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Abstract

This thesis is centred around computations in the derived module cat-

egory of finitely generated lattices over the integral group ring of a finite

group G. Building upon the representability of the cohomology functor in

the derived module category in dimensions greater than 0, we give a new

characterisation of the cohomology of lattices in terms of their G-invariants,

only having the syzygies of the trivial lattice to keep track of dimension.

With the example of the dihedral group of order 6 we show that this charac-

terisation significantly simplifies computations in cohomology. In particu-

lar, we determine the Bieberbach groups, that is, the fundamental groups of

compact flat Riemannian manifolds, with dihedral holonomy group of order

6. Furthermore, we give an interpretation of the cup product in the derived

module category and show that it arises naturally as the composition of

morphisms. Inspired by the graded-commutativity of the cup product in

singular cohomology we give a sufficient condition for the cohomology ring

of a lattice to be graded-commutative in dimensions greater than 0.
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1 Introduction

This thesis deals with computations in the derived module category of the category
F(G) of finitely generated lattices over the integral group ring Z[G] of a finite
group G. We are particularly interested in its application to the cohomology
theory over these rings.

The theory of cohomology is fundamental to modern algebra. It is the dual
version of homology and has its roots in the concept of a dual cell structure
which H. Poincaré used in his proof of the Poincaré duality theorem. However
its true importance was not realised until some 40 years after the development
of homology. Although most of its ideas were around from as early as the 1890’s
the birth of homological algebra took place in the late 1930’s with crystallisation
of the notion of homology and cohomolgy of a topological space. The realisation
that the same formalism can also be applied to other algebraic structures was
primarily due to the work of S. Eilenberg until it reached its maturity in 1956
with the publication of Cartan and Eilenberg’s book [5] and with the emergence
of central notions of derived functors, and projective and injective modules. Today
it extends to nearly every area in algebra.

In this thesis we will be working with the Eilenberg-MacLane definition of
cohomology which is obtained by applying the Hom( · , N) functor to a projective
resolution P∗ →M of a module M and taking the homology of the resulting chain
complex, that is

Hn(M,N) = Hn(Hom(P∗, N)).

With this definition Hn(M,N) inherits the natural additive group structure from
Hom(P,M). In his paper [17] Yoneda showed that alternatively we can define
cohomology as module extensions which are naturally equipped with the product
structure of concatenating extensions, the Yoneda product. This then allows us to
introduce a product structure on cohomology, the cup product, and results in the
notion of the cohomology ring H∗(M,M) of a module. In the case of H∗(Z,Z), Z
the trivial rank 1 module, coincides with the cup product of singular cohomology.
In section 2.2 we will give an introduction to cohomology, its relation to module
extensions and its algebraic structure.

The derived module category of a category of modules is the quotient cate-
gory obtained by factoring through the subcategory of projective modules. In his
PhD thesis [8] J. Humphreys showed that for a module over a ring R satisfying
Extn(M,R) = 0, for n ≥ 1, the cohomology functor Hn(M, · ) is co-representable
in the derived module category with co-representing object the n-th syzygy of M ,
Ωn(M), that is, for all n ≥ 1 we have

Hn(M,N) = HomDer(Ωn(M), N).

The idea of the derived module category and the co-representability of the coho-
mology functor has already been around for some years and was also observed for
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example by J.Carlson in the case of modules over the group ring kG of a finite
group G with k a finite field of characteristic p, see [4], and has been formalised
for certain classes of modules by F.E.A. Johnson in [10]. However Humphrey’s
result remains the most general. Furthermore, in his book [10] Johnson proved
that under certain conditions the syzygy functors Ωn and Ω−n are adjoint in the
derived module category, that is

HomDer(Ωn(M), N) ' HomDer(M,Ω−n(N)).

This is mainly due to the fact that in these cases every homomorphism f : M →
M ′ can be lifted to a chain transformation between two complete resolutions of
M and M ′.

Although the condition Extn(M,R) = 0 fails for most rings it is true for many
interesting ones, in particular the integral group ring Z[G] of a finite group G. As
also mentioned by Carlson in [4] for group rings we obtain as a consequence of
Frobenius reciprocity that

Ωk(M)⊗ Ωl(N) ' Ωk+l(M ⊗N),

where M and N are lattices and M ⊗ N is the tensor product over Z with di-
agonal G-action. This property will play an important role in our analysis of
HomDer(Ωn(M), N) as it will allow us relate the syzygies of an arbitrary lattices
to the ones of the trivial lattice. In section 2.3 we will give a brief introduction to
syzygies and to the derived module category of F(G). We will prove two simple
but important results, namely the adjointness formula

HomDer(R⊗M,N) ' HomDer(M,R∗ ⊗N)

and
HomDer(Z, N) ' NG/NΣG,

where NG is the sub-lattices of invariant elements and ΣG is the norm of G. These
results, together with the compatibility of the tensor product and syzygies, will en-
able us to employ the representability of cohomology to express Hn(M,N), n ≥ 1,
directly in terms of M and N only having the syzygies of the trivial lattice to
keep track of the dimension. We will do this in section 2.4 and obtain the first
result of this thesis

Theorem A: Let M and N be lattices over a finite group G and let n ≥ 1 then

Hn(M,N) ' Cn(M,N),

where Cn(M,N) = (Ω−n(Z)⊗M∗ ⊗N)G/(Ω−n(Z)⊗M∗ ⊗N)ΣG.
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The advantage of this formula is that it significantly reduces the amount of
calculations necessary to determine cohomology as we will illustrate with the
example of the dihedral group D6 in chapter 3. First of all, since Ω−n(Z) =
Ω−1(Z) ⊗ Ω−n+1(Z), it eliminates the need to determine a free resolution of Z,
and secondly since Hn(M,N) ' Hn(Z,M∗ ⊗ N) it allows us to calculate the
cohomology of a lattice M in terms of the cohomology of the trivial lattice. An-
other advantage of this formula is that it also simplifies computations with co-
homology such as calculating the induced map f ∗ : Hn(M,N) → Hn(M ′, N)
of a homomorphism f : M ′ → M . Again we will not have to work with reso-
lutions and lift f to a chain transformation as f ∗ will simply map an element
[d ⊗m∗ ⊗ n] ∈ Cn(M,N) to [d ⊗ (m∗ ◦ f) ⊗ n] ∈ Cn(M ′, N). In particular, the
induced map i∗ : Hn(G,N)→ Hn(H, i∗(N)) of a subgroup i : H ↪→ G is obtained
as the projection

(Ω−n(Z)⊗N)G/(Ω−n(Z)⊗N)ΣG → (Ω−n(Z)⊗N)H/(Ω−n(Z)⊗N)ΣH .

Recall that a Bieberbach group π is a fundamental group of a compact flat
Riemannian manifold M and arises algebraically as a torsion-free extension of
a finitely generated free abelian group N by a finite group G. In particular,
we can regard π as a subgroup of the Euclidean group E(n) = Rn o O(n), the
group of isometries of the n-dimensional Euclidean space, which acts freely and
discontinuously on Rn. Then the manifold M is given by the orbit space Rn/π.
Furthermore, the subgroup of pure translations in π is isomorphic to the free
abelian group N and the holonomy group of M , the subgroup of O(n) given by
parallel translation along closed curves in M , is isomorphic to G. It is known
that the torsion-free extensions of N by G correspond to those elements c in
H2(G,N) for which 0 6= i∗(c) ∈ H2(Cp, i

∗(N)) for all cyclic subgroups i : Cp ↪→ G
of prime order. Expressed in the above terminology this translates to the following

Theorem B: The Bieberbach groups with holonomy group G are determined
by those elements c ∈ (Ω−2(Z)⊗N)G/(Ω−2(Z)⊗N)ΣG which are not in (Ω−2(Z)⊗
N)ΣCp for all cyclic subgroups Cp ⊆ G of prime order.

In chapter 3 we will use this result to determine the Bieberbach groups with
holonomy group D6.

The last section in chapter 2 is dedicated to the interpretation of the cup
product in the derived module category and the analysis of the ring structure of
HomDer(Ω∗(M),M) =

∑
n≥0 HomDer(Ωn(M),M). We will see that the adjoint-

ness of Ωn and Ω−n allows us to regard the composition of morphisms in HomDer
as a pairing

• : HomDer(Ωk(M), R)⊗ HomDer(Ωl(R), N)→ HomDer(Ωk+l(M), N)

and we will show that the cup product arises naturally as the composition •, that
is
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Theorem C: Let f ∈ HomDer(Ωk(M), R) and let h ∈ HomDer(Ωl(M), R). Let

p∗k : HomDer(Ωk(M), R)→̃Hk(M,R) be the isomorphism giving the co-representabilty

of cohomology then

p∗k(f) ∪ p∗l (h) = p∗k+l(h • f).

Notice that there also exists a natural product structure on the quotients
Cn(M,N) given by the evaluation map

◦ : Ck(M,R)⊗ Cl(R,N) → Ck+l(M,N)

[dk ⊗m∗ ⊗ r′]⊗ [dl ⊗ r∗ ⊗ n] 7→ [r∗(r′)(dk ⊗ dl ⊗m∗ ⊗ n)]

and as a corollary of theorem A and theorem C we obtain

Corollary D: The •-composition in HomDer corresponds to the evaluation map
on C.

It is well known that the cup product in singular cohomolgy makes the cohomol-
ogy ring H∗(X,Z) a graded-commutative ring, that is f∪h = (−1)deg(f)deg(h)h∪f .
We obtain then quickly that the ring HomDer(Ω∗(M),M) is graded-commutative
for every lattice M which lies in some syzygy of the trivial lattice. However we
will see that we can still improve on this and show

Theorem E: Let M be lattice such that there exists a lattice M ′ and M ⊕M ′

lies in the syzygy of some lattice of rank 1. Then the ring HomDer(Ω∗(M),M) is
graded-commutative.

In chapter 3 we will calculate the syzygies of the indecomposable D6-lattices
and use these results to give a list of lattices for which HomDer(Ω∗(M),M) is
graded-commutative.
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2 Cohomology and the derived module category

2.1 Preliminaries

In this section we will recall some linear algebra over the integral group ring of a
finite group which will be important in subsequent sections. For a more detailed
account see [2, 5]. Let G be a finite group. The integral group ring Z[G] of G is
the set of all formal sums

Z[G] =

{∑
g∈G

agg | ag ∈ Z

}
,

where the sum is given by∑
g∈G

agg +
∑
g∈G

bgg =
∑
g∈G

(ag + bg)g

and the product is given by

∑
g∈G

agg ·
∑
h∈G

bhh =
∑
g∈G

(∑
h∈G

ahbh−1g

)
g.

In Z[G] we distinguish a particular element ΣG =
∑

g∈G g called the norm of G.
By a G-lattice N we mean a right Z[G]-module whose underlying abelian group

is torsion free and finitely generated, that is, N ' Zn as an abelian group and the
action of G on N is given by a group representation

ρN : G −→ Gln(Z),

where wg = ρN(g−1)w, n is called the Z-rank of N , rkZ(N) = n. If there is no
confusion about the group we simply refer to N as a lattice. We denote by F(G)
the category whose objects are finitely generated G-lattices and whose morphisms
are G-module homomorphisms.

A lattice N is called decomposable if there exist proper sub-lattices 0 (
M,M ′ ( N such that N ' M ⊕ M ′, N is called indecomposable if it is not
decomposable. There are two indecomposable lattices which are of particular in-
terest to us. The first one is the trivial lattices Z for which ρZ(g) = 1 for all g ∈ G.
The second one is the integral group ring Z[G], called the regular representation,
for which a Z-basis is given by the elements of G and the G-action is given by
multiplication in G on the right. In each lattice we distinguish two particular
sub-lattices. The first one is the set of G-invariant elements

NG = {w ∈ N | wg = w}
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and the second one is the lattice

NΣG = {wΣG | w ∈ N}.

Notice that NΣG ⊂ NG since ΣGg = ΣG for all g ∈ G.
The Z[G]-dual of a lattice N is the lattice

N∗ = HomZ[G](N,Z[G])

where the G-action is given by ρN∗(g) = ρN(g−1)t. The Z-dual of a lattice N is
the lattice

N? = HomZ(N,Z)

on which the G-action is given by (fg)(w) = f(wg−1).
Let M and N be two lattices of rank m and n respectively, and with corre-

sponding representations ρM and ρN . Then the tensor product M ⊗N over Z is
a lattice where the G-action is given by

(v ⊗ w)g = vg ⊗ wg.
In terms of group representations

ρM⊗N : G −→ Glmn(Z)

is given by ρM⊗N(g) = ρM(g) ⊗ ρN(g) where the tensor product of two matrices
A = (aij) and B = (bij) is defined as A⊗B = (Abij). Furthermore the group of Z-
homomorphism HomZ(M,N) is a lattice on which G acts by (fg)(v) = (f(vg−1))g
and HomZ(M,N) ' M? ⊗ N . In particular M∗ ⊗M is the matrix ring Mm(Z)
on which G acts by conjugation, Ag = ρM(g−1)AρM(g).

Let H ⊂ G be a subgroup and let i : H ↪→ G be the inclusion map. Then i
induces maps

i∗ : F(G) −→ F(H)

and
i∗ : F(H) −→ F(G),

where i∗ is given by restricting scalars to Z[H] and i∗ is given by extending scalars
to Z[G], in particular, i∗(M) = M ⊗Z[H] Z[G], where we consider Z[G] as a left
Z[H]-module and the G-action is given by (v ⊗ α)g = v ⊗ αg.

Lemma 2.1.1 (Frobenius reciprocity)

Let H ⊂ G be a subgroup and let i : H ↪→ G be the inclusion map. Let M be

an H-lattice and let N be a G-lattice then there exists an isomorphism

ψ : i∗(M)⊗N −→ i∗(M ⊗ i∗(N)),
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where ψ((v ⊗Z[H] g) ⊗ w) = (v ⊗ wg−1) ⊗Z[H] g and ψ−1((v ⊗ w) ⊗Z[H] g) =

(v ⊗Z[H] g)⊗ wg.

Corollary 2.1.2 Let M be a G-lattice with rkZ(M) = m then M ⊗ Z[G]k '

Z[G]km.

Proof: Let i be the inclusion map of the trivial group into G then Z[G] = i∗(Z)
and it follows from Forbenius reciprocity that

Z[G]k ⊗M = i∗(Zk)⊗M ' i∗(Zk ⊗ i∗(M)) = i∗(Zk ⊗ Zm) = Z[G]km.

QED

Lemma 2.1.3 (Eckmann-Shapiro lemma)

Let H ⊂ G be a subgroup and let i : H ↪→ G be the inclusion map. If M is a

G-lattice and N is an H-lattice then there exist isomorphisms

HomZ[G](M, i∗(N)) ' HomZ[H](i
∗(M), N)

and

HomZ[G](i∗(N),M) ' HomZ[H](N, i
∗(M)).

Corollary 2.1.4 Let N be a G-lattice then the Z[G]-dual N∗ and the Z-dual N?

are isomorphic as G-lattices.

Proof: Let i be the inclusion map of the trivial group into G. Then by the
first isomorphism in the Eckmann-Shapiro lemma it follows that

N∗ = HomZ[G](N,Z[G]) = HomZ[G](N, i∗(Z)) ' HomZ(i∗(N),Z) = HomZ(N,Z)
= N?.

QED
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Lemma 2.1.5 Let H ⊂ G be a subgroup and let i : H ↪→ G be the inclusion.

Then i∗(Z) is self-dual, that is (i∗(Z))∗ ' i∗(Z).

Proof: Let {x1, . . . , xk} be representatives of H\G thus G = Hx1 ∪ · · · ∪Hxk
and Hxi ∩Hxj = ∅ for i 6= j. Then {1⊗ x1, . . . , 1⊗ xk} is a Z-basis for i∗(Z) =
Z⊗Z[H] Z[G]. Let x ∈ G and let xσx(i) ∈ {x1, . . . , xk} be such that xix

−1 ∈ Hxσx(i)

thus (1 ⊗ xi)x
−1 = 1 ⊗ xσx(i). If xi1x

−1 ∈ Hx0 and xi2x
−1 ∈ Hx0 then x0 =

hxi1x
−1 = h′xi2x

−1 and therefore hxi1 = h′xi2 , that is xi1 = xi2 . It follows that
σx is a permutation on {1, . . . , k} and therefore ρi∗(Z)(x) is a permutation matrix,
in particular

(ρi∗(Z)(x))kl =

{
1 l = σx(k)
0 l 6= σx(k).

Since x−1x = 1 it follows that σx−1 = σ−1
x so that

(ρi∗(Z)(x
−1))kl =

{
1 l = σx−1(k)
0 l 6= σx−1(k)

= (ρi∗(Z)(x))lk

Thus ρi∗(Z)(x) = ρi∗(Z)(x
−1)t and therefore (i∗(Z))∗ = i∗(Z). QED

Proposition 2.1.6 Let M,N and R be lattices. Then there exists an isomor-

phism

HomZ[G](R⊗M,N)→ HomZ[G](R,M
∗ ⊗N).

Proof: Let f ∈ HomZ[G](R ⊗M,N) and define f̂(r)(m) = f(r ⊗ m). Then

f̂ ∈ HomZ(R,M∗ ⊗N). Furthermore

f̂(zg)(w) = f(zg ⊗ w) = f((z ⊗ wg−1)g) = f(z ⊗ wg−1)g

= (f̂(z)(wg−1))g = (f̂(z)g)(w)

thus f̂ ∈ HomZ[G](R,M
∗ ⊗ N). Similarly let f̂ ∈ HomZ(R,M∗ ⊗ N) and define

f(z ⊗ w) = f̂(z)(w). Then f ∈ HomZ(R⊗M,N). Furthermore

f((z ⊗ w)g) = f(zg ⊗ wg) = f̂(zg)(wg) = (f̂(z)g)(wg)

= f̂(z)(wgg−1)g = f̂(z)(w)g = f(z ⊗ w)g.

QED
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2.2 Eilenberg-MacLane cohomology and Yoneda’s theory

of module extensions

In this section we recall the traditional Eilenberg-MacLane definition of coho-
mology, Yoneda’s theory of module extensions and some basic properties. Fur-
thermore, we recall the relationship of group cohomology with the compact flat
Riemannian manifolds and singular cohomology. Although these definitions hold
for any class of modules which admits enough projective modules we will restrict
our attention to finitely generated lattices over the integral group ring of a fi-
nite group. We will here only give the proofs which convey the for us interesting
properties of cohomology. For a more detailed account see [14, 15].

