focus - origami design is, generally, the problem of folding a given piece 

of paper into an object with certain desired properties, for example, a particular 

shape, and specifically in the case of this paper, into architectural forms. 

 

 

2.2  Crease, Crease Pattern, Folding Pattern, Mountains and Valleys 
 

A crease is a line segment (or, in some rare cases, a curve) on a piece of paper. 

Creases may be folded in one of two ways: as a mountain fold, forming a protruding 

ridge, or as a valley fold, forming an indented trough.  

 

A Crease Pattern (CP) maybe seen as one of two things –  

 

(a) a collection of creases drawn on a square of paper, meeting only at common end 

points, which is a (usually planar straight-line) embedding of a graph.  

 

Or alternately, 

 

(b) a division of a square of paper into a finite set of polygonal regions by a set of 

straight line segments. Each polygon, which is bounded by a combination of creases 

and the edge of the square, may be referred to as a facet of the crease pattern.  

 

Important geometrical features of crease patterns are that they exist in various types 

of symmetric organizations -  

 

(i) The illustration 08(a) presents bi-axial symmetry and recurring organization of 

tiles. This pattern is invariable under n-mirroring processes. 
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(ii) The illustration 08(b) presents a rotational symmetry about a point. This pattern is 

invariable under n-fold rotations about the centre.  

 

 

 

 

 

 

 

 

 

 

 

 

A Folding Pattern (FP) is an identification of which creases should be folded as 

mountains and which as valleys. Together, a Crease Pattern (CP) and a Folding 

Pattern (FP) describe a Mountain–Valley Assignment (MVA). These somewhat 

modified definitions are derived from Demaine’s original explanations in Geometric 

Folding Algorithms : Linkages, Origami and Polyhedra (page 169-170, Demaine and 

O’Rourke, 2007) 

 

Two very important assumptions being made for a 2D surface in a 3D folded state (in 

Euclidean space) when referring to a CP or an FP are, that the conditions of 

‘Isometry’ and ‘Non-Crossing’ be satisfied (pg. 172-173, Demaine and O’Rourke, 

2007)  

 

Isometry means that the distances between two points, measured by the shortest 

path on the surface of the paper, is preserved by the mapping, i.e., the mapping 

does not shrink or stretch the paper.  

 

The Non-Crossing condition specifies that the paper does not cross through itself 

when mapped by the folded state. Portions of paper are allowed to come into 

geometric contact as multiple overlapping layers, yet the layers must not penetrate 

each other, i.e., the mapping must not tear or cut through the paper.    

 

   
Figure 08 : Crease Patterns showing (a) bi-axial symmetry & (b) rotational symmetry 
Source : drawn by Author, based on ideas from ‘Éxpressive Form’, Kostas Terzidis 
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2.3 Huzita’s Axioms 
 

Traditionally, origami was designed by trial and error and/or heuristic techniques 

based on the folder’s instincts. Axioms did exist surely, but they were always 

mathematically unproved. Humiaki Huzita finally put them down on paper by 

demonstrating six axioms for constructing Origami folds.  

 

These are as follows (illustrated in figure 09) – 

 

A1.   Given two points, one can fold a crease line through them. 

A2.   Given two points , one can fold a crease along their perpendicular bisector,  

folding one point on top of the other. 

A3.   Given two lines, one can fold their bisector crease, folding one line on top of the 

other. 

A4.   Given a point and line, one can crease through the point perpendicular to the 

line, folding the line onto itself. 

A5.   Given two points and a line, one can fold a crease through one point that maps 

the other point onto the line. 

A6.   Given two points and two lines, one can fold a crease that simultaneously maps 

one point to one line and the other point to the other line. 

 

(pg. 37–70, Huzita, 1992) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 09 : Huzita’s six axioms. Solid lines are existing lines; dashed lines are the 
new creases (Source : Humaiki Huzita, ‘Understanding Geometry through Origami Axioms’) 
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Recently Hatori suggested a seventh axiom. (pg. 31–38, Hull, 1995) 
 

A7.   Given one point and two lines, one can fold a crease perpendicular to one line 

so  that the point maps to the other line. 

 

Initially a sheet has only points (the corners) and no creases. The axioms create new 

creases from existing points and thereafter from earlier creases as well. New points 

are created by the crossing of previous crease lines with new ones. Huzita has 

proven that the axioms can construct all plane Euclidean constructions, and can also 

solve polynomials of degree three, such that cube doubling and angle trisection are 

possible. Not all kinds of folding can be solved using these axioms however. There 

are a class of polygons that cannot be folded with these axioms, however a large 

number of polygons can. 

 

There are two important things to remember while folding -  

 

(a) not all creases are meant to be folded, i.e., not every line on a CP will be 

given a mountain or valley assignment, and some will remain unused (or flat). 

 

 

(b) in origami diagrams, there is an implied top surface. Valley and mountain 

folds are with respect to this top surface and the definition of the top surface 

keeps dynamically changing after every fold. Xxx Nagpal in her paper says 

that this is made unambiguous by defining the top surface as apical and the 

bottom as basal when constructing a computational algorithm (pg. 219-231, 

Nagpal, 2002). 

