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Abstract 
 
Entropy measures were first introduced into geographical analysis during a period 
when the concept of human systems as being in some sort of equilibrium was in the 
ascendancy. In particular, entropy-maximising, in direct analogy to equilibrium 
statistical mechanics, provided a powerful framework in which to generate location 
and interaction models. This was introduced and popularised by Wilson (1970) and it 
led to many different extensions that filled in the framework rather than progressed it 
to different kinds of models. In particular, we review two such extensions here: how 
space can be introduced into the formulation through defining a ‘spatial entropy’ and 
how entropy can be decomposed and nested to capture spatial variation at different 
scales. Two obvious directions to this research, however, have remained implicit. 
First, the more substantive interpretations of the concept of entropy for different 
shapes and sizes of geographical systems have hardly been developed. Second, an 
explicit dynamics associated with generating probability distributions has not been 
attempted until quite recently with respect to the search for how power laws emerge 
as signatures of universality in complex systems. In short, the connections between 
entropy-maximising, substantive interpretations of entropy measures, and the longer 
term dynamics of how equilibrium distributions are reached and maintained have not 
been well-developed. This has many implications for future research and in 
conclusion, we will sketch the need for new and different entropy measures as well as 
new forms of dynamics that enable us to see how equilibrium spatial distributions can 
be generated as the outcomes of dynamic processes that converge to the steady state.   
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Defining Entropy, Interpreting Entropy 
 
If an event occurs with a probability p , then this will give us a measure of 
information about the likelihood of that probability being correct. Any event with a 
very low probability which occurs, gives us a great deal of information whereas when 
an event with a high probability occurs, this is less of a surprise and gives us 
correspondingly less information. Information thus varies inversely with probability 
and we can define this as p/1 . However if we have two independent events with 

probabilities 1p  and 2p , then if one occurs and then the other occurs, we would 

expect the information gained to be 21/1 pp  because the probability of their joint 

occurrence is 21 pp . Yet when an event occurs, it is reasonable to suppose that the 
information gained should be additional to any information already gained and thus 
one might expect the information for both events to be the sum of each. Clearly this is 
not 2121 /1/1/1 pppp   but a function )(F  of which the only solution is the 
logarithm of the inverse of the probability, that is  
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In short, the information gained by the occurrence of any event is )log()/1log( pp   
which can also be thought of as a measure of the uncertainty of the event occurring or 
a measure of surprise (Tribus, 1969). 
 
For a series of n  events, with probabilities nipi ...,,2,1,  , then the average 

information is the expected value of this series which can be written as  
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This measure was first defined in this form by Shannon (1948) when considering 
communication of information over a noisy channel but in fact the formula is central 
to statistical physics, originating with Clausius in the early 19th century but given 
specific statistical interpretation by Boltzmann and then Gibbs as the measure for 
thermodynamic entropy. In particular, the method of entropy-maximising which is a 
major theme here was first associated with finding the distribution of particles in a 
physical context, giving rise to the Boltzmann-Gibbs distribution which serves as the 
baseline for many of the distributions of spatial activity that we will introduce. In fact, 
when Shannon (1948) introduced this measure, he sought advice from John von 
Neumann who had worked with a version of the measure in quantum physics. 
Although apocryphal, von Neumann1 reportedly said: “You should call it entropy, for 
two reasons. In the first place your uncertainty function has been used in statistical 
mechanics under that name, so it already has a name. In the second place, and more 

                                                 
1 (as quoted in Scientific American, 225 No. 3, 1971, p. 180). 
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important, no one really knows what entropy really is, so in a debate you will always 
have the advantage!”  
 
There are many attractive properties of this function for describing spatial 
distributions. Here we will initially assume that the probability ip  is some count or 

density of spatial activity such as population in a zone i  which might be a census 
tract. If all the population were located in a ‘mile high building’ such as the one 
proposed for a town of 100,000 people in 1956 by Frank Lloyd Wright, then 1ip  

and ikpk  ,0  and the entropy would be at a minimum where 0min H . If the 

population were evenly spread throughout the tracts as inpi  ,/1 , then the entropy 

would be at a maximum where nH logmax  . Many distributions lie between these 

extremes and it is possible to construct a variety of related measures that make 
comparisons with the maximum. For example a measure of information difference 
can be constructed as  
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The term on the right hand side of the second line of equation (3) is an information 
difference of the kind widely used in likelihood theory, first popularised by Kullback 
(1959), and discussed widely in a geographical context by Snickers and Weibull 
(1977) and Webber (1979). A normalisation of I  as max/ HIR   is called relative 

redundancy which is a measure varying between 0 and 1. 
 
The entropy measure in equation (2) increases with the number of events or objects 
comprising the distribution. This is intuitively acceptable for as we have more events, 
we have more information unless the additional events have zero probability of 
occurrence. This is easy to show as nH logmax   but it also constitutes a problem for 

spatial analysis because it means that we cannot compare systems with unequal 
numbers of objects or in our case, different numbers of spatial subdivisions or zones. 
We have to normalise it in some way as in equation (3) above and the development of 
spatial entropy which we will present below is one strategy for doing this. This lack of 
comparability has meant that methods for deriving spatial probability distributions 
have been much more to the fore in geographical analysis rather than more 
substantive interpretations of the entropy measure. This has been unfortunate because 
there are some important conclusions to be drawn about the structure of different 
spatial systems with respect to measures of entropy. This is an unfinished quest. 
 