Definition 2.2.1 Let M be a lattice. A free resolution F∗
ε //M of M is an

exact sequence

. . . // F2
∂2 // F1

∂1 // F0
ε //M // 0,

where each Fi is free.

Lemma 2.2.2 Every lattice admits a free resolution.

Proof: Let {m1, . . . ,mk} be a set of generators of M and let F0 be the free
module F0 = Z[G]k with standard generators {e1, . . . , ek}. Then ε : F0 → M
with ε(ei) = mi, i = 1, . . . , k, is a surjective homomorphism. Now choose a set
of generators {d1, . . . , dl} for ker(ε) and let F1 be the free module F1 = Z[G]l

with standard generators {e1, . . . , el}. Then p1 : F1 → ker(ε) with p1(ei) = di
is surjective homomorphism. Let i1 : ker(ε) → F0 be the inclusion and define
∂1 = p1 ◦ i1. Repeating this construction for ker(∂1) we obtain a free module F2

and a homomorphism ∂2 : F2 → F1, and continuing this way we obtain inductively

a sequence . . . // F2
∂2 // F1

∂1 // F0
ε //M // 0, where each Fi is free and

im(∂n+1) = ker(∂n) by definition. QED

Notice that a free resolution is by no means unique as we can always choose a
different set of generators for M . However, the following proposition allows us to
compare any two resolutions.
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Proposition 2.2.3 Let ϕ : M → M ′ be a homomorphism and let F∗
ε //M

be a free resolution of M and F ′∗
ε′ //M ′ a free resolution of M ′. Then there

exists a chain transformation ϕ∗ : F∗ → F ′∗ which lifts ϕ. That is, ϕ∗ is given by a

family of homomorphisms ϕk : Fk → F ′k, k ≥ 0 such that ϕk ◦ ∂k+1 = ∂′k+1 ◦ ϕk+1

and ϕ ◦ ε = ε′ ◦ ϕ0.

. . . // F2

ϕ2

��

∂2 // F1

ϕ1

��

∂1 // F0

ϕ0

��

ε //M

ϕ

��

// 0

. . . // F ′2
∂′2 // F ′1

∂′1 // F ′0
ε′ //M ′ // 0.

Furthermore, any two chain transformations ϕ∗ and ϕ′∗ lifting ϕ are chain homo-

topic, that is, there exist homomorphisms sk : Fk → F ′k+1 such that ∂′k+1 ◦ sk +

sk−1 ◦ ∂k = ϕk − ϕ′k, where s−1 = 0.

Proof: Let 0 // im(∂1)
i1 // F0

ε //M // 0 be the first stage of the res-

olution of M , let 0 // im(∂′1)
i′1 // F ′0

ε′ //M ′ // 0 be the first stage of the

resolution of M ′ and let ϕ : M → M ′ be a homomorphism. Since F0 is free and
ε′ projective it follows that there exists a lift ϕ0 : F0 → F ′0 of ϕ ◦ ε, in particular
ε′ ◦ ϕ = ϕ ◦ ε. Furthermore, let d ∈ im(∂1) then ε′ ◦ ϕ0(d) = ϕ ◦ ε(d) = 0 thus ϕ0

maps im(∂1) into im(∂′1) and we obtain a commutative diagram of exact rows

0 // im(∂1)

ϕ̃0

��

i1 // F0

ϕ0

��

ε //M

ϕ

��

// 0

0 // im(∂′1)
i′1 // F ′0

ε′ //M ′ // 0,

where ϕ̃0 = ϕ0|im(∂1). Repeating this construction for ϕ̃0 then yields a homomor-
phism ϕ1 and iterating this process gives a family of homomorphisms ϕk : Fk → F ′k
which by definition satisfy ϕk ◦ ∂k+1 = ∂′k+1 ◦ ϕk+1.

Let ϕ′∗ be another chain transformation lifting ϕ. Then ε′ ◦ (ϕ0 − ϕ′0) = ϕ ◦
ε − ϕ ◦ ε = 0 thus im(ϕ0 − ϕ′0) ⊂ ker(ε′) ' im(∂′1) and hence ϕ0 − ϕ′0 defines a
homomorphism s̃0 : F0 → im(∂′1) such that ϕ0−ϕ′0 = i′1◦s̃0. Again, since F0 is free
and p′1 : F ′1 → im(∂′1) projective we can lift s̃0 to a homomorphism s0 : F0 → F ′1
satisfying p′1 ◦ s0 = s̃0 and therefore ∂′1 ◦ s0 = i′1 ◦ p′1 ◦ s0 = i′1 ◦ s̃0 = ϕ0 − ϕ′0.
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Inductively, we obtain for k ≥ 1

∂′k ◦ (ϕk − ϕ′k − sk−1 ◦ ∂k) = (ϕk−1 − ϕ′k−1) ◦ ∂k − ∂′k ◦ sk−1 ◦ ∂k

= (ϕk−1 − ϕ′k−1) ◦ ∂k − (ϕk−1 − ϕ′k−1 − sk−2 ◦ ∂k−1) ◦ ∂k

= 0,

that is, im(ϕk − ϕ′k − sk−1 ◦ ∂k) ⊂ ker(∂′k) = im(∂′k+1) and, as before, ϕk − ϕ′k −
sk−1 ◦ ∂k defines a homomorphism s̃k : Fk → im(∂′k+1) with ϕk − ϕ′k − sk−1 ◦ ∂k =
i′k+1 ◦ s̃k. Again, since Fk is free and p′k+1 : F ′k+1 → im(∂k+1) projective, s̃k
lifts to a homomorphism sk : Fk → F ′k+1 satisfying p′k+1 ◦ sk = s̃k and therefore
∂′k+1 ◦ sk = i′k+1 ◦ p′k+1 ◦ sk = i′k+1 ◦ s̃k = ϕk − ϕ′k − sk−1 ◦ ∂k. It follows that
ϕk − ϕ′k = sk−1 ◦ ∂k + ∂′k+1 ◦ sk. QED

Notice that the existence of ϕ∗ does not depend on the F ′i ’s being projective.

Thus the proposition still holds if we replace F ′∗
ε′ //M ′ by an exact sequence

ending in M ′.

Let M and N be lattices and let

. . . // F2
∂2 // F1

∂1 // F0

be a truncated free resolution of M . Since the functor Hom( · , N) is contravariant

and left exact, applying it to F∗
ε //M yields a co-chain complex Hom(F∗, N)

. . . Hom(F2, N)oo Hom(F1, N)
∂∗2oo Hom(F0, N),

∂∗1oo

that is, im(∂∗n) ⊂ ker(∂∗n+1) where ∂∗i (f) = f ◦ ∂i for f ∈ Hom(Fi−1, N). An
element in im(∂∗n) is called an n-coboundary and an element in ker(∂∗n+1) is called
an n-cocycle. Two n-cocycles f and f ′ are called cohomologous if their difference
is a coboundary, f − f ′ = ∂n+1(h).

Lemma 2.2.4 Let ϕ : M →M ′ be a homomorphism, let F∗ →M and F ′∗ →M ′

be free resolutions and let ϕ∗ : F∗ → F ′∗, ϕ∗ = (ϕk)k≥0 be the induced chain

transformation. Then f ◦ ϕn is an n-cocycle (n-coboundary) for any n-cocycle

(n-coboundary) f : F ′n → N . In particular, if M = M ′ and ϕ = idM then ϕ

lifts to chain transformations ϕ∗ : F∗ → F ′∗ and ϕ′∗ : F ′∗ → F∗ such that f and

f ◦ (ϕ′∗ ◦ ϕ∗) are cohomologous for any n-cocyle f : Fn → N .
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Proof: Let f : F ′n → N be an n-cocycle that is ∂′∗n+1(f) = f ◦ ∂′n+1 = 0. It
then follows that f ◦ ϕn ◦ ∂n+1 = f ◦ ∂′n+1 ◦ ϕn+1 = 0, thus f ◦ ϕn is an n-cocycle.
Let f : F ′n → N be an n-coboundary, that is there exists a cochain g : Fn−1 → N
such that f = ∂′∗n(g) = g ◦ ∂′n. It then follows that f ◦ ϕn = g ◦ ∂′n ◦ ϕn =
g ◦ ϕn−1 ◦ ∂n = ∂∗n(g ◦ ϕn−1). Thus f ◦ ϕn is an n-coboundary.

Let M = M ′ and ϕ = idM . Then id∗ = (idFk)k∈N and ϕ′∗ ◦ ϕ∗ = (ϕ′k ◦
ϕk)k∈N are both chain transformations from F∗ →M to itself and it follows from
proposition 2.2.3 that there exist homomorphisms sk : Fk → Fk+1 such that
∂k+1 ◦ sk + sk−1 ◦ ∂k = idk − (ϕ′k ◦ ϕk). Let f : Fk → N be a k-cocyle, then
f − f ◦ (ϕ′k ◦ ϕk) = f ◦ sk−1 ◦ ∂k = ∂∗k(f ◦ sk−1). Thus f and f ◦ (ϕ′k ◦ ϕk) are
cohomologous. QED

Definition 2.2.5 The n-th cohomology group of M with coefficients in N is de-

fined as

Hn(M,N) = Hn(Hom(F∗, N)) =


ker(∂∗1) = Hom(M,N) n = 0

ker(∂∗n+1)/im(∂∗n) n > 0

and an element [f ] ∈ Hn(M,N) is called the cohomology class of the cocycle

f ∈ ker(∂∗n+1). The cohomology group of M with coefficients in N is

H∗(M,N) =
∑
n≥0

Hn(M,N).

The group structure of Hn(M,N) is inherited from the group structure of Hom(Fn, N)

that is

Hn(M,N)×Hn(M,N) → Hn(M,N)

([f ], [h]) 7→ [f ] + [h] = [f + h].

The group structure is indeed well defined as f + h ∈ ker(∂∗n+1) whenever
f, h ∈ ker(∂∗n+1), and [f ] + [h] is independent of the choice of representatives as
(f + ∂∗n(f ′)) + (h + ∂∗n(h′)) = f + h + ∂∗n(f ′ + h′) ∈ [f + h]. Notice that the
cohomology class [f ] of an n-cocycle f : Fn → N only depends on its value
on im(∂n+1) ⊂ Fn since a general representative is of the form f + g ◦ ∂n for
g : Fn−1 → N . Thus the cohomology class [f] must be independent of the value
on any point x ∈ Fn with ∂n(x) 6= 0. Furthermore, ker(∂∗1) = Hom(M,N) since
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F1
∂1 // F0

ε //M // 0 is exact, thus applying Hom( · , N) yields the exact

sequence Hom(F1, N) Hom(F0, N)
∂∗1oo Hom(M,N)ε∗oo 0oo . It follows that

ker(∂∗1) = im(ε∗) ' Hom(M,N). Thus

H0(M,N) = Hom(M,N).

A key characteristic of cohomology is its independence of the resolution for M

since, by lemma 2.2.4, for any two resolutions F∗
ε //M and F ′∗

ε′ //M of M
the identity map idM induces an isomorphism on cohomology

id∗M : Hn(Hom(F∗, N))−̃→Hn(Hom(F ′∗, N)).

From a categorical point of view cohomology is a family of contra-variant func-
tors M 7→ Hn(M, · ) from the category F(G) of finitely generated lattices to the
category of abelian groups satisfying Hn(M ⊕M ′, N) ' Hn(M,N)⊕Hn(M ′, N)
and the following properties.

Exactness: Let 0 //M ′ i //M
p //M ′′ // 0 be an exact sequence of lat-

tices then there exists a long exact sequence

0 // H0(M ′′, N)
p∗ // H0(M,N)

i∗ // H0(M ′, N)
δ1 // H1(M ′′, N)

p∗ // . . .

where δ is called the connecting homomorphism.

Homotopy: Two chain homotopic maps induce the same homomorphism on co-
homology.

Similarly we can regard cohomology as a family of covariant functors N →
Hn( · , N) satisfying Hn(M,N ⊕N ′) ' Hn(M,N)⊕Hn(M,N ′) and the following

property. Let 0 // N ′
i // N

p // N ′′ // 0 be an exact sequence of lattices
then there exists a long exact sequence

0 // H0(M,N ′)
i∗ // H0(M,N)

p∗ // H0(M,N ′′)
δ1 // H1(M,N ′)

i∗ // . . .

Lemma 2.2.6 ( Eckmann-Shapiro lemma)

Let H ⊂ G be a subgroup and let i : H ↪→ G be the inclusion. Let M be a

G-lattice and let N be an H-lattices then there exist isomorphisms

Hn(M, i∗(N)) ' Hn(i∗(M), N)
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and

Hn(i∗(N),M) ' Hn(N, i∗(M)).

Definition 2.2.7 The cohomology of a group G with coefficients in N is defined

as

Hn(G,N) = Hn(Z, N),

where Z is the trivial lattice. In particular, H0(G,N) = NG is the sub-lattice of

G-invariant elements of N .

Let H ⊂ G be a subgroup, let i : H ↪→ G be the inclusion and let M be
a G-lattice. By restricting scalars to Z[H] we can regard any free resolution

F∗
ε //M of M over Z[G] as a free resolution i∗(F )∗

ε // i∗(M) of M over

Z[H]. In particular any coboundary (cocycle) over Z[G] is also a coboundary
(cocycle) over Z[H]. Thus i induces a homomorphism

i∗ : Hn(G,N)→ Hn(H, i∗(N))

and by lemma 2.2.6 we can regard i∗ as a homomorphism

i∗ : Hn(G,N)→ Hn(Z⊗Z[H] Z[G], N)

induced by Z⊗Z[H] Z[G]→ Z where 1⊗ g 7→ 1.

The group H2(G,N) has an interesting geometric interpretation. Let E(n) =
Rn oO(n) be the group of isometries of Rn and let π ⊂ E(n) be a subgroup. Let
t : E(n)→ Rn and r : E(n)→ O(n) be the projections. Then π∩Rn is called the
translational part of π and r(π) is called the rotational part of π. The group π
is called discontinuous if all its orbits in Rn are discrete and called irreducible if
t(π′) spans Rn for all conjugates π′ of π in E(n). An irreducible and discontinuous
subgroup of E(n) is called a crystallographic group. Bieberbach’s first theorem,
[3], then states that the translational part π ∩ Rn of a crystallographic group
π ⊂ E(n) is a free abelian group on n generators which are linearly independent
translations. By a theorem of Auslander and Kuranishi, [1], an equivalent defini-
tion of a crystallographic group is the following. If π is given by a group extension
of a finitely generated free abelian group N by a finite group G, that is, π occurs
in an exact sequence

0 // N // π // G // 0 (2.1)
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then π is a crystallographic group, where N ' π ∩ Rn and G ' r(π). It is well
known that the orbit space M = Rn/π is a compact flat Riemannian manifold (a
flat manifold for short) if and only if π is a torsion-free crystallographic group, [6,
7]. In particular, π is isomorphic to the fundamental group π1(M) ofM . A torsion-
free crystallographic group is called a Bieberbach group. Furthermore, any flat
manifold M arises in this way and two Bieberbach groups π and π′ are isomorphic
if and only if there exists an affine diffeomorphism between Rn/π and Rn/π′.
Recall that the holonomy group of a manifold M is the subgroup in O(n) given by
parallel translation along closed curves in M . Furthermore a compact manifold is
flat if and only if its holonomy group is finite, and every finite group is isomorphic
to the holonomy group of a flat manifold M . A flat manifold with holonomy
group isomorphic to a finite group G is called a G-manifold. In particular, if
π = π1(M) then the holonomy group of M is isomorphic to r(π). Thus the
problem of classifying all G-manifolds is equivalent of determining all torsion-
free extensions of a finitely generated free abelian group N by G. A detailed
introduction to Bieberbach groups and compact flat Riemannian manifolds can
be found in [6, 7, 16], a more general account of differential geometry can be found
in [12].

It is well known that the group extensions of the above form (2.1), not nec-
essarily torsion-free, are in one-to-one correspondence with H2(G,N), [14]. The
following lemma due to P.A. Smith gives us some means of deciding which ele-
ments in H2(G,N) determine torsion-free extensions.

Lemma 2.2.8 The elements f ∈ H2(G,N) determining torsion-free extensions

are those for which i∗(f) 6= 0 in H2(Cp, i
∗(N)) for all subgroups Cp ⊂ G of prime

order p.

A proof is given in [6, 7].

There exists another geometric meaning of the cohomology groups Hn(G,Z)
of a group G. Let X be a topological space. A group G is said to act on X if
there exists a group homomorphism G → Aut(X), where Aut(X) is the group
of homeomorphism of X to itself. The group G is said to act properly if for all
x ∈ X there exists a neighbourhood U such that Ug ∩ U = ∅ for all 1 6= g ∈ G.
If a group G acts properly on a topological space X the singular complex S(X)
of X is a complex of free G-modules, see [14]. Furthermore, if the space X is
acyclic, that is all higher homology groups vanish, Hn(X) = 0, n ≥ 1, then the
singular complex S(X) is a free resolution of the trivial G-lattice Z. If N is a
trivial G-lattice then there exists an isomorphism between the cohomology groups
of the quotient space X/G and those of G, that is,

Hn(X/G,N) ' Hn(G,N).
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In other words if Y is aspherical, that is all higher homotopy groups vanish, with
fundamental group G then its universal covering space is an acyclic space on which
G acts properly. Thus the cohomology of Y is isomorphic to the cohomology of
its fundamental group. For a detailed account of singular cohomology see [15].
The relationship to the cohomolgy of groups is explained in [7, 14, 16].

In singular cohomolgy there exists a well known product structure, namely the
cup product, which is defined as follows. Let X be a topological space then the
cup product is defined as

∪ : Hk(X,Z)⊗H l(X,Z) −→ Hk+l(X,Z)

f ⊗ h 7→ f ∪ h,

where (f ∪ h)[p0, . . . , pk+l] = f [p0, . . . , pk] h[pk, . . . , pk+l] for a singular (k + l)-
complex [p0, . . . , pk+l] ∈ Sk+l(X) with k-th front face [p0, . . . , pk] ∈ Sk(X) and
l-th back face [pk, . . . pk+l]. Furthermore, the cup product satisfies

f ∪ h = (−1)klh ∪ f,

Thus the cup product makesH∗(X,Z) =
∑

k≥0H
k(X,Z) into a graded-commutative

ring. that
It follows that if X is an acyclic space on which G-acts properly then the

isomorphism Hn(X/G,Z) ' Hn(G,Z) induces a product structure on Hn(G,Z)
making H∗(G,Z) into a graded-commutative ring. We can extend this product
structure to obtain a pairing

∪ : Hk(M,R)⊗H l(R,N) −→ Hk+l(M,N)

for any triple M,N,R of lattices. To do this we will need Yoneda’s theory of
module extensions which we introduce next.