 

  

2.4 Flat-Foldability Paradigms and Rules 
 

Origami models are usually three-dimensional (and definitely all DDCs), and the 

challenge is to take 3D origami and collapse it into a plane without adding, undoing 

or damaging any creases. But if one is given just an arbitrary CP, with no ideas as to 

which are mountains and which are valley folds, the task of differentiating flat-

foldable patterns from non-flat foldable ones turns out to be quite delicate. 
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Given an arbitrary CP then, would it be possible to fold the paper along the creases 

so that the resulting model can be collapsed into a flat plane? John Lang has proved 

four basic mathematical rules which apply (Schneider, 2004) : (Figures 10,11,12 & 

13) 

(1) Crease patterns must be two colourable – if we colour the regions of  the crease 

pattern so that no two bordering regions have the same colour – in flat foldable 

origami, only two colours are sufficient to establish this pattern 

 

 

 

 

 

(2) At any vertex, the number of creases meeting at the vertex must be even and the 

sum of all the alternating angles should add up to 180 degrees; so all the odd 

angles would add up to a straight line, as would the even angles (Kawasaki-

Justin theorem) 

 

 

 

 

 

(3) At any vertex, the number of valley (V) and mountain (M) folds should always 

differ by two either way, i.e., M – V = ±2 (Maekawa-Justin theorem)  

 

 

 

 
   Figure 10 : 2 Colourability  
    (Source : John Lang – Idea + Square = Origami  )

 
   Figure 11 : Alternate angles add up to make 180 degrees  
    (Drawing by Author, based on original source : John Lang – Idea + Square = Origami)   

 
   Figure 12 : M – V = ±2 
    (Drawing by Author, based on original source : John Lang – Idea + Square = Origami)   
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(4) There must be no cuts in the paper so that a sheet can never penetrate a fold OR  

to put it more mathematically - There must exist a superposition ordering function 

that does not violate the non-crossing condition. 

 

 

 

  

 

 

 

 

 

For the proofs and applications for these rules the reader is referred to Schneider’s 

Article (see references). However, it is important to note that while creating a 

computational algorithm to create form through folding, if these rules are abided by, it 

can lead to complex forms, which at the same time are completely flat foldable. This 

has important implications for product design, architecture and industry. For this 

research project, though flat-foldability was not an essential pre-requisite, it seemed 

a very useful idea pertaining to Developable Double Corrugations, on the premise 

that that they would collapse into a 2D plane while folded, ignoring the thickness of 

the paper itself. 

 

2.5 State of the Art : Origami Uses and Applications 
 

A lot of mathematicians are studying the contributions that Origami can make to a 

better understanding of phenomena in the physical world.  

 

 

 

 

 

 

 

 

 

For instance a mechanism in nature, from which we can learn much, is how leaves of 

some plants are folded or rolled when un-blossomed inside the bud and how they 

   Figure 13 : No self Intersection at overlaps 
    (Source : John Lang – Idea + Square = Origami)  

Figure 14 : The un-creasing / unfolding of leaves in spring from closed buds 
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unfurl thereafter during blossoming. Cedar or Beech tree leaves (figure 14) have 

simple and regular corrugated folding patterns.  

 

These patterns can recommend ideas for the design of deployable forms and 

structures such as solar panels and light-weight antennae of satellites, or for the 

folding of membranes such as tents, clothes or other coverings such as large scale 

parasol umbrellas, which need to be tightly packed and reduced to a small size 

during transportation / pre-deployment and then, to expand to their full size at the 

site.  

 

A number of biological folding patterns have been investigated by researchers such 

as Kobayashi, Kresling et al. In their paper ‘The Geometry of Unfolding Tree Leaves’, 

they describe and investigate the Miura-Ori map folding paradigm in great detail, (see 

references) concentrating on folding mechanisms for strengthening, deployment and 

other optimization criteria.  

 

Robert Lang created a 5m wide aperture, foldable Fresnel transmissive telescope 

lens for the Lawrence Livermore National Laboratory which is a prototype for an 

eventual 100m wide aperture lens for a telescope (see figure 15). Most high-

performance telescopes, like the Hubble Space Telescope, for instance, are 

“reflective.” Their main optical element is a curved mirror - The Hubble, has a 2.4-

meter-diameter mirror. But “transmissive” telescopes, like the Galileo, are tubes with 

lenses at each end, and these lenses need to be large to be powerful. 

So designing this size of lens was a big breakthrough, because till recently, 

transmissive space telescope lenses were restricted in size by the diameter of the 

rockets that could carry them to space, or else they had to be assembled in space 

accompanied by a manned space vehicle. It will eventually be possible to launch 

extremely large telescopes with powerful foci for deep space, all made possible by 

advances in mathematical and computational origami. This is just one of many 

examples that illustrate the future potential of Origami to act as an instrument of 

technological problem solving.  
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Figure 15 : Robert Lang with the 5m 
Fresnel foldable lens designed using an 
algorithmic application of graph theory.  
 
Source : ‘Origami : Complexity in Creases’, Robert 
Lang, 2004, Journal of Engineering and Science, No.1 
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3. Methodology (Forwarding the Hypothesis) 
 

3.1 Types of DDCs 
 

During the initial experimentation stages, 87 regular CPs were drawn up and tested 

for whether they folded into any forms at all, and if they did, then what was the 

resultant shape of the folded artifact, and finally testing the CP on the basis of the 

flat-foldability rules (Section 2.4 in Chapter 2), to observe if these folded artifacts 

collapsed into 2D without damage to the creases (somewhat like an accordion). 

Since the CPs were initially drawn up in a random and arbitrary process, it was 

surprising that around 47% folded into flat foldable symmetric geometries, 11% 

folded into symmetric geometries but were not flat foldable, 17% folded into 

asymmetric forms or arbitrary topologies that were not flat foldable, and 25% failed to 

fold into any forms. Although there was no selection criteria for the CPs, and the 

attempt was to try and randomly generate as many DDCs as possible, one point was 

statistically clear – of this small sample of 87, none of the asymmetric geometries 

were successful flat-foldable DDCs, although this in no way mathematically suggests 

that it is not possible for an asymmetric DDC to flat-fold. But statistically it seems 

unlikely. This point was investigated further and will be taken up in subsequent 

chapters. The exact meaning of ‘symmetry’ in this context will also be discussed and 

elaborated. The 47% successful flat-foldable DDCs (41 of 87), were categorized into 

9 discernible groups based on similar CPs and FPs. No standardized or exhaustive 

catalog was found during the literature survey in published mathematical origami, for 

nomenclature and indexing of DDCs.  The nine models selected for the purpose of 

initial enumeration and discussion in this paper, were chosen because –  

 

(a) All nine were flat-foldable once folded into sheet form with open ends 

(although some were not so in their final form, if they were closed on 

themselves in a circular loop). 