For example, if we consider the hypothetical system in which all the population is 
piled into one zone, the mile high building example, then such as system is 
completely ordered; it has minimum entropy, there is no uncertainty about its 
structure and it has no variety. To make this kind of system possible, we would need 
enormous constraints on its manufacture to the point where everything would have to 
be controlled. In contrast, in systems where the population is spread out evenly, there 
is maximum entropy, maximum disorder, in that this is the situation which would 
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emerge when there were no constraints on the system and every person could live 
where they wanted. Given enough time, people would spread out evenly in the 
absence of any reason for locating in any particular place. What is significant about 
this interpretation is that there are direct connections to thermodynamic entropy where 
maximum disorder occurs when all particles mix freely which occurs when 
temperature in the system rises and any differences are ironed out. In fact the order-
disorder continuum with respect to H  is directly invoked if we consider that as we 
put more and more constraints on what the form of the distribution is, we successively 
reduce the entropy. In this sense, there is a direct tie up between the probability 
distributions which we observe and model and the methods of deriving such 
distributions using the method of entropy maximisation to which we now turn. We 
will first present the method for this relates directly to that pioneered by Wilson 
(1970) for urban and regional systems, although after this, we will describe many new 
insights that seek to show how such methods can be extended to deal with space, 
scale, and scaling. 
 
  
The Entropy-Maximising Framework 
 
To choose a probability distribution that is consistent with information we know the 
distribution must meet, the best strategy is to maximise its entropy subject to a series 
of constraints that encode the relevant information. When entropy is maximised, the 
distribution is the most conservative we can choose and hence the most 
‘uninformative’. Were we to choose a distribution with lower entropy, we would be 
assuming information that we did not have while a distribution with higher entropy 
would violate the known constraints. This maximisation is thus equivalent to choosing 
a distribution that is the most likely or probable within the constraints for it is easy to 
show as Wilson (1970, 2010) does, that the maximum entropy is an approximation to 
the probability of a particular macro state occurring amongst all possible 
arrangements (or microstates) of the events in question.  
 
Unlike Wilson (1970, 2010), we will demonstrate the maximisation for a probability 
distribution of the location of population ip  in n  zones rather than the probability ijp  

of interactions between zones i  and j  although all our derivations are immediately 
generalisable to these more detailed specifications. We must first specify the 
constraints and we take these to be functions of the probabilities that define totals, 
averages or more generically ‘moments’ of the distribution. To demonstrate this, we 
choose two constraints on the location of population. First there is a normalisation 
constraint that ensures the probabilities sum to unity 
 

 
i

ip 1  ,      (4) 

  
and second we choose a constraint on the average cost C of locating in any zone 
which is the sum of the individual locational costs ic   
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We first form a Lagrangian L  which consists of the entropy H  reduced by the 
information encoded into the constraints in equations (4) and (5) and we then find its 
maximum with respect to the probability ip . Then 
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where the parameters 10   and 1  are Lagrangian multipliers that ensure the 

maximisation meets these constraints. Differentiating equation (6) with respect to 
each probability ip  and setting the result equal to zero leads to 
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rearrangement and exponentiation of which gives the probability model 
 
 

)exp( 10 ii cp     .     (8) 

 
Note that the multiplier which is specified as 10  , enables us to get rid of the free 

floating number –1 resulting from the differentiation in equations (6) and (7), thus 
clarifying the ensuing algebra. 
 
The model in equation (8) has some intriguing and appealing properties. The values of 
the parameters 0  and 1  can be determined by solving the model according to the 

constraint equations (4) and (5). If we substitute equation (8) into (4), then it is easy to 
show that )exp( 0  is a partition function defined from 
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The exponential model in equation (8) can then be more clearly written as  
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and from this, we can see that if the Lagrangian multiplier on the average cost of 
location is redundant, that is 01  , the exponential model collapses to a uniform 

distribution where ./1 npi   The last step of the derivation is to substitute the model 

into the entropy equation H  from which it is clear that when the entropy for this 
model is at its maximum, 
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  CcpH
i

ioi 101max )exp(log      . (11) 

 
It is quite clear that this maximum is a function of each multiplier and its constraint, 
with the implication that entropy is a function of the spread of the distribution which 
is determined by the cost constraint. In this sense, entropy can be seen as a system-
wide accessibility function in that the partition and cost relate to the spread of 
probabilities across the system.  
 
The exact form of the relationship in equation (11) requires a little more insight into 
the form of its exponential function. To this end, we need to anticipate the next 
section in moving from a discrete to a continuous form of model. It is easy to show 
that for the exponential function, the summations in equations (4)-(6) and (9)-(11) can 
be generalised to continuous form, by assuming that iii xxpp  )(  and )( ii xcc  , 

where )( ixp  is an approximation to the probability density over the interval or area 

defined by ix , and )( ixc , is an equivalent approximation to the cost density in zone 

i . We assume that as 0 ix , then )()( xpxp i   and )()( xcxc i  . We can thus 

write and simplify constraint equation (4) as 
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which further simplifies to 
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The constraint on travel cost in continuous form can now be written as 
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From the derivations in equations (13) and (14), the exponential model can be stated 
in a much simpler form, equivalent to the Boltzmann-Gibbs distribution in statistical 
mechanics. Noting now that C/1)exp( 10   , the model can be written in its 

classic form as a density  
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where in thermodynamics )(xc  is the energy at location x  and C  is the average 
temperature.  
  
The maximum entropy in continuous form is not however the limit of equation (2) 
with respect to ix  as we will show below. Before we do so, let us state this entropy 

as  
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Then substituting equation (15) into (16), the continuous entropy at its maximum has 
the same form as equation (11) which simplifies to 
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It is now clear that for the appropriate measurements of entropy S  (and H ), these 
vary with the log of the average cost or temperature and it is also clear that the 
parameters 0  and 1  can be approximated from this average cost. In the sense that 

average cost in the system might be interpreted as a kind of accessibility, then entropy 
itself can be see as such a measure. Related insights have been explored by Batty 
(1983), Erlander and Stewart (1990), and Roy and Thill (2004). 
 