Definition 2.2.9 Let M and N be lattices, and let n ≥ 1. An n-fold extension

of M by N is an exact sequence

E : 0 // N
νn // Bn−1

// . . . // B0
ν0 //M // 0 .

The set of all n-fold extensions of M by N is denoted by Extn(M,N), where

Ext0(M,N) = Hom(M,N), and the set of all extensions of M by N is denoted by

Ext∗(M,N) =
∑

k≥0 Extk(M,N).
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There is a natural pairing of extensions, called the Yoneda product,

◦ : Extk(M,R)⊗ Extl(R,N) −→ Extk+l(M,N)

E ⊗ E ′ 7→ E ′ ◦ E ,

where, if E is the extension

0 // R
νk // Bk−1

// . . . // B0
ν0 //M // 0

and E ′ is the extension

0 // N
ν′l // B′l−1

// . . . // B′0
ν′0 // R // 0,

then E ′ ◦ E is the extension

0 // N
ν′l // . . . // B′0

ν′0

  @
@@

@@
@@

νk◦ν′0 // Bk−1
// . . . ν0 //M // 0.

R

νk
==zzzzzzzz

This pairing allows us to regard an extension E as concatenated by short exact
sequences

Ek : 0 // im(νk)
jk // Bk−1

qk−1 // im(νk−1) // 0, (2.2)

where νk = jk ◦ qk for 1 < k < n, νn = jn, ν0 = q0, im(νn) = N and im(ν0) = M ,
and we write

E = En ◦ · · · ◦ E1.

Let E ∈ Ext1(M,N) and let f : N → N ′ be a homomorphism. Then there
exists a commutative diagram of exact rows

E : 0 // N

f

��

j // B

sf
��

q //M

id

��

// 0

f∗E : 0 // N ′
rf // lim−→(f, j)

tf //M // 0,

(2.3)

where lim−→(f, j) = (N ′ ⊕ B)/im(f,−j) is the push-out of f and j, rf (n
′) =

[n′, 0], sf (b) = [0, b] and tf ([n, b]) = q(b). Thus f defines a map

f∗ : Extn(M,N) −→ Extn(M,N ′)
E 7→ f∗E ,

where f∗E = f∗En ◦ · · · ◦ E1 for E = En ◦ · · · ◦ E1.
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Similarly, let h : M ′ → M be a homomorphism. Then there exists a commu-
tative diagram of exact rows

Eh∗ : 0 // N

id

��

uh // lim←−(h, q)

vh

��

wh //M ′

h

��

// 0

E : 0 // N
j // B

q //M // 0,

(2.4)

where lim←−(h, q) = {(m′, b) | h(m′) = q(b)} is the pull-back of h and q, uh(n) =

(j(n), 0), vh(m
′, b) = b and wh(m

′, b) = m′. Thus h defines a map

h∗ : Extn(M,N) −→ Extn(M,N ′)
E 7→ Eh∗,

where Eh∗ = En ◦ · · · ◦ E1h
∗ for E = En ◦ · · · ◦ E1.

Next we define an additive structure on Extn(M,N). Let E ∈ Extn(M,N)

E : 0 // N
νn // Bn−1

// . . . // B0
ν0 //M // 0

and E ′ ∈ Extn(M ′, N ′)

E ′ : 0 // N ′
ν′n // B′n−1

// . . . // B′0
ν′0 //M ′ // 0

be two n-fold extensions. Then the direct sum of E and E ′ is the following n-fold
extension in Extn(M ⊕M ′, N ⊕N ′)

E ⊕ E ′ : 0 // N ⊕N ′
νn⊕ν′n// Bn−1 ⊕B′n−1

// . . . // B0 ⊕B′0
ν0⊕ν′0 //M ⊕M ′ // 0 .

Let
4M : M → M ⊕M

m 7→ (m,m)

be the diagonal map on M , and let

∇N : N ⊕N → N

(n1, n2) 7→ n1 + n2

be the addition in N . Then the Baer sum of extensions is defined as

Extn(M,N)× Extn(M,N) −→ Extn(M,N)

(E , E ′) 7→ E + E ′ = (∇N)∗(E ⊕ E ′)(4M)∗

Finally we introduce an equivalence relation on Extn(M,N) which is compat-
ible with the Yoneda product and the Baer sum. This will allow us to identify
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cohomology with module extensions and to introduce a product structure on co-
homology which generalises the above introduced cup product.

We call two 1-fold extensions E , E ′ ∈ Ext1(M,N) equivalent, E ≡ E ′, if there
exists a homomorphism ϕ : B → B′ such that the following diagram commutes

0 // N

id
��

j // B

ϕ

��

q //M

id
��

// 0

0 // N
j′ // B′

q′ //M // 0.

The set of equivalence classes is denoted by Ext1(M,N).
Let E , E ′ ∈ Ext2(M,N) be two 2-fold extensions of M by N where E = E2 ◦ E1,

E ′ = E ′2 ◦ E ′1, E ′1 ∈ Ext1(N,R) and E ′2 ∈ Ext1(R,M). Then E and E ′ are called
equivalent, E ≡ E ′, if either Ei ≡ E ′i , i = 1, 2 or there exists a lattice S such that
E = E ′1π∗ ◦ ι∗E ′2, where π : R⊕ S → R is the projection and ι : R→ R⊕ S is the
inclusion.

Let E = En ◦ · · · ◦ E1 and E ′ = E ′n ◦ · · · ◦ E ′1 be two n-fold extensions of M by
N . Then E and E ′ are called equivalent, E ≡ E ′, if E can be transformed into E ′
by either replacing a 1-fold extension Ei by an equivalent 1-fold extension, or by
replacing a 2-fold extension Ei+1 ◦ Ei by an equivalent 2-fold extension.

Definition 2.2.10 Let M and N be lattices then

Extn(M,N) =


Hom(M,N) n = 0

Extn(M,N)/ ≡ n ≥ 1

and

Ext∗(M,N) =
∑
k≥0

Extk(M,N).

Definition 2.2.11 A morphism (α, β) : E → E ′ of extensions is a family of

homomorphisms (α, . . . , β) such that the following diagram commutes

E : 0 // N

α

��

// Bn−1

��

// . . . // B0

��

//M

β

��

// 0

E ′ : 0 // N ′ // B′n−1
// . . . // B′0 //M ′ // 0
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Lemma 2.2.12 Let E , E ′ ∈ Extn(M,N) and let (α, β) : E → E ′ be a morphism

of extensions then α∗E ≡ E ′β∗.

A proof is given in [14], proposition 5.1 pp 84.

Let E1, E ′1 ∈ Extn(M,R) and let E2, E ′2 ∈ Extm(R,N) such that Ei ≡ E ′i . Then
it follows immediately from the definition that E2 ◦ E1 ≡ E ′2 ◦ E ′1. Thus the above
defined Yoneda product extends to the quotients.

Definition 2.2.13 The Yoneda product of extensions is defined as the following

pairing

◦ : Extn(M,R)⊗ Extm(R,N) −→ Extn+m(M,N)

[E ]⊗ [E ′] 7→ [E ′] ◦ [E ] = [E ′ ◦ E ].

Let E1, E ′1 ∈ Extn(M,N) and E2, E ′2 ∈ Extn(M ′, N ′) such that Ei ≡ E ′i for
i = 1, 2 then E1⊕E2 ≡ E ′1⊕E ′2. Thus the direct sum, and therefore the Baer sum,
is well defined on Extn .

Definition 2.2.14 The Baer sum of extensions is defined as

+ : Extn(M,N)× Extn(M,N) → Extn(M,N)

(E , E ′) 7→ E + E ′ = (∇N)∗(E ⊕ E ′)(4M)∗

Lemma 2.2.15 Let f, f ′ ∈ Hom(N,N ′), h, h′ ∈ Hom(M ′,M) and let E ∈ Extn(M,N)

then

1) (f + f ′)∗E = f∗E + f ′∗E

2) E(h+ h′)∗ = Eh∗ + Eh′∗

Proof: 1) Let E = En ◦ · · · ◦ E1 where Ek is of the form (2.2). Then

(f + f ′)∗E = ((f + f ′)∗En) ◦ · · · ◦ E1
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and

f∗E + f ′∗E = (∇N ′)∗(f∗En ⊕ f ′∗En) ◦ (En−1 ⊕ En−1) ◦ · · · ◦ (E1 ⊕ E1)(4M)∗.

From the definition of the push-out it follows that there is a commutative diagram
of exact rows

0 // N ′
r // lim−→(∇N ′ , rf ⊕ rf ′) t // im(νn−1)⊕ im(νn−1) // 0

0 // N ′ ⊕N ′
∇N′

OO

rf⊕rf ′// lim−→(f, νn)⊕ lim−→(f ′, νn)

s

OO

tf⊕tf ′ // im(νn−1)⊕ im(νn−1)

id

OO

// 0

0 // N

f+f ′

��

f⊕f ′
OO

νn // Bn−1

sf+f ′

��

sf⊕sf ′
OO

qn−1 // im(νn−1)

4im(νn−1)

OO

id
��

// 0

0 // N ′
rf+f ′ // lim−→(f + f ′, νn)

tf+f ′ // im(νn−1) // 0

where the top row is (∇N ′)∗(f∗En ⊕ f ′∗En) and the bottom row is (f + f ′)∗En
Furthermore, since r ◦ (f + f ′) = r ◦ ∇N ′ ◦ (f ⊕ f ′) = s ◦ (rf ⊕ rf ′) ◦ (f ⊕ f ′) =
s ◦ (sf ⊕ sf ′) ◦ νn it follows from the universal property of the push-out that there
exists a homomorphism α : lim−→(f + f ′, νn)→ lim−→(∇N ′ , rf ⊕ rf ′) such that

α ◦ rf+f ′ = r

and α◦sf+f ′ = s◦(sf⊕sf ′). In particular, α([n′, x]f+f ′) = r(n′)+(s◦(sf⊕sf ′))(x)
for [n′, x]f+f ′ ∈ lim−→(f + f ′, νn), n′ ∈ N ′ and x ∈ Bn−1 so that

(t ◦ α)([n′, x]f+f ′) = t(r(n′) + (s ◦ (sf ⊕ sf ′))(x)) = (t ◦ s ◦ (sf ⊕ sf ′))(x)

= (tf ⊕ tf ′) ◦ (sf ⊕ sf ′)(x) = 4im(νn−1) ◦ qn−1(x)

= 4im(νn−1) ◦ tf+f ′([n
′, x]f+f ′).

Thus we obtain a commutative diagram of exact rows

0 // N ′

id

��

rf+f ′ // lim−→(f + f ′, νn)

α

��

tf+f ′ // im(νn−1)

4im(νn−1)

��

// 0

0 // N ′
r // lim−→(∇N ′ , rf ⊕ rf ′) t // im(νn−1)⊕ im(νn−1) // 0

That is a morphism (id,4im(νn−1)) such that

(id,4im(νn−1))((f + f ′)∗En) = (∇N ′)∗(f∗En ⊕ f ′∗En)
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and the claim follows for n = 1 from lemma 2.2.12.

For n ≥ 2 let E1 be the short exact sequence 0 // R
j // B1

q //M // 0

and let E2 be the short exact sequence 0 // N
i // B2

p // R // 0 . Then
(E2 ⊕ E2)(4R)∗ ◦ E1 is the exact sequence

0 // N ⊕N uR // lim←−(4R, p⊕ p) j◦wR // B1
q //M // 0

and (E2 ⊕ E2) ◦ (E1 ⊕ E1)(4M)∗ is the exact sequence

0 // N ⊕N i⊕i // B2 ⊕B2
uM◦(p⊕p)// lim←−(4M , q ⊕ q) wM //M // 0

Since 4M ◦ q = (q ⊕ q) ◦ 4M it follows from the universal property of the pull-
back that there exists a homomorphism β : B1 → lim←−(4M , q ⊕ q) where β(x) =

((x, x), q(x)) such that vM ◦β = 4M and wM ◦β = q where vM : lim←−(4M , q⊕q)→
B1 ⊕B1 is the projection. Furthermore, (β ◦ j)(r) = ((r, r), 0) = (uM ◦4R)(r) so
that we obtain a commutative diagram

0 // N ⊕N

id

��

uR // lim←−(4R, p⊕ p)

vR

��

j◦wR // B1

β
��

q //M

id

��

// 0

0 // N ⊕N i⊕i // B2 ⊕B2

uM◦(p⊕p) // lim←−(4M , q ⊕ q) wM //M // 0

that is a morphism (id, id) from (E2⊕E2)(4R)∗ ◦ E1 to (E2⊕E2) ◦ (E1⊕E1)(4M)∗.
By lemma 2.2.12. it follows that (E2 ⊕ E2)(4R)∗ ◦ E1 ≡ (E2 ⊕ E2) ◦ (E1 ⊕ E1). It
now follows inductively that the above morphism yields the equivalence

(f + f ′)∗E = (f + f ′)∗En ◦ · · · ◦ E1

≡ (∇N ′)∗(f∗En ⊕ f ′∗En)4∗im(νn−1) ◦ · · · ◦ E1

≡ (∇N)∗(f∗En ⊕ f ′∗En) ◦ (En−1 ⊕ En−1) ◦ · · · ◦ (E1 ⊕ E1)(4M)∗

= f∗E + f ′∗E .

Similarly we can prove 2) by employing the universal property of the pull-back
we obtain the equivalences

(∇im(ν1))∗(E1h
∗ ⊕ E1h

′∗)(4M ′)
∗ ≡ E1(h+ h′)∗

and
E2 ◦ (∇R)∗(E1 ⊕ E1) ≡ (∇N)∗(E2 ⊕ E2) ◦ (E1 ⊕ E1)

and inductively we obtain

Eh∗ ⊕ Eh′∗ ≡ E(h+ h′)∗.

QED
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Theorem 2.2.16 Let M and N be lattices then (Extn(M,N),+) is an abelian

group. The zero element is the equivalence class of the split extension and the

inverse of an extension E is given by (−idN)∗E. Furthermore,

E ◦ (E1 + E2) = E ◦ E1 + E ◦ E2

and

(E1 + E2) ◦ E ′ = E1 ◦ E ′ + E2 ◦ E ′

for all E ∈ Extm(N,R) E ′ ∈ Extm
′
(R,M) and E1, E2 ∈ Extn(M,N).

In particular, Ext∗(M,M) equipped with Yoneda product and Baer sum is an

associative graded ring with unit idM : M →M .

A proof is given in [14], theorem 5.3 pp 85.

We are now ready to show the equivalence of cohomology and module exten-
sions. This relationship was first studied by N. Yoneda in his paper [17]. To do
this let

0 // N
νn // Bn−1

// . . . // B0
ν0 //M // 0

be a representative of E ∈ Extn(M,N), let F∗
ε //M be a free resolution of

M and let ι = (ιk)k≤n be a chain transformation lifting idM , where we denote
ιn = ιn(E). That is, we have a commutative diagram of exact rows

. . . // Fn

ιn(E)

��

∂n // Fn−1

ιn−1

��

// . . . // F0

ι0

��

ε //M

id

��

// 0

0 // N
νn // Bn−1

// . . . // B0
ν0 //M // 0.

Theorem 2.2.17 Let M and N be lattices.Then for all n ≥ 0 there exists a group

isomorphism

Y : Extn(M,N) −̃→ Hn(M,N),

which for n ≥ 1 is given by Y(E) = [ιn(E)].
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Proof: For n = 0 we already have by definition

H0(M,N) = Hom(M,N) = Ext0(M,N).

Let n ≥ 1, let F∗
ε //M be a free resolution of M and let

E : 0 // N
νn // Bn−1

// . . . // B0
ν0 //M // 0

be a representative of an extension in Extn(M,N). Let ιn(E) : Fn → N be a lift
of idM . Then, since ιn(E) commutes with the boundary operators and νn+1 = 0,
it follows that ∂∗n+1(ιn(E)) = ιn(E) ◦ ∂n+1 = 0. Thus ιn(E) is a cocycle.

Let ι′n(E) be another lift of idM . Then, by proposition 2.2.3 there are homomor-
phisms, sn : Fn → 0 and sn−1 : Fn−1 → N such that ιn(E)−ι′n(E) = sn−1◦∂n+0 =
∂∗n(sn−1). Thus ιn(E) and ι′n(E) are cohomologous.

Let E ′ ∈ Extn(M,N) such that E ≡ E ′. It is sufficient to consider a morphism
(idN , idM) from E to E ′. It then follows that ιn(E ′) = idN ◦ ιn(E). Thus E and
E ′ define the same cohomology class and we obtain a well-defined homomorphism
Extn(M,N)→ Hn(M,N).

To define an inverse regard ∂n as the composition in ◦ pn, where pn : Fn →
im(∂n) is the projection and in : im(∂n) → Fn−1 is the inclusion. Consider the
n-fold extension

E : 0 // im(∂n)
in // Fn−1

// . . . // F0
ε //M // 0.

Since any cocycle f : Fn → N vanishes on ker(∂n) = ker(pn) it can be written
uniquely in the form f = f ′ ◦ pn for some f ′ : im(∂n)→ N , and we can construct
an extension E(f) = f ′∗E ∈ Extn(M,N). Let f = g ◦ ∂n be a coboundary. Then
f ′ ◦ pn = g ◦ ∂n = g ◦ in ◦ pn. Since pn is surjective it follows that f ′ = g ◦ in and
f ′∗E = (g ◦ in)∗E = g∗in∗E . But by proposition 1.7, chapter 3 in [14] (in)∗E ≡ 0.
Thus f ′∗E ≡ 0 and f 7→ E(f) gives a well defined map Hn(M,N)→ Extn(M,N).