 

      and 

 

(b) They encapsulated a large variety of DDCs possible by being more or less 

representative of every possible genre of CPs and FPs encountered during 

the literature survey.  
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Because, there are no consistent nomenclature systems for DDCs, and different 

Origami artists and mathematicians call them by different names, for the sake of this 

paper, the author has chosen to follow the most commonly used names, or given a 

name where a DDC had none (to begin with). In the intermediate stages of the paper 

however, a more rigorous and logical system of nomenclature and notation will be 

presented.  A note here - in Origami, the name of the creasing pattern (CP) becomes 

analogous to the name of the final folded form, so in fact a Hill-Trough CP (HT) can 

generate many final folded forms, based on changing FPs for the same CP. This 

point is also taken up and discussed in further detail, anon. Table 01 on the following 

page,  lists the nine selected DDCs, with their Crease Patterns and flat-folded side 

profiles.     
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Table 01: Nine Initial & Generic DDC Samples (from Simplest to Complicated) 
S.No DDC Type Visual Flat-Folded Side Profile Crease Pattern (CP) 
1 Cater-

pillar  

 

 

 
 

2 Zigzag  
 
or 
 
Tree 
Leaf  

  

3 Spring-
Into-
Action  

 

 

4 Fire-
Works  

 
 
 

 

 

 
5 Hill - 

Trough  
 

 
6 Magic 

Ball  
 

 
7 Gothic 

River 

 

8 Lotus   
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9 Pyramid  
 

 

 

 

 

 

3.2 Of Triangles : First Principles 
 

Studying the 87 physical models (and the selected nine thereafter), it becomes clear 

that the most basic component  involved in a DDC is a triangle; and all regular 

Developable Double Corrugations start with a single fold. On both sides of this single 

fold, there are two triangles. Sometimes, it may be that there are two quadrilaterals, 

but essentially hidden within those quadrilaterals are two triangles each, with the fold 

between them not yet manifest. It must be noted here that this is however only true 

for ‘flat-foldable’ and ‘developable’ double corrugations. For ‘non-developable’ 

corrugations (with non-zero Gaussian curvature surfaces) or corrugations that are not 

flat foldable - polygons of higher order, such as pentagons, hexagons or even non-

regular geometries may be involved. Investigation of non-developable geometries is 

beyond the scope of this paper.  

 

 

 

 

 

 

 

 

 

 

It is axiomatic that all quadrilaterals are reducible to two triangles. In the case of 

DDCs, all quadrilaterals and triangles are reducible to right angled triangles (figure 

16). 

 

 Figure 16 : Types of triangles in DDCs 
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3.3 Definitions : Hinges, Kernels & Strings  
 

 

 

 

 

 

 

 

 

 

 

 

 

Origamists define certain ‘molecules’ as the building blocks of all origami CPs and 

FPs. (pg.9-19, Lang, 2000&2004) Figure 17 shows some molecules. While these are 

fine for solving problems of folding and creasing, after closely studying physical 

folded artefacts, it is clear that molecules cannot solve the objectives outlined in this 

paper, because  – 

 

(1) There are too many ‘molecules’ in the world of Origami, and therefore it is 

difficult to classify them as fundamental building blocks 

(2) The molecules do not share common traits and it is not possible for a CP 

which is defined in terms of one molecule to be re-defined in terms of another 

(3) Molecules are far from simple (geometrically) and need extensive and 

elaborate mathematical definitions to identify them. 

 

Thus a simpler and more rigorous system is called for to be able to classify all DDCs 

(except the ones with arbitrary topology).  

 

For this purpose, three ideas are being introduced in this section, which form the 

backbone of this entire paper. Since these ideas were formulated as a result of 

folding experiments and observations made there-after, ideally these definitions 

should have followed the section on observations and not precede it, but explaining 

consequent formulations would become increasingly tedious if these definitions are 

not introduced at this stage. As we move into consequent sections, there will be 

 
Figure 17 : A few ‘Molecules’ – water-bomb, gusset, sawhorse & gusset (type 2) 
(Source : John Lang, ‘Origami : Complexity in Creases (Again)’)
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clarity about the genesis of these concepts, and how they are very useful concepts 

for the problem at hand.        

  

The first idea is that of a ‘Hinge Line’. It may be defined as the locus of points or 

nodes where 4 or more crease/fold lines meet. Figure 18 illustrates this definition. 

The idea is christened as a ‘hinge’ line, because it controls the form of the DDC with 

its length and its shape in 3D Euclidean space. Hinge lines can be any straight, 

zigzagging, curvilinear, parabolic, elliptical or circular.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The second idea is that of a ‘kernel’. A ‘kernel’ may be defined as a two-triangle 

elementary unit (usually a rectangle or square, but always a quadrilateral) enclosed 

between two hinge lines on the creasing pattern of a DDC.  

 

 

 

 

 

 

 

 

 

 
 

 Figure 19 : All Wrong Assumptions for a Kernel  

Figure 18 : Of Hinge Lines : Green and brown lines indicate the creases/fold lines. The red 
circles mark the nodes/points created by the creases. The grey dotted lines are the hinge 
lines. Note that from each node originate atleast four creases/fold-lines. 
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Additionally, the two triangles of the kernel are always joined to each other along 

their longest length (i.e., the hypotenuse). Therefore the diagrams shown in figure 19 

are not kernels – (A) & (B) are not kernels because they are not quadrilaterals but 

bigger triangles generated by the joining of two smaller triangles, and although (C) & 

(D) are quadrilaterals, they too are not kernels, because the constituent triangles 

forming them do not join at their hypotenuses, but via their shorter edges. This 

makes it possible for us to redefine these shapes into three or lesser simpler units 

which then are simpler quadrilaterals than the original and therefore kernels. This is 

explained in figure 20. Thus, as per the definition of this paper, parallelograms and 

rhombuses are not kernels.   