Our last foray into the derivation of this model – which we regard as a baseline for 
geographical systems that must meet some conservation constraint such as average 
cost – involves sketching how such exponential distributions can emerge from a 
simple dynamics that involves the movement of costs of location between different 
places i . Let us assume that the system starts with each place i  having the average 
cost of location as C , that is, iCci  , . Also assume that each place has some sort 

of collective consciousness or ‘agent’ that is willing to increase or decrease the cost of 
location if instructed to do so. We set up a simulation where at each time, two places 
i  and j  are chosen at random and a small fixed fraction of the cost of location c  is 
transferred so the total cost (and average cost) of location remains the same. At each 
time, ctctc ii  )()1(  and ctctc jj  )()1(  such that )()1( tctc kk  . We 

also assume that a location cannot receive a negative cost, that there is a lower bound 
to titci ,,0)(   where this boundary condition is absolutely essential for the 

generation of the stable state which ultimately emerges. If this process continues for 
many time steps, what will emerge is a distribution of costs (in locations) which 
follows the Boltzmann-Gibbs distribution in equations (10) or (15) which appears 
when the costs are binned and the relative probability distribution examined. In short, 
what actually happens is that through a process of random swapping akin to energy 
collisions in a thermodynamic system, the system self-organises to the exponential 
distribution from any starting point which in our case is the uniform distribution. This 
process is robust in that many variations of the swapping mechanism involving 
randomness leads to the universal form of a negative exponential which is due to the 
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boundary condition and the conservation of costs. Strictly, the process is best 
considered as one where each location is an individual engaging in the process with 
the resulting probability distribution formed by collecting these individuals into 
‘locations’. Dragulescu and Yakovenko (2000) show many variants of the model 
which lead to the same ultimate form with respect to a simple economic system where 
individuals engage in swaps involving a conserved quantity such as money. They also 
generalise the model by relaxing the boundary constraints and embed it in a wider 
context where wealth which is not conserved is considered, making the point that 
these variants also admit the generation of other distributions such as the lognormal 
and the power law. This kind of model has not been explored in geographical analysis 
hitherto for there has been no consideration of the dynamics that leads to entropy-
maximising. The dynamics that has been explored, is one in which the entropy-
maximising solution is embedded in a wider non-linear dynamics (Wilson, 2010). 
What this discussion introduces is the possibility of disaggregating the entropy-
maximising model to the point where individuals or agents are the basic objects 
comprising the system, thus opening the framework to much more general types and 
styles of simulation such as agent-based modelling. 
 
 
Spatial Entropy: The Continuous Formulation 
 
So far, apart from our brief digression in the last section into continuous entropy, we 
have not made any formal distinction between density and distribution. We have 
assumed implicitly that distribution and density covary which would be the case 
where each interval ixxi  , , that is each interval was the same size as for 

example in a spatial system arranged on a regular grid. In fact, many spatial models 
ignore the size of the interval completely and operational models which build on 
entropy-maximising rarely factor internal size into their simulations which inevitably 
leads to biased applications. Yet we can easily show how interval size must enter the 
analysis explicitly. As before, we first define each element of the probability 
distribution ip  which is the product of an approximation to the density )( ixp  and the 

interval size ix   
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Using equation (18) in the entropy H , equation (2) can be written 
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When we pass to the limit 0lim  ix , equation (20) can be written as 
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where the first term on the RHS of equation (21) is the continuous Shannon entropy 
defined above as S  in equation (17). It is clear from equation (21) that H , as 

0lim  ix , which is another way of saying what we have already said in the 

previous section, that is, if inXxi  ,/ , then nH log~  and this goes to infinity in 

an equivalent way.  
 
The key to augmenting the entropy-maximising method is to use a discrete 
approximation to the continuous entropy S . Using equation (19) in the approximation 
to S  which is the first term on the RHS of the second line of equation (20) gives 
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which we define as spatial entropy (Batty, 1974; Goldman, 1968). Using equation 
(22) instead of equation (2) in the entropy-maximising scheme which involves 
minimising the Lagrangian in equation (6) with ii xp /  for ip  in equation (7), leads 

to the augmented Boltzmann-Gibbs exponential model, the equivalent of equation 
(10) 
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Equation (23) can be interpreted as a model in which the interval size has been 
introduced as a weight on the probability, and is consistent with the continuous 
version of the Boltzmann-Gibbs model when passing to the limit 0 ix . 

 
There is however another interpretation of this augmented model. If we write the 
entropy SH  in the expanded form of equation (22) as 
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then we can consider the second term on the RHS of equation (24) – the expected 
value of the logarithm of the interval sizes – as a constraint on the discrete entropy 
H . In equation (24), this is a very specific constraint in that it is simply a direct 
augmentation to the discrete entropy. Instead we set this as a freely varying constraint 
on the discrete entropy in the form 
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and introducing this into the Lagrangian in equation (6) which we now write as 
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The model that we derive from this minimisation can be written as 
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which in more familiar form can be written as 
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The interval or zone size thus enters the model as a scaling factor, a kind of benefit 
rather than cost in the same way such factors are introduced by Wilson (1970, 1971) 
in his family of spatial interaction models. It is also clear comparing equations (23) 
and (28) that if the multiplier 2  is forced to be unity, then the constraint on interval 
size enters the model in exactly the same way as if it were incorporated into the 
entropy in the first place, that is as a maximisation of spatial rather than discrete 
entropy. Note also that in entropy-maximised equations like (28) the sign of the 
multipliers is undetermined until they are fitted to meet the constraint equations. 
There is one further point on this augmented maximisation. If constraint equations in 
the Lagrangian or augmentations to the entropy are of logarithmic form, then the 
relevant variables enter the model as power laws, that is, they are scaling, and any 
continuous version of the derivation has to be modified to ensure that these 
constraints lie within defined limits. We will return to this point later when we deal 
more formally with scaling. 
 
