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ABSTRACT 
DNA repair genes are expressed in mammalian embryos and in human germinal 

vesicles, however, little is known about DNA repair in human preimplantation embryos.  

 

This project had three aims:  1) to produce a DNA repair profile of human MII oocytes 

and blastocysts using expression arrays and identify repair pathways that may be active 

before and after embryonic genome activation; 2) to design an in vitro functional assay 

that targeted mismatch repair and which could be applied to human oocytes and 

embryos; 3) to investigate the effect of germline mutations in DNA repair genes on 

early human embryonic development by initiating a preimplantation genetic diagnosis 

(PGD) service  for these genes. 

 

Microarray profiling showed that all DNA repair pathways were potentially functional 

in human oocytes and blastocysts.  Higher mRNA levels were detected for most repair 

genes in oocytes compared to blastocysts. 

  

The functional assay for insertion/deletion loops (IDL) and mismatch repair was more 

sensitive than available methods.  Repair was detected for 3, 21 and 24-nucleotide IDLs 

and single base mismatches.  Optimisation is necessary to improve sensitivity of the 

assay before it can be applied to nuclear extracts from pooled oocytes or embryos. 

  

PGD protocols were developed for two BRCA1 mutations (c.68-69delAG and 

c.3339T>G) and one MSH2 mutation (c.1277-?_1386+?del).  One BRCA1 protocol was 

clinically applied resulting in the birth of a healthy child.  Morphological assessment of 

embryos from this treatment cycle showed that the presence of the germline mutation 

adversely affected development between days 3 and 5 post fertilisation.  The other two 

PGD protocols were licensed for treatment by the HFEA. 

 

The availability of donated oocytes and embryos from this PGD service will allow the 

investigation of repair pathways by real time PCR to examine specific genes selected 

from the microarray expression profiles and by the application of the functional assay. 
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1 INTRODUCTION 

1.1 Early stages of embryonic development 
1.1.1  Gametogenesis, fertilisation and the preimplantation embryo 
During gametogenesis, a process involving meiosis and cell differentiation, primordial 

germ cells (PGCs) are converted to mature male and female gametes (spermatozoa and 

definitive oocytes).  In males, PGCs remain dormant during embryonic development 

until puberty when the seminiferous tubules mature and germ cells differentiate into 

spermatogonia.  Spermatogonia enter mitosis throughout life, but not continuously.  

Starting at puberty and until death, successive waves of spermatogonia undergo mitosis 

followed by meiosis and mature into spermatozoa.  Each primary spermatocyte yields 

four spermatozoa.  In females, however, PGCs undergo a few mitotic divisions, 

differentiate into oogonia and begin meiosis during fetal development.  Meiotic arrest 

takes place during an early phase of meiosis I (prophase I) and all cells remain dormant 

as primary oocytes until puberty.  Starting at puberty, a single primary oocyte completes 

meiosis I and matures into a secondary oocyte (with a first polar body) and is ovulated 

each month.  This oocyte enters a second phase of meiotic arrest and only completes 

meiosis if fertilisation occurs.  Each primary oocyte has the potential to yield one 

definitive oocyte and two polar bodies.  The monthly cycles continue until the female 

reaches menopause.  The processes of spermatogenesis and oogenesis are summarized 

in Figure 1.1. 

 
Fertilisation involves the fusion of the spermatozoon cell membrane with the oocyte 

membrane, allowing the sperm nucleus to enter the oocyte.  The oocyte then completes 

meiosis and is called a zygote.  The chromosomes of the oocyte and sperm are enclosed 

in the female and male pronuclei, respectively.  However, the membranes quickly 

disappear as the maternal and paternal chromosomes are replicated in preparation for 

the first cleavage of the zygote.  The maternally inherited chromosomes are 

decondensed.  The paternally inherited genome also decondenses and extensive 

chromatin remodelling occurs.  Programming of both parental chromosome sets must 

then take place to create the embryonic genome and initiate embryo development 

(Zheng et al., 2005).  During the first days of development, the zygote is split into 

several smaller daughter cells called blastomeres as it travels down the oviduct without 

increasing in size.  This happens through a series of mitotic divisions, which are not 

preceded by cell growth. 
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Figure 1.1: Schematic diagram summarising the major steps in mammalian gametogenesis in 

male (left) and female (right) 

 
Adapted from Jaroudi and SenGupta (2007) 

 

There are three main transitions in preimplantation development; each is distinguished 

by changes in gene expression patterns (Zheng et al., 2005).  The first transition is the 

maternal to embryonic transition during which embryonic transcripts replace maternal 

transcripts.  Maternal mRNA transcripts and proteins are laid down in the primary 

oocyte during follicular growth, when the oocyte is in close contact with granulosa cells 

that supply ~85% of the occyte’s metabolic requirements via gap junctions (Buccione et 

al., 1990), but transcription stops when the germinal vesicle (GV) undergoes breakdown 

during meiosis (Bell et al., 2008).  The mature oocyte contains enough transcripts and 

proteins to undergo fertilisation and the first two cell divisions, i.e. until the embryo’s 

genome is activated (Mtango et al., 2008). 
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Embryonic genome activation (EGA) begins during the 1-cell stage and is evident by 

the 2-cell stage in mice (Schultz, 2002).  In human preimplantation embryos, global 

EGA occurs at the 4 to 8-cell stage (Braude et al., 1988; Dobson et al., 2004; Telford et 

al., 1990; Tesarik et al., 1986; Tesarik et al., 1987; Tesarik et al., 1988); however, Ao et 

al. (1994) showed that paternal Y chromosomal genes are expressed in the zygote and at 

the 2-cell stage. 

 

Gene expression profiling of mouse preimplantation embryos showed characteristic 

patterns of maternal RNA depletion and revealed that EGA activation happens in two 

phases: an initial weak transcription from the new zygotic genome followed by major 

EGA allowing dramatic reprogramming of expression patterns, which support 

development to the blastocysts stage, as reviewed by Hamatani et al. (2006).  The 

factors controlling chromatin remodelling and reprogramming of the embryonic genome 

include changes in DNA methylation, histone acetylation, transcription, translation and 

microRNA regulation, which have been investigated by a large number of studies in 

recent years and are described in recent reviews by Bell et al. (2008), Duranthon et al. 

(2008), Jeanblanc et al. (2008), Morgan et al. (2005) and Reik et al. (2001).  Epigenetic 

reprogramming occurs via active and passive DNA demethylation of the paternal and 

maternal genomes, respectively (Jeanblanc et al., 2008; Morgan et al., 2005).  The 

precise mechanisms of demethylation are still not understood.  Active demethylation 

takes place right after sperm chromatin is remodelled in the oocyte’s cytoplasm, which 

involves the replacement of protamines by acetylated histones, and is complete prior to 

DNA replication (Jeanblanc et al., 2008; Reik et al., 2001).  This is then followed by 

further reorganisation by histone modifications (Morgan et al., 2005).  The maternal 

genome undergoes passive demethylation that happens progressively with cell division 

(Jeanblanc et al., 2008; Morgan et al., 2005).  The exact timings of demethylation and 

remethylation are not determined for the human embryo.  In the mouse, active 

demethylation of the paternal genome occurs in the early cleavage stages and de novo 

methylation takes place in the ICM of the expanded blastocyst (Morgan et al., 2005; 

Reik et al., 2001). 
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The second transition in development is compaction at the 8-cell stage (Fleming et al., 

2001), which is the first morphological differentiation that occurs during  

preimplantation development.  At approximately the 16-cell stage, the embryo is called 

a morula.  The morula develops a fluid-filled cavity through the formation of tight 

junctions and gap junctions between blastomeres and is transformed into a blastocyst.   

 

The last transition is blastocyst formation which takes place at the 32 to 64-cell stage 

(Zheng et al., 2005) and leads to the allocation of some cells to the inside of the 

developing morula.  The centrally placed blastomeres become the inner cell mass 

(ICM), which gives rise to the embryo proper, and the ones at the periphery constitutes 

the trophectoderm (TE).  The TE forms the extraembryonic tissue that is responsible for 

the formation of the blastocoele cavity and is essential for the development and 

differentiation of the ICM (Watson and Barcroft, 2001).  Blastocyst formation is the 

first stage during which differentiation takes place and is characterised by differences in 

gene expression between the ICM and TE cells (Zheng et al., 2005).  In vivo, the 

embryo would have reached the uterus at this stage.  The blastocyst then hatches from 

the zona pellucida and is able to interact directly with the endometrium resulting in 

implantation.  The main stages of preimplantation development are shown in Figure 1.2. 
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Figure 1.2: Schematic diagram outlining the main steps of preimplantation embryonic 

development: MII oocyte, zygote, cleavage stage, morula and blastocyst 

 
Adapted from Jaroudi and SenGupta  (2007) 

male & female 
pronuclei fuse 

polar body Zona 
pellucida 

Morula 

 

compaction 
6 to 8-cell 

 

4-cell stage 

2-cell stage 

pronuclei 

Zygote 

Time (days) 

 

       D0 

 

 

 
 

       D1 

 

 

 

 

       D2 

 

 

      

 

 

 

 

 

 

 

 

       D3 

 

 

 

 

       D4 

 

 

 

 

       D5 

Fertilisation 

Definitive 
oocyte 

sperm 

ICM  

Blastocyst 
stage 

OCM  

EGA 
in mouse 

EGA 
in human 

Cleavage 

 

 



Introduction 

 24 
 

1.1.2  In vitro fertilised human preimplantation embryos 
The preimplantation period encompasses the time of oocyte fertilisation until the 

embryo reaches the blastocyst stage and is ready to implant.  IVF derived embryos have 

diverse morphological qualities and are graded according to their cell number 

(growth/cleavage rate), blastomere symmetry and size uniformity, and level of 

fragmentation (Bolton et al., 1989).  Early preimplantation embryos may stop 

developing or arrest at various stages due to biochemical and/or cytogenetic problems of 

maternal or paternal origins.  These problems occur both in vitro and in vivo; however, 

the in vitro environment (i.e. the culture media) is an additional factor that can affect 

development (Devreker and Englert, 2000; Menezo, 2006).  Most preimplantation 

embryos with abnormalities that would not allow sustained development undergo arrest 

at time of EGA; embryos reaching the blastocyst stage must therefore possess the 

appropriate biochemical/genetic tools to activate the embryonic genome (Menezo, 

2004).  Only about half of human embryos obtained after in vitro fertilisation (IVF) 

reach the blastocyst stage by day 6 (post fertilisation).  Blastocyst formation varies 

between 48% and 65%, depending on the laboratory, the culture media and patient 

background (Thomas et al., 2009).  Increased cell fragmentation in human IVF embryos 

is associated with reduced blastocyst formation and implantation rates (Hardy et al., 

2003) as well as increased chromosomal abnormalities (Moayeri et al., 2008; Ziebe et 

al., 2003).  Therefore, other than suboptimal culture conditions and intrinsic defects in 

the oocyte or embryo, chromosomal abnormalities explain the high rate of embryonic 

arrest. 

 

A large proportion of human preimplantation embryos (40%-60%) at different stages of 

development exhibit chromosomal abnormalities (Daphnis et al., 2008; Munne et al., 

1995; Munne et al., 1998) and chromosome breaks, which can persist to the blastocyst 

stage (Daphnis et al., 2008).  A recent study by Vanneste et al. (2009) has identified 

chromosome instability during human cleavage stage embryogenesis as the leading 

cause of constitutional chromosomal disorders.  Mosaicism, aneuploidies, uniparental 

disomies, frequent segmental deletions, duplications and amplifications that were 

reciprocal in sister blastomeres (suggesting the occurrence of breakage-fusion-bridge 

cycles) were all commonly observed in cleavage stage human embryos (Vanneste et al., 

2009). 
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A study by Daphnis et al. (2008) showed that embryos with chromosomal abnormalities 

detected on day 3 post fertilisation seem to have a poor developmental fate as they 

exhibit increased chromosomal abnormalities or arrest by day 5, however, those that 

appeared to be normal on day 3 were still normal on day 5.  This highlights the 

developmental importance of day 3 (around the time of EGA) in human preimplantation 

embryos.  Chromosomal abnormalities may result from inappropriate mRNA transcripts 

or protein supplies (laid down by the oocyte), but they can also lead to imbalances in 

mRNA transcription levels and protein synthesis which can affect subsequent 

preimplantation development. 

 

The chromosomal instability observed in human cleavage stage embryos is higher than 

would be expected based on current IVF implantation and pregnancy rates (as these 

rates are greater than the rates of chromosomally normal embryos) (Vanneste et al., 

2009).  It is possible that the chromosomally mosaic embryos that contain normal 

blastomeres may “self-correct” and become chromosomally normal blastocysts or 

foetuses (Li et al., 2005; Munne et al., 2005; Staessen et al., 2004a).  A recent study by 

Fragouli et al. (2008) showed that the aneuploidy rate in human blastocysts (38.8%) is 

significantly lower than in embryos at earlier stages (51%). 

 

1.2  DNA damage detection and repair  

DNA repair is responsible for protecting the genome’s integrity from endogenous 

metabolites or exogenous agents causing DNA damage.  DNA repair enzymes are 

present in all organisms examined to date (Brendel et al., 1997).  Their evolutionary 

conservation confirms their necessity for the normal function and reproduction of living 

organisms (Taylor and Lehmann, 1998).  Currently, over 150 human DNA repair genes 

have been cloned and sequenced (Ronen and Glickman, 2001; Wood et al., 2001; Wood 

et al., 2005).  These genes code for DNA repair enzymes, which are involved in the 

cellular response to DNA damage or are known to be mutated in human diseases 

associated with DNA sensitivity; not all of them have been assigned functions yet. 
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Cells are continuously subjected to different types of DNA damage; in fact, due to 

normal cellular metabolism alone, each human cell is expected to experience 

approximately 2×104 lesions per day (Ames and Shigenaga, 1992).  Several DNA repair 

proteins act together in elaborate cellular pathways in order to detect and repair 

replication errors and transient or accumulated damage caused by genotoxic stress.  

Activation of the appropriate pathway is made possible via transient cell cycle arrest.  

The main DNA repair pathways active in mammalian cells are: base excision repair 

(BER), double strand break (DSB) repair (DSBR), mismatch repair (MMR), nucleotide 

excision repair (NER) and post-replication repair (PRR).  Alkylation damage and UV-

induced pyrimidine dimers can be repaired in a single step by a few specialised enzymes 

that carry out direct reversal of damage (Table 1.1). 

 

Various DNA repair proteins target different types of lesions (based on their substrate 

specificities) in order to trigger the necessary repair pathway.  There is some degree of 

redundancy between the different proteins and pathways.  Therefore, the absence of a 

given DNA repair protein (that is crucial for one repair pathway) may be overcome by 

another fully functional DNA repair pathway.  Table 1.1 lists the main DNA repair 

pathways and their commonly targeted substrates. 

 
Table 1.1: DNA repair pathways and their main substrates 

DNA repair pathway  Main damage recognition proteins Target DNA lesions 

BER DNA glycosylases 
(Table A.1, Appendix) 

Mismatches 
8-oxoguanine 
3-methyladenine 

Direct reversal of 
damage 

MGMT 
AGT 
ABH2 
ABH3 

O6-methylguanine 
O6-alkylguanine 
1-methyladenine  
3-methylcytosine 

DSBR: HR RAD52 Crosslinks, DSBs 
            NHEJ & HR 
 

KU70 (G22P1)-KU80 (XRCC5) 
PARP-1 

DSBs 
SSBs 

NER XPA-RPA & XPC-HR23B Pyrimidine dimmers 
Bulky crosslink adducts 

MMR 
MSH2-MSH6 
 
MSH2-MSH3 

Mismatched or damaged bases, 
small IDLs 
Larger IDLs 

IDL: insertion/deletion loop; DSB: double strand break; SSBs: single-strand breaks 
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The mechanisms of mammalian DNA repair have been reviewed extensively 

(Christmann et al., 2003; Cline and Hanawalt, 2003; Hakem, 2008; Sancar et al., 2004).  

There are three steps common to the three excision repair pathways (BER, NER and 

MMR): 1) the DNA lesion is detected; 2) a DNA endonulease (BER and NER) or 

exonuclease (MMR) excises a fragment on the targeted strand containing the lesion; 3) 

a DNA polymerase re-synthesises a new copy to fill the gap (based on sequence of 

complementary strand) and a DNA ligase seals the remaining nick. 

 

1.2.1   DNA damage induced cell cycle checkpoints 
Coordination of the cell cycle is crucial in the response to DNA damage.  Cell cycle 

arrest occurs at the G1/S or G2/M checkpoints and during replication (Figure 1.3), 

allowing DNA repair to take place before commencing DNA synthesis or committing to 

cell division (Lukas et al., 2004) .  All four major DNA repair pathways (NER, BER, 

MMR and DSB repair) along with genotoxic stress sensors interact with components of 

the cell cycle machinery.  Furthermore, some DNA damage sensors trigger a cell cycle 

checkpoint that activates the apoptotic cell death pathway (Vinson and Hales, 2002).  

Although the roles of cell cycle machinery involved in the response to genotoxic stress 

have been studied extensively in cancer models, little is known about their regulation or 

activity during development (Vinson and Hales, 2002).  In fact, fluorescent in situ 

hybridisation (FISH) analysis of cleavage stage human embryos suggested that cell 

cycle checkpoints may not function during early cleavage development (Delhanty and 

Handyside, 1995; Harrison et al., 2000). 

 

MMR has been suggested to be part of the G2 checkpoint following some types of DNA 

damage in human cancer cell lines (Carethers et al., 1996; Hawn et al., 1995) and single 

primary mouse embryonic fibroblasts (Marquez et al., 2003).  MMR can be involved in 

checkpoint functions in at least two ways:  MMR proteins can interact directly with 

checkpoint proteins to activate cell cycle arrest (Hawn et al., 1995) or MMR is required 

to process certain types of DNA damage into a form that activates the checkpoint 

response (Carethers et al., 1996).  However, other models suggest that neither 

interaction with nor activation of MMR complexes are necessary for the G2/M 

checkpoint to function (Aquilina et al., 1999).  Control of DNA repair throughout the 

cell cycle was recently reviewed by Branzei and Foiani (2008). 
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Figure 1.3: Diagram showing different phases of the cell cycle (Jaroudi and SenGupta, 2007). 

 
The critical checkpoints are marked with a red cross: the G1/S checkpoint between the first gap 
phase (G1) and the DNA synthesis phase (S) and the G2/M checkpoint between the second 
gap phase (G2) and mitosis (M).  The cell may arrest at G1 or G2 preventing its commitment to 
DNA synthesis or mitosis respectively. 
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The BER pathway removes damaged DNA bases arising spontaneously within the cell 

during inflammatory responses and exposure to exogenous agents including radiation.  

The primary substrates for BER are oxidised DNA bases induced by reactive oxygen 

species (ROS).  BER operates via two pathways that involve different repair enzymes 

and result in the removal and replacement of one (short-patch BER) or several (long-

patch BER) nucleotides (reviewed by Robertson et al. (2009)). 

 

Substrate-specific DNA glycosylases (Table A.1, Appendix), like the 8-oxoguanine 

DNA glycosylase (OGG1) and uracil DNA glycosylase (UNG) that initiate repair of 

damage induced by ROS and deamination, respectively, remove the damaged bases 

from the DNA leaving an apurinic/apyrimidic (AP) site that is subsequently processed 

in steps involving AP endonuclease (APEX), DNA polymerase β and δ or ε, flap 

endonuclease (FEN1) stimulated by the proliferating cell nuclear antigen (PCNA) and 

the DNA ligases 1 or 3. 
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Functional BER is required for early development since knockout mice for essential 

BER proteins (such as DNA polymerase β, Apex, DNA ligase 1 and Fen1) are 

embryonic lethal.  This may explain the absence of human genetic syndromes related to 

complete loss of BER proteins (Park and Gerson, 2005).  However, biallelic-inherited 

mutations  in the human MYH gene, which encodes for a glycosylase that recognises an 

adenines misincorporated opposite 7,8-dihydro-8-oxoguanineresidue, have been linked 

to increased susceptibility to colorectal cancer (Jones et al., 2002; Lipton et al., 2003; 

Sampson et al., 2005). 

 

1.2.2.2  Double strand break repair (DSBR) 
DNA double-strand breaks are among the most dangerous inducers of genotoxic 

damage and cell death via apoptosis (Rich et al., 2000).  Failure to rejoin breaks 

properly can lead to loss of chromosome segments or rearrangements (Dikomey et al., 

1998; Pfeiffer et al., 2000).  Furthermore, interactions between two ends from different 

DSBs can generate tumorigenic chromosome translocations (Aten et al., 2004).  DNA 

DSBs occur when the sugar backbones of both strands are broken close enough to 

disrupt Watson-Crick pairings and release two DNA ends (Bassing and Alt, 2004).  

DSBR genes are ubiquitously expressed and highly conserved across eukaryotes 

(Bassing and Alt, 2004).   

 

Two sub pathways are involved in the repair of DSBs: homologous recombination 

(HR), which is error-free and active in late S and G2-M cells where a sister chromatid 

would act as a template (Johnson and Jasin, 2000; Takata et al., 1998), and non-

homologous end-joining (NHEJ), which is error-prone and the predominant pathway in 

mammalian cells at G0/G1 stages of the cell cycle (Cromie et al., 2001; Haber, 2000; 

Johnson and Jasin, 2000). 

 

Although HR could use the homologous chromosome in G1 cells, this mechanism may 

be inhibited in somatic cells during the G1 phase to minimise loss of heterozygosity 

(Bassing and Alt, 2004).  Defective HR repair leads to high incidence of leukemia, 

breast-ovarian cancers, Werner’s and Bloom’s syndromes and premature aging (Valerie 

and Povirk, 2003).  Defective NHEJ repair is associated with severe combined 

immunodeficiency (SCID) (Park and Gerson, 2005). 
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1.2.2.2.1 Homologous Recombination (HR) Repair 

During HR repair, the damaged chromosome comes in close contact with an undamaged 

DNA molecule which has a homologous sequence and uses it as a template for repair 

(Sonoda et al., 2001).  HR is initiated by binding of the MRE11-RAD50-NBS1 (MRN) 

complex to the damaged DNA fragment; this promotes a nucleolytic resection of the 

DSB in the 5’→3’ direction and reveals single-stranded DNA ends. Subsequently, 

RAD51 and the single-strand binding replication protein A (RPA) bind to RAD52 and 

the single stranded DNA (ssDNA) fragments to form a nucleoprotein filament (Kagawa 

et al., 2001; Park et al., 1996). 

 

BRCA1, which is activated by ATM, helps RAD51 and BRCA2 bind to the DNA 

overhang and attract RAD52, facilitated by BLM/WRN (Valerie and Povirk, 2003).  

Binding of the RAD52 protein heptameric ring complex (Singleton et al., 2002; Stasiak 

et al., 2000) to the ssDNA ends protects against exonucleolytic digestion (Christmann et 

al., 2003).  The formed nucleoprotein filament invades the duplex template DNA and 

forms a joint molecule stimulating the strand exchange activity of RAD51 (Baumann 

and West, 1999; Benson et al., 1998; New et al., 1998; Van Dyck et al., 2001).  RAD51 

catalyses strand-exchange events with the complementary strand, displacing one strand 

as a D-loop (Baumann and West, 1997).  The strands are extended by a polymerase and 

sealed by DNA ligase 1 (Bassing and Alt, 2004).  This is followed by branch migration 

and resolution of the Holliday junctions by DNA cleavage and ligation which releases 

the repaired DNA molecule (Singleton and Jeggo, 1999).  The mechanism of DSBR via 

HR is summarised in Figure 1.4.  
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Figure 1.4: Diagram outlining the main steps involved in DSBR via homologous recombination 

 
Adapted from Toxicology, 193/1-2, Christmann et al., Mechanisms of human DNA repair, pages 
3-32, Copyright (2003), with permission from Elsevier 

1) Resection of DSB in the 5’→3’ direction revealing ssDNA ends to which RAD52 binds with 
RAD51 & RPA (via BRCA1 activation) 
2) Formation of Holliday junctions allowing DNA resynthesis 
3) Resolution of  Holliday junctions and ligation of gaps in DNA 
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1.2.2.2.2 Non-homologous end-joining (NHEJ) repair 

NHEJ repair begins with the heterodimeric Ku complex (Ku70-Ku80) (Jeggo et al., 

1992) binding to the damaged DNA (Reeves, Sthoeger and Lahita, 1989).  This protects 

the DNA ends from exonuclease digestion.  The Ku complex then associates with the 

catalytic subunit of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) 

(Hartley et al., 1995; Sipley et al., 1995) and forms the active DNA-PK holoenzyme 

(Gottlieb and Jackson, 1993; Smith and Jackson, 1999).  Interaction with single-

stranded DNA at the site of DSBs triggers the DNA-PKcs’ kinase activity (Hammarsten 

et al., 2000; Martensson and Hammarsten, 2002).  DNA-PKcs can also join together 

two broken ends without an active kinase domain (Bassing and Alt, 2004).  DNA-PKcs 

targets XRCC4 which forms a stable complex with DNA ligase 4 (LIG4) (Leber et al., 

1998) and link together duplex DNA molecules with complementary but non-ligatable 

ends. 

 

Processing of most DSBs is necessary prior to ligation by the XRCC4-LIG4 complex 

(Lee et al., 2003).  This is performed mainly by the MRN complex, which removes 

excess DNA at 3’ flaps (Maser et al., 1997; Nelms et al., 1998), or flap endonuclease 1 

(FEN1), which removes 5’ flaps.  FEN1 deficiency leads to a major reduction in the 

usage of the NHEJ pathway (Wu et al., 1999).  Another NHEJ factor involved in 

processing overhangs is the protein Artemis, which exhibits a single-strand-specific 

exonuclease activity and acts in a complex with DNA-PK (Moshous et al., 2001).  

DNA-PKcs binds, phosphorylates and activates Artemis forming an endonuclease that 

is essential for processing 5’ and 3’ overhangs during NHEJ (Bassing and Alt, 2004; 

Christmann et al., 2003).  The mechanism of DSBR via NHEJ is summarised in Figure 

1.5. 
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Figure 1.5: Diagram outlining the main steps involved in DSBR via non-homologous end-joining 

 
Adapted from Toxicology, 193/1-2, Christmann et al., Mechanisms of human DNA repair, pages 
3-32, Copyright (2003), with permission from Elsevier 

1) Ku70–Ku80 complex recognises and binds damaged DNA then binds DNA–PKcs.   
2) DNA ends are processed by MRN complex (via FEN1 and Artemis) 
3) XRCC4–ligase IV (activated by DNA–PK) links broken DNA ends together.  
 

1.2.2.3  Nucleotide excision repair (NER) 
NER corrects the majority of DNA damage (photoproducts from UV radiation and other 

bulky lesions) (Friedberg et al., 2000).  NER is not essential for viability; many mouse 

strains with targeted NER mutations are viable and develop normally (Friedberg and 

Meira, 2004).  However, mutations in NER are responsible for many DNA repair 

genetic disorders, such as Xeroderma pigmentosum (XP genes mutations), Cockayne 

syndrome (CSA and CSB mutations) and Trichothiodystrophy (XPB or XPD mutations) 

(Lehmann, 2003).  Specific null mutations in murine NER homologues (like Xpd) can 

lead to early embryonic lethality or a reduced life span (Friedberg and Meira, 2000), 

showing that NER gene expression is important for normal embryo development as well 

as counteracting exposure to genotoxic stress.  NER is divided into two subpathways: 

global genomic repair (GGR) and transcription-coupled repair (TCR), which repairs 

lesions in actively transcribed DNA (Leadon, 1999). 

(1) 

(2) 

(3) 
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The main difference between GGR and TCR is the requirement for different factors 

during the initial recognition step; GGR initiation requires UV-DDB (DDB1 and 

DDB2) as well as XPC-HR23B and TCR is initiated by RNA polymerase II stalled at a 

lesion (Christmann et al., 2003; Shuck et al., 2008). 

 

In NER, large multi-enzyme complexes scan the DNA molecule for a distortion in the 

double helix rather than for a specific base change.  Once a bulky lesion is recognised, 

other proteins (XPA, RPA, RNA Polymerase II and XPG) bind to the site of the 

damaged base.  This is followed by the binding of the ERCC1-XPF heterodimer, which 

produces the complete NER multi-protein complex.  The phosphodiester backbone of 

the abnormal strand is then cleaved on both sides of the distortion.  A portion of the 

strand containing the lesion, approximately 24-32 nucleotides (Barnes et al., 1993), is 

removed from the double helix by the DNA helicase activities of  XPB and XPD 

(Barnes et al., 1993; van Brabant et al., 2000), which unwind the DNA around the 

lesion (de Laat et al., 1999) and allow dual incision at either side of lesion by XPG and 

XPF-ERCC1.  The gap is then resynthesised with DNA polymerases δ or ε and other 

replication proteins, including PCNA, RPA and RFC.  The repair process is completed 

by DNA ligase 1, which seals the nicks on the corrected strand by reforming the broken 

phosphodiester bonds. 

 

1.2.2.4  Post-replication repair (PRR) 
Post-replication repair, which occurs via the RAD6 pathway, does not exert any DNA 

repair activity and is better described as DNA damage bypass.  The PRR pathway is 

activated when the DNA replication machinery is stalled at a lesion and allows mitotic 

somatic cells in S phase to proceed with DNA replication over a DNA template 

containing damaged bases, in an error-free (using the newly synthesized sister 

chromatid as a template to bypass DNA damage) or in an error-prone manner (using 

specialised translesion synthesis (TLS) polymerases).  This mechanism is important as 

it avoids prolonged stalling at DNA replication forks, which could result in double 

strand breaks (DSBs), or premature termination of DNA replication in cells that would 

lead to unscheduled cell death (Ulrich, 2005). 
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1.2.2.5  Mismatch repair (MMR) 
Mismatch repair corrects mismatched bases resulting from base deamination, oxidation 

or methylation or from DNA replication errors causing incorrect alignment of two 

individually normal strands (Christmann et al., 2003; Karran and Bignami, 1999; 

Modrich and Lahue, 1996).  The most common targets of MMR are G.T, G.G, A.C and 

C.C base mismatches which arise from deamination of 5-methylcytosine (Fang and 

Modrich, 1993).  MMR increases the fidelity of DNA replication by correcting errors of 

the DNA polymerase that have escaped the 3’→5’ exonuclease proofreading activity 

(Stojic et al., 2004).  The importance of the mismatch repair pathway in maintaining 

genome stability is demonstrated by the association of inactive human MMR with a 

strong predisposition to tumour development (de Wind et al., 1995; Hsieh and Yamane, 

2008; Lipkin et al., 2000; Lynch et al., 2004; Wimmer and Etzler, 2008).  Human 

germline mutations in MMR genes lead to Lynch syndrome (also known as hereditary 

nonpolyposis colorectal cancer or HNPCC).  Approximately 10% of sporadic colorectal 

cancers are caused by MMR defects other than MMR gene mutations such as silencing 

of genes by promoter methylation (Kemp et al., 2004).  In mice that are Mlh1, Mlh3, 

Pms2 or Exo1 defective, increased tumour incidence can be accompanied by defects in 

meiosis which may cause sterility (Baker et al., 1995; Baker et al., 1996; Edelmann et 

al., 1996; Li, 2008; Lipkin et al., 2002) (see Table 1.2).  Clearly MMR plays a critical 

role in meiosis and gamete formation in mice; however, the effects of MMR defects on 

meiosis in humans are still poorly characterised (Li, 2008). 

 
In humans there are at least three MutS homologous proteins that participate in 

mismatch recognition and binding: MSH2, MSH3 and MSH6.  MSH2 and MSH6 (also 

known as GT-binding protein, GTBP) (Palombo et al., 1995) form the MutSα 

heterodimer and MSH2 and MSH3 form the MutSβ heterodimer (Palombo et al., 1996).  

MSH2 plays a central role in MMR (Savouret et al., 2003).  The two complexes are 

ATPases that play a crucial role in the initiation of MMR and have different substrate 

specificities.  MutSα (MSH2:MSH6) recognises base mismatches and 1-2 nucleotide 

insertion/deletion loops (IDLs).  MutSβ (MSH2:MSH3) recognises 2-8 nucleotides 

IDLs most efficiently, is weakly active on single nucleotide IDLs and does not seem to 

be involved in base mismatches (Marti et al., 2002) (Figure 1.6).  The MSH2:MSH6 

heterodimer is predominant in human cells (Jiricny, 1998; Stojic et al., 2004). 
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Figure 1.6: Different DNA MMR complexes and their recognised substrates 

 
Adapted by permission from Macmillan Publishers Ltd from Nature Genetics 24, Lipkin et al., 
MLH3: a DNA mismatch repair gene associated with mammalian microsatelliteinstability, pages 
27-35, copyright (2000) 
 

Unlike in BER and NER, in MMR neither nucleotide at the mismatch site is usually 

damaged.  This makes it difficult to identify the strand that should be corrected.  The 

MMR proteins need to distinguish the parental DNA strand from the newly synthesised 

‘incorrect’ strand and this cannot be done at the site of the mispair (Stojic et al., 2004).  

Although it is still unclear how MMR discriminates between the strands, it is presumed 

that the new strand is identified by the presence of single-strand breaks (SSB), i.e. the 

gaps between the Okazaki fragments on the lagging strand, or by the 3’-terminus on the 

leading strand.  The SSB and the mismatch can be far apart.  The MutSα complex 

triggers an ADP→ATP transition upon binding to a mismatch.  This is followed by an 

ATP-dependent conformational change, forming a hydrolysis-independent sliding 

clamp capable of moving along the DNA backbone (Gradia et al., 1999; Gradia et al., 

2000). 
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The hydrolysis of ATP allows the hMutSα.ATP.DNA complex to bind to a second 

heterodimer MutLα, composed of MLH1 and PMS2 (Alani et al., 1997; Iaccarino et al., 

1998).  MLH1 also forms a heterodimer with PMS1 or MLH3.  The specific 

contributions of the MutL heterodimers to MMR function are still poorly understood, 

however, a functional redundancy between MLH3, PMS1 and PMS2 has been 

suspected (Lipkin et al., 2000). 

 

Another model suggests that the MutSα complex uses the energy gained by ATP 

hydrolysis to translocate actively along the DNA in either direction in search of a site 

that shows strand specificity (probably SSB).  At this signalling site, the MutLα and 

MutSα come together (Blackwell et al., 1998; Blackwell, Bjornson and Modrich, 1998).  

The excision of the strand containing the ‘incorrect’ base is carried out by exonuclease I 

(Genschel et al., 2002) and the new synthesis to fill the formed gap is performed by 

DNA Polymerase δ (Longley et al., 1997).  The nick that is left after the polymerase has 

filled the gap is sealed by DNA ligase 1. 

 
1.2.2.5.1 Microsatellite instability (MSI) and defects in MMR 

Microsatellite sequences are tandem repeats of short DNA motifs ubiquitously present 

in the genome (Eckert and Hile, 2009).  These sequences are highly unstable in both 

somatic and germ cell lineages and their expansions are known to be a molecular basis 

of genetic anticipation (Martorell et al., 1997; White et al., 1999).  The human genome 

contains ~3% microsatellite sequences, which have an average density of 14bp/kbp for 

every chromosome (Subramanian et al., 2003).  The most abundant class of 

microsatellites in the human genome are mononucleotide repeats, mostly poly-A/T 

tracks, followed by dinucleotide and tetranucleotide repeats.  Trinucleotide repeats, 

however, are less abundant (Eckert and Hile, 2009; Subramanian et al., 2003).  Many 

microsatellite loci are highly polymorphic, which explains their use as markers in 

genetic diagnosis and forensics.  Mutation rates in non-tumourigenic human cells 

(estimated from direct observations of allele size changes between parents and 

offspring) range from 10-6 to 10-2 per locus per generation and depend primarily on 

repeat sequence composition, motif size and allele length; the location of the allele 

within the genome has a less significant effect (Ellegren, 2004). 
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1.2.2.5.1.1 Mechanisms of MSI 

The mechanism by which somatic expansions occur is not well understood. A few 

hypotheses have been suggested; the main ones are listed below. 

 

1. DNA polymerase slippage (during DNA replication or repair) can lead to additions or 

deletions within the microsatellite locus (Eckert and Hile, 2009; Li et al., 2002). 

 
Two different mechanisms can lead to slipped strand mispairing and microsatellite 

mutations: unequal crossing over between repetitive sequences on separate DNA 

molecules during recombination and transient DNA polymerase slippage during DNA 

synthesis (Subramanian et al., 2003). Single strand breaks (SSBs) can increase the risk 

of microsatellite mutations. 

 
2. Inappropriate DNA MMR leads to higher MSI.  MMR is an important pathway that 

affects MSI as it processes replication errors with greater efficiency than the 3’→5’ 

exonuclease proofreading of DNA polymerases (Vilkki et al., 2001).  MMR efficiency 

is dependent on motif size and sequence composition (Eckert and Hile, 2009). 

 
3. Stabilisation of secondary structures in DNA by MutSα or β proteins mediation is 

another MMR factor that might affect MSI, however, the exact mechanism is still not 

well established.  In a sequence and length dependent manner, common microsatellites 

can adopt non-B form DNA secondary structures, which can pause the replication by 

DNA polymerases, consequently increasing the production of errors during DNA 

synthesis (Eckert and Hile, 2009). 
 

1.2.2.5.1.2 Defects in MMR 

The primary function of MMR is the correction of persistent DNA replication errors in 

order to avoid the accumulation of deleterious mutations (Aquilina et al., 1999).  

Defects in MMR lead to increased spontaneous mutation rates (Narayanan et al., 1997).  

Pms2-/- mice develop spontaneous lymphomas and sarcomas, however, Pms2+/- develop 

normally without predisposition in tumour formation (Baker et al., 1995).  Studies on 

male transgenic mice crossed with Pms2-/- females suggested that the paternally derived 

Pms2 gene provided normal levels of PMS2 protein to embryos by the 8-cell stage; 

however, smaller embryos derived from PMS2 deficient eggs lacked PMS2 function 

(Larson et al., 2004). 



Introduction 

 39 
 

This is in agreement with a similar study by Gurtu et al. (2002), which investigated the 

consequences of maternal MMR deficiency on genetic stability in the embryo.  

Mosaicism for the paternal alleles most probably resulted from PMS2 deficiency during 

the early cleavage divisions; additionally, the absence of MMR in one-cell embryos 

allowed the formation of unrepaired replication errors during the initial cell divisions in 

the zygote.  Post-zygotic mutation in the early mouse embryo implied that PMS2 

deficiency is due to lack of maternal transcripts (Gurtu et al., 2002). 

 

Human embryos that exhibit microsatellite instability, associated with spontaneous 

abortions, possibly harbour MMR mutations (Spandidos et al., 1998).  Specific 

mutations could be inherited from the parents and lead to microsatellite instability in 

normal cells as a result of MMR deficiency (Parsons et al., 1995).  In mice, Msh2, 

Msh3, Mlh1 and Mlh3 deficiencies have been associated with microsatellite instability 

(MSI) (Baker et al., 1996; Lipkin et al., 2000; Prolla et al., 1998; Reitmair et al., 1995).  

Absence of Msh6 displays increased single base-pair mutation rates and lower 

penetrance of colon cancer susceptibility (Edelmann et al., 1997).  The effects of 

various MMR gene defects are summarised in Table 1.2.   
 

Table 1.2: DNA mismatch repair functional deficiency associated with MSI and tumour 

phenotypes in the mouse and human (Li, 2008; Lipkin et al., 2000; Wimmer and Etzler, 2008) 

MMR gene 
 
 

Phenotypes in knockout mice 
 
 

Phenotypes resulting from homozygous 
or compound heterozygous mutations in 
human 

MLH1 
 

high MSI; lymphoma, GI + other tumors; 
infertile 

high MSI; severe colon cancer susceptibility, 
GI + other tumors 

MSH2 
 

high MSI; lymphoma, GI + other tumors, 
fertile 

high MSI; severe colon cancer susceptibility, 
lymphoma, GI + other tumors 

MSH3 
 

low MSI; tumour free or GI tumours at late 
age; fertile 

unknown 
 

MSH6 
 

low MSI in dinucleotide repeats; lymphoma, 
GI + other tumors; fertile 

low MSI, less intense colon cancer 
susceptibility, lymphoma, GI + other tumors 

PMS1 
 

MSI in mononucleotide repeats only; no 
tumours; fertile 

low MSI, less intense colon cancer 
susceptibility 

PMS2 
 

MSI; lymphoma and sarcoma; male infertile 
 

low MSI, less intense colon cancer 
susceptibility, lymphoma, GI + other tumors 

MLH3 MSI, unknown tumour phenotype, Infertile unknown 

EXO1 MSI, lymphoma and sarcoma, infertile unknown 

GI: gastrointestinal 
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1.2.2.5.1.3 Expansion of trinucleotide repeats 

Over 15 out of approximately 30 human hereditary disorders caused by DNA repeat 

dynamic mutations involve trinucleotide repeats (Mirkin, 2007; Pearson et al., 2005).  

These consist mainly of neurodegenerative and neuromuscular disorders such as 

Myotonic dystrophy type 1 (DM1), Huntington’s disease (HD), spinocerebellar ataxias 

and fragile X syndrome, which are caused by expansions in CNG trinucleotide repeats 

(Mirkin, 2006; Savouret et al., 2004). 

 

DM1, a neuromuscular condition involving myotonia and progressive muscle wasting, 

results from the expansion of an unstable CTG repeat in the 3’ untranslated region of 

the dystrophia myotonica-protein kinase (DMPK) gene at 19q13.3 (Brook et al., 1992).  

Somatic CTG repeat instability is widely observed in tissues of DM1 patients, with a 

strong bias towards expansions.  This instability appears in early embryogenesis, 

increases after 16 weeks of gestation and continues into adulthood (Martorell et al., 

1997; Savouret et al., 2003).  Intergenerational contractions and expansions of a large 

CTG repeat were observed both in the germline and after fertilisation in mice (Savouret 

et al., 2003).  These dynamic mutations result from germinal mosaicism in the 

transmitting parent and an MSH2-dependent instability that takes place in the zygote 

just after fertilisation (Savouret et al., 2004). 

 

Lack of MSH2 shifts the instability towards contractions rather than expansions but a 

single Msh2 allele is sufficient to drive instability towards expansions (Savouret et al., 

2003).  Further studies showed that both MSH2 and MSH3 are necessary for the 

somatic expansions of CTG repeats in transgenic mouse models carrying expanded 

repeats (Manley et al., 1999; Savouret et al., 2003; van den Broek et al., 2002).  

However, MSH6 activity suppresses the accumulation of repeat length variation, 

possibly because MSH6 competes more effectively than MSH3 over MSH2 and 

therefore limits the amount of MutSβ complex (van den Broek et al., 2002). This 

suggests a key role for MutS homologues in triplet repeat expansions in mammalian 

cells (Gomes-Pereira et al., 2004). 

 

  



Introduction 

 41 
 

Therefore to sum up, triplet repeat expansions appear in cells prior to meiosis and the 

mechanism generating expansions is meiosis independent, occurs throughout life and 

involves MMR proteins.  The differences in the dynamics and timing of trinucleotide 

repeat expansion could be due to the different genomic settings surrounding the repeats 

in these models (Libby et al., 2003). 

 

1.3 DNA repair in mammalian preimplantation development 
The importance of DNA repair gene products during development is highlighted by the 

phenotypes observed for animals lacking key repair genes (see mouse database by 

Friedberg and Meira (2006)) and the human genetic disorders associated with DNA 

damage response defects (reviewed in  Hales (2005)).  Many animals lacking DNA 

repair enzymes are not viable, with preimplantation death being a common result; 

however, much of the embryonic loss takes place around the time of implantation, 

showing the necessity for DNA repair ability when embryonic cells proliferate rapidly 

and differentiate (Vinson and Hales, 2002). 

 

The integrity of the genome is at greater risk during early embryonic development and 

the efficiency of DNA repair at those early stages is of great significance.  Robust DNA 

damage response mechanisms are particularly important in undifferentiated embryonic 

cells to prevent any unnecessary mutations and avoid critical changes that can affect 

many different cell types in the organism and may be passed on to progeny.  Indeed, 

enhanced repair of many types of DNA lesions resulting in distinct differences in 

mutation types and lower mutation frequencies have been reported in human and murine 

embryonic stem cells compared to somatic cells (Maynard et al., 2008; Tichy and 

Stambrook, 2008). 

 

Many recent studies have investigated DNA repair in mammalian preimplantation 

embryos; the main findings are described in a review by Jaroudi and SenGupta (2007).  

The next section summarises the key points and Table A.2 (Appendix) provides an 

updated list of all DNA repair genes found to be expressed in mammalian oocytes and 

preimplantation embryos. 
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1.3.1 Current understanding of DNA repair in oocytes and the     
preimplantation embryo 
The integrity of the genome in germline cells ensures faithful transmission of genetic 

information from one generation to the next.  However, some mutations are tolerated by 

gametogenesis; otherwise evolution would not be possible.  DNA repair pathways 

ensure that the two opposite requirements, DNA sequence stability versus instability, 

are achieved and specific functions of those pathways may operate during 

gametogenesis (Baarends et al., 2001). 

 

Damage to the maternally inherited genome may arise due to the long delay between 

entry into meiosis and fertilisation of the oocytes (Drost and Lee, 1995).  A large 

number of genes encoding proteins involved in different DNA repair pathways show 

enhanced or specialised expression during gametogenesis (Baarends et al., 2001).  DNA 

damage response and repair genes are overrepresented in the oocyte, compared to the 

preimplantation mouse embryo (1-cell to blastocyst stages).  This may reflect the 

oocyte’s response to pressures to ensure genomic integrity, especially after a long arrest 

in the first meiotic prophase (Zheng et al., 2005).  Using microarray analysis, Menezo et 

al. showed that human oocytes at the GV stage express DNA repair genes at high levels 

allowing low tolerance for DNA decays. 

 

DNA repair genes have been shown to be expressed in the early stages of mammalian 

development.  However, DNA repair in the newly fertilised preimplantation embryo is 

believed to rely entirely on the maternal mRNAs and proteins deposited and stored in 

the oocyte before ovulation (Vinson and Hales, 2002).  DNA repair is probably essential 

during the formation of the embryonic genome.  If the oocyte is not adequately 

equipped or if the embryonic gene expression does not start at the correct time, DNA 

damage will persist and the embryo’s only recourse will be the activation of cell death 

machinery (Jurisicova et al., 1998).  However, during the first few cell cycles, cell death 

would diminish the survival chances of the embryo.  Indeed, it seems that mammalian 

embryos may be inhibited from undergoing apoptosis before the late cleavage or 

blastocyst stages (Brison, 2000; Hardy, 1999). 
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The expression of DNA repair genes can determine whether or not the embryo survives 

following genotoxic stress during development.  DNA repair genes of different repair 

pathways may be required by the embryo in different ways and at different stages of 

development (Jaroudi and SenGupta, 2007).  mRNA expression data suggest that 

although many of the genes required for DNA repair are expressed, the embryo’s ability 

to repair DNA may be highly limited.  For instance, little or absence of NBS1 and 

OGG1 mRNA templates could limit BER in the rhesus monkey preimplantation embryo 

(Zheng et al., 2005).  The chromosomal abnormalities observed in cleavage stage 

human embryos may be due to deficiencies in recombination repair (Jackson, 2002; 

Pfeiffer et al., 2000).  However, as development continues after EGA, the embryo 

acquires greater ability to respond to DNA damage by regulating and activating DNA 

damage control genes (Zheng et al., 2005). 

 

The capacity of the mammalian embryo to respond to and repair damaged DNA and its 

selective sensitivity to specific lesions is still not well understood.  Many gaps exist in 

our current knowledge concerning the precise roles and expression timings of several 

DNA repair genes in the early stages of embryonic development.  The stage-specific 

variations in DNA repair gene expression transcripts and proteins point out the 

complexity of the regulation of these pathways during development.  Many of the 

proteins involved in DNA damage control exist in large multimeric complexes that 

include proteins binding to damaged DNA, proteins participating in normal DNA 

replication, DNA repair proteins, proteins participating in meiotic recombination and 

proteins interacting with the cell cycle control machinery.  The exact nature of 

interactions among the various proteins remains to be clarified.  Additionally, there is 

some degree of redundancy in some of the DNA damage response pathways. 

 

In vitro manipulations of human oocytes/embryos during in vitro fertilisation (IVF) 

using intracytoplasmic sperm injection (ICSI) are expected to increase the risk of DNA 

damage (by eliminating the selection against poor sperm DNA integrity) making the 

DNA repair ability of fertilised oocytes more crucial especially before embryonic 

genome activation (EGA) (Menezo, 2006).  Whether or not embryo culture disconcerts 

the expression of genes involved in DNA damage control needs to be confirmed, as it 

raises questions about the utility and potential adverse effects of prolonged in vitro 

culture of human embryos (Zheng et al., 2005). 
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It is important to understand precisely how and when preimplantation embryos in 

culture may experience changes in the ability to regulate DNA repair; as this will be 

extremely helpful for developing improved methods in embryo research, applied 

reproductive biology and assisted reproduction in clinical medicine. 

 

 

1.4 Methods of investigating DNA repair in human oocytes and 
preimplantation embryos 

1.4.1   Gene expression analysis 
Gene expression analysis during embryonic development has been extensively studied 

in several species.  However, little is known about the gene expression profiles in early 

human embryos, especially concerning DNA repair genes.  The main limiting factor is 

the scarcity of material due to ethical issues concerning the use of human embryos for 

research.  The previous section described many results obtained from the use of this 

technique for the investigation of DNA repair genes in mammalian oocytes and 

preimplantation embryos. 

 

Most of the studies that analysed gene expression in early mammalian embryos 

employed the following procedure.  First, embryos and/or oocytes were collected and 

tubed.  The RNA was extracted from the samples, often pooled oocytes or embryos, 

however, individual oocytes, embryos or blastomeres can and have been used as well. 