 

In summary, a kernel of a DDC is – 

(a) a two triangle elementary unit, where the triangles join at their hypotenuses 

(or longest edge) 

(b) always a quadrilateral 

(c) the simplest quadrilateral which cannot be redefined in one simple operation 

as a sum of three or lesser number of kernels 

(d) always enclosed between two hinge lines in a CP  

 

Figure 21 shows all the possible types of kernels (as per the definition in this paper). 

 

 

 

 

 

 

 

 
           Figure 20 : Why (C)  & (D) in figure 18 are not kernels 

 
Figure 21 : Kernels 
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These six, most basic geometries, are ‘in essence’ the fundamental building blocks of 

all DDCs. Regarding the sixth, the ‘arbitrary Quadrilateral’, the same conditions are 

imposed as on the other five – which means, it cannot be just any arbitrary 

quadrilateral, but must fulfil all the four criteria noted above to qualify as a kernel.    

 

Kernels can be in three and only three states –valley fold, mountain fold, or flat. 

Figure 22 illustrates. 

 

 

 

 

 

 

 

 

 

The third and final idea is that of a String. A ‘String’ is a continuous strip of kernels 

connected based on accretion rules, and enclosed between two hinge lines. In a 

DDC creasing pattern, there can be one, and only one string between two hinge 

lines. Figure 23 illustrates.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 22 : Kernel states illustrated with a square kernel – valley fold, 
mountain fold & flat (creased but unfolded) 

                                  
           

                      
 

                     
Figure 23 : A String, as seen on a CP and on a folded pattern between 2 hinge lines 
(black dotted); and individual strings in folded state (seen in isolation independent of a 
DDC surface) 
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These three ideas and their definitions form the primary basis for analysis of the DDC 

sheets, their CPs and FPs, in this paper, and the ground on which the hypothesis is 

placed and proved. 

 

 

4  Applying DDCs to Form : Experiments & Observations 

 

4.1 Analysing Kernels & Strings in DDCs 
 

Now that we have three new concepts, it is time to apply them to actual Crease 

Patterns (CPs). As a result of this implementation, we get four Look-Up Tables for 

Kernels, Strings and Crease Patterns. These are presented next. 
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Table 02 : Kernels, Strings and Crease Patterns (One)  
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Table 03 : Kernels, Strings and Crease Patterns (Two) 
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Table 04 : Kernels, Strings and Crease Patterns (Three) 
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Table 05 : Kernels, Strings and Crease Patterns (Four) 
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4.2   Making Sense of Folding Patterns (FPs) 
  

From the tables 02-05 we now have a clear classification system for Crease Patterns 

(CPs). We can also recognize (a) kernels, (b) strings they generate, (c) possible 

configurations of CP sheets that these strings then join together to forge and (d) 

hybrids. Further we have a notation system which allows us to recognize and 

categorize a CP using a look-up table as reference.  

 

But we still cannot fold a CP into a DDC. For that we need an FP. Let us look closely 

at the FPs of a few DDCs in conjunction with their CPs. Of the nine DDC types 

identified in section 3.1, let us choose two types of ‘Hill-Trough Creasing’ and one 

‘Magic Ball Creasing’, for their generic linear regularity and ease of translation to a 

comparative matrix (figure 24) . 

 

 
Hill-Trough One (HT1)                       Hill-Trough Two (HT2)                      Magic Ball (MB) 

Figure 24 : Three DDCs as samples for comparative analysis of CPs and FPs.   

 

Table 06 illustrates the creasing pattern (CP), folding pattern (FP) and final 

corrugation of three DDCs – two of them of the HT type, and one of the MB type. In 

the column of folding patterns (FPs), the red lines indicate crest lines / mountain 

folds, and the blue lines indicate trough lines / valley folds. The faint yellow lines 

indicate flat folds (unfolded creases). The dotted blue-grey lines are the hinge lines.  

 

We already know that a kernel can be in three states – mountain fold, valley fold or 

flat. A kernel can connect to two other kernels in a string each of which can be in any 

one of these three states. Each combination of string thus formed can combine with 

two other strings, each of which can be in any configuration. This allows for a 

confounding number of possible folding patterns for a single crease pattern. In reality 

only about a dozen or so FPs are practically possible for a given CP, generating 12 

different kinds of corrugations with a single crease pattern.     

 

In the tabulation below, HT2 and MB share an identical CP, but very different FPs, 

and this reflects in the difference of the final corrugations that emerge. 
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Table 06 : CP, FP & Corrugation : Comparative Matrix  
 

 Crease Pattern (CP) Folding Pattern (FP) Final Corrugation 
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We conclude, that we need to factor in the FP into the notation system, to be able to 

completely define and categorize a DDC. The notation system described and 

elucidated in tables 02-05, although very useful, is still incomplete. And here the role 

of the next table 07 comes into play.  

 

It completely describes all the possible states a kernel can be in, vis-à-vis fold 

conditions, and each kernel state is given an alphabet. In the notation system, K1-

S1(I)S1(J)-C3 (see table 07) means that the DDC is composed of the kernel K1, the 

string is of the S1 type, in the first string, the state of the kernel is I, and in the next 

string, the state of the kernel is J, and strings alternating thus continuously, such that 

the pattern formed is of the C3 type, specific to the kernel K1. Thus a single line of 

alphabets and numerals completely describes a DDC, and all that is needed are two 

look-up tables – one for ‘kernels, strings and CPs’, and another for all possible kernel 

states. 