The standard example that Wilson (1970) uses to demonstrate the logic of entropy 
maximisation is for trip distribution or spatial interaction where the entropy is based 
on the probability ijp  that a person makes a trip ijT  from an origin zone i  such as a 

workplace to a destination zone j  such as a residence. An example of the 
unconstrained model which is subject to an equivalent cost and normalisation 
constraint is derived by maximising 
 


i j

ijij ppH log  ,     (29) 
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ijc  is the cost of interaction between zones i  and j  and the model is derived as 
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The density equivalent is based on normalising the probability with respect to the size 
of the zones at each origin and destination ix  and jx . Following through the same 

logic used to derive equation (23) for the one-dimensional case, and using the 
appropriate spatial entropy with respect to jiij xxp / , we generate the equivalent 

interaction model as  
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Note that all the same conclusions about the measure of entropy and the way the 
model can be simplified as developed for the location model follow for the interaction 
model in equation (32). If xxxx ji  , the model collapses to the distributional 

form in equation (31) while if 01  , the model collapses to the uniform distribution, 
weighted according to the interval size for the distributional form. The way in which 
attractors or benefits can be introduced either as augmented measures to the entropy 
or as constraints also follows and in this sense, equations (23) and (32) are generic 
forms. 
 
Before we move to deal with questions of scale and aggregation, we will reintroduce 
our earlier definition of information differences with respect to entropy. Statistical 
information is defined as the difference between two distributions }{ ip  and }{ iq  

where }{ iq  is often referred to as the prior and }{ ip  the posterior. Kullback (1959) 

and in a geographical context, Snickers and Weibull (1977) and Webber (1980), 
amongst others, define information I  as  
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I  varies between zero and infinity, zero being the measure when iqp ii  , , that is 

there is no difference between prior and posterior; in short no information is gained by 
moving from prior to posterior. If we now assume that the prior probability 
distribution is proportional to the interval size, that is 
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where X  is the area of the entire system, then the information in equation (33) 
becomes 
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When ixxi  , , it is clear that equation (35) collapses to equation (3) which we 

repeat here as 
 


i

ii ppnHHI loglogmax   .   (36) 

 
There are many such manipulations of entropy and information which all give oblique 
insights into the measure and the shape of the relevant distributions, some of which 
will recur in the subsequent discussion. 
 
To conclude this section, it is worth noting how straightforward it is to get some idea 
of the magnitude of these different entropy measures and the way the value of the 
multipliers invoked through their maximisation can be approximated from data. We 
have taken population }{ iP , normalised with respect to total population P  as 

PPp ii /  and land area ix  of all the wards in Greater London )633( n  to 

measure the entropies H  and SH . We have defined the costs }{ ic  of location as a 

weighted measure of the transport costs }{ ijc  from any ward i  to all others ij  , 

defined as  j ijji cpc  and  i iicpC . We have mapped the population }{ ip , the 

population density }/{ ii xp  , and these location costs }{ ic  in Figures 1(a) to 1(c). 

The various measures are shown in the table which is part of Figure 1 where we have 
also computed the two multipliers 0  and 1  first by solving the constraint equations 

(4) and (5), and then for the continuous multiplier 1 , solving for the cost equation in 
equation (14) and the continuous entropy in equation (17). The differences between 
these values gives some measure of the extent to which the model fits the data and the 
extent to which the discrete and continuous models give equivalent results. 
   
 
Scale and Entropy: Aggregation and Constraints 
 
Shannon’s entropy in equation (2) has an exceptionally easy-to-manipulate log-linear 
structure and additive form that allows it to be aggregated with respect to groups of 
objects that might pertain to some higher level of organisation in the system of 
interest. Theil (1972) refers to this process of aggregation as the entropy 
decomposition theorem and to illustrate it, we first divide the set Z  of n  objects, in 
this case the spatial zones of the geographical system, into K  sets, KkZ k ...,,2,1,   

each with kn  objects such that nnk  . The sets are mutually exhaustive and 

exclusive in that 
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a b

c  
Statistic/Parameter Value 

 
Discrete Entropy H  

 
2.7907 

Spatial Entropy SH  3.0927 

0  from equations (4)-(5) 2.3442 

1  from equations (4)-(5) 0.0078 

0  from C  1.9966 

1  from C  0.0081 

0  from SH  2.0927 

1  from SH  0.0101 
  

 
Figure 1: Population (a), Population Density (b) and Location Costs (c) Used to 

Compute Entropies and Multipliers for the Boltzmann-Gibbs Model 
 
 
where  is the null set. Note now that each probability ki Zp   is defined so that  

 

  
 


k kZi k k Zi

ikik pPandpP 1 .  (38) 

 
Using these definitions in equations (37) and (38), we can write the discrete entropy 
in equation (2) as 
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where BH  is the between-set entropy at the higher system level and the second term 
on the RHS of the second line of equation (39) is the sum of the within-set entropies 

kH  weighted by their probability of occurrence kP  at the higher level. In fact it is 
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easy to show that as the sets kZ  get fewer and progressively larger from the original 

set Z  – which is tantamount to disaggregation of the entire set into smaller and 
smaller sets – that the within-set entropies decrease in sum and the between-set 
entropy BH  rises in value until all there is one aggregated set for each object, that is 

HH B  . Moving the other way, when all the objects are aggregated into one set 

then, 0BH , and HHP kk  . Proofs of these assertions are given in Theil (1972) 

and Webber (1979). 
 