The RNA was converted to cDNA by reverse transcription.  The final step involved 

real-time quantitative PCR followed by automated quantification analysis (Mamo et al., 

2006b; Mamo et al., 2007; May et al., 2009; Wells et al., 2005a; Wells et al., 2005b; 

Zeng et al., 2004; Zheng et al., 2005). 

 

The main limitation of real-time PCR for mRNA quantitation is that only a few genes 

can be investigated for a single sample (up to 12 genes from individual oocytes, 

embryos or blastomere) as at least three replicates need to be used per sample (Mamo et 

al., 2006a; Mamo et al., 2007).  In order to overcome this problem, multiplex real-time 

PCR can be used (May et al., 2009), which may allow simultaneous analysis of a 

slightly larger number of genes. 
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Quantitative analysis requires the selection of suitable housekeeping genes to be used as 

a reference for normalisation.  This is not always straightforward, especially when 

analysing oocytes and embryos at different stages of development.  Mamo et al. 

evaluated twelve commonly used housekeeping genes in mouse oocytes and embryos 

cultured in vivo and in vitro and recommend the use of the geometric average of the 

three most stable genes (Ppia, H2afz and Hprtl) for normalisation in preimplantation-

stage expression studies (Mamo et al., 2007). 

 

Some studies employed microarray analysis to obtain mRNA transcript profiles.  This 

requires pooling of oocytes or embryos prior to RNA extraction.  The number of pooled 

samples in published studies ranged from as few as 1-5 oocytes or embryos (Wells and 

Patrizio, 2008; Zheng et al., 2004) to as many as 400-500 mouse oocytes or embryos 

(Hamatani et al., 2006; Mamo et al., 2006b).  This method also requires an 

amplification step to generate sufficient target amounts of RNA (in micrograms) for 

hybridisation onto arrays starting with picograms of extracted total RNA. 

 

There are two main amplification techniques for expression studies: in vitro 

transcription (IVT) using RNA polymerases to amplify RNA (linear amplification) and 

polymerase chain reaction (PCR) using Taq polymerases to amplify cDNA (exponential 

amplification).  Both seem to generate distortions but can show true differential 

expression between embryos at different stages of development (Degrelle, 2008).  As 

Taq polymerases have higher error rates than RNA polymerases, IVT amplification may 

be favoured over PCR (Degrelle, 2008). 

 

Amplification bias, which distorts the true proportional differences of candidate genes 

analyzed, can affect the validity of the experiment.  Several recent studies have 

investigated RNA amplification efficiency for gene expression analysis using cDNA 

microarrays.  Duftner et al. (2008) found minor amplification bias when using a T7 

polymerase-based technique to amplify RNA.  Some sequence-specific properties were 

found to significantly affect RNA amplification, these include: GC content, folding 

energy, hairpin length and number and lengths of poly(A) or poly(T) stretches.  Patel et 

al. (2005) demonstrated that the use of amplified RNA using a T7 polymerase-based 

technique in microarray experiments retains the fidelity of detection of differential gene 

expression that is relatively comparable to experiments carried out on unamplified 

RNA. 
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Rudnicki et al. (2004) showed that performing two rounds of IVT amplification using 

T7 oligo primers resulted in amplified RNA with a high degree of linearity and 

reproducibility.  Comparison of amplified versus unamplified mRNA showed a 

correlation of 0.868 and intra-amplification consistencies showed correlations of 0.968, 

0.907 and  0.912 for the first round, the second round and two successive rounds of 

amplification (Rudnicki et al., 2004).  Another study showed loss of 30% of 

differentially expressed genes when two rounds of amplification are performed using T7 

oligo primers in the first round and random hexamer primers in the second round 

(Boelens et al., 2007).  Therefore, although there are some discrepancies in the reported 

findings, it seems that the main limitation of microarray analysis following RNA 

amplification is the decreased capacity of detection of differentially expressed genes. 

 

Pooling samples together overcomes sample-to-sample variation providing satisfactory 

statistical power and can improve the efficiency and cost-effectiveness of microarray 

experiments (Peng et al., 2003) as it increases the number of samples investigated 

without increasing the number of arrays.  Having biological and technical replicates, 

with a minimum requirement of three (Lee et al., 2000), is also necessary to be able to 

validate the results and carry out statistical tests. 

 

The main advantage of microarray analysis is that it provides information on the 

expression levels of potentially every gene in the genome from a single experiment.  

However, it is still not sensitive enough to allow quantitative analysis that can be 

obtained using real-time PCR (Wong and Medrano, 2005) from oocytes, 

preimplantation embryos or single blastomeres.  For these reasons, the best and 

generally adopted strategy for gene expression analysis is the use of microarrays to 

generate a global expression profile from the samples of interest and subsequently, 

based on the obtained results, investigate a number of target genes in greater detail 

using real-time PCR.  As real-time PCR does not necessitate an RNA amplification 

step, any amplification bias that may have affected microarray results should be picked 

up by real-time PCR.  This formed the basis of the first aim of this project: ‘DNA repair 

gene expression profiling in human oocytes and blastocysts’ using microarrays. 
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1.4.2   Proteomic and metabolomic analysis 
Expression of DNA repair mRNA transcripts alone does not necessarily indicate 

translation of all templates (if any) into potentially functional proteins.  Several factors, 

including post-transcriptional processing by microRNAs and targeted mRNA or protein 

degradation, can result in discrepancies between gene expression levels and the protein 

content in the cell. 

 

Direct detection of proteins involved in DNA repair can be conducted on single oocytes, 

embryos or blastomeres using immunofluorescence analysis, which allows visualisation 

and localisation of the targeted protein within the cell under a fluorescent microscope.  

Several studies have used this technique for the investigation of specific DNA repair 

proteins in mammalian oocytes, embryos or single mouse embryonic fibroblasts (Adiga 

et al., 2007; Barton et al., 2007; Fernandez-Gonzalez et al., 2008; Roig et al., 2004; 

Wirthner et al., 2008).  The main advantage of this technique is that it allows the 

localisation of proteins within the cell, detecting protein-protein or protein-DNA 

interactions; however, its main limitation is that it allows the analysis of a limited 

number of proteins in a given sample. 

 

A larger number of proteins can be analysed from oocyte or embryo lysates; however, 

despite the recent advancements in proteomic technologies, the available platforms are 

still not sensitive enough to fully investigate the limited amounts of protein templates 

available in individual mammalian preimplantation embryos.  Two-dimensional (2-D) 

gel electrophoresis accompanied by computerised analysis was initially used to generate 

protein databases for preimplantation mouse embryos (using lysates from ~30 pooled 

embryos) at different stages of development (Latham et al., 1992; Shi et al., 1994).  

Western blotting can be used to detect the expression of known proteins or specific 

post-translational modifications in preimplantation embryos; this technique also 

requires pooling of large numbers of embryos in order to reach the necessary protein 

amounts (Cho et al., 2003; Wang et al., 2005). 

 

Embryo lysates (from single or pooled oocytes and preimplantation embryos) can be 

used to analyse a large number of proteins at once with higher sensitivity using mass 

spectrometry (MS).  MS using surface-enhanced lazer desorption/ionisation coupled to 

time of flight (SELDI-TOF MS) allows the analysis of small samples in the picomole to 

femtomle range (Katz-Jaffe et al., 2009). 
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SELDI-TOF MS was used to generate protein profiles of individual human embryos at 

the early and expanded blastocyst stages (Katz-Jaffe et al., 2005).  The main 

disadvantage of MS is the need to carry out additional experiments like Western 

blotting and bioinformatics techniques for protein identification. 

 

Currently, different methods for proteomic and metabolomic analysis of the 

preimplantation embryo secretome, consisting of proteins and metabolites secreted by 

the embryo into the culture media, are under investigation as tools for non-invasive 

assessment of the embryo’s viability.  Protein profiling of the human embryonic 

secretome revealed distinct signatures for the different stages of development, when 

SELDI-TOF MS analysis was used (Katz-Jaffe, Schoolcraft and Gardner, 2006), and 

identified proteins that may be associated with embryo development and implantation 

potential, when protein microarray analysis targeting 120 proteins was conducted 

(Dominguez et al., 2008).  Protein microarray analysis of the embryo secretome can 

complement gene expression microarray results, allowing more accurate biological 

interpretations.  Recent reviews on proteomic analysis and profiling of metabolites in 

the embryonic secretome were presented by Brison et al. (2007) and Katz-Jaffe et al. 

(2009). 

 

Another non-invasive method for embryo selection is measuring amino acid turnover in 

the culture media using reverse-phase high performance liquid chromatography, 

reviewed by Sturmey et al. (2008).  This method seems to be simpler and more cost-

effective than metabolic profiling, which looks at all metabolites, making it better suited 

for embryo selection in clinical IVF (Sturmey et al., 2008).  A recent study by Sturmey 

et al. (2008) found a correlation between the amount of DNA damage and the metabolic 

activity, measured as amino acid turnover, in human, bovine and porcine 

preimplantation embryos.  However, extent of DNA damage did not correlate with 

embryo grade.  Their finding was consistent with the “quiet embryo hypothesis”, which 

states that embryos with less active metabolisms are more viable (Leese, 2002).  

Baumann et al. (2007) speculated that this is because the extent of DNA damage and 

the RNA and protein content of the immature oocyte can determine the embryo’s 

potential to reach the blastocysts stage. 
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Therefore, an embryo with low metabolic activity is either exposed to fewer insults or is 

better equipped to efficiently deal with those insults; however, an embryo with higher 

levels of damage to the genome, proteome or transcriptome exerts higher metabolic 

activity as it is less efficient at correcting damage and maintaining development 

(Baumann et al., 2007).  Amino acid turnover can act as a non-invasive marker of DNA 

damage in the human blastocyst (Sturmey et al., 2009). 

 

Detection of a large number of DNA repair proteins in a single or a few human oocytes 

or preimplantation embryos is still difficult; however, with the advancement of protein 

microarrays it may be possible to obtain a DNA repair protein profile from human 

oocytes or preimplantation embryos in the near future.  Detecting the presence of a 

particular DNA repair protein does not guarantee functional activity of that protein as 

the activation of the repair pathway may be dependent on other proteins involved in 

DNA repair and cell cycle control.  The completion of repair can involve over 30 

different proteins.  Measuring DNA damage can be indicative of exogenous stress rather 

than just DNA repair ability.  For all the above reasons, it seems logical that the best 

way to assess the embryo’s DNA repair ability is by using functional assays. 

 

1.4.3   Functional analysis 
The functions of many DNA repair genes were deduced from phenotypes of animals 

with germline mutations in a particular repair gene.  A database of mouse mutant strains 

for genes affecting the cellular response to DNA damage generated by targeted gene 

replacement or transgenic technologies was initiated in 1997.  The latest update of the 

database is Version 7 (Friedberg and Meira, 2006).  Oocytes in mouse Spo11-/- mutants 

that fail to form DSBs for the initiation of recombination and Msh5-/- and Dmc1-/- 

mutants that fail to process DSBs showed that responses to recombination errors in 

mammalian oocytes can be DNA damage dependent or independent (Di Giacomo et al., 

2005).  More recently, mice harbouring deletions in MMR genes (Mlh1, Mlh3, Exo1 

and ATPase deficient variant of Mlh1) were used to show that MMR function is 

necessary for normal formation and stabilisation of crossovers in mammalian oocytes 

(Kan et al., 2008).  Parp1 and Parg deficient mice, which exhibit morphological and 

functional sperm abnormalities, showed the importance of the poly(ADP-ribose) (PAR) 

metabolism for normal sperm chromatin quality (Meyer-Ficca et al., 2009). 
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Using cell sorting to separate cells at specific times after irradiation, Wu et al. (2008) 

measured DSBR with pulse-field gel electrophoresis in G1 and G2 phase Chinese 

hamster cells.  While wild type and mutant cells for the HR repair genes Xrcc2 and 

Xrcc3 had similar repair efficiencies in G1 and G2, mutants of the DNA-PKcs, Ku80 

and Xrcc4 showed greater repair in G2 than in G1, which indicated enhanced function 

of the backup NHEJ pathway involving DNA ligase III and PARP1 (Wu et al., 2008).  

These are a few examples among numerous studies reported in the literature, many of 

which investigated DNA repair in cell lines and non-mammalian mutants (e.g. 

Drosophila melanogaster). 

 

Small interfering RNA (siRNA) can be used to knock down the expression of specific 

DNA repair genes.  For example, stable siRNA mediated silencing of Smug1 in mouse 

embryo fibroblasts (MEFs) resulted in increased mutation rates (An et al., 2005).  The 

use of specific siRNA in mouse embryonic stem cells (mESCs) showed that APE1 is 

necessary for normal embryonic hematopoiesis due to the critical redox function but not 

the repair endonuclease function of APE1 (Zou et al., 2007) and PRMT1 is necessary 

for the recruitment of the HR RAD51 recombinase to DNA damage foci (Yu et al., 

2009).  Combined with expression analysis and immunocytology, RNA interference 

mediated depletion of BRCA1 in young mouse oocytes was carried out to confirm the 

role of BRCA1 in chromosome segregation (Pan et al., 2008). 

 

Immunofluorescence (which can be combined with time lapse imagery) is used to detect 

specific DNA repair proteins in individual cells and oocytes.  Derijck et al. (2008) 

demonstrated that HR repair is predominantly active in the male pronuclei during the 

first S phase of mouse zygotes by tracking γH2AX foci, which are indicative of DSBs, 

and RAD51 protein at different stages of the cell cycle.  Another group used 

immunofluorescent staining to investigate DSBR by HR in relation to chromosome 

dynamics in human foetal oocytes by detecting γH2AX, RPA and MLH1 foci, which 

are markers for the occurrence of DSBs, progress and completion of HR repair, 

respectively (Roig et al., 2004). 

  

A commonly used system for DNA repair assessment employs plasmid/bacteriophage 

circular DNA substrates (which may be radiolabelled) that are transfected into cells for 

in vivo repair or exposed to nuclear or whole cell extracts for in vitro repair. 
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In order to investigate the role of PARP-1 and p53 in DSBR, Susse et al. (2004) 

transfected DNA plasmids into primate cells and assessed repair by immunoblot 

analysis and flow cytometric quantification of recombination frequencies.  Another 

study used an in vivo DSBR assay to investigate the role of RAD54 in mESCs 

(Dronkert et al., 2000). 

 
Post exposure to ~50-1500μg of protein extracts, substrates (carrying the Escherichia 

coli lacZ gene) can be electroporated into MMR deficient E. coli in order to assess 

repair.  The transformed bacteria are plated onto minimal agar supplemented with X-gal 

and repair efficiencies are assessed by counting blue/white plaques.  This technique was 

mostly used for BER (Waters and Akman, 2001; Zhang and Dianov, 2005) and MMR 

(Fang and Modrich, 1993; Matheson and Hall, 2003). 

 

Alternatively, repair is assessed with immunoblot analysis and gel shift assays.  This 

approach has been used to investigate the role of Ku80 in NHEJ (Feldmann et al., 

2000), OGG1 incision activity (Riis et al., 2002) and interaction of APE1 and other 

DNA repair proteins with specific DNA substrates that match BER intermediates 

(Dyrkheeva et al., 2008) or with restriction endonuclease digestion followed by 

electrophoresis for mismatch and insertion/deletion loop repair (Kadyrov et al., 2009; 

Littman et al., 1999; McCulloch et al., 2003a; Wang and Hays, 2002a).  Many studies 

combine different techniques especially when investigating a pathway that is not fully 

understood.  A recent study by Wu et al. (2008b) investigated DSBR in G1 and G2 

MEF mutants using both in vivo and in vitro plasmid end-joining assays and showed a 

new cell cycle regulation of the backup NHEJ pathway in G2.  Clearly, the in vivo 

repair system cannot be used for DNA repair assessment in human oocyte or 

preimplantation embryos.  Repair carried out in vitro using protein extracts may be 

used, however, if the assays had suitable sensitivities. 

 

Several studies used functional assays with cell-free extracts from Xenopus and 

Drosophila eggs or embryos to assess NER (Oda et al., 1996), MMR (Petranovic et al., 

2000; Varlet et al., 1996; Varlet et al., 1990) and NHEJ (Labhart, 1999); however, there 

are no studies showing assessment of DNA repair in cell-free extracts of mammalian 

oocytes or preimplantation embryos.  A recent study measured OGG1 activity in protein 

extracts from human embryonic stem cells (hESCs) (Maynard et al., 2008). 
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Mismatch repair is probably the most investigated pathway because it is important in 

rapidly dividing cells and its substrates can be easily synthesised.  Many studies have 

targeted the functional assessment of mismatch repair in human cell/nuclear extracts to 

investigate the repair abilities of various cancer cell lines that are deficient in different 

MMR proteins (Bennett et al., 1997; Matheson and Hall, 2003; Thomas et al., 1996). 

 

Currently, there are no available DNA repair assays suitable for direct application on 

cell-free extracts from human oocytes or preimplantation embryos.  Assessing the 

capacity of the human preimplantation embryo to detect and repair different types of 

DNA damage would be extremely useful.  The second aim of this project was thus to 

develop an in vitro functional assay for mismatch repair and insertion/deletion loop 

repair that could be applied to nuclear extracts from human oocytes and embryos. 

 

 

1.5  Preimplantation genetic diagnosis (PGD) for cancer 
predispositions caused by DNA repair deficiencies 

1.5.1   Preimplantation genetic diagnosis (PGD)  
Preimplantation genetic diagnosis (PGD) was first developed in the UK around 20 years 

ago (Delhanty and Harper, 2000; Handyside et al., 1990).  It is an established method 

for the genetic analysis of embryos prior to implantation and pregnancy.  Individual 

blastomeres are genetically tested to select the unaffected embryos for transfer into the 

uterus.  PGD can be considered an alternative to prenatal genetic diagnosis for couples 

at high risk of transmitting a genetic disorder to their offspring.  Its main advantage is 

that it eliminates the possibility of having to choose whether or not to terminate an 

affected pregnancy. 

 

Patients requesting PGD undergo in vitro fertilisation (IVF) treatment so that multiple 

embryos can be generated, giving an increased probability that a disease free embryo 

will be identified (Wells and Delhanty, 2001).  Intracytoplasmic sperm injection (ICSI) 

is used to reduce the risk of paternal contamination from sperm when blastomeres are 

biopsied.  The main steps involved in patient councelling and treatment are shown in 

Figure 1.7.  PGD centres in the UK are controlled by the Human Fertilisation and 

Embryology Authority (HFEA) (Delhanty and Harper, 2000). 
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Figure 1.7: Flowchart outlining the main steps preceding patients’ PGD treatment cycle 

 
 
 
 

 
 
 
 

 
 

 

 
 

  

PGD cycle  
- 6 weeks prior to PGD: Start IVF protocol (down-regulation & 

stimulation to control egg collection date) 
- Day 0: Egg collection (N: number of eggs collected) 
- Day 0: Embryos are produced by IVF/ICSI 
- Day 1: Assessment of number of eggs fertilised (N – X) 
- Day 3: 1 or 2 cell(s) are biopsied from embryos that have reached the 

6-8 cell stage (≤ N – X) 
- Day 3: Single cell diagnosis  identification of transferable embryo(s) 
            

Second PGD consultation assignement of treatment dates 
• IVF 

-  repeat ovarian stress test if > 6 months since initial checks 
• PGD 

-  protocol that will be used for diagnosis is explained to patients 
• Assignment of PGD treatment date 

Initial PGD consultation explains procedure and limitations to patients 
• Funding – if not self-funded need to apply for NHS funding 

(2-6 months) 
• HFEA license (up to 3 months) 
• Fertility checks: gynaecological investigations & sperm analysis 

(patient has to be off the pill for 2 months) 
• PGD protocol workup (6-12 months) 
• IVF cycle  egg collection 
• Embryos are produced by ICSI 
• Cell(s) are biopsied from each embryo followed by single cell 

diagnosis  possibility of having no suitable embryos to transfer or 
transfer of carriers 

• Implantation: success rate lower than IVF alone 
• Suggest have prenatal diagnosis (CVS) 

 

Referal to clinical geneticist (at Regional Genetic Centre) for 
clinical/molecular diagnosis and genetic councelling 

• Identification/confirmation of mutation 
• Determination of risk of affected child 
• Couple’s reproductive options are explained 

- Remain childless 
- No testing 
- Prenatal diagnosis possibility of terminating pregnancy 
- Preimplantation genetic diagnosis (PGD) 
- Gamete donation 
- Adoption  

Couple refered to PGD centre 
with genetics report 

Couple decide to undergo PGD 
treatment 
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Genetic analysis is performed using fluorescent in situ hybridisation (FISH) for the 

detection of chromosomal abnormalities and sex selection (for X-linked disorders with 

no specific molecular diagnosis) or using polymerase chain reaction (PCR) for the 

detection of mutations responsible for monogenic disorders.  FISH is also used for 

preimplantation genetic screening (PGS).  The indications for PGS are advanced 

maternal age, repeated IVF failure and recurrent miscarriage when both parents have 

normal karyotypes.  PGS is also offered to couples undergoing ICSI because the male 

partner has a severe oligospermia and/or a meiotic anomaly (Egozcue et al., 2000; 

Wilton, 2002). At present, there is no evidence that shows that PGS improves 

pregnancy rates (Anderson and Pickering, 2008; Harper et al., 2008).  To date, nine 

randomised control studies have been conducted on ‘good prognosis’ patients (Jansen et 

al., 2008; Mersereau et al., 2008; Meyer et al., 2009; Staessen et al., 2008) and ‘poor 

prognosis’  patients (maternal age ≥38 years) (Debrock et al., 2009; Hardarson et al., 

2008; Mastenbroek et al., 2007; Staessen et al., 2004; Stevens et al., 2004); all have 

shown that PGS does not improve live birth rates compared to control groups. 

 

Currently, most PGD centres employ cleavage stage biopsy on day 3 post fertilisation 

(at the 6-8 cell stage), where 1 or 2 cells are extracted from each embryo (Goossens et 

al., 2009).  Blastocysts stage biopsy on day 5 post fertilisation is a possible alternative 

that overcomes the problem of small cell number (Basille et al., 2009), however, it 

allows less time for the diagnosis (as the embryo needs to be transferred by day 6) or 

would require embryo freezing prior to transfer into the uterus in a future cycle.  

Alternatively, biopsy of both the first and second polar bodies can be performed when 

the woman is the carrier of a mutation or a chromosomal aberration (Munne et al., 

2000; Strom et al., 2000; Verlinsky et al., 1998).  This is necessary in countries where 

cleavage stage biopsy is not allowed (e.g. Germany).  The main advantage of 

blastomere analysis is that it allows testing of both parental genomes.  However, the 

main disadvantage is mosaicism, where different blastomeres have a different 

chromosomal complement resulting from post fertilisation mitotic errors.  Blastocyst 

stage biopsy overcomes this problem as the embryo is more stable at that stage.   

Additionally, since the cells are taken from the trophectoderm (TE), the inner cell mass 

is left intact avoiding any harmful stress to the embryo (Basille et al., 2009). 
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One of the problems of PGD is the possibility of misdiagnosis as the genetic analysis 

from a single cell is technically challenging (Delhanty and Harper, 2000).  The causes 

of misdiagnosis include failure of the genetic test (e.g. due to unsuitable probes), 

chromosomal mosaicism, parental contamination, confusion of embryo/cell number and 

transfer of the incorrect embryo (Wilton et al., 2009).  As the embryos subjected to 

PGD must be generated by IVF, certain difficulties are encountered and the success of 

PGD will always be dependent on the success of IVF/ICSI.  The latest European 

Society of Human Reproduction and Embryology (ESHRE) PGD consortium data show 

that clinical pregnancy rate is 17-26% per oocyte retrieval and 29-33% per embryo 

transfer (22-23% implantation rate) and the delivery rate is 15-23% per oocyte retrieval 

and 26-29% per embryo transfer (Goossens et al., 2009). 

 

1.5.2   PGD for monogenic disorders 

The most common method of genetic analysis for monogenic disorders is PCR.  

Mutation detection can be direct (when the amplicon sequence includes the mutation 

site) or indirect via linkage analysis, which involves the amplification of informative 

highly polymorphic microsatellite markers or single nucleotide polymorphisms (SNPs) 

that are very close/linked to or within the gene of interest.  The simultaneous 

amplification of different loci using multiplex PCR has become the gold standard in 

PGD for monogenic disorders (Spits and Sermon, 2009).  The minute amounts of 

starting genomic DNA, obtained from a single blastomere, make the problems that can 

be encountered in conventional PCR additionally challenging in PGD.  PCR protocols 

used in PGD cases have to be optimised with great care to minimise allele dropout 

(ADO), preferential amplification and allow the detection of contamination. 
 

ADO is the random failure of amplification of one allele in a heterozygous sample due 

to the primers annealing to one allele with lower efficiency.  ADO can lead to a 

misdiagnosis as a heterozygous embryo can be diagnosed as homozygous.  While 

optimisation of PCR conditions can minimise its occurrence, ADO is a random 

phenomenon that occurs even in optimally standardised PCR protocols because of 

degradation of the template DNA at the target site.  For this reason, PCR-based 

genotyping protocols should include internal monitoring in the form of informative 

linked markers. 
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Ideally, at least two linked markers (located as close as possible to the gene of interest 

or mutation site) should be used with a marker on either side of the mutation/gene to 

detect recombination (Wilton et al., 2009).  A distance of 1Mb limits the chances of 

recombination to 1% (Collins, 2009).  Initial analysis of parental DNAs determines the 

alleles to be expected in the embryos as well as which marker alleles segregate together 

with the mutation (the phase alleles). 
 

Another potential source of misdiagnosis, which can also be detected when using a 

suitable multiplex PCR protocol, is contamination.  Contamination from cumulus cells 

or sperm can be avoided by stripping the oocytes of cumulus cells and using ICSI for 

fertilisation (Thornhill et al., 2005).  Contamination at the PCR stage can involve the 

operator’s DNA or amplicon carry over from previous PCR experiments.  In order to 

minimise the risk of contamination, laboratories performing PGD take special measures 

such as isolating the working areas where embryo biopsy and tubing of blastomeres take 

place, where the PCR is setup and where post PCR analysis is performed, working in 

laminar flow hoods and areas that are cleaned and UV treated, aliquoting PCR reagents 

and using dedicated laboratory equipment for single cell PCR. 

 

1.5.2.1 Methods of molecular analysis 
Fluorescent PCR (F-PCR) uses primers that are labelled at the 5’-end with a 

fluorochrome in order to produce labelled PCR products that can be analysed on an 

automated genetic analyzer, which allows very accurate sizing of DNA fragments and 

simultaneous detection of several amplicons.  Using this method, the alleles are 

determined based on fragment size.  Fragment size analysis is used for the detection of 

small insertions or deletions or linkage analysis using STR markers.  Indirect mutation 

detection via linkage analysis may involve the use of SNP sites instead of microsatellite 

markers.  Mini-sequencing uses primers that anneal one base before the target site and 

are elongated by only one dideoxy nucleotide (which is labelled with one of four 

fluorochromes depending on the base).  Automated sequencing analysis allows the 

determination of the base at the SNP site of interest.  Single-strand conformation 

polymorphism (SSCP) is a simple and rapid mutation detection method that is capable 

of detecting single base substitutions, small insertions/deletions and rearrangements in 

DNA fragments ranging in size from 100 to 500 base pairs (bp) (Orita et al., 1989).  

Single stranded DNA adopts specific conformations which are stabilised by intra-strand 

interactions and are uniquely dependent on sequence composition (Orita et al., 1989). 
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1.5.3   PGD for MSH2 and BRCA1 
PGD for MSH2 or BRCA1 was not available in the UK when this project was started.  In 

fact, PGD for cancer predispositions with a late age of onset and incomplete penetrance 

(like breast and ovarian cancer) was not allowed in the UK until recently.   The HFEA 

carried out a public consultation between December 2005 and March 2006 and decided 

it was appropriate for PGD to be available for hereditary breast and ovarian cancer 

(Menon et al., 2007).  No reports on PGD for BRCA1 had been published prior to 2007 

(Spits et al., 2007).   

 
The basis of the third aim of this project was to investigate embryos donated for 

research following PGD cycles for germline mutations in DNA repair genes, 

particularly MSH2 and BRCA1. 

 

1.5.3.1  MSH2 mutations and Lynch syndrome 
The MSH2 gene (OMIM *609309) maps to human chromosome 2p22-21 and consists 

of 16 exons spanning 80.10 kilobases (Kb) of DNA (Fishel et al., 1993; Leach et al., 

1993).  MSH2 plays an important role in DNA MMR and stability of microsatellite 

repeats.  Heterozygous mutations in MSH2 can lead to Lynch syndrome (LS) (OMIM 

#120435), also known as hereditary nonpolyposis colorectal cancer (HNPCC) (Liu et 

al., 1996).  This autosomal dominant heritable cancer syndrome is characterised by 

early age (~45 years) at onset of colorectal and other gastrointestinal cancers as well as 

endometrial and other cancers. 

 

Approximately 500 different MMR mutations lead to LS; 40% involve MSH2, 50% 

involve MLH1 and 10% involve other MMR genes (MSH6 and PMS2) (Papp et al., 

2007).  The lifetime risk of developing cancer is 80% for individuals carrying a MMR 

mutation (Peltomaki and Vasen, 1997; Watson and Lynch, 1993).  Carriers of different 

mutations in various MMR genes may have different cancer risks (Peltomaki et al., 

2001).  For example, carriers of an intron 5 splice site mutation in MSH2 have an 89% 

risk of developing cancer by the age of 60, whereas carriers of the exon 8 and exon 4-16 

deletions have an 81% and 85% risk, respectively (Stuckless et al., 2007).  Many of the 

MSH2 mutations causing LS involve large deletions and genomic rearrangements 

(Charbonnier et al., 2000; Charbonnier et al., 2002; Papp et al., 2007; Wang et al., 

2003; Wijnen et al., 1998). 
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1.5.3.2  BRCA1 mutations and breast cancer 
BRCA1 (OMIM *113705) is a tumour-suppressor gene that maps to human 

chromosome 17q21 and confers a high risk of breast and ovarian cancer (OMIM 

#114480) (Miki et al., 1994).  The gene consists of 22 exons spanning ~110 kilobases 

(Kb) of DNA (Miki et al., 1994) and encodes a 1863 amino acid nuclear protein 

(220KDa) (Koonin et al., 1996).  BRCA1 interacts with many proteins involved in 

transcriptional regulation, cell cycle checkpoint control, chromatin remodelling and 

DNA repair (Coupier et al., 2004; Venkitaraman, 2002). 

 

Up to 10% of breast cancers are hereditary and most are caused by mutations in BRCA1 

or BRCA2 (Liebens et al., 2007).  Hereditary breast or ovarian cancers are characterised 

by an early age at onset (<45 years).  More than 660 mutations have been identified in 

BRCA1, many involving small deletions (Dumitrescu and Cotarla, 2005) and more than 

75% of BRCA1 mutations result in truncated protein (Hogervorst et al., 1995).  Some 

BRCA1 founder mutations have high prevalence rates in specific ethnic groups and 

populations (e.g. Ashkenazi Jews and Netherlands). 

 

Women carrying BRCA1 mutations have an estimated 60-85% lifetime risk of 

developing breast cancer and 26-54% lifetime risk of developing ovarian cancer 

(Antoniou et al., 2003; Brose et al., 2002; King et al., 2003; Liebens et al., 2007).  

BRCA1 deficient or heterozygous mutant cells show increased radiosensitivity 

(Buchholz et al., 2002; Foray et al., 1999; Rothfuss et al., 2000) and impaired DSBR 

via HR (Cousineau and Belmaaza, 2007) or NHEJ (Baldeyron et al., 2002; Coupier et 

al., 2004). 
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1.6 Aims 

1) DNA repair gene expression profiling in human oocytes and blastocysts 

The first aim of this project was to obtain a global expression profile of DNA repair 

genes in human in vitro derived preimplantation embryos before and after embryonic 

genome activation (EGA) using microarrays.  Prior to EGA, the embryo relies on 

maternal transcripts.  Mature (MII) oocytes were selected to represent the mRNA pool 

of pre EGA embryos.  The blastocyst stage, which is a key developmental stage, was 

used for the analysis of post EGA expression. 

 

A previous expression study showed high expression levels of most DNA repair genes 

in human GV oocytes (Menezo et al., 2007).  However, there is no evidence indicating 

whether the blastocyst has an intrinsic supply of DNA repair mRNA under routine IVF 

conditions. 

 

Hypothesis 1: The human oocyte expresses most DNA repair genes to support the early 

preimplantation embryo and limit DNA damage. 

Hypothesis 2: Due to the high rate of replication and the onset of differentiation in the 

blastocyst, the expression profile of DNA repair genes may be different to oocytes.   

 

In order to identify the DNA repair pathways that are active pre and post EGA, mRNA 

from triplicate sets of pooled human in vitro matured oocytes (MII) and blastocysts was 

analysed using the Human Genome Survey Microarrays V2.0 (Applied BiosystemsTM). 

 

2) Development of a functional assay for MMR and IDL repair in human nuclear 
extracts 

The gene expression profile alone cannot determine activity or functionality of any 

given DNA repair pathway.  The second aim of this project was thus to develop an in 

vitro DNA repair functional assay that was more sensitive than currently available 

assays and could be applied to cell-free extracts from a limited number of human 

oocytes or embryos.  Mismatch repair was the targeted pathway because the rates of cell 

proliferation and DNA replication are high in the early embryo. 

 

Mismatched heteroduplex DNA constructs containing single base mismatches or 

insertion deletion loops (IDLs) were created from PCR products or synthetic 
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oligonucleotides to act as substrates for repair.  The constructs were exposed to human 

nuclear extracts and repair was assessed by detection of newly formed homoduplexes.   

The flexible strategy developed for the formation of heteroduplexes could be used to 

generate constructs of different sizes with small or large IDLs and various single base 

mismatches by targeting different STR or SNP loci. 

 

The DM1 (CTG)n sequence was targeted in the creation of heteroduplexes with IDLs as 

this triplet repeat is known to show anticipation.  DM1 represents the largest group of 

PGD cases carried out at the UCL Centre for PGD; thus, the application of the designed 

assay on protein extracts from DM1 affected embryos may help elucidate the 

mechanism of expansion of this CTG repeat during preimplantation development.  An 

SNP located in the MSH2 gene (rs1981929) was used to form heteroduplex constructs 

with an A.C or G.T mismatch. 

 

3) Development of PGD protocols for BRCA1 and MSH2 mutations 

The third aim of this project was to investigate the effect of germline mutations in DNA 

repair genes on early embryonic development.  In order to achieve this aim, clinical 

PGD for MSH2 and BRCA1 was initiated and spare embryos donated for research were 

collected. 

 

Comparison of the expression profiles of embryos with mutations in DNA repair and 

cell cycle checkpoint genes with the profiles obtained from routine IVF embryos may 

help identify factors that are important for normal development and implantation.  

These embryos could also be investigated using functional assays, specifically assessing 

mismatch repair in embryos with MSH2 mutations. 
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2 MATERIALS AND METHODS 
The methods have been divided into five themes: sample collection and processing, 

preparation of nucleic acids, amplification methods, assessment of amplified products, 

and processing and analysis of amplified products.  The methodology required to 

achieve each of the three aims of the project involved a variety of techniques spanning 

several of the themes.  The workflow for each of the aims is presented in Table 2.1. 

 
Table 2.1: Outline of methodology used to achieve each of the three aims of the project 

Numbers in brackets represent the section number where the methodology is described in this 
chapter. 

Method theme Aim 
Gene expression profiling of 
DNA repair genes using 
microarrays 

Development of a functional 
assay for MMR and IDL 
repair 

Development of PGD 
protocols for MSH2 and 
BRCA1 

Sample collection & 
processing 

IVF protocol, collection of 
immature oocytes & grading 
of embryos (2.2.1) 

Tubing of oocytes & 
blastocysts (2.2.2) 

                                                                                

 

 

Collection & processing of 
blood samples (2.2.3) 

 

IVF protocol  collection of 
immature oocytes & grading 
of embryos (2.2.1) 
 
Collection & processing of 
blood samples (2.2.3) 

Separation of lymphocytes 
(2.2.3.1) 

Single cell isolation & tubing 
of lymphocytes (2.2.3.2) 

Embryo biopsy & blastomere 
tubing (2.2.4) 

Preparation of 
nucleic acids 

RNA extraction (2.3.1)  
DNA extraction from whole 
blood (2.3.2) 

Measurement of DNA 
concentration (2.3.3) 

 
DNA extraction from whole 
blood (2.3.2) 

Measurement of DNA 
concentration (2.3.3) 

Amplification 
methods 

RNA amplification & labeling 
(2.4.1) 

 

DNA amplification using 
PCR (2.4.2.1 & 2.4.2.2) 

 

DNA amplification using 
PCR (2.4.2.3) 

Assessment of 
amplified products 

Agarose gel electrophoresis 
(2.5.1) 

Assessment of RNA (2.5.2) 

Agarose gel electrophoresis 
(2.5.1) 

Agarose gel electrophoresis 
(2.5.1) 

Processing  & 
analysis of amplified 
products 

Microarray analysis (2.6.1)  

Formation of heteroduplex 
DNA constructs (2.6.2) 

Exposure of heteroduplex 
constructs to nuclear 
extracts (2.6.3) 

ABI Prism genetic analysis 
(2.6.4/2.6.4.1) 

SSCP/heteroduplex analysis 
(2.6.5) 
Sequencing (2.6.6) 

 

 

 
 
 
ABI Prism genetic analysis 
(2.6.4/2.6.4.2) 

SSCP/heteroduplex analysis 
(2.6.5) 
Sequencing (2.6.6) 

Mini-sequencing (2.6.7) 
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2.1 General workflow and laboratory practice 
In order to minimise DNA contamination, a separate laboratory was used for single cell 

isolations, single cell PCR preparations and all oocyte/embryo manipulations, including 

RNA amplifications.  This ‘single cell’ room was kept under positive pressure to reduce 

the entry of contaminants.  The circulating air in the room was passed through a filter 

and was completely changed at a rate of 20 times per hour.  Primer dilutions, buffer 

preparations and other PCR solutions were prepared in a laminar flow cabinet within the 

‘single cell’ room.   In order to avoid repeated freezing and thawing of reagents, 

aliquots were prepared whenever possible. 

 

DNase and RNase free microcentrifuge tubes (Eppendorf, UK) were used for all RNA, 

embryo and single cell work.  All RNA work, including RNA extraction, amplification 

and handling, was conducted in an RNase-free area using nuclease-free tips, water and 

reagents.  RNase Zap (Ambion, UK) solution or wipes were used to clean pipettes, 

beakers and surfaces of all working areas before beginning any RNA work.   

 

Dedicated equipment (such as thermal cyclers and cold racks) and reagents for single 

cell PCR, which have not been in contact with previously amplified DNA, were used to 

avoid any PCR template carry-over.  All racks and consumables were exposed to UV 

irradiation at 254 nm in a Template Tamer to degrade any contaminant DNA. 

 

Second-round PCRs for PGD cases were set up in a laminar flow cabinet in a second 

laboratory.  Post-amplification, samples were handled in a special area of a third 

laboratory on a different floor to the single cell room. 

 

Human oocytes, embryos and blastomeres were collected from the Assisted Conception 

Unit (ACU) at University College London Hospital (UCLH) and transported in a closed 

thermally insulated case (IsoTherm-System®, Eppendorf, UK) back to the UCL Centre 

for PGD for processing and analysis.  Oocytes and embryos were kept in their culture 

dishes and the tubed blastomeres for PGD were placed on a cold rack during transport. 
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2.2 Sample collection and processing 

2.2.1  IVF protocol, collection of immature oocytes and grading of 
embryos 
Following assessment of the patient’s ovarian reserve, the gonadotrophin stimulation 

was initiated and dose adjustments were made based on the patient’s response as 

described by Muttukrishna et al. (2005).  Ultrasound guided vaginal collection of 

immatute (MI) oocytes was conducted at 37 hours post human chorionic gonadotrophin 

(hCG) administration at the ACU at UCLH.  IVF/ICSI was performed at ~ 40 hours 

post hCG and fertilisation was evaluated at 16–20 hours post insemination.  Observation 

of two pronuclei and two polar bodies was indicative of a normally fertilized oocyte 

(Sahu et al., 2008).  Embryos were cultured in G-1/G-2 PLUS media (Vitrolife, UK). 

 
Preimplantation embryos were graded according to (Bolton et al., 1989) as follows: 

Grade 1 Embryo at the correct stage of in vitro development with perfect 
symmetrical and even-sized blastomeres with no fragmentation 

Grade 1- Embryo at the correct stage of in vitro development with perfect 
symmetrical and even-sized blastomeres with less than 10% fragmentation 

Grade 2+ Development with unequally sized blastomeres with less than 20%  
                     fragmentation 
Grade 2        Retarded development with unequally sized blastomeres with 25%-50%  
                     fragmentation 
Grade 3        Retarded development with unequally sized blastomeres with more than  
                     50% fragmentation 
 
 
2.2.2   Tubing of oocytes and blastocysts for gene expression analysis 
Donated immature oocytes and surplus cryopreserved blastocysts from routine IVF 

cases were collected from the ACU (UCLH) for mRNA expression analysis.  Informed 

written consent was obtained from all patients whose oocytes and embryos were used 

for research purposes. 

 

Immature oocytes at ~ 40 hours post hCG injection were kept in culture in G-IVF PLUS 

medium (Vitrolife, UK) for a maximum of four hours before rescoring.  Fifteen oocytes 

that had matured in this time were selected for mRNA analysis.  Twelve slow frozen 

blastocysts were thawed and allowed to recover for four hours in G-2 PLUS culture 

medium (Vitrolife, UK) prior to collection for mRNA analysis. 
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Using a mouth pipette with a 0.34mm diameter polycarbonate capillary (Biohit, UK), 

the embryo or oocyte was placed in a drop (10µl) of acidified Tyrode’s solution (Medi-

Cult, UK) to remove the zona pellucida (ZP) in order to make sure the sample was 

completely denuded of cumulus cells.  The embryo/oocyte was continuously observed 

under an inverted microscope.  Once the ZP had lysed, the embryo/oocyte was 

immediately moved into a new drop of phosphate buffered saline (PBS, Mg2+ and Ca2+ 

free) (Invitrogen/Gibco, UK) containing 0.1% polyvinyl alcohol (PVA) (Sigma, UK) 

and 0.3 U/µl RNasin® Plus ribonuclease inhibitor (Promega, UK).  The RNase inhibitor 

was added to prevent RNA degradation as the samples were collected for future gene 

expression analysis.  Each sample was washed in fresh PBS/PVA/RNasin® drops at 

least three times to minimise contamination and to get rid of any remaining cumulus 

cells.  The sample was then transferred in minimum volume (less than 2µl) of 

PBS/PVA/RNasin® buffer into an empty 0.2ml MicroAmp reaction tube.  The presence 

of a polar body was confirmed in all oocytes during manipulation, indicating that all 

immature oocytes had matured into MII oocytes during incubation in the standard 

culture media, prior to tubing.  All samples collected were clearly labelled, spun-down 

in a benchtop microcentrifuge (MSE Microcentaur, Sanyo, UK) and immediately frozen 

at -80ºC until RNA extraction.  All manipulations were conducted rapidly to minimize 

changes to gene expression, while samples were outside of incubators. 

 

 

2.2.3   Collection and processing of blood samples 
Blood samples were obtained from couples undergoing PGD and from laboratory 

members who donated blood for the production of anonymous control DNA samples.  

Blood that was used for the isolation and tubing of single lymphocytes for the PGD 

workups (described in sections 2.2.3.1 and 2.2.3.2) was collected in lithium heparin 

tubes.  Blood that was used for DNA extractions (described in section 2.3.2) was 

collected in sodium EDTA tubes.  All samples were processed on the day they were 

received or collected. 
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2.2.3.1 Separation of lymphocytes from whole blood for PGD workups 
Single lymphocytes were isolated from bloods of couples undergoing PGD as part of 

the protocol workup.  The lymphocyte separation from whole blood was carried out in a 

laminar flow cabinet and all steps were performed at room temperature. 

 

Six millilitres of blood were mixed with 6ml of 0.9% NaCl solution in a 14ml 

centrifuge tube (Falcon), using a plastic Pasteur pipette.  In a separate 14ml centrifuge 

tube, 6ml of Ficoll-Paque PLUS (GE Healthcare Life Sciences, UK) were added.  The 

tube was tilted and 8ml of the diluted blood was trickled down the side of the tube using 

a Pasteur pipette so that the blood formed a layer on top of Ficoll-Paque without mixing 

with it.  The tube was centrifuged at 1300rpm for 30min at room temperature in a 

benchtop centrifuge (Labofuge 400, Heraeus Instruments, UK); the centrifuge was 

stopped slowly without the use of a brake.  Due to differential migration, four layers 

were formed in the tube consisting of: plasma, buffy coat (lymphocytes and platelets), 

mixture of Ficoll-Paque PLUS and plasma, and erythrocytes and mononucleocytes 

(from top to bottom). 

 

The lymphocytes/buffy coat layer was collected using a Pasteur pipette in a fresh 14ml 

centrifuge tube, which was then filled with 0.9% NaCl up to 12ml.  The solutions were 

mixed and the tube was centrifuged at 1300 rpm for 15minutes.  The supernatant was 

discarded and 2ml 0.9% NaCl was used to resuspend the pellet.  The tube was filled 

with 0.9% NaCl up to 12ml and the centrifugation was repeated.  The supernatant was 

discarded and the lymphocyte pellet was resuspended in 2ml of 0.9% NaCl.  

Lymphocytes were stored at 4°C and used for single cell isolations within two days 

from separation. 
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2.2.3.2 Single cell isolation and tubing of lymphocytes for PGD workups 
All manipulations were carried out under an inverted microscope using a mouth pipette 

with a 0.19mm diameter capillary (Biohit, UK) in the ‘single cell’ room.  One to 5µl of 

lymphocytes suspended in 0.9% NaCl were sequentially diluted in two to three drops of 

dissociation buffer (Appendix, section B.1) in order to pick up a single cell.  Once a 

single cell was isolated, it was washed in at least three new drops (10µl) of dissociation 

buffer (DB).  The cell was transferred in minimum volume (~ 1µl) of DB into a 0.2ml 

MicroAmp reaction tube containing 2.5µl of alkaline lysis buffer (ALB) (Appendix, 

section B.1), which had been freshly prepared and kept on ice.  A small volume (~ 1µl) 

was taken from the last drop used to wash the cell as the negative control for that cell.  

The tubes were stored at -80oC for at least 30 minutes (and a maximum period of two 

weeks) prior to cell lysis and DNA amplification by PCR. 

 

 

2.2.4   Tubing of blastomeres following embryo biopsy for PGD 
Three days post egg collection, embryos that had reached at least the 4-cell stage 

underwent laser-assisted biopsy in a Mg2+ and Ca2+ free medium (G-PGD, Vitrolife, 

UK).  Two blastomeres were biopsied from embryos that had 6 to 8 cells.  Only one cell 

was taken from embryos with fewer than 6 cells.  The presence of a nucleus was noted 

at time of biopsy and tubing.  If no nucleus was observed, an extra cell was biopsied 

from the same embryo when possible.  Biopsied blastomeres were tubed at the ACU (as 

described in section 2.2.3.2) using a hand pipette with a 0.19mm diameter capillary and 

transported to the UCL Centre for PGD laboratory for PCR analysis. 
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2.3 Preparation of nucleic acids 

2.3.1   RNA extraction 
Total RNA was extracted from 15 MII oocytes and 12 blastocysts, which were pooled 

into sets of three oocytes (MIIa-MIIe) or three blastocysts (Ba-Bd).  Selection of 

samples that were pooled was based on the maternal age so that each set contained 

oocytes from a younger and older patient and the average ages of the pooled sets closely 

matched (see section 3.1.1 for results). 

 

The RNA extraction was performed using the AllPrep DNA/RNA Micro kit (Quiagen, 

UK) following the manufacturer’s instructions.  All steps were carried out at room 

temperature and centrifugations were performed at 22ºC in a benchtop microcentrifuge 

(MIKRO 200R, Hettich zentrifugen, Germany).  Three or four sample sets were 

processed together at one time. 

 

Tubed single oocytes or blastocysts (in RNasin solution) were removed from the -80ºC 

freezer and 75µl of Buffer RLT Plus was added.  The solution was pipetted up and 

down in order to lyse the cells.  Pooling of oocytes/blastocysts took place at this stage.  

The lysate was then transferred to an AllPrep DNA spin column placed in a 2ml 

collection tube (supplied in kit) and centrifuged at >8000 x g (>10,000 rpm) for 30s.  

The AllPrep DNA spin column was discarded.  One volume (usually 350µl) of 70% 

ethanol was added to the flow-through and mixed thoroughly by pipetting.  The sample, 

including any precipitate that may have formed, was transferred to an RNeasy MinElute 

spin column placed in a new collection tube (supplied in kit) and centrifuged for 15s at 

>8000 x g (>10,000 rpm).  700µl Buffer RW1 were added to the RNeasy MinElute spin 

column and the tube was centrifuged for 15s at >8000xg (>10,000 rpm) to wash the spin 

column membrane.  The flow-through was discarded carefully and 500µl of buffer RPE 

were added to the RNeasy spin column. The tube was centrifuged for 15s at >8000 x g 

(>10,000 rpm) to wash the spin column membrane.  The flow-through was discarded, 

500µl of 80% ethanol were added to the RNeasy MinElute spin column and the tube 

was centrifuged for 2min at >8000 x g (>10,000rpm) to wash the spin column 

membrane.  The collection tube with the flow-through was discarded and the RNeasy 

MinElute spin column was placed in a new collection tube (supplied in kit) and 

centrifuged at full speed for 5min with the lid open.  The collection tube with the flow-

through was again discarded. 
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The RNeasy MinElute spin column was finally placed in a new 1.5ml collection tube 

(supplied in kit); 14µl DNase and RNase free water (Promega, UK) were added directly 

to the centre of the spin column membrane and the tube was centrifuged for one minute 

at full speed to elute the RNA.  The RNA samples were stored at -80ºC until time of 

amplification. 