Let ιn(E) be the cocycle given by E then ιn(E) = ιn(E)′ ◦ pn. Consider the
induced extension (ιn(E)′)∗E . Then we obtain a commutative diagram

0 // N
r // lim−→(ιn(E)′, in) t // im(∂n−1) // 0

0 // im(∂n)

ιn(E)′

��

ιn(E)′

OO

in // Fn−1

ιn−1

��

s

OO

pn−1 // im(∂n−1)

ιn−2

��

id

OO

// 0

0 // N
νn // Bn−1

qn−1 // im(νn−1) // 0

Since νn ◦ ιn(E)′ = ιn−1 ◦ in it follows by the universal property of the push-out
that there exists a homomorphism α : lim−→(ιn(E)′, in) → Bn−1 such that s ◦ α =
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ιn−1, r ◦ α = νn and α([v, x]) = νn(v) + ιn−1(x). Furthermore

(qn−1 ◦ α)[v, x] = qn−1(νn(v) + ιn−1(x)) = (ιn−2 ◦ pn−1)(x)

= (ιn−2 ◦ t)([v, x]).

Thus we obtain (ιn(E)′)∗E ≡ E . Finally, by lemma 2.2.15, it follows that E(f+h) =
E(f)+E(h) so that Hn(M,N) ' Extn(M,N) is indeed a group isomorphism.QED

The isomorphism in theorem (2.2.17) now enables us to introduce the following
product structure on H∗(M,N)

Definition 2.2.18 The cup product in cohomology is defined as

∪ : Hk(M,R)⊗H l(R,N) → Hk+l(M,N)

f ⊗ h 7→ f ∪ h = Y(Y−1(h) ◦ Y−1(f)).

In particular, H∗(M,M) equipped with the cup product is an associative graded

ring with unit idM .

2.3 Stable modules, syzygies and the derived module cat-

egory

A key characteristic of cohomology is its independence of the free resolution

over which it is computed. Considering two free resolutions F∗
ε //M and

F ′∗
ε′ //M of a lattice M , Schanuel’s lemma, see [2], states that im(∂n) and

im(∂′n) are stably equivalent, that is, there exists free modules F and F ′ such
that im(∂n)⊕ F ' im(∂′n)⊕ F ′. Now since the cohomology class of an n-cocycle
f : Fn → N only depends on its value on im(∂n+1) ⊂ Fn it is only natural to try
and express cohomology in terms of the stable class Ωn(M) of im(∂n). To do this
we will need to recall some theory of stable modules, syzygies and the derived
module category which we are going to do here. For a detailed account we refer
the reader to [10].

Definition 2.3.1 Two lattices M and M ′ are called stably equivalent, M ∼ M ′,

if there exist free modules F and F ′ such that

M ⊕ F 'M ′ ⊕ F ′.
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The stable class [M ] of a lattice M is the corresponding equivalence class

[M ] = {M ′ ∈ F(G) |M ′ ∼M}.

[M ] is also called a stable lattice. M is called minimal provided rkZ(M) ≤ rkZ(M ′)

for all M ′ ∈ [M ].

The direct sum of stable lattices is defined as [M ] ⊕ [N ] = [M ⊕ N ] and the
tensor product of stable lattices is defined as [M ]⊗ [N ] = [M ⊗N ].

Lemma 2.3.2 (Schanuel’s lemma)

Let

0 // N
i // F

p //M // 0

and

0 // N ′
i′ // F ′

p′ //M ′ // 0

be two short exact sequences where F and F ′ are free. Then N ∼ N ′ if and only

if M ∼M ′.

Proof: Let M ∼ M ′ thus there exist free modules E and E ′ and an isomor-
phism ψ : M ′⊕E ′→̃M ⊕E. Let X = lim←−(ψ ◦ (p′⊕ idE′), p⊕ idE) be the pull back

of ψ ◦ (p′⊕ idE′) and p⊕ idE then we obtain a commutative diagram of exact rows
and columns

0

��

0

��
N

id //

��

N

i
��

0 // N ′

id
��

// X

��

// F ⊕ E
p⊕id

��

// 0

0 // N ′
i′ // F ′ ⊕ E ′

��

ψ◦(p′⊕id) //M ⊕ E

��

// 0.

0 0
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Since F ⊕ E and F ′ ⊕ E ′ are free the top row and the left column split and it
follows that

N ′ ⊕ F ⊕ E ' X ' N ⊕ F ′ ⊕ E ′

and therefore N ∼ N ′.
Similarly, if N ∼ N ′ then there exist free modules E and E, and a homomor-

phism ψ : N ⊕E → N ′⊕E ′. Let X = lim−→(i⊕ idE, (i
′⊕ idE′) ◦ψ) be the push-out

of i ⊕ idE′ and (i′ ⊕ idE′) ◦ ψ so that we obtain a commutative diagram of exact
rows and columns

0

��

0

��
0 // N ⊕ E

i⊕idE
��

(i′⊕idE′ )◦ψ // F ′ ⊕ E ′

��

p′ //M ′

id
��

// 0

0 // F ⊕ E
p

��

// X

��

//M ′ // 0.

M

��

id //M

��
0 0

Since a projective module is injective relative to F(G) it follows that a short exact
sequence with a free module on the left splits and we obtain

M ⊕ F ′ ⊕ E ′ ' X 'M ′ ⊕ F ⊕ E

and therefore M ∼M ′. QED

Definition 2.3.3 A complete free resolution F∗
∂0 // F ∗ of a lattice M is an

exact sequence

. . . // F1
∂1 // F0

∂0 // F−1
∂−1 // F−2

// . . . ,

of free modules such that ∂0 = µ ◦ ε, where ε : F0
//M is surjective and

µ : M // F−1 is injective.

Lemma 2.3.4 Every lattice admits a complete free resolution.
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Proof: Let M be a lattice. By lemma 2.2.2 there exists a free resolution

F∗
ε //M which gives the left hand side of a complete free resolution. To

obtain the right hand side let F−1 = M ⊗ Z[G] then by corollary 2.1.2 it fol-
lows that F−1 is free. Let ν : M → F−1 be the map µ(m) = m ⊗ ΣG. Then
µ(mg) = mg ⊗ ΣG = (m ⊗ ΣG)g and µ(m) = 0 if and only if m = 0. Thus µ
is an injective homomorphism and we can define ∂0 = µ ◦ ε. Now let p−1 be the
projection p−1 : F−1 → F−1/im(µ). Then, similar to M , we obtain a free module
F−2 = F−1/im(µ) ⊗ Z[G] and an inclusion i−1 : F−1/im(µ) → F−2 and we can
define ∂−1 = i−1 ◦ p−1. Iterating this construction then yields the remaining right
hand side. QED

As for module extensions, we can regard a complete free resolution as being
concatenated by short exact sequences

0 // im(∂n+1)
in+1 // Fn

pn // im(∂n) // 0,

called the n-th stage of the resolution, where p0 = ε, im(ε) = M and i0 = µ.
Notice, that we can regard any complete free resolution F∗ // F ∗ of a lattice

M as a complete free resolution F ′∗ // F ′∗ of im(∂n)

. . . // Fn
pn

##F
FF

FF
FF

FF
∂n // Fn−1

// . . . // F0

ε

��@
@@

@@
@@

@
∂0 // F−1

// . . .

im(∂n)

in
::uuuuuuuuu

M

µ
==||||||||

simply by re-indexing F ′k = Fk+n, ε
′ = pn and µ′ = in and ∂′k = ∂k+n. This

method is called dimension shifting.

Let F∗ // F ∗ and F ′∗ // F ′∗ be two complete free resolutions of M . It
then follows from Schanuel’s lemma that

im(∂n) ∼ im(∂′n)

for all n ∈ Z. Thus the stable class of im(∂n) is independent of the choice of
resolution and only depends on the stable class of M .

Definition 2.3.5 Let F∗
∂0 // F ∗ be a complete free resolution of a lattice M .

The n-th syzygy Ωn(M) of M is defined as the stable class of im(∂n), that is,

Ωn(M) = {R | im(∂n) ∼ R}.
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Proposition 2.3.6 Let M and N be lattices then

1) Ωn(M) = Ωn(N) if and only if M ∼ N ,

2) Ωn(Ωm(M)) = Ωn+m(M) and

3) Ωn(M)⊗ Ωm(N) = Ωn+m(M ⊗N).

Proof: 1) follows inductively from the definition of Ωn and Schanuel’s lemma
and 2) follows immediately by dimension shifting. To prove 3) Let F∗ // F ∗

be a complete free resolution of M . It then follows by corollary 2.1.2 that

. . . // F1 ⊗N
∂1⊗id // F0 ⊗N

ε⊗id //M ⊗N µ⊗id // F−1 ⊗N
∂−1⊗id// F−2 ⊗N // . . .

is a complete free resolution of M ⊗N . Thus Ωn(M ⊗N) = Ωn(M) ⊗N . Simi-
larly, by tensoring a complete free resolution of N with M we also obtain a free
resolution of M ⊗ N , and in this case we obtain Ωm(M ⊗ N) = M ⊗ Ωm(N).
Together with 2) it then follows that

Ωn+m(M ⊗N) = Ωn(M ⊗ Ωm(N)) = Ωn(M)⊗ Ωm(N).

QED

Definition 2.3.7 Let M and N be lattices. Two homomorphisms f, h : M → N

are called equivalent, f ≈ h, if f−h factors through a free module, that is, if there

exist a free module F and homomorphisms α : F → N and β : M → F such that

f − h = α ◦ β.

Lemma 2.3.8 The relation ≈ is additive and compatible with composition, that

is,

1) Let f, f ′h, h′ ∈ Hom(M,N) such that f ≈ f ′ and h ≈ h′ then f + h ≈ f ′ + h′,

and

2) Let f, f ′ ∈ Hom(M,R) and h, h′ ∈ Hom(R,N) such that f ≈ f ′ and h ≈ h′

then h ◦ f ≈ h′ ◦ f .
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Proof: 1) Let f, f ′h, h′ ∈ Hom(M,N) such that there exist free modules F and
F ′ and homomorphisms α : F → N, β : M → F, α′ : F ′ → N and β′ : M → F ′

such that f − f ′ = α ◦ β and h− h′ = α′ ◦ β′ then

(f+h)−(f ′+h′) = (f−f ′)+(h−h′) = α◦β+α′◦β′ = (∇N◦(α⊕α′))◦((β⊕β′)◦4M)

where 4M : M → M ⊕M is the diagonal map, 4M(m) = (m,m), and ∇N :
N ⊕ N → N is the sum, ∇N(n, n′) = n + n′. In particular, ∇N ◦ (α ⊕ α′) :
F ⊕ F ′ → N and (β ⊕ β′) ◦ 4M : M → F ⊕ F ′. Thus f + h ≈ f ′ + h′.

2) Let f, f ′ ∈ Hom(M,R) and h, h′ ∈ Hom(R,N) such that there exist free
modules F and F ′ and homomorphisms α : F → R, β : M → F, α′ : F ′ → N and
β′ : R→ F ′ such that f−f ′ = α◦β and h−h′ = α′◦β′. Then (h−h′)◦f = α′◦β′◦f
and f ′ = f − α ◦ β so that

(h ◦ f)− (h′ ◦ f ′) = (h ◦ f)− (h′ ◦ (f − α ◦ β)) = (h− h′) ◦ f + h′ ◦ α ◦ β

= α′ ◦ β′ ◦ f + h′ ◦ α ◦ β.

Since α′ ◦ β′ ◦ f and h′ ◦ α ◦ β factor through a free module it follows by 1) that
α′◦β′◦f+h′◦α◦β factors through a free module and therefore h◦f ≈ h′◦f ′.QED

It now follows that the category F(G) of finitely generated lattices over a finite
group G has the following quotient category.

Definition 2.3.9 The derived module category Der = Der(F(G)) of F(G) is the

one whose objects are the same as for F(G), and for any two lattices M and N

the group of morphisms is given by the quotient

HomDer(M,N) = Hom(M,N)/ ≈ .

Alternatively we can define Der(F(G)) as the quotient category of F(G) by
factoring through the sub-category of free modules, that is, Der(F(G)) is the
category of stable classes in F(G). A proof that these definitions are equivalent
is given in [11].

Lemma 2.3.10 Let N be a G-lattice and let Z be the trivial lattice then there

exists an isomorphism

HomDer(Z, N) ' NG/NΣG

f 7→ f(1).
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Proof: Let Hom0(Z, N) = {f ∈ Hom(Z, N) | f ≈ 0} then for f ∈ Hom0(Z, N)
there exist a free module F ' Z[G]k and homomorphisms α ∈ Hom(Z[G]k, N)
and β ∈ Hom(Z,Z[G]k) such that f = α ◦ β. In terms of the standard basis
(e1, . . . , ek) of Z[G]k we can regard α as a k-tuple α = (n1, . . . , nk), ni ∈ N ,
where α(ei) = ni and β as the vector β(1) = (a1, . . . , ak)

tΣG, ak ∈ Z. We obtain
f(1) = nΣG, n =

∑k
i=1 aini and therefore Hom0(Z, N) ' NΣG.

Since Hom(Z, N) ' NG and HomDer(Z, N) = Hom(Z, N)/Hom0(Z, N) it fol-
lows that HomDer(Z, N) = NG/NΣG. QED

Lemma 2.3.11 (adjointness formula)

Let M,N and R be lattices then there exists an isomorphism

HomDer(R⊗M,N) ' HomDer(R,M
∗ ⊗N).

Proof: By proposition 2.1.6 there exists an isomorphism Hom(R ⊗M,N) '
Hom(R,M∗⊗N) where f ∈ Hom(R⊗M,N) maps to f̂ ∈ Hom(R,M∗⊗N) and
f̂(r)(m) = f(r ⊗m). Thus it remains to show that f ≈ 0 if and only if f̂ ≈ 0.

Assume f ≈ 0, that is, there exist a free module F and homomorphisms
α : F → N and β : R⊗M → F such that f = α ◦ β. Then

f̂(r)(m) = f(r ⊗m) = (α ◦ β)(r ⊗m) = α(β̂(r)(m)) = ((α∗ ◦ β̂)(r))(m)

where β̂ : R→M∗⊗F is the image of β in Hom(R,M∗⊗F ) and α∗ : M∗⊗F →
M∗⊗N maps a homomorphism h : M → F to α∗(h) = α ◦h. Thus since M∗⊗F
is free by corollary 2.1.2 it follows that f̂ ≈ 0.

Similarly, assume f̂ ≈ 0, thus there exist a free module F and homomorphisms
α̂ : F →M∗ ⊗N and β : R→ F such that f̂ = α̂ ◦ β. Then

f(r ⊗m) = f̂(r)(m) = ((α̂ ◦ β)(r))(m) = (α̂(β(r))(m) = (α ◦ (β ⊗ id))(r ⊗m)

where β ⊗ id : R ⊗M → F ⊗M and α : F ⊗M → N is the pre-image of α̂ in
Hom(F ⊗M,N). Since F ⊗M is free it follows that f ≈ 0. QED

The formula HomDer(Z, N) ' NG/NΣG, lemma 2.3.10, and the adjointness
formula lemma, 2.3.11, together with the results of the next section will enable us
to express the cohomology groups Hn(M,N) directly in terms of M and N only
having the syzygies Ω−n(Z) of the trivial module to keep track of dimension. In
chapter 3 we will use this expression to calculate the cohomology of D6-lattices
and will see that this significantly minimises the involved computation.
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2.4 Co-representability of the cohomology functor

In this section we first recall that for the category F(G) of finitely generated
lattices the cohomology functor M 7→ Hn(M, · ), n ≥ 1, is co-representable in the
derived module category Der(F(G)) with co-representing object Ωn(M), the n-th
syzygy of M . That is, Hn(M,N) ' HomDer(Ωn(M), N). The co-representability
of cohomology was first shown by J. Humphreys in his PhD-thesis [8]. In particular
he showed that a necessary and sufficient condition for the above isomorphism
to hold for a R-module M is Extn(M,R) = 0. In his book [10], F. Johnson
investigates this subject and shows that the syzygy functors Ωn and Ω−n are
adjoint, that is, HomDer(Ωn(M), N) ' HomDer(M,Ω−n(N)). This, together with
the results of the previous section, will give the first result of this thesis, that is,
for n ≥ 1 we obtain

Hn(M,N) ' Cn(M,N),

where Cn(M,N) = (Ω−n(Z)⊗M∗⊗N)G/(Ω−n(Z)⊗M∗⊗N)ΣG. This will allow
us to significantly reduce the calculations involved in determining cohomology as
we will illustrate with the example of the dihedral group D6 in chapter 3. This
expression also simplifies operations on cohomology such as calculating induced
homomorphisms. We will illustrate this on the example of the induced homo-
morphism of a subgroup H ⊂ G and express lemma 2.2.8 in terms of the above
quotient Cn(M,N). In chapter 3 we will see on the example of D6 that this allows
us to quickly determine the Bieberbach groups with holonomy group D6.

Theorem 2.4.1 (Co-representability of cohomology)

For n ≥ 1 the cohomology functor M 7→ Hn(M, · ) on F(G) is co-representable

in the derived module category Der(F(G)) with co-representing object Ωn(M).

That is, let M and N be lattices and let n ≥ 1. Then there exists an isomorphism

p∗n : HomDer(Ωn(M), N)−̃→Hn(M,N),

where p∗n is induced by the projection pn : Fn → im(∂n) of some free resolution of

M .

Proof: Let F∗
ε //M be a free resolution of M and consider the exact

sequence

Fn+1
∂n+1 // Fn

pn // im(∂n) // 0 .
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Since Hom( · , N) is a left exact and contravariant functor we obtain an exact
sequence

0 // Hom(im(∂n), N)
p∗n // Hom(Fn, N)

∂∗n+1 // Hom(Fn+1, N).

Thus p∗n induces an isomorphism p∗n : Hom(im(∂n), N) → im(p∗n) = ker(∂∗n+1). In
particular, since ∂∗n = p∗n◦i∗n, where in : im(∂n)→ Fn−1 is the inclusion, p∗n induces
an isomorphism

p∗n : Hom(im(∂n), N)/im(i∗n)−̃→Hn(M,N).

Let f ∈ Hom(im(∂n), N) such that there exist a free module F and homomor-
phisms α : F → N , β : im(∂n)→ F with f = α ◦ β, and let X = lim−→(in, β). Thus
there is a commutative diagram of exact rows

0 // im(∂n)
in //

β

��

Fn−1
pn−1 //

φ

��

im(∂n−1) //

=

��

0

0 // F
j //

α

��

X
p // im(∂n−1) // 0.