It is a simple matter to state the equivalent decomposition formula for spatial entropy 
as we have defined it in equation (22). Then noting that  
 


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kZi

ik xX   ,      (40) 

 
where kX  is the sum of the intervals – areas – in each aggregated set kZ , then spatial 

entropy can be decomposed as 
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where SBH  is the between-set spatial entropy and Skk HP  is the sum of the weighted 

within-set spatial entropies. There is an information difference structure buried in 
equation (41) as we spelt out earlier for spatial entropy between equations (33) and 
(36) and similar interpretations apply. In fact, in developing decompositions of 
entropy and spatial entropy in this fashion, the focus has been on explaining the 
variation in entropy at different spatial scales, noting that entropies can be nested into 
a hierarchy of levels; that is, the between-set entropies can be further subdivided into 
sets which are smaller than kZ  but larger that the basic sets for each object or zone 

iZ . These ideas have been used to redistrict zones to ensure equal populations in the 

case of the discrete entropy and equal population densities in the case of spatial 
entropy in the effort to design spatial systems that meet some criteria of optimality 
that pertain to scale and size (see Batty, 1974, 1976; Batty and Sammons, 1978). In 
this paper, we will not deal with the effect of shape on entropy but there are 
extensions to deal with idealised spatial systems that also incorporate constraints on 
shape such as the regularity of boundaries although developments in this area have 
been limited (Batty, 1972, 1974). 
 
These decomposed entropy measure can be used in entropy maximisation enabling 
models to be derived that are constrained in different ways at different system levels. 
Let us assume that the cost constraint on probabilities pertains to the entire system as 
in equation (5) but that entropy needs to be maximised so that the aggregate 
probabilities sum to those which are fixed by the level of decomposition or 
aggregation chosen, as fixed in equation (38) above. We set up the Lagrangian to 
maximise equation (39) with respect to equations (38) and (5) as follows 
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and then minimise this as 
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to derive the model that we can state as 
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We can compute the partition function directly by substituting for ip  in equation (38) 

and this leads to 
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from which the relevant exponential model in equation (44) can be more clearly 
written as  
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Note that the constraint equation on cost is for the entire system and this effectively 
couples together the various models for each subset in terms of their calibration but 
not in terms of their operation. 
 
We need to be careful about the way these models are coupled for if there are no 
system-wide constraints, then the models are separable; in fact the entropy-
maximising is separable into K  subproblems. For example, assume that the cost 
constraint in equation (5) is replaced with cost constraints that pertain to the subsets 
written as  
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Then from equation (47), it is clear that the system-wide constraint is also met as 
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If we use equation (48) in (42) noting that now we have K  multipliers k

1 , then the 
model that is derived has the same structure as equation (44) but can now be written 
following (46) as 
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This model is not only separable for each subset kZ  but each model is also calibrated 

separately with respect to the cost constraint and determination of the multipliers 
}{ 1

k . Using spatial entropy-maximising adds little to this logic other than ensuring 
that the interval or area for each zone appears in the exponential equation. If we 
follow the same process, the equivalent model to that in equation (49) can be written 
as  
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where if the system-wide cost constraint in equation (5) applies, the only difference is 
that there is one multiplier 1 , not K . To provide some sense of closure to this 
argument, readers are referred to Theil (1972) who provides many applications of 
these kinds of decomposition to the measurement of variance and difference at 
different levels of disaggregation for both spatial and non-spatial systems, connecting 
these ideas to a much wider literature in the measurement of inequality. 
 
 
Generating Spatial Probability Distributions 
 
So far we have defined both entropy and its method of maximisation with respect to 
probabilities that pertain to spatial locations. In terms of the typical problem, then we 
are assuming that the probability of location is some function, in the classic 
Boltzmann-Gibbs case a negative exponential, of some size variable such as cost. 
Implicitly, in this case, the probability of location might be proportional to the 
observed population in any zone and it would make sense to assume a higher 
probability of location measured by a higher population would be associated with a 
lower cost (or higher benefit) of locating in the place in question. However, there is 
another interpretation which is less specific with respect to the kinds of probability 
distribution that emerge from entropy-maximising and this depends on how one sets 
up the problem. In this section and the rest of this paper, we will assume that it is 
some measure of size, not cost, that the probability distribution must conserve and 
probabilities will vary with respect to this size variable. In short, rather than thinking 
of the spatial location problem as one in which the probability of population locating 
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is with respect to some size or cost, we will now develop the model as one in which 
the probability of location is dependent on the actual population size which is 
observed in the locations in question. As we will see, this is the obvious way in which 
to develop entropy-maximising for city-size distributions, an area that has remained 
quite confused since Berry (1964) and Curry (1964) first speculated about these 
questions over 40 years ago. This is also the route by which we can connect up the 
arguments of this paper to size distributions in general and power laws in particular. 
 
To extend entropy-maximising in this way, we will replace the probability ip  of each 

event with its frequency )(f . We will define a function of the size of the event iV  

which in many of our cases will be literally the population size, although it could be 
defined as any related measure. Then we derive the appropriate discrete probability 
frequency for )( iVf  by maximising its entropy H  defined in analogy to equation (2) 

as 
 


i

ii VfVfH )(log)(  .     (51) 

 
This will be subject to the usual normalisation and constraints associated with the 
moments of the distribution which we define as 
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iiiii VVVfVVVfVf .....onsoand)(,)(,1)( 22   (52) 

 
This discussion and notation follows Tribus (1969) although there are several other 
presentations of this process which have more formal roots in probability theory. As 
befits a paper such as this, the presentation is informal. 
 