 

 

2.3.2   DNA extraction from whole blood 
Genomic DNA was extracted from blood samples using the protocol described by 

Lahiri and Nurnberger (1991).  All steps were carried out at room temperature. 

 

Five millilitres of blood was placed in a 14ml centrifuge tube and 5ml of low salt buffer 

TKM1 (Appendix, section B.2) was added along with 125µl of Igepal (Sigma Chemical 

Company, UK) to lyse the red blood cells.  The contents were mixed well using a 

Pasteur pipette and centrifuged at 2,200 rpm (1,000g) for 10 minutes in a benchtop 

centrifuge (Labofuge 400, Heraeus, UK).  The supernatant was gently poured off and 

the pellet was washed repeatedly as before (with 5ml TKM1 and 125µl of Igepal) until 

the redness of the pellet was reduced.  The pellet was resuspended in 100µl of TKM1 

and transferred into a 2ml microfuge tube (Eppendorf, UK).  0.8ml of TKM2 

(Appendix, section B.2) was added together with 50µl of 10%  (w/v) sodium dodecyl 

sulphate (SDS) and mixed thoroughly (by pipetting up and down) to lyse the white 

blood cells.  The tube was firmly sealed with NescoFilmTM and incubated for at least 30 

minutes at 55º C until the pellet was dissolved.  300µl of 6M NaCl were then added and 

the tube was mixed well.  The cells were spun at 12,000 rpm (10,000g) for 5 minutes in 

a benchtop microcentrifuge (MSE Microcentaur, Sanyo, UK), the supernatant was 

transferred into a new tube and the precipitated protein pellet was discarded.  Two 

volumes of 100% ice-cold ethanol were added to the supernatant and the tube was 

slowly inverted until the DNA was precipitated.  The precipitated DNA was removed 

with a 200µl pipette tip and washed in 1ml of ice cold 70% ethanol.  The tube was 

centrifuged at 12,000 rpm (10,000g) for 5 minutes, the supernatant was discarded and 

the pellet was left to dry in a class two biological safety cabinet.  The DNA was 

resuspended in 50µl of TE buffer (pH 8.0) (Appendix, section B.2).  Samples were 

stored at 4ºC. 
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2.3.3   Spectrophotometric measurements of DNA concentrations prior to 
amplification 
Genomic DNA samples were diluted in deionised distilled water (in two consecutive 

steps: 1 in 10 and then 1 in 100 to reach a final dilution of 1 in 1000) prior to the 

measurement of their concentrations.  One millilitre of each diluted sample was needed.  

The concentrations were calculated from the absorbance at 260nm measured using a 

spectrophotometer (GeneQuant pro, Pharmacia Boiotech, UK).  A reading was also 

taken at 280nm allowing the GeneQuant pro DNA/RNA calculator to produce a ratio 

between the readings (OD260/OD280).  The OD260/OD280 ratio was used to estimate the 

purity of the nucleic acid.  Pure DNA and RNA samples have OD260/OD280 values of 1.8 

and 2.0, respectively.  Lower values showed protein contamination. 

 

Quantitation of the double stranded DNA (dsDNA) relied on the following formula:  

Amount of ds DNA = Optical Density (OD) at 260nm × 50µg/ml × dilution factor 

DNA concentrations needed to be around 100ng/µl for optimal PCR amplification.  

Samples with very high concentrations were diluted before their use in PCR.   
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2.4 Amplification methods 

2.4.1   RNA amplification and labeling 
The purified RNA from oocytes and blastocysts for microarray analysis was amplified 

in two rounds and digoxigenin (DIG) labelled using the NanoAmpTM RT-IVT Labeling 

kit (Applied Biosystems, UK) following the manufacturer’s instructions (see section 

3.1.1 for results).  Figure 2.1 summarises the main steps involved.  This was performed 

just after completion of initial assessment of the extracted RNA on the NanoDrop® 

(section 2.5.2).  Unless otherwise specified, all reagents were kept on ice throughout the 

protocol and all centrifugations were carried out at room temperature. 
 

The first-round of amplification started with a first-srand synthesis step using reverse 

transcription.  The following components were added to a 0.2ml MicroAmp reaction 

tube and mixed by pipetting up and down: 1µl T7-Oligo (dT) primer, 2µl control RNA 

(provided in kit) diluted to 1:50,000 and 9µl of the RNA sample.  The mixture was 

heated in a thermal cycler (GeneAmp 9700, Applied Biosystems, UK) at 70ºC for 5 

minutes (melting step) then cooled to 4ºC (primer annealing step).   The rest of the 

components were added to the reaction tube in the following order and mixed by 

pipetting: 2µl 10x1st strand buffer, 4µl dNTP mix, 1µl RT enzyme and 1µl RNase 

inhibitor.   The tube was placed in the thermal cycler with the following program 

settings: 25ºC for 10minutes (initiation), 42ºC for 2hours (extension), 70ºC for 5 

minutes (enzyme inactivation) and hold at 4ºC. 
 

For the synthesis of the second-strand, the following components were added to the 

cDNA mixture (20µl) on ice and mixed gently: 63µl nuclease-free water, 10µl 10x2nd 

strand buffer, 4µl dNTP mix, 2µl DNA polymerase and 1µl RNase H.  The mixture was 

placed on the thermal cycler set to: 16ºC for 2hours (second-strand synthesis), 70ºC for 

5 minutes (enzyme inactivation), hold at 4ºC.  The first-round cDNA was then purified 

by combining the DNA binding buffer (250µl) and the entire second-strand synthesis 

reaction (100µl) in a new 1.5ml nuclease-free microcentrifuge tube and mixing 

thoroughly by pipetting up and down.  The DNA Binding buffer/reaction mixture 

(350µl) was loaded into the DNA purification column placed in its wash tube.  The tube 

was centrifuged at 10,000xg for one minute (MSE Microcentaur, Sanyo, UK) and the 

liquid flow-through was discarded.  The cDNA was washed by adding 500µl of wash 

buffer to the column and centrifuging the tube at 10,000xg for one minute.  The liquid 
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flow-through was discarded and the tube was centrifuged again at 10,000xg for one 

minute. 

 

In order to elute the cDNA, the column was transferred to a new DNA elution tube and 

10µl of nuclease-free water was pipetted onto the centre of the fibre matrix at the 

bottom of the column.  The tube was kept at room temperature for 2 minutes then 

centrifuged at 10,000xg for one minute to elute approximately 9µl double-stranded (ds) 

cDNA.  The same elution steps were repeated for a total elution volume of 

approximately 18µl ds cDNA. 

 

Performing the first-round in vitro transcription (IVT) involved adding 4µl 10xIVT 

buffer, 4µl NTP mix and 4µl IVT enzyme mix to 28µl ds cDNA (volume brought to 

28µl with nuclease-free water) in a new MicroAmp reaction tube at room temperature 

and mixing gently.  The tube was incubated at 37ºC for 9 hours (IVT) then cooled to 

4ºC (GeneAmp 9700 thermal cycler, Applied Biosystems, UK) and the cRNA was 

immediately purified.  In order to purify the first-round cRNA, the entire IVT reaction 

(40µl) was combined with 60µl nuclease-free water in a new 1.5ml nuclease-free 

microcentrifuge tube which was vortexed briefly to mix.  The RNA binding buffer 

(350µl) and 100% ethanol (250µl) were then added and mixed by pipetting.  The IVT 

reaction/RNA binding buffer/ethanol mixture (700µl) was loaded onto an RNA 

purification column placed in an RNA collection tube.  The tube was centrifuged at 

10,000xg for one minute and the liquid flow-through was discarded.  650µl of wash 

buffer were added to the column to wash the cRNA and the tube was centrifuged at 

10,000xg for one minute.  The liquid flow-through was discarded and the tube was 

centrifuged again at 10,000xg for one minute.  The column was transferred to a new 

RNA collection tube and 100µl of nuclease-free water was applied onto the fiber matrix 

at the bottom of the column.  The tube was incubated at room temperature for 2 minutes 

then centrifuged at 10,000xg for one minute.  The eluted cRNA was stored on ice while 

it was transported for concentration then stored at -20ºC.  All cRNA samples were 

concentrated from 100µl to 10µl by vacuum centrifugation (Concentrator Plus, 

Eppendorf, UK) upon completion of the first-round of amplification and labeling steps.  

Low-temperature settings were used during the drying process. 
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The second-round first-strand synthesis step started by thawing the cRNA sample on ice 

and adding 2µl second-round primers to the 10µl RNA sample in new 0.2ml MicroAmp 

reaction tube (mixing by pipetting up and down).  The mixture was heated to 70ºC for 

5minutes (melting step) then cooled to 4ºC (primer annealing) (GeneAmp 9700 thermal 

cycler, Applied Biosystems, UK).  The rest of the reverse transcription reaction was 

carried out exactly as described above (for the first-round amplification). 

 

The second-strand synthesis step started with the addition of 1µl RNase H to the cDNA 

mixture (20µl) on ice and mixing gently.  The mixture was heated to 37ºC for 

30minutes (RNA degradation) then cooled down to 4ºC in the thermal cycler.  5µl T7-

Oligo (dT) Primer was added and the mixture was heated to 70ºC for 5 minutes 

(melting) then cooled to 4ºC.  The rest of the reagents were added and mixed gently: 

58µl nuclease-free water, 10µl 10x2nd strand buffer, 4µl dNTP mix and 2µl DNA 

polymerase.  The mixture was placed on the thermal cycler set to: 16ºC for 2hours 

(second-strand synthesis), 70ºC for 5 minutes (enzyme inactivation) and a hold at 4ºC.  

The second-round cDNA was then purified as described above (for the first-round), 

resulting in approximately 18µl eluted cDNA. 

 

The second-round IVT labeling involved adding in order 4µl 10× IVT buffer, 8µl DIG-

UTP (Roche, UK), 4µl NTP mix, 2µl IVT Control DNA and 4µl IVT enzyme mix to 

18µl ds cDNA in a new MicroAmp reaction tube at room temperature and mixing 

gently.  The tube was incubated at 37ºC for 9 hours (IVT) then cooled to 4ºC and the 

cRNA was immediately purified as described above (for the first-round cRNA 

purification).  The final yield was approximately 100µl of DIG labelled cRNA.  A 6µl 

aliquot was taken from each sample for quality and quantity assessments (section 2.5.2) 

and the rest was stored at -20ºC until used for microarray analysis (section 2.6.1). 

 
  



Materials & Methods 

73 
 

Figure 2.1: Summary of steps involved in RNA amplification (in two rounds) and digoxigenin 

(DIG) labeling using the NanoAmpTM RT-IVT Labeling kit (Applied Biosystems, UK) 
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2.4.2   DNA amplification using PCR 

2.4.2.1 Design of DNA templates for the formation of heteroduplex DNA 

constructs using PCR 
Heteroduplex DNA constructs that could be easily generated and modified were 

required for the assessment of MMR functional efficiency in nuclear extracts from 

human cells.  The constructs needed to include insertion/deletion loops (IDLs) of 

variable sizes or different single base mismatches, which are detectable by MMR 

proteins.  A nick 5’ to the mismatch needed to be incorporated in the DNA construct to 

direct the repair to a specific strand. 

 

2.4.2.1.1 Selection of the DNA sequence 

Specific DNA sequences from the entire human genome were selected for amplification 

by PCR for the production of heteroduplex constructs.  The CTG repeat, which is in the 

3’ untranslated region of the dystrophia myotonica-protein kinase (DMPK) gene on 

chromosome 19, was used in order to allow for size variations that are easily detectable.  

This particular triplet repeat region was deliberately included since a highly reliable 

PCR protocol for the amplication of this region had been previously established 

(Piyamongkol et al., 2001).  The rs1981929 SNP site, located upstream of exon 8 in the 

MSH2 gene, was used for the formation of DNA constructs with a single base-base 

mismatch; however, other SNP sites in the human genome could have been used. 

 

The Entrez Nucleotide (http://www.ncbi.nlm.nih.gov/sites/entrez?db=nuccore&itool) 

and the Ensembl genome (http://www.ensembl.org/index.html) databases were used to 

obtain the complete updated genomic DNA sequences of the selected regions (including 

locations of all known SNP sites). 

 

The NEBcutter program (http://tools.neb.com/NEBcutter2/index.php) (Vincze et al., 

2003) was then used to select a nicking endonuclease with a single recognition site in 

the selected sequences, which needed to be upstream of the CTG repeat or SNP site. 
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2.4.2.1.2 Primer design 

The primers were selected using the online Primer3 software (http://frodo.wi.mit.edu/) 

so that the amplified product would be in the desired size range (~600bp and ~300bp) 

and included the desired sequence (Rozen and Skaletsky, 2000).  The sequences of each 

primer set were confirmed to have a single common matching region in the human 

genome using the online Basic Local Alignment Search Tool, BLAST, 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). 

 

The primers were tagged so that one strand of each PCR product was biotinylated and 

the other was fluorescently labelled (for automated genetic analysis on the ABI PrismTM 

310) or non-labelled (for SSCP/Heteroduplex analysis).  The biotin molecule was 

incorporated in the products at the 5’ ends of a single strand in order to pull out that 

strand using Dynabead® magnetic particles (Invitrogen, UK). 

 

Oligonucleotides used as primers for PCR and DNA substrates for MMR assessment 

(Table 2.2 and 2.3) were obtained from Eurogentec Ltd. (UK) in dried form, made up to 

50µM working concentrations and prepared into 20µl aliquots before storage at -20 ºC 

(stock at -80ºC).  
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Table 2.2: Sequence, chromosome location and modifications of all primers used for the DNA insertion/deletion loop (IDL) repair assay 

Two main primer sets were used (DM and MMR) to identify homozygous DNA samples and form DNA constructs containing IDLs.  Both Primer sets physically 
mapped to the long arm of chromosome 19, flanking the CTG triplet repeat in the 3’ untranslated region of the DMPK gene.  The DM primers were previously 
published (Brook et al., 1992).  MMR1 was used with MMR2 or MMR2S to produce PCR products that were ~600bp or ~300bp long, respectively. 
 

Primer Primer sequence (5’→ 3’) Locus 5’ modification Product size 

DM-F CTTCCCAGGCCTGCATTTGCCCATC 19q13.2-q13.3 FAM (Blue)* 
122-200 bp 

DM-R GAACGGGGCTCGAAGGGTCCTTGTAGC 19q13.2-q13.3 - 

MMR1/MMR1B/MMR1FAM (F) CAGCTCCAGTCCTGTGATCC 19q13.2-q13.3 -/Biotin/FAM (Blue)* 
558-639 bp 

MMR2/MMR2B/MMR2HEX/MMR2FAM (R) GTCCTAGGTGGGGACAGACA 19q13.2-q13.3 -/Biotin/HEX (Black)*/FAM (Blue)* 

MMR1 (F) CAGCTCCAGTCCTGTGATCC 19q13.2-q13.3 - 
277-358 bp 

MMR2S (R) TGCACAAGAAAGCTTTGCAC 19q13.2-q13.3 - 

* Colour of fluorescence as visualised on the ABI PrismTM 310 genetic analyzer; F: Forward primer; R: Reverse primer; B: Biotin; bp: base pairs; - : no modification 

 

 

Table 2.3: Sequence, chromosome location and modifications of primers used for the DNA base-base mismatch repair assay 

These primers flank the rs1981929 SNP site located upstream of exon 8 in the MSH2 gene. 

Primer Primer sequence (5’→ 3’) Locus 5’ modification Product size 

rs1981929-B-F/rs1981929-F TGAGTGCTACATCATCTCCCTTT 2p22-p21 Biotin/- 
328 bp 

rs1981929-B-R/rs1981929-R TTGCATACCTGATCCATATCTAAA 2p22-p21 -/Biotin 

F: Forward primer; R: Reverse primer; B: Biotin; bp: base pairs; - : no modification 
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2.4.2.2 PCR and fluorescent PCR (F-PCR) for formation of heteroduplex 

DNA constructs 
PCR and F-PCR were used to amplify control genomic DNA samples.  The PCR was 

performed in 25µl and 50µl reaction volumes.  The general master mix was assembled 

on ice and consisted of 0.2µM (or up to 0.5µM) of each primer, 0.2 mM dNTPs (dATP, 

dTTP, dCTP and dGTP) (Promega, UK), 0.05 U/µl of DNA polymerases (AmpliTaq®, 

AmpliTaq Gold® (Applied Biosystems, UK) or HiFi (Expand High Fidelity PCR 

System, Roche, UK)), 1× Buffer without MgCl2 and 1.5mM to 2.5mM MgCl2.  5% 

(v/v) DMSO (Sigma Chemical Company, UK) was added for the MMR primers.  

Nuclease free water (Promega, UK) was used to adjust the volume to 24µl or 49µl per 

tube.  Finally, 1µl of genomic DNA was added to each reaction tube.  One extra tube 

was prepared with PCR mix only for use as a negative control for each reaction mixture.  

The tubes were spun down (MSE Microcentaur, Sanyo, UK) and immediately 

transferred to the thermal cycler (Mastercycler Gradient®, Eppendorf, UK or GeneAmp 

9700 thermal cycler, Applied Biosystems, UK).  The thermal cycling parameters were 

determined according to the primers and enzyme used (Table 2.4 lists the general 

cycling conditions for the different enzymes used). 

 
Table 2.4: Conditions for the thermal cycler using different DNA polymerases 

 AmpliTaq® AmpliTaq Gold® HiFi Number of cycles 
Initial 
Denaturation 94ºC  for 4min 30s 96ºC  for 12min 95ºC  for 2min 1 

Denaturation* 96ºC  for 45s 96ºC  for 45s 96ºC  for 15s 

10 Annealing XºC  for 45s XºC  for 45s XºC  for 30s 

Elongation 72ºC  for 1min 72ºC  for 1min 72ºC  for 1min 

Denaturation 94ºC  for 45s 94ºC  for 45s 94ºC  for 15s 

25 Annealing XºC  for 45s XºC  for 45s XºC  for 30s 

Elongation 72ºC  for 1min 72ºC  for 1min 72ºC  for 1min 

Final Extension 72ºC  for 10min 72oC  for 10min 72ºC  for 7min 1 

Cooling Hold at 4ºC  Hold at 4ºC  Hold at 4ºC  1 

HiFi = Expand High Fidelity PCR System 
X denotes the annealing temperature, which depended on the primers used and ranged 
between 50ºC and 64ºC. 
* The denaturation temperature for the first 10 cycles was 96oC to reduce allele dropout. 
When AmpliTaq Gold® polymerase was used, the primary denaturation step was extended to 12 
minutes to activate the enzyme. 



Materials & Methods 

78 
 

2.4.2.2.1 Optimisation 

The melting temperature (Tm) for the oligonucleotide primers was estimated by the 

following formula: 

Tm = 2(A+T) + 4(G+C), 

where A, T, C and G are the nucleotides adenine, thymine, cytosine and guanine 

respectively. The annealing temperature (Ta) was estimated from the melting 

temperature using: Ta = Tm – (5 to 10ºC).  The working optimal annealing temperatures 

were determined empirically using the Mastercycler Gradient® thermal cycler 

(Eppendorf, UK).  A temperature gradient PCR covering ±5ºC from the calculated Tm 

in 2ºC intervals was carried out.  The temperature giving the most intense amplified 

products was considered as the optimal annealing temperature. 

 

Other parameters were changed for the optimisation of PCR protocols: the MgCl2 

concentration (1.5, 2.0 and 2.5 mM), the primer concentration (mainly 0.2-0.5µM), the 

DNA polymerase used and the presence or absence of DMSO. 

 

 

2.4.2.3 PCR and F-PCR for PGD workups 
Each PGD workup involved three main steps: 

1) Confirmation of the mutation in the affected partner and his/her affected relatives 

using primers flanking the mutation site 

2) Selection of polymorphic markers that are informative for the couple 

Markers are generally considered informative if both partners were heterozygous for the 

locus and did not share any alleles (i.e. the parental origin of any allele can be identified 

for the embryo).  If one allele is shared, the marker was considered semi-informative.  

In this project, if the unaffected partner were homozygous for an allele at a linked STR 

marker that was not shared by the affected partner who was heterozygous at the locus, 

the marker was still considered informative.  Similarly, any marker that was unlinked to 

the mutation and used as a contamination marker was considered informative as long as 

the female partner was heterozygous and did not share an allele with her partner.  

3) Optimisation of a multiplex PCR protocol 
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2.4.2.3.1 Selection of markers 

The Ensembl genome database was used to obtain the complete updated genomic DNA 

sequences (including locations of all known SNP sites) and to identify the nearest 

markers to the gene/mutation of interest. 

 
2.4.2.3.2 Primer design 

As described in section 2.4.2.1.1, the primers were designed using the online Primer3 

software and checked for matching regions in the human genome using BLAST.  

Primers (Eurogentec Ltd., UK) were made up to 50µM working concentrations and 

prepared into 20µl aliquots before storage at -20 ºC (stock at -80ºC).  Tables 2.5-2.7 list 

all the primers used for the PGD workups for MSH2 and BRCA1.  All of the primers 

were initially used at 60ºC annealing temperature in singleplex reactions. 

 
Table 2.5: Primers targeting polymorphic markers linked to the MSH2 gene on chromosome 

2p21 

Primer Primer sequence (5’→ 3’) Locus type 5’ Modification Tm (ºC) 
D2S119-F CTTGGGGAACAGAGGTCATT STR marker YY 60 
D2S119-R GAGAATCCCTCAATTTCTTTGGA STR marker - 64 
D2S391-F GTAATGGAGCCAGTAGGTTACA STR marker FAM 64 
D2S391-R AGAGGGTATGATGGAAAAGC STR marker - 58 
D2S1736-F GGAAGGCAGGCAAGCATAG STR marker FAM 60 
D2S1736-R GGGGAAATGTCCTGACTTGA STR marker - 60 
D2S1715E-F GGACACTGCAGACTTGTCCA STR marker YY 62 
D2S1715E-R AGACCCTCTTGGCAGCAATA STR marker - 60 
D2S2227-F GGGTGGCATATTCTGGTCTC STR marker YY 62 
D2S2227-R CGCTGTCCTTCTCTGAATGTC STR marker - 64 
D2S2563-F AACCCTTTTTCCATAGTGTTAACTG STR marker FAM 68 
D2S2563-R TTTGAAGTCACACTGCGAAGA STR marker - 60 
D2S2495-F CCCTGCAGTTAGCAGGATAA STR marker DO 60 
D2S2495-R CCGTGGTACTTTGTTATGGC STR marker - 60 
D2S2767-F GCCCCTGTCTGAAAATATCTCCC STR marker FAM 70 
D2S2767-R ATTCCATTTCCTTTTCCTTGTAGACC STR marker - 72 
AFM196xf6-F CATCCCCACCTATGCG STR marker DO 52 
AFM196xf6-R ATGAGCCACTGCTCCC STR marker - 52 
D2S2086-F TGCTTCGTATCTTTTGGCCT STR marker FAM 58 
D2S2086-R GAACACCCTGCCCATACTTG STR marker - 62 
D2S2548-F TAATCAACTTGTCAGGGTGTGTG STR marker DO 66 
D2S2548-R AAAATTTCATGTGAAGGGGTCA STR marker - 60 
rs1981929-F TGAGTGCTACATCATCTCCCTTT SNP - 66 
rs1981929-R TTGCATACCTGATCCATATCTAAA SNP - 64 
MSH2_4SNP-F TTTCTGGAGAAGTTTGGGAAC 4 SNPs - 60 
MSH2_4SNP-R AGCAATCCCAGCTCTGCTAC 4 SNPs - 62 

F: Forward primer; R: Reverse primer; Tm: melting temperature; - : no modification 
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Table 2.6: Primers targeting BRCA1 mutations and linked STR markers on chromosome 17q21 

Primer Primer sequence (5’→ 3’) Locus type 5’ Modification Tm (ºC) 
BRCA1 c.3339T>G-F CAGTGAGCACAATTAGCCGTA mutation - 62 
BRCA1 c.3339T>G-R CTCAGGTTGCAAAACCCCTA mutation - 60 
BRCA1 c.68_69delAG-F GCTCTTCGCGTTGAAGAAGT mutation FAM 60 
BRCA1 c.68_69delAG -R GGTCAATTCTGTTCATTTGCAT mutation - 60 
D17S1338-F TCACCTGAGATTGGGAGACC STR marker YY 62 
D17S1338-R GGGCAGGAATGGGTTTTAG STR marker - 58 
D17S1185-F GGTGACAGAACAAGACTCCATC STR marker FAM 66 
D17S1185-R GGGCACTGCTATGGTTTAGA STR marker - 60 
D17S855-F GTGCAAGACTGCGTCTCAAA STR marker DO 60 
D17S855-R CCTTGACAGACAGACGGACA STR marker - 62 
D17S1343-F AAGGGCAGTGTGACCAAAAG STR marker YY 60 
D17S1343-R AGCCTGGGTAACAAGAGCAA STR marker - 60 

F: Forward primer; R: Reverse primer; Tm: melting temperature; - : no modification 

 

Table 2.7: Primers targeting STR markers that are unlinked to the MSH2 or BRCA1 genes 

Primer Primer sequence (5’→ 3’) 5’ Modification Tm (ºC) 
D17S1294-F TGGCATGCAATTGTAGTCTC FAM 58 
D17S1294-R TTCTTTCCTTACTAAGTTGAGAACG  68 
D17S1800-F CTAAACTAGGTTGGGTTGAAATCTC TET 70 
D17S1800-R TCTGGCACAAAGACCTGAG  58 
D17S841-F TGGACTTTCTTACATGGCAG HEX 58 
D17S841-R AGGTTAGTAGTCTATGTCACAGCG  70 
APOC2-F GGCTACATAGCGAGACTCCATCTCC FAM 61 
APOC2-R GGGAGAGGGCAAAGATCGATAAAGC - 59 
DM-F CTTCCCAGGCCTGCATTTGCCCATC FAM 63 
DM-R GAACGGGGCTCGAAGGGTCCTTGTAGC - 66 
D19S112 GCCAGCCATTCAGTCATTTGAAG HEX 55 
D19S112 CTGAAAGACACGTCACACTGGT - 55 
D13S168-F CTCAGGAAGAAGGAGGCTCA FAM 62 
D13S168-R CTGCTTGCTTGTGCCTATGT  60 
D13S262-F CTAAAACAAACAAATACAACTCC FAM 60 
D13S262-R TTGCTCAAGATGAAGTCATG  56 
RBivs20-F CTTCACCTTCTCTCCTCCCTAC FAM 68 
RBivs20-R GGGTAACAGAGTGAGACTCTATC - 68 
RB1.20-F GGCATTTGGACCAAGTAAGAA DO 60 
RB1.20-R GTTGCAGTGAGCCGAGATTG - 62 
IVS26-2.3-F AGGCCAGGAGTTCAAGACCA FAM 62 
IVS26-2.3-R ATGAGCCACTGTGCCCAATC  62 

F: Forward primer; R: Reverse primer; Tm: melting temperature; - : no modification 
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Genomic DNA from the couple undergoing PGD and control samples were used for 

direct mutation detection and to assess the informativity of the polymorphic markers.  

Following the identification of suitable informative markers (ideally, two linked 

markers with one on either side of the gene/mutation), the PCR multiplex protocol was 

optimised with genomic DNA and then on single lymphocytes.  The optimised PCR 

was finally tested on 50 single lymphocytes in order to calculate amplification 

efficiency (AE) and ADO frequency at each locus, where AE = ‘number of cells with 

amplified product/total number of cells’ and ADO rate = ‘number of cells with 

ADO/total number of cells with amplified product’.  AE >90% and ADO <10% were 

considered suitable for clinical application. 

 

The false negative and false positive rates were also calculated for the final PGD 

protocol using cells of known genotypes: 

- the false negative rate (FN rate) = number of cells diagnosed as normal/total 

number of cells tested from the affected partner 

- the false positive rate (FP rate) = number of cells diagnosed as affected/total 

number of cells tested from the unaffected partner 

When the diagnosis is based on two cells, the false negative and flase positive rates are 

equal to (FN rate per cell)2 and (FP rate per cell)2, respectively. 

 

PCR and F-PCR were used to amplify genomic DNA as well as DNA released from 

lysed single cells for PGD workups and during a PGD case.  The PCRs were performed 

in 25µl reaction volumes and HiFi (Roche) polymerase was always used.  The master 

mixes were set up as described in section 2.4.2.2 and the cycling conditions are listed in 

Table 2.8.  The initial standard conditions for all PCR master mixes were: 0.2µM of 

each primer, 0.2mM dNTPs, 0.05 U/µl of HiFi (Expand High Fidelity PCR System) 

enzyme and 1× HiFi Buffer 2 (containing 1.5mM MgCl2).  The initial MgCl2 

concentration tested was 1.5mM; when higher concentrations (2.0 or 2.5mM MgCl2) 

were necessary HiFi Buffer 3 was used.  Glycerol (Sigma Chemical Company, UK) at 

10% v/v was added to some multiplex PCRs.  In order to amplify all targeted loci 

efficiently, the multiplex PCRs were sometimes split into two rounds of amplification.  

The first round PCR included the primers for all targeted loci (i.e. all STR markers or 

mutation + STR markers) and involved a fewer number of cycles (Table 2.8).  The 

second round PCR was carried out in two amplification reactions each including one or 

more of the primer sets. 
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2.4.2.3.3 Single cell lysis and PCR 

For the amplification of DNA from single cells, 200mM Tricine was added to the PCR 

master mix to neutralise the ALB.  21.5µl of the reaction mix were added to the tubes 

containing 3.5µl ALB with DNA from a lysed cell.  The tubes containing the single 

cells were taken out of -80oC and incubated at 65oC for 10 minutes then cooled to 4ºC 

(GeneAmp 9700, Applied Biosystems, UK) to release the DNA just before adding the 

PCR reaction mix.  In addition to the negative control for the master mix, positive 

controls (consisting of genomic DNAs extracted from the same individual from whom 

the single cells were isolated) and blanks from single cell washes were prepared for 

these PCRs. 

 
Table 2.8: Conditions for the thermal cycler using the Expand High Fidelity PCR System (HiFi) 

for multiplex PCRs in single or split amplification reactions 

PCR step Cycling conditions Number of cycles 
for single reaction 

Number of cycles for multiplex 
PCR in split reactions 
First round     Second round 

Initial Denaturation 95ºC  for 2min 1 1 1 

Denaturation* 96ºC  for 15s 

10 10 10 Annealing XºC  for 30s 

Elongation 72ºC  for 1min 

Denaturation 94ºC  for 15s 

30 5 30 Annealing XºC  for 30s 

Elongation 72ºC  for 1min 

Final Extension 72ºC  for 7min 1 1 1 

Cooling Hold at 4ºC  1 1 1 

X denotes the annealing temperature, which depended on the primers used and ranged 
between 50ºC and 64ºC. 
* The denaturation temperature for the first 10 cycles was 96oC to reduce allele dropout. 
The same cycling conditions were used for genomic DNA or single cells during PGD workups 
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2.5 Assessment of amplified products  

2.5.1   Agarose gel electrophoresis 
In order to assess RNA and DNA amplification efficiency, samples were visualised by 

electrophoresis on 1, 1.5 and 2% (w/v) agarose gels with 0.04µg/ml ethidium bromide. 

0.5-1g agarose (Sigma Chemical Company, UK) was heated in 50ml of 1xTBE buffer 

(Appendix, section B.3) to which was added 1µl of ethidium bromide solution 

(10mg/ml).  The gel was poured into a mould and allowed to set at room temperature. 

RNA and DNA samples were prepared in 3µl and 5µl volumes, respectively, and mixed 

with 1µl loading buffer (Appendix, section B.3) before loading onto the gel.  0.8μg (8μl 

of 1:10 dilution, denatured at 70ºC for 10minutes) of the 0.5-10 Kilobase (Kb) RNA 

ladder (Invitrogen, UK) was used per well for the assessment of RNA samples and 

1.5µl of the 1 Kilobase (Kb) ladder (Hyperladder IV, Bioline) was used as a reference 

for all PCR products.  Electrophoresis was carried out at 50-75V for 20-40 minutes.  

The gels were visualised under ultraviolet (UV) light in the MultiImage Light Cabinet 

(AlphaInnotech Corporation, UK) and photographed using the AlphaImager 1220 

software (version 5.04). 

 

2.5.2   Assessment of RNA quality 
The quality of amplified RNA was assessed before proceeding with the microarray 

analysis.  Assessment was carried out on 1.5% agarose gels as well as using the 

NanoDrop® ND-1000 spectrophotometer (Isogen Life Science, Netherlands) and the 

Agilent 2100 Bioanalyzer (Agilent, CA, USA).   A minimum of 3µl RNA was 

necessary for analysis on agarose gels, while 1.2µl of each sample was sufficient for the 

NanoDrop® and Agilent 2100 Biolanalyzer. 

 

Using the Nanodrop, 1.2µl of sample was directly applied onto the sensor to obtain a 

reading of the concentration as well as two ratios: OD260/OD280 and OD260/OD230.  The 

OD260/OD280 ratio was used to estimate purity; pure RNA has an OD260/OD280 value of 

2.0.  The OD260/OD230 ratio can detect the level of salt carryover and is preferred to be 

greater than 1.5 as lower ratios indicate greater amounts of salt in the sample. 
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The Agilent RNA 6000 Kit, which is specifically designed for total RNA analysis on 

the Agilent 2100 Bioanalyzer, was used with the Nano Chip (suitable for analysis of 5-

500ng/µl total RNA) for the amplified RNA samples and the Pico Chip (suitable for 

analysis of 0.2-5ng/µl total RNA) for the original RNA samples (i.e. non-amplified 

extracted RNA). 

 

 

2.6 Processing and analysis of amplified products 

2.6.1   Microarray analysis 

2.6.1.1 Hybridisation, microarray processing, scanning and result analysis 
Triplicate sets of three pooled human MII oocytes or three pooled human blastocysts 

were analysed for mRNA expression using microarrays.  For each sample, 10µg 

amplified and digoxigenin-labeled RNA was applied onto a Human Genome Survey 

Microarray V2.0 (Applied Biosystems, UK), which included 32,878 oligo probes 

interrogating 29,098 genes.  Hybridisation, chemiluminescence detection (using 

Applied Biosystems’ Chemiluminescence detection kit), image acquisition on the 

Applied Biosystems 1700 Chemiluminescent Microarray Analyzer and initial analysis 

of the raw data using the Spotfire© IntegromicsTM AB1700 Application Package were 

carried out at the Molecular Histopathology laboratory at the Trinity Centre for Health 

Sciences (St James's Hospital, Dublin, Ireland). 

 

2.6.1.2 Functional annotations and detection of genes involved in DNA 

damage response pathways 
The Panther online database (http://www.pantherdb.org/) was used for functional 

annotations (Mi et al., 2005) and a comprehensive list of 154 DNA repair genes was 

obtained from a supplement table to a review by Wood et al. (2005) updated in 

February 2008.  All genes listed were known to be involved in DNA repair pathways.  

The online table provides the OMIM links for each gene.  Experimental evidence 

showing functional DNA repair roles of these enzymes was checked from the ‘database 

of mouse strains carrying targeted mutations in genes affecting biological responses to 

DNA damage’ (Friedberg and Meira, 2006). 
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Twelve commonly used housekeeping genes (Mamo et al., 2007) were investigated as 

controls.  Additionally, genes known to be over-expressed in cumulus cells in the 

human (LHCGR, BMPR2, TNFSF11/RANKL, SEMA3A, C7, CD200) (Assou et al., 

2006) and in the mouse (AREG, EREG and BTC) (Hernandez-Gonzalez et al., 2006) 

were examined to confirm that the oocytes were completely denuded. Three genes 

associated with pluripotency were investigated: NANOG, POU5F1 (OCT3/4) and 

SOX2. 

 

Signals from each microarray were filtered prior to analysis to eliminate all probes with 

a signal to noise (S.N.) ratio less than 3 and flags over 5000 from the data sets.  

Expression levels of all genes were grouped into three categories (high, medium and 

low) based on the signal values after removal of the outliers from the data (top and 

bottom 5% signals detected).  Signals were then split into three equal groups; the 

medium expression level ranged from 7,000 to 29,500.  A t-test analysis was performed 

and genes were characterized as differentially expressed for p-values <0.05. 

 

In order to allow analysis of the relative differences in gene expression within matured 

oocytes and blastocysts, the structure specific flap endonuclease-1 (FEN1) gene was 

used as the reference gene.  FEN1 removes 5’ single-stranded flap structures, which 

arise during DNA replication, recombination and strand displacement DNA synthesis in 

BER (Liu et al., 2004); its activity is crucial for maintaining the stability of repeat 

sequences in the genome. 

 

2.6.2 Formation of heteroduplex DNA constructs for functional 
assessment of DNA repair 
Heteroduplex DNA constructs were prepared by hybridising single strands of DNA that 

were complementary except at the site of mismatch, which was either the rs1981929 

SNP or the DMPK (CTG)n repeat.  The single strands were prepared from homozygous 

PCR products. The sequence of steps involved in the formation of heteroduplex DNA 

molecules is described in Figure 2.2. 
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Figure 2.2: Summary of experimental work for the formation of heteroduplex constructs 

 

 

2.6.2.1 Selection of DNA samples for use in the preparation of 

heteroduplex constructs 
Genomic DNAs from homozygous individuals, with different alleles at the DMPK gene 

CTG repeat locus or the rs1981929 SNP site, were used to generate PCR products for 

the formation of heteroduplex constructs with IDLs and single base mismatches, 

respectively.  Twelve control genomic DNA samples were amplified by fluorescent 

PCR (F-PCR) using the DM primers and were analysed on the ABI PrismTM 

310/GeneScanTM analysis (method described in section 2.6.4 below).  Homozygous 

samples were selected for heteroduplex formation based on allele sizes.  By changing 

the samples used, i.e. changing the allele sizes, it was possible to generate various IDL 

heterologies.  Nine control genomic DNA samples were amplified using the rs1981929 

primer set (Table 2.3).  The products were assessed using single-strand conformation 

polymorphism and sequencing analysis (methods described in sections 2.6.5 and 2.6.6).  

Two homozygous samples were selected based on the genotype (AA or GG for the 

SNP) for the formation G.T and A.C heteroduplex DNA constructs. 

DNA extraction from whole blood 

PCR (CTG repeat or SNP) 

Check amplification efficiency on 
ABI PrismTM 310 or Agarose gels 

Separation of single strands 
using Dynabeads®  

ABI PrismTM 310 analysis of labelled ssDNA to 
check efficiency of separation (minimal loss) 

Formation of heteroduplex constructs 

ABI PrismTM 310 analysis SSCP PhastSystemTM analysis 
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2.6.2.2 Separation of DNA strands 
The separation of the strands was achieved using Dyanbeads® Streptavidin M-270 

(Invitrogen, UK) in the presence of a magnetic particle concentrator (MPC) rack, 

following the manufacturer’s instructions (see Appendix, section B.4 for solution 

compositions). 

 

The Dyanbeads® were washed to remove the sodium azide (NaN3) before adding the 

DNA.  20µl of beads were added to a 0.5ml tube.  The tube was then placed on the 

MPC rack for 1 to 2 minutes.  The supernatant was removed and discarded by aspiration 

with a pipette without touching the sides of the tube.  The tube was then removed from 

the MPC rack and 20µl of 2× B&W (Binding and Washing) buffer were added and 

mixed by pipetting up and down.  The washes were repeated and after the supernatant 

was removed, the Dyanbeads® were re-suspended in 40µl of 2× B&W buffer to a final 

concentration of 5µg/µl.  40µl of amplified biotinylated DNA (the PCR product) were 

added and the tube was incubated for 15 minutes at room temperature using gentle 

rotation (R100 Rotatest Shaker, Luckham Ltd., UK) to keep the beads suspended.  The 

beads, coated with biotinylated DNA fragments, were separated using the MPC rack.  

This was followed by two washes with 1× B&W buffer using the MPC rack.  The 

Dyanbeads® with immobilised PCR products were re-suspended in 40µl 1× B&W 

buffer.  The duplex DNA was subsequently melted by exposure to 0.1M NaOH. 

 

First, the Dyanbeads®/DNA complexes were washed twice with 40µl 2× B&W buffer.  

10µl of freshly prepared 0.1M NaOH were added and the tube was incubated at room 

temperature for 5 minutes using gentle rotation.  The tube was then placed on the MPC 

rack and the NaOH supernatant was transferred to a new tube.  The beads with the 

immobilised biotinylated DNA strand were washed once with 50µl of 0.1M NaOH, 

once with 50µl of 1× B&W buffer and once with 50µl of TE buffer.  The eluted stand 

was neutralised using the MinElute PCR Purification kit (QIAGEN, UK) following the 

manufacturer’s instructions (see Appendix, section B.5).  The single stranded DNA 

(ssDNA) was re-suspended in 10µl of deionised distilled water and stored at 4ºC until 

used.  Figure 2.3 illustrates the main steps involved in the separation of single strands. 
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Figure 2.3: Summary of experimental steps involved in the separation of single strands 

 
 

 

2.6.2.3 Formation of heteroduplex constructs 
Heteroduplex molecules containing an insertion/deletion loop (IDL) or a single base 

mismatch were created by hybridisation of purified complementary single strands of 

DNA with different CTG repeat sizes or mismatched bases at the SNP site.  The single 

strands were either purchased or isolated from two PCR products. 

 

Synthesised oligonucleotides (180 bases in length) were obtained from Eurogentec Ltd. 

(UK).  The ssDNA fragments were named ‘strand A’, ‘strand G’ or ‘strand T’ according 

to the base at the SNP site.  The reverse nicked strand was also ordered in two 

fragments ‘strand Ta’ and ‘strand Tb’ (for full sequences see Table 2.9).  All ssDNA 

fragments were prepared at a 0.5µM concentration before mixing the complementary 

strands and incubating them at 37ºC overnight to form heteroduplex molecules. 
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Table 2.9: Complete sequence and fragment length of synthetic oligonucleotides used for the 

formation homoduplex and heteroduplex DNA molecules with a G.T mismatch 

Strand Oligonucleotide sequence Fragment size 

Strand A 

5’-TAAAATAAATTGAGTACGAAACAATTTGAATTAAAACACCTGA 
GTAAATAGTAACTTTGGAGACCTACTGTACTATTTGTACCTTTTG 
GATCAAATGATGCTTGTTTATCTCAGTCAAAATTTTATGATTTGTA 
TTCTGTAAAATGAGATCTTTTTATTTGTTTGTTTTACTACTTTCTT-3’ 

180 bases 

Strand G 

5’-TAAAATAAATTGAGTACGAAACAATTTGAATTAAAACACCTGA 
GTAAATAGTAACTTTGGAGACCTGCTGTACTATTTGTACCTTTTG 
GATCAAATGATGCTTGTTTATCTCAGTCAAAATTTTATGATTTGTA 
TTCTGTAAAATGAGATCTTTTTATTTGTTTGTTTTACTACTTTCTT-3’ 

180 bases 

Strand T 

5’- AAGAAAGTAGTAAAACAAACAAATAAAAAGATCTCATTTTACAG 
AATACAAATCATAAAATTTTGACTGAGATAAACAAGCATCATTTGA 
TCCAAAAGGTACAAATAGTACAGTAGGTCTCCAAAGTTACTATTTA 
CTCAGGTGTTTTAATTCAAATTGTTTCGTACTCAATTTATTTTA-3’ 

180 bases 

Strand Ta 5’-AAGAAAGTAGTAAAACAAACAAATAAAAAGATCTCATTTTACAG 
AATACAAATCA-3’ 

55 bases 

Strand Tb 
5’-TAAAATTTTGACTGAGATAAACAAGCATCATTTGATCCAAAAGG 
TACAAATAGTACAGTAGGTCTCCAAAGTTACTATTTACTCAGGTGT 
TTTAATTCAAATTGTTTCGTACTCAATTTATTTTA-3’ 

125 bases 

The sequences were selected from human chromosome 2 (2p22-p21) around the same SNP 
site (rs1981929 in the MSH2 gene) targeted with the primers described in Table 2.3.  The A/G 
SNP site is highlighted in green (on the forward strand) and yellow (on the reverse strand). 
 

Equal volumes of each single strand, isolated from PCR products of similar 

concentrations, were mixed in a 0.5ml tube.  The concentrations were estimated based 

on the band intensities observed on gels after electrophoresis or from the peak heights 

obtained on the ABI PrismTM 310 (sections 2.6.4.1 and 2.6.4.2).  Equal volumes of 

strands A/G, T and water or strands A/G, Ta and Tb were mixed to form non-nicked 

and nicked heterdoduplex molecules at 0.167µM.  The mix was denatured at 95ºC for 5 

minutes and incubated at 37ºC overnight to hybridise.  Figure 2.4 summarises the steps 

involved in the formation of heteroduplex DNA constructs with an IDL or single base 

mismatch. 

 

A nick was introduced upstream of the loop in order to direct the repair to a specific 

strand.  This was accomplished by exposing the heteroduplex DNA molecules to the Nt. 

BbvCI or Nt. BstNBI restriction endonuclease (New England BioLabs, UK).  In a 50µl 

reaction, 20µl heteroduplex sample was mixed with 24µl nuclease free water (Promega, 

UK), 5µl 10× NE buffer 2 (Appendix, section B.6) and 1µl Nt. BbvCI/Nt. BstNBI.  The 

mix was incubated for one hour at 37ºC.  The product was cleaned-up using the 

MinElute PCR Purification kit (QIAGEN, UK) prior to analysis on the ABI Prism™ 

and SSCP gels. 
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Figure 2.4: Formation of heteroduplex constructs with IDLs or single base mismatches 

 

ssDNA fragments were isolated from homozygous PCR products with different CTG repeat 
sizes or different bases for the rs1981929 SNP.  Complementary long (yellow) and short (blue) 
DNA strands were mixed together to form heteroduplex molecules containing IDLs.  
Complementary DNA strands with a G (black) and T (green) base at the SNP locus were mixed 
together to form heteroduplex molecules containing a G.T mismatch.  A nick was introduced 5’ 
to the mismatch by exposing the IDL or G.T heteroduplex DNA constructs to the Nt. BbvCI or 
Nt. BstNBI nicking endonucleases, respectively. 
 

 

2.6.3   Exposure of heteroduplex constructs to nuclear extracts 
The heteroduplex construct was exposed to nuclear extracts from HeLa S3 (MMR 

efficient) and LoVo (MSH2 deficient) cells (Active Motif, Belgium).  Formation of 

homoduplex DNA molecules was indicative of repair (Figure 2.5).  The procedure was 

based on the published method by Wang and Hays (2002a).  
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Figure 2.5: Formation of homoduplex DNA after exposure of the heteroduplex constructs to 

nuclear extracts 

 
Exposure of the heteroduplex constructs to nuclear extracts would result in the formation of 
homoduplex DNA molecules if the extracts contained all necessary DNA repair proteins. 

 

The standard MMR reaction mixture (15µl reaction volume) consisted of ~100ng of the 

DNA construct (substrate) to which 2-50µg (~0.3-10µl) of the nuclear extract was 

added along with 50ng/µl acetylated BSA and 3µl 5× solution 1 (Appendix, section 

B.7).  The negative control tube was identically prepared except for the addition of 

nuclear extracts, which was replaced with nuclease free water.  The reaction mixture 

was set-up on ice keeping all the reagents cool at all times to prevent loss of protein 

activity in the extracts.  The mixture was incubated at 37ºC for 5-60 minutes (GeneAmp 

9700 thermal cycler, Applied Biosystems, UK).  The reaction was stopped by the 

addition of a stop solution containing Proteinase K (Appendix, section B.7) followed by 

an incubation at 37ºC for 30 minutes then at 75ºC for 15 minutes (enzyme deactivation 

step) (GeneAmp 9700 thermal cycler, Applied Biosystems, UK).  The DNA constructs 

were immediately purified using the MinElute PCR Purification kit (QIAGEN, UK) and 

recovered in 10µl nuclease free water. 

 

In order to assess repair, the products were directly analysed on the ABI PrismTM 310 or 

heated at 95 ºC for 5 minutes followed by an overnight incubation at 37ºC (to allow 

duplex structures to reform) and analysed on SSCP gels.  Figure 2.6 summarises the 

main steps involved in the in vitro assessment of DNA MMR and IDL repair. 
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Figure 2.6: Summary of experimental work flow for the assessment of MMR or IDL repair 

 
 

 

2.6.4   ABI Prism™ genetic analysis 
Fluorescent PCR products were analysed using an automated laser DNA analyzer, the 

ABI PrismTM 310 with the GenescanTM software (version 3.7.1 for large fragment 

analysis).  The ABI PrismTM 3100 was used for sequencing analysis and both the ABI 

PrismTM 3100 and 3730 were used with the GeneMapperTM software for PGD workups 

and cases only. 

 

2.6.4.1 Use of the ABI 310 Prism™ for heteroduplex formation and 

analysis 
One microlitre of fluorescent PCR product (diluted to 1/10 when genomic DNA was 

amplified) was mixed with 12µl of deionised formamide (HiDiTM formamide, genetic 

analysis grade, Applied Biosystems, UK) and 0.5µl of Map Marker® 1000 TAMRA (50 

to 1000 bases) (Bio Ventures Inc., USA) size standard.  Samples were denatured at 

95ºC for 5 minutes and loaded onto the genetic analyzer. 