 

A slightly complex configuration from the table - K4-S3(E,A)S3(M,N)S3(F,B)-C1 is 

explained thus. Composed of the kernel K4, the DDC is of the pattern C1 type. The 

first string contains K1 kernels of the states E and A in alternating order. The next 

string contains K1 kernels of the states M and N in alternating order and the third 

string contains K1 kernels of the states F and B in alternating order. Thereafter the 

first string repeats and so on.  

 

Theoretically, we now have a complete definition of all DDCs with only simple kernels 

as a basis, using the look-up tables 02-05 and 07.    
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Table 07 : Kernels of all possible FP States 
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4.3  Architectural Geometries 
 

With this section, we initiate the process of understanding and interpreting DDCs in 

the role of Architectural Geometries. The table below outlines commonly employed 

families of Architectural Geometries. 

  
Table 08 : Family of Architectural Geometries  
S.

No 
Architectural 

Geometry 

Genre 

A B C D E 

1 Ribbons 

 
Mobius  

 
Wave 

   

2 Flat Panels  

 
Flat 

 
 

 Lean-To and Pitched 

 

 
Prismatic 

 
 Folded Plate 

 

3 Pyramidal 

 
Shallow 

 

 
Deep : Square or 

Triangular Base 

  
Prismatic 

 

 
Truncated or 

Mansard 

 

Hipped 

4 Conical  

 
 

Shallow 

 
Deep 

 

 
Truncated 

  

5 Spherical  

 
Shallow 

                                                                                                                                   
Deep 

 
 

Pinched 

  

6 Ellipsoidal / 

Oval 
 

 

Truncated  
 

Inverted Boat 

   

7 Cylindrical 

 
 

Barrel Vault 

 
Varying section 

 
 

Varying Ht. 

  

8 Groined 

Vaults 
 

True Arch 

based 

 Pointed 

Arch based 

 
 

Multiple Rib 

Vault 
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9 Toroidal 

Or part of a 

Torus 

    

10 Polyhedral 

 
Dodecahedron 

& other 

Platonic Solids 

 
Great Stellated Dodeca-

hedron & other Kepler-

Poinsot Solids 

 
 

Cuboctahedron 

& other 

Archimedean 

Solids  

 
Geodesic  

(Buckyball) 

 
 

Poly-

polyhedra 

11 Hyperbolic 

Paraboloid 
 

Saddle/Pringle 

 
 

Hypar Sections 
 

Tensile/ 

Reverse 

Catenaries 

  

12 Arbitrary 

Topology  

    

 

Note : (1) Some forms such as Ellipsoidal and Spherical etc., are mathematically not 

developable into flat panels with zero Gaussian curvature (see definition of 

‘developable surface’ in the Introduction), however, architecturally, their forms can be 

imagined as faceted approximations of flat panels when resolved. 

(2) Since this is a ‘family’ of geometries, there are overlaps in definitions – for 

instance 8C shares traits with 11B, though it is not identical. Similarly, 5C is a 

revolved surface not unlike conical surfaces, but it is a hybrid, in that it sits more 

properly geometrically within the spherical family.   

 

The next section 4.4 begins to deliberate on how DDCs can be adapted for 

architectural form making. 

 

4.4  Mapping DDCs onto Geometries using Hinge Lines 
 

  

 

 

 
 

 

  
Figure 25 : Mapping DDCs onto Geometries : Illustration using a folded Magic Ball as example 
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Figure 25 shows (a) a sphere, and (b) a sphere as represented by a grid of circular 

lines. All geometries can be approximated in this manner as grids of lines. In fact this 

is essentially what all CAD packages do to approximate surfaces and forms.  

 

Now it is also true for DDC surfaces that they can essentially be represented by a 

grid of hinge lines that govern them. Each DDC has its own unique set of hinge lines. 

Hinge lines represent the degrees of freedom that a DDC surface enjoys 

geometrically, and therefore using hinge lines as a basis, it is possible to define at 

any given time the state of existence of a DDC. Figure 25 (c) shows a few hinge lines 

overlaid on a Magic Ball when it is in its spherical form. (d) shows the complete grid 

of hinge lines mapped onto the Magic Ball. Given that (b) and (d) are identical – if the 

number of lines on the sphere and the number of hinge lines on the DDC are 

deliberately designed to be the same – then, a one to one correspondence of lines 

would allow a natural adaptation of the DDC to the relevant architectural geometry.  

 

Thus, we can state that if we know the capabilities of the hinge lines of a DDC, then 

we can recognize and match a DDC to its natural formal geometry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 26 : Planimetric cross-sections right through the middle of the Magic Ball model revealing 
the ‘state’ of the kernels and the diameters of the inner and outer hinge line circles.     
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There is a second important  property of hinge lines. There are usually two hinge 

lines at any given cross-section of a folded DDC, an inner and an outer, and 

enclosed between them is the maximum possible depth of the DDC. How this works 

in form manipulation is explained using the diagram in figure 26.  The figure shows 

the various formal states of the Magic Ball and corresponding diagrammatic cross-

sections through the middle of the form. The dotted circles represent the hinge-lines, 

the black lines the folded pleats of the corrugation and the straight dotted line, the 

central axis of the form. When the corrugation is packed at its tightest into a cylinder, 

the inner hinge line vanishes to a point (extreme left diagram). As the structure 

expands, the internal depth of the structure decreases and the inner and outer hinge 

lines get closer and closer, till the inner and outer hinges overlap completely. At that 

point the DDC has expanded to its maximum capacity, and in this case to a 48-gon 

which closely approximates a circle (extreme right diagram). Since the number of 

nodes on a hinge line are fixed, how much it can expand or contract becomes a 

function of whether the inner and outer hinge lines can completely overlap or not, 

and/or whether any one of the hinge lines can theoretically vanish to a point. Since 