The Boltzmann-Gibbs negative exponential model is still the baseline in entropy 
maximisation since it introduces a constraint on the distribution which is the first 
moment, the average and no others except for the normalisation of the probabilities. 
Then following the same logic as we used earlier in equations (4) to (10) and noting 
that we can assume the intervals over which the discrete frequency is measured to be 
equal, that is ixxi  ,  (to avoid any confusion with spatial entropy at this stage), 

we maximise equation (51) subject to the first two constraints shown in (52). Using 
the relevant Lagrangian with appropriate multipliers leads to  
 

ii VVf 10)(log     .    (53) 

 
This has the classic log-linear form which generates the Boltzmann-Gibbs probability 
frequency  
 
 

)exp()( 10 ii VVf     ,    (54) 

 
which gives the familiar exponential form 
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From equation (55), it is clear that the larger the size, the lower the probability which 
is of course the same as the previous interpretation with size equivalent to locational 
cost. This is made more graphic if we rearrange equation (53) where size is now a 
function of frequency 
 

)(log
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ii VfV
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  .     (56) 

 
However if the size iV  is population as measured in terms of the number of 

individuals living in zone i , then we cannot equate cost with size in any way for it is 
much more likely that larger populations live in places where the costs of location are 
lower, all other things being equal. This is the confusion that has never really been 
resolved in generating size distributions from entropy-maximising. The motivation for 
the earlier models such as those developed by Wilson (1970) was always to maximise 
entropy with respect to a cost constraint whereas the models of this section are to 
maximise entropy with respect to a size constraint. In this context, it is perfectly 
reasonable to assume that if an individual were to locate across a space, that there are 
many more places to locate where populations are smaller than places where 
populations are large. It is in this sense, that frequency in this section is different from 
probability in the previous sections, although formally the algebraic expressions are 
identical. 
 
We can now show very simply how the negative exponential can become a power 
function if the constraint on average size is replaced by its geometric equivalent, that 
is  
 

VVVf
i

ii  loglog)(  ,     (57) 

 
where Vlog is the expected value of the sum of the logarithms of the sizes. We are 
assuming that that this is defined for a discrete system for there are difficulties which 
we note below when we examine the rank-size rule and its consistency with entropy 
maximisation where the continuous version of the model must be invoked for 
purposes of simplification and demonstration. However if we maximise entropy 
subject to this and the normalisation constraint, the model becomes 
 

ii VVf log)(log 10     ,    (58) 

 
which in exponential form is  
 
 

1)exp()( 0
  ii VVf   .    (59) 

 
Equation (59) is a power function which in more familiar terms can be written as 
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where from equation (60), we can write the model in reverse form in analogy to 
equation (56) as 
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In this context, iV  also varies inversely with the power of frequency. From equation 

(61), we can generate the more familiar rank-size rule which has been known for well 
over a century, first exploited for income sizes by Pareto (1906) and then for city sizes 
by Zipf (1949). We will explore these functions in the next section. 
 
If we now maximise entropy with respect to the three constraints stated in equations 
(52), noting that the third constraint can be also simplified to 
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then this leads to 
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In the first exponential form, this is  
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which in the more familiar terms is 
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As Tribus (1969) shows, equation (65) is a form of the normal distribution. What is 
interesting about the entropy-maximising derivation is that it makes explicit the 
polynomial form of the normal with the contribution of the mean and the variance 
directly associated with the multipliers 1  and 2 . It can be shown that 1  is negative 

making this exponential positive and 2  is positive meaning the variance term acts as 
a negative exponential. The normality of the distribution of course is always 
preserved no matter what the value of these multipliers. Moreover if 21    then 
this is tantamount to the variance of the distribution getting smaller and smaller with 
the normality more and more peaked. We can now complete this set of distributions 
by assuming that the size distribution is lognormal, that is, that instead of iV , we now 
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define size as its logarithm iVlog . We will formally restate the constraint equations 

for the lognormal as 
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and maximising equation (51) subject to equations (66) gives the model in final form 
as 
 
















i
ii

ii

i
ii

ii
i

VV

VV

VV

VV
Vf

21

21

)(

)(
          

))(loglogexp(

))(loglogexp(
)(

2

2

2
11

2
11








 .   (67) 

 
From equation (67), it is now very clear that if 21   , then the lognormal form 
collapses to the inverse power law form but only for a range of the largest values of 

iV . This in fact is one of the simplest demonstrations that power laws tend to 

dominate in the upper or heavy tail of the lognormal distribution. Again the same 
caveats as to the existence of the moments for the discrete case apply, which for the 
sorts of spatial system to which these models apply, this will always be the case, that 
is where  iV1 . Tribus (1969) has a relatively straightforward demonstration of 

the properties of the normal distribution with respect to the values of the parameters 
which can be determined from an approximation to the continuous probability density 
function. 
 
 
Approximating Scaling: The Rank-Size Rule and Zipf’s Law 
 
The negative exponential and power law models that have been generated using 
entropy-maximising in the previous section represent discrete density functions 
relating frequency to size. In fact these distributions already define the form of the 
population or city-size distributions (where spatial locations i  define the locations of 
distinct cities). However a more popular form, particularly for city sizes, firm sizes, 
incomes and related social phenomena involves ranking these sizes from the largest 
value of iV  which we now call rank 1r  to the smallest which we call rank nr . In fact, 

the rank is the counter-cumulative of the frequency (Adamic, 2002). If we accumulate 
the frequencies from, let us say, some value of nmi   to the largest value of ni  , 
then this accumulation would define the rank mnr  . We can only express this formally 

if we consider the continuous approximation to )( iVf  as )(Vf  which is defined 

when 0 ix . Let us first take the exponential model defined in equation (55) in its 
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continuous limit as )exp(~)( 1VVf  . Then the integration defining the counter-
cumulative )(VF is 
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where kmn rrVF ~)( , mi  and ink  . Thus 
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from which 
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Equations (70) define rank as a function of population and population as a function of 
rank which exposes the clear log-linear structure of the exponential rank-size 
relationship. 
 
In fact, the classic rank-size relationship is normally developed for the relationship 
between size and frequency expressed as a power law. The continuous limit based on 
equation (60) can be written as 1~)( VVf  from which we define the counter-
cumulative )(VF as 
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where )(VF  is the rank kr  as defined for the integration of the exponential following 

equation (68). This rank can be written as 
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Equations (73) define rank as a function of population and population as a function of 
rank. From equations (72) to (73), it is clear that these power laws are scaling; that is, 
if we scale size by   as kV , then the rank does not change and this can be 

demonstrated by substituting kV  for kV  in any of the above equations. In fact, a 
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power law is the only function that has this property, hence its claim as the signature 
for universality. 
 