 

 

Expose to Nuclear Extracts 

Assess DNA repair 

using ABI PrismTM 310 or SSCP gels 
 

Formation of homoduplex DNA molecule  Repair  

Ratio of homoduplex/heteroduplex molecules  Repair efficiency 

Heteroduplex DNA construct 
assessed on ABI PrismTM 310 or SSCP gel 

Purify DNA constructs 

using the MinElute PCR Purification kit (QIAGEN, UK) 
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The denatured sample was subjected to capillary electrophoresis using Performance 

Optimised Polymer 4 (POP-4 C module; 5 second injection time, 15,000V, 60ºC, 20-40 

minutes).  The products were sized using the GeneScanTM analysis software (Applied 

Biosystems, UK).  

 

2.6.4.1.1 Normalisation of peak heights obtained with FAM and HEX on the ABI 
Prism™ 310 genetic analyzer 

The peak heights and peak areas obtained from GeneScanTM analysis reflect the relative 

amounts of labelled DNA detected.  The fluorescence intensities for different 

colours/labels are detected with different sensitivities on the ABI PrismTM 310 genetic 

analyzer.  Thus, equal amounts of DNA labelled with different fluorescent molecules 

may give different peak heights due to variation in absorbance efficiency.  In order to 

normalise the peak heights, double labelled PCR products were produced (using the 

MMR1FAM and MMR2HEX primers together).  Those products were run on the ABI 

PrismTM 310 and the ratio of the FAM peak height over the HEX peak height 

(FAM/HEX) was calculated. 

 

2.6.4.1.2 Quantitative analysis using the ABI Prism™ 310 genetic analyzer 

The HEX/TAMRA or FAM/TAMRA height ratios of same sized fragments were 

calculated from a serial dilution of HEX or FAM labelled products and the TAMRA 

marker.  The ratios were plotted against the dilution factors.  The linear regression 

slopes determined the TAMRA/HEX or TAMRA/FAM ratios, which were 0.42 and 

0.63, respectively.  A serial dilution of MapMarker® 1000 TAMRA (8fmol/band/μl) 

was run with each PrismTM run.  This made it possible to plot the TAMRA peak heights 

or peak areas against the corresponding concentrations produced from the serial 

dilution, forming a standard dose response curve for that run.  Since TAMRA was 

present in every individual sample that was run, the peak height of the sample (labelled 

with HEX or FAM) was multiplied by the TAMRA/HEX or TAMRA/FAM ratio in 

order to approximate the peak it would display were it labelled with TAMRA.  The 

concentration of the sample was then extrapolated from the standard curve.  This was 

done to approximate the concentrations of ssDNA and dsDNA (homoduplex or 

heteroduplex) samples. 
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2.6.4.1.3 Semi-quantitative assessment of DNA repair 

Semi-quantitative analysis was used to measure relative repair efficiencies and helped 

overcome the issue of incomplete nicking of the heteroduplex constructs.  The ratio of 

the peak heights from the nicked strand and the complementary non-nicked strand (R-

value) was calculated for heteroduplex constructs containing IDLs.  The R-values 

represented the ratio of fluorescence from the short strand and the complementary long 

strand when heteroduplexes were not nicked.  (R = peak height of nicked or short 

strand/peak height of non-nicked or long strand). 

 

IDL repair efficiency was assessed by comparing the R-value before and after exposure 

of the construct to nuclear extracts (N.E.): ∆R = Rnegative control – Rsample exposed to N.E..   

Since the R-value of a given sample can change after processing by up to 0.1 in the 

absence of nuclear extracts, i.e. Rnegative control – Runprocessed heteroduplex sample ≤ 0.1, a ∆R-

value ≠ 0 was considered indicative of repair only if Rsample exposed to N.E. – Runprocessed 

heteroduplex sample > 0.1. 

 

 

2.6.4.2 ABI Prism™ genetic analysis for PGD 
One microlitre of fluorescent PCR product (diluted to 1/10 when genomic DNA was 

amplified) was mixed with 12µl deionised HiDiTM formamide and 0.5µl of size 

standard.  GeneScan®-500 ROX and LIZ (50 to 500 bases) (Applied Biosystems, UK) 

were used for the ABI Prism™ 310/3100 and 3730, respectively.  Samples were 

denatured at 95ºC for 5 minutes and loaded onto the genetic analyzer.  The denatured 

sample was subjected to capillary electrophoresis using Performance Optimised 

Polymer (POP-4 G5 module; 5 second injection time, 15,000V, 60ºC, 18-25 minutes).  

The products were sized using the GeneScanTM and GeneMapperTM analysis software 

(Applied Biosystems, UK) for the ABI 310 and 3100/3730, respectively.  Preparation of 

the Prism and loading of samples was carried out by Seema Dhanjal whenever the ABI 

Prism™ 3730 was used. 
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2.6.5   SSCP/Heteroduplex analysis using the PhastSystemTM 

2.6.5.1 Preparation of samples 
All PCR products were initially checked on agarose gels to confirm DNA amplification. 

One microlitre of each PCR product was mixed with 2µl of formamide in a 0.5ml tube 

then denatured by heating at 95ºC for 10 minutes after mixing.  The denatured samples 

were kept on ice (to avoid re-annealing of the single strands) until they were loaded on 

an ultra-thin pre-cast 12.5% or 20% non-denaturing polyacrylamide gel (PhastGel® 

Homogenous 12.5 or 20, GE Healthcare Life Sciences, UK). 

 

Isolated ssDNA and duplex DNA constructs used for the functional assay were not 

denatured; they were directly loaded onto the pre-cast gels without the addition of 

formamide. 

 

2.6.5.2 Sample loading and electrophoresis on the PhastSystemTM 
A well template for the placement of the samples was formed by rubbing NescoFilmTM 

against a 12-well template mould (GE Healthcare Life Sciences, UK).  1µl of each 

product was pipetted onto the NescoFilmTM wells and a 12-tooth sample applicator 

comb was used to simultaneously transfer approximately 0.3µl of each sample to the gel 

surface placed in the electrophoresis chamber of the PhastSystemTM separation and 

control unit (Pharmacia Biotech, UK).  The running conditions of electrophoresis were 

accurately controlled in the PhastSystemTM by a microprocessor.  Electrophoresis was 

achieved by use of solid buffer strips (PhastGel® Native buffer strips, GE Healthcare 

Life Sciences, UK) placed on either ends of the gel, in contact with both the gel surface 

and the electrodes.  The gel was pre-run to generate a continuous buffer system before 

loading the samples.  In order to find the optimal conditions for the detection of the 

amplified products by automated electrophoresis, the following parameters were 

changed: the temperature (4ºC, 10ºC, 15ºC or 20ºC), the duration of the pre-run step 

(9Vh or 49Vh) and the total run time of the separation (300Vh, 350Vh and 400Vh). 
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2.6.5.3 Staining of PhastGels® 
After electrophoresis, the DNA bands were silver stained in the PhastSystemTM 

development unit chamber (Pharmacia Biotech, UK).  This involved sixteen steps, 

which used nine solutions, following the manufacturers’ instructions (Table 2.10).   The 

staining solutions were freshly prepared just before starting the automated silver 

staining procedure.  A hundred millilitres of each solution was required for each of the 

sixteen steps.  The gels with significant results were scanned soon after completion of 

the silver staining as they may fade over a period of six to twelve months. 

 
 

Table 2.10: Automated silver staining using the PhastSystemTM development unit 

All reagents and salts used for the preparation of solutions were obtained from VWR 

International (UK) 

 
Step  Solution Temperature (ºC) Time 

(min) 
Purpose 

1 Distilled deionised water 20ºC 0.5 Washing  
2 50% (v/v) ethanol, 10% (v/v) acetic acid 50ºC 2 Fixation 
3 10% (v/v) ethanol, 5% (v/v) acetic acid 50ºC 2 Fixation 
4 10% (v/v) ethanol, 5% (v/v) acetic acid 50ºC 4 Fixation 
5 10% glutaraldehyde 50ºC 6 Sensitisation 
6 10% (v/v) ethanol, 5% (v/v) acetic acid 50ºC 2 Fixation 
7 10% (v/v) ethanol, 5% (v/v) acetic acid 50ºC 5 Fixation 
8 Distilled deionised water 50 2 Washing 
9 Distilled deionised water 50 2 Washing 
10 0.4% (w/v) silver nitrate 40 10 Staining 
11 Distilled deionised water 30 0.5 Washing 
12 Distilled deionised water 30 0.5 Washing 
13 2.5% (w/v) sodium carbonate, 0.03% (v/v) 

formaldehyde 
30 1 Developing 

14 2.5% (w/v) sodium carbonate, 0.03% (v/v) 
formaldehyde 

30 10 Developing 

15 3.7% (w/v) Tris-HCl, 2.5% (w/v) sodium 
thiosulphate 

30 2 Background 
reduction 

16 10% (v/v) glycerol 50 5 Preservation 

 

 

2.6.5.4 Analysis of SSCP gels 
SSCP/heteroduplex analysis was used for the identification of single stranded, 

homoduplex and heteroduplex DNA molecules, which appeared as bands at different 

levels on the gel (Figure 2.7).  The electrophoretic migration of samples in the gel was 

dependent on whether the DNA was single or double stranded, fragment size and DNA 

sequence.  
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Figure 2.7: Schematic diagram of SSCP gel showing the migration levels of single stranded 

(black bands), heteroduplex (blue band) and homoduplex (red band) DNA fragments 

 
 

2.6.6  Sequencing analysis for the identification of SNP alleles and 
confirmation of mutation in PGD couples 
Replicates of a PCR product were checked on an agarose gel and then pooled together 

to obtain 100µl of product which was filtered through a Microcon® centrifugal filter 

(Millipore, USA).  The filter (in a 0.5ml tube) was centrifuged at 5000 rpm for 5 

minutes (MSE Microcentaur, Sanyo, UK).  100µl of nuclease free water were added 

onto the filter and the tube was centrifuged again at 5000 rpm for 5 minutes.  Another 

100µl of nuclease free water were added and the centrifugation was repeated.  15µl of 

nuclease free water were added onto the filter and the filter was inverted (blue side 

down), placed in a new 0.5ml tube and centrifuged at 500rpm for 5 minutes.  The last 

step was repeated and the flow-through was kept to set up the sequencing reaction using 

the Big Dye Terminator® v3.1 Cycle Sequencing kit (Applied Biosystems, UK). 

 

Two reactions were set up on ice in 0.5ml tubes for each purified product (a forward 

and a reverse reaction).  For each reaction, 8µl of the purified DNA were mixed with 

4µl of cycle sequencing primer BRCA1c.3339T>G-F/R, rs1981929-F/R or 

MSH2_4SNP-F/R (Tables 2.5 and 2.6) at 2pmol/µl, 2µl big dye terminator cycle 

sequencing mix, 3µl big dye terminator cycle sequencing buffer and 3µl nuclease free 

water.  The tube was placed on a thermal cycler (GeneAmp 9700, Applied Biosystems, 

UK) set to perform 25 cycles at 96ºC for 10 seconds, 50ºC for 5 seconds and 60ºC for 4 

minutes.  The product was purified by adding 2µl of EDTA (125mM), 2µl of sodium 

acetate pH4.6 (3M) and 50µl ethanol (96-100%) and mixing with a vortex (Autovortex 

SA6, Stuart Scientific, UK). 
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The sample was left at room temperature for 15 minutes then centrifuged at 13,000rpm 

for 25 minutes.  The supernatant was discarded and the pellet was left to dry on a 

heating block at 37ºC for 5 minutes.  60µl of 70% ethanol were then added to the pellet, 

mixed on the vortex and centrifuged at 13,00rpm for 5 minutes.  Once again, the 

supernatant was discarded and the pellet was left to dry at 37ºC for 5 minutes. 

 

Ten microlitres of HiDi formamide were added directly to the pellet, mixed by pipetting 

up and down and transferred to a 96-well plate for loading on the ABI PrismTM 3100 

genetic analyzer (using dye set Z and 3100-Avant Genetic 3100 BigDye® Terminator 

v3.1 Matrix Standard, Applied biosystems, UK).  The data was analysed using the 

GeneMapperTM sequencing software (Applied Biosystems, UK).  Loading of samples 

on the ABI PrismTM 3100 for sequencing was carried out by Seema Dhanjal. 

 

 

2.6.7   Mini-sequencing for SNP analysis for the MSH2 PGD protocol 
Mini-sequencing reactions were carried out on amplified DNA at the selected region 

(PCR products for the rs1981929 SNP) using the SNaPshotTM multiplex kit (Applied 

Biosystems, UK) in order to identify the bases at the SNP site (A/T and/or G/C). 

 
Samples were prepared by adding 5µl SAP (shrimp alkaline phosphatase) and 0.1µl 

ExoI (New England Biolabs, UK) to 15µl of PCR product.  The mixture was incubated 

at 37ºC for one hour, 75ºC for 15 minutes and kept at 4ºC until used in the SNaPshot 

reaction. 

  
Each SNaPshotTM reaction mix was set up on ice in a 0.2ml MicrAmp reaction tube and 

consisted of the following reagents: 5µl SNaPshotTM multiplex ready reaction mix, 3µl 

substrate, 1µl mini-sequencing primer or pooled forward and reverse primers (Table 

2.11) at 10µM and 1µl nuclease free water (Promega, UK).  The tube was loaded on the 

thermal cycler (GeneAmp 9700, Applied Biosystems, UK) set to perform 25 cycles at 

96ºC for 10 seconds, 50ºC for 5 seconds and 60ºC for 30 seconds.  This was followed 

by a post-extension treatment.  One unit (1µl) of shrimp alkaline phosphatase (SAP) 

(New England BioLabs, UK) was added to the reaction and mixed thoroughly.  The 

tube was incubated at 37ºC for one hour, 75ºC for 15 minutes (enzyme deactivation 

step) and cooled to 4ºC (GeneAmp 9700, Applied Biosystems, UK).  The SNaPshotTM 

products were kept at -20ºC (for long term storage). 
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Table 2.11: Sequence, chromosome location and modifications of primers used for mini-

sequencing experiments 

Primer Primer sequence Locus Product size 
ForA/G (F) 5’-TAAATAGTAACTTTGGAGACCT-3’ 2p22-p21 23 bases 
RevT/C (R) 5’-GGTACAAATAGTACAG-3’ 2p22-p21 17 bases 

For: Forward primer; Rev: Reverse primer 
These primers flank the rs1981929 SNP site located upstream of exon 8 in the MSH2 gene. 
 
 
The mini-sequencing analysis was completed with electrophoresis of the SNaPshotTM 

product on the ABI PrismTM 310 genetic analyzer (using the GS STR POP-4 E5 module 

and E5 matrix settings).  Samples were prepared by mixing 0.5µl SNaPshotTM product 

with 0.5µl GeneScan®-120 LIZ and 12µl HiDiTM formamide (Applied Biosystems, 

UK).  Base calling was done according to the colour and size of the fragments 

visualised after GeneScanTM analysis.  
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3 RESULTS 
3.1 Expression analysis of DNA repair genes in human oocytes 
and embryos using microarrays 

3.1.1   RNA Extraction 
3.1.1.1 Samples collected and processed for microarray analysis 
Total RNA was extracted from five sets of three oocytes (labelled MIIa-MIIe) and four 

sets of three blastocysts (labelled Ba-Bd) (section 2.3.1 in methods).  The presence of a 

polar body was confirmed in all 15 oocytes collected for this study during tubing, 

indicating that all immature oocytes had matured into MII oocytes during incubation in 

the standard culture media, prior to tubing.  The mean age of the oocyte donors was 

35.77 years +/- 4.05.  The average age per set ranged between 34 and 37 years (standard 

deviation = 1.36). 

 

3.1.1.2 Quality and concentrations of RNA extracted from MII oocytes and 

blastocysts 
Agarose gel electrophoresis and NanoDrop® analysis (section 2.5) were only used for 

the assessment of amplified RNA samples (section 2.4.1) as only ~2µl of the original 

total RNA could be spared; this was used on the Agilent 2100 Bioanalyzer, which is the 

most informative and sensitive of the three methods.  Agarose gel electrophoresis 

analysis allowed a quick assessment of RNA quantity and quality (Figure 3.1). 
 

Figure 3.1: Assessment of amplified human MII oocyte and blastocyst RNA samples on 1.5% 
agarose gels 

   
The above gels show the RNA samples of highest quality, Bd (left image), and poorest quality, 
Ba, MIIa and MIIb (right image), which were not used for microarray analysis.  The intensity of 
the smear was indicative of the quantity of amplified RNA. 
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The 18S and 28S rRNA are ~ 2 kilobases (Kb) and 5 Kb in size, respectively.  Poly(A) 

selected and total RNA samples appear as a smear from ~ 0.5 to 6 Kb (resulting from the 

population of mRNAs) with the most intense area between 1.5 and 2 Kb.  This smear 

was observed in the amplified samples with high concentrations, e.g. sample Bd (Figure 

3.1).  The three samples with the lowest RNA concentrations, Ba, MIIa and MIIb, were 

not used for microarray analysis. 

 

Assessment of non-amplified RNA samples on the Agilent 2100 Bioanalyzer showed the 

18S and 28S RNAs, which were clearly detected between 40-50 seconds of 

electrophoresis, corresponding to sizes just below 2 Kb and just above 4 Kb (Figure 

3.2a).  The amplified RNA samples showed one broad peak covering a wider size range 

(~0.2-3 Kb) rather than two sharp peaks (Figure 3.2b). 

 

All samples selected to be used in this project were of good quality according to our 

agarose gel electrophoresis, NanoDrop® and Agilent 2100 Bioanalyzer analysis results.  

The samples with the highest concentrations were hybridized on the microarrays (Table 

3.1). 

 

The amount of total RNA extracted from each set of three blastocysts or MII oocytes 

ranged from 63 pg/µl to 393pg/µl and from 48pg/µl to 78pg/µl, respectively (Table 3.1).  

This was equivalent to a yield of ~ 250-1600pg of RNA per blastocyst and ~ 200-320pg 

per oocyte.  The concentrations increased after two rounds of amplification to the 

following ranges: 91ng/µl to ~1µg/µl for the blastocyst sets and 134ng/µl to 292ng/µl 

for the oocyte sets.  The best three RNA samples from each group were used for 

microarray analysis (samples Bb, Bc, Bd, MIIc, MIId and MIIe). 
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Figure 3.2: Assessment of RNA samples from human MII oocytes and blastocysts pre (a) and 

post (b) amplification using the Agilent 2100 Bioanalyzer 
 
a) Pico chip electrophoresis results showing the non-amplified RNA samples represented as 

bands (i) and peaks in the individual electropherograms of every tested sample (ii) 

 

(i) 

 
(ii) 

 

18S 
RNA 

28S 
RNA 



Results  

 
 

103 

Figure 3.2 (continued): Assessment of RNA samples using the Agilent 2100 Bioanalyzer 
 
b) Nano chip electrophoresis run showing the amplified RNA samples represented as bands (i) 

and peaks in the individual electropherograms of every tested sample (ii) or overlaid 

electropherograms of the triplicate samples sets selected for hybridisation on microarrays (iii) 

 

(i) 
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Figure 3.2 (continued): Assessment of RNA samples using the Agilent 2100 Bioanalyzer 

(iii) 

   

Samples were loaded on the chips in the following order (1-10): Ba, Bb, Bc, Bd, DMa (not used 
for this project), MIIa, MIIb, MIIc, MIId and MIIe.  Samples 11 and 12 were blanks (water).  The 
ladder peaks were: 25, 200, 500, 1000, 2000 and 4000 bases. 

The 18S (red arrows) and 28S (green arrows) RNAs were clearly detected between 40-50 
seconds of the electrophoresis run (corresponding to sizes just below 2Kb and just above 4Kb) 
in the non-amplified samples (a).  The amplified samples showed one broad peak or smear  
covering a wider size range (~0.2-3 Kb) instead of the two sharp peaks (b). 

(iii) The two electropherograms overlay the samples that were selected for hybridisation on AB’s 
Human Genome Survey Microarrays.  The selected MII oocyte RNA samples were: c (red), d 
(blue) and e (green).   The selected blastocyst RNA samples were: b (red), c (blue) and d 
(green). 
 

 
Table 3.1: Assessment of RNA samples concentrations for microarray analysis 

Sample  
 
 

Bioanalyzer readings 
Pre-amplification 
(pg/µl) 

Bioanalyzer readings 
Post-amplification 
(ng/µl) 

NanoDrop® readings 
Post-amplification 
(ng/µl) 

Visualisation on 
1.5% agarose gels 
Post-amplification 

Ba 393 51 59.46  very faint 
Bb 191 91 112.5    
Bc 63 207 232.83    
Bd 246 1027 1115.3   
MIIa 78 36 41.76  very faint 
MIIb 65 18 22.89  very faint 
MIIc 48 292 296.12   
MIId 50 134 130.3   
MIIe 52 184 206.48   

 : indicates the RNA sample was visualised on agarose gels.  Samples Ba-Bd designate RNA 
extracted from blastocysts and MIIa-MIIe designate RNA exracted from MII oocytes. 
All samples shown in grey were not considered of suitable concentration to be used for 
microarray analysis.  The samples used were: Bb, Bc, Bd, MIIc, MIId and MIIe. 
  

MII oocytes 
RNA samples 

Blastocysts 
RNA samples 
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3.1.2   Microarray Results 

3.1.2.1 General expression analysis 
All six microarrays were hybridized and scanned successfully (section 2.6.1.1).  

Readings of all genes expressed across all samples were visualised together using 

hierarchical clustering, which grouped the three MII oocytes together and the three 

blastocysts together based on their distinct expression profiles (Figure 3.3). 
 
 

Figure 3.3: Hierarchical clustering displaying the expression signatures of human MII oocytes 

(left) and blastocysts (right) 

 

 

 

Red indicates an expression above median, green indicates an expression below median and 
black represents median expression.  Hierarchical clustering grouped the three MII oocytes 
together and the three blastocysts together based on their expression profiles. 
 
 

MII Oocyte Blastocyst 
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Out of the 32,878 oligo probes investigated, the total number detected was 13,118 and 

11,734 in the blastocysts and oocytes respectively.  None of the genes previously shown 

to be overexpressed in cumulus cells (Assou et al., 2006; Hernandez-Gonzalez et al., 

2006) could be detected in any sample except for BTC, which was picked up at very low 

levels (near the limit of detection) in both oocytes and blastocysts, and BMPR2, which 

had moderate expression level in oocytes and low levels in blastocysts (Table 3.2). 

 

Eleven out of the twelve housekeeping genes investigated were detected in both oocytes 

and blastocysts; BMP7 was not detected in either sample sets.  Three genes (UBC, 

EEF1E1 and TUBB4) did not show significant differences in expression levels; 

however, five genes (PPIA, HIST2H2AA, ACTB, GAPDH, and H2AFZ) showed a 

greater than three fold increase in the blastocyst group compared to the oocyte group 

and three (TBP, POLR2A and HPRT1) showed a greater than three fold decrease in the 

blastocyst group versus the oocyte group (Table 3.3).  Regarding genes associated with 

pluripotency, NANOG and POU5F1 (OCT3/4) mRNAs were detected in high levels in 

the blastocysts.  Only POU5F1 was detected in MII oocytes with low expression levels.  

SOX2 was not detected in either sample sets. 

 

Global gene expression, across all chromosomes, was visualised by plotting the number 

of probes that detected high, medium and low levels (section 2.6.1.2) of mRNA 

expression on each individual chromosome in a bar chart (Figure 3.4).  This allowed 

further assessment of the hybridisation of the samples on the microarrays, as gene rich 

(e.g. chromosomes 1, 2 and 19) and gene poor chromosomes (e.g. chromosomes 13, 21 

and Y) showed high and low numbers of expressed genes, respectively.  This analysis 

also showed that a greater number of genes had high expression levels in blastocysts 

compared to oocytes, as observed from the hierarchical cluster (Figure 3.3). 
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Table 3.2: Genes known to be overexpressed in cumulus cells and their expression levels in the MII oocyte and blastocyst 

Gene symbol MII oocytes expression 
level 

Blastocysts expression 
level 

Gene name Cytoband Reference sequence 

BTC Low Low Betacellulin 4q13-q21 NM_001729 
AREG Not detected Not detected amphiregulin (schwannoma-derived growth factor) 4q13-q21 NM_001657 
EREG Not detected Not detected Epiregulin 4q13.3 NM_001432 
TNFSF11 Not detected Not detected tumor necrosis factor (ligand) superfamily, member 11 13q14 NM_033012 

SEMA3A Not detected Not detected sema domain, immunoglobulin domain (Ig), short basic domain, 
secreted, (semaphorin) 3A 7p12.1 NM_006080 

C7 Not detected Not detected complement component 7 5p13 NM_000587 
CD200 Not detected Not detected CD200 antigen 3q12-q13 NM_001004197 

BMPR2 Medium Low bone morphogenetic protein receptor, type II (serine/threonine 
kinase) 2q33-q34 NM_001204 

LHCGR Not detected Not detected luteinizing hormone/choriogonadotropin receptor 2p21 NM_000233 

 
Table 3.3: Housekeeping genes showing differential expression in the blastocyst versus the oocyte group (p<0.05) with their corresponding fold changes.  UBC, 

EEF1E1 and TUBB4 (not shown here) did not show significant differences in expression levels (p>0.05) and BMP7 was not detected in either sample sets. 

Gene symbol Fold change P.value Gene name Cytoband Reference sequence 

H2AFZ 180.143 0.000 H2A histone family, member Z 4q24 NM_002106 

GAPDH 17.582 0.001 glyceraldehyde-3-phosphate dehydrogenase 12p13 NM_001001303 

ACTB 12.924 0.001 actin, beta 7p15-p12 NM_001101 

HIST2H2AA (HIST2H2AC) 4.624 0.041 histone 2, H2aa|histone 2, H2ac 1q21-q23 NM_003516 

PPIA 3.683 0.010 peptidylprolyl isomerase A (cyclophilin A) 7p13-
p11.2 NM_008907 

TBP 0.294 0.020 TATA box binding protein 6q27 NM_003194 

POLR2A 0.291 0.031 polymerase (RNA) II (DNA directed) polypeptide A, 220kDa 17p13.1 NM_000937 

HPRT1 0.265 0.008 hypoxanthine phosphoribosyltransferase 1 (Lesch-Nyhan syndrome) Xq26.1 NM_000194 
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Figure 3.4: Bar chart displaying the levels of gene expression on each chromosome in human MII oocytes (a) and blastocysts (b) 

 
The numbers indicate the total number of probes representing genes expressed at low (blue), medium (red) or high (green) levels for each chromosome. 
The numbers in brackets show the proportion of genes expressed at low, medium or high levels out of the total number of genes on that chromosome. 
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Figure 3.4 (continued): Bar chart displaying the levels of gene expression on each chromosome in human MII oocytes (a) and blastocysts (b) 

 
The numbers indicate the total number of probes representing genes expressed at low (blue), medium (red) or high (green) levels for each chromosome. 
The numbers in brackets show the proportion of genes expressed at low, medium or high levels out of the total number of genes on that chromosome. 
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3.1.2.2 Expression of DNA repair genes in MII oocytes and blastocysts 
Out of the 154 DNA repair genes (Wood et al., 2005) investigated, 153 were identified 

by probes on the Applied Biosystems Human Genome Survey Microarrays V2.0.  

mRNAs coding for 109 of those genes were detected in blastocysts (the remaining 43 

had S.N. ratios < 3 in at least one of the replicates) and 107 of those genes were 

detected in oocytes (Tables 3.6-3.10).  Eighty nine of these DNA repair genes were 

common to both the oocyte and blastocyst groups.  No DNA repair gene probes were 

excluded when the top and bottom 5% signals were eliminated from the data. 

 

Distinctive expression patterns were observed in the MII oocyte and blastocyst groups.  

Overall, 129 DNA repair genes were included in a t-test analysis and 55 were found to 

be differentially expressed in blastocysts compared to oocytes with a fold change > 3 

(p<0.05).   Amongst the differentially expressed DNA repair genes, 40 genes (73%) had 

significantly lower expression levels in the blastocyst group versus the oocyte group, 

whereas only 15 (27%) had significantly higher expression levels.  All differentially 

expressed DNA repair genes are listed with their corresponding fold changes in Tables 

3.4 and 3.5. 

 

The mRNA expression levels of genes involved in the main repair pathways, relative to 

the structure specific flap endonuclease-1 (FEN1) gene, are illustrated in Figures 3.5-

3.10.  FEN1 was selected as the reference gene as it was highly expressed in both the 

oocyte and blastocyst groups with similar signal levels.  This allowed the analysis of the 

relative differences in gene expression within each group and between the two groups. 
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Table 3.4: Genes with significantly lower expression (p<0.05) in the blastocyst group versus the oocyte group (from greatest to lowest difference) 

Gene symbol Fold change P.value DNA repair pathway Cytoband Reference sequence 
LIG1 3.01E-02 1.50E-04 NER 19q13.2-q13.3 NM_000234 
DCLRE1A 3.48E-02 1.40E-04 Genes with suspected DNA repair function 10q25.1 NM_014881 
ALKBH2 (ABH2) 4.10E-02 2.23E-04 Direct reversal of damage 12q24.11 NM_001001655 
REV1L 4.21E-02 1.37E-04 DNA Polymerases 2q11.1-q11.2 NM_016316 
FANCM 4.34E-02 1.07E-03 Genes defective in diseases associated with sensitivity to DNA damaging agents 14q21.3 NM_020937 
RPA4 4.81E-02 2.59E-03 Genes with suspected DNA repair function Xq21.33 NM_013347 
FANCL 5.26E-02 9.30E-04 Genes defective in diseases associated with sensitivity to DNA damaging agents 2p16.1 NM_018062 
BRCA2 5.68E-02 6.40E-03 DSBR - HR 13q12.3 NM_000059 
TDP1 6.46E-02 7.85E-04 Repair of DNA-protein crosslinks 14q32.11 NM_018319 
POLB 7.33E-02 2.61E-04 DNA Polymerases 8p11.2 NM_002690 
CDK7 7.73E-02 5.86E-04 NER 5q12.1 NM_001799 
FANCN (FLJ21816) 8.66E-02 4.45E-03 Genes defective in diseases associated with sensitivity to DNA damaging agents 16p12.1 NM_024675 
RAD50 9.04E-02 3.88E-04 DSBR - HR 5q31 NM_005732 
RPA1 9.31E-02 9.89E-03 NER 17p13.3 NM_002945 
MSH5 9.60E-02 2.98E-03 MMR 6p21.3 NM_002441 
RBBP8 1.03E-01 3.89E-03 DSBR - HR 18q11.2 NM_002894 
MBD4 1.14E-01 1.36E-03 BER 3q21-q22 NM_003925 
RAD54B 1.15E-01 4.28E-03 DSBR - HR 8q22.1 NM_006550 
POLI 1.16E-01 5.94E-03 DNA Polymerases 18q21.1 NM_007195 
DEPC-1 1.30E-01 4.28E-03 Direct reversal of damage 11p11.2 NM_139178 
OGG1 1.33E-01 1.12E-03 BER 3p26.2 NM_016821 
ATR 1.36E-01 3.86E-02 Other conserved DNA damage response genes 3q22-q24 NM_001184 
MGMT 1.46E-01 3.59E-03 Direct reversal of damage 10q26 NM_002412 
WRN 1.56E-01 1.66E-02 Genes defective in diseases associated with sensitivity to DNA damaging agents 8p12-p11.2 NM_000553 
PCNA 1.59E-01 1.62E-03 DNA Polymerases 20pter-p12 NM_002592 
KIAA1794 1.63E-01 1.41E-02 Genes defective in diseases associated with sensitivity to DNA damaging agents 15q25-q26 NM_018193 
UNG 1.78E-01 3.30E-03 BER 12q23-q24.1 NM_080911 
MSH3 1.78E-01 1.92E-02 MMR 5q11-q12 NM_002439 
CCNH 1.86E-01 3.20E-02 NER 5q13.3-q14 NM_001239 
POLQ 1.93E-01 3.31E-03 DNA Polymerases 3q13.33 NM_199420 
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Table 3.4 (continued): Genes with significantly lower expression (p<0.05) in the blastocyst group versus the oocyte group (from greatest to lowest difference) 

Gene symbol Fold change P.value DNA repair pathway Cytoband Reference sequence 
PMS1 1.95E-01 5.02E-03 MMR 2q31-q33|2q31.1 NM_000534 
RAD17 2.02E-01 4.40E-03 Other conserved DNA damage response genes 5q13 NM_002873 
MSH2 2.19E-01 5.04E-03 MMR 2p22-p21 NM_000251 
ERCC6 2.28E-01 2.21E-02 NER 10q11.23 NM_000124 
MPG 2.47E-01 1.64E-02 BER 16p13.3 NM_002434 
MNAT1 2.60E-01 4.99E-02 NER 14q23 NM_002431 
FAAP24 (C19orf40) 2.73E-01 4.61E-02 Genes defective in diseases associated with sensitivity to DNA damaging agents 19q13.11 NM_152266 
CHEK1 2.74E-01 1.20E-02 Other conserved DNA damage response genes 11q24-q24 NM_001274 
UBE2A 2.76E-01 9.64E-03 Rad6 Pathway Xq24-q25 NM_003336 
RAD9A 2.98E-01 1.76E-02 Other conserved DNA damage response genes 11q13.1-q13.2 NM_004584 
DCLRE1B 3.69E-01 2.73E-02 Genes with suspected DNA repair function 1p13.2 NM_022836 
 

Table 3.5: Genes with significantly higher expression (p<0.05) in the blastocyst group versus the oocyte group (from greatest to lowest difference) 

Gene symbol Fold change P.value DNA repair pathway Cytoband Reference sequence 
XRCC5 (Ku70) 36.946 1.90E-03 NHEJ 2q35 NM_021141 
SMUG1 15.840 1.04E-02 BER 12q13.11-q13.3 NM_014311 
TDG 12.848 9.45E-03 BER 12q24.1 NM_003211 
RAD51L3 11.441 1.39E-02 HR 17q11 NM_002878 
SHFM1 11.156 1.11E-03 HR 7q21.3-q22.1 NM_006304 
RAD23B 9.150 6.87E-03 NER 9q31.2 NM_002874 
MDC1 9.124 8.07E-04 Other conserved DNA damage response genes 6pter-p21.31 NM_014641 
FLJ35220 6.418 6.57E-03 Editing & processing nucleases 17q25.3 NM_173627 
APTX 6.309 6.33E-03 Genes with suspected DNA repair function 9p13.3 NM_175073 
FANCG 4.971 1.60E-02 Genes defective in diseases associated with sensitivity to DNA damaging agents 9p13 NM_004629 
FANCD2 4.314 4.42E-02 Genes defective in diseases associated with sensitivity to DNA damaging agents 3p26 NM_033084 
XRCC1 3.493 2.83E-02 BER 19q13.2 NM_006297 
NUDT1 3.201 2.54E-02 Modulation of nucleotide pools 7p22 NM_002452 
UBE2V2 3.045 2.12E-02 Rad6 Pathway 8q11.21 NM_003350 
POLD1 2.765 3.53E-02 DNA Polymerases 19q13.3 NM_002691 
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All DNA repair pathways were represented in human oocytes and blastocysts.  

However, most differentially expressed DNA repair genes were detected in lower levels 

in the blastocyst compared to the oocyte. 

 

3.1.2.2.1 Base excision repair (BER) 

Most of the BER genes examined were expressed in both MII oocytes and blastocysts 

(Table 3.6).  UNG, APEX1 and POLB mRNAs were detected at high levels in both 

human oocytes and blastocysts and OGG1 mRNA was detected at medium levels in the 

MII oocytes and low levels in the blastocysts.  Figure 3.5 displays the different 

expression patterns of BER genes (relative to FEN1) in human MII oocytes and 

blastocysts. 

 

Furthermore, the mRNA expression of four enzymes involved in the protection against 

free radicals (Cu-Zn-superoxide dismutase (Cu-Zn-SOD or SOD1), Mn-superoxide 

dismutase (Mn-SOD or SOD2), glutathione peroxidase (GPX) an d γ-glutamylcysteine 

synthetase (GCS)) was investigated in our data.  SOD1, SOD2 and GPX were highly 

expressed in human MII oocytes and blastocysts; GCS, however, was not detected in 

MII oocytes and had low expression levels in blastocysts. 

 
Table 3.6: Expression levels of mRNAs coding for BER genes in human MII oocytes and 

blastocysts 

Gene  s ymbol 
 

MII ooc ytes   
s igna l leve l 

Blas toc ys ts  
s igna l leve l 

Cytoband  
 

Refe rence 
s equence 

APEX1 High High 14q11.2-q12 NM_001641 
APEX2 Low Low Xp11.22 NM_014481 
LIG3 Not detected Not detected 17q11.2-q12 NM_013975 
MBD4 High Medium 3q21-q22 NM_003925 
MPG Medium Not detected 16p13.3 NM_002434 
MUTYH Low Low 1p34.3-p32.1 NM_012222 
NEIL1 Medium Low 15q23 NM_024608 
NEIL2 Not Detected Not detected 8p23.1 NM_145043 
NTHL1 Low Low 16p13.3 NM_002528 
OGG1 Medium Low 3p26.2 NM_016821 
PARP1 Medium High 1q41-q42 NM_001618 
PARP2 Medium High 14q11.2-q12 NM_005484 
PNKP Not detected Not detected 19q13.3-q13.4 NM_007254 
SMUG1 Not detected Medium 12q13.11-q13.3 NM_014311 
TDG Not detected High 12q24.1 NM_003211 
UNG High High 12q23-q24.1 NM_080911 
XRCC1 Low Medium 19q13.2 NM_006297 
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Figure 3.5: BER genes expressed in human MII oocytes (top) and blastocysts (bottom) with 

mRNA signal levels relative to FEN1 

 

 

The asterisk denotes the genes that were expressed at significantly higher levels in MII oocytes 
compared to blastocysts (p<0.05). 

 

 

 

The asterisk denotes the genes that were expressed at significantly higher levels in blastocysts 
compared to MII oocytes (p<0.05). 
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3.1.2.2.2 Double Strand Break Repair (DSBR) 

Overall, mRNA templates coding for 12/19 genes involved in HR repair and 3/6 genes 

involved in NHEJ were detected in both the MII oocyte and blastocyst groups (Table 

3.7). 

 

MRE11A and EXO1 mRNAs were detected at medium levels in human MII oocytes and 

blastocysts and RAD50 mRNA was detected at high levels in MII oocytes but low levels 

in blastocysts (p<0.05, 11 fold increase in oocytes).  NBS1 mRNA was detected at low 

levels in MII oocytes but was not detected in the blastocyst group (low signal detected 

for only two out of three replicates).  RAD51 and RAD52 were expressed at high levels 

in both groups (Table 3.7).  mRNA expression of BRCA2 was only detected in the MII 

oocytes (medium level).  Figure 3.6 displays the different expression patterns of HR 

repair genes (relative to FEN1) in human MII oocytes and blastocysts. 

 

Among the genes that influence the choice of pathway for the repair of DSBs, RBBP8 

(or CtIP) was expressed at high and medium levels in MII oocytes and blastocysts, 

respectively, FANCD2 expression levels were significantly higher in the blastocyst 

versus the oocyte group (p<0.05 and 4.3 fold increase) (Table 3.5) and BRCA1 mRNA 

expression was detected at medium levels in the blastocysts but was not detected in MII 

oocytes.  ATR and CHEK1 had medium expression levels in both groups with 

significantly higher levels in MII oocytes versus blastocysts (Table 3.4).  53BP1 

mRNAs were detected at high and medium levels in MII oocytes and blastocysts, 

respectively.  MDC1 mRNAs were detected at low and medium levels in MII oocytes 

and blastocysts, respectively.  CHEK2 and ATM mRNAs were not detected in either 

sample groups.  PARP1 showed higher mRNA expression levels in blastocyts versus 

MII oocytes (but the difference was not statistically significant) and RAD18 mRNA was 

only detected in the blastocysts. 
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Table 3.7: Expression levels of mRNAs coding for DSBR genes via homologous recombination 

(HR) and non-homologous end joining (NHEJ) in human MII oocytes and blastocysts 

Pathwa y 
 

Gene  s ymbol 
 

MII ooc ytes  
s igna l leve l 

Blas toc ys ts  
s igna l leve l 

Cytoband  
 

Refe rence 
s equence 

HR 

BRCA1 Not Detected Medium 17q21 NM_007295 
BRCA2 Medium Not detected 13q12.3 NM_000059 
DMC1 Not detected Not detected 22q13.1 NM_007068 
EME1 Low Low 17q21.33 NM_152463 
EME2 Medium Medium 16p13.3 NM_001010865 
MRE11A Medium Medium 11q21 NM_005590 
MUS81 Medium Medium 11q13 NM_025128 
NBN (NBS1) Not detected Not detected 8q21 NM_002485 
RAD50 High Low 5q31 NM_005732 
RAD51 High High 15q15.1 NM_002875 
RAD51C High High 17q22-q23 NM_002876 
RAD51L1 Low Not detected 14q23-q24.2 NM_002877 
RAD51L3 Not detected Medium 17q11 NM_002878 
RAD52 High High 12p13-p12.2 NM_002879 
RAD54B Medium Low 8q22.1 NM_006550 
RAD54L Not Detected Not detected 1p32 NM_003579 
RBBP8 High Medium 18q11.2 NM_002894 
SHFM1 Low High 7q21.3-q22.1 NM_006304 
XRCC2 Low Low 7q36.1 NM_005431 
XRCC3 Not detected Not detected 14q32.3 NM_005432 

NHEJ 

DCLRE1C Not Detected Medium 10p13 NM_022487 
LIG4 Not Detected Not detected 13q33-q34 NM_002312 
PRKDC Not detected Not detected 8q11 NM_006904 
XRCC4 Medium Medium 5q13-q14 NM_003401 
XRCC5 (Ku 80) Medium High 2q35 NM_021141 
XRCC6 (Ku70) High High 22q13.2-q13.31 NM_001469 

Other genes 
influencing 
DSBR 
pathway  

ATM Not Detected Not detected 11q22-q23 NM_000051 
FANCD2 Low Low 3p26 NM_033084 
ATR Medium N.D./Medium (2/3) 3q22-q24 NM_001184 
CHEK1 Medium Medium 11q24-q24 NM_001274 
CHEK2 Not detected Not detected 22q11|22q12.1 NM_007194 
MDC1 N.D./Low (2/3) Medium 6pter-p21.31 NM_014641 
53BP1 High Medium 15q15-q21 NM_005657 

N.D.: Not detected 
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Figure 3.6: HR repair genes expressed in human MII oocytes (top) and blastocysts (bottom) 

with mRNA signal levels relative to FEN1 

 

The asterisk denotes the genes that were expressed at significantly higher levels in MII oocytes 
compared to blastocysts (p<0.05). 

 

 

The asterisk denotes the genes that were expressed at significantly higher levels in blastocysts 
compared to MII oocytes (p<0.05). 
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The NHEJ genes XRCC5 (Ku70) and XRCC6 (Ku80) had medium to high expression 

levels in the MII oocytes and blastocysts, with significantly higher XRCC5 (Ku70) 

mRNA levels (p<0.05 and 37 fold greater) in the blastocyst group versus the oocyte 

group (Table 3.5).  XRCC4 had high and medium mRNA expression levels in MII 

oocytes and blastocysts, respectively.  LIG4 expression, however, could not be detected 

in either group.  (LIG4 was detected in low levels in only two out of the three MII 

oocyte replicates).  DCLRE1C (Artemis) was only expressed in the blastocysts (Table 

3.7).  Figure 3.7 displays the different expression patterns of NHEJ repair genes 

(relative to FEN1) in human MII oocytes and blastocysts. 

 
Figure 3.7: NHEJ repair genes expressed in human MII oocytes (top) and blastocysts (bottom) 

with mRNA signal levels relative to FEN1 

 

The asterisk denotes the genes that were expressed at significantly higher levels in MII oocytes 
compared to blastocysts (p<0.05). 

 

 

The asterisk denotes the genes that were expressed at significantly higher levels in blastocysts 
compared to MII oocytes (p<0.05). 
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3.1.2.2.3 Mismatch Repair (MMR) 

The main MMR genes (MLH1, MSH2, MSH3, MSH6, PMS1 and PMS2) were 

expressed in human MII oocytes and blastocysts (Table 3.8).  MSH2 and MSH6 mRNAs 

were both detected with high signals in oocytes and blastocysts.  Three of the key MMR 

genes (MSH2, MSH3 and PMS1) were expressed at significantly higher levels in the 

human MII oocytes versus the blastocysts (Table 3.4).  MSH5, which is involved in 

meiosis, was also overexpressed in oocytes compared to blastocysts (which showed 

very low MSH5 mRNA levels).  Figure 3.8 displays the different expression patterns of 

MMR genes (relative to FEN1) in human MII oocytes and blastocysts. 

 
Table 3.8: Expression levels of mRNAs coding for MMR genes in human MII oocytes and 

blastocysts 

Gene  s ymbol 
 

MII ooc ytes  
s igna l leve l 

Blas toc ys ts  
s igna l leve l 

Cytoband  
 

Refe rence 
s equence 

MLH1 Medium High 3p21.3 NM_000249 
MLH3 Not detected N.D./Low (2/3) 14q24.3 NM_014381 
MSH2 High High 2p22-p21 NM_000251 
MSH3 Medium Low 5q11-q12 NM_002439 
MSH4 Not detected Not detected 1p31 NM_002440 
MSH5 Low Not detected 6p21.3 NM_002441 
MSH6 High High 2p16 NM_000179 
PMS1 Medium Medium 2q31-q33|2q31.1 NM_000534 
PMS2 Medium Medium 7p22.2 NM_000535 
PMS2L3 Not detected Low 7q11.23 NM_005395 

N.D.: Not detected 
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Figure 3.8: MMR genes expressed in human MII oocytes (top) and blastocysts (bottom) with 

mRNA signal levels relative to FEN1 

 

The asterisk denotes the genes that were expressed at significantly higher levels in MII oocytes 
compared to blastocysts (p<0.05). 
 

 

The asterisk denotes the genes that were expressed at significantly higher levels in blastocysts 
compared to MII oocytes (p<0.05). 
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3.1.2.2.4 Nucleotide Excision Repair (NER) 

mRNA transcripts coding for 18 NER genes were detected in both MII oocytes and 

blastocysts (see Table 3.9 for full list of genes) some of which showed differential 

expression between the two groups.  Most were significantly higher in the MII oocytes 

compared to the blastocysts, specifically the kinase subunits of TFIIH CDK7, CCNH, 

MNAT1 as well as RPA1, ERCC6 (CSB) and LIG1 (Table 3.4).  Only RAD23B had 

significantly higher mRNA levels in the blastocyst group (Table 3.5).  The 

transcription-coupled repair (TCR) genes, ERCC6 (CSB), GTF2H1, 2 & 5 and 

MMS19L, had medium or high mRNA expression levels in the human MII oocyte.  

Only MMS19L had a higher signal detected in the blastocyst group versus the oocyte 

group and the difference was not significant.  Figure 3.9 displays the expression patterns 

of all NER genes (relative to FEN1) in human MII oocytes and blastocysts. 

 
Table 3.9: Expression levels of mRNAs coding for NER genes in human MII oocytes and 

blastocysts 

Gene  s ymbol 
 

MII ooc ytes  
s igna l leve l 

Blas toc ys ts  
s igna l leve l 

Cytoband  
 

Refe rence 
s equence 

CCNH High Medium 5q13.3-q14 NM_001239 
CDK7 High High 5q12.1 NM_001799 
CETN2 Not Detected Not detected Xq28 NM_004344 
DDB1 Medium Medium 11q12-q13 NM_001923 
DDB2 (LHX3) Not detected Not detected 11p12-p11 NM_000107 
ERCC1 Low Medium 19q13.2-q13.3 NM_001983 
ERCC2 (XPD) Low Not detected 19q13.3 NM_000400 
ERCC3 (XPB) Not detected Low 2q21 NM_000122 
ERCC4 (XPF) Not detected Not detected 16p13.3-p13.11 NM_005236 
ERCC5 (XPG) Medium Low 13q22|13q33 NM_000123 
ERCC6 (CSB) Medium Not detected 10q11.23 NM_000124 
ERCC8 (CSA) Low Low 5q12.1 NM_000082 
GTF2H1 Medium Medium 11p15.1-p14 NM_005316 
GTF2H2 High Medium 5q12.2-q13.3 NM_001515 
GTF2H3 Not detected Not detected 12q24.31 NM_001516 
GTF2H4 (VARSL) Low Medium 6p21.3 NM_001517 
GTF2H5 High High 6q25.3 NM_207118 
LIG1 High Medium 19q13.2-q13.3 NM_000234 
MMS19L (MMS19) Medium High 10q24-q25 NM_022362 
MNAT1 Medium Medium 14q23 NM_002431 
RAD23A Low Medium 19p13.2 NM_005053 
RAD23B Not Detected High 9q31.2 NM_002874 
RPA1 Medium Low 17p13.3 NM_002945 
RPA2 High High 1p35 NM_002946 
RPA3 N.D./Low (2/3) Low 7p22 NM_002947 
XAB2 Not detected Not detected 19p13.2 NM_020196 
XPA High High 9q22.3 NM_000380 
XPC Low Not detected 3p25 NM_004628 

N.D.: Not detected 
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Figure 3.9: NER genes expressed in human MII oocytes (top) and blastocysts (bottom) with 

mRNA signal levels relative to FEN1 

 
The asterisk denotes the genes that were expressed at significantly higher levels in MII oocytes 
compared to blastocysts (p<0.05). 