DDCs are developable and can only ‘approximate’ non-developable surfaces, this 

property of hinge lines is an important evaluation criteria for form determination. This 

is further illustrated with Erik Demaine’s diagrams (figure 27), where curves have 

been reduced to triangular faceted DDCs. Although Demaine does not apply the 

concept of hinge lines to his diagrams, on doing so, it becomes apparent that they 

play a critical role in describing the transformation from a non-developable surface to 

a developable double corrugation. 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 27 : DDCs which approximate non-developable forms/surfaces (source : Erik Demaine)   
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4.5  From Algorithm to Form 
 

What is an Algorithm? ‘An algorithm is a computational procedure for addressing a 

problem in a finite number of steps. It involves deduction, induction, abstraction, 

generalization, and structured logic. It is the systematic extraction of logical principles 

and the development of a generic solution plan. Algorithmic strategies utilize the 

search for repetitive patterns, universal principles, interchangeable modules, and 

inductive links. The intellectual power of an algorithm lies in its ability to infer new 

knowledge and to extend certain limits of the human intellect.’  (pg. 65, Terzidis, 

2003) 

 

This definition above sums up well what this paper aims to achieve with DDCs. The 

phrases ‘…search for repetitive patterns, universal principles, interchangeable 

modules, and inductive links’, specially apply to DDCs, vis-à-vis the kernels and the 

strings.  

  

Based on the results and analysis, we are now in a position to theoretically formulate 

an algorithm for folding architectural forms using DDCs. This would work as follows – 

 

(1) Select architectural form from table 08 

(2) Describe architectural form in terms of a mesh or grid of lines (determine 

intensity of mesh, based on resolution of form desired) 

(3) Identify and classify the constituent lines of the mesh as straight, segmented, 

curvilinear, circular, parabolic, elliptic or arbitrary 

(4) Randomly select kernel from tables 02-05 

(5) Run kernel through a sequential process of String and Creasing Pattern (CP) 

generation iterations, based on tables 02-05 for all possible CPs, corresponding 

to that particular kernel in the look-up table. (Important to parametrically link the 

kernels during the generation process of the CPs).  

(6) Randomly pick one of the CPs created and generate all possible folding 

patterns (FPs) for the same. (Hundreds of patterns will be generated, of which 

in reality only 5-6% will fold). 

(7) Attempt to fold all the FPs into DDCs using the notation system as an 

embedded code which specifies not only the kernel and how the kernels join 

together to create a string, but also the sequence of folding operations (such as 

translation and rotation) via the structure and order of the notation itself. 
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(8) For the FPs that successfully fold into DDCs, generate hinge lines as per the 

location of the strings on the folded up DDCs. Parametrically link the hinge lines 

to the DDCs. 

(9) Manipulate the hinge lines (length, shape, Degrees of Freedom – to be 

discussed in detail in section 5.2)) etc. This will also change the DDC surfaces 

as they are parametrically linked to the hinge lines. 

(10) Compare the hinge lines of each of the DDCs to the grid lines of the desired 

architectural form.  

(11) If a shape match is found, jump to step 14, else go back to step 6 and pick 

another crease pattern for the same kernel. 

(12) Repeat steps 7 to 11, until a matching set of hinge lines (and consequently 

matching DDC) is found corresponding to the desired architectural geometry. If 

not, go back to step 4 and pick a new kernel. 

(13) Repeat steps 5 through to 12 until a match is found. 

(14) Initiate form optimization sub-routine. 

(15) Finally test the CP of the optimized corrugation (DDC) for flat-foldability using 

the 4 flat-foldability rules. A successful test indicates that not only is the DDC an 

optimized architectural form but also a flat foldable one.    
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5   Results & Discussion 
 

5.1  DDCs as Architectural Geometries 
 

In light of the formulations and understanding gained in Chapter 4, we are now in a 

position to generate a full DDC version tabulation of the Architectural Geometries as 

below. 

 
Table 09 : Revised Table showing Architectural Geometries using DDCs : All the 
physical models were generated during the research project unless otherwise stated. 
S.
No 

Architectural 
Geometry 
Genre 

A B C D E 

1 Ribbons 

Mobius  Wave 

   

2 Flat Panels 

Flat  
Lean-To and Pitched 

 
Prismatic 

  
Folded Plate 

 

3 Pyramidal 

 
Shallow 

 
Tetrahedral Frame* 

Prismatic 
 

Truncated 
Tetrahedron* 

Hipped 

4 Conical 

 

Shallow 
Deep 

 
Truncated 

5 Spherical 

 
Shallow                                                                                                                                

Deep %  
 

Pinched 
6 Ellipsoidal / 

Oval 

 
Truncated  

 
Inverted Boat 
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7 Cylindrical 

 
Barrel Vault 

 
Varying section @ Varying Height @ 

8 Groined 
Vaults 

   
Arch based examples 

 

Multiple Rib Vault 

 

9 Toroidal 

Torus 

 

10 Polyhedral 

Modular -
Origami 
Dodecahedron* 

 
Section through a 
Kepler-Poinsot Solid 

Stellated 
Rhombic 
Dodecahedron  

 
270 module 
Geodesic  
(Buckyball)* 

K2 -20x1x3 
Poly-polyhedra * 

11 Hyperbolic 
Paraboloid 

 
Saddle/Pringle 

 
4-unit Hypar ^ Tensile / Distorted 

Miura Ori #   
12 Arbitrary 

Topology 

 

 

*   indicates a work of modular origami - not constructed from a single sheet, but a single origami 
module used many times 

#   physical model, created by Tactom – web reference (http://www.flickr.com/photos/tactom/3113852024/) 
^  created by Tomohiro Tachi 
@  virtual model, computer generated by Tactom – web reference   

(http://www.flickr.com/photos/tactom/346434097/in/set-72157594370508788/) 
%  based on Ron Resch’s tessellation pattern 
 

This table shows only one DDC type adapted to each given Architectural Geometry, 

whereas, for some of the Geometry genres, it was apparent that more than one DDC 

type could be easily adapted to exhibit that geometry. Since all models shown here 

were physically folded, it is suggested that more DDC adaptations should be 

attempted through virtual simulation.  
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Also, ideally all the DDC models generated (and shown in the table above) as a 

solution set, should have the corresponding full notations stated alongside, as per the 

notation system developed in this paper. However this annotating is an incomplete 

task for the future due to constraints of time.  