It is worth noting that using the logarithmic mean of the size as the major constraint in 
generating distributions in the inverse power or Zipf-Pareto form, is consistent with 
assuming that size (or cost) can be seen as a regular distortion based on human 
perception. This is known as the Weber-Fechner-Stevens law which pertains to the 
fact that increases in how we perceive brightness and sound, even the way our 
cognitive senses respond to size, are proportional to the logarithm, not the actual 
value, of the relevant measure of intensity (see Stevens, 1957). In spatial interaction 
modelling, Wilson (1970, 1971) made use of this to show how the original 
gravitational hypothesis is consistent with models produced by entropy-maximising, 
particularly in the context of very long distance flows such as those measured as 
commodities in trade systems, where the perception of travel cost is more likely to be 
logarithmic than absolute. Of course the same arguments are used to incorporate 
additional constraints which might be thought of as benefits rather than costs, 
reflecting the fact that agglomeration economies are sometimes perceived 
logarithmically. 
 
We can also generate rank-size distributions for the normal and lognormal models that 
we derived in equations (65) and (67) respectively. In fact, there is little point in 
pursuing this for the normal but the lognormal is a special case largely because there 
are many arguments that suggest that city, firm and income size distributions are not 
consistent with power laws but in fact are lognormal where the power law only 
applies as an approximation to these distributions in their upper tail. Writing equation 
(67), noting the signs of the multipliers as determined by Tribus (1969), expressing 
the first multiplier as   and the second as  , and then passing to the limit, this 

becomes  2~)( VVVf  from which we form the counter-cumulative as 
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From equation (74), it is clear that the shape of the lognormal is completely dependent 
on the value of the parameters   and   but we can speculate on the shape of the 

function for various ranges of size from these values and the size }{ iV . The rank and 

size relationships in analogy to equation (73) can be written as 
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If  21 , then for the largest values of kV , the second term in the first line of 

equation (75) dominates and this implies that the rank-size relation is more like a 
power law in its upper or heavy tail. 
 
This is a somewhat informal way of demonstrating the relationship between inverse 
power and lognormal functions and readers are referred to more considered sources 
which elaborate this relationship more strictly. Perline (2005) has an excellent 
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discussion of when one is able to approximate the heavy tail of a lognormal with a 
power law which builds on earlier expositions that are part of the literature on skewed 
probability functions as summarised by Montroll and Schlesinger (1982, 1983). It is 
not our purpose here to develop a treatise on the lognormal or indeed on Zipf and 
Pareto power laws for we have shown that both can be derived from entropy-
maximising but it is important to note that power laws can emerge from two sources: 
first directly if the constraint on the entropy is a geometric mean and second when the 
constraints on the entropy are those that define the lognormal but for very large values 
of the size distribution where the variance of the distribution is also very large, 
effectively meaning that the heavy tail occurs over several orders of magnitude. If we 
examine the data we used earlier for Greater London, the range of values for the 
distribution of population densities is much too narrow to see any evidence of an 
inverse power function in the upper tail. In such an intra-urban context, the variation 
between the largest and smallest values it not enough as populations in the centre are 
very small due to competition from other activities. Readers are referred to the 
mainstream literature on city-size distributions where these issues are discussed in 
more detail. The recent paper by Eeckhout (2004) is representative.   
 
There is one last substantive issue that we need to discuss to complete our 
presentation on how scaling distributions are associated with entropy-maximising. 
The traditional explanation of how power laws come to dominate spatial and social 
distributions is essentially based on a generic model that leads to agglomeration 
economies in which it is becomes increasingly unlikely that any object chosen at 
random grows to a very large scale, realising agglomeration economies that are 
associated with large cities, people with large incomes, the domination of large firms 
and so on. In essence, the growth or decline in size of any object comprising such 
competitive systems is based on Gibrat’s (1931) law of proportionate effect in which 
any object grows or declines by a random amount whose value is proportionate to the 
size of the object already reached. This process, if operated continually for many time 
periods, leads to a distribution of objects which is lognormal. If the process is 
constrained so that objects do not decline in size below a certain threshold (which is 
tantamount to not letting size become negative), then several authors have shown that 
the resultant distribution is no longer lognormal but is scaling in the form of an 
inverse power function. These conclusions have emerged from several sources in 
physics (Levy and Solomon, 1996), in economics (Gabaix, 1999; Saichev, 
Malevergne, and Sornette, 2010), in earth sciences (Sornette, 2006) as well as in 
several other areas of social inquiry (Blank and Solomon, 2000; Newman, 2005).  
 