 
The asterisk denotes the genes that were expressed at significantly higher levels in blastocysts 
compared to MII oocytes (p<0.05). 
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3.1.2.2.5 Other DNA repair pathways 

The three genes involved in direct reversal of DNA damage ALKBH2 (ABH2), DEPC-1 

and MGMT were all expressed in MII oocytes and blastocysts (Table 3.10).  mRNA 

levels were significantly higher (p<0.05) in the oocytes (by 24, 7.7 and 6.8 folds 

repectively) (Table 3.4).  The DNA-protein crosslinks repair gene TDP1 had high 

mRNA expression levels picked up in the MII oocytes and low levels in the blastocysts 

(Table 3.10). The post-replication repair (RAD6 pathway) gene UBE2A had 

significantly higher expression levels in the human MII oocyte than the blastocyst 

(p<0.05 and 3.6 fold) (Table 3.4).  UBE2V2 and UBE2B showed higher expression 

levels in blastocysts versus MII oocytes (Table 3.5) though the differences in expression 

levels were not significant for UBE2B.  Figure 3.10 displays the different expression 

patterns of the RAD6 pathway genes (relative to FEN1) in human MII oocytes and 

blastocysts. 

 

3.1.2.2.6 Genes associated with apoptosis 

Analysis of few apoptosis related genes showed that the anti-apoptotic genes BCL-2 and 

BCL-W were both expressed at low levels in human MII oocytes and blastocysts and 

BCL-XL was not detected in either of the two groups.  The pro-apoptotic genes BAX and 

BAK were expressed at low levels in MII oocytes and medium levels in the blastocysts.  

BAD, another pro-apoptotic gene from the BCL-2 family, was only detected in the 

blastocysts. 
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Figure 3.10: RAD6 pathway genes expressed in human MII oocytes (top) and blastocysts 

(bottom) with mRNA signal levels relative to FEN1 

 

The asterisk denotes the genes that were expressed at significantly higher levels in MII oocytes 
compared to blastocysts (p<0.05). 

 

 

 

The asterisk denotes the genes that were expressed at significantly higher levels in blastocysts 
compared to MII oocytes (p<0.05). 
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Table 3.10: Expression levels of mRNAs coding for genes involved in DNA repair pathways in human 

MII oocytes and blastocysts 

DNA repa ir pa thwa y 
 

Gene  s ymbol 
 

MII ooc ytes  
s igna l leve l 

Blas toc ys ts  
s igna l leve l 

Cytoband  
 

Refe rence 
s equence 

Chromatin Structure 
CHAF1A High High 19p13.3 NM_005483 
H2AFX (H2AX) High High 11q23.2-q23.3 NM_002105 

Direct reversal of 
damage 

ALKBH2 (ABH2) High High 12q24.11 NM_001001655 
DEPC-1 Medium Low 11p11.2 NM_139178 
MGMT High Medium 10q26 NM_002412 

Rad6 Pathway 

RAD18 Not Detected Medium 3p25-p24 NM_020165 
UBE2A High High Xq24-q25 NM_003336 
UBE2B Medium High 5q23-q31 NM_003337 
UBE2N Medium Medium 12q22 NM_003348 
UBE2V2 Medium High 8q11.21 NM_003350 

Modulation of 
nucleotide pools 

DUT High High 15q15-q21.1 NM_001948 
NUDT1 Medium High 7p22 NM_002452 
RRM2B Not detected Low 8q23.1 NM_015713 

Repair of DNA-protein 
crosslinks TDP1 High Low 14q32.11 NM_018319 

DNA Polymerases 

MAD2L2 Medium Medium 1p36 NM_006341 
PCNA High High 20pter-p12 NM_002592 
POLB High High 8p11.2 NM_002690 
POLD1 Not detected Low 19q13.3 NM_002691 
POLE Low Low 12q24.3 NM_006231 
POLG Low Medium 15q25 NM_002693 
POLH Not Detected Not detected 6p21.1 NM_006502 
POLI Low Not detected 18q21.1 NM_007195 
POLK Low Not detected 5q13 NM_016218 
POLL Low Low 10q23 NM_013274 
POLM Not detected Low 7p13 NM_013284 
POLN Not detected Not detected 4p16.3 NM_181808 
POLQ Medium Low 3q13.33 NM_199420 
REV1L High Medium 2q11.1-q11.2 NM_016316 
REV3L Not Detected Not detected 6q21 NM_002912 

Editing and processing 
nucleases 

EXO1 Medium Medium 1q42-q43 NM_003686 
FEN1 High High 11q12 NM_004111 
FLJ35220 Not detected Medium 17q25.3 NM_173627 
SPO11 Not Detected Not detected 20q13.2-q13.3 NM_012444 
TREX1 Not Detected Not detected 3p21.3-p21.2 NM_033629 
TREX2 Medium Medium Xq28 NM_080701 

Genes defective in 
diseases associated 
with sensitivity to 
DNA damaging agents 

ATM Not Detected Not detected 11q22-q23 NM_000051 
BLM High High 15q26.1 NM_000057 
FAAP24 Low Low 19q13.11 NM_152266 
FANCA Not detected Not detected 16q24.3 NM_000135 
FANCB Medium Low Xp22.2 NM_152633 
FANCC Medium Not detected 9q22.3 NM_000136 
FANCD2 Low Low 3p26 NM_033084 
FANCE Not Detected Low 6p22-p21 NM_021922 
FANCF Low Not detected 11p15 NM_022725 
FANCG Not detected Medium 9p13 NM_004629 
FANCL High Medium 2p16.1 NM_018062 
FANCM Medium Low 14q21.3 NM_020937 
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Table 3.10 (continued): Expression levels of mRNAs coding for genes involved in DNA repair 

pathways in human MII oocytes and blastocysts 

DNA repa ir pa thwa y 
 

Gene  s ymbol 
 

MII ooc ytes  
s igna l leve l 

Blas toc ys ts  
s igna l leve l 

Cytoband  
 

Refe rence 
s equence 

Genes defective in 
diseases associated 
with sensitivity to 
DNA damaging agents 

FANCN  Medium Not detected 16p12.1 NM_024675 
KIAA1794 High Medium 15q25-q26 NM_018193 
RECQL4 Low Low 8q24.3 NM_004260 
WRN Medium Low 8p12-p11.2 NM_000553 

Other conserved DNA 
damage response 
genes 

ATR Medium N.D. /Medium (2/3) 3q22-q24 NM_001184 
CHEK1 Medium Medium 11q24-q24 NM_001274 
CHEK2 Not detected Not detected 22q11|22q12.1 NM_007194 
CLK2 Not detected Not detected 1q21 NM_003993 
HUS1 Not detected Not detected 7p13-p12 NM_004507 
MDC1 N.D./Low (2/3) Medium 6pter-p21.31 NM_014641 
PER1 Medium Medium 17p13.1-17p12 NM_002616 
RAD1 Medium Medium 5p13.2 NM_002853 
RAD17 High High 5q13 NM_002873 
RAD9A Medium Low 11q13.1-q13.2 NM_004584 
TP53 N.D./Low (2/3) N.D./Low (2/3) 17p13.1 NM_000546 

Other identified genes 
with suspected 
DNA repair function 

APTX Medium High 9p13.3 NM_175073 
DCLRE1A High Medium 10q25.1 NM_014881 
DCLRE1B Low Not detected 1p13.2 NM_022836 
HEL308 Low Low 4q21.23 NM_133636 
NEIL3 Not Detected Not detected 4q34.3 NM_018248 
RDM1 Not detected Not detected 17q11.2 NM_145654 
RECQL Low Medium 12p12 NM_002907 
RECQL5 Not detected Not detected 17q25.2-q25.3 NM_001003715 
RPA4 Low Not detected Xq21.33 NM_013347 

N.D.: Not detected 
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3.1.3   Summary of microarray analysis results 
- The triplicate sets of extracted RNA from three pooled human MII oocytes or 

blastocysts were successfully amplified and hybridised on the Applied 

Biosystems’ microarrays. 

 

- Global gene expression analysis across all chromosomes and the hierarchical 

cluster showed that a greater proportion of genes were highly expressed in the 

blastocysts compared to the oocytes. 

 

- Among the 129 DNA repair genes that were included in a t-test, 55 were found 

to be differentially expressed in blastocysts compared to oocytes.  Most (73%) 

were detected in lower levels in the blastocyst group compared to the oocyte 

group (p<0.05, fold change > 3). 

 

- While all DNA repair pathways were represented in human oocytes and 

blastocysts, the expression profiles of DNA repair genes were different in the 

two sample groups. 

 

- Most BER (11/17), MMR (6/10) and NER (18/28) genes were expressed in both 

MII oocytes and blastocysts.  For DSBR, 12/19 genes involved in HR and 3/6 

genes involved in NHEJ were expressed in both groups.  The mRNA expression 

levels for the different genes were distinct in the two sample groups.
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3.2  Development of a cell free in vitro functional assay for the 
assessment of IDL and mismatch repair 

3.2.1 Formation of heteroduplex DNA constructs containing 
insertion/deletion loops and base-base mismatches 

3.2.1.1 Design of DNA templates 
Heteroduplex DNA molecules were made to include either an insertion/deletion loop 

(IDL) of 3, 21 or 24 residues in size or a G.T or A.C mismatch using the method 

described in section 2.6.2.  The constructs were prepared both with and without a 

5’nick, which directs the repair to a specific strand.  Figure 3.11 illustrates the use of a 

nick to direct the repair of IDLs.  The strands of the heteroduplex DNAs were either 

fluorescently labelled for accurate sizing on the ABI PrismTM 310 automated genetic 

analyzer (section 2.6.4.1) or non-labelled for SSCP/heteroduplex analysis (section 

2.6.5). 

 
Figure 3.11: Diagram showing the flexible structure of the heteroduplex construct for IDLs 

 
The size of the IDL could be varied and the nick placed on either the long or short strand, giving 
a wide variety of heteroduplex molecules.  The MMR machinery should recognise the presence 
of the loops as insertions in section (a) and deletions in section (b) and repair the nicked strand 
by omitting the extra bases or inserting additional bases, respectively. 
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3.2.1.1.1 Selection of the DNA sequence and PCR primers 

The primers were selected so that the amplified products would be around 300 or 600 

base pairs (bp) in size and included the selected CTG triplet repeat region involved in 

DM1 or the rs1981929 SNP site as well as a single recognition sequence for a nicking 

enzyme (section 2.4.2.1).  Only one nicking enzyme had a single recognition site in 

each of the two sequences.  The nicking endonucleases Nt. BbvCI and Nt. BstNBI were 

used to create a single nick on one strand of the duplex DNA construct 5’ to the CTG 

repeat and A/G SNP site, respectively.  Figure 3.12 summarises the sequence structures 

and the full sequences are shown in Figure 3.13. 

 
Figure 3.12: Diagrams illustrating the design of the DNA sequence used for the formation of 

heteroduplex DNA constructs with IDLs (top) and single base mismatches (bottom) 
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recognition 

 

Primer 2 

Primer 1 

 245 bp 5’ 3’ Primer F 
A/G 

3’ 5’ Primer R 
Nt. BstNBI 

recognition 

 

 

80 bp ~ 90 bp 165 bp T/C 



Results 

130 
 

Figure 3.13: Genomic DNA sequences used for the formation of heteroduplex DNA constructs 

1) DNA sequence used for the formation of heteroduplex constructs with IDLs located on 19q13.2-

q13.3 (accession number: L00727, selection 10561-11161), upstream of the DMPK gene 

 

The DNA sequence shows the CTG triplet repeat (highlighted in yellow), the recognition site for 
the nicking enzyme (highlighted in blue), the PCR primer sequences (forward in red and reverse in 
green) and the DM primer sequences (forward in orange and reverse in brown). 

The Sixpack display tool, available on the EMBL-EBI website (http://srs.ebi.ac.uk), was used to 
display the DNA sequence in both directions. 

 
  1 tccgcccagctccagtcctgtgatccgggcccgccccctagcggccggggagggaggggc 60 
    ----:----|----:----|----:----|----:----|----:----|----:----| 
  1 aggcgggtcgaggtcaggacactaggcccgggcgggggatcgccggcccctccctccccg 60 
                     
 61 cgggtccgcggccggcgaacggggctcgaagggtccttgtagccgggaatgctgctgctg 120 
    ----:----|----:----|----:----|----:----|----:----|----:----| 
 61 gcccaggcgccggccgcttgccccgagcttcccaggaacatcggcccttacgacgacgac 120 

  
121 ctgctgctgctgctgctgctgctggggggatcacagaccatttctttctttcggccaggc 180 
    ----:----|----:----|----:----|----:----|----:----|----:----| 
121 gacgacgacgacgacgacgacgacccccctagtgtctggtaaagaaagaaagccggtccg 180 
  
181 tgaggccctgacgtggatgggcaaactgcaggcctgggaaggcagcaagccgggccgtcc 240 
    ----:----|----:----|----:----|----:----|----:----|----:----| 
181 actccgggactgcacctacccgtttgacgtccggacccttccgtcgttcggcccggcagg 240 
 
241 gtgttccatcctccacgcacccccacctatcgttggttcgcaaagtgcaaagctttcttg 300 
    ----:----|----:----|----:----|----:----|----:----|----:----| 
241 cacaaggtaggaggtgcgtgggggtggatagcaaccaagcgtttcacgtttcgaaagaac 300 
 
301 tgcatgacgccctgctctggggagcgtctggcgcgatctctgcctgcttactcgggaaat 360 
    ----:----|----:----|----:----|----:----|----:----|----:----| 
301 acgtactgcgggacgagacccctcgcagaccgcgctagagacggacgaatgagcccttta 360 
 
361 ttgcttttgccaaacccgctttttcggggatcccgcgcccccctcctcacttgcgctgct 420 
    ----:----|----:----|----:----|----:----|----:----|----:----| 
361 aacgaaaacggtttgggcgaaaaagcccctagggcgcggggggaggagtgaacgcgacga 420 
 
421 ctcggagccccagccggctccgcccgcttcggcggtttggatatttattgacctcgtcct 480 
    ----:----|----:----|----:----|----:----|----:----|----:----| 
421 gagcctcggggtcggccgaggcgggcgaagccgccaaacctataaataactggagcagga 480 
 
481 ccgactcgctgacaggctacaggacccccaacaaccccaatccacgttttggatgcactg 540 
    ----:----|----:----|----:----|----:----|----:----|----:----| 
481 ggctgagcgactgtccgatgtcctgggggttgttggggttaggtgcaaaacctacgtgac 540 
 
541 agaccccgacattcctcggtatttattgtctgtccccacctaggacccccacccccgacc 600 
    ----:----|----:----|----:----|----:----|----:----|----:----| 
541 tctggggctgtaaggagccataaataacagacaggggtggatcctgggggtgggggctgg 600 
            
 

MMR1   

Nt. BbvCIB 

  DM (F) → 

← DM (R) 

      MMR2                      

MMR2S  
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Figure 3.13 (continued): Genomic DNA sequences used for the formation of heteroduplex DNA 

constructs  

2) DNA sequence used for the formation of heteroduplex constructs with single base mismatches 

including the rs1981929 SNP site located within intron 8 of the MSH2 gene on 2p21 

(Chromosome 2: 47,525,573–47,526,053) 
 
   1 TAATGTCATGTTTCTGCATCTATATTACTTGTTGGGTTTACAGACGAGGTAGTGTATTAT 60 

     ----:----|----:----|----:----|----:----|----:----|----:----| 

   1 ATTACAGTACAAAGACGTAGATATAATGAACAACCCAAATGTCTGCTCCATCACATAATA 60 

 

  61 TAGTGGGAAGCTTTGAGTGCTACATCATCTCCCTTTCTATAAAATAAATTGAGTACGAAA 120 

     ----:----|----:----|----:----|----:----|----:----|----:----| 

  61 ATCACCCTTCGAAACTCACGATGTAGTAGAGGGAAAGATATTTTATTTAACTCATGCTTT 120 

 

 121 CAATTTGAATTAAAACACCTGAGTAAATAGTAACTTTGGAGACCTGΙACTGTACTATTTGTA 180 

     ----:----|----:----|----:----|----:----|----:- ---|----:----| 

 121 GTTAAACTTAATTTTGTGGACTCATTTATCATTGAAACCTCTGGACΙTGACATGATAAACAT 180 

 

 181 CCTTTTGGATCAAATGATGCTTGTTTATCTCAGTCAAAATTTTATGATTTGTATTCTGTA 240 

     ----:----|----:----|----:----|----:----|----:----|----:----| 

 181 GGAAAACCTAGTTTACTACGAACAAATAGAGTCAGTTTTAAAATACTAAACATAAGACAT 240 

 

 241 AAATGAGATCTTTTTATTTGTTTGTTTTACTACTTTCTTTTAGGAAAACACCAGAAATTA 300 

     ----:----|----:----|----:----|----:----|----:----|----:----| 

 241 TTTACTCTAGAAAAATAAACAAACAAAATGATGAAAGAAAATCCTTTTGTGGTCTTTAAT 300 

 

 301 TTGTTGGCAGTTTTTGTGACTCCTCTTACTGATCTTCGTTCTGACTTCTCCAAGTTTCAG 360 

     ----:----|----:----|----:----|----:----|----:----|----:----| 

 301 AACAACCGTCAAAAACACTGAGGAGAATGACTAGAAGCAAGACTGAAGAGGTTCAAAGTC 360 

 

 361 GAAATGATAGAAACAACTTTAGATATGGATCAGGTATGCAATATACTTTTTAATTTAAGC 420 

     ----:----|----:----|----:----|----:----|----:----|----:----| 

 361 CTTTACTATCTTTGTTGAAATCTATACCTAGTCCATACGTTATATGAAAAATTAAATTCG 420 

 

 421 AGTAGTTATTTTTAAAAAGCAAAGGCCACTTTAAGAAAGTTTGTAGATTTTTCTTTTTAG 480 

     ----:----|----:----|----:----|----:----|----:----|----:----| 

 421 TCATCAATAAAAATTTTTCGTTTCCGGTGAAATTCTTTCAAACATCTAAAAAGAAAAATC 480 

 
The DNA sequence shows the A/G SNP site (highlighted in yellow), the recognition site for the 
nicking enzyme (highlighted in blue) and the PCR primer sequences (forward in red and reverse in 
green). 

The Sixpack display tool, available on the EMBL-EBI website (http://srs.ebi.ac.uk), was used to 
display the DNA sequence in both directions. 

rs1981929 R 

rs1981929 F 

Nt. BstNBI 
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3.2.1.1.2 Selection of DNA samples 
Genomic DNAs from homozygous individuals with different alleles were amplified and 

used for the formation of heteroduplex DNA constructs (section 2.6.2.1).  The DNA 

samples used for the formation of IDL constructs were selected based on allele size 

differences.  Twelve control genomic DNA samples were amplified by fluorescent PCR 

(F-PCR) using the DM primer set labelled with FAM and were visualised as blue peaks 

on the ABI PrismTM 310.  Some of the results panels obtained from GeneScanTM 

fragment size analysis are shown in Figure 3.14 and the allele sizes are listed in Table 

3.11. 
  

Figure 3.14: GeneScanTM fragment size analysis result panels showing five amplified products 

for the DM1 triplet repeat locus and a negative control (missing genomic DNA) 

 
The peaks represent the amplified DNA fragments at the DM repeat locus (120-152bp long) 
obtained from control DNA samples.  The first two peaks that are under 90bp are unspecific 
products resulting from primer dimers and were observed in the negative control sample as well.  
Samples 1, 2, 3 and 5 were homozygous and sample 4 was heterozygous for the DM repeat 
locus.  Samples 1-3 were used for the formation of heteroduplex constructs with IDLs. 

Sample 1 

Sample 2 

Sample 4 

Sample 3 

Negative control 

Sample 5 

143 

122 

146 

122 152 

155 
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Table 3.11: Allele sizes obtained from twelve genomic DNA samples amplified by F-PCR using 

the DM primers 

DNA 
sample 1 2 3 4 5 6 7 8 9 10 11 12 

Allele 
sizes 
(bp) 

143 146 122 122 
152 155 129 

149 
122 
168 122 122 144 

148 
142 
152 

122 
149 

Samples 1, 2 and 3 were selected and used for the formation of heteroduplex DNA constructs 
with 3, 21 and 24-nucleotide IDLs. 
 

As only homozygous samples were considered; this eliminated samples 4, 6, 7, 10, 11 

and 12.  Amongst the homozygous samples, samples 1, 2 and 3 with allele sizes of 146, 

143 and 122, respectively, were selected and used in the formation of heteroduplex 

DNA contructs with 3, 21 and 24-nucleotide IDLs.  The IDL could be 9 nucleotides in 

size if samples 2 and 5 were used or 33 nucleotides if samples 3 and 5 were chosen 

(Figure 3.14 and Table 3.11). 

 

Samples that were homozygous A/A and G/G at the rs1981929 SNP locus were needed 

for the formation of constructs with a G.T or A.C mismatch.  Nine control genomic 

DNA samples were amplified using the rs1981929 primer set and analysed on SSCP 

Homogenous 12.5 and 20 gels (Figure 3.15). 

 
Figure 3.15: SSCP analysis on PhastGel® Homogeneous 12.5 (left) and 20 (right) run at 10ºC  

with long pre-run showing nine genomic DNA samples amplified with the rs1981929-F/R 

primers 

            

The top band was common to all samples.  The lower bands (in the blue boxes) were 
representative of the A or G alleles at the rs1981929 locus.  Samples 1, 3, 4 and 9 were 
heterozygous as they show both bands/alleles.  Samples 2, 5 and 7 were homozygous for one 
allele and samples 6 and 8 were homozygous for the other allele. 
 

 1    2    3    4   5     6    7    8    9  1    2    3    4   5     6    7    8    9 
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Homozygous samples could be grouped into two groups depending on the genotype 

(A/A or G/G for the rs1981929 SNP).  Samples 2, 5 and 7 seemed to have the same 

allele and samples 6 and 8 seemed to have the other; while samples 1, 3, 4 and 9 were 

heterozygous.  Samples 7 and 8 were sequenced to confirm homozygosity and 

determine the nucleotide base at the SNP site (method described in section 2.6.6).  It 

was important to confirm that no other change in sequence (mutation or SNP) had 

caused the conformational change observed on the SSCP gels.  The full sequences 

obtained on the ABI PrismTM 3100 genetic analyzer are shown in the Appendix (Figure 

C.1).  Samples 7 and 8 were identified as G/G and A/A, respectively; the two samples 

were used for the formation G.T and A.C heteroduplex DNA constructs. 

 

3.2.1.2 Optimisation of PCR conditions 
The PCR using the DM primers had been previously optimised (Piyamongkol et al., 

2001).  The PCR using the MMR and MSH2 primers, however, needed to be optimised 

to avoid problems such as non-specific annealing of primers.  This was done 

empirically by varying the annealing temperature, DNA template amount, primer, 

MgCl2 and DNA polymerase concentrations (section 2.4.2.2.1). 

 

The amount of genomic DNA used as a template for the amplification reaction was 

generally 1µl (equivalent to 100ng DNA) for 25µl reactions.  The calculated melting 

temperatures (Tm) were 64ºC and 64-66ºC for the MMR and rs1981929 primers, 

respectively.  The annealing temperature (Ta) for these PCRs was expected to be at 

~5 to 10ºC below the Tm; thus 55-60ºC were estimated to be reasonable annealing 

temperatures for both primer sets.  In order to determine the temperature that would 

give the most stringent PCR conditions, different annealing temperatures were tested 

in parallel using the Mastercycler Gradient® (Eppendorf, UK).  The temperatures 

ranged between 50ºC and 64ºC for the MMR primers and 54ºC and 62ºC for the 

rs1981929 primers.  The PCR products were assessed by comparing their band 

intensities on agarose gels (Figures 3.16 and 3.17).  The optimal annealing 

temperature was found to be 60ºC for the MMR and 56ºC for the rs1981929 primers. 
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 Figure 3.16: 1% agarose gel (run at 55V) showing annealing temperature (Ta) optimisations for 

the MMR primer set 
 

 

PCR products using the MMR primers at different annealing temperatures: 50-62ºC (left) and 
60-64ºC (right); Expected product size: ~600bp 
L: 1Kb ladder (1000, 800, 700, 600, 500, 400, 300, 200 and 100bp); -ve:negative control 
The optimal annealing temperature for the MMR primers was 60ºC, as the product amplified 
at this temperature had the strongest band intensity. 

 

 
Figure 3.17: 2% agarose gel (run at 70V) showing annealing temperature (Ta) optimisation for 

the rs1981929 primer set 

 

 

PCR products using the rs1981929 primers at different annealing temperatures: 54-62ºC; 
Expected product size: 328bp; L: 1Kb ladder; -ve:negative control 
The optimal annealing temperature for the rs1981929 primers was 56ºC.  Unspecific products 
(~250bp) were detected at higher annealing temperatures, especially at 60 and 62ºC. 
 

 

The initial PCR conditions used for the rs1981929 primers (0.2µM primers, HiFi DNA 

polymerase and 56ºC annealing temperature) were tested again with one primer 

biotinylated in each set.  The products were checked on a 2% agarose gels (Figure 3.18). 
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-ve      64     62      60 L 
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bp 
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Ta (ºC) 

   54         56        58         60         62     -ve 

                                                        
bp 

 
400 
300 
200 

 

100 



Results 

136 
 

Figure 3.18: 2% agarose gel (run at 75V) showing the amplified products obtained from the two 

selected homozygous DNA samples using the rs1981929-B-F+ rs1981929-R (1) & rs1981929-

F+ rs1981929-B-R (2) primer sets 

 

L: 1Kb ladder; -ve:negative control 
Both rs1981929 primer sets 1 and 2 were amplified efficiently (strong band intensities) at 
56ºC using 0.2µM primers and HiFi DNA polymerase; no unspecific products were observed. 
 

 

As the amplification was satisfactory, no further optimisation was necessary for the 

rs1981929 primers.  The MMR primers, however, required further optimisation.  In 

order to this, a magnesium titration was performed.  The amplification was assessed 

at 1.5, 2.0 and 2.5mM MgCl2 concentrations.  The optimal concentration was 1.5mM 

(Figure 3.19). 

 

 
Figure 3.19: 1% agarose gel for the titration of MgCl2 for PCR using the MMR primers 

 
Three PCR products amplified at different MgCl2 concentrations (1.5, 2.0 and 2.5mM) were 
compared on this gel.  The optimal MgCl2 concentration was 1.5mM as its corresponding band 
had the strongest intensity. 
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The PCR was further optimised by varying the DNA polymerase and primer 

concentrations used.  AmpliTaq Gold® and Expand High Fidelity PCR system (HiFi) 

gave better results than AmpliTaq® DNA polymerase.  The primer concentration was 

also increased from 0.2µM to 0.5µM.  However, the PCR amplification was still not 

efficient, particularly for the production of heteroduplex constructs.  The addition of 5% 

DMSO to the PCR mix significantly improved the amplification efficiency (Figure 

3.20).  The same PCR conditions were used for the MMR1+MMR2/MMR2S primer 

sets, which targeted the same region but produced long/short products, repectively.  A 

summary of the optimised PCR conditions for the MMR primers is listed in Table 3.12. 

 
Figure 3.20: 1% agarose gel showing increased amplification efficiency with increased primer 

concentration in the presence of 5% DMSO 

 

L: 1Kb ladder; -ve: negative control 
The strongest bands were obtained for the PCR products amplified with 0.5µM of MMR 
primers and 5% DMSO.  These conditions were better than 0.2µM primers with DMSO or 
0.5µM primers without DMSO. 

 
Table 3.12: Optimal PCR reaction conditions for primers used for the formation of heteroduplex 

DNA constructs with G.T/A.C mismatches (top row) and IDLs (lower rows) 

Primer set Product 
size (bp) 

Annealing 
temperature 

Primer 
concentration DNA polymerase Other 

changes 
rs1981929-F & 
rs1981929-R 328 56ºC 0.2µM HiFi - 

DM-F &  
DM- R 122-200 60ºC 0.2µM AmpliTaq®/ HiFi - 

MMR1 & 
MMR2/MMR2S 

558-639/ 
277-358 60ºC 0.5µM 

AmpliTaq Gold®/ 
HiFi 

5% 
DMSO 
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3.2.1.3 Separation of DNA strands 
Single strands were isolated using Dynabeads® and purified using the MinElute PCR 

Purification kit (QIAGEN, UK) (section 2.6.2.2).  The labelled single strands prepared 

for the IDL constructs were detected on the ABI Prism™ 310 genetic analyzer.  Figure 

3.21 displays four panels from the ABI GeneScanTM analysis showing a PCR product 

labelled with HEX (black peak in panel 1), the HEX-labelled single strands isolated 

from that product (black peak in panel 2), a PCR product labelled with FAM (blue peak 

in panel 4) and the FAM-labelled  single strands isolated from that product (blue peak in 

panel 3).  

 
Figure 3.21: GeneScanTM fragment size analysis panels showing the dsDNA PCR products and 

the isolated ssDNA fragments for the formation of heteroduplex DNA constructs containing IDLs 

 

The peaks represent the sized DNA fragments and are shown in blue/black for the FAM/HEX 
labelled samples, respectively.  The sizes of the DNA fragments are displayed above the 
corresponding peaks.  The peak heights, which relate to the product quantity, are given in 
parentheses. 

Panels 2 and 3 show the ssDNA fragments separated from the HEX labelled (panel one) and FAM 
labelled (panel 4) PCR products, respectively.  The peak heights were lower in the ssDNA samples 
compared to the starting PCR products. 

Note: The sizing of labelled DNA fragments on the ABI PrismTM shifts by up to 3bp depending on 
the DNA sequence (i.e. forward & reverse strands migrate differently). 
 

 

558 (5046) 

558 (2054) 

585 (4014) 

585 (6437) 

(1) HEX labelled PCR product 

(2) HEX labelled ssDNA fragments 

(3) FAM labelled ssDNA fragments 

 

(4) FAM labelled PCR product 



Results 

139 
 

The single stranded DNA was clearly visible on the genetic analyzer confirming the 

success of the separation of the DNA strands using Dynabeads®.  Clearly, some loss of 

product took place at this stage as the peak heights, which correspond to the 

concentration of the sample, were lower for the single strands compared to the starting 

PCR products. 

 
The labelled single strands could not be observed on SSCP gels.  In fact, both the 

amplified products and their corresponding single strands were difficult to visualise on 

SSCP.  To improve detection, the PhastSystemTM SSCP protocol was empirically 

optimised by changing the run temperature (4ºC, 7ºC, 10ºC, 15ºC and 20ºC), the 

polyacrylamide concentration of the gel (PhastGel® Homogeneous 12.5 or 20), the 

length of the pre-run (an extended pre-run gives a continuous buffer system and allows 

better separation) and the total separation time (in volthours or Vh).  The best conditions 

for the 561 and 585bp PCR products were at a total run time of 350Vh on PhastGel® 

Homogeneous 12.5 gels at 4ºC with an extended pre-run.  The same procedure was 

tested with non-labelled primers which improved the visibility of the DNA fragments 

on SSCP gels, especially for duplex DNA structures that appeared at the lower part of 

the gel (Figure 3.22). 
 

Figure 3.22: SSCP gels (PhastGel® Homogeneous 12.5) run at 4ºC showing labelled (i) and 

non-labelled (ii) double stranded and single stranded DNA fragments used for the formation of 

heteroduplex DNA constructs containing IDLs 

(i) 

  //  

(ii) 

i) Labelled DNA fragments: 
a- Short PCR product (561bp) 
b- Mixture of short + long strands (d & e) 
c- Long PCR product (585bp) 
d- Short single strands (561 bases) 
e- Long single strands (585 bases) 

ii) Non-labelled DNA fragments: 
a- Short PCR product (561bp) 
b- Short single strands (561 bases) 
c- Mixture of short + long strands (b & d) 
d- Long single strands (585 bases) 
e- Long PCR product (585bp) 

The blue arrows point at the duplex DNA structures that were only visible on gel (ii) for the non-
labelled PCR products. 

a       b       c           d         e   a      b      c        d      e 
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Detection of the non-labelled 328bp A.T and G.C PCR products and their individual 

single strands (A, T, G and C) was achieved at a total run time of 350Vh on the 

PhastGel® Homogeneous 20 gels at 4ºC with an extended pre-run (Figure 3.25 below). 

 

3.2.1.4 Hybridisation of single strands to form heteroduplex DNA 

molecules 
Hybridisation of ssDNA for the formation of heteroduplex constructs is described in 

section 2.6.2.3.  The heteroduplexes were detected on SSCP gels and the ABI Prism™ 

310.  Visualising the hetroduplexes on SSCP gels was crucial to confirm the formation 

of IDL (secondary structures) when the ssDNA fragments were mixed together.  The 

duplex DNA molecules (in PCR products) and the single strands with a 24bp size 

difference were detected on the Homogeneous 12.5 PhastGel® at 4ºC.  However, the 

heteroduplexes formed after mixing the ssDNA fragments could not be seen initially, 

when the single strands were mixed at room tempeature.  An overnight incubation at 

37ºC proved to be necessary for the heteroduplex molecules to form. 

 

The observation of heteroduplex molecules on SSCP gels confirmed the hybridisation 

of the ssDNA fragments and the formation of a 24-nucleotide (24-nt) IDL structure.  

Figure 3.23 displays an SSCP gel showing distinctive electrophoretic migrations of 

ssDNA fragments, homoduplex and heteroduplex DNA molecules.  The electrophoretic 

migration of mismatched heteroduplex DNA was retarded relatively to homoduplex 

DNA due to the distorted DNA conformation. 
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Figure 3.23: PhastGel® Homogeneous 12.5 run at 4ºC showing the ssDNA fragments, 

homoduplex DNA molecules (PCR products) and heteroduplex DNA molecules with 24-nt IDLs 

 
The green and blue boxes show the ssDNA fragments and homoduplex DNA molecules (PCR 
products), respectively.  The heteroduplex DNA molecules with a 24-nt IDL on one of the 
strands are circled in red.  The heteroduplex DNA constructs were prepared from isolated single 
strands, which were mixed and left to hybridise overnight at 37ºC. 

 

The electrophoretic migration of mismatched heteroduplex DNA constructs with a 

smaller IDL of only 3 nucleotides could not be easily distinguished from the 

homoduplex DNAs on neither Homogeneous 12.5 nor 20 gels, even after SSCP 

optimisations.  Figure 3.24 shows the best conditions obtained with these samples 

(Homogeneous 20 run at 15ºC with an extended pre-run).  The heteroduplex structures 

seemed to migrate to a level between the two levels reached by the homoduplex 

molecules. 

 
Figure 3.24: PhastGel® Homogeneous 20 run at 15ºC showing the electrophoretic migrations of 

the heteroduplex DNA constructs with a 3-nt IDL compared to homoduplex molecules

 

 

 

 

 

a- Homoduplex (582bp) 
b- Heteroduplex (582/585) 
c- Homoduplex (585bp) 
d- Heteroduplex (582/585) made from 
opposite strands to ones mixed in sample b 
e- Homoduplex (582bp) (same as sample a) 

The red arrows designate the bands corresponding to the heteroduplex molecules (b & d). The 
heteroduplex structures migrated to a level between the two levels reached by the homoduplex 
molecules. 

a- Homoduplex (585bp PCR product) 
b- ssDNA 585 bases 
c- 24-nt IDL heteroduplex (585/561 b+d) 
d- ssDNA 561 bases 
e- Homoduplex (561bp PCR product) 
f- Mix of 2 PCR products (a + e) 
g- ssDNA 585 bases (complementary to b) 
h- 24-nt IDL heteroduplex (585/561 g+i)  
i- ssDNA 561 bases (complementary to d) 
 

 a   b    c   d   e    f   g   h    i 

 a      b     c     d     e 
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Similarly, the G.T heteroduplexes were formed from ssDNA fragments isolated from 

PCR products (prepared from primers listed in Table 2.3) or from commercially 

synthesised oligonucleotide strands (180 bases long; Table 2.9).  The G.T heteroduplex 

constructs were visualised on SSCP gels after an overnight incubation at 37ºC (Figure 

3.25).  The G.T or A.C heteroduplex molecule travelled slightly further than the 

homoduplex molecules and the nicked heteroduplex molecule migrated slower. 
 

Figure 3.25: PhastGel® Homogeneous 20 run at 4ºC showing ssDNA fragments, homoduplex 

and heteroduplex DNA molecules with an A.C or G.T mismatch (at rs1981929 SNP site) 

 

 

1- A/T homoduplex 
2- G/C homoduplex 
3- C strand 
4- A.C heteroduplex (mixed C & A strands) 
5- Nicked A.C heteroduplex 
6- A strand 
7- G strand 
8- Nicked G.T heteroduplex 
9- G.T heteroduplex  
10- T strand 
11- A/T homoduplex 
12- G/C homoduplex 

The green and blue boxes show the ssDNA fragments and homoduplex DNA molecules (328bp 
PCR products), respectively.  The heteroduplex DNA molecules with A.C or G.T mismatches 
are circled in red.  The heteroduplex constructs were prepared from isolated single strands, 
which were left to hybridise overnight at 37ºC.  The heteroduplex constructs were nicked by 
exposing the samples to the Nt.BstNBI endonuclease. 
 

 

The heteroduplex molecules with both strands labelled with the fluorescent dyes FAM 

and HEX were observed and quantified using the ABI Prism™ 310 genetic analyzer 

(Figure 3.26). 

 
  

  
 AT  GC   C   A.C  A.C   A   G   G.T  G.T  T   AT  GC  

 

  1    2    3    4     5    6    7    8     9    10   11  12 



Results 

143 
 

Figure 3.26: GeneScanTM analysis panels showing the double labelled heteroduplex construct 

 

The bottom panel shows the TAMRA labelled size standard peaks (red).  In the top panel, the 
blue peak represents the FAM labelled long strand of the heteroduplex molecule.  In the third 
panel, the black peak represents the HEX labelled short strand. 
 

In order to eliminate the variable absorbance sensitivities of different fluorescent 

molecules, the peak heights were normalised using double labelled PCR products 

produced by using the MMR1FAM and MMR2HEX primers together (section 2.6.4.1.1 

in methods).  The FAM/HEX peak height ratio was less than one and seemed to be 

constant between the different samples run together or on separate days.  The average 

value of FAM/HEX was 0.80 (the values ranged between 0.76 and 0.84).  This means 

that in the sample shown in Figure 3.26 there was an excess of FAM labelled ssDNA, 

which was not in heteroduplex form.  In order to remove the free single strands, the 

mixture of the ssDNA was sequentially exposed to the two combinations of 

Dynabeads® with the biotinylated strands attached to them.  This method eliminated all 

excess ssDNA leaving only heteroduplex DNA molecules in the sample (Figure 3.27).  

This was confirmed by the changed FAM/HEX peaks ratio of the sample, which was 

equal to 0.77. 

  450 
475 500 550 600 50 

585 (1381) 

558 (754) 
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Figure 3.27: GeneScanTM analysis panels showing the double labelled heteroduplex DNA 

construct exposed to Dynabeads® to remove the excess single strands 

 
All DNA fragments in the sample shown were in heteroduplex form, as the amount of ssDNA 
labelled with FAM was equal to that labelled with HEX.  This was determined from the 
FAM/HEX peaks ratio that was equal to 0.77 and matched the absorbance ratio of the two dyes 
on the ABI PrismTM 310. 
 

 

The use of the FAM/HEX absorbance ratio allowed the selection of the ssDNA samples 

to mix together and the determination of the necessary dilution factor for the sample of 

higher concentration in order to avoid having a large excess of one strand during the 

hybridisation step and encourage heteroduplex formation.  During the formation of 

FAM double labelled constructs, the peak heights alone were sufficient to match the 

concentrations of the two strands.  If the ssDNA samples were processed on different 

dates the FAM/TAMRA ratio allowed the comparison of the sample concentrations, as 

a specific concentration of the TAMRA size standard was present in every sample. 

 

  

 

 

 

 

558 (531) 

585 (694) 
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The PrismTM analysis was made to be fully quantitative by running a serial dilution of 

MapMarker® 1000 TAMRA with each PrismTM run and plotting a standard dose 

response curve for that run (Section 2.6.4.1.2 in methods).  The peak height of the FAM 

or HEX labelled sample was then multiplied by the TAMRA/FAM or TAMRA/HEX 

absorbance ratio, which were 0.63 and 0.42, respectively, and the concentration of the 

sample was extrapolated from the standard curve (Figures 3.28 and 3.29).  This method 

was used to estimate the concentration of heteroduplex DNA samples before exposure 

to the nicking enzyme or nuclear extracts.  

 

 

 
Figure 3.28: Standard curve relating DNA fragment peak height to TAMRA concentration 

 
A serial dilution of the TAMRA-1000 size standard was run on the ABI PrismTM 310.  The peak 
heights obtained for each fragment size were plotted against the concentrations.  The resulting 
standard curves were used for the estimation of samples that were run on the prism.  A TAMRA-
1000 concentration of 1 was equivalent to 0.3fmol (for each fragment size). 
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Figure 3.29: Standard curve relating DNA fragment peak area to TAMRA concentration 

 
 

A serial dilution of the TAMRA-1000 size standard was run on the ABI PrismTM 310.  The peak 
areas obtained for each fragment size were plotted against the concentrations.  The resulting 
standard curves were used for the estimation of samples that were run on the prism.  A TAMRA-
1000 concentration of 1 was equivalent to 0.3fmol (for each fragment size). 
 

Peak heights ratios were adopted for quantitative analysis (not peak areas) as they were 

better correlated with DNA concentration and the fragment size had little effect on the 

standard curve. 

 

3.2.1.5 Nicking of the heteroduplex DNA constructs 
The heteroduplex DNA molecules were exposed to the nicking enzymes Nt. Bbv CI (for 

IDL constructs) and Nt.BstNBI (for constructs with G.T mismatches).  This created a 

nick on one strand, leaving the other unchanged.  The creation of a nick was visible on 

both the ABI PrismTM 310 (for double labelled heteroduplexes) and SSCP analysis (for 

non-labelled heteroduplexes), confirming the formation of the nicked heteroduplex 

construct. 

 

Figure 3.30 shows the nicked heteroduplex molecule.  The FAM labelled strand (shown 

in blue) was not changed.  The HEX labelled strand (shown in black) was nicked and 

separated into two fragments upon denaturation of the DNA molecule.  The fragment at 

the 5’ end (401bp in size) remained labelled and was detected on the ABI PrismTM 310.  

The other fragment (at the 3’ end) could not be detected on the PrismTM, as it was not 

labelled anymore. 
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Figure 3.30: GeneScanTM analysis panels showing the nicked heteroduplex construct 

 

The HEX labelled strand was nicked and resulted in two fragments after the duplex DNA 
molecule was denatured.   The fragment at the 5’ end was 401bp in size (black peak) and was 
detected on the ABI PrismTM 310.  The other fragment could not be detected as it had lost the 5’ 
HEX label.  The FAM labelled strand was unaffected by the nicking endonuclease as shown by 
the blue peak (585 bases). 
 

Figure 3.31 shows the nicked heteroduplex molecules with the 3-nucleotide IDLs on a 

Homogeneous 20 gel (long pre-run, 350Vh, 4ºC).  The nicked heteroduplex DNA 

molecules, in lanes e and i, were distinguished from the homoduplex DNA molecules 

and non-nicked heteroduplex molecules.  A similar observation was obtained with 

nicked A.C and G.T heteroduplex molecules (Figure 3.25). 
 
Figure 3.31: PhastGel® Homogeneous 20 run at 4ºC showing the nicked and non-nicked 

heteroduplex DNA molecules with 3-nt IDL  
 

 

 

a- Homoduplex (582bp) 
b- Homoduplex (585bp) 
c- ssDNA 585 bases 
d- Heteroduplex construct (582/585 bases) 
e- Nicked heteroduplex  
f- ssDNA  582 bases 
g- ssDNA  582 bases (complementary to f) 
h- Heteroduplex construct (582/585 bases) 
from g & i 
i- Nicked heteroduplex construct 
j- ssDNA 585 bases (complementary to c) 
k- Homoduplex (585bp) 
l- Homoduplex (582bp)  

The heteroduplex constructs were nicked with the Nt. BbvCIB endonuclease. 
The red arrows indicate the nicked heteroduplex DNA constructs with 3-nt IDL. 

585 

401  

 a    b   c    d    e   f    g    h    i     j    k    l 
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3.2.2   Exposure of heteroduplex constructs to nuclear extracts and repair 
assessment  
In order to avoid loss of DNA templates affecting assessment of repair, all heteroduplex 

constructs were checked on the ABI PrismTM 310 or by SSCP/Heteroduplex analysis 

before exposure to nuclear extracts (N.E.).  Additionally, the samples were incubated at 

37ºC overnight to make sure all DNA molecules were in duplex form rather than 

fragments of ssDNA prior to repair assessment.  

 

Different conditions were used when exposing the heteroduplex DNA constructs with a 

3, 21 or 24-nucleotide IDL or a G.T/C.A mismatch to nuclear extracts from HeLa S3 

and LoVo cells (section 2.6.3).  The different parameters involved the amount of N.E. 

(2µg and 20µg) and exposure time (30 seconds, 60 seconds, 5, 15, 30 and 60 minutes 

and overnight).  Exposure to 2µg/20µg HeLa S3 or LoVo nuclear extracts for 60 

minutes or overnight did not degrade any of the DNA constructs (Figures 3.32, 3.33, 

3.35 and 3.36). 

 

Changes in electrophoretic migration were consistently observed for the 3-nt 

heteroduplex samples exposed to HeLa S3 N.E. compared to the original heteroduplex 

sample and the reaction’s negative control (Figure 3.32).  This was indicative of repair 

as the shift in migration matched the homoduplex counterpart (Figure 3.33). 
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Figure 3.32: PhastGel® Homogeneous 20 run at 4ºC showing 3-nt IDL heteroduplex constructs 

with the insertion loop on opposite strands (for left and right gel) exposed to 2µg HeLa S3 and 

LoVo N.E. for 15, 30 and 60 minutes 

 

   

a- Homoduplex (298bp) 
b- Homoduplex (301bp) 
c- Heteroduplex (298/301) with 3-nt IDL 
d- Heteroduplex + HeLa S3 N.E. for 15 min 
e- Heteroduplex + HeLa S3 N.E. for 30 min 
f- Heteroduplex + HeLa S3 N.E. for 60 min  
g- Heteroduplex + LoVo N.E. for 15 min 
h- Heteroduplex + LoVo N.E. for 30min 
i- Heteroduplex + LoVo N.E. for 60min 
j- Heteroduplex - N.E. (negative control: exposed to all reagents except N.E.) 
k- 298 base ssDNA 
l- 301 base ssDNA 
The red line indicates level of heteroduplex DNA structures. 
The heteroduplex sample exposed to 2µg HeLa S3 N.E. for 60min (lane f) showed the most 
noticeable shift in migration.  Samples c and j, representing the pure heteroduplex construct and 
the construct exposed to the control solution without nuclear extracts, had the same migration 
levels.  The 3-nt IDL heteroduplex constructs run on the left and right gels had the insertion loop 
on opposite strands.  The 3-nt IDL was on strand 1 (forward strand) for the right gel and on 
strand 2 (reverse strand) for the left gel.  Due to electrophoresis problems (smiling), it was not 
possible to assess repair on this gel. 
 

When the IDL was on strand 1 (forward strand), exposure to N.E. resulted in the 

formation of a homoduplex that was equal to the size of the shorter strand (i.e. the 

298bp homoduplex resulted from the 298/301 bases heteroduplex molecules).  When 

the IDL was on the opposite strand, exposure to N.E. resulted in the formation of a 

homoduplex that was equal to the size of the longer strand (301bp) (Figure 3.33). 

a    b   c  d   e   f    g   h    i    j    k   l         a   b   c    d   e   f    g    h    i     j    k    l     
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Therefore, IDL repair could target either the long or short strand in the absence of a nick 

(Figure 3.34). 
 

 

Figure 3.33: PhastGel® Homogeneous 20 run at 4ºC showing 3-nt IDL heteroduplex constructs 

exposed to 2µg HeLa S3 and LoVo N.E. for 60 minutes 

       

a- 298 base ssDNA 
b- 301 base ssDNA 
c- Heteroduplex with 3-nt IDL on strand 2 
d- Heteroduplex + HeLa S3 N.E. 
e- Heteroduplex + LoVo N.E. 
f- Heteroduplex - N.E. (negative control: exposed to all reagents except N.E.) 
g- Homoduplex (298bp) 
h- Homoduplex (301bp) 
i- Heteroduplex with 3-nt IDL on strand 1 
j- Heteroduplex + HeLa S3 N.E. for 60 min 
k- Heteroduplex + LoVo N.E. for 60 min 
l- Heteroduplex - N.E. (negative control: exposed to all reagents except N.E.) 

The blue lines designate level of homoduplex DNA structures and the blue arrows indicate 
repair.  The heteroduplex sample (d), which contained the IDL loop on strand 2 and was 
exposed to HeLa S3 N.E., travelled slightly further down the gel and had an electrophoretic 
migration that matched that of the 301bp homoduplex sample (h).  The heteroduplexes (j and 
k), which contained the IDL loop on strand 1 and were exposed to N.E., travelled less far down 
the gel than the unexposed corresponding heteroduplex samples and had an electrophoretic 
migration that matched that of the 298bp homoduplex sample (g). 
 

 

  

 a   b  c  d   e   f   g  h   i   j    k   l           g  h   i    j   
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Figure 3.34: Diagram showing the direction of repair of heteroduplex constructs with IDLs 

 
Strand 1 was shortened to match the size of strand 2 when the IDL was on strand 1.  
strand 1 was elongated to match the size of strand 2 when the IDL was on strand 2. 

 

 

Post exposure to N.E., the nicked heteroduplex constructs with a 3-nt IDL loop showed 

a shift in electrophoretic migration that matched that of the shorter homoduplex sample 

(298bp).  The nicked heteroduplex constructs could not be seen post exposure to N.E..  

From the results shown in Figure 3.35, it was deduced that repair (detected in samples h 

and i) was directed towards the long (301 bases) strand to give the shorter (298bp) 

homoduplex as  samples h and i had a migration pattern that was similar to the 298bp 

PCR product.  The nick was on the 301-base strand; therefore, in presence of a 5’ nick 

repair was nick directed.  