 

Many of the folding patterns used to create these models have been known from very 

long ago but rarely thought of in the context of architectural form; some have been 

created by mathematicians, folders and origamists in the last 15 years or so – and 

wherever these FPs can be sourced to an individual, the name has been cited below 

the table. A few of the FPs may have ‘emerged’ during the research for this paper, 

but that assertion cannot be made with certainty. It may merely be that such patterns 

have been in use, but may perhaps not been catalogued earlier or else, their source 

is either obscure or has remained undocumented.  

 

 

5.2  Degrees of Freedom (of DDCs) 

We now finally come to a discussion of the concept of Kinematics in DDCs, initially 

described in the introductory chapters. ‘In Mechanics, Degrees of Freedom (DF) are 

the set of independent displacements and/or rotations that specify completely the 

displaced or deformed position and orientation of the body or system. This is a 

fundamental concept relating to systems of moving bodies in mechanical 

engineering, aeronautical engineering, robotics, structural-engineering,etc.’ 

(http://en.wikipedia.org/wiki/Degrees_of_freedom_(mechanics), accessed on 

25/08/09)) 

‘A particle that moves in three dimensional space has three translational 

displacement components as DFs, while a rigid body has at most six DFs including 

three rotations. Translation is the ability to move without rotating, while rotation is 

angular-motion about some axis.’ 

(http://en.wikipedia.org/wiki/Degrees_of_freedom_(mechanics), accessed on 

25/08/09) 

A DDC is in essence a system of rigid surfaces which are hinged to each other. Each 

surface can rotate about its hinged connection, but only upto a certain extent, 

because it is also connected to other surfaces which prevent displacement. 
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Such a system with several rigid surfaces working in concert would have a combined 

DF that is the sum of the DFs of the individual surfaces (bodies), minus the internal 

constraints that exist for relative motion. A DDC like surface may often have many 

more degrees of freedom than a single rigid surface of the same dimensions.  

In three dimensions, the six DOFs of a rigid body are sometimes described using 

these nautical names:  

1. Moving up and down (heaving) 

2. Moving left and right (swaying) 

3. Moving forward and backward (surging) 

4. Tilting forward and backward (pitching) 

5. Turning left and right (yawing) 

6. Tilting side to side (rolling) 

(http://en.wikipedia.org/wiki/Degrees_of_freedom_(mechanics), accessed on 

01/09/09) 

The angles by which these motions occur may properly be referred to as Euler 

Angles, placed within the framework of a rotation matrix. To give an object a specific 

orientation it may be subjected to a sequence of three rotations described by the 

Euler angles. This means that a rotation matrix is being described as a product of 

three elemental rotations. 

However our main interest in DF is not in how much the DDC surface will move or 

sway, or even in how far the terminal element of the corrugation will go, but in the 

shapes a given DDC surface can assume, as a result of the Degrees of Freedom 

allowed to it by its own inherent geometry. Here the term DF is specifically being 

used to describe the number of parameters needed to specify the spatial positions of 

a loci of linkages. Thus we can say that we want to calculate mechanism topology. 

Mobility criteria based on mechanism topology allows us to compute the mobility 

depending solely on the number of links, joints and joints type. 

To calculate the DF of a DDC, the Grubler formula for planar mechanisms is -  

F = 3(l−1)−2 j1− j2 

Where -  - F :degrees-of-freedom of the mechanism (D.F.); 

- fi : degrees-of-freedom of the ith  kinematic pair; 
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- l : number of links (frame included); 

- j : number of kinematic pairs; 

- ji : number of kinematic pairs with i degrees-of-freedom; 

- �: (mobility number) degree-of-freedom of space within 

which the mechanism operates e.g. (=3 for planar and spherical 

space), (=6 spatial space);  

 

(pg.4, Pennestri et al., 2005) 

Calculation of DFs for DDC types enumerated in this paper is not in the scope of this 

discussion, but from the formula above, four fundamental aspects of DFs as 

applicable to DDCs can be formulated – 

(1) Sheets with more links have more scope for maneuverability. This means that 

for the same folding pattern, if a sheet has 50 kernels in a row, and another 

has 100, the one with the larger number of kernels will have more 

maneuverability, although this does not mean that it can roll into a 

fundamentally different shape, but within a family of forms (for instance 

spheroidal dispositions), it will display more flexibility. 

(2) Sheets with more internal constraints (such as axial rigidity in one dimension 

due to their form) will have less degrees of freedom than ‘flat sheets’. Figure 

28 shows the possible formal variations possible with sheet K1-S1(I)S1(J)-C3. 

On the other hand, radially folding sheet K4-S1(P)S1(K1-I,K4-P)S1(K1-I,K1-

I,K4-P)C1 seen in figure 29 is already restricted by the central axis or pivot 

about which it unfurls and therefore shows lesser degrees of freedom. In 

general, flat and linear DDC patterns have more degrees of freedom than 

radial patterns. 

 

 

 

  

 

 

 
Figure 28 : Degrees of Freedom of a ‘flat sheet’ K1-S1(I)S1(J)-C3 

 
Figure 29 : Degrees of Freedom of ‘radially-folding sheet’  
K4-S1(P)S1(K1-I,K4-P)S1(K1-I,K1-I,K4-P)C1
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(3) The angles described in the making of the CP also have an important bearing 

on  the DF of the final generated corrugation. More acute angles indicate 

rigidity and inflexibility. However, this must be read strictly in conjunction with 

the FP. Consecutive mountain folds or valley folds (of one type only) along 

sequential hinge lines indicates that the form will fold inwards in one direction, 

creating axial rigidity, whereas, alternating mountain and valley folds along 

sequential hinge lines nullifies that effect and creates more flattened linear 

sheets. 