N

Since for a finite group G any extension of a module by Z[G] splits it follows
that the bottom sequence splits. Thus there exists a homomorphism µ : X → F
such that µ ◦ j = idF and therefore f = α ◦ µ ◦ φ ◦ in = i∗n(α ◦ µ ◦ φ) ∈ im(i∗n).

On the other hand, if f ∈ im(i∗n) then there is a homomorphism g : Fn−1 → N
such that f = g ◦ in. Thus f ≈ 0 and we obtain

im(i∗n) = {f ∈ Hom(im(∂n), N) | f ≈ 0}.

It follows that p∗n is the isomorphism

p∗n : HomDer(Ωn(M), N)−̃→Hn(M,N).

QED

Let
HomDer(Ω∗(M), N) =

∑
k≥0

HomDer(Ωk(M), N)

then there exists a surjective level preserving homomorphism

P : H∗(M,N) −→ HomDer(Ω∗(M), N),

where for n ≥ 1 P |Hn(M,N) = (p∗n)−1 is the isomorphism in theorem 2.4.1, and
P |H0(M,N) : Hom(M,N)→ HomDer(M,N) is the projection.
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Theorem 2.4.2 (adjointness formula)

Let M and N be lattices and let k ≥ 0. Then there exists an isomorphism

ψk : HomDer(Ωk(M), N)−̃→HomDer(M,Ω−k(N)).

In particular, for any homomorphism f the family {ψk(f)}k∈Z is a chain trans-

formation between a complete resolution of Ωk(M) and a complete resolution of

N , and {ψk(f)}k∈Z is unique in the derived module category.

Proof: Since Ωk(Ωl(M)) = Ωk+l(M) by proposition 2.3.6 it is sufficient to
prove the theorem for k = 1. By theorem 28.5 pp.118 in [10] it follows that any
projective module in F(G) is injective relative to F(G). Let

E1(M) : 0 // im(∂M1 )
i1 // F0

ε //M // 0

be the 1st stage of a complete free resolution of M and let

E−1(N) : 0 // N
ν // E−1

q−1 // im(∂N−1) // 0

be the −1st stage of a complete free resolution of N . Let f : im(∂M1 ) → N be
a representative of a morphism in HomDer(Ω1(M), N). Since E−1 is free we can
extend ν ◦ f to a homomorphism f̂ : F0 → E−1 such that f̂ ◦ i1 = ν ◦ f , and since
q−1 ◦ f̂ ◦ i1 = q−1 ◦ ν ◦ f = 0, f̂ maps im(i1) to ker(q−1) = im(ν) and therefore
induces a homomorphism ψ1(f) : M → im(∂N−1). Thus we obtain a commutative
diagram of exact sequences

E1(M) : 0 // im(∂M1 )

f

��

i1 // F0

f̂

��

ε //M

ψ1(f̂)
��

// 0

E−1(N) : 0 // N
ν // E−1

q−1 // im(∂N−1) // 0.

Now assume f ≈ 0, that is, there exist a free module F and homomorphisms
α : F → N and β : im(∂M1 ) → F such that f = α ◦ β. Consider the pushout
β∗E1(M) and construct the α̂ and ψ1(α) such that we obtain a commutative
diagram of exact rows

E1(M) : 0 // im(∂M1 )

β

��

i1 // F0

sβ
��

ε //M

idM

��

// 0

β∗E1(M) : 0 // F

α

��

rβ // lim−→(i1, β)

α̂

��

tβ //M

ψ1(α̂)

��

// 0

E−1(N) : 0 // N
ν // E−1

q−1 // im(∂N−1) // 0.
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Thus, since (α̂ ◦ sβ)◦ i1 = α̂ ◦ rβ ◦β = ν ◦ (α ◦β) = ν ◦ f , we can choose f̂ = α̂ ◦ sβ
and ψ1(f) = ψ1(α). Furthermore, since F is free the middle exact sequence splits
thus there exists an homomorphism τ : M → lim−→(i1, β) such that τ ◦ tβ = idM . It

follows that ψ1(f) = q−1 ◦ (α̂ ◦ τ) ≈ 0 and therefore

ψ1 : HomDer(Ω1(M), N) → HomDer(M,Ω−1(N))

[f ] 7→ [ψ1(f)]

is a well-defined homomorphism.

Let f : M → im(∂N−1) be a representative of a morphism in HomDer(M,Ω−1(N)).

Since F0 is free the composition f ◦ ε lifts to a homomorphism f̃ . Furthermore,
since q−1 ◦ f̃ ◦ i1 = f ◦ ε ◦ i1 = 0 it follows that f̃ restricts to a homomorphism
ψ−1(f) = f̃ |im(∂M1 ) : im(∂M1 )→ N and we obtain a commutative diagram

E1(M) : 0 // im(∂M1 )

ψ−1(f)

��

i1 // F0

f̃

��

ε //M

f
��

// 0

E−1(N) : 0 // N
ν // E−1

q−1 // im(∂N−1) // 0.

Now assume f ≈ 0, that is, there exist a free module F and homomorphisms
α : F → im(∂N−1) and β : M → F such that f = α ◦ β. Consider the pullback

E−1(N)α∗ and construct β̃ and ψ−1(β). Then we obtain a commutative diagram
with exact rows

E1(M) : 0 // im(∂M1 )

ψ−1(β)

��

i1 // F0

β̃
��

ε //M

β

��

// 0

E−1(N)α∗ : 0 // N

id

��

uα // lim←−(α, q−1)

vα

��

wα // F

α

��

// 0

E−1(N) : 0 // N
ν // E−1

q−1 // im(∂N−1) // 0.

Since q−1 ◦ (vα ◦ β̃) = (α ◦ β) ◦ ε = f ◦ ε we can choose f̃ = vα ◦ β̃ and ψ−1(f) =
ψ−1(β), and since F is free the middle exact sequence splits and there exists a
homomorphism κ : lim←−(α, q−1) → N such that κ ◦ uα = idN . It follows that

ψ−1(f) = κ ◦ (β̃ ◦ i1) ≈ 0 and therefore

ψ−1 : HomDer(M,Ω−1(N)) −→ HomDer(Ω1(M), N)

[f ] 7→ ψ−1([f ]) = [ψ−1(f̃)]

is a well defined homomorphism. Furthermore ψ−1 ◦ ψ1 = idHomDer(Ω1(M),N) and
ψ1 ◦ ψ−1 = idHomDer(M,Ω−1(N)) by definition. QED
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Corollary 2.4.3 In the category of finitely generated lattices over the integral

group ring of a finite group the cohomology functor N 7→ Hn( · , N), n ≥ 1 is

representable on the derived module category with representing object Ω−n(N).

That is there exists an isomorphism

Hn(M,N) ' HomDer(M,Ω−n(N)).

Proof: The proof follows immediately from the co-representability theorem
2.4.1 and the adjointness formula theorem 2.4.2. QED

The representability of cohomology together with the results of the previous
section now enable us to express the cohomology groups Hn(M,N) directly in
terms of M and N only having Ω−n(Z), the syzygies of the trivial lattice, to keep
track of the dimension. To see this, consider the following

Definition 2.4.4 Let M and N be lattices over a finite group G and define

Cn(M,N) = (im(∂−n)⊗M∗ ⊗N)G/(im(∂−n)⊗M∗ ⊗N)ΣG.

Lemma 2.4.5 The quotient Cn(M,N) only depends on the stable classes of M,N

and im(∂−n).

Proof: It suffices to show that (M ⊗ N)G/(M ⊗ N)ΣG ' (M ′ ⊗ N)G/(M ′ ⊗
N)ΣG if M ′ ∼ M . Let F be free module then FG ' FΣG so that FG/FΣG ' 0.
Furthermore (M ⊕N)G/(M ⊕N)ΣG = (MG/MΣG)⊕ (NG/NΣG). Thus if there
exists free modules E and E ′ such that M ⊕ E 'M ′ ⊕ E ′ it follows that

((M ⊗N)G/(M ⊗N)ΣG) ' ((M ⊗N)G/(M ⊗N)ΣG)⊕ ((E ⊗N))G/(E ⊗N)ΣG)

' ((M ⊕ E)⊗N)G/((M ⊕ E)⊗N)ΣG

' ((M ′ ⊕ E′)⊗N)G/((M ′ ⊕ E′)⊗N)ΣG

' ((M ′ ⊗N)G/(M ′ ⊗N)ΣG) QED
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Theorem 2.4.6 Let M and N be lattices. Then for n ≥ 1 there exists a group

isomorphism

Ψn : Hn(M,N) ' Cn(M,N),

where Ψn(f)(m) = ψn(f ′)(m), f = p∗n(f ′), p∗n is the isomorphism in theorem

2.4.1 and ψn is the isomorphism in theorem 2.4.2.

Proof: From the representability of cohomology, corollary 2.4.3, and propo-
sition 2.3.6 it follows that Hn(M,N) ' HomDer(M,Ω−n(Z) ⊗ N), and from the
adjointness formula lemma 2.3.11 and lemma 2.3.10 it follows that Hn(M,N) '
Cn(M,N). QED

To see how Ψn maps a cohomology class [f ] ∈ Hn(M,N) to an element in

Cn(M,N) let f = f ′ ◦ pn where [f ′] ∈ HomDer(Ωn(M), N) and let F∗
∂0 // F ∗

be a complete free resolution of the trivial lattice Z. Then for any lattice M a

complete free resolutions is given by F∗ ⊗M
∂0⊗idM// F ∗ ⊗M . Thus we can choose

f ′ to be a homomorphism f ′ : im(∂n)⊗M → Z⊗N and calculate ψn(f ′) as the
following chain transformation

im(∂n)⊗M

f ′

��

in⊗idM// Fn−1 ⊗M

��

// . . . // F0 ⊗M

��

ε⊗idM // Z⊗M

ψn(f ′)
��

Z⊗N
µ⊗idN // F−1 ⊗N // . . . // F−n ⊗N

p−n⊗idN// im(∂−n)⊗N.

It follows that
Ψn(f) = ψ̂n(f ′)(1)

where ψ̂n(f ′)(1)(m) = ψn(f ′)(1⊗m).

Next we will analyse how the induced homomorphisms on cohomology relate
to the homomorphisms on the quotients Cn(M,N). Let ϕ : M ′ → M be a
homomorphism. Then ϕ induces a homomorphism

ϕ∗ : C(M,N) → C(M ′, N)

[d⊗m∗ ⊗ n] 7→ [d⊗ (m∗ ◦ ϕ)⊗ n].

Similarly, let ξ : N → N ′ be a homomorphism. Then ξ induces a homomorphism

ξ∗ : Cn(M,N) → Cn(M ′, N)

[d⊗m∗ ⊗ n] 7→ [d⊗m∗ ⊗ ξ(n)].
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Proposition 2.4.7 The isomorphism Ψn : Hn(M,N) ' Cn(M,N) commutes

with induced homomorphisms. That is, if ϕ : M ′ → M and ξ : N → N ′ are

homomorphisms then ϕ∗ ◦Ψn = Ψn ◦ ϕ∗ and ξ∗ ◦Ψn = Ψn ◦ ξ∗.

Proof: Let ϕ : M ′ → M be a homomorphism and let F∗
∂0 // F ∗ be a

complete free resolution of the trivial lattice Z. Then a complete free resolution

of M is given by F∗ ⊗M
∂0⊗idM // F ∗ ⊗M and a complete free resolution of

M ′ is given by F∗ ⊗M ′ ∂0⊗idM′ // F ∗ ⊗M ′ . Then for the chain transformation
induced by ϕ we obtain ϕ∗ = (idFk ⊗ ϕ)k∈Z. Let f ′ : im(∂n) ⊗ M → Z ⊗ N
be a representative of a morphism f ′ ∈ HomDer(Ωn(M), N). Thus we obtain a
commutative diagram

im(∂n)⊗M ′

id⊗ϕ
��

in⊗idM′// Fn−1 ⊗M ′

id⊗ϕ
��

// . . . // F0 ⊗M ′

id⊗ϕ
��

ε⊗idM′ // Z⊗M ′

ϕ

��
im(∂n)⊗M

f

��

in⊗idM// Fn−1 ⊗M

��

// . . . // F0 ⊗M

��

ε⊗idM // Z⊗M

ψn(f)

��
Z⊗N

µ⊗idN // F−1 ⊗N // . . . // F−n ⊗N
p−n⊗idN// im(∂−n)⊗N

and it follows that ϕ∗(ψn(f))) = ψn(ϕ∗(f)). In particular, for f = f ′ ◦ pn

(Ψn ◦ ϕ∗)(f)(m) = (ψn ◦ ϕ∗)(f ′)(1⊗m) = (ϕ∗ ◦ ψn)(f ′)(1⊗m)

= (ϕ∗ ◦Ψn)(f)(m).

Similarly, for ξ : N → N ′ we obtain ξ∗(ψn(f))) = ψn(ξ∗(f))) and therefore
ξ∗ ◦ Ψ̂n = Ψ̂n ◦ ξ∗ QED

A special case of an induced homomorphism is given by a subgroup H ⊂ G. Let
i : H ↪→ G be the inclusion map then i induces a homomorphism i∗ : Hn(G,N)→
Hn(H, i∗(N)). In section 2.2 we saw that the Bieberbach groups with holonomy
D6, that is torsion free extensions of a free abelian group N by G, are determined
by those elements c ∈ H2(G,N) for which 0 6= i∗(c) ∈ H2(Cp, i

∗(N)) for all cyclic
subgroups Cp ⊂ G of prime order. In terms of the quotient C this corresponds to

Theorem 2.4.8 The Bieberbach groups with holonomy group G are determined

by those elements c ∈ (Ω−2(Z)⊗N)G/(Ω−2(Z)⊗N)ΣG which are not in (Ω−2(Z)⊗

N)ΣCp for all cyclic subgroups Cp ⊂ G.
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Proof: We will show that for an arbitrary subgroup H ⊂ G, with inclusion
map i : H ↪→ G, the induced homomorphism i∗ : Hn(G,N) → Hn(H, i∗(N))
corresponds to the projection

i∗ : (Ω−n(Z)⊗N)G/(Ω−n(Z)⊗N)ΣG −→ (Ω−n(Z)⊗N)H/(Ω−n(Z)⊗N)ΣH .

Then the claim follows immediately by considering cyclic subgroups of G and n =
2. First Notice that for every G-lattice M we have MG ⊂MH and MΣG ⊂MΣH

since ΣG =
∑

i xiΣH where the xi’s are representatives of the cosets in G/H.
Thus the above projection is well-defined.

Let D(G) denote the derived module category of F(G), let D(H) denote the
derived module category of F(H). The induced map i∗ : HomZ[G](Z, N) →
HomZ[H](Z, N) is defined in the obvious way by restricting scalars. Then, since
i∗(Z[G]) ' Z[H][G:H], it follows that any homomorphism which factors through a
free module over Z[G] also factors through a free module over Z[H] so that

i∗ : HomD(G)(Z, N)→ HomD(H)(Z, N)

is well-defined. Thus, by lemma 2.3.10, we obtain a homomorphism

i∗ : NG/NΣG −→ NH/NΣH

[v]G 7→ [v]H .

In particular i∗([v]G) = 0 if and only if v ∈ NΣH . Now the induced map on
cohomology i∗ : Hn(G,N) → Hn(H, i∗(N)) is given by restricting scalars and
therefore corresponds to the projection

i∗ : (Ω−n(Z)⊗N)G/(Ω−n(Z)⊗N)ΣG −→ (Ω−n(Z)⊗N)H/(Ω−n(Z)⊗N)ΣH .

QED
In section 3.3 we will use this result to determine the Bieberbach groups with
holonomy group D6.

2.5 Composition in the derived module category and the

cup product

In section 2.2 we saw that there exists a product structure on cohomology, namely
the cup product, which is induced by the Yoneda product on module extension
and extends the cup product in singular cohomology. In this section we show that
in terms of the derived module category the cup product arises naturally as the
composition of morphisms in HomDer. Furthermore we give a sufficient condition
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on M for HomDer(Ω∗(M),M) to be a graded-commutative ring.

The adjointness formula, theorem 2.4.2, allows us to regard the composition of
morphisms in Der(F(G)) as the following pairing.

Definition 2.5.1 Let M, N and R be lattices and let • be the following homo-

morphism

• : HomD(Ωk(M), R)⊗ HomD(Ωl(R), N) → HomD(Ωk+l(M), N)

f ⊗ h 7→ h • f = h ◦ ψ−l(f).

Proposition 2.5.2 Let M be a lattice. Then

HomDer(Ω∗(M),M) =
∑
k≥0

HomDer(Ωk(M),M)

equipped with the •-composition is a graded associative ring with unit idM . If M ′

is another lattices such that M ′ ∈ Ωn0(M) for some n0 ∈ Z. Then there exists a

ring isomorphism

HomDer(Ω∗(M),M) ' HomDer(Ω∗(M
′),M ′).

Proof: For any morphism f ∈ HomDer(Ωl(M),M) the family ψk(f)k∈Z is a
chain transformation between complete free resolutions of Ωl(M) and M it follows
that HomDer(Ω∗(M),M) is a graded associative ring. Furthermore, it follows
immediately from definition 2.5.1 that f • idM = f ◦ψ−k(id) = ψ−k(ψk(f)◦ id) = f
and idM • f = f .

Now let M ′ ∈ Ωn0(M) for some n0 ∈ Z. It then follows from lemma 2.3.6 that
Ωk(M

′) = Ωk+n0(M) and from theorem 2.4.2 that

HomDer(Ωk(M
′),M ′) = HomDer(Ωk+n0(M),Ωn0(M)) ' HomDer(Ωk(M),M)

for all k ∈ N. QED
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Theorem 2.5.3 The cup product in cohomology corresponds to the •-composition

in the derived module category. That is, for all k, l ≥ 1, f ∈ HomDer(Ωk(M), R)

and h ∈ HomDer(Ωl(R), N) we have

p∗k(f) ∪ p∗l (h) = p∗k+l(h • f).

Proof: By theorem 2.2.17 and definition 2.2.18 of the cup product it is suffi-
cient to show that for k, l ≥ 1 we have Extk+l(h • f) = Extl(h) ◦ Extk(f), where

Extn = Y−1 ◦ p∗n : HomDer(Ωn(M), N)−̃→Extn(M,N)

is the composition of the isomorphisms p∗n, theorem 2.4.1, and Y−1, theorem 2.2.17.
That is, Extn(f) = f∗En(M) where En(M) is given by a truncated free resolution

En(M) : 0 // im(∂Mn )
in // Fn−1

// . . . // F0
ε //M // 0.