 

There was a consistent observation in two sets of repair reactions which did not show 

repair of 3-nt or 24-nt IDLs on heteroduplex analysis.  A new band that did not 

correspond to either homoduplex or heteroduplex DNA migration levels was detected 

(Figure 3.36).  These DNA fragments may be repair intermediates in which excision of 

the loop or part of the opposite strand took place but resynthesis was not completed, 

presumably due to insufficient amounts of dNTPs or lack of necessary enzymes. 

 
  

Repaired HomoduplexHeteroduplex Constructs

5’
5’3’
3’

5’

5’3’

3’ 5’
3’ 5’

3’Strand 1

5’
3’ 5’
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Figure 3.35: PhastGel® Homogeneous 20 run at 4ºC showing nicked and non-nicked 3-nt IDL 

heteroduplex constructs exposed to 2µg HeLa S3 and LoVo N.E. for 15 minutes 

 

 

 

 

 

a- Homoduplex (298bp) 
b- Homoduplex (301bp) 
c- Heteroduplex construct with 3-nt IDL 
on strand 2 
d- Heteroduplex + HeLa S3 N.E.  
e- Heteroduplex + LoVo N.E.  
f- Heteroduplex - N.E.  
g- Nicked heteroduplex 
    (nick 5’ to IDL on strand 2) 
h- Nicked heteroduplex + HeLa S3 N.E. 
i- Nicked heteroduplex + LoVo N.E. 
j- Nicked heteroduplex - N.E. 
k- 298 base ssDNA 
l- 301 base ssDNA 

The red lines indicate levels of heteroduplex DNA structures (top: non-nicked; lower: nicked). 
The blue line designates the level of the 298bp homoduplex DNA structures and the blue 
arrows indicate possible repair.  The nicked heteroduplex samples (h and i), which contained 
the IDL loop and nick on strand 2 and were exposed to N.E., travelled less far down the gel 
compared to the unexposed heteroduplex sample and had an electrophoretic migration that 
matched that of the 298bp homoduplex sample (a).  Therefore, repair was directed towards the 
301-base strand in samples h and i. 
 

Figure 3.36: PhastGel® Homogeneous 20 run at 4ºC showing non-nicked 3 and 24-nt IDL 

heteroduplex constructs exposed to 2µg HeLa S3 and LoVo N.E. for 60 minutes

 
 

a- Heteroduplex (582/585 bases) with 3-nt IDL 
on strand 1 
b- 3-nt IDL heteroduplex + HeLa S3 N.E.  
c- 3-nt IDL heteroduplex - N.E.  
d- Heteroduplex (561/585 bases) with 24-nt IDL 
on strand 1 
e- 24-nt IDL heteroduplex + HeLa S3 N.E. 
f- 24-nt IDL heteroduplex - N.E. 
g- Heteroduplex (561/585 bases) with 24-nt IDL 
on strand 2 
h- 24-nt IDL heteroduplex + HeLa S3 N.E. 
i- 24-nt IDL heteroduplex + LoVo S3 N.E. 
j- 24-nt IDL heteroduplex - N.E. 
k- Mix of complementary ssDNA fragments 
561bases  
l- Mix of complementary ssDNA fragments 
585bases

The purple circles indicate bands that appeared in samples exposed to N.E. and did not 
correspond to either homoduplex or heteroduplex DNA band levels. 

 a   b    c   d   e    f   g    h   i     j   k    l     

 a   b   c    d   e   f    g   h    i    j    k    l     
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Increasing the amount of nuclear extract from 2µg to 20µg did not improve IDL repair 

detection.  Furthermore, repair seemed to be proportional to exposure time to nuclear 

extract, possibly up to 60 minutes.  The repair observed after overnight exposures to 

N.E. was similar to the results obtained for 60 minute exposures (Figure 3.37). 

 
Figure 3.37: PhastGel® Homogeneous 20 run at 4ºC showing non-nicked 3 and 24-nt IDL 

heteroduplex constructs exposed to 2µg HeLa S3 and LoVo N.E. for 60 minutes and overnight 
 

 
 
 

a- Heteroduplex construct (561/585 bases) 
with 24-nt IDL on strand 2 
b- 24-nt IDL heteroduplex + HeLa S3 N.E. 
overnight 
c- 24-nt IDL heteroduplex + LoVo N.E. 
overnight 
d- 24-nt IDL heteroduplex - N.E. overnight 
e- Heteroduplex construct (582/585bases) with 
3-nt IDL on strand 2 
f- 3-nt IDL heteroduplex + HeLa S3 N.E. for 60 
min 
g- 3-nt IDL heteroduplex + LoVo N.E. for 60 
min 
h- 3-nt IDL heteroduplex - N.E. for 60 min 
i- 3-nt IDL heteroduplex + HeLa S3 N.E. 
overnight 
j- 3-nt IDL heteroduplex + LoVo overnight 
k- 3-nt IDL heteroduplex - N.E. overnight 
l- Mix of complementary ssDNA fragments 582 
bases 

The red lines indicate levels of heteroduplex molecules and the blue line designates the 
expected level of the 582bp homoduplex DNA structures.  Repair was detected in all samples 
exposed to nuclear extracts. 
 

Following exposure to nuclear extracts, repair of single base mismatches was assessed 

by heteroduplex analysis.  Repair was detected after exposure of nicked G.T 

heteroduplex constructs to 2μg HeLa S3 N.E. for 60 minutes (Figure 3.38).  As the T 

strand was nicked, MMR should have resulted in G.C homoduplexes.  No G.C 

homoduplex samples were run on the same gel; however, another gel run at the same 

conditions was used to compare the migration levels of G.C and A.T homoduplex 

samples.  The G.C homoduplexes seemed to run slightly further than A.T 

homoduplexes.  It was thus deduced that the exposed heteroduplex constructs (samples 

d and f in Figure 3.38) resulted in G.C homoduplexes (samples c and e in Figure 3.38); 

this means that in this situation repair of the G.T mismatch was nick directed.  Sample c 

showed both A.T and C.G homoduplexes; this could have resulted from repair of the 

non-nicked substrates that can target either strands.  As seen from the band intensities, 

the substrate (d) contained more nicked than non-nicked constructs and more G.C than 

A.T homoduplexes were produced as a result of nick directed repair. 

 a    b   c   d   e     f    g   h    i     j    k    l     

60 min 

exposure 

  

overnight 

exposure 

  

overnight 60 min 
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Figure 3.38: PhastGel® Homogeneous 20 run at 4ºC (with extended pre-run) showing nicked 

G.T heteroduplex constructs exposed to 2μg HeLa S3 N.E. for 60 minutes  

            
a- A/T homoduplex + HeLa S3 N.E.  
b- A/T homoduplex - N.E. 
c- Nicked G.T heteroduplex + HeLa S3 N.E. 
d- Nicked G.T heteroduplex - N.E. 
e- Nicked G.T heteroduplex + HeLa S3 N.E. 
f- Nicked G.T heteroduplex - N.E. 
The blue box highlights the region containing the dsDNA molecules and the heteroduplex 
constructs are circled in red.  The top heteroduplex constructs are nicked and the lower ones 
are non-nicked (nicking reaction efficiency <100%).  Bands at the top region of the gel represent 
single strands.  Samples in lanes a & b, which are homoduplex A.T constructs, had weak bands 
which was probably due to suboptimal duplex formation because of unequal concentrations of 
individual DNA strands.  The gel on the right shows the homoduplex A.T and G.C samples 
(328bp PCR products).  The blue arrows indicate repair.  Sealing of the nick was ~100% 
efficient as in both nicked G.T heteroduplex samples exposed to N.E. (c and e) the band 
intensity of the non-nicked heteroduplex molecules was increased compared to the starting 
substrates (d and f) and none of the nicked templates could be detected post exposure to 
nuclear extract.  Exposure of the heteroduplex substrates to N.E. resulted in the formation of 
both A.T and G.C homoduplexes in sample c, showing that repair can be nick-independent. 
 

Sealing of the nick as a result of ligation without repair was detected in samples c and e 

in Figure 3.38, as the intensities of the bands corresponding to the non-nicked 

heteroduplexes (samples d and f) were increased after exposure to extracts.  

Heteroduplex analysis on SSCP gels could only show the presence or absence of a 

formed homoduplex, which indicated repair.  In order to assess and compare repair 

efficiency, semi-quantitative analysis was used on the ABI PrismTM 310. 

 

DNA repair was initially detected on the ABI PrismTM 310 for double-labelled nicked 

heteroduplexes containing a 24-nt IDL after exposure to 2µg of HeLa S3 N.E. for 15 

minutes.  The formation of a HEX-labelled DNA fragment, which was the size of the 

complementary non-nicked strand, confirmed repair (Figure 3.39). 

 

  a          b          c          d         e          f    

   A.T   G.C 
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Figure 3.39: GeneScanTM analysis panels showing the nicked heteroduplex DNA before and 

after exposure to nuclear extracts for 15 minutes 

1) Nicked heteroduplex construct with 24-nt IDL (nick on long strand) 

 

 
 

2) Nicked heteroduplex construct after exposure to 2µg HeLa S3 N.E. for 15 minutes 

 

The appearance of a new Hex-labelled (black) peak corresponding to 558 bases (which is 
equivalent to 561 on the opposite strand) was indicative of IDL repair.  Some of the nicked 
fragments (396 base peak) were converted to 561 bases sized fragments using the non-nicked 
FAM-labelled (blue) strand as a template. 
 

Semi-quantitative fluorescence analysis on the ABI PrismTM 310 (section 2.6.4.1.3) was 

used to determine the ratios of fluorescence from the nicked or short strand and the 

complementary non-nicked or long strand (R = peak height of nicked or short 

strand/peak height of non-nicked or long strand).  IDL repair efficiency was assessed by 

comparing the R-value before and after exposure of the construct to nuclear extracts, ∆R 

= Rnegative control – Rsample exposed to N.E. (Figure 3.40).  This type of analysis helped 

overcome the issue of incomplete nicking of the heteroduplex constructs.  In order to 

eliminate the issue of the genetic analyzer’s sensitivities to different labels and to 

simplify the repair assessment on the ABI PrismTM 310, the heteroduplex DNA 

molecules were prepared with both strands FAM-labelled. 

396 

396 
558 

561 

561 
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Figure 3.40: GeneScanTM analysis showing the nicked heteroduplex constructs containing a 

24-nt IDL after exposure to nuclear extracts for 30 and 60 seconds 

1) Nicked heteroduplex construct after 30s exposure to HeLa S3 nuclear extracts 

 

2) Nicked heteroduplex construct after 60s exposure to HeLa S3 nuclear extracts 

 

3) Negative Control 

 

R = nicked strand peak height/complementary strand peak height.  The R-value was calculated 
for each sample along with the ∆R-values (Rnegative control – Rsample exposed to N.E.), which showed 
repair efficiency. Exposure of heteroduplexes to 60 seconds resulted in greater repair efficiency 
compared to 30 seconds. 
 

Exposure of the heteroduplex constructs to nuclear extracts resulted in changes in the R-

value.  This change was considered indicative of repair if two conditions were met: 

1) ∆R-value ≠ 0 

2) Rsample exposed to N.E. – Runprocessed heteroduplex sample was > 0.1, as the R-value can 

change after processing of the sample in the absence of nuclear extracts (Rnegative control 

– Runprocessed heteroduplex sample was ≤ 0.1). 

Table 3.13 lists the results obtained using the R-value system of analysis under all tested 

experimental conditions and Table 3.14 summarises the main findings. 

 

  

R= 0.62 

∆R= 0.1 

R= 0.72 

R= 0.52 

∆R= 0.2 

396 
585 

585 396 

396 585 
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Table 3.13: ∆R values following exposure of heteroduplex constructs with 3, 21 and 24-nt IDLs 

to HeLa S3 and LoVo nuclear extracts 

Sample 
number 

IDL size 
(nt) 
 

Nicked 
strand 
 

N.E. 
(µg) 
 

Type of 
N.E. 
 

Exposure 
time (min) 
 

∆R post 
N.E. 
exposure 

Repair 
 
 

Targeted 
strand 
 

1 3 - 2 HeLa S3 0.5 0.01 No - 
2 3 long 2 HeLa S3 0.5 -0.04 No - 
3 3 long 20 HeLa S3 0.5 0.34 Yes long 
4 3 long 20 HeLa S3 0.5 0.11 Yes long 
5 3 short 20 HeLa S3 0.5 0.1 No - 
6 3 long 2 HeLa S3 1 0 No - 
7 3 short 2 HeLa S3 1 0 No - 
8 3 short 2 HeLa S3 1 0.03 No - 
9 3 short 20 HeLa S3 1 0.22 Yes short 
10 3 short 20 HeLa S3 1 0.2 Yes short 
11 3 short 2 HeLa S3 5 0.09 No - 
12 3 short 2 HeLa S3 5 0.05 No - 
13 3 - 2 HeLa S3 15 0.02 No - 
14 3 - 2 HeLa S3 15 0.01 No - 
15 3 short 2 HeLa S3 15 -0.06 No - 
16 3 short 20 HeLa S3 15 0.07 No - 
17 3 - 2 LoVo 0.5 0.01 No - 
18 3 long 2 LoVo 0.5 0 No - 
19 3 - 2 LoVo 15 0.01 No - 
20 3 short 2 LoVo 15 0.01 No - 
21 21 - 2 HeLa S3 0.5 0.05 No - 
22 21 long 2 HeLa S3 0.5 -0.13 Yes short 
23 21 long 20 HeLa S3 0.5 0.01 No - 
24 21 short 2 HeLa S3 1 0.07 No - 
25 21 - 2 HeLa S3 15 0.12 Yes short 
26 21 - 2 HeLa S3 15 -0.02 No - 
27 21 - 20 HeLa S3 15 0.3 Yes short 
28 21 - 2 LoVo 0.5 0.03 No - 
29 21 long 2 LoVo 0.5 -0.11 Yes short 
30 21 long 2 LoVo 15 -0.01 No - 
31 24 - 20 HeLa S3 0.5 0.09 No - 
32 24 short 20 HeLa S3 0.5 0.04 No - 
33 24 - 2 HeLa S3 15 -0.03 No - 
34 24 - 20 HeLa S3 15 0.29 Yes short 
35 24 short 2 HeLa S3 15 0.19 Yes short 
36 24 - 2 LoVo 15 0.05 No - 
37 24 - 2 LoVo 15 0.11 Yes short 
38 24 long 2 LoVo 15 0.01 No - 

∆R=Rnegative control – Rsample exposed to N.E., where R= short or nicked strand peak 
height/complementary strand peak height.  ∆R values ≠ 0 were considered indicative of repair if 
Rsample exposed to N.E. – Runprocessed heteroduplex sample was > 0.1 as Rnegative control – Runprocessed heteroduplex 

sample was ≤ 0.1.  The R-values of all processed sample are listed in Table C.1 (Appendix). 
 
Table 3.14: Summary of repair assessment results for 3, 21 and 24-nucleotide IDLs 

IDL size (nt) 
 

Type of repair 
 

Minimum amount of N.E. 
resulting in detectable repair 

3 Nick-dependent & directed 
MMR-dependent 

20 μg HeLa  

21 Nick & MMR-independent 2 μg LoVo/HeLa  

24 Nick & MMR-independent 2 μg HeLa/LoVo 
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3.2.3  Summary of results for the in vitro IDL and mismatch repair 
functional assay 

- Formation of heteroduplex DNA constructs with 3, 21 and 24-nucleotide IDLs 

or G.T/A.C mismatches was confirmed using SSCP/heteroduplex analysis. 

 

- Exposure of heteroduplex constructs to nuclear extracts resulted in the formation 

of homoduplex molecules, which was indicative of repair.  Extended overnight 

exposures to nuclear extracts did not degrade any of the substrates. 

 

- Repair of the G.T mismatch was detected using SSCP/heteroduplex analysis.  

Repair of IDLs was detected on SSCP gels and on the ABI genetic analyzer. 

 

- Changes in band migration levels on SSCP gels showed that repair could target 

either the long or short strand of the heteroduplex molecule in the absence of a 

nick. 

- 2 and 20µg of nuclear extracts gave similar results for exposures longer 

than 15 minutes; however, 60-minute exposures gave better results than 

shorter exposures to extracts. 

- Repair of 3-nt IDLs was nick directed when a 5’ nick was introduced.  

Sealing of the nick, which may be due to ligation without repair, was 

observed in all nicked heteroduplex samples with a close to 100% 

efficiency; however, repair was not as efficient. 

 

- Analysis on the genetic analyzer allowed semi-quantitative assessment of repair 

efficiency. 

- Preliminary results obtained using the ∆R value system showed that repair 

was independent of loop size (3, 21 and 24 nucleotides) and changes in the 

R-value could be detected for exposures to 2µg (0.08μg/μl) of nuclear 

extract for as little as 30 seconds. 

- Repair of 3-nt loops was MMR-dependent and nick-directed, whereas 

repair of larger loops was MMR and nick-independent. 
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3.3 Development of PGD protocols for BRCA1 and MSH2 

PGD workups for three couples that opted for PGD treatment for different BRCA1 and 

MSH2 mutations are described in this section.  These couples had undergone genetic 

counselling and were referred to UCL Centre for PGD.  The workup towards a PGD 

protocol for each couple started after they had undergone the initial PGD consultation 

and fertility checks at the ACU (UCLH). 

 

The first step of each workup involved direct detection and confirmation of the mutation 

in the proband and his/her affected relatives and the selection of STR markers that are 

informative for the couple.  The PCRs were carried out as described in Materials and 

Methods (section 2.4.2.3) using genomic DNA extracted from whole blood.  

 

The second step involved the optimisation of a multiplex PCR that amplified the 

mutation site (when possible) and selected STR markers with genomic DNA.  The 

multiplex PCR protocol was finally optimised using the couples’ single lymphocytes in 

order to reach a protocol with the highest amplification efficiency and lowest allele 

dropout (ADO) rate achievable.  Single-cell PCRs are described in Materials and 

Methods (section 2.4.2.3). 
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3.3.1  PGD workup for MSH2 (c.1277-?_1386+?del) 

3.3.1.1 Patient description 
The male partner (proband) carried a deletion of exon 8 of the MSH2 gene.  The 

deletion breakpoints were unknown as the mutation was diagnosed by multiplex 

ligation-dependent probe amplification (MLPA).  At age 40 the proband was 

asymptomatic but undergoing biannual colonoscopy.  His wife was homozygous 

normal.  His father carried the deletion and died from colorectal cancer.  The proband’s 

aunt and cousin also carry the germline deletion.  Figure 3.41 shows the pedigree.  

Bloods for DNA extraction were available from the proband, his wife and his affected 

paternal aunt. 

 
Figure 3.41: Pedigree showing the asymptomatic proband and his affected relatives 

 

II.3 is the proband, carrier of the exon 8 deletion in the MSH2 gene.  I.2, I.3 and II.1 represent 
the proband’s affected paternal aunt, father and cousin, respectively. 
 

3.3.1.2 Informativity tests 
As the deletion breakpoints were unknown, the PGD protocol had to rely on linkage 

analysis.  Informativity tests were carried out on genomic DNA from the proband, his 

wife and paternal aunt.  Eleven linked and thirteen unlinked STR markers were 

investigated using F-PCR followed by fragment length analysis on the ABI PrismTM 

(section 2.6.4.2).  The allele sizes are listed in Table 3.15.  Some of the markers were 

tested by Yasmin Omar and William J. Young as part of their MSc and BSc projects, 

respectively. 

 

  

  

 

 I 
 

 
 
II 
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1                 2                   3                4 



Results 

161 
 

Table 3.15: Allele sizes for different STR markers identified for the couple undergoing PGD for 

the MSH2 exon 8 deletion 

Primer name 
 

STR marker 
location 

Female partner 
(bp) 

Male partner 
(proband) 
(bp) 

Affected 
relative 
(bp) 

Informativity 
 

Linked STR markers 
D2S119* 2p21 211/215 211 211/221 /218 Semi-informative 
D2S391 2p21 139 141 141/147 Not informative 
D2S1736 2p21 203 203 203 Not informative 
D2S1715E 2p21 206 206 206 Not informative 
D2S2227* 2p21 151/153 151/166 151/166 Semi-informative 
D2S2563 2p21 187/239 239 239 Not informative 
D2S2495 2p21 205 205 205 Not informative 
D2S2767 2p21 187 187 187 Not informative 
AFM196xf6 2p21 133 133 133 Not informative 
D2S2548 2p21 158/162 158 158/160 Not informative 
D2S2086 2p21 148 142 148 Not informative 
Unlinked STR markers 
D17S855 17q21.31 158 156 151 Not informative 
D17S1185 17q21.31 206 208 211 Not informative 
D17S1343 17q21.31 154/158 154/158 154/158 Not informative 
D17S1338 17q21.31 180/181 180/181 181/187 Not informative 
APOC2* 19q13.32 149/155 151/157 128/136 Informative 
DM 19q13.32 122/170 122/140 123/140 Semi-informative 
D19S112 19q13.32 134 136 129/140 Not informative 
D13S168 13q14.2 141 141 141/146 Not informative 
D13S262 13q14.2 289 294 298 Not informative 
D17S1294 17q11.1 248/256 244/248 248 Semi-informative 
D17S841 17q11.1 260/268 264 264/266 Informative 
D17S1800 17q11.1 273 266/274 274 Not informative 
IVS26-2.3 17q11.1 211/215 211 211 Not informative 

The affected individuals are represented in italics.  Bold text signifies that the alleles are 
informative and underlined text indicates the phase allele.  The markers in blue are linked with 
the MSH2 gene.  The asterisk denotes the markers that were selected for use in the multiplex 
PCR reaction. 
 

None of the linked markers tested were found to be fully informative for this couple.  

Two markers were semi-informative: D2S2227 and D2S119.  The allele that was in 

phase with the mutation was identified for D2S119 as the affected male and his affected 

aunt shared the 211bp allele only.  D2S2227 was approximately 0.36Mb away from 

MSH2, which made it a good candidate for linkage analysis, but D2S119 was >3.5Mb 

away from the gene.  Figure 3.42 shows the locations of the linked markers on 

chromosome 2 relative to the MSH2 gene.   
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Figure 3.42: MSH2 gene and linked STR markers on chromosome 2 

 

(Location of MSH2 on chromosome 2: 47,525,573–47,526,053)  
The displayed distances between the MSH2 gene and each STR marker are given in Mb.  Only 
one of the markers was Intragenic: D2S2563.  Seven out of the eleven linked markers 
investigated were located within 1Mb away from the gene. 
 

Both the APOC2 and D17S841 unlinked markers were found to be informative as 

contamination markers as the female partner was heterozygous.  However, as the male 

partner was homozygous for D17S841, the fully informative marker APOC2 was 

selected as the contamination marker to facilitate multiplex PCR optimisations.  The 

affected male was heterozygous for the two semi-informative linked markers (D2S2227 

and D2S119) and APOC2. 

 

In addition to STR markers, SNPs were investigated in an attempt to find an informative 

SNP for the couple that was located within or in close proximity to exon 8.  An 

informative SNP could be included in the multiplex PCR for PGD for linkage analysis 

using SSCP or mini-sequencing.  If the SNP were within the deleted region, the affected 

male partner would have a single allele for that SNP.  For the SNP to be fully 

informative, the female partner needed to be homozygous for the other allele.  Two PCR 

primer sets were designed to target five SNPs up to1.5Kb upstream of exon 8.  The 

targeted SNPs were selected based on their location in the MSH2 gene with respect to 

exon 8 and their allele frequencies (ideally ~0.5 homozygous frequencies for either 

allele).  Figure 3.43 illustrates the location of the SNPs investigated and Table 3.16 

gives the allele frequencies. 
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Figure 3.43: Schematic diagram showing the locations of the investigated SNPs within the 

MSH2 gene 

 
The SNPs investigated (shown in blue) were upstream of exon 8 in the MSH2 gene and located 
on human chromosome 2 between 47.52 and 47.54Mb.  The SNPs between rs1981929 and 
rs17224423 were considered unsuitable due to their low frequencies of allele variation (i.e the 
probability of a given allele is ~0.9-1.0).  
 

 
Table 3.16: Allele frequencies in European population for the SNPs investigated for the couple 

undergoing PGD for the MSH2 exon 8 deletion 

SNP 
 

Homozygous frequency 
for ancestor allele 

Homozygous frequency 
for other allele 

Heterozygous frequency 
(both alleleS) 

rs1981929 0.333 (A/A) 0.125 (G/G) 0.542 (A/G) 
rs7607076 0.500 (A/A) 0.083 (G/G) 0.417 (A/G) 
rs17036586 1.000 (G/G) 0.000 (C/C) 0.000 (G/C) 
rs7607312 0.288 (A/A) 0.237 (C/C) 0.475 (A/C) 
rs17224423 0.977 (G/G) 0.000 (A/A) 0.023 (G/A) 
 

 

The four SNPs located in proximity to each other (within 200bp) were targeted by one 

set of primers (set A: MSH2_4SNPsF/R) shown in Figure 3.44.  Another set of primers 

(B) was designed to amplify the region including the rs1981929 SNP and exon 8 

(Figure 3.45).  This was the same primer set used to form heteroduplex constructs with 

a single A.C or G.T mismatch. 
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Figure 3.44: Genomic DNA sequence of the MSH2 gene on 2p21 showing the designed primer 

set A targeting four SNPs 

47524867 GTTTATATTCTGTCTAAATAGTGCTTCACATGTATGTACTATTTTCTAAATATGTATAGA 47524926 
47524927 TGCTTTTGTGATTAATAATAAAACATGAATTCTTAAAACAATTTTGCTGACTTCATAGTA 47524986 

47524987 GCTTTTCACCGTTTTTTCAGTAGCTGCTAAAATTTCTGGAGAAGTTTGGGAACTATTGTT 47525046 
47525047 TTGGAGTGAAATGCAGTGTGTTAGATATCACTTGCAGAATTCTTCTAAGGGTATTTATTG 47525106 
47525107 GCGATTAGAAAAAAAATCCTTGTGTTATACCAGTAGTAATACAAAGTAATTGTTCAGCTT 47525166 
47525167 CTGTTAAGTGTAAAGGACTATACAAGTATTGTGTATAGTTATCTCATTTATTATTTTCTG 47525226 
47525227 GGTAGCTATTGTTATTATTACTTCGTACAAAAAGGGAAAAGGAGGCTCAAAGTATCATGC 47525286 
47525287 TCCAGATAACAGAGCCAGTAGGTAGCAGAGCTGGGATTGCTACCCAGGTCTCTAGTCCTG 47525346 

47525347 CTTTTTCACACTATATACTCATTGCTTCACTTACTCCTTCATACATGATTCCCCAGCATG 47525406 
47525407 TACTCTTTTTTTTTTTTTTTTTTTTTTGTTTGAGATAGAATCTCGCTCTCTGTTGCCCAG 47525466 

The forward and reverse primers are shown in red and green, respectively.  The SNPs are 
highlighted in green.  The 309bp long amplified region is located 863bp upstream of exon 8. 
 

Figure 3.45: Genomic DNA sequence of the MSH2 gene on 2p21 showing the designed primer 

set B targeting the rs1981929 SNP 

47525887 TGAAATTCATTTAGTCATAATTAATGTCATGTTTCTGCATCTATATTACTTGTTGGGTTT 47525946 

47525947 ACAGAYGAGGTAGTGTATTATTAGTGGGAAGCWTTGAGTGCTACATCATCTCCCTTTCTA 47526006 
47526007 TAAAATAAATTGAGTACGAAACAATTTGAATTAAAACACCTGAGTAAATAGTAACTTTGG 47526066 
47526067 AGACCTRCTGTACTATTTGTACCTTTTGGATCAAATGATGCTTGTTTATCTCAGTCAAAA 47526126 
47526127 TTTTATGATTTGTATTCTGTAAAATGAGATCTTTTTATTTGTTTGTTTTACTACTTTCTT 47526186 
47526187 TTAGGAAAACACCAGAAATTATTGTTGGCAGTTTTTGTGACTCCTCTTACTGATCTTCGT 47526246 
47526247 TCTGACTTCTCCAAGTTTCAGGAAATGATAGAAACAACTTTAGATATGGATCAGGTATGC 47526306 

47526307 AATATACTTTTTAATTTAAGCAGTAGTTATTTTTAAAAAGCAAAGGCCACTTTAAGAAAG 47526366 

The forward and reverse primers are shown in red and green, respectively.  The amplified 
region is 328bp long.  The rs1981929 SNP is highlighted in green.  Exon 8 is shown in bold text. 
 

Genomic DNA from the affected individual, his partner and his aunt was amplified 

using the two primer sets in separate reactions.   Amplification of four SNP sites using 

primer set A was carried out using standard PCR conditions (0.2µM primer and 1.5mM 

MgCl2); the annealing temperature was 58ºC.  The 309bp products were first checked 

on a 2% agarose gel (section 2.5.1) then sequenced to identify the alleles at the SNP 

sites (section 2.6.6).  The sequences matched the sequence in Figure 3.44 even at the 

SNP sites.  All three individuals showed the same ancestral allele for the four SNPs.  

Figure 3.46 displays the sequences read for each individual and the full sequences 

obtained on the ABI PrismTM 3100 genetic analyzer are shown in the Appendix (Figure 

C.2). 
 

  

MSH2_4SNPsF 

MSH2_4SNPsR 

rs1981929 F 

 rs1981929 R 
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Figure 3.46: Sequencing results for PCR products amplified with primer set A (MSH2_4SNPs) 

Unaffected partner (female) 
5’ GTGTGTTAGATATCACTTGCAGAATTCTTCTAAGGGTATTTATTGGCGATTAGAAAAAAAATCCTTGTGTTATAC 3’ 

   GTGTGTTAGATATCACTTGCAGAATTCTTCTAAGGGTATTTATTGGCGATTAGAAAAAAAATCCTTGTGTTATAC 
 

5’ CAGTAGTAATACAAAGTAATTGTTCAGCTTCTGTTAAGTGTAAAGGACTATACAAGTATTGTGTATAGTTATCTC 3’ 

   CAGTAGTAATACAAAGTAATTGTTCAGCTTCTGTTAAGTGTAAAGGACTATACAAGTATTGTGTATAGTTATCTC 
 

5’ ATTTTTATTTTCTGGGTAGCTATTGTTATTATTACTTCGTACAAAAAGGGAAAAGGA 3’ 

   ATTTTTATTTTCTGGGTAGCTATTGTTATTATTACTTCGTACAAAAAGGGAAAAGGA 
 

Proband (male) 
5’ GTGTGTTAGATATCACTTGCAGAATTCTTCTAAGGGTATTTATTGGCGATTAGAAAAAAAATCCTTGTGTTATAC 3’ 

   GTGTGTTAGATATCACTTGCAGAATTCTTCTAAGGGTATTTATTGGCGATTAGAAAAAAAATCCTTGTGTTATAC 
 

5’ CAGTAGTAATACAAAGTAATTGTTCAGCTTCTGTTAAGTGTAAAGGACTATACAAGTATTGTGTATAGTTATCTC 3’ 

   CAGTAGTAATACAAAGTAATTGTTCAGCTTCTGTTAAGTGTAAAGGACTATACAAGTATTGTGTATAGTTATCTC 
 

5’ ATTTTTATTTTCTGGGTAGCTATTGTTATTATTACTTCGTACAAAAAGGGAAAAGGA 3’ 

   ATTTTTATTTTCTGGGTAGCTATTGTTATTATTACTTCGTACAAAAAGGGAAAAGGA 
 

Proband’s affected paternal aunt 
5’ GTGTGTTAGATATCACTTGCAGAATTCTTCTAAGGGTATTTATTGGCGATTAGAAAAAAAATCCTTGTGTTATAC 3’ 

   GTGTGTTAGATATCACTTGCAGAATTCTTCTAAGGGTATTTATTGGCGATTAGAAAAAAAATCCTTGTGTTATAC 
 

5’ CAGTAGTAATACAAAGTAATTGTTCAGCTTCTGTTAAGTGTAAAGGACTATACAAGTATTGTGTATAGTTATCTC 3’ 

   CAGTAGTAATACAAAGTAATTGTTCAGCTTCTGTTAAGTGTAAAGGACTATACAAGTATTGTGTATAGTTATCTC 
 

5’ ATTTTTATTTTCTGGGTAGCTATTGTTATTATTACTTCGTACAAAAAGGGAAAAGGA 3’ 

   ATTTTTATTTTCTGGGTAGCTATTGTTATTATTACTTCGTACAAAAAGGGAAAAGGA 

The reference sequence shown in black is located on Chromosome 2: 47525063-47525269.  
The sequence read for each PCR product is shown in blue.  The SNPs are highlighted in green 
on the reference sequences and in yellow on the ABI PrismTM readings. 
 

Primer set B (rs1981929-F/R) was used to amplify the SNP that was closest to exon 8.  

The optimised PCR conditions described in Table 3.12 were used: 56ºC annealing 

temperature, 0.2µM primer and 1.5mM MgCl2.  Sequencing analysis revealed that the 

proband (male partner) and his affected aunt were homozygous for this SNP, which was 

expected due to the deletion.  Each of them, however, carried a different allele:  the 

proband’s was G/- and his aunt’s was A/-.  The proband’s wife was heterozygous (A/G).  

The full sequences obtained on the ABI PrismTM 3100 genetic analyzer are shown in 

Appendix (Figure C.3).  Figure 3.47 displays the sequence readings of the targeted 

fragment and Table 3.17 summarises the results obtained for all five SNPs. 
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Figure 3.47: Sequencing results for PCR products amplified with primer set B (rs1981929-F/R) 

Unaffected partner 
5’ AAAACACCTGAGTAAATAGTAACTTTGGAGACCTRCTGTACTATTTGTACCTTTTGGATCAAATGATGC 3’ 
   AAAACACCTGAGTAAATAGTAACTTTGGAGACCTACTGTACTATTTGTACCTTTTGGATCAAATGATGC 
   AAAACACCTGAGTAAATAGTAACTTTGGAGACCTGCTGTACTATTTGTACCTTTTGGATCAAATGATGC 
 

5’ TTGTTTATCTCAGTCAAAATTTTATGATTTGTATTCTGTAAAATGAGATCTTTTTATTTGTTTGTTTTA 3’ 
   TTGTTTATCTCAGTCAAAATTTTATGATTTGTATTCTGTAAAATGAGATCTTTTTATTTGTTTGTTTTA 
   TTGTTTATCTCAGTCAAAATTTTATGATTTGTATTCTGTAAAATGAGATCTTTTTATTTGTTTGTTTTA 
 

5’ CTACTTTCTTTTAGGAAAACACCAGAAATTATTGTTGGCAGTTTTTGTGACTCCTCTTACTGATCTTCG 3’ 
   CTACTTTCTTTTAGGAAAACACCAGAAATTATTGTTGGCAGTTTTT 
   CTACTTTCTTTTAGGAAAACACCAGAAATTATTGTTGGCAGTTTTT 

 
Affected partner 
5’ AAAACACCTGAGTAAATAGTAACTTTGGAGACCTRCTGTACTATTTGTACCTTTTGGATCAAATGATGC 3’ 
   AAAACACCTGAGTAAATAGTAACTTTGGAGACCTGCTGTACTATTTGTACCTTTTGGATCAAATGATGC 
 

5’ TTGTTTATCTCAGTCAAAATTTTATGATTTGTATTCTGTAAAATGAGATCTTTTTATTTGTTTGTTTTA 3’ 
   TTGTTTATCTCAGTCAAAATTTTATGATTTGTATTCTGTAAAATGAGATCTTTTTATTTGTTTGTTTTA 
 

5’ CTACTTTCTTTTAGGAAAACACCAGAAATTATTGTTGGCAGTTTTTGTGACTCCTCTTACTGATCTTCG 3’ 
   CTACTTTCTTTTAGGAAAACACCAGAAATTATTGTTGGCAGTTTTTGTGACTCCTCTTACTGATCTTCG 
 
Affected paternal aunt 
5’ AAAACACCTGAGTAAATAGTAACTTTGGAGACCTRCTGTACTATTTGTACCTTTTGGATCAAATGATGC 3’ 
   AAAACACCTGAGTAAATAGTAACTTTGGAGACCTACTGTACTATTTGTACCTTTTGGATCAAATGATGC 
 

5’ TTGTTTATCTCAGTCAAAATTTTATGATTTGTATTCTGTAAAATGAGATCTTTTTATTTGTTTGTTTTA 3’ 
   TTGTTTATCTCAGTCAAAATTTTATGATTTGTATTCTGTAAAATGAGATCTTTTTATTTGTTTGTTTTA 
 

5’ CTACTTTCTTTTAGGAAAACACCAGAAATTATTGTTGGCAGTTTTTGTGACTCCTCTTACTGATCTTCG 3’ 
   CTACTTTCTTTTAGGAAAACACCAGAAATTATTGTTGGCAGTTTTTGTGACTCCTCTTACTGATCTTCG 

The reference sequence shown in black is located on Chromosome 2: 47526049-47526256.  
The sequence read for each PCR product is shown in blue.  Part of exon 8 was included in the 
sequence and is shown in bold text.  The SNP is highlighted in green on the reference 
sequences and in yellow on the ABI PrismTM readings.  The unaffected partner was 
heterozygous for the SNP and the affected individuals had only one allele due to the exon 8 
deletion. 

 

Table 3.17: Identified alleles at the five SNPs investigated for the proband, his wife and his 

affected paternal aunt  

SNP 
 

Female partner 
 

Male partner 
(proband) 

Affected relative 
 Informativity 

rs1981929 A/G G/- A/- Semi-informative 
rs7607076 A/A A/A or A/- A/A or A/- Not informative 
rs17036586 G/G G/G or G/- G/G or G/- Not informative 
rs7607312 A/A A/A or A/- A/A or A/- Not informative 
rs17224423 G/G G/G or G/- G/G or G/- Not informative 

 

SSCP analysis (section 2.6.5) was used for the detection of the different genotypes at 

the rs1981929 SNP (done in collaboration with Will J. Young during his BSc project at 

the UCL Centre for PGD).  Figure 3.48 shows SSCP analysis of the amplified products 

for the proband, his wife and his affected aunt. 



Results 

167 
 

Figure 3.48: SSCP analysis on PhastGel® Homogeneous 20 run at 10ºC (long pre-run) 

showing genomic DNA from the proband, his wife and his affected aunt amplified at the 

rs1981929 locus 
 

             

P: proband (male) 
FP: female partner 
AR: affected relative (proband’s paternal aunt) 

The bottom most band (indicated by green arrows) corresponds to the A allele, which was 
missing in the proband who carried the exon 8 deletion.  The blue arrows point to the bands 
corresponding to the G allele.  The presence of both bands identifies a normal heterozygous 
A/G sample.  Normal homozygous samples cannot be distinguished from those carrying the 
deletion using SSCP analysis alone. 
 

The identification of an A/G genotype would indicate a ‘normal’ or unaffected 

cell/embryo.  However, G/- or A/- could not be distinguished form homozygous G/G or 

A/A genotypes unless the couple’s haplotypes were known.  The marker alleles that 

were in phase with the MSH2 exon 8 deletion could only be identified for D2S119.  

Figure 3.49 shows the couple’s haplotypes and those of their possible embryos. 

 
  

A/G    G/-      A/-      G/-     A/-      A/G 

 FP       P       AR       P       AR     FP 
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Figure 3.49: Possible embryo haplotypes for the couple undergoing PGD for the MSH2 exon 8 

deletion 
 

 
The chromosome carrying the mutation (shown in yellow) was identifiable by the 211bp allele 
size for the D2S119 STR marker.  Embryos inheriting that paternal chromosome would carry the 
mutation.  Linkage would be confirmed by the D2S2227 linked marker which is 0.36Mb away 
from the gene.  If the 151bp shared allele were in phase with the mutation, detection of 151/166 
and 153/166 would indicate a ‘normal’ or unaffected embryo.  If the 166bp allele were in phase 
with the mutation, detection of 151 homozygous or 151/153 would indicate a normal/unaffected 
embryo. 
 

In order to determine the couple’s haplotypes, other DNA samples from immediate 

family members were needed; however, this was not available.  Alternatively, the phase 

allele for the D2S2227 marker could have been identified from haploid cells isolated 

from the proband’s semen sample.  This could not be obtained during the initial stages 

of the workup process.  However, the phase would have been worked out later on or 

during the treatment cycle had the couple gone ahead with PGD. 
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3.3.1.3 Optimisation of PCR protocol 

3.3.1.3.1 Multiplex PCR optimisation using genomic DNA 

A quadruplex PCR was used to amplify the couple’s genomic DNA at the following 

loci: the two semi-informative STR markers (D2S119 and D2S2227), the semi-

informative SNP (rs1981929) and the informative contamination marker (APOC2).  As 

the primers for both linked markers and the SNP worked separately at 60ºC and 56ºC, 

respectively, a temperature gradient PCR was set up to compare three annealing 

temperatures: 56, 58 and 60ºC.  Table 3.18 summaries the initial conditions tested. 

 
Table 3.18: Conditions of quadruplex PCR during annealing temperature optimisation 

Reagent 
 

D2S119 
primers 

D2S2227 
primers 

APOC2 
primers 

rs1981929 
primers 

MgCl2 
 

Ta 
 

 
0.2µM 0.2µM 0.2µM 0.2µM 1.5mM 56ºC 
0.2µM 0.2µM 0.2µM 0.2µM 1.5mM 58ºC 
0.2µM 0.2µM 0.2µM 0.2µM 1.5mM 60ºC 

 

Analysis of the products on a 2% agarose gel revealed that better amplification was  

achieved at 56 and 58ºC; however, amplification of the SNP region (328bp product) 

was weak at all temperatures (Figure 3.50). 

 
Figure 3.50:  2% agarose gel (run at 70V) showing quadruplex PCR products at different 

annealing temperatures: 56, 58 and 60ºC 

 

L: 1Kb ladder; Expected product sizes: 328bp for rs1981929 SNP, ~150bp for D2S2227 and 
APOC2 and 210-220bp for D2S119  
Looking at the band intensities it was determined that the best annealing temperature was 56ºC.  
The STR markers loci were amplified efficiently at all temperatures and best at 56ºC.  The SNP 
locus was weakly amplified at all temperatures, with lowest amplification at 60ºC. 
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The concentration of the SNP primers was increased to 0.4µM, keeping the rest of the 

reagents the same, and the PCR was run at 56 and 58ºC (Table 3.19).  These conditions 

gave good results for all loci including the SNP (Figure 3.51). 

 
Table 3.19: Optimisation of primer concentrations for quadruplex PCR using genomic DNA 

 
Reagent 
 

D2S119 
primers 

D2S2227 
primers 

APOC2 
primers 

rs1981929 
primers 

MgCl2 
 

Ta 
 

 0.2µM 0.2µM 0.2µM 0.4µM 1.5mM 56ºC 

 0.2µM 0.2µM 0.2µM 0.4µM 1.5mM 58ºC 

 

Figure 3.51: 2% agarose gel (run at 70V) showing quadruplex PCR products at 56 and 58ºC 

annealing temperatures with 0.4µM rs1981929 SNP primers  

 

L: 1Kb ladder; -ve: negative control; Expected product sizes: 328bp for rs1981929 SNP, ~150bp 
for D2S2227 and APOC2 and 210-220bp for D2S119  
The quadruplex PCR had 0.4µM rs1981929 SNP primers and 0.2µM of all other primers 
(D2S2227, D2S119 and APOC2).  All loci were amplified efficiently at both annealing 
temperatures. 
 

 

SSCP analysis was carried out on the quadruplex PCR products (Ta=58ºC) to identify 

the SNP alleles (Figure 3.52).  The alleles could be identified; however, due to the 

presence of extra bands from other amplified loci, some of which were near the 

rs1981929 product bands, diagnosis would be difficult using this technique.  Mini-

sequencing primers were thus designed to target the rs1981929 SNP (Figure 3.53).  
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Figure 3.52: SSCP analysis on PhastGel® Homogeneous 20 run at 4ºC (long pre-run) showing 

the couple’s genomic DNA amplified at four loci, including the rs1981929 locus 

 

a: Singleplex product for rs1981929 from homozygous control DNA (A/A) 
b: Singleplex product for rs1981929 from homozygous control DNA (G/G) 
c, d, e: Quadruplex products (Ta=58ºC) from genomic DNA of the unaffected female 
partner, the proband and a heterozygous control, respectively 
The red box shows the migration level of the rs1981929 products 
 
Figure 3.53: Genomic DNA sequence of the MSH2 gene on 2p21 showing the mini-sequencing 

primers designed for the rs1981929 SNP 

47525887 TGAAATTCATTTAGTCATAATTAATGTCATGTTTCTGCATCTATATTACTTGTTGGGTTT 47525946 

47525947 ACAGAYGAGGTAGTGTATTATTAGTGGGAAGCWTTGAGTGCTACATCATCTCCCTTTCTA 47526006 

47526007 TAAAATAAATTGAGTACGAAACAATTTGAATTAAAACACCTGAGTAAATAGTAACTTTGG 47526066 

47526067 AGACCTRCTGTACTATTTGTACCTTTTGGATCAAATGATGCTTGTTTATCTCAGTCAAAA 47526126 

47526127 TTTTATGATTTGTATTCTGTAAAATGAGATCTTTTTATTTGTTTGTTTTACTACTTTCTT 47526186 

47526187 TTAGGAAAACACCAGAAATTATTGTTGGCAGTTTTTGTGACTCCTCTTACTGATCTTCGT 47526246 

47526247 TCTGACTTCTCCAAGTTTCAGGAAATGATAGAAACAACTTTAGATATGGATCAGGTATGC 47526306 

47526307 AATATACTTTTTAATTTAAGCAGTAGTTATTTTTAAAAAGCAAAGGCCACTTTAAGAAAG 47526366 

The initial rs1981929 PCR primers are shown in red and green and the SNaPshot forward (A/G) 
and reverse (T/C) primers are shown in blue and purple, respectively.  The rs1981929 SNP is 
highlighted in green and exon 8 is shown in bold text.  

 

Mini-sequencing analysis was carried out on the quadruplex PCR products (Table 3.19) 

using the SNaPshotTM multiplex kit (method described in section 5.6).  Initial results 

showed that mini-sequencing was successful (Figure 3.54) and that amplification of the 

rs1981929 site in the quadruplex reaction was similar at 56ºC and 58ºC.  The correct 

base was identified for the expected fragment size (primer length + 4, 3 and 2bp, for the 

A, G and C/T bases, respectively).  As some additional random sized peaks were 

detected, further optimisation on single cells was necessary. 

rs1981929 R 

 

rs1981929 F 

 For A/G 

Rev C/T 
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Figure 3.54: Mini-sequencing analysis from quadruplex PCR products (Ta=56 and 58ºC) 

showing the different rs1981929 SNP alleles for the couple and a control 

  

Analysis on the ABI PrismTM 310 was expected to show a blue 25bp peak or green 26bp peak 
for the G and A bases, respectively, when the forward primer was used (ForA/G).  The C and T 
products, obtained with the reverse primer (not shown here), would be visualised as black and 
red 18bp sized peaks, respectively. 
Mini-sequencing analysis allowed the identification of the correct alleles for the proband (G/-), 
his wife (G/A) and a control homozygous (G/G).  Results were similar for both quadruplex 
reactions performed at 56 and 58ºC (Table 3.19). 
 

The developed quadruplex PCR protocol, involving mini-sequencing for the rs1981929 

SNP and fragment length analysis of two linked and one unlinked STR markers, was 

licensed for PGD treatment by the HFEA.   This was the first license issued for a MMR 

gene in the UK and set the precedence for future cases. 

 

The PCR was never optimised on single cells as the couple had decided not to go 

through with PGD treatment during the workup process.  This was due to the couple’s 

inability to obtain NHS funding for IVF/PGD treatment. 
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3.3.2 PGD workup for BRCA1 (c. 3339T>G) 

3.3.2.1 Patient description 
The male partner (proband) carried a non-sense c.3339T>G, p.Tyr1113X mutation 

(formerly known as c.3458T>G) in exon 11 of the BRCA1 gene.  The proband’s wife 

was homozygous normal.  His mother and sister carried the germline mutation and died 

of breast cancer at ages of 40 and 35, respectively.  Figure 3.55 shows the pedigree.  

Bloods for DNA extraction were available from the proband, his father (homozygous 

normal) and his wife. 
 

Figure 3.55: Pedigree showing the asymptomatic proband and his affected relatives 

 
II.2 is the proband, carrier of the c.3339T>G mutation in exon 11 of the BRCA1 gene.  I.2 and 
II.1 represent the proband’s affected mother and sister, respectively. 