(4) Squarer grids in the CP indicate more flexibility and degrees of freedom in the 

final folded DDC. K1S1(P)C3 (christened as per this paper) with a grid of 

perfect squares shows remarkable degrees of freedom and can generate a 

cylinder, a disc or a sphere. For this reason Origamists fondly refer to it as the 

Magic Ball (figure 30). In general, corrugations folded  from CPs with squarer 

grids enjoy more DF than those folded from CPs with rectangular grids, 

simply because a square is directionless, whereas a rectangle already has an 

in-built orientation. 

 

        

 

          

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

    
Figure 30 : An FP of K1S1(P)C3 of square grid CP folds up into a Magic Ball and also showing various 
other formal possibilities 



 56

5.3 The significance of Flat Foldability 
 

Flat foldability has important implications for architectural applications – 

 

(1) it allows for off-site manufacture of elements and prefabrication, saving 

significant transportation costs as well as at-site on demand in-situ technical 

complications 

(2) development of standard kit of parts makes it possible for modular systems to 

be unassembled and re-assembled on demand – this is especially useful for 

mobile and transient architecture (such as pavilions and temporary exhibition 

structures) 

(3) large unwieldy elements of design can be re-invented as smaller flat-foldable 

elements, saving logistical and construction costs 

 

In all this DDCs have a significant role to play, and therefore if a Developable Double 

Corrugation solution is also flat foldable, its utility and functionality increases many 

fold. Using the flat-foldability rules outlined in section 2.4, all DDCs can checked for 

validity with ease, and preference given to those patterns (during form generation), 

which are flat foldable. 
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6 Conclusions & Further Work 
 

6.1 The Fundamentals of this Research 
 

The paper delineates a language of folding for developable double corrugations – a 

shape grammar for origami as it were, but specific to regular corrugations, identifying 

which folding patterns can generate architectural forms and how those forms could 

be generated. It is as though, an instruction manual were being written for a robot - a 

robot that is being trained in the art and science of folding – a robot that folds, in 

other words, a ‘Fold-o-Bot’. The term sums up well the process of creating a system 

of recognizing and distinguishing between folding patterns, understanding what goes 

into creating that pattern, and then using that knowledge and applying it to a form 

creation paradigm. 

 

The attempt was also to collapse the myriad and often confusing varieties of regular 

and irregular origami tessellations into families, a cataloguing of sorts at one level, 

and trace the lineage of these families back to an original gene pool of a few basic 

starting blocks – the ‘kernels’ as defined in this paper; to that extent, the research 

was able to identify and clearly establish a ‘gene pool’, as well as various 

‘reproduction and growth strategies’.     
 

6.2 Applications 
 

The results of this research could be used for – 

 

(a) creating roofing and walling systems (in an architectural context) for a wide 

variety of shapes and profiles, for medium to large scale column free spaces  

  

(b) designing structural frameworks for roofing systems, where the roof itself is       

not corrugated, but the supporting structure underneath is a system of lines in 

space not unlike the crease lines of corrugated folding surfaces of DDCs 

 

(c) generating retractable roofing designs for large span spaces, using flat-

foldability as a fundamental constraint. These ideas would not be restricted to 

only retractable roofing but be extended to other varieties of transformative 

architecture (for instance Masashi Tanaka’s XOR transformations) or kinetic 
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design (xxx design feature) – see related reading for links to both these 

examples. 

 

(d) reducing architectural forms with surfaces having Gaussian curvature to 

approximate DDC forms with triangular facets which have zero Gaussian 

curvature (this is significant for construction, where it is economical and 

beneficial to use flat panels and sheets rather than parts of spheres for 

generating surfaces) – figure 31 shows the Assembly Hall at the University of 

Illinois designed by Max Abramovitz. It is a non-developable spherical 

section. Using a DDC, namely K4S1(P)S1(K1-I,K4-P)S1(K1-I,K1-I,K4-P)C1, 

an attempt was made to approximate the form using the same proportions as 

the original. The result is shown in figure 32.  

 

(e) extending this study to also include cases where surfaces do not exhibit zero 

Gaussian curvature 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        
Figure 32 : An attempt to adapt the non-developable Assembly Hall roof form of the University of 
Illinois to a developable double corrugation namely, K4S1(P)S1(K1-I,K4-P)S1(K1-I,K1-I,K4-P)C1   

   
Figure 31 : Assembly Hall, University of Illinois, Architect : Max Abramovitz 
Source : University of Illinois, Library Archives 
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6.3 Optimization & Applying Genetic Algorithms (or perhaps Neural Networks) 

 

(a)  of the possible next steps, the first would involve running simulations based on 

the fundamental kernels defined, the hinge lines, the generator folding patterns 

and the sequence rules. The simulations would not only validate the generative 

process outlined here-in, but also allow for many more permutations and 

combinations of folding patterns to be generated, the sheer variety of which was 

not possible physically folding by hand. 

 

(b)  the second step would involve optimizations  – 

       
(i) for geometry (to fit the profile of the prescribed architectural form as 

closely as possible). 

 

(ii) for functional efficiency (as an architectural form) - given a flat sheet of 

paper of  fixed dimensions, to begin with). 

 

(iii) for minimum energy (minimum folds and consequently minimum number 

of kernels used to create a form. This optimization would directly conflict 

with the first optimization of the geometry, as large kernels which are 

lesser in number would not create as accurate an architectural form as 

smaller kernels, more in number. Some sort of negotiated solution 

would need to be achieved between the two optimizations.  

 

(iv) for stress and strain (and other structural optimizations). 

 

(v) testing the generated forms in the context of real construction materials 

with thickness and limiting properties – wood, steel sheets, aluminum 

panels etc.     
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