Let

0 // im(∂Mk+l)
ik+l // Fk+l−1

pk+l−1 // im(∂Mk+l−1) // 0

be the (k + l)-th stage of a free resolution F∗
ε //M of M , and let

0 // im(∂Rl )
jl // El−1

ql−1 // im(∂Rl−1) // 0

be the l-th stage of a free resolution E∗
ε // R of R. Let f : im(∂Mk ) → R

and h : im(∂Rl )→ N be representatives of morphisms in HomDer(Ωk(M), R) and
HomDer(Ωl(R), N) respectively. Let ψn be the isomorphism in the adjointness
formula, theorem 2.4.2, and consider ψ−l(f) : im(∂Mk+l) → im(∂Rl ) and the push-
outs lim−→(h, jl) and lim−→(h • f, ik+l). Thus we obtain commutative diagrams

im(∂Mk+l)

ψ−l(f)

��

ik+l // Fk+l−1

˜ψ−l+1(f)
��

im(∂Rl )
jl // El−1

and

im(∂Rl )

h

��

jl // El−1

sh
��

N
rh // lim−→(h, jl).
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It follows that sh ◦ ˜ψ−l+1(f) ◦ ik+l = rh ◦ (h ◦ ψ−l(f)) = rh ◦ (h • f). Thus by the
universal property of the push-out there exists a homomorphism

α : lim−→(h • f, ik+l)→ lim−→(h, jl)

such that the following diagram commutes

im(∂Mk+l)

h•f
��

ik+l // Fk+l−1

sh•f
�� sh◦ ˜ψ−l+1(f)

��

N

rh

--

rh•f // lim−→(h • f, ik+l)

α

''OOOOOOOOOOO

lim−→(h, jl).

In particular, α maps an element [n, p]h•f ∈ lim−→(h • f, ik+l) to α([n, p]h•f ) =

rh(n) + (sh ◦ ˜ψ−l+1(f))(p) = [n, ˜ψ−l+1(f)(p)]h ∈ lim−→(h, jl). Now consider the
diagram

0 // im(∂Mk+l)

h•f
��

ik+l // Fk+l−1

sh•f
��

pk+l−1 // im(∂Mk+l−1)

id
��

// 0

0 // N

id

��

rh•f // lim−→(h • f, ik+l)

α

��

th•f // im(∂Mk+l−1)

ψ−l+1(f)

��

// 0

0 // N
rh // lim−→(h, jl)

th // im(∂Rl−1) // 0

0 // im(∂Rl )

h

OO

jl // El−1

sh

OO

ql−1 // im(∂Rl−1)

id

OO

// 0.

Then the diagram consisting of the top two rows and the diagram consisting of the
bottom two rows commute by definition of the push-out. The diagram consisting
of the middle two rows commutes since α ◦ rh•f = rh and

(th ◦ α)[n, p]h•f = th[n, ˜ψ−l+1(f)(p)]h

= (ql−1 ◦ ˜ψ−l+1(f))(p)

= (ψ−l+1(f) ◦ pk+l−1)(p)

= (ψ−l+1(f) ◦ th•f )[n, p]h•f .

Thus we obtain a commutative diagram
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0 // N

id

��

rh•f // lim−→(h • f, ik+l)

α

��

ik+l−2◦th•f // Fk+l−2

˜ψ−l+1(f)

��

// . . .

0 // N
rh // lim−→(h, jl)

jl−1◦th // El−2
// . . .

. . . // Fk

f̃

��

∂k // Fk−1

sf
��

// . . . // F0

id

��

ε //M

id

��

// 0

. . . // E0

rf◦ε // lim−→(f, ik)
ik−1◦tf // . . . // F0

ε //M // 0,

where the top sequence is a representative of Extk+l(h • f) and the bottom se-
quence is a representative of Extl(h)◦Extk(f). Therefore there exists a morphism
(idN , idM) such that

(idN , idM)(Ext(h • f)) = Ext(h) ◦ Ext(f)

and by lemma 2.2.12 it follows that Extk+l(h • f) = Extl(h) ◦ Extk(f). QED

Now let
◦ : R∗ ⊗R → Z

r∗ ⊗ r 7→ r∗(r)

be the evaluation map on R. Let M and N be two further lattices. Choose Z-basis
(a1, . . . , am), (b1, . . . , bn) and (e1, . . . , er) for M,N and R respectively, and choose
the corresponding dual basis (a1, . . . , am), (e1, . . . , er) as Z-basis for M∗ and R∗.
Let ρR, ρM and ρN be the corresponding group representations. Recall that we
can regard an element in M∗ ⊗ R as an (r × m)-matrix A on which G-acts by
Ag = ρR(g−1)AρM(g). Then the evaluation map on R induces a pairing

◦ : (M∗ ⊗R)⊗ (R∗ ⊗N) → (M∗ ⊗N)
A⊗B 7→ B ◦ A

which is given by matrix multiplication, whereA =
∑

ij α
i
j(a

j⊗ei), B =
∑

kl β
k
l (el⊗

bk) and B ◦ A =
∑

ijkl α
i
jβ

k
l (aj ⊗ el(ei) ⊗ bk) =

∑
ijk α

i
jβ

k
i (aj ⊗ bk). Further-

more if A ∈ (M∗ ⊗ R)G and B ∈ (R∗ ⊗ N)G, that is, ρR(g−1)AρM(g) = A and
ρN(g−1)BρR(g) = B, then

ρN(g−1)BAρM(g) = ρN(g−1)BρR(g)ρR(g−1)AρM(g) = BA.

Thus BA ∈ (M∗⊗N)G. Also, if A ∈ (M∗⊗R)ΣG, that is, there exists an element
A′ ∈ (M∗ ⊗R) such that A =

∑
g∈G ρR(g−1)A′ρM(g) and B ∈ (R∗ ⊗N)G then

BA =
∑
g∈G

BρR(g−1)A′ρM(g) =
∑
g∈G

ρN(g−1)BA′ρM(g),
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that is BA ∈ (M∗ ⊗ N)ΣG. Thus the evaluation map on R extends to a well-
defined pairing

◦ : Ck(M,R)⊗ Cl(R,N) → Ck+l(M,N)

[dk ⊗m∗ ⊗ r′]⊗ [dl ⊗ r∗ ⊗ n] 7→ [r∗(r′)(dk ⊗ dl ⊗m∗ ⊗ n)].

Corollary 2.5.4 The •-composition in HomDer corresponds to evaluation map C,

that is, if f ∈ Hk(M,R) and h ∈ H l(R,N) then

Ψk+l(f ∪ h) = Ψl(h) ◦Ψk(f),

where Ψk is the isomorphism in theorem 2.4.6.

Proof: Let f ∈ Hk(M,R) and h ∈ H l(R,N) then f = p∗k(f
′) and h = p∗l (h

′)
where f ′ ∈ HomDer(Ωk(M), R) and h′ ∈ HomDer(Ωl(R), N). Let f ′′ = ψk(f

′) ∈
HomDer(M,Ω−k(R)) and h′′ = ψl(h

′) ∈ HomDer(R,Ω−l(N)). Then h′ • f ′ =
h′ ◦ ψ−l(f ′) = ψ−(k+l)(ψk(h

′′) ◦ f ′′) and it follows from theorem 2.5.3 that

Ψk+l(f ∪ h) = Ψk+l(p
∗
k(f
′) ∪ p∗l (h′)) = Ψk+l(p

∗
k+l(h

′ • f ′))

= ψk+l(h
′ • f ′) = ψk(h

′′) ◦ f ′′.

As representatives for f ′′ and h′′ choose f ′′ : M → im(∂−k) ⊗ R and h′′ : R →
im(∂−l)⊗N where im(∂n) ∈ Ωn(Z), n = −k,−l. Choose Z-basis (ai), (bi), (ei), (ci)
and (di) for M,N,R, im(∂−k) and im(∂−l) respectively, and choose the correspond-
ing dual basis (aj), (ej) as Z-basis for M∗ and R∗. Let Ψk(f) =

∑
ijr f

ir
j [ci⊗aj⊗er]

and Ψl(h) =
∑

stu h
su
t [ds ⊗ et ⊗ bu] then

Ψl(h) ◦Ψk(f)(aµ) =
∑
irstu

f irµ h
su
r [ci ⊗ ds ⊗ bu],

f ′′(aµ) =
∑

ir f
ir
µ [ci⊗ er] and h′′(eν) =

∑
su h

su
ν [ds⊗ bu]. As we saw earlier we can

calculate ψk(h
′′) = id⊗ h′′ where id is the identity on im(∂−k) thus we obtain

(ψk(h
′′) ◦ f ′′)(aµ) = (id⊗ h′′)(f(aµ)) =

∑
ir f

ir
µ (id⊗ h′′)[ci ⊗ er]

=
∑

ir f
ir
µ [ci ⊗ h′′(er)] =

∑
irsu f

ir
µ h

su
r [ci ⊗ ds ⊗ bu].

It follows that Ψk+l(f ∪ h) = ψk(h
′′) ◦ f ′′ = Ψl(h) ◦Ψk(f). QED

We know thatH∗(G,Z) equipped with the cup product is a graded-commutative
ring. Thus it follows that HomDer(Ω∗(Z),Z) equipped with the •-compostion is
graded-commuative, where the graded-commutativity in dimension 0 is induced
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by the projection H0(G,Z) = Hom(Z,Z)→ HomDer(Z,Z). It then follows imme-
diately from proposition 2.5.2 that HomDer(Ω∗(M),M) is graded-commuative for
any lattice M which lies in some syzygy, Ωn(Z), of the the trivial lattice. However
we can still improve on this.

From theorem 2.3.11 and lemma 2.3.6 it follows that we can regard the com-
position in HomDer as a pairing

• : HomDer(Ωk(Z),M∗⊗R)⊗HomDer(Ωl(Z), R∗⊗N)→ HomDer(Ωk+l(Z),M∗⊗N)

which we will now investigate in more detail for M = N = R.

Let f ∈ HomDer(Ωk(M),M), h ∈ HomDer(Ωl(M),M), and let

. . . // F2
∂2 // F1

∂1 // F0
ε // Z

be a free resolution of Z. Tensoring with M then yields a free resolution of M

. . . // F1 ⊗M
∂1⊗id // F0 ⊗M

ε⊗id // Z⊗M

and we can choose as representatives for f and h homomorphisms f : im(∂k) ⊗
M →M and h : im(∂l)⊗M →M . As a free resolution for im(∂k)⊗M choose

. . . // F1 ⊗ im(∂k)⊗M
∂1⊗id // F0 ⊗ im(∂k)⊗M

ε⊗id // Z⊗ im(∂k)⊗M .

Then ψ−l(f) can be obtained as the lift of f between these two resolution which
gives ψ−l(f) = id⊗ f , that is,

0 // im(∂l)⊗ im(∂k)⊗M
id⊗f
��

// . . . ε⊗id // Z⊗ im(∂k)⊗M //

f

��

0

0 // im(∂l)⊗M // . . . ε⊗id // Z⊗M // 0.

Thus for d′ ∈ im(∂l), d ∈ im(∂k) and m ∈M we obtain

(h • f)(d′ ⊗ d⊗m) = (h ◦ (id⊗ f))(d′ ⊗ d⊗m)

= h(d′ ⊗ f(d⊗m))

and the corresponding composition on HomDer(Ω∗(Z),M∗ ⊗M) is given by

(ĥ • f)(d′ ⊗ d)(m) = (h • f)(d′ ⊗ d⊗m) = h(d′ ⊗ f(d⊗m)) = h(d′ ⊗ f̂(d)(m))

= ĥ(d′)(f̂(d)(m)) = (ĥ(d′)f̂(d))(m)
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Similarly we can calculate f̂ • h as

(f̂ • h)(d⊗ d′)(m) = (f̂(d)ĥ(d′))(m)

Then, since d′ ⊗ d = (−1)kld⊗ d′, it follows that

(f̂ • h)(d′ ⊗ d)(m) = (−1)kl(f̂ • h)(d⊗ d′)(m) = (−1)kl(ĥ • f)(d′ ⊗ d)(m)

if and only if
f̂(d)ĥ(d′) = ĥ(d′)f̂(d)

in M∗ ⊗M . Since M∗ ⊗M is the matrix ring Mm(Z), m = rkZ(M), it follows
that HomDer(Ω∗(M),M) is graded-commuative if rkZ(M) = 1.

Theorem 2.5.5 Let Z ∈ F(Z[G]) be a lattice with rkZ(Z) = 1. Let M ∈ F(Z[G])

be a lattice such that there exists an M ′ ∈ F(Z[G]) and an n0 ∈ Z with M ⊕M ′ ∈

Ωn0(Z). Then HomDer(Ω∗(M),M) is a graded-commutative ring.

Proof: First assume that M ∈ Ωn0(Z) for some n0 ∈ Z. Then it follows by
proposition 2.5.2 that

HomDer(Ω∗(M),M) ' HomDer(Ω∗(Z),Z) ' HomDer(Ω∗(Z),Z∗ ⊗Z).

Thus, since rkZ(Z) = 1 it follows that HomDer(Ω∗(M),M) is graded commutative.
Now assume there exists a lattice M ′ such that M ⊕M ′ ∈ Ωn0(Z) for some

n0 ∈ Z. Then HomDer(Ω∗(M ⊕M ′),M ⊕M ′) is graded commutative and since

HomDer(Ω∗(M ⊕M ′),M ⊕M ′)

' HomDer(Ω∗, (M ⊕M ′)∗ ⊗ (M ⊕M ′))

= HomDer(Ω∗(Z),M∗ ⊗M)⊕ HomDer(Ω∗(Z),M ′∗ ⊗M)

⊕ HomDer(Ω∗(Z),M∗ ⊗M ′)⊕ HomDer(Ω∗(Z),M ′∗ ⊗M ′)

= HomDer(Ω∗(M),M)⊕ HomDer(Ω∗(M
′),M)

⊕ HomDer(Ω∗(M),M ′)⊕ HomDer(Ω∗(M
′),M ′)

it follows that

HomDer(Ω∗(M),M) ↪→ HomDer(Ω∗(M ⊕M ′),M ⊕M ′)

is a subring and therefore itself graded-commutative. QED
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3 The dihedral group D6

In this chapter we will use the results of chapter 2 to calculate the syzygies and
cohomologies of lattices over the dihedral group, D6, of order 6. Furthermore we
will determine the Bieberbach groups with holonomy group D6 and the lattices
M for which the ring HomDer(Ω∗(M),M) is graded-commutative. The majority
of the work will be to determine M∗,MD6 ,MΣD6 and HomDer(Z,M) for the inde-
composable lattices, and the indecomposable components of the tensor products
over Z., which we will do in section 3.1. Having done this we will see in section
3.2 that most of the results then follow immediately.

Throughout this chapter we will work with the following presentation of D6

D6 =< x, y | y2 = x3, xyx−1 = y > .

3.1 Indecomposable D6-lattices

The following is a complete list of the indecomposable lattices over D6 given in
terms of a Z-basis and representation ρM : D6 → Glm(Z), m = rkZ(M). A de-
tailed computation is given in [13].

I. The trivial rank 1 representation Z
ρZ(x) = 1 and ρZ(y) = 1

II. The non-trivial rank 1 representation Zt

ρZt(x) = 1 and ρZt(y) = −1

III. The integral group ring Z[C2]

Let C2 = {1, t | t2 = 1} be the cyclic group of order 2. Let x act
trivially and let y act by multiplication with t. Then the corresponding
representation of D6 in terms of the Z-basis {1, t} is given by

ρZ[C2](x) =

(
1 0
0 1

)
, ρZ[C2](y) =

(
0 1
1 0

)
.

IV. The Eisenstein integers R = Z[ω]

Let Z[ω] = Z[x]/x2 +x+1, ω = 1
2
(−1+i

√
3). Let x act by multiplication

with ω and let y act by complex conjugation. Then the corresponding
representation of D6 in terms of the Z-basis {e1, e2}, e1 = −ω, e2 = 1 + ω,
is given by
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ρR(x) =

(
0 −1
1 −1

)
, ρR(y) =

(
0 1
1 0

)
.

V. The submodule P = (1− ω)R ⊂ R
The representation of D6 in terms of the Z-basis {f1, f2} , f1 = −2 − ω,

f2 = 1− ω is given by

ρP(x) =

(
0 −1
1 −1

)
, ρP(y) =

(
0 −1
−1 0

)
.

VI. indD6
C2

(Z) = Z⊗Z[C2] Z[D6]

Let Z be the trivial rank 1 C2-lattice and regard Z[D6] as a left C2-lattices
in the obvious way. Then the corresponding representation of D6 in terms
of the Z-basis {1⊗ 1, 1⊗ x, 1⊗ x2} is given by

ρ
ind

D6
C2

(Z)
(x) =

 0 1 0
0 0 1
1 0 0

 ρ
ind

D6
C2

(Z)
(y) =

 1 0 0
0 0 1
0 1 0

 .

VII. indD6
C2

(Zt) = Zt ⊗Z[C2] Z[D6],

Let Zt be the non-trivial rank 1 C2-lattice, that is 1t = −1. Then the
corresponding representation of D6 in terms of the Z-basis {1 ⊗ 1, 1 ⊗
x, 1⊗ x2} is given by

ρ
ind

D6
C2

(Zt)
(x) =

 0 1 0
0 0 1
1 0 0

 ρ
ind

D6
C2

(Zt)
(y) =

 −1 0 0
0 0 −1
0 −1 0

 .

Consider the representation ρ = ρR : D6 → Gl2(Z) with

ρ(x) =

(
0 −1
1 −1

)
, ρ(y) =

(
0 1
1 0

)
.