 

3.3.2.2 Confirmation of mutation using sequencing analysis 
A set of non-labelled PCR primers (c.3339T>G) flanking the single base substitution 

was designed for direct mutation detection using SSCP analysis (Figure 3.56).  These 

primers were initially used to confirm the mutation specified in the patient’s genetic 

report.  DNA from the proband, his partner and his father was amplified at the mutation 

site using these primers.  The PCR products for the three individuals were first checked 

on agarose gels to confirm DNA amplification (and successful DNA extraction after the 

very first PCR) then sequenced.  The sequences were all identical (matched the 

sequence in Figure 3.56) except for a single base change detected in the male partner’s 

sample at the mutation site.  The full sequences obtained on the ABI PrismTM 3100 

genetic analyzer are shown in the Appendix (Figure C.4). 
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Figure 3.56: Genomic DNA sequence of the BRCA1 gene (reference sequence: L78833, 

residues 36121-36660) showing the primers designed for the c.3339T>G mutation 

36121 ttacaaaacc catatcgtat accaccactt tttcccatca agtcatttgt taaaactaaa 
36181 tgtaagaaaa atctgctaga ggaaaacttt gaggaacatt caatgtcacc tgaaagagaa 
36241 atgggaaatg agaacattcc aagtacagtg agcacaatta gccgtaataa cattagagaa 
36301 aatgttttta aagaagccag ctcaagcaat attaatgaag taggttccag tactaatgaa 
36361 gtgggctcca gtattaatga aataggttcc agtgatgaaa acattcaagc agaactaggt 
36421 agaaacagag ggccaaaatt gaatgctatg cttagattag gggttttgca acctgaggtc 
36481 tataaacaaa gtcttcctgg aagtaattgt aagcatcctg aaataaaaaa gcaagaatat 
36541 gaagaagtag ttcagactgt taatacagat ttctctccat atctgatttc agataactta 
36601 gaacagccta tgggaagtag tcatgcatct caggtttgtt ctgagacacc tgatgacctg 

The sequence displayed was selected from of exon 11, which is >3.4kb long.  The codon at the 
mutation site is underlined.  The forward and reverse primers are highlighted in yellow and 
green, respectively.  (Product size=136bp) 
 

3.3.2.3 Direct mutation detection using SSCP analysis 
Amplified DNA products at the BRCA1 c.3339T>G mutation site for the proband, his 

partner and his father were analysed on SSCP gels.  Successful separation of the single 

DNA strands required optimisation of the SSCP conditions (Figure 3.57).  The optimal 

conditions were: 20% homogenous gel, run at 4ºC with long pre-run.  The mutation 

could be detected by the presence of an extra band that was indicative of a heterozygous 

carrier of the c.3339T>G mutation. 

 
Figure 3.57: SSCP optimisations for BRCA1 c.3339T>G mutation detection 

          
Gel Conditions Gel concentration Temperature Pre-run Mutation detection 

A 20% 10ºC short No 
B 20% 15ºC short No 
C 20% 4ºC short No 
D 20% 4ºC long Yes 

Amplified products using the c.3339T>G  primers on genomic DNA from the unaffected female 
partner (a), the proband (b) and his unaffected father (c) were run on a homogeneous 20 
PhastGel® at different conditions (A-D).  The optimal conditions (D) were: 4ºC with a long pre-
run.  Product b showed a clearly different pattern (extra band) due to the c.3339T>G mutation 
carried by the male partner. 

 

a        b       c    a        b       c    a        b       c    a        b       c    

A B C D 
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3.3.2.4 Informativity tests 
Informativity tests were carried out on genomic DNA from the affected male and his 

partner.  Four linked and six unlinked STR markers were investigated using F-PCR 

followed by fragment length analysis on the ABI PrismTM (Table 3.20).  Amongst the 

linked markers tested, only D17S1338 was found to be fully informative for this couple.  

Both the DM and D13S168 unlinked markers were found to be informative.  However, 

as the allele sizes would be close together in embryos from the couple for DM, 

D13S168 was used as the fully informative contamination marker. 

 
Table 3.20: Allele sizes for different STR markers identified for the couple undergoing PGD for 

the BRCA1 c.3339T>G mutation 

STR marker  Location Female partner 
 (bp) 

Male partner 
(proband) 
(bp) 

Informativity 

Linked STR markers 
D17S1338 * 17q21.31 183/193 179 Informative /191 
D17S1185 17q21.31 213/217 213/217 Not informative 
D17S855 17q21.31; BRCA1 intron 11 157 157 Semi-informative /160 
D17S1343 17q21.31 153/158 153/158 Not informative 
Unlinked STR markers 
APOC2 19q13.32 150/155 150/152 Semi-informative 
DM 19q13.32 121/148 145/150  Informative 
D19S112 19q13.32 130/132 120/130  Semi-informative 
D13S168 * 13q14.2 126/137 141/143 Informative 
D13S262 13q14.3 206/325 206/325  Not informative 
Rb1.20 13q14.2 175/179 175/187  Semi-informative 

The affected individual is represented in italics.  Bold text signifies that the alleles are 
informative and underlined text indicates the phase allele.  The top markers (shown in blue) are 
linked with the BRCA1 gene.  The asterisk denotes the markers that were selected for use in 
the multiplex PCR reaction. 
 

 

The only informative linked marker, D17S1338, was the furthest away from the BRCA1 

gene.  The distance between this marker and the gene was approximately 2.5Mb which 

is greater than the desired limit of 1Mb.  Figure 3.58 shows the location of the linked 

markers on chromosome 17 relative to the BRCA1 gene.  D17S855, which is an 

intragenic marker, was found to be semi-informative. 
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Figure 3.58: BRCA1 gene and linked STR markers on chromosome 17 

 
The locations of D17S1338, D17S1185, D17S855 and D17S1343 on human chromosome 17 
were around 34.5, 36.3, 37.0 and 37.2Mb, respectively.  The calculated distance between the 
BRCA1 gene and each STR marker is shown in the diagram. 
 

DNA from the unaffected father of the proband was amplified for the two linked 

markers, D17S1338 and D17S855.  This allowed the identification of the marker alleles 

that were in phase with the BRCA1 c.3339T>G mutation that the proband inherited from 

his mother.  The 157 and 179bp allele sizes for D17S855 and D17S1338, respectively, 

were found to be in phase with the mutation.  Figure 3.59 illustrates the haplotypes of 

the couple, the male’s unaffected father and the possible embryos. 

 
Figure 3.59: Haplotypes of couple undergoing PGD for the BRCA1 c.3339T>G mutation and 

their possible embryos 

 

The chromosome carrying the mutation (shown in yellow) was identifiable by the 157 and 179bp 
allele sizes for the D17S855 and D17S1338 markers, respectively.  Embryos inheriting that 
paternal chromosome would carry the mutation. 

BRCA1 
17q21 

D17S855 
D17S1338 D17S1185 

D17S1343 

                        1.8Mb                                         0.7Mb           0.2Mb 

2.5Mb 
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Three STR markers were selected for use in a multiplex PCR along with the mutation 

primers for the PGD protocol: D17S1338, D17S855 and D13S168. 

 

3.3.2.5 Optimisation of PCR protocol 

3.3.2.5.1 Multiplex PCR optimisation using genomic DNA 

A quadruplex PCR was initially attempted using basic condition (0.2µM of each primer, 

1.5mM MgCl2) to amplify three STR markers (D17S1338, D17S855 and D13S168) and 

the c.3339T>G mutation.  The initial annealing temperature was 60ºC, as all primer sets 

worked individually at this annealing temperature. All loci were amplified efficiently; 

the correct allele sizes for the three markers were detected on the genetic analyzer and 

the mutation was detected by SSCP analysis.  A few single cells were then tested using 

this PCR protocol; amplification was very poor for all single cells at all loci.  Thus, 

further optimisations on genomic DNA from the affected individual and controls were 

necessary before moving on to single cells. 

 
A. Annealing temperature and MgCl2 concentration: 

A magnesium/temperature gradient PCR was set up to check amplification efficiency 

with 1.5, 2.0 and 2.5mM MgCl2 at annealing temperatures of 58, 60 and 62ºC.  All 

reagents concentrations (other than MgCl2) were kept the same but 10% glycerol was 

added to the master mixes (Table 3.21). Fragment length analysis on the genetic 

analyzer showed that the best annealing temperature was 60ºC for all loci.  2.5mM 

MgCl2 gave the best results for D17S1338 and D17S855; however, 2.0mM MgCl2 gave 

better results for D13S168 (less unspecific amplification). 
 

Table 3.21: Conditions of quadruplex PCR during MgCl2/annealing temperature optimisation 

Ta 
 

Mutation 
primers 

D17S1338 
primers 

D17S855 
primers 

D13S168 
primers 

MgCl2 
 

10% 
glycerol 

Conditions optimal for: 
 

58ºC 
0.2µM 0.2µM 0.2µM 0.2µM 1.5mM Yes  
0.2µM 0.2µM 0.2µM 0.2µM 2.0mM Yes  
0.2µM 0.2µM 0.2µM 0.2µM 2.5mM Yes  

60ºC 

0.2µM 0.2µM 0.2µM 0.2µM 1.5mM Yes  
0.2µM 0.2µM 0.2µM 0.2µM 2.0mM Yes D13S168 
0.2µM 
 

0.2µM 
 

0.2µM 
 

0.2µM 
 

2.5mM 
 

Yes 
 D17S138 & D17S855 

62ºC 
0.2µM 0.2µM 0.2µM 0.2µM 1.5mM Yes  
0.2µM 0.2µM 0.2µM 0.2µM 2.0mM Yes  
0.2µM 0.2µM 0.2µM 0.2µM 2.5mM Yes  
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B. Split PCRs: 

The quadruplex PCR was split into two rounds of amplification.  The first round 

involved the amplification of all loci in 15 cycles.  The second round was a full PCR 

reaction (40 cycles) using 3µl of PCR product obtained from the first round.  Round 2 

was carried out for D13S168 and c.3339T>G in one PCR and D17S1338 and D17S855 

in another PCR. 

 

The addition of glycerol, MgCl2 concentration (2.0 and 2.5mM) and two annealing 

temperatures (Ta = 60ºC or 62ºC) were tested for both rounds of amplification (Table 

3.22).  Analysis of all products of round 2 on agarose gels and on the genetic analyzer 

showed that the best round 1 conditions for all loci were 2.0mM MgCl2 with 10% 

glycerol and Ta=60ºC.  The best conditions for round 2 were 2.5mM MgCl2 with 10% 

glycerol (Ta=60ºC) for D17S1338 and D17S855 (Figure 3.60), and 2.0mM MgCl2 

without glycerol (Ta=62ºC) for D13S168 and c.3339T>G.  These conditions were thus 

tested on single cells. 

 
Table 3.22: Summary of conditions tested for the optimisation of split PCR protocol using 

genomic DNA 
Protocol 
conditions 

Round 1 PCR Round 2 PCR 
[MgCl2] (mM) 10% glycerol [MgCl2] (mM) 10% glycerol 

A1 2.0 Yes 2.0 No 
A2 2.5 Yes 2.0 No 
A3 2.0 No 2.0 No 
A4 2.5 No 2.0 No 
B1 2.0 Yes 2.0 Yes 
B2 2.5 Yes 2.0 Yes 
B3 2.0 No 2.0 Yes 
B4 2.5 No 2.0 Yes 
C1 2.0 Yes 2.5 No 
C2 2.5 Yes 2.5 No 
C3 2.0 No 2.5 No 
C4 2.5 No 2.5 No 
D1 2.0 Yes 2.5 Yes 
D2 2.5 Yes 2.5 Yes 
D3 2.0 No 2.5 Yes 
D4 2.5 No 2.5 Yes 
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Figure 3.60: 2% agarose gel (run at 70V) showing optimisation of split PCR for D17S1338 and 

D17S855 using genomic DNA 

 
 

 
L: 1Kb ladder; Samples 1, 2, 3 and 4 were genomic control DNAs.   
The optimal PCR conditions were identified by looking at the intensities of two bands: 150-
160bp for D17S855 and 180-190bp for D17S1338.  Two annealing temperatures (Ta) were 
tested for the first round: 60 and 62ºC (as shown on top of the gel wells) and Ta was always 
60ºC in the second round.  The conditions of the first (blue) and second (black) round PCRs are 
marked on the gel images and listed in Table 3.22.  The green arrows designate the best 
conditions observed on each gel.  The optimal conditions for round 1 were: Ta=60ºC, 2.0 or 
2.5mM MgCl2 with 10% glycerol.  The optimal conditions for round 2 were: 2.5mM MgCl2 with 
10% glycerol (Ta=60ºC was constant).  
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3.3.2.5.2 Multiplex PCR optimisation for single cells 

The quadruplex split PCR optimised on genomic DNA was tested on 10 isolated 

lymphocytes for the couple.  Amplification of the mutation site, the unlinked marker 

and D17S1338 was efficient (≥90%); however, that of the intragenic marker D17S855 

was still poor (70%).  ADO was observed for one cell for each of the markers (Table 

3.23). 

 
Table 3.23: Initial assessment of split PCR protocol on 10 single cells 

Loci 
 

BRCA1 c.3339T>G 
mutation 

D13S168 
unlinked marker 

D17S1338  
linked marker 

D17S855 
intragenic marker 

AE 90% (9/10) 100% (10/10) 90% (9/10) 70% (7/10) 

ADO - 10% (1/10) 11% (1/9) 14% (1/7) 

AE: amplification efficiency; ADO: allele dropout 

PCR protocol: 
- Round 1: Ta=60ºC, 2.0mM MgCl2 with 10% glycerol 
- Round 2: 

 Mutation + D13S168: Ta=62ºC, 2.0mM MgCl2 without glycerol 
 D17S1338 + D17S855: Ta=60ºC, 2.5mM MgCl2 with 10% glycerol 

 

In order to further optimise this split PCR, the first round amplification was performed 

on five fresh single cells followed by two different conditions for each of the round 2 

PCRs.  The different protocols along with the Prism analysis results are listed in Table 

3.24.  Figure 3.61 shows the amplified products obtained from protocols A and C on a 

2% agarose gel. 

 
Table 3.24: Summary of PCR protocols tested on 5 single cells and fragment size analysis 

results 

Split  
reaction 

Protocol  Round 1  Round 2 Marker 
AE & ADO 

Comment 
[MgCl2] 
(mM) 

10% 
glycerol 

Ta 
(ºC) 

[MgCl2] 
(mM) 

10% 
glycerol 

Ta 
(ºC) 

Mutation 
+ 
D13S168 

A 2.0 Yes 60 2.0 Yes 62 5/5  Weak 
amplification        1/5  ADO 

B 2.0 Yes 60 2.0 No 60 3/5 Amplification  
better than A         0% ADO 

D17S855 
+ 
D17S1338 

C 2.0 Yes 60 2.5 Yes 60 5/5 for both 
        0% ADO 

D 2.0 Yes 60 2.5 No 60 0/5 for both 
        -  

AE: amplification efficiency; ADO: allele dropout 
Low peaks were observed on the prism when amplification was weak. 
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Figure 3.61: 2% agarose gel (run at 70V) showing amplified DNA from the proband’s single 

cells using the split PCR protocols A & C (Table 3.24) 

 
L: 1Kb ladder; Expected product sizes: 126-140bp for D13S168, 136bp for the mutation 150-
160bp for D17S855 and 180-190bp for D17S1185 
Samples 1-5 designate single lymphocytes isolated from the proband.  Gen. designates 
genomic DNA from the same individual used as positive control.  The arrow points at the weak 
bands obtained from amplified DNA at the mutation and/or the D13S168 locus.  Only three out 
of five cells amplified at these loci using protocol A (Table 3.24).  The two linked marker 
(D17S1338 and D17S855) loci were amplified in 5 out of 5 cells, showing that protocol C was 
suitable for these markers. 
 

The amplification results of the split quadruplex PCR were still not good enough for a 

PGD protocol, particularly for the mutation site and the contamination marker 

(D13S168).  As the D17S855 marker was neither fully informative nor necessary for 

diagnosis, given that the PCR protocol included another fully informative linked marker 

and a contamination markers, D17S855 was dropped from the PCR protocol. 

 

The new protocol included three sets of primers for the following loci: the BRCA1 

c.3339T>G mutation, the D17S1338 and D13S168 linked and unlinked polymorphic 

Markers, respectively.  Based on the amplification efficiencies observed for these loci 

during the quadruplex optimisation experiments, the triplex PCR was performed in two 

rounds.  The second round was split into a duplex F-PCR targeting the two markers 

(D17S1338 and D13S168) and a separate PCR for direct mutation detection.  The 

conditions of all three PCRs are summarised in Table 3.25.  This protocol gave high 

amplification efficiencies from single cells and genomic DNA.  Initial results from 10 

lymphocytes from the proband and his partner showed 90% amplification efficiency 

(AE) for the mutation and 100% AE for the markers.  0% allele dropout (ADO) was 

observed for all loci.  Figure 3.62 shows amplification results from five single cells at 

the mutation site on SSCP gels. 
  

  1      2        3       4       5    Gen 

Mutation + D13S168 amplified 
with protocol A 

 L 
D17S1338 + D17S855 amplified 
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  1       2       3       4       5    Gen 

 D
17

S1
33

8 

 



Results 

182 
 

Table 3.25: Summary of split PCR protocol tested on 10 single cells 
Split PCR Mutation 

primers 
D17S1338 
primers 

D13S168 
primers 

[MgCl2] 10% glycerol Ta 

Round 1 0.2µM 0.2µM 0.2µM 2.5mM Yes 60ºC 

Round 2 a - 0.2µM 0.2µM 2.5mM Yes 60ºC 

Round 2 b 0.2µM - - 2.0mm No 60ºC 

AE 9/10 10/10 10/10    

ADO 0% 0% 0%    

AE: amplification efficiency; ADO: allele dropout 
 
Figure 3.62: SSCP analysis showing BRCA1 c.3339T>G mutation detection from five 

lymphocytes after amplification using the split triplex PCR protocol 

 
Homogeneous 20 PhastGel® run at 4ºC (long pre-run) 
Samples 1,2,3,4 and 5 designate the amplified DNA at the mutation locus from single 
lymphosytes isolated from the affected male partner.  Gen. designates the genomic DNA 
samples used as a positive control. 
Lymphocyte number 4 failed to amplify at the mutation site.  AE was 80% (4 out of 5 cells) and 
ADO was 0%. 
 

3.3.2.6 Final assessment of PGD protocol 
The optimised protocol, shown in Table 3.26, was assessed on 50 lymphocytes that 

were heterozygous for all loci including the mutation (Figure 3.63).  The lymphocytes 

were isolated from the proband’s blood.  The outcome is summarised in Table 3.27. 

 
Table 3.26: Summary of optimised split PCR protocol for the BRCA1 c.3339T>G mutation 

Split PCR Mutation 
primers 

D17S1338 
primers 

D13S168 
primers 

[MgCl2] 
 

10% 
glycerol 

Ta Method of 
analysis 

Round 1 0.2µM 0.2µM 0.2µM 2.5mM Yes 60ºC  

Round 2 a - 0.2µM 0.2µM 2.5mM Yes 60ºC ABI genetic 
analyzer 

Round 2 b 0.2µM - - 2.0mm No 60ºC SSCP 
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Figure 3.63: Analysis of PCR products obtained with the final PGD protocol for the BRCA1 

c.3339T>G mutation 

 
a) Genetic analyzer panels showing the linked informative marker 

 

 

 

The underlined allele is in phase with the mutation. 
 

b) Genetic analyzer panels showing the unlinked informative marker 
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Figure 3.63 (continued): Analysis of PCR products obtained with the final PGD protocol for the 

BRCA1 c.3339T>G mutation 

c) SSCP analysis showing the BRCA1 c.3339T>G mutation detection for single lymphocytes 

from the proband 

 

ADO was observed for samples g and s as the top band representing the mutation allele is 
missing.  Amplification failure was seen for sample w. 
 

 

Table 3.27: Assessment of triplex PCR developed for PGD of the BRCA1 c.3339T>G mutation 

from 50 heterozygous and 10 homozygous lymphocytes 

Loci 
 

BRCA1 c.3339T>G 
mutation 

D17S1338  
linked marker 

D13S168 
unlinked marker 

AE 98% (49/50) 92% (46/50) 96% (48/50) 

ADO 6% (3/49) 7% (3/46) 2% (1/48) 

F.N. 0% (0/46) 

F.P. 0% (0/10) 

AE: amplification efficiency; ADO: allele dropout; F.N.: false negative; 
F.P.: false positive 

The expected F.N. and F.P. rates for diagnosis based on two cells are equal to  
(F.N.)2 and (F.P.)2; both were 0% (0×0) for this protocol. 

 

 

A license for treatment was obtained by the HFEA for this PGD protocol.  However, it 

was never clinically applied as the female partner, aged 34 with no known family 

history of breast or ovarian cancer, was diagnosed with breast cancer and had to 

undergo treatment. 
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3.3.3 PGD workup for BRCA1 (c.68-69delAG) 

3.3.3.1 Patient description 
The male partner (proband), aged 29, carried the 2 base pair (bp) deletion 

c.68_69delAG (formerly known as c.187_188delAG) in exon 2 of the BRCA1 gene.  

The proband's wife was homozygous normal.  His mother and sister developed breast 

cancer at the ages of 48 and 26, respectively.  His maternal aunt developed ovarian 

cancer in her 40s and her daughter was diagnosed with breast cancer at the age of 30.  

Figure 3.64 shows the pedigree.  Bloods for DNA extraction were available from the 

proband and his wife only. 

 
Figure 3.64: Pedigree showing the asymptomatic proband and his affected relatives 

 
II.2 is the proband, carrier of the 2bp deletion in exon 2 of the BRCA1 gene.  I.2, I.3 and II.4 
represent the proband’s affected mother, maternal aunt and cousin, respectively. 
 

3.3.3.2 Direct mutation detection using F-PCR 
A set of fluorescently labelled PCR primers (c.68_69delAG) flanking the 2bp deletion 

was designed for direct detection of the mutation using F-PCR (Figure 3.65).  These 

primers were initially used to confirm the mutation specified in the patient’s genetic 

report. 

 
Figure 3.65: Genomic DNA sequence of the BRCA1 gene (reference sequence L78833, 

residues 4441-4981) showing the primers designed for the c.68_69delAG mutation 

4441 acaaaaagca acttctagaa tctttaaaaa taaaggacgt tgtcattagt tctttggttt 
4501 gtattattct aaaaccttcc aaatcttaaa tttactttat tttaaaatga taaaatgaag 
4561 ttgtcatttt ataaaccttt taaaaagata tatatatatg tttttctaat gtgttaaagt 
4621 tcattggaac agaaagaaat ggatttatct gctcttcgcg ttgaagaagt acaaaatgtc 
4681 attaatgcta tgcagaaaat cttagagtgt cccatctggt aagtcagcac aagagtgtat 
4741 taatttggga ttcctatgat tatctcctat gcaaatgaac agaattgacc ttacatacta 
4801 gggaagaaaa gacatgtcta gtaagattag gctattgtaa ttgctgattt ccttaactga 
4861 agaactttaa aaatatagaa aatgattcct tgttctccat ccactctgcc tctcccactc 
4921 ctctcctttt caacacaaat cctgtggtcc gggaaagaca gggactctgt cttgattggt 

The sequence of exon 2 is shown in blue; the two bases at the deletion site are underlined. 
The forward and reverse primers are highlighted in yellow and green, respectively. 

I 
 
 

 
II 

1                2                   3                          4 

1                2                    3               4 

Exon 2 
4620-4718 
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After initial PCRs confirmed successful DNA extraction, the asymptomatic affected 

male and his partner’s DNAs were amplified at the mutation site and the products were 

assessed on the genetic analyzer (Figure 3.66).  Fragment length analysis allowed the 

detection of the mutation when an extra peak that was 2bp smaller than the normal 

allele size was present; this was indicative of a heterozygous carrier of the mutation.  

The results confirmed that the proband carried the c.68_69delAG mutation and that his 

wife was homozygous normal for that locus. 

 
Figure 3.66: ABI PrismTM panels showing detection of the BRCA1 c.68_69delAG mutation 

 

Fragment length analysis allowed the detection of the c.68_69delAG mutation when an extra 
peak (135bp), which was 2bp smaller than the normal allele size (137bp), was observed.  The 
proband was 135/137 heterozygous, indicative of a heterozygous carrier of the 2bp deletion, 
while his wife was homozygous normal (137bp allele only). 
 

 

3.3.3.3  Informativity tests 
Informativity tests were carried out on genomic DNA from the affected male and his 

partner.  Four linked and twelve unlinked STR markers were investigated using F-PCR 

followed by fragment length analysis on the ABI PrismTM (Table 3.28). 
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Table 3.28: Allele sizes for different STR markers identified for the couple undergoing PGD for 

the BRCA1 c.68_69delAG mutation 

Primer name STR marker location Female partner 
(bp) 

Male partner 
(proband) 
(bp) 

Informativity 

Linked STR markers 
D17S1338  17q21.31 179/189 177/179 Semi-informative 
D17S1185* 17q21.31 213 202/217 Informative 
D17S855 17q21.31; BRCA1 intron 11 153/160 153 Not informative 
D17S1343 17q21.31 155/158 155 Semi-informative 
Unlinked STR markers 
APOC2 19q13.32 152/155 150/152 Semi-informative 
DM 19q13.32 121 143/150  Not informative 
D19S112 19q13.32 124/132 124/127  Semi-informative 
D13S168  13q14.2 126/147 126/147 Not informative 
Rbivs20 13q14.2 172/184 164/172  Semi-informative 
IVS26-2.3 17q11.1 212 207/212 Not informative 
D17S1294* 17q11.2 244/248 252/256 Informative 
D17S841 17q11.1 262/264 264 Not informative 
D17S1800 17q11.1 271/276 274  Informative 
D2S119 2p21 219 219/221 Not informative 
D2S391 2p21 141 141 Not informative 
D2S2227 2p21 151/153 153/164  Semi-informative 

The affected individual is represented in italics.  Bold text signifies that the alleles are 
informative and underlined text indicates the phase allele.  The markers in blue are linked with 
the BRCA1 gene.  The asterisk denotes the markers that were selected for use in the multiplex 
PCR reaction. 
 

Amongst the linked markers tested, only D17S1185 was found to be informative for this 

couple and the female partner was homozygous.  Both the D17S1294 and D17S1800 

unlinked markers could be used as contamination markers.  However, as the male 

partner was homozygous for D17S1800, the fully informative D17S1294 was selected 

as the contamination marker.  This facilitated multiplex PCR optimisations as the 

affected male was heterozygous for the mutation and both selected markers: D17S1185 

and D17S1294. 
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3.3.3.4  Optimisation of PCR protocol 

3.3.3.4.1 Multiplex PCR optimisation using genomic DNA 

A triplex PCR was initially tested at the conditions listed in Table 3.29 to amplify two 

STR markers (D17S1185 and D17S1294) and the c.68_69delAG mutation loci.  These 

initial conditions were selected based on a previously optimised PCR protocol involving 

the same mutation primers and linked marker (D17S1185). 

 
Table 3.29: Summary of initial triplex PCR tested for the BRCA1 c.68_69delAG PGD protocol 

Reagent 
 

Mutation 
primers 

D17S1185 
primers 

D17S1294 
primers 

MgCl2 
 

10% 
glycerol Ta 

Concentration 0.2µM 0.2µM 0.2µM 1.5mM Yes 60ºC 

 

Fragment length analysis showed that the mutation and D17S1294 loci were amplified 

efficiently; however, the peaks for the linked marker D17S1185 were very low.  A split 

PCR was thus used to amplify the D17S1185 loci separately in the second round.  The 

same conditions were used in the fisrt round triplex reaction and the second round 

PCRs, except no glycerol was added to the singleplex (D17S1185) PCR.  This PCR 

protocol (Table 3.30) was tested on the couple’s genomic DNA and five single cells 

from the proband. 

 
Table 3.30: Summary of split PCR protocol tested on genomic DNA and 5 single cells 

Split PCR 
 

Mutation 
primers 

D17S1294 
primers 

D17S1185 
primers 

[MgCl2] 
 

10% glycerol 
 

Ta 
 

Round 1 0.2µM 0.2µM 0.2µM 1.5mM Yes 60ºC 

Round 2 a 0.2µM 0.2µM - 1.5mM Yes 60ºC 

Round 2 b - - 0.2µM 1.5mm No 60ºC 

AE 5/5 2/5 0/5    

ADO 1/5  0/2 -    

AE: amplification efficiency; ADO: allele dropout 

 

Amplification was efficient at all loci from genomic DNAs; however, only the mutation 

locus had amplified efficiently from single cells and ADO of the normal allele (137bp) 

was seen for one cell. 
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3.3.3.4.2 Multiplex PCR optimisation for single cells 

In order to improve the amplification efficiencies (AE) for the two STR markers, the 

concentration of these primers was increased to 0.3µM in the first round PCR, while 

keeping the mutation primers at 0.2µM.  Additionally, the concentration of D17S1294 

primers was increased to 0.4µM in the second round duplex PCR (mutation + 

D17S1294).  The modified PCR protocol (Table 3.31) was tested on the couple’s 

genomic DNA and five single cells from the proband.  This improved AE for 

D17S1294, however, the D17S1185 loci still failed to amplify from single cells. 

 
Table 3.31: Summary of split PCR protocol tested on genomic DNA and 5 single cells 

Split PCR 
 

Mutation 
primers 

D17S1294 
primers 

D17S1185 
primers 

[MgCl2] 
 

10% glycerol 
 

Ta 
 

Round 1 0.2µM 0.3µM 0.3µM 1.5mM Yes 60ºC 

Round 2 a 0.2µM 0.4µM - 1.5mM Yes 60ºC 

Round 2 b - - 0.2µM 1.5mm No 60ºC 

AE 5/5 5/5 0/5    

ADO 0% 0% -    

AE: amplification efficiency; ADO: allele dropout 

 

A magnesium/temperature gradient PCR was set up to assess the amplification 

efficiencies with 1.5, 2.0 and 2.5mM MgCl2 at annealing temperatures of 58, 60 and 

62ºC for the first round triplex reaction using genomic DNA.  All reagents 

concentrations (other than MgCl2) were kept the same (Table 3.32).  Analysis on the 

ABI Prism and on a 2% agarose gel (Figure 3.67) showed that the best conditions for all 

loci were 1.5mM MgCl2 and Ta=60ºC (initial conditions) and 2.5mM MgCl2 with 

Ta=58ºC, particularly for D17S1185. 

 
Table 3.32: Optimisation of first round triplex PCR using genomic DNA 
PCR 
conditions 

Mutation 
primers 

D17S1294 
primers 

D17S1185 
primers 

[MgCl2] 
 

10% glycerol 
 

Ta 
 

A1 0.2µM 0.3µM 0.3µM 1.5mM Yes 58ºC 
A2 0.2µM 0.3µM 0.3µM 1.5mM Yes 60ºC 
A3 0.2µM 0.3µM 0.3µM 1.5mM Yes 62ºC 
B1 0.2µM 0.3µM 0.3µM 2.0mM Yes 58ºC 
B2 0.2µM 0.3µM 0.3µM 2.0mM Yes 60ºC 
B3 0.2µM 0.3µM 0.3µM 2.0mM Yes 62ºC 
C1 0.2µM 0.3µM 0.3µM 2.5mM Yes 58ºC 
C2 0.2µM 0.3µM 0.3µM 2.5mM Yes 60ºC 
C3 0.2µM 0.3µM 0.3µM 2.5mm Yes 62ºC 
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Figure 3.67: 2% agarose gel (run at 70V) showing products of first round triplex PCR amplified 

at the conditions listed in table 3.32 

 
L: 1Kb ladder; -ve: negative control; Expected product sizes: 135/137bp for the mutation, ~ 200-
220bp for D17S1185 and ~ 250-260bp for D17S1294 
Three replicates representing amplified genomic DNA from the proband, his wife and a control 
(in this order) were run for each protocol tested.  Based on the band intensities observed on the 
gel, procols A1, B1 and C1, which had Ta=58ºC, gave the best results.  A1 and B1 gave similar 
amplifications at all loci; however, protocol C1 seemed to favour amplification of the D17S1294 
loci, which gives the larger product. 
 

The first and second round split PCRs were set up with 2.5mM MgCl2 and Ta=58ºC 

(Table 3.33).  Results from 10 single lymphocytes (five from each partner) showed 

100% AE and 0% ADO for all three loci.  Nonetheless, amplification levels were still 

much lower for the D17S1185 marker. 

 
Table 3.33: Summary of split PCR protocol tested on 10 single cells 

Split PCR 
 

Mutation 
primers 

D17S1294 
primers 

D17S1185 
primers 

[MgCl2] 
 

10% glycerol 
 

Ta 
 

Round 1 0.2µM 0.3µM 0.3µM 2.5mM Yes 58ºC 

Round 2 a 0.2µM 0.4µM - 2.5mM Yes 58ºC 

Round 2 b - - 0.2µM 2.5mm No 58ºC 

AE 10/10 10/10 10/10    

ADO 0%  0% 0%    

Comment   Weak 
amplification    

AE: amplification efficiency; ADO: allele dropout 
Low peaks were observed on the ABI PrismTM when amplification was weak. 
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The second round singleplex PCR was optimised by increasing the primer concentration 

to 0.3µM and comparing AE at two annealing temperatures: 58 and 60ºC (Table 3.34).  

Greater amplification levels were obtained for 60ºC annealing temperature. 

 
Table 3.34: Optimisation of the second round of split PCR protocol tested on 10 single cells 

Split PCR 
 

Mutation 
primers 

D17S1294 
primers 

D17S1185 
primers 

[MgCl2] 
 

10% glycerol 
 

Ta 
 

Round 1 0.2µM 0.3µM 0.3µM 2.5mM Yes 58ºC 

Round 2 b (i) - - 0.3µM 2.5mm No 58ºC 

Round 2 b (ii) - - 0.3µM 2.5mm No 60ºC 
 

D17S1294 AE ADO Comment 
Round 2 
Ta=58ºC 10/10 0% Weaker amplification 

(lower peaks on ABI PrismTM) 
Round 2 
Ta=60ºC 10/10  0% Greater amplification 

(higher peaks on ABI PrismTM) 

AE: amplification efficiency; ADO: allele dropout 
 

 

These conditions were used in the final PGD protocol, which is summarised in Table 

3.35. 

 
Table 3.35: Summary of optimised split PCR protocol for the BRCA1 c.68_69delAG mutation 

Split PCR 
 

Mutation 
primers 

D17S1294 
primers 

D17S1185 
primers 

[MgCl2] 
 

10% glycerol 
 

Ta 
 

Round 1 0.2µM 0.3µM 0.3µM 2.5mM Yes 58ºC 

Round 2 a 0.2µM 0.4µM - 2.5mM Yes 58ºC 

Round 2 b - - 0.3µM 2.5mm No 60ºC 

Fragment length analysis of all amplified products was carried out on the ABI genetic analyzer. 
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3.3.3.5  Final assessment of PGD protocol 
The optimised protocol, shown in Table 3.35, was assessed on 50 lymphocytes that 

were heterozygous for all loci including the mutation (Figure 3.68).  The lymphocytes 

were isolated from the affected male partner’s blood.  The outcome is summarised in 

Table 3.36. 

 
Figure 3.68: Analysis of F-PCR products from single cells obtained with the final PGD protocol: 

Triplex fluorescent PCR in two rounds of amplification 

a) Genetic analyzer panels showing the products of round 2 duplex PCR: BRCA1 mutation + 

D17S1294 contamination marker 

 
 

b) Genetic analyzer panels showing the products of round 2 PCR: D17S1185 linked marker 

 
N.B.: The 168bp peak was constantly observed in all samples amplified with the D17S1185 
primers and it was ignored during sizing of alleles. 
 
  

Round 2: Duplex 
Proband 
(male) 

Round 2: Duplex 
Unaffected partner 
(female) 

135 137 

137 

252 256 

244 248 

BRCA1 c.68_69delAG 

 

D17S1294 

Round 2: D17S1185 
Proband 
(male) 

Round 2: D17S1185 
Unaffected partner 
(female) 

213 

 

202 
217 
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Table 3.36: Assessment of triplex PCR developed for PGD of the BRCA1 c.68_69delAG 

mutation from 50 heterozygous and 10 homozygous lymphocytes 

Loci 
 

BRCA1 c .68_69delAG 
mutation 

D17S1294 
unlinked marker 

D17S1185 
linked marker 

AE 98% (49/50) 96% (48/50) 90% (45/50) 

ADO 2% (1/49) 0% (0/48) 9% (4/45) 

F.N.  0% (0/45) 

F.P. 0% (0/10) 

AE: amplification efficiency; ADO: allele dropout; F.N.: false negative; 
F.P.: false positive 

The expected F.N. and F.P. rates for diagnosis based on two cells are equal  
to (F.N.)2 and (F.P.)2; both were 0% (0×0) for this protocol. 

 

This protocol was licensed for treatment by the HFEA and was clinically applied. 

 

 

3.3.3.6 PGD treatment cycle 
Thirteen oocytes were collected and 11 fertilised after ICSI.  Two blastomeres were 

biopsied from each of the 11 embryos.  Three cells were collected from embryo number 

11 as two cells came out together during biopsy of the second cell.  The individual 

blastomeres were tubed in alkaline lysis buffer (ALB) and transported back to the UCL 

Centre for PGD laboratory (on a cold rack) for analysis using the PCR protocol 

described in Table 3.35.  The results are presented in Table 3.37. 
 

Five embryos were found to be ‘normal’ (i.e. free from the BRCA1 c.68_69delAG 

mutation) based on the alleles observed for all three markers in two/three cells.  Five 

embryos were found to be ‘affected’ with increased cancer risk (i.e. carrying the BRCA1 

c.68_69delAG mutation); diagnosis was based on a single cell for three of these 

embryos (3, 5 and 9). 
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Table 3.37: Results of the clinical PGD cycle for the BRCA1 c.68_69delAG mutation 

Embryo 
number 

c.68_69delAG 
mutation 

D17S1185 
linked 

D17S1294 
unlinked 

Diagnosis 
 

Basis of diagnosis 
 

1 135/- (ADO) 
135/137 

213/217 
213/217 

248/252 
248/252 Non transferable 2 cells affected 

2 137/137 
137/137 

202/213 
202/213 

248/252 
248/252 Transferable 2 cells normal 

3 (ADO) -/137 
- 

213/217 
- 

248/252 
- Non transferable one cell affected 

no result from other 

4 137/137 
137/137 

202/213 
202/213 

244/256 
244/256 Transferable 2 cells normal 

5 135/137 
- 

213/217 
- 

248/252 
- Non transferable one cell affected 

no result from other 

6 137/137 
137/137 

202/213 
202/213 

248/256 
248/256 Transferable 2 cells normal 

7 137/- 
137/- 

-/213 
202/- 

248/- 
-/256 Non transferable 2 cells inconclusive 

8 135/137 
135/137 

213/217 
213/217 

244/252 
244/252 

Non transferable 2 cells affected 

9 135/137 
- 

213/217 
- 

244/252 
- Non transferable one cell affected 

no result from other 

10 137/137 
137/137 

202/213 
202/213 

248/256 
248/256 Transferable 2 cells normal 

11 
137/137 
137/137 
137/137 

202/213 
202/213 
202/213 

244/256 
244/256 
244/256 

Transferable 3 cells normal 

Maternal alleles are shown in red and paternal alleles in blue.  Detection of the 135bp mutation 
allele indicated that the blastomere/embryo carries the 2bp deletion and is thus ‘affected’ with 
increased cancer risk.  The mutation was in phase with the 252bp allele for the D17S1294 
marker.  Transferable embryos are displayed in bold text. 
 

The diagnosed cell from embryo 3 showed paternal phase alleles and was noted as a 

binucleate at time of biopsy.  The cell from embryo 9 that did not give any results was 

very fragmented and micronuclei were seen.  The results were inconclusive for embryo 

number 7 as both cells appeared to be haploid.  One cell showed maternal alleles only 

and the other cell showed paternal alleles only.  At the time of biopsy, it was noted that 

the second cell from embryo 7 was a binucleate. 

 

A maximum of two embryos can be transferred to the patient’s uterus.  Selection of the 

embryos to transfer among the five diagnosed as ‘normal’ (embryos 2, 4, 6, 10 and 11) 

was based on morphology and growth rate.  Table 3.38 summarises the status of the 11 

embryos on days 3 and 5 post fertilisation. 
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Table 3.38: Description of the 11 embryos from the clinical PGD cycle for the BRCA1 

c.68_69delAG mutation on days 3 and 5 post fertilisation 

Embryo Day3 Day 5 Diagnosis Embryo fate 

number stage & grade stage & grade  

1 11 cells 1- morula Affected research 

2 7 cells 2+ cavitating morula Unaffected cryopreserved 

3 6 cells 2+/2 vacuolated embryo 
with disintegrating cells Affected research 

4 8 cells 1- hatching blastocyst Unaffected cryopreserved 

5 8 cells 1-/2+ 6 cells           Affected research 

6 8 cells 1- hatching blastocyst Unaffected transferred 

7 7/8 cells 2+ 5 cells          2 Affected research 

8 8 cells 1-/2+ 6 cells          3 Affected research 

9 8 cells 2 4 cells          2+/2          Affected research 

10 8 cells 1- hatching blastocyst Unaffected transferred 

11 8 cells 1- fragmented morula Unaffected research 

The ‘normal’/transferable embryos are displayed in bold text. 

 

Among the five transferable embryos, embryos 4, 6 and 10 were hatching blastocysts by 

day 5.  Embryos 6 and 10 were selected for transfer.  Embryos 2 (cavitating morula) and 

4 were vitrified for possible future transfers for this couple.  Embryo 11, which was a 

fragmented morula, was donated for research.  All ‘affected’ embryos appeared to have 

slower or arrested growth between day 3 and day 5 compared to ‘unaffected’ embryos.  

The spare embryos were collected in RNasin solution for research after blastomeres 

were tubed for confirmation of diagnosis. 

 

This PGD cycle resulted in the birth of a healthy singleton.  This was the first baby to be 

born in the UK after PGD treatment for a BRCA1 mutation. 
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3.3.4  Summary of PGD workups 
PGD protocols were developed and optimized for two BRCA1 mutations (c.3339T>G 

and c.68-69delAG) and one MSH2 mutation (c.1277-?_1386+?del). 

 

MSH2 c.1277-?_1386+?del  mutation 

- The developed PGD protocol involved F-PCR fragment length analysis for two 

linked semi-informative STR markers (D2S2227 and D2S119) and a fully 

informative contamination marker (APOC2) as well as mini-sequencing for a 

semi-informative SNP (rs1981929). 

- This protocol was licensed for treatment by the HFEA but did reach clinical 

application due to funding issues. 

- This protocol may be used (or adjusted) for future couples seeking treatment for 

the same condition. 

 

BRCA1 c.3339T>G mutation: 

- The developed PGD protocol involved F-PCR fragment length analysis for one 

linked (D17S1338) and one unlinked (D13S168) informative STR markers as 

well as direct mutation detection on SSCP. 

- The protocol was authorized for treatment by the HFEA but was not clinically 

applied as the female partner, who had no known family history of breast or 

ovarian cancer, was diagnosed with breast cancer and had to undergo treatment. 

 

BRCA1 c.68-69delAG mutation: 

- The developed PGD protocol involved F-PCR fragment length analysis for the 

mutation and two informative STR markers (one linked, D17S1185, and one 

unlinked, D17S1294).  

- The protocol was authorized for treatment by the HFEA and was clinically 

applied, resulting in the birth of a healthy singleton.  

- The ‘affected’ embryos obtained from this PGD cycle showed slower growth 

between day 3 and day 5 post fertilisation compared to unaffected embryos. 
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4 DISCUSSION 
4.1 Expression analysis of DNA repair genes in human oocytes 
and embryos using microarrays 
The first aim of this project was to obtain an expression profile of DNA repair genes in 

human MII oocytes and in vitro derived blastocysts using microarrays in order to 

investigate two hypotheses: 1) the human oocyte expresses most DNA repair genes to 

support the early preimplantation embryo and limit DNA damage prior to embryonic 

genome activation; 2) the expression profile of DNA repair genes in the blastocyst may 

be different to oocytes due to the high rate of replication and the onset of differentiation. 

 
4.1.1   General expression analysis 
 The RNA samples extracted from three sets of blastocysts and three sets of oocytes 

were successfully amplified, hybridised on the microarrays and scanned for analysis.  

The distinct expression profiles observed using hierarchical clustering (Figure 3.3) and 

by examining the number of genes expressed at high, medium and low levels (section 

2.6.1.2) for each individual chromosome (Figure 3.4) showed that a greater number of 

genes were expressed at high levels in the blastocyst group compared to the oocyte 

group.  The proportions of transcripts that were expressed at high levels were 25.5% 

(2,989/11,734) and 34.1% (4,471/13,118) in the MII oocytes and blastocysts, 

respectively.  The investigation of the numbers of genes expressed on each chromosome 

allowed further assessment of the hybridisation of our samples on the arrays.  Global 

gene expression analysis across chromosomes may allow the determination of relative 

expression patterns that are characteristic of tissue type and possibly stage of 

preimplantation development. 

 
A large number of genes was expressed at higher levels in blastocysts compared to 

oocytes.  Eleven out of the 12 commonly selected housekeeping genes investigated 

were detected in both oocytes and blastocysts and five out of the eight differentially 

expressed genes (63%) showed a greater than three fold increase in blastocysts 

compared to oocytes.  This observation remained consistent when a larger number of 

genes were investigated.  Analysis of 560 housekeeping genes conducted by Dr Georgia 

Kakourou using data obtained from the same samples revealed that 211 genes were 

differentially expressed (p<0.05) and 155/211 (73%) had greater expression levels in 

blastocysts compared to oocytes. 
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The in vitro culture of oocytes and embryos can affect mRNA transcript levels.  The 

effect is largely dependent on the culture medium and conditions of incubation (Rizos et 

al., 2002; Watson et al., 2000; Wrenzycki et al., 2001).  Several studies have shown that 

in vitro culture influences the expression of developmentally important genes in 

mammalian MII oocytes (Katz-Jaffe et al., 2005b; Lonergan et al., 2003a) and 

blastocysts (Fernandez-Gonzalez et al., 2009; Lonergan et al., 2003b; Natale et al., 

2001) leading to increased apoptosis and a reduced number of cells compared to in vivo 

derived embryos (Chandrakanthan et al., 2006). 

 

Microarray analysis of in vivo and in vitro produced bovine blastocysts demonstrated 

that the extent of the change in expression levels for most of the genes was small and 

most differentially expressed genes were up-regulated under in vitro culture conditions 

(Fernandez-Gonzalez et al., 2009).  The up-regulation of the genome expression in 

vitro, which suggests loss of the epigenetic mark (Fernandez-Gonzalez et al., 2009), 

agrees with the ‘quiet embryo’ hypothesis (Leese, 2002) that suggests that embryos 

exhibit increased cellular metabolic activity under stress. 

 

Katz-Jaffe et al. (2009) compared the expression patterns of in vivo and in vitro matured 

(in special media for over 20 hours) bovine oocytes.  Out of approximately 12,000 

genes investigated, 10 genes affecting mainly imprinting were found to be differentially 

expressed (Katz-Jaffe et al., 2009).  The MII oocytes used in our study were kept in 

culture for 4 hours.  Therefore, the influence of culture on the mRNA transcript levels is 

expected to be considerably smaller than that of in vitro maturation.  The availability of 

human oocytes that are optimal for clinical use is severely limited and the use of 

oocytes with delayed maturation, like the ones used in this study, may overcome some 

of the effects reported in studies that have used in vitro matured oocytes. 

 

Freezing and thawing of the blastocysts used in this study may have affected mRNA 

transcript levels.  There is little evidence showing the effect of freezing on expression in 

mammalian blastocysts.  One study showed that thawed vitrified bovine blastocysts 

exhibit increased fragmentation rates and higher expression levels of apoptosis related 

genes (survivin, Fas, Caspase-3, and Hsp70) compared to non-frozen embryos (Park et 

al., 2006).  Additionally, an increased incidence of chromosomally chaotic embryos was 

observed among frozen-thawed human blastocysts assessed after they had undergone 

cell divisions compared to immediately after thawing (Salumets et al., 2004). 
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4.1.2   Expression of DNA repair genes in MII oocytes and blastocysts 
All DNA repair pathways were represented in human MII oocytes and blastocysts and 

distinct expression patterns were observed for the two groups.  While most differentially 

expressed genes had higher expression levels in the blastocyst compared to the oocyte, 

most differentially expressed DNA repair genes (73%) were detected in lower levels in 

the blastocyst compared to the oocyte.  This may be because the oocyte must have 

sufficient mRNA templates to support genome integrity until embryonic genome 

activation (EGA). 

 

4.1.2.1  Base excision repair (BER) 
UNG, APEX1 and POLB mRNAs were detected at high levels in both human oocytes 

and blastocysts.  This agrees with microarray data from another group reporting that 

UNG, APEX1 and POLB are highly expressed in human oocytes at the GV stage 

(Menezo et al., 2007) given that the mRNA content in the oocyte does not change 

between the GV and the MII stage as there is no transcription at the final stages of 

oocyte maturation (El Mouatassim et al., 1999).  Degradation of some mRNA 

transcripts may occur, which may explain the lower number of transcripts picked up in 

MII oocytes versus GVs (Wells and Patrizio, 2008).  El-Mouatassim et al. (2007) 

detected APEX1 expression in human GV oocytes, 2-cell embryos, morulas and 

blastocysts and in lower levels in the MII oocytes using real-time PCR analysis.  Our 

data showed that OGG1 mRNA was detected at medium levels in the MII oocytes and 

low levels in the blastocysts; Menezo et al. (2007) also detected medium expression 

levels of OGG1 in human GV oocytes.  The low expression levels of OGG1 mRNA in 

the blastocyst may indicate that despite the high levels of APEX1 mRNA, and POLB 

(which plays other key roles in the cell), BER of 8-oxoguanine residues is probably not 

as important in the blastocyst as it is in the oocyte.  In mouse embryos the expression of 

most BER genes were detected, however OGG1 and UNG mRNAs were not detected at 

the morula and blastocyst stages (Zheng et al., 2005).  Maynard et al. (2008) suggested 

that the lower levels of 8-oxoguanine in human embryonic stem cells (hESCs) 

compared to differentiated cells indicated a greater OGG1 repair efficiency in hESCs; 

however, OGG1 mRNA levels detected by microarrays were not significantly higher 

and OGG1 incision activity using a functional assay showed similar levels of activity in 

extracts from hESCs and differentiated cells (Maynard et al., 2008). 
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One possible explanation proposed by Maynard et al. was that hESCs possess higher 

antioxidant activity, which leads to slower buildup of 8-oxoguanine lesions.  Lower 

levels of ROS were shown to be maintained in mouse and human ESC due to higher 

expression of major antioxidant genes (such as thioredoxin and glutathione reductase 

and Mn-superoxide dismutase) (Saretzki et al., 2004; Saretzki et al., 2008).  The mRNA 

expression of genes coding for four enzymes involved in the protection against free 

radicals (Cu-Zn-superoxide dismutase (Cu-Zn-SOD or SOD1), Mn-superoxide 

dismutase (Mn-SOD or SOD2), glutathione peroxidase (GPX) an d γ-glutamylcysteine 

synthetase (GCS)) was detected in mouse GV and MII oocytes. 