In fact, this dynamics which is referred to by Solomon (2000) as the ‘Generalised 
Lotka-Volterra (GLV) model’, essentially illustrates that in the steady state, power 
laws emerge from processes in which there is random proportionate growth against a 
background of transitions between individuals or places in terms of the variable of 
interest, be it population, income, wealth, cost and so on. The steady state results 
generated by such models are also consistent with Boltzmann distributions as 
Richmond and Solomon (2001) show, while Foley (1994) and then Milakovic (2003) 
show that entropy-maximising can be employed directly with the dynamics being 
embedded as constraint equations which the process of wealth creation must meet. 
There is now an enormous literature dealing with stochastic GLV types of model 
which build on proportionate effect leading to lognormal and power laws. Several 
oblique interpretations of the steady states associated with such processes as 
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Boltzmann-Gibbs distributions exist, as Richmond and Solomon (2001) say as “ … 
Boltzmann laws in disguise”. The earlier dynamic models developed by Dragulescu 
and Yakovenko (2000) are also being extended to deal with systems where the 
constraints on distributions of money, wealth, and income all vary with consequent 
differences in their distributions, in turn providing a rich source of interpretations for 
the way inequalities emerge in economic systems (Yakovenko and Rosser, 2009). 
Little of this has yet to find its way into spatial or geographical systems for the 
concern with city-size distributions has been remarkably aspatial in contrast to 
entropy-maximising in geographical analysis but there are signs of a convergence. 
Wilson’s (2008) recent work, for example, is seeking to generalise entropy-
maximising in a dynamical framework that he refers to as Boltzmann-Lotka-Volterra 
(BLV) models and these have clear links to GLV models. At present approaches to 
dynamics can be seen as either constructing a Lotka-Volterra dynamics which leads to 
Boltzmann-Gibbs and related distributions or as Boltzmann-Gibbs distributions which 
are nested within Lotka-Volterra dynamics. There is much synthesis to be done and 
there appear many fruitful insights to be gained by these extensions. After a period of 
reflection and consolidation, it is now entirely possible that there will be a rebirth of 
interest in measures of entropy and entropy-maximising in geographical analysis. 
 
 
Future Research: Alternative Entropies, More Explicit Dynamics 
 
Earlier in this paper, we argued that one of the things that has never been 
systematically tackled with respect to the application of entropy measures and 
methods in geographical analysis involves a thorough interpretation of what the 
various measures actually mean in terms of spatial distributions with respect to their 
size, scale, and shape. The Shannon entropy measure in equation (2) is only one of 
many such measures, albeit perhaps the most natural in that it satisfies the multiplicity 
requirement for independent events in terms of the additivity of information as 
defined in equation (1). But if events are not independent and the entropy phase space 
is structured in ways that do not allow probabilistic events to occur in all parts of the 
space, then the Shannon measure is not necessarily the most appropriate. In fact in 
geographical systems, events can be highly auto-correlated in space as well as time 
and thus the methods used to generate probability distributions in equilibrium or the 
in the steady state can be badly compromised if more appropriate measures are not 
chosen. 
 
Amongst these, the measure proposed by Reyni (1961) introduces a parameter   
which gives greater weight to larger probabilities if this parameter is greater than 1, 
lesser weight if less than 1 and is the same as the Shannon entropy for 1 . It has 
many similar properties to the Shannon measure in terms of its maximum and 
minimum but could be more useful for spatial systems where larger probabilities 
imply greater importance. There are few if any applications in this field (but see 
March and Batty, 1975) and thus this measure is worth exploring further. A more 
radical form of measure broaches the question of the independence of events directly 
and breaks with the assumptions in equation (1) defining a measure of joint 
information for any addition of information due to a sequence of probability events. 
This is called Tsallis entropy which Tsallis (2004) argues represents an entropy where 
events are non-extensive, that is, events that apply to a more structured phase space 
than that assumed for the original Shannon measure. The attraction of the Tsallis 
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measure (which formally is not unlike the Reyni entropy) is that in its use in 
maximisation, the resulting model is an inverse power law, not the negative 
exponential. All these measures can be decomposed for different scales, continuous 
equivalents can be approximated, and they can be reconciled with methods and 
models that generate their form as either equilibrium distributions or as the outcome 
of stochastic proportional growth processes. An agenda for testing their applicability 
to geographical systems would not be hard to fashion. 
 
Wilson’s (1970) contribution however is that he introduced a framework for 
generating consistent models rather than a set of methods for enabling measurement 
of actual entropies. Actual measures do fall out along the way but the real power of 
the entropy-maximising framework that he introduced is in the generation of specific 
and applied models while at the same time demonstrating that entire families of 
models could be pictured across a spectrum of possible types. In this sense, his 
methods provide a lasting framework for the derivation of operational models which 
continue to be useful, indeed essential in consistently specifying and coupling 
different models together. The development of entropy-maximising in generating 
economic models came much later and has yet to adopt the systematic procedures 
demonstrated for spatial systems by Wilson (2010). Yet despite the power of entropy-
maximising, it is compromised a little in that it is easy to show that space itself should 
be directly incorporated into the framework so that dimensional consistency can be 
ensured through use of spatial entropy rather then it discrete equivalent, the Shannon 
measure. Existing practice of defining operational location and interaction models has 
not really followed these procedures, nor has it systemically examined the sets of 
constraints that are needed to define particular problems with respect to what is 
known and not known about the systems of interest. There is still much to do with 
respect to using entropy-maximising to establish formalised methods for aiding the 
spatial model building process. 
 
Last but not least, dynamics has slowly entered the picture. The great attraction of the 
framework when it was first proposed 40 years ago was that it could generate models 
in equilibrium. Dynamics was assumed to be benign, even to the point where simple 
models such as that used to move money around in an economic system developed 
only a decade or so ago by researchers such as Drăgulescu and Yakovenko (2000), 
have never been explored in spatial analysis. Seeing geographical systems in 
equilibrium was enough. When researchers such as Wilson (2008) began to explore 
how such models could be made dynamic, they decoupled the dynamics from the 
statics assuming that Boltzmann-Gibbs models represented a shorter, faster 
equilibrium that could be nested in the longer term dynamics associated with the 
models originally proposed by Lotka and Volterra. As we argued in the last section, 
there is now a new momentum emerging. These different but related approaches are 
generating a new synergy about how geographical systems develop, consistent with 
emergence and far-from-equilibrium structures as well as new concepts about how to 
model such systems from the bottom up. During the last 20 years, entropy in 
geographical systems has no longer been at the cutting edge. But there is now every 
sign that these ideas will be resurrected as part of the burgeoning interest in 
complexity science which is forcing upon us the notion that equilibrium is a 
convenient fiction that we must move beyond. 
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