Then the image of the induced ring homomorphism ρ : Z[D6] → M2(Z) is given
by

im(ρ∗) =

{(
a b
c d

)
| a− b+ c− d ≡ 0 mod3

}
and isomorphic to R⊕P , where the above Z-basis {e1, e2} of R maps into im(ρ)

as e1 7→
(
−2 1

0 0

)
and e2 7→

(
1 −2
0 0

)
, and the above Z-basis {f1, f2} of
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P maps into im(ρ) as f1 7→
(

0 −2
0 −1

)
and f2 7→

(
2 0
1 0

)
. Furthermore, the

kernel
ker(ρ) = spanZ(1 + x+ x2, y + xy + x2y)

is isomorphic to Z[C2]. Thus we obtain a split short exact sequence

0 // Z[C2] i // Z[D6]
ρ //R⊕P // 0. (3.5)

VIII. Let Y0 = ρ−1(R).

A Z-basis of Y0 is given by {a1, a2, a3, a4}, a1 = −1+y+xy, a2 = 1+x−y,
a3 = 1 + x+ x2, a4 = y+ xy+ x2y, with respect to which the corresponding
representation of D6 is given by

ρY0(x) =


0 −1 0 0
1 −1 0 0
−1 1 1 0

1 0 0 1

 ρY0(y) =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


IX. Let Y1 = ρ−1(P).

A Z-basis of Y1 is given by {b1, b2, b3, b4}, b1 = x − y, b2 = 1 − xy, b3 =
1 + x + x2, b4 = y + xy + x2y, with respect to which the corresponding
representation of D6 is given by

ρY1(x) =


0 −1 0 0
1 −1 0 0
0 1 1 0
0 −1 0 1

 ρY1(y) =


0 −1 0 0
−1 0 0 0

0 0 0 1
0 0 1 0


X. The regular representation Z[D6]

The regular representation in terms of the Z-basis {1, x, x2, y, xy, yx} is given
by

ρZ[D6](x) =


0 1 0
0 0 1
1 0 0

0

0
0 0 1
1 0 0
0 1 0

 ρZ[D6](y) =


0

1 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0 0 1

0

 .

For the remainder of this chapter we will consider a D6-lattices as being given
in terms of these basis and representations.
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Proposition 3.1.1 For the indecomposable D6-lattices we have

N N∗ ND6 NΣD6 HomDer(Z, N)

Z Z Z 6Z Z6

Zt Zt 0 0 0

Z[C2] Z[C2] Z 3Z Z3

R P 0 0 0

P R 0 0 0

indD6
C2

(Z) indD6
C2

(Z) Z 2Z Z2

indD6
C2

(Zt) indD6
C2

(Zt) 0 0 0

Y0 Y0 Z Z 0

Y1 Y1 Z 3Z Z3

Z[D6] Z[D6] Z Z 0

Proof:
For Z[D6] we know that Z[D6]∗ = Z[D6], Z[D6]D6 = Z[D6]ΣD6 = ZΣD6 ' Z

and HomDer(Z,Z[D6]) = 0.

1) The dual lattices N∗:

It is immediate that ρN(g−1)t = ρN(g) for all g ∈ D6 forN = Z,Zt,Z[C2], indD6
C2

(Z)

and indD6
C2

(Zt), thus in these case N is self-dual, N ' N∗.

Let P =

(
0 −1
1 0

)
. Then P−1 =

(
0 1
−1 0

)
and

P−1ρR(g−1)tP = ρP(g)

for all g ∈ D6. Thus R∗ = P and P∗ = R.
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Let

P =


0 0 0 1
0 0 1 0
0 1 2 1
1 0 1 2

 .

Then P−1 =


−2 −1 0 1
−1 −2 1 0

0 1 0 0
1 0 0 0

 and

P−1ρY0(g
−1)tP = ρY0(g)

for all g ∈ D6. Thus Y ∗0 ' Y0, and since the dual of an indecomposable lattice is
also indecomposable and of the same rank it follows that Y ∗1 ' Y1.

2) The invariant lattices ND6 :

For N = Z we have ZD6 = Z since D6 acts trivially on Z. For N = Zt we have
(Zt)D6 = 0 since ny = −n = n if and only if n = 0.

For the remaining lattices write an element n ∈ N as a Z-vector n = (n1, . . . , nr)
t

and consider the D6-action in terms of the corresponding group representation.

For N = Z[C2]

ρZ[C2](x)n =

(
1 0
0 1

)(
n1

n2

)
=

(
n1

n2

)
and

ρZ[C2](y)n =

(
0 1
1 0

)(
n1

n2

)
=

(
n2

n1

)
.

Thus
Z[C2]D6 = {(a, a)t ∈ Z2} ' Z.

For N = R and N = P

ρ(x)n =

(
0 −1
1 −1

)(
n1

n2

)
=

(
−n2

n1 − n2

)
.

Thus
RD6 = 0 and PD6 = 0.

For N = indD6
C2

(Z)

ρ
ind

D6
C2

(Z)
(x)n =

 0 1 0
0 0 1
1 0 0

 n1

n2

n3

 =

 n2

n3

n1


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and

ρ
ind

D6
C2

(Z)
(y)n =

 1 0 0
0 0 1
0 1 0

 n1

n2

n3

 =

 n1

n3

n2

 .

Thus
(indD6

C2
(Z))D6 = {(a, a, a)t ∈ Z3} ' Z.

For N = indD6
C2

(Zt)

ρ
ind

D6
C2

(Zt)(x)n =

 0 1 0
0 0 1
1 0 0

 n1

n2

n3

 =

 n2

n3

n1


and

ρ
ind

D6
C2

(Zt)(y)n =

 −1 0 0
0 0 −1
0 −1 0

 n1

n2

n3

 =

 −n1

−n3

−n2

 .

Thus
(indD6

C2
(Zt))D6 = 0.

For N = Y0

ρY0(x)n =


0 −1 0 0
1 −1 0 0
−1 1 1 0

1 0 0 1




n1

n2

n3

n4

 =


−n2

n1 − n2

−n1 + n2 + n3

n1 + n4


and

ρY0(y)n =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0




n1

n2

n3

n4

 =


n2

n1

n4

n3


It follows that

Y D6
0 = {(0, 0, a, a)t ∈ Z4} ' Z.

For N = Y1

ρY1(x)n =


0 −1 0 0
1 −1 0 0
0 1 1 0
0 −1 0 1




n1

n2

n3

n4

 =


−n2

n1 − n2

n2 + n3

−n2 + n4


and

ρY1(y)n =


0 −1 0 0
−1 0 0 0

0 0 0 1
0 0 1 0




n1

n2

n3

n4

 =


−n2

−n1

n4

n3

 .
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Thus
Y D6

1 = {(0, 0, a, a)t ∈ Z4} ' Z.

3) The sublattices NΣD6 and the quotients ND6/NΣD6 = HomDer(Z, N):

Since NΣD6 ⊂ ND6 it follows from the preceding part that NΣD6 = 0 and
HomDer(Z, N) = 0 for N = Zt,R,P and indD6

C2
(Zt). For the remaining lattices we

need to calculate NΣD6 = ρN(ΣD6)N .

For N = Z we have ρZ(ΣD6) = 6 thus NΣD6 ' 6Z and HomDer(Z,Z) = Z6.

For N = Z[C2] we have

ρZ[C2](ΣD6) =

(
3 3
3 3

)
thus NΣD6 ' 3Z and HomDer(Z,Z[C2]) = Z3.

For N = indD6
C2

(Z) we have

ρ
ind

D6
C2

(Z)
(ΣD6) =

 2 2 2
2 2 2
2 2 2


thus NΣD6 ' 2Z and HomDer(Z, indD6

C2
(Z)) = Z2.

For N = Y0 we have

ρY0(ΣD6) =


0 0 0 0
0 0 0 0
1 1 3 3
1 1 3 3


thus NΣD6 ' Z and HomDer(Z, Y0) = 0.

For N = Y1 we have

ρY1(ΣD6) =


0 0 0 0
0 0 0 0
0 0 3 3
0 0 3 3


thus NΣD6 ' 3Z and HomDer(Z, Y1) = Z3. QED
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The following is a complete list of the tensor products M ⊗N of the indecom-
posable lattices.

Proposition 3.1.2 The indecomposable components of a tensor product M ⊗N

where M and N are indecomposable are given as follows:

We have Z⊗N ' N and Z[D6]⊗N ' Z[D6]rkZ(N) for all lattices N . For the

remaining tensor products we obtain

I. For M = Zt we obtain

Zt ⊗ Zt ' Z, Zt ⊗ P ' R, Zt ⊗ Y0 ' Y1,

Zt ⊗ Z[C2] ' Z[C2], Zt ⊗ indD6
C2

(Z) ' indD6
C2

(Zt), Zt ⊗ Y1 ' Y0

Zt ⊗R ' P , Zt ⊗ indD6
C2

(Zt) ' indD6
C2

(Z),

II. For M = Z[C2] we obtain

Z[C2]⊗ Z[C2] ' Z[C2]⊕ Z[C2], Z[C2]⊗ indD6
C2

(Zt) ' Z[D6]

Z[C2]⊗R ' R⊕P , Z[C2]⊗ Y0 ' Y0 ⊕ Y1,

Z[C2]⊗ P ' R⊕P , Z[C2]⊗ Y1 ' Y0 ⊕ Y1,

Z[C2]⊗ indD6
C2

(Z) ' Z[D6]

III. For M = R we obtain

R⊗R ' Y0, R⊗ indD6
C2

(Z) ' Z[D6], R⊗ Y0 ' P ⊕ Z[D6],

R⊗P ' Y1, R⊗ indD6
C2

(Zt) ' Z[D6], R⊗ Y1 ' R⊕ Z[D6],

IV. For M = P we obtain

P ⊗ P ' Y0, P ⊗ Y0 ' R⊕ Z[D6],

P ⊗ indD6
C2

(Z) ' Z[D6], P ⊗ Y1 ' P ⊕ Z[D6],

P ⊗ indD6
C2

(Zt) ' Z[D6],
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V. For M = indD6
C2

(Z) we obtain

indD6
C2

(Z)⊗ indD6
C2

(Z) ' indD6
C2

(Z)⊕ Z[D6], indD6
C2

(Z)⊗ Y0 ' Z[D6]2,

indD6
C2

(Z)⊗ indD6
C2

(Zt) ' indD6
C2

(Zt)⊕ Z[D6], indD6
C2

(Z)⊗ Y1 ' Z[D6]2,

VI. For M = indD6
C2

(Zt) we obtain

indD6
C2

(Zt)⊗ indD6
C2

(Zt) ' indD6
C2

(Z)⊕ Z[D6], indD6
C2

(Zt)⊗ Y0 ' Z[D6]2,

indD6
C2

(Zt)⊗ Y1 ' Z[D6]2,

VII. For M = Y0 we obtain

Y0 ⊗ Y0 ' Y1 ⊕ Z[D6], Y0 ⊗ Y1 ' Y0 ⊕ Z[D6]

VIII. For M = Y1 we obtain

Y1 ⊗ Y1 ' Y1 ⊕ Z[D6]

Proof: For Z⊗N the claim is immediate and for Z[D6]⊗N the claim follows
from lemma 2.1.2.

I. Let M = Zt. Then ρZt⊗N(x) = ρN(x) and ρZt⊗N(y) = −ρN(y) and we obtain

- for N = Zt: ρZt⊗Zt(g) = ρZt(g)ρZt(g) = ρZ(g) for all g ∈ D6 and it follows that
Zt ⊗ Zt ' Z.

- for N = Z[C2]: Let P =

(
0 −1
1 0

)
then P−1 =

(
0 1
−1 0

)
and

P−1ρZt⊗Z[C2](g)P = ρZ[C2](g)

and it follows that Zt ⊗ Z[C2] ' Z[C2].

- for N = R,P : ρZt⊗R(g) = ρP(g) and ρZt⊗P(g) = ρR(g) for all g ∈ D6 and it
follows that Zt ⊗R ' P and Zt ⊗ P ' R.
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- for N = indD6
C2

(Z), indD6
C2

(Zt): It follows immediately from Frobenius reciprocity,
lemma 2.1.1, that

Zt ⊗ indD6
C2

(Z) ' Zt ⊗ (Z⊗Z[C2] Z[D6]) ' Zt ⊗Z[C2] Z[D6]

' indD6
C2

(Zt)

and
Zt ⊗ indD6

C2
(Zt) ' Zt ⊗ (Zt ⊗Z[C2] Z[D6]) ' Z⊗Z[C2] Z[D6]

' indD6
C2

(Z).

- for N = Y0, Y1: Since Y0 ' R ⊗ R ' P ⊗ P and Y1 ' R ⊗ P , see below, it
follows that

Zt ⊗ Y0 ' Zt ⊗R⊗R ' P ⊗R ' Y1

and similarly
Zt ⊗ Y1 ' Zt ⊗R⊗P ' P ⊗ P ' Y0.

II. Let M = Z[C2]. For a lattice N we can write the representation of D6 corre-
sponding to Z[C2]⊗N as

ρZ[C2]⊗N(x) =

(
ρN(x) 0

0 ρN(x)

)
, ρZ[C2]⊗N(y) =

(
0 ρN(y)

ρN(y) 0

)
.

- for N = Z[C2]: Let

P =


1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0



then P−1 =


1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

 and P−1ρZ[C2]⊗Z[C2](g)P = ρZ[C2]⊕Z[C2], and it follows

that Z[C2]⊗ Z[C2] ' Z[C2]⊕ Z[C2].

- for N = indD6
C2

(Z), indD6
C2

(Zt): It follows immediately from Frobenius reciprocity,
lemma 2.1.1, that

Z[C2]⊗ indD6
C2

(Z) ' Z[C2]⊗ (Z⊗Z[C2] Z[D6]) ' Z[C2]⊗Z[C2] Z[D6]

' Z[D6]

similarly

Z[C2]⊗ indD6
C2

(Zt) ' Z[C2]⊗ (Zt ⊗Z[C2] Z[D6]) ' Z[C2]⊗Z[C2] Z[D6]

' Z[D6]
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- for N = R,P : Let

P =


1 0 0 1
0 1 −1 1
1 0 −1 1
0 1 −1 0



then P−1 =


1 −1 0 1
1 0 −1 1
1 0 −1 0
0 1 0 −1

 and we obtain P−1ρZ[C2]⊗R(g)P = ρR⊕P(g)

and P−1ρZ[C2]⊗P(g)P = ρP⊕R(g) for all g ∈ D6. It follows that

R⊗ Z[C2] ' P ⊗ Z[C2] ' R⊕P .

- for N = Y0, Y1: Since Y0 ' R ⊗ R ' P ⊗ P and Y1 ' R ⊗ P , see below, it
follows that

Z[C2]⊗ Y0 ' Z[C2]⊗R⊗R ' (R⊕P)⊗R ' Y0 ⊕ Y1

and similarly

Z[C2]⊗ Y1 ' Z[C2]⊗R⊗P ' (R⊕P)⊗ P ' Y0 ⊕ Y1.

III. and IV. Let M = R,P . For a lattice N we can write the representation of
D6 corresponding to R⊗N as

ρR⊗N(x) =

(
0 −ρN(x)

ρN(x) −ρN(x)

)
, ρR⊗N(y) =

(
0 ρN(y)

ρN(y) 0

)
and the representation of D6 corresponding to P ⊗N as

ρP⊗N(x) =

(
0 −ρN(x)

ρN(x) −ρN(x)

)
, ρP⊗N(y) =

(
0 −ρN(y)

−ρN(y) 0

)
.

- For R⊗R and P ⊗ P let

P =


0 1 1 1
1 0 0 1
0 1 1 0
1 0 1 1



then P−1 =


−1 1 1 0

0 1 1 −1
0 −1 0 1
1 0 −1 0

 and we obtain P−1ρR⊗R(g)P = ρY0(g) and

P−1ρP⊗P(g)P = ρY0(g) for g ∈ D6. It follows that

R⊗R ' P ⊗ P ' Y0.
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- For R⊗P let

P =


1 0 1 −1
0 0 1 0
0 0 0 −1
0 1 1 −1



then P−1 =


1 −1 −1 0
0 −1 −1 1
0 1 0 0
0 0 −1 0

 and we obtain P−1ρR⊗P(g)P = ρY1(g) for g ∈

D6. It follows
R⊗P ' Y1.

- for indD6
C2

(Z), indD6
C2

(Zt): As Z[C2]-modules R and P are isomorphic to Z[C2].
Thus it follows immediately from Frobenius reciprocity, lemma 2.1.1, that

R⊗ indD6
C2

(Z) ' R⊗ (Z⊗Z[C2] Z[D6]) ' Z[C2]⊗Z[C2] Z[D6]

' Z[D6]

and similarly R⊗ indD6
C2

(Zt) ' P ⊗ indD6
C2

(Z) ' P ⊗ indD6
C2

(Zt) ' Z[D6].

- for R⊗ Y0 let

P =



0 0 0 −1 0 0 0 −1
0 0 0 −1 −1 1 0 0
−1 0 0 1 0 −1 0 0

1 0 0 0 0 1 0 0
0 0 1 0 0 0 −1 −1
0 0 0 0 −1 0 −1 0
0 −1 1 0 0 0 0 0
0 1 −1 0 0 0 1 0


.

Then

P−1 =



0 −1 −1 0 0 1 1 1
−1 0 −1 −1 1 0 0 1
−1 0 −1 −1 1 0 1 1

0 0 1 1 0 0 0 0
0 0 0 0 0 −1 −1 −1
0 1 1 1 0 −1 −1 −1
0 0 0 0 0 0 1 1
−1 0 −1 −1 0 0 0 0


and P−1ρR⊗Y0P ' ρP⊕Z[D6](g) for all g ∈ D6, and it follows that

R⊗ Y0 ' P ⊕ Z[D6].
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- for P ⊗ Y0 let

P =



0 0 0 −1 0 0 0 1
0 0 1 0 0 0 1 1
0 1 −1 0 0 0 −1 0
−1 1 0 1 0 0 0 0

0 0 0 −1 −1 −1 0 0
0 0 0 0 −1 0 1 0
−1 1 0 0 0 0 −1 0
−1 0 0 1 0 1 0 0


.

Then

P−1 =



−1 1 1 −1 0 0 0 0
0 0 0 0 −1 1 1 −1
−1 1 0 −1 0 0 1 0
−1 1 1 0 1 −1 −1 1

1 −1 −1 1 −1 0 0 −1
0 0 0 −1 −1 1 1 0
1 −1 −1 1 −1 1 0 −1
0 1 1 0 1 −1 −1 1


and P−1ρP⊗Y0P ' ρR⊕Z[D6](g) for all g ∈ D6, and it follows that

P ⊗ Y0 ' R⊕ Z[D6].

- for Y1: Since Y1 ' R⊗P it follows that

R⊗ Y1 ' R⊗R⊗P ' Y0 ⊗ P ' R⊕ Z[D6]

and similarly P ⊗ Y1 ' P ⊕ Z[D6].

V. and VI. Let M = indD6
C2

(Z), indD6
C2

(Zt).

- for N = indD6
C2

(Z), indD6
C2

(Zt). As Z[C2]-lattices indD6
C2

(Z) ' Z ⊕ Z[C2] and

indD6
C2

(Zt) ' Zt ⊕ Z[C2]. Thus it follows from Frobenius reciprocity, lemma 2.1.1,
that

indD6
C2

(Z)⊗ indD6
C2

(Z) ' ((Z⊕ Z[C2])⊗ Z)⊗Z[C2] Z[D6]

' indD6
C2

(Z)⊕ Z[D6]

indD6
C2

(Zt)⊗ indD6
C2

(Z) ' ((Zt ⊕ Z[C2])⊗ Z)⊗Z[C2] Z[D6]

' indD6
C2

(Zt)⊕ Z[D6]

indD6
C2

(Zt)⊗ indD6
C2

(Zt) ' ((Zt ⊕ Z[C2])⊗ Zt)⊗Z[C2] Z[D6]

' indD6
C2

(Z)⊕ Z[D6].
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- for N = Y0, Y1: As Z[C2]-lattices Y0 ' Y1 ' Z[C2]2. Thus it follows from
Frobenius reciprocity for i = 0, 1 that

(indD6
C2

(Z)⊗ Yi) ' (Z⊗ Z[C2]2)⊗Z[C2] Z[D6]

' Z[D6]2

(indD6
C2

(Zt)⊗ Yi) ' (Zt ⊗ Z[C2]2)⊗Z[C2] Z[D6]

' Z[C2]2 ⊗Z[C2] Z[D6] ' Z[D6]2

VII. and VIII. For M = Y0, Y1 and N = Y0, Y1 it follows

Y0 ⊗ Y0 ' Y0 ⊗ (R⊗R) ' (P ⊕ Z[D6])⊗R ' P ⊗R⊕ Z[D6]2

' Y1 ⊕ Z[D6]2

Y1 ⊗ Y1 ' (R⊗P)⊗ (R⊗P) ' (R⊗R)⊗ (P ⊗ P) ' Y0 ⊗ Y0

' Y1 ⊕ Z[D6]2

Y0 ⊗ Y1 ' Y0 ⊗ (R⊗P) ' (P ⊕ Z[D6])⊗ P ' P ⊗ P ⊕ Z[D6]2

' Y0 ⊕ Z[D6]2

QED

3.2 Syzygies and cohomologies of D6-lattices

In this section we will use the results of chapter 2 and section 3.1 to calculate
the syzygies and cohomologies of D6-lattices. We will see that all that is required
are some initial calculations for the trivial lattice Z and that the rest will follow
immediately.

Theorem 3.2.1 The following is a complete list of the minimal representatives

of Ωn(N) for an indecomposable D6-lattices N

N Ω1(N) Ω2(N) Ω3(N) Ω4(N)

Z P ⊕ indD6
C2

(Zt) Y0 ⊕ indD6
C2

(Z) R⊕ indD6
C2

(Zt) Y1 ⊕ indD6
C2

(Z)

Zt R⊕ indD6
C2

(Z) Y1 ⊕ indD6
C2

(Zt) P ⊕ indD6
C2

(Z) Y0 ⊕ indD6
C2

(Zt)

Z[C2] R⊕P Y0 ⊕ Y1 R⊕P Y0 ⊕ Y1
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N Ω1(N) Ω2(N) Ω3(N) Ω4(N)

R Y1 P Y0 R

P Y0 R Y1 P

indD6
C2

(Z) indD6
C2

(Zt) indD6
C2

(Z) indD6
C2

(Zt) indD6
C2

(Z)

indD6
C2

(Zt) indD6
C2

(Z) indD6
C2

(Zt) indD6
C2

(Z) indD6
C2

(Zt)

Y0 R Y1 P Y0

Y1 P Y0 R Y1

In general, we have Ωn(N) = Ωn+4(N) for n 6= −4, Ω−4(N) = Ω4(N) and

Ωn(Z[D6]) is the class of free lattices over Z[D6] for all n ∈ Z. For an arbitrary

lattice N = N1 ⊕ · · · ⊕Nk we have Ωn(N) = Ωn(N1)⊕ · · · ⊕ Ωn(Nk).

Proof: Since D6 has a periodic free resolution of period 4, see [9] chapter
7, it follows that Ωn(Z) = Ωn+4(Z) for n 6= −4, Ω−4(Z) = Ω4(Z) and since
Ωn(N) = Ωn(Z)⊗N the same holds for any lattice N .

Let ε : Z[D6]→ Z be the augmentation map. Then Ω1(Z) is the stable class of
the augmentation ideal ker(ε). It is well known that for any group G the elements
1 − g ∈ Z[G], 1 6= g form a Z-basis of the augmentation ideal. Thus for G = D6

a Z-basis of the augmentation ideal is given by {ê1, ê2, ê3, ê4, ê5} where

ê1 = 1− x, ê2 = 1− x2, ê3 = 1− y, ê4 = 1− xy, ê5 = 1− x2y.

Let
e1 = −ê1 + ê3 − ê5 = −1 + x− y + x2y

e2 = ê2 − ê3 + ê4 = 1− x2 + y − xy

e3 = −ê1 + ê4 = x− xy

e4 = −ê2 + ê3 = x2 − y

e5 = ê5 = 1− x2y

then {e1, e2, e3, e4, e5} is also a Z-basis of ker(ε) (since ê1 = e2 − e3 + e5, ê2 =
e1 + e2 − e3 + e4, ê3 = e1 + e2 − e3 + e4 + e5, ê4 = e4, ê5 = e2 + e5) on which D6

acts via
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ρker(ε)(x) =


0 −1 0 0 0
1 −1 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0

 , ρker(ε)(y) =


0 −1 0 0 0
−1 0 0 0 0

0 0 −1 0 0
0 0 0 0 −1
0 0 0 −1 0

 .

It follows that

ρker(ε) =

(
ρP 0
0 ρ

ind
D6
C2

(Zt)

)
thus a minimal representative of Ω1(Z) is

P ⊕ indD6
C2

(Zt).

To obtain the remaining syzygies we use lemma 2.3.6, Ωn(Z)⊗Ω1(Z) = Ωn+1(Z)
and Ωn(Z)⊗N = Ωn(N), and the calculations of the tensor products in proposition
3.1.2. For example Ω2(Z) = Ω1(Z)⊗ Ω1(Z) and

(P ⊕ indD6
C2

(Zt))⊗ (P ⊕ indD6
C2

(Zt))

' (P ⊗ P )⊕ (P ⊗ indD6
C2

(Zt))2 ⊕ (indD6
C2

(Zt)⊗ indD6
C2

(Zt))

' Y0 ⊕ indD6
C2

(Zt)⊕ Z[D6]2.

Thus a minimal representative of Ω2(Z) is given by Y0 ⊕ indD6
C2

(Zt). QED

Corollary 3.2.2 For the following lattices M the ring HomDer(Ω∗(M),M) is

graded-commutative

M = Z, Zt, R, P , indD6
C2

(Z), indD6
C2

(Zt), Y0, Y1,

R⊕ indD6
C2

(Z), R⊕ indD6
C2

(Zt), P ⊕ indD6
C2

(Z), P ⊕ indD6
C2

(Zt),

Y0 ⊕ indD6
C2

(Z), Y0 ⊕ indD6
C2

(Zt), Y1 ⊕ indD6
C2

(Z), Y1 ⊕ indD6
C2

(Zt),

Proof: The claim follows immediately from theorem 2.5.5 and theorem 3.2.1.
QED

Theorem 3.2.3 The following is a complete list of the cohomology groups Hn(M,N)

of indecomposable D6-lattices.
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I. For M = Z the cohomology groups Hn(Z, N) = Hn(D6,M) are

N H0(M,N) H1(M, N) H2(M, N) H3(M,N) H4(M,N)

Z Z 0 Z2 0 Z6

Zt 0 Z2 Z3 Z2 0

Z[C2] Z 0 Z3 0 Z3

R 0 0 0 Z3 0

P 0 Z3 0 0 0

indD6
C2

(Z) Z 0 Z2 0 Z2

indD6
C2

(Zt) 0 Z2 0 Z2 0

Y0 Z 0 Z3 0 0

Y1 Z 0 0 0 Z3

Z[D6] Z 0 0 0 0

II. For M = Zt the cohomology groups are

N H0(M,N) H1(M, N) H2(M, N) H3(M,N) H4(M,N)

Z 0 Z2 Z3 Z2 0

Zt Z 0 Z2 0 Z6

Z[C2] Z 0 Z3 0 Z3

R 0 Z3 0 0 0

P 0 0 0 Z3 0

indD6
C2

(Z) 0 Z2 0 Z2 0

indD6
C2

(Zt) Z 0 Z2 0 Z2

Y0 Z 0 0 0 Z3

Y1 Z 0 Z3 0 0

Z[D6] Z 0 0 0 0
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III. For M = Z[C2] the cohomology groups are

N H0(M,N) H1(M, N) H2(M, N) H3(M,N) H4(M,N)

Z Z 0 Z3 0 Z3

Zt Z 0 Z3 0 Z3

Z[C2] Z2 0 Z3 ⊕ Z3 0 Z3 ⊕ Z3

R 0 Z3 0 Z3 0

P 0 Z3 0 Z3 0

indD6
C2

(Z) Z 0 0 0 0

indD6
C2

(Zt) Z 0 0 0 0

Y0 Z2 0 Z3 0 Z3

Y1 Z2 0 Z3 0 Z3

Z[D6] Z2 0 0 0 0

IV. For M = R the cohomology groups are

N H0(M,N) H1(M, N) H2(M, N) H3(M,N) H4(M,N)

Z 0 Z3 0 0 0

Zt 0 0 0 Z3 0

Z[C2] 0 Z3 0 Z3 0

R Z 0 0 0 Z3

P Z 0 Z3 0 0

indD6
C2

(Z) Z 0 0 0 0

indD6
C2

(Zt) Z 0 0 0 0

Y0 Z 0 0 Z3 0

Y1 Z Z3 0 0 0

Z[D6] Z2 0 0 0 0
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V. For M = P the cohomology groups are

N H0(M,N) H1(M, N) H2(M, N) H3(M,N) H4(M,N)

Z 0 0 0 Z3 0

Zt 0 Z3 0 0 0

Z[C2] 0 Z3 0 Z3 0

R Z 0 Z3 0 0

P Z 0 0 0 Z3

indD6
C2

(Z) Z 0 0 0 0

indD6
C2

(Zt) Z 0 0 0 0

Y0 Z Z3 0 0 0

Y1 Z 0 0 Z3 0

Z[D6] Z2 0 0 0 0

VI. For M = indD6
C2

(Z) the cohomology groups are

N H0(M,N) H1(M, N) H2(M, N) H3(M,N) H4(M,N)

Z Z 0 Z2 0 Z2

Zt 0 Z2 0 Z2 0

Z[C2] Z 0 0 0 0

R Z 0 0 0 0

P Z 0 0 0 0

indD6
C2

(Z) Z2 0 Z2 0 Z2

indD6
C2

(Zt) Z Z2 0 Z2 0

Y0 Z2 0 0 0 0

Y1 Z2 0 0 0 0

Z[D6] Z3 0 0 0 0
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VII. For M = indD6
C2

(Zt) the cohomology groups are

N H0(M,N) H1(M, N) H2(M, N) H3(M,N) H4(M,N)

Z 0 Z2 0 Z2 0

Zt Z 0 Z2 0 Z2

Z[C2] Z 0 0 0 0

R Z 0 0 0 0

P Z 0 0 0 0

indD6
C2

(Z) Z Z2 0 Z2 0

indD6
C2

(Zt) Z2 0 Z2 0 Z2

Y0 Z2 0 0 0 0

Y1 Z2 0 0 0 0

Z[D6] Z3 0 0 0 0

VIII. For M = Y0 the cohomology groups are

N H0(M,N) H1(M, N) H2(M, N) H3(M,N) H4(M,N)

Z Z 0 Z3 0 0

Zt Z 0 0 0 Z3

Z[C2] Z2 0 Z3 0 Z3

R Z Z3 0 0 0

P Z 0 0 Z3 0

indD6
C2

(Z) Z2 0 0 0 0

indD6
C2

(Zt) Z2 0 0 0 0

Y0 Z2 0 0 0 Z3

Y1 Z2 0 Z3 0 0

Z[D6] Z4 0 0 0 0
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IX. For M = Y1 the cohomology groups are

N H0(M,N) H1(M, N) H2(M, N) H3(M,N) H4(M,N)

Z Z 0 0 0 Z3

Zt Z 0 Z3 0 0

Z[C2] Z2 0 Z3 0 Z3

R Z 0 0 Z3 0

P Z Z3 0 0 0

indD6
C2

(Z) Z2 0 0 0 0

indD6
C2

(Zt) Z2 0 0 0 0

Y0 Z2 0 0 0 Z3

Y1 Z2 0 Z3 0 0

Z[D6] Z4 0 0 0 0

and Hn(M,N) = Hn+4(M,N) for n ≥ 1. For a decomposable lattice M =

M1 ⊕ · · · ⊕Mk, we have

Hn(M,N) =
k⊕
i=1

Hn(Mi, N),

and for a decomposable lattice N = N1 ⊕ · · · ⊕Nk, we have

Hn(M,N) =
k⊕
i=1

Hn(M,Ni).

Proof: For n = 0 it follows from proposition 2.1.6 that H0(M,N) = Hom(M,N) '
Hom(Z,M∗ ⊗ N) ' (M∗ ⊗ N)D6 . And the claim follows from proposition 3.1.1
and proposition 3.1.2.

For n ≥ 1 the claim follows from theorem 2.4.6,

Hn(M,N) ' (im(∂−n)⊗M∗ ⊗N)G/(im(∂−n)⊗M∗ ⊗N)ΣG,

the calculations for Ωn(Z), theorem 3.2.1, and proposition 3.1.1 and proposition
3.1.2. QED
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3.3 Bieberbach groups with holonomy group D6

As mentioned in section 2.2 a Bieberbach group π with holonomy group D6 is
given by a torsion free group extensions

0 // N // π // D6
// 0,

where N is a D6-lattice. In theorem 2.4.8 we proved that these extensions corre-
spond to elements c ∈ C2(Z, N) ' H2(D6, N) which are not in (Ω−2(Z)⊗N)ΣCp

for all cyclic subgroups Cp ⊂ D6 of prime order. The cyclic subgroup of D6 are
C2 = {1, y} and C3 = {1, x, x2}. In the proof of proposition 3.1.1 we calculated
the representatives of HomDer(Z, N) in NG which will give us the representatives
of H2(D6, N) in (Ω−2(Z) ⊗ N)D6 . Thus, to see which one of them determines a
torsion free extension we need to check if they lie in (Ω−2(Z)⊗N)ΣCp , p = 2, 3.

In theorem 3.2.3 we showed that the indecomposable lattices N for which
H2(D6, N) 6= 0 are N = Z,Zt,Z[C2], indD6

C2
(Z) and Y0, and for these lattices

H2(D6, N) and Ω−2(Z)⊗N are of the form

N H2(D6, N) Ω−2(Z)⊗N
Z Z2 Y0 ⊕ indC2(Z)

Zt Z3 Y1 ⊕ indC2(Zt)

Z[C2] Z3 Y0 ⊕ Y1 ⊕ Z[D6]

indD6
C2

(Z) Z2 indC2(Z)⊕ Z[D6]

Y0 Z3 Y1 ⊕ Z[D6]

where the claim for Ω−2(Z) ⊗ N follows from theorem 3.2.1 and proposition
3.1.2. Comparing with the proof of proposition 3.1.1 we see that the repre-
sentatives of H2(D6, N) only come from Y1 or indD6

C2
(Z) and are of the form

a(0, 0, 1, 1)t, a = 0, 1, 2, and b(1, 1, 1)t, b = 0, 1, respectively. Thus we only
need to determine Y1ΣCp and indC2(Z)Σp, p = 2, 3.

For Y1ΣC2 we obtain

ρY1(ΣC2) =


1 −1 0 0
−1 1 0 0

0 0 1 1
0 0 1 1


so that

Y1ΣC2 =

c1


1
−1

0
0

+ c2


0
0
1
1

 | c1, c2 ∈ Z


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and all representatives a(0, 0, 1, 1)t, a = 0, 1, 2 lie in Y1ΣC2 .

For Y1ΣC3 we obtain

ρY1(ΣC3) =


0 0 0 0
0 0 0 0
1 1 3 0
−1 −1 0 3


so that

Y1ΣC3 =

c1


0
0
1
−1

+ 3c2


0
0
1
0

+ 3c3


0
0
0
1

 | c1, c2, c3 ∈ Z


and a representative a(0, 0, 1, 1)t, a = 0, 1, 2 lies in Y1ΣC3 if and only if a = 0.

For indD6
C2

(Z)ΣC2 we obtain

ρ
ind

D6
C2

(Z)
(ΣC2) =

 2 0 0
0 1 1
0 1 1


so that

indD6
C2

(Z)ΣC3 =

2c1

 1
0
0

+ c2

 0
1
1

 | c1, c2 ∈ Z


and a representative b(1, 1, 1)t, b = 0, 1, lies in indC2(Z)Σ2 if and only if b = 0.

For indD6
C2

(Z)ΣC3 we obtain

ρ
ind

D6
C2

(Z)
(ΣC3) =

 1 1 1
1 1 1
1 1 1


so that

indD6
C2

(Z)ΣC3 =

c
 1

1
1

 | c ∈ Z


and all representatives b(1, 1, 1)t, b = 0, 1, lie in indC2(Z)Σ3.

We obtain
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Theorem 3.3.1 Let N be a D6-lattice. Then there exists a torsion-free extension

of N by D6 if and only if Z2 ⊕ Z3 ⊆ H2(D6, N), and any element (a, b) ∈ Z2 ⊕

Z3 ⊆ H2(D6, N) with a 6= 0 and b 6= 0 determines a torsion-free extensions.

In particular, N must satisfy N1 ⊕ N2 ⊂ N where N1 = Z, indD6
C2

(Z) and N2 =

Zt,Z[C2], Y0.
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