 

Using reverse-transcriptase PCR, all four enzymes were found to be expressed in human 

oocytes at the MII stage with particularly high levels for SOD1 but not all were detected 

at the GV stage due to maturation-specific polyadenylation of transcripts (El 

Mouatassim et al., 1999).  Our results showed that SOD1, SOD2 and GPX were highly 

expressed in human MII oocytes and blastocysts.  GCS, however, was not detected in 

MII oocytes and had low expression levels in blastocysts. 

 

4.1.2.2  Double Strand Break Repair (DSBR) 
DSBR via the HR pathway seems to be predominantly active in MII oocytes and 

blastocysts, with NHEJ acting as a backup pathway in the blastocysts.  This is expected 

for the oocytes, since HR is active during M phase, and for the blastocysts, since HR 

has greater fidelity of DNA repair than NHEJ and thus may be the preferred mechanism 

for DSBR.  The short G1 and G2 phases in rapidly dividing blastomeres support the 

assumption that HR is the dominant DSBR mechanism in the blastocyst.  Both HR and 

NHEJ were shown to be active in the mouse zygotes; HR being more active in the male 

pronucleus (Derijck et al., 2008).  NHEJ acts as a backup pathway whenever HR is 

difficult.  This could be important in MII oocytes when DSBs occur at highly repetitive 

sequences which make homology searches difficult and HR can result in translocations 

(Agarwal et al., 2006). 
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HR repair in mammalian cells is highly dependent on the MRE11A-RAD50-NBS1 

(MRN) complex, which binds DNA, and on the exonuclease EXO1.  The expression 

levels of MRE11A, RAD50, NBS1 and EXO1 mRNAs indicated that DSBR via HR may 

be more important in human MII oocytes than in blastocysts. 

 

Initiation of HR involves DNA end binding by RAD52, which competes with KU to 

direct DSBR toward HR rather than NHEJ (Bassing and Alt, 2004; Van Dyck et al., 

1999).  RAD52 was highly expressed in MII oocytes and blastocysts.  The interaction of 

BRCA2 with RAD51 also activates repair using HR (via the cyclin-dependent kinase 

(CDK) regulatory pathway). RAD51 was expressed at high levels in both groups, 

however, BRCA2 was only detected in the MII oocytes (medium level).  BRCA2 

expression was previously detected in human GV oocytes at medium levels (Menezo et 

al., 2007) and in human MII oocytes with lower levels in  preimplantation embryos 

(increasing from 2-cell to the blastocyst stage) (Wells et al., 2005b). 

 

The interaction of FANCD2 or FANCI with BRCA1 also triggers HR via ATR (Ataxia 

telangiectasia and RAD3 related) regulation.  FANCD2 mRNA expression levels were 

significantly higher in the blastocyst versus the oocyte group (Table 3.5).  BRCA1 

mRNA expression was detected at medium levels in the blastocysts but was not 

detected in MII oocytes.  This is contrary to data by Menezo et al. (2007), where 

BRCA1 was shown to be expressed at high levels in human GV oocytes, and previous 

studies revealed that BRCA1 was expressed in human MII oocytes at higher levels than 

in blastocysts (Wells et al., 2005b).  BRCA1 mRNA expression was actually detected 

with medium signal in only one out of the three replicates; the other two had S.N. ratios 

<3.  Further investigation with real-time PCR will be necessary to determine the 

expression of BRCA1 in human MII oocytes.  Activation of the HR pathway via ATR 

involves the MRN complex and BRCA1 as well as 53BP1, MDC1 and later on CHEK1 

or CHEK2 (Lobrich and Jeggo, 2007).  mRNA templates for ATR, 53BP1, MDC1 and 

CHEK1 were detected in human MII oocytes and blastocysts; this suggests that this 

pathway may be active in both groups. 
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During S phase, NHEJ and HR proteins can compete over binding of DSBs.  It has been 

suggested that RAD18 and PARP1 may suppress the DNA binding of KU proteins in 

favour of HR (Saberi et al., 2007).  PARP1 showed higher mRNA expression levels in 

blastocyts versus oocytes (although not statistically significant) and RAD18 mRNA was 

only detected in the blastocysts.  RBBP8 (CtIP) is necessary for repair of DSBs by HR 

in S/G2 cells and requires the recruitment of BRCA1 (Yun and Hiom, 2009).  RBBP8 

had significantly higher mRNA expression levels in MII oocytes versus blastocysts.  

The main activation processes of DSBR via HR may be different in the blastocyst and 

oocyte, which would explain the differences in expression levels of various genes. 

 

4.1.2.3  Mismatch Repair (MMR) 
MMR is the main DNA repair pathway active post DNA replication (G2/M checkpoint). 

Our data showed that MSH2 and MSH6 were both highly expressed in human MII 

oocytes and blastocysts.  Elevated MSH2 and MSH6 expression levels have been 

reported in GV oocytes and it was hypothesised that 8-oxo nucleotides are removed via 

the MMR pathway rather than the more common OOG1 pathway (Menezo et al., 2007).  

High levels of MSH2 can result in one of two vital functions, leading the cell to repair 

its DNA or to undergo apoptosis (DeWeese et al., 1998).  Significantly higher levels of 

MSH2 were detected in mouse embryonic stem cells (mESCs) compared to 

differentiated cells (Roos et al., 2007).  Additionally, MSH2 seems to be particularly 

important in embryonic stem cells, reducing mutation levels and preventing the 

accumulation of errors, through its possibly more critical role in promoting apoptosis in 

response to stress (Tichy and Stambrook, 2008). 

 
Previous studies reported that all key MMR genes are expressed in rhesus monkey 

oocytes and embryos (Zheng et al., 2005).  However, MMR may be compromised in the 

rhesus monkey preimplantation embryos after activation of its genome and thus in the 

blastocyst due to the over-expression of MSH3 in comparison to MSH6 and PMS2, as 

well as the lower expression of MLH1 (Zheng et al., 2005).  High expression of MSH3, 

relative to MSH2 and MSH6, can reduce the formation of the MutSα complex by 

sequestering MSH2 and degrading MSH6 (Marra et al., 1998). 
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The concentration of MutSα needs to exceed that of MutSβ to ensure efficient single 

base mismatch repair in human cells, however, relatively low physiological 

concentration of MutSα are sufficient for efficient repair of insertion/deletion loops 

(IDLs) (Drummond et al., 1997; Zhang et al., 2005).  The lower expression levels of 

MSH3 relative to MSH2 and MSH6 in human MII oocytes and blastocysts demonstrated 

that MMR is potentially efficient for single base mismatches and IDLs. 

 

MSH2, MSH3, and PMS1 were expressed at significantly higher levels in the human 

MII oocytes versus the blastocysts (Table 3.4). This may indicate that while MMR 

activity may be important in the human blastocyst, it is of greater significance for the 

oocyte and early preimplantation embryo that avoid apoptosis as cell death at these 

stages reduces the chances of survival of the embryo. 

 

Recognition of mismatched DNA may lead to activation of apoptosis in the blastocyst.  

In fact, apoptosis is commonly observed in some cells at the late cleavage or blastocyst 

stages while there is no indication of apoptosis in the normally developing human 

embryo prior to compaction (Antczak and van Blerkom, 1999; Haouzi et al., 2008; 

Hardy, 1999).  Embryos seem to require a ‘moderate level’ of apoptosis for normal 

development possibly to regulate the cell number and prevent overgrowth of 

particularly the inner cell mass (Hardy et al., 2003). 

 

Our data showed that the anti-apoptotic genes BCL-2 and BCL-W were both expressed 

at low levels in MII oocytes and blastocysts and BCL-XL was not detected in either 

group.  The pro-apoptotic genes BAX and BAK were expressed at low and medium 

levels in MII oocytes and blastocysts, respectively.  BAD (another pro-apoptotic gene 

from the BCL-2 family) was only detected in the blastocysts.  Previous studies focusing 

on genes in the BCL-2 family demonstrated that the anti-apoptotic genes Bcl-2, Bcl-w 

and Bcl-x were expressed at all stages of development in the mouse from GVs to 

blastocysts while the pro-apoptotic genes Bax and Bad were found to be expressed at 

low levels in oocytes (with higher mRNA levels in GVs versus MII oocytes) and 

expression of both genes increased in the embryo steadily up to the blastocyst stage 

(Jurisicova et al., 1998). 
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The expression of most genes belonging to the BCL-2 family has been confirmed 

(Metcalfe et al., 2004; Warner et al., 1998).  Only BAX seems to be constitutively 

expressed while the others have different expression levels throughout development 

with contradictory patterns reported in the literature (Haouzi et al., 2008; Metcalfe et 

al., 2004; Warner et al., 1998).  A recent study investigated the expression of Bax and 

Bcl-2 in immature bovine oocytes using real time RT-PCR and revealed that early 

apoptosis is indicative of the oocyte’s developmental competence (Li et al., 2009). 

 

4.1.2.4  Nucleotide Excision Repair (NER) 
The oocyte seems to have the necessary mRNA transcripts for NER.  Genes involved in 

the transcription-coupled repair pathway (TCR), ERCC6 (CSB), GTF2H1,2 & 5 and 

MMS19L, had medium or high mRNA expression levels in the human MII oocyte.  

These TCR genes were found to be highly expressed in the human GV oocytes (Menezo 

et al., 2007).  Although there is no transcription before the 4-cell stage (Braude et al., 

1988; Telford et al., 1990), the mRNA transcripts laid down for the TCR proteins may 

be translated and used in the preimplantaion embryo when it begins its own 

transcription processes.   

 
As NER is active during the G1 phase of the cell cycle, the mRNA templates found in 

the oocytes are most likely solely stored for translation and used by the early 

preimplantation embryo.  The G1 phase is also short in the rapidly dividing cells of the 

blastocyst; this may mean that NER is rather limited in these cells as well.  In fact, the 

levels of expression of most NER genes were lower in the blastocyst compared to the 

oocyte. 

 

4.1.2.5  Other DNA repair pathways 
The post-replication repair genes UBE2A had significantly higher expression levels in 

human MII oocytes compared to blastocysts, respectively.  UBE2B had lower 

expression levels in oocytes versus blastocysts but the differences in expression levels 

were not significant.  Data from other studies on Rhesus monkey oocytes and embryos 

also showed that UBE2A was mostly expressed as a maternal mRNA and was 

progressively down-regulated during blastocyst formation, whereas, UBE2B mRNA 

levels increased gradually after the 8-cell stage (Zheng et al., 2005). 
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4.1.3  Conclusion of DNA repair gene expression from microarray analysis 
The expression patterns detected in the oocytes used in this study could be influenced 

by a variety of factors, including stimulation protocols and culture conditions.  For the 

blastocysts, the effects of cryopreservation also need to be considered.  Despite any 

changes in gene expression that may have occurred, it seems that all DNA repair 

pathways are potentially functional in human MII oocytes and blastocysts, as a large 

number of DNA repair genes involved in different repair pathways are expressed at 

these stages. 

 

Expression levels of DNA repair genes in human MII oocytes and blastocysts suggest 

differences in DNA repair mechanisms pre and post EGA.  Investigation of the BER 

pathway indicated greater protection against free radicals pre EGA versus post EGA.  

The main pathway for DSBR appears to be HR but the activation of the pathway may 

be different between the blastocyst and the oocyte.  Expression of the MMR genes in 

MII oocytes indicates that the pathway is directed towards repair rather than apoptosis.  

In blastocysts, however, MMR genes were expressed at significantly lower levels than 

in MII oocytes while the pro-apoptotic genes were expressed at higher levels.  The 

oocyte has all the mRNA transcripts required for NER; however, post EGA, the role of 

this pathway may be limited as the levels of expression of most NER genes were lower 

in the blastocyst compared to the oocyte.  This is expected, as the G1 phase is short in 

the cells of the blastocyst. 
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4.2  Development of a cell free in vitro functional assay for IDL 
and mismatch repair 
The second aim of this project was to develop an in vitro functional assay for 

insertion/deletion loop (IDL) and mismatch repair that was more sensitive than 

available assays and could be applied to cell-free extracts from a limited number of 

human oocytes or embryos. 

 

4.2.1  Formation of heteroduplex DNA constructs with IDLs and G.T or A.C 
mismatches 

4.2.1.1 Design of DNA templates  

4.2.1.1.1 DNA constructs containing insertion/deletion loops (IDLs) 

DNA insertion/deletion loops (IDLs) can range in size from one to thousands of 

nucleotides.  Loops that are smaller than 20 nucleotides are mostly formed during DNA 

replication at repeat sequences and larger loops are created during recombination events 

(Henderson and Petes, 1992; McCulloch et al., 2003b; Strand et al., 1993).  Repair of 

IDLs can be mismatch repair dependent or independent, depending on the size of the 

loop.  DNA loops that are up to 16 nucleotides in size are processed by MMR 

dependent and independent pathways; however, IDLs that are greater than 16 

nucleotides in size are repaired by MMR independent pathways only (McCulloch et al., 

2003a). 

 

The PCR based strategy used for the formation of heteroduplex DNA constructs 

containing insertion/deletion loops (IDLs) relied on the variable allele sizes at the 

DMPK triplet repeat, which made it possible to generate DNA constructs with different 

IDL sizes.  The DMPK (CTG)n repeat is particularly interesting because it is 

characterised by intergenerational instability that can take place in the oocyte and/or 

early embryo, however, the mechanism of expansion is still unknown (Savouret et al., 

2003).  The efficiencies of loop recognition by the MMR complexes (MutSα and 

MutSβ) vary according to the size of the loop and the extrahelical nucleotides and their 

flanking sequences (Marti et al., 2002; Palombo et al., 1996).  For example, 2 to 4-

nucleotide IDLs are preferentially detected by MutSβ; however the GT IDL can be 

preferentially bound by MutSα in a specific sequence context (Palombo et al., 1996). 
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Three homozygous samples, with allele sizes of 122, 143 and 146, were used to form 

heteroduplex DNA contructs with 3, 21 and 24-nucleotide (nt) IDLs.  The sizes of the 

IDLs were selected deliberately to include loops that are smaller and greater than 16 

nucleotides in size, in order to assess IDL repair that is dependent or independent of 

MMR proteins.  Additionally, the single CTG insertion (3-nt IDL) was of fundamental 

interest as understanding its recognition and repair efficiencies by the MMR machinery 

could shed light on the instability of the DMPK repeat during human preimplantation 

development.  It was possible to create heteroduplexes with IDLs of various sizes by 

simply changing the homozygous samples used. 

 

4.2.1.1.2 DNA constructs containing a G.T or A.C mismatch 

The G.T mismatch was selected as the main base-base mismatch substrate because it is 

the most efficiently repaired by MMR efficient cells, particularly HeLa S3 extracts, 

followed by the C.A mismatch (Hays et al., 2005; Holmes et al., 1990; Thomas et al., 

1991).  These mismatches are also known to be bound with greater affinity by MutSα 

than MutSβ (Marti et al., 2002; Palombo et al., 1996). 

 

Homozygous samples for the rs1981929 SNP site were used for the formation of 

constructs with a G.T or A.C mismatch.  The same approach can be applied with 

different SNP sites to form heteroduplexes containing G.A or C.T mismatches or 

several mismatches by targeting a DNA sequence that contains several SNPs within ~ 

300bp region in the genome; but it was not possible to form A.A, T.T, G.G or C.C 

mismatches using this PCR based strategy.   Alternatively, DNA strands with the 

desired sequences and lengths can be purchased (e.g. oligonucleotides listed in Table 

2.9).  However, synthesis of long oligonucleotide sequences can sometimes be difficult 

and obtaining the required amounts can be costly. 
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4.2.1.2 Optimisation of PCR conditions 
Amplification of the DMPK (CTG)n repeat region using the MMR primer sets was 

difficult due to the large product size (558-639bp) and the high GC (guanine and 

cytosine) content, which causes the DNA to coil around itself increasing secondary 

structures that make it less accessible to primers.  In order to overcome this problem, 

5% DMSO was added.  DMSO reduces the formation of stable secondary and tertiary 

structures in the DNA templates, thus enhancing the PCR amplification by increasing 

the ratio of full-length products to shortened products (Kang et al., 2005). 

 

4.2.1.3 Formation and detection of heteroduplex DNA constructs 
Five heteroduplex DNA constructs were generated in this project: constructs with IDL 

sizes of 3, 21 and 24 residues and constructs with a G.T or A.C mismatch.  The 

constructs could be easily generated in large amounts and modified to vary the size of 

the IDL or the base-base mismatch.   

 

Heteroduplex analysis on SSCP gels showed that an overnight incubation at 37ºC was 

necessary for the mismatched strands to hybridise.  Some loss of product was detected 

at the single strand separation and purification stages.  However, recovery rate was not a 

big issue at that stage since the amount of ssDNA obtained was quite high (as seen from 

the ABI PrismTM peak heights in Figure 3.22) and the PCR products could be easily 

generated in large amounts making their loss affordable. 

 

The labelled MMR products (558-639bp long) and the derived ssDNA could not be 

visualised on SSCP gels.  This was probably due to the presence of the fluorescent label 

that affected the fragments’ run properties in the gels.  When non-labelled primers were 

used, the detection of the DNA fragments was significantly improved, especially for 

duplex DNA structures that could not be initially seen. 
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Another reason the MMR products were difficult to visualise on SSCP gels was 

probably the large size of the DNA fragments.  SSCP sensitivity is optimal for products 

up to 200bp in size and the sensitivity is decreased as the fragment size increases 

(Sheffield et al., 1993).   More than 90% of single-base changes can be detected for 

fragments of about 200bp, whereas the detection rate is lowered to 80% for fragments 

of about 400bp (Hayashi and Yandell, 1993; Nataraj et al., 1999).  Mutations can be 

detected in fragments as large as 800bp; however, the sensitivity of the assay would 

probably be lowered (Nataraj et al., 1999).  One way to deal with large fragments is to 

cut the PCR product into smaller fragments prior to SSCP/heteroduplex analysis.  In 

this project, the MMR2S primer was used to create shorter products/heteroduplexes 

(277-358bp) that included the same target CTG repeat.  The formation of tightly coiled 

tertiary structures in the DNA, caused by the high GC content in the DNA fragments, 

should however improve the SSCP/heteroduplex analysis sensitivity by making 

fragments of different sequences more discernible (Nataraj et al., 1999).   

 

The heteroduplexes containing a 3-nucleotide IDL and G.T or A.C mismatch could not 

be easily distinguished from their corresponding homoduplexes (PCR products) on the 

SSCP system used (Figures 3.24 and 3.25), however, the nicked heteroduplex molecules 

were clearly different.  The change to the overall structure of the DNA molecules 

containing a single base mismatch or a 3-nucleotide IDL was relatively subtle compared 

to that caused by 21 and 24-nucleotide IDLs, making them less discernible from 

homoduplexes.  Generally, insertions and deletions create structural changes in DNA 

fragments characterised as ‘bulges’ that can cause kinks or bending of the DNA, while 

single and multiple base substitutions create smaller changes characterised as ‘bubbles’ 

that are less likely to cause bending (Bhattacharyya and Lilley, 1989).   It is expected 

that larger distortions to the DNA molecule result in greater differential migration in the 

gel compared to homoduplex DNA than mismatches causing less structural distortions 

(Highsmith et al., 1999).  Kinks in DNA fragments formed by 3-nucleotide ‘bulges’ 

(80±10º)  or ‘gaps’ (different angles) have been visualised by electron microscopy at 

increased frequencies compared to homoduplex fragments (Wang et al., 1992). 
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Investigation of different physical parameters influencing sensitivity of 

mutation/mismatch detection by heteroduplex analysis showed that GC content, 

fragment length (between 100 and 600bp) and the position of the mismatch (centrally 

located or 50bp from either end) had little or no effect on sensitivity (Highsmith et al., 

1999).  The nature of the mismatch was the main factor affecting the differential 

migration of homoduplexes and heteroduplexes, with G.G/C.C having the greatest 

separation followed by A.C/T.G and A.G/T.C (equally), and finally A.A/T.T 

(Highsmith et al., 1999). 
 

Another difficulty faced during the production of heteroduplex constructs from non-

labelled PCR products was matching the concentrations of the separated ssDNA 

fragments in order to avoid having a large excess of a particular strand and promote 

heteroduplex formation.  For this reason, commercially synthesised oligonucleotides 

containing the same sequences were obtained and prepared at fixed concentrations. 

 

4.2.2   Repair assessment after exposure of heteroduplex constructs to 
nuclear extracts from HeLa S3 and LoVo cells 
Assessment of DNA loop repair using heteroduplex analysis on the PhastSystemTM was 

difficult for the 3-nucleotide (nt) IDLs, as the difference between homoduplex and 

heteroduplex DNA molecules was not always obvious.  However, minor changes in 

electrophoretic migration were consistently observed, especially for the heteroduplex 

samples exposed to HeLa S3 N.E. compared to the original heteroduplex sample and the 

reaction’s negative control.  A conformational change from heteroduplex to homoduplex 

gave a clear indication of DNA repair. 

 

Heteroduplex samples, containing a G.T mismatch or a 3-nucleotide IDL, that were 

exposed to 2µg HeLa S3 nuclear extracts (N.E.) showed shifts in electrophoretic 

migrations on SSCP gels that matched those of homoduplex samples.  This was 

indicative of IDL repair.  Repair was nick directed in presence of a nick, as expected 

(Thomas et al., 1991; Hays et al., 2005), but seemed to target either strand in non-

nicked heteroduplex constructs. 
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Sealing of the nick was approximately 100% efficient when nicked heteroduplexes were 

exposed to nuclear extracts for 15 minutes or longer; however, repair was not as 

efficient.  This situation is referred to as ‘escaped’ repair and was detected in other 

studies for G.T substrates (Holmes et al., 1990; Thomas et al., 1991) and CTG 

insertions with a 3’ nick (Panigrahi et al., 2005). 

 

Assessment of IDL repair using semi-quantitative fluorescence analysis (on the ABI 

PrismTM 310) and heteroduplex analysis showed that repair was independent of loop 

size (3, 21 and 24 nucleotides) and was detected for exposures to as little as 2µg 

(0.08μg/μl) of nuclear extracts.  Repair was MMR and nick-dependent and nick-directed 

for 3-nucleotide IDLs.  Repair of larger loops was MMR and nick-independent.  

Generally, greater ∆R values were obtained with 20μg of HeLa S3 nuclear extracts 

compared to 2μg o f HeLa S3  or LoVo.  The greatest ∆R value was detected with 3-

nucleotide IDL after a 15 minute exposure to 20μg of HeLa S3 nuclear extracts (Table 

3.13).  Exposures of heteroduplex constructs to LoVo nuclear extracts resulted in less 

repair compared to HeLa S3 for all IDL sizes.  These observations are consistent with 

previous studies which showed that IDLs can be repaired in a nick-directed manner by 

the MMR pathway (up to16-nt IDLs) or MMR-independent pathways for larger loops in 

human extracts (Littman et al., 1999; McCulloch et al., 2003a; McCulloch et al., 

2003b). 

 

Interestingly, our results showed that MMR-independent repair of larger loops was not 

nick-directed when the nicked strand contained the loop (i.e. long strand was nicked).  

Another study that used DM1 clone substrates containing pure (CTG)n repeats, with 

n=30 or 50,  reported that CAG/CTG hairpin repair occurs in an error-free manner, 

when the hairpin is in the continuous strand, and error-prone manner, when the hairpin 

is in the nicked strand, particularly for CTG versus CAG repeats due to their hairpin 

versus random coils conformations (Panigrahi et al., 2005).  In our study, the insertions 

in the nicked strand were all CAG repeats.  Panigrahi et al. suggested that incorrect 

repair is the result of a faulty excision step that does not result in complete removal of 

the ‘slipped-out’ repeats and is followed by gap filling and ligation.  The expansion bias 

that is observed in human trinucleotide repeat diseases may be explained by the fact that 

repair of insertions or expansion intermediates in the CTG/CAG repeat is error-prone 

but repair of deletions is not. 
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A recent study by Hou et al. (2009), which investigated CTG/CAG hairpin repair in 

HeLa nuclear extracts, showed that repair of CTG/CAG hairpins was error-free in a 

strand-specific and nick-dependent manner.  Southern blot analysis of repair 

intermediates and products showed that repair was initiated by endonucleotlytic 

incisions targeting the repeat region on the nicked strand, which required PCNA (Hou et 

al., 2009).  The discrepancies between this study and the one by Panigrahi et al. may be 

due to the assay systems used (Southern blotting with 12P-labelled probes versus 

incorporation of [α-32P]-dNTPs) or differences in sequence contexts.  Therefore, it may 

not be appropriate to suggest a single model to explain trinucleotide repeat expansions, 

as subtly different repair enzymes may be involved in trinucleotide repeat hairpin repair 

in different biological contexts (Hou et al., 2009). 

 

PCNA, which is an important factor in DNA replication, has been shown to be 

necessary for the initiation of MMR (Guo et al., 2004) and hairpin repair (Hou et al., 

2009).  Our microarray results showed that PCNA was highly expressed in human MII 

oocytes and blastocysts, with higher levels in the oocytes (p<0.05).   

 

Exposure time to nuclear extracts affected repair efficiency; however, beyond 60 

minutes, repair was unchanged.  No substantial exonucleolytic degradation due to free 

DNA ends was detected, even after long exposures to N.E., in either short (~300bp) or 

long (~600bp) heteroduplex molecules.  Although circular DNA molecules are normally 

used as substrates for in vitro DNA repair reactions, it has been demonstrated that linear 

molecules are also competent to assess MMR using human nuclear extracts (Iams et al., 

2002).  Additionally, Iams et al.’s study showed that the location of both the nick and 

the mismatch could affect MMR capacity.  If the nick or the mismatch was located too 

closely to the DNA ends (<50 or 150bp, respectively) no MMR was detected.  None of 

the heteroduplex constructs used in this project had a nick or mismatch location known 

to jeopardise MMR, however, the specific structure of each construct could affect repair 

efficiency as the sequence context can influence recognition and repair of DNA lesions. 
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In our study, brief exposures of heteroduplexes with 3-nucleotide loops to 2µg of 

nuclear extracts for 30 or 60 seconds resulted in the excision of one strand (which 

confirmed recognition of the mismatched region and initiation of repair) without 

resynthesis.  This agrees with previous studies that state that excision starts as early as 

40 seconds after initiation (Wang and Hays, 2002b) and reaches a plateau within 6 to 7 

minutes (Hays et al., 2005).  Incomplete repair was also detected for the same substrates 

on SSCP gels after exposures to 2µg of N.E. for 60 minutes.  This could have resulted 

from insufficient amounts of dNTPs or the necessary proteins for resynthesis of the 

excised DNA fragments.  Interpretation of the genetic analyzer results showed that it 

was probably insufficient amounts of MMR efficient nuclear extracts that resulted in 

incomplete or lack of repair.  3-nt IDL repair was MMR and nick-dependent and was 

detected for exposures to 20µg of HeLa N.E. but never for 2µg exposures using the ΔR-

value system. 

 

SSCP/heteroduplex analysis proved to be somewhat problematic for robust assessment 

of repair; however, it did show conformational changes in constructs exposed to nuclear 

extracts and allowed the detection of excision as well as complete repair.  These changes 

were consistent and seemed to confirm repair, as all observations were concordant with 

the obtained R-value results. 

 

Detection of IDL repair was more sensitive on the genetic analyzer, which allowed the 

detection of relative repair efficiencies using R-values.  This type of analysis also helped 

overcome the issue of incomplete nicking of the heteroduplex constructs.  When two-

colour labelled nicked heteroduplexes were used, repair was clearly detected by the 

appearance of a new peak representing the repaired strand (Figure 3.40).  However, 

when both strands of the heteroduplex molecule were FAM-labelled, the relative 

proportions of short/long strand or nicked/non-nicked strand can change in the absence 

of a complete DNA repair reaction.  Initiation of repair through excision of a fragment 

on the nicked (or targeted) strand would alter the R-value.  While this is fairly indicative 

of DNA repair activity, it was not interpreted as complete repair. 
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In order to improve base-base mismatch repair assessment, mini-sequencing analysis 

could be applied on the G.T and C.A heteroduplex constructs.  The sizes of mini-

sequencing products are different for each base and visualised in different colours on 

the ABI Prism™ 310 genetic analyzer.  This would allow accurate detection of the base 

on each strand of the DNA molecule at the SNP/mismatch site.  Assessment of repair 

efficiencies would also be possible based on the peak heights and calculation of R-

values. 

 

While the genetic analyzer gave more sensitive detection of repair, it could only give 

information on single stranded DNA and could not always distinguish excision of the 

targeted DNA strand from complete repair (i.e. fragment resynthesis).  The most 

informative results were obtained using the initial design, which involved FAM/HEX 

double-labelled constructs.  SSCP/heteroduplex analysis was necessary to detect the 

formation of duplex DNA constructs with different secondary structures, which act as 

substrates for DNA repair proteins, and confirm complete repair via the detection of 

newly formed homoduplex molecules. 

 

This assay was up to 50-fold more sensitive than available methods, however, in order 

to make it suitable for application on human oocytes and embryos it is crucial to reach 

much greater sensitivity.  The average total protein content in mammalian oocytes is 

approximately 0.1μg and ranges in preimplantation embryos from 0.16μg (at the 2-cell 

stage) up to 50μg (at the blastocyst stage) (Grealy et al., 1996; Morgan and Kane, 1993; 

Thompson et al., 1998).  Several MutSα or MutSβ complexes are required to efficiently 

repair one molecule of mismatched DNA, with a minimum of 4-fold molar excess of 

MutSα compared to DNA substrates (Zhang et al., 2005).  This means that fewer 

heteroduplex DNA molecules, that would require fewer repair proteins and thus less 

nuclear extract, need to be used in the assay. 
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It has been demonstrated that 50µg of HeLa nuclear extracts, which contains ~ 0.1µg 

MutSα, is necessary to repair more than 50% of 24fmol of G.T mismatched 

heteroduplex constructs in 15 minutes (Dzantiev et al., 2004; Zhang et al., 2005).  This 

is equivalent to 2µg of nuclear extract per fmol of substrate and is similar to the 

amounts (~1.33µg per fmol of substrate) used by other studies that assessed the repair of 

single base mismatches and IDLs in nuclear extracts (Littman et al., 1999; Wang and 

Hays, 2002a; Wang and Hays, 2002b). 

 

In this project, approximately 1 to 2fmol of substrate was used; bringing this down by a 

further 10-fold may allow the future assessment of repair in nuclear/whole cell extracts 

from human oocytes and preimplantation embryos.  Initially, pooling of oocytes or 

embryos will probably be necessary for the extraction of proteins.  The developed assay 

could probably be used with the same system of analysis to begin with; nevertheless, a 

new system of analysis with greater sensitivity of DNA detection would be valuable to 

improve assessment of DNA repair in limited amounts of nuclear extracts. 

 

4.2.3  Conclusion of functional assessment of IDL repair and MMR in 
human nuclear extracts 
The main limitation of functional assays at present is that they require large amounts of 

proteins.  In this project a novel approach was used in the development of an in vitro 

functional assay for MMR that may be optimised for analysis of nuclear extracts from 

pooled oocytes or embryos.  The developed assay does not rely on cloning for the 

generation of substrates and requires neither bacterial cultures nor radioactive labeling 

(like Southern blotting) for analysis. 

 

Two types of heteroduplex constructs were created using a PCR based method for the 

assessment of MMR and IDL repair efficiencies:  heteroduplexes containing a G.T or 

A.C mismatch and heteroduplexes containing a 3, 21 or 24-nucleotide insertion/deletion 

loop.  These constructs could be easily generated and modified to vary the size of the 

insertion/deletion loop or the single base mismatch to be repaired. 

  



Discussion 

 216 
 

The heteroduplex constructs were exposed to nuclear extracts from human cells to 

repair the mismatch.  The efficiency of repair was determined semi-quantitatively by 

assessing the ratio of heteroduplexes to repaired homoduplexes using the genetic 

analyzer and qualitatively using SSCP/heteroduplex analysis.  The preliminary results 

obtained from semi-quantitative assessment of IDL repair were in agreement with other 

studies and demonstrated that the developed assay works.  Further optimisations will be 

necessary to improve the sensitivity of this assay and allow its future application on 

pooled human oocytes or embryos. 

 

 

4.3  PGD for MSH2 and BRCA1 mutations 
The third aim of this project was to investigate the effect of germline mutations in DNA 

repair genes on early embryonic development.  Clinical PGD for MSH2 and BRCA1 

was initiated in order to achieve this aim. 

 

4.3.1   Development of PGD protocols 
Single cell PCR strategies for preimplantation genetic diagnosis generally rely on direct 

mutation detection with at least one linked polymorphic marker to detect allele dropout 

(ADO), contamination and recombination (Spits et al., 2007).  The use of linked 

markers alone is becoming increasingly common as it makes it possible to apply the 

same gene-specific PGD test to many couples with different mutations.  However, this 

would require the couple seeking PGD treatment to be informative for at least two 

markers flanking the gene of interest and the availability of DNA from affected family 

members to establish haplotypes (Goossens et al., 2003). 

 

The linked polymorphic markers can be STRs or SNPs.  The main advantage of SNPs is 

that they are densely dispersed within all genes; however, their main disadvantage is 

that they are less likely to be informative than STRs, which are more polymorphic.  This 

means that potentially a large number of SNPs need to be investigated before finding an 

informative one.  Additionally, analysis of SNPs is more labour intensive than STRs as 

it requires sequencing/mini-sequencing or restriction enzyme digestion reactions post 

PCR (Spits et al., 2007).  
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Three protocols for preimplantation genetic diagnosis were developed for couples with 

inherited mutations in DNA repair genes, one for MSH2 and two for BRCA1 mutations. 

 

4.3.1.1 Workup for MSH2 (c.1277-?_1386+?del) 
The MSH2 mutation carried by the male partner was an exon 8 deletion diagnosed by 

multiplex ligation-dependent probe amplification (MLPA).  MLPA is a relatively recent 

quantitative technique designed to detect insertions and deletions within exonic 

sequences using exon-specific oligonucleotides probes (Schouten et al., 2002).  MLPA 

has become the preferred method for rapid genetic screening for insertions and deletions 

as it is less time consuming and cheaper than other techniques.  The main drawback of 

this technique is that it does not provide specific breakpoints for the insertions or 

deletions.  This can be a problem for designing PGD protocols. 

 

Identification of the deletion breakpoints was attempted by Yasmin Omar and William 

Young during the course of their MSc and BSc research projects, respectively, at the 

UCL Centre for PGD laboratory.  Their work involved long-range PCRs with primers 

designed at different locations in introns 7 and 8.  While exon 8 is only 109bp long, the 

two introns surrounding it are very large (~15.5 and 17Kb) and include several Alu 

repeat sequences.  This made the PCR amplifications very difficult in this region.  A 

14.9Kb deletion between two Alu repeats in introns 7 and 8 reported by Thiffault et al. 

(2004) was suspected; however, it could not be confirmed using the designed primers 

for long-range PCR. 

 

Southern blot analysis, which would have allowed accurate sizing of the deletion, is 

currently rarely used as it involves radioactive labeling. Fluorescent in situ hybridisation 

(FISH) and metaphase array comparative genomic hybridisation (CGH) are often used 

for the detection of large deletions.  The resolution of these techniques can be up to 

1Mb (Oostlander et al., 2004; Volpi and Bridger, 2008).  However, since the maximum 

size of the deletion including exon8 can be ~32.6Kb, FISH and array CGH would not be 

suitable in this case. 
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As the deletion breakpoints were not defined, the PGD protocol could not involve direct 

mutation detection and the diagnosis had to be based on linkage.  Eleven linked STR 

markers, including one intragenic marker, were investigated for the couple.  None were 

found to be fully informative; two were semi-informative: D2S227 and S2S119.  The 

allele that was in phase with the deletion could be identified for D2S119 only from the 

affected paternal aunt’s DNA.  D2S119 was located approximately 3.5Mb upstream of 

the MSH2.  As this is outside the targeted 1Mb range, which limits the chances of 

recombination to 1% (Collins, 2009), PGD could not rely on this STR marker alone.  

Identifying the phase allele for D2S2227, which is located 0.36Mb upstream of MSH2, 

could help increase the diagnosis rate.  It is generally preferable to base the diagnosis of 

a normal embryo on heterozygous genotype in order to avoid the event of ADO leading 

to a misdiagnosis.  Thus, it would be better if the non-shared (166bp) D2S2227 allele 

turned out to be in phase with the mutation.  However, as two linked markers were used 

it would have been possible to detect ADO and identify the parental origin of the 

observed allele. 

 

DNA was not available from any other relatives; however, the haplotye could have been 

identified from the affected male’s sperm if the couple was going ahead with the PGD 

treatment.  The investigation of any additional linked STR markers would have required 

the use markers that are further away from the gene.  Instead, SNP sites were 

investigated.  Although the chances of finding informative loci for SNPs are much 

lower than for STR markers, a large number of intragenic SNPs are available. 

 

There were no known SNPs within exon 8 of the MSH2 gene, which is only 109bp long.  

Five SNPs that were up to ~1kb upstream of exon 8 were investigated (Figure 3.42 and 

Table 3.17).  The rs1981929 SNP was found to be semi-informative, which would 

confirm 50% of the normal/unaffected embryos.  The other SNPs investigated were 

probably in linkage disequilibrium as all three individuals were homozygous for the 

four SNPs.  This illustrates the main disadvantage of using SNPs as polymorphic 

markers since this type of SNP characterisation is not yet reported in public databases 

and can only be discovered empirically (Spits et al., 2007).  Adding this problem to the 

fact that the deletion breakpoints were unknown, the selection process of a fully 

informative SNP for this case could potentially be extremely time consuming and 

labour intensive. 
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The difficulties of finding informative SNPs could have been overcome by the use of 

SNP microarrays designed to target specific genes or chromosomes on the couples 

genomic DNA.  This would have also helped identify the breakpoints of the exon 8 

deletion.  However, SNP microarray services can be very expensive and in this case the 

PGD workup budget could not cover the costs. 

 

The combination of the three linked loci (D2S119, D2S2227 and rs1981929) with the 

fully informative contamination marker (APOC2) resulted in an acceptable PGD 

protocol.  The PCR based protocol, involving fragment size analysis and mini-

sequencing, reached the preliminary stages of optimisation on single cells.  The workup 

was not continued as the couple decided not to go ahead with PGD treatment due to 

financial issues. 

 

Clearly, this PGD protocol was compromised due to the undetermined breakpoints of 

the exon 8 deletion.  Detection of copy number variation of several SNPs located within 

the target region using real-time PCR should be investigated as an alternative strategy 

for marker selection and to help identify the breakpoints of the mutation for future 

patients diagnosed with large duplications/deletions by MLPA.  This will be important 

for future cases as it is becoming increasingly difficult to find Southern blot analysis 

services. 

 

This protocol was licensed by the HFEA and initiated the PGD service for Lynch 

syndrome at the UCL Centre for PGD.  Since then, several couples have been referred 

for PGD treatment for deletions in the MSH2 and MLH1 mismatch repair genes.  As a 

license for PGD treatment for MSH2 has been obtained, the workup time, which is one 

of the main problems of PGD particularly for patients with genetic predispositions to 

cancer, will be much shorter for future MSH2 cases. 

 

4.3.1.2 Workup for BRCA1 (c.3339T>G) 
A PCR-based protocol was developed for direct mutation detection by single stranded 

conformational polymorphism (SSCP) and the detection of ADO at the mutation locus 

and contamination using a linked and unlinked STR markers.  The triplex PCR was 

optimised on single cells for the amplification of the following loci: BRCA1 c.3339T>G 

mutation, D17S1338 (linked marker) and D13S168 (unlinked marker). 
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The intragenic D17S855 marker was dropped out of the initial quadruplex PCR protocol 

since it was difficult to optimise and was not strictly necessary for the PGD strategy.  

D17S13338, the only fully-informative marker for this couple, was located at ~2.5Mb 

upstream of the BRCA1 gene.  This was not ideal, as it exceeded the guideline 1Mb 

limit for a 1% recombination risk (Collins, 2009).  However, this protocol involved 

direct mutation detection and was not reliant on the linked marker alone for diagnosis. 

 

The final triplex PCR protocol allowed direct mutation detection with a high 

amplification efficiency (AE) of 98% and an acceptable allele dropout (ADO) rate of 

6%.  The linked marker had a 92% AE and 7% ADO rate, while the contamination 

marker had a 96% AE and 2% ADO rate.  In the event of ADO at the mutation site, the 

linked marker could help identify the allele passed on from the affected male partner.  

The presence of the intragenic marker or another linked marker on the other side of the 

mutation to detect recombination would have been extremely helpful in such a situation. 
 

A license for treatment was obtained by the HFEA for this PGD protocol.  However, it 

was never clinically applied as the 34 year old female partner, who had no family 

history of breast or ovarian cancers, was diagnosed with breast cancer prior to initiation 

of IVF treatment.  It is important to point out that this patient was of Ashkenazi Jewish 

origin.  Her condition may have resulted from a de novo mutation in the BRCA1/2 genes 

or she may have a genotype that includes specific polymorphisms associated with an 

increased risk of breast cancer. 
 

It is circumstances like these that compel us to understand why there were so many 

ethical debates concerning PGD for BRCA1/2.  PGD for cancer predispositions with 

‘later’ age of onset and incomplete penetrance was not allowed in the UK until 2006.   

(The word ‘later’ is used here to imply during adulthood as opposed to early childhood).   

Several recent papers have discussed the ethical issues involved (Clancy, 2009; Krahn, 

2009; Menon et al., 2007; Noble et al., 2008; Williams et al., 2007); all agree on the 

importance of proper counseling  for these patients.  It is crucial that patients seeking 

PGD treatment are well aware of the workup time and limitations of the technique.  In 

the case of breast cancer, PGD is only testing for a specific mutation in the BRCA1/2 

genes.  This means that any other genetic factors that could lead to an increased risk of 

developing breast cancer or other associated cancers are not examined.  Such factors 

include polymorphisms that may be specific to certain populations (Easton et al., 2007; 
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Song et al., 2009) or the combination of low penetrance genes (Tempfer et al., 2006).  

At best, PGD can lower the cancer risk to the general population level.  The timing of 

the PGD treatment is critical when the female partner carries the mutation, as the 

window of opportunity is much smaller for patients who are likely to require 

prophylactic treatment or cancer therapy. 

 

It is possible that PGD treatment, which involves hormone stimulation for IVF, can 

exacerbate the condition of patients with a genetic predisposition to breast cancer.  A 

matched case-control study, conducted on 1,380 pairs of women with a BRCA1 or 

BRCA2 mutation, showed that the use of fertility medications does not increase the risk 

of breast cancer among these patients (Kotsopoulos et al., 2008). 

 

4.3.1.3 Workup for BRCA1 (c.68-69delAG or 185delAG) 
A PCR-based protocol was developed for direct mutation detection by fragment length 

analysis, including a linked and an unlinked STR marker.  The triplex PCR was 

optimised on single cells for the amplification of the following loci: BRCA1 c.68-

69delAG mutation, D17S1185 (linked marker located at ~0.7Mb upstream of the 

BRCA1 gene) and D17S1294 (unlinked marker).  The fully-informative unlinked 

marker was necessary for the detection of maternal contamination as the unaffected 

female partner was homozygous for the linked marker.  This protocol was licensed for 

treatment by the HFEA and was the first clinically applied BRCA1 PGD protocol in the 

UK that resulted in the birth of a healthy singleton. 

 

4.3.2   Outcome of a clinical PGD cycle for BRCA1  
Five out of eleven embryos were diagnosed as transferable/unaffected and five were 

found to be affected with the BRCA1 c.68_69delAG mutation (91% diagnosis rate).  All 

embryos carrying the paternal mutation appeared to have slower or arrested growth 

between day 3 and day 5 (Table 3.20) but some of them had developed into blastocysts 

by day 6.   It is possible that heterozygosity for BRCA1 mutations may affect the 

embryo’s development.  In fact, it has been shown that the fidelity of DSBR was 

impaired in cell lines with heterozygous BRCA1 missense mutations (Coupier et al., 

2004). 
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However, in two PGD cycles carried out for another couple where the female partner 

carried the the same mutation, no differences in embryo morphology were observed 

between embryos with and without the BRCA1 mutation (personal communication with 

Thalia Mamas and Dr Sioban SenGupta).  Therefore, it is interesting to hypothesise that 

the sex of the affected parent may have an impact on early embryonic development.  

Future cases and the investigation of BRCA1 expression in the affected embryos 

collected for research will reveal if the hypothesis stays accurate. 

 

It is possible that once the embryo has depleted the maternal mRNA transcripts and 

before full activation of its genome, it is dependent on the expression of the paternal 

genome.  It has been shown that EGA occurs in two stages in mammalian embryos 

(Jeanblanc et al., 2008).   The first is a minor activation mainly targeting the paternal 

pronucleus; the second is a major activation step, which results in full activation of the 

embryonic genome (of maternal and paternal origin).  Mayer et al. (2000) showed that 

the male pronucleus undergoes demethylation very soon after fertilisation.  This 

demethylation is fast (complete eight hours post-fertilisation) and active, taking place 

independently of replication.  However, the maternal genome undergoes passive 

demethylation (with levels decreasing gradually with each cell cycle) until the morula 

stage (Yamazaki et al., 2007).  Figure 4.1 illustrates the demethylation process in 

preimplantation embryos from the one-cell to the blastocyst stages. 
 

Figure 4.1: DNA demethylation in preimplantation embryos 

  
 

Adapted from Gynécologie Obstétrique & Fertilité, 34, Jeanblanc et al., Embryonic Genome 
Activation, pages 1126-1132, Copyright (2008), with permission from Elsevier  

PNp: paternal pronuclei; PNm: maternal pronuclei; ICM: inner cell mass; TE: trophectoderm 
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Our microarray results showed that BRCA1 mRNA was not detected in the human MII 

oocytes but was detected at medium levels in the blastocyst (post EGA).  Even if the 

oocyte did express BRCA1 but this was not picked up by our arrays, at a certain stage 

the maternal mRNA templates would be depleted and the embryo would have to rely on 

the transcription of the paternal BRCA1 gene until full EGA occurs.  Therefore, if the 

paternal copy of the gene carries the missense mutation, the embryo is likely to be more 

vulnerable to stress and/or may undergo abnormal development.  Future cases and the 

investigation of BRCA1 expression in the affected embryos collected for research will 

reveal if the paternally derived BRCA1 transcripts are more abundant than maternally 

derived transcripts between day 3 and day 5 post fertilisation. 

 

4.3.3   Conclusion of PGD workups for mutations in DNA repair gene 
PGD protocols were developed and optimized for one MSH2 mutation (c.1277-

?_1386+?del) and two BRCA1 mutations (c.3339T>G and c.68-69delAG).  One of the 

BRCA1 PGD protocols was clinically applied and resulted in the birth of a healthy 

singleton.  The other two protocols, which were licensed for treatment by the HFEA, 

may be used or adjusted for other couples seeking treatment for the same condition in 

the future. 

 

With the advancement of microarray platforms and whole genome amplification 

(WGA) methods, PGD for single gene disorders may be carried out using microarray 

analysis in the near future, especially for cases where the mutation is not well 

characterised.  The application of SNP microarrays on individual blastomeres has 

provided DNA fingerprints for the embryos and allowed the detection of aneuploidy 

(Ling et al., 2009; Wells et al., 2008).  This technique has been shown to allow the 

detection of polymorphisms associated with a monogenic disorder in single cells 

(Handyside et al., 2008).  As the genetics of cancer predisposition is further understood, 

the use of microarrays may increase the diagnostic capability of single cell analysis to 

include many polymorphisms that affect cancer risk. 
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Only a small proportion of the referred couples decide to go through with PGD 

treatment.  Among all couples referred to the UCL Centre for PGD for genetic 

predispositions to cancers, the largest group was for breast and ovarian cancer (31/80 

referals) due to BRCA1 and BRCA2 mutations.  However, only 31% (11/31) of refered 

couples opted for PGD for BRCA1/2 mutations compared to 87%, 71% and 65% for 

NF1, RB1 and APC mutations, respectively (personal communication with Dr Sioban 

SenGupta).  This may be due to the difference in penetrance of the disease or the 

lengthy process of funding, protocol development and HFEA licensing, which can 

interfere with their planned prophylactic treatment. 

 

Of the three cycles that have been carried out for BRCA1 to date the observation of 

morphology of embryos suggested that the parental origin of the germline mutation may 

affect embryonic development between days 3 and 5.  The initiation of a PGD service 

for couples with inherited mutations for DNA repair genes will allow future 

investigation of DNA repair in affected embryos donated for research. 
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5 CONCLUDING REMARKS AND FUTURE WORK 
The overall DNA repair capacity in the human oocyte or blastocyst is complex as there 

is a level of redundancy between different repair pathways and many DNA repair 

proteins are also involved in other cellular pathways.  Moreover, variations in gene 

expression levels do not necessarily correlate with DNA repair ability as not all mRNA 

templates detected are fully translated to functional proteins; however, gene expression 

is one of the key mechanisms that can influence DNA repair activity. 
 

The data from the microarray study showed that human MII oocytes and embryos can 

potentially carry out all types of repair as a large number of DNA repair genes involved 

in the different repair pathways were expressed at these stages.  As hypothesised in the 

aims, the expression profiles in the blastocysts were different to the oocytes.  The 

different expression patterns of DNA repair genes in MII oocytes and blastocysts 

indicate different DNA repair mechanisms pre and post embryonic genome activation 

(EGA).  Possibly, as the maternal transcripts decline before EGA, there may be a stage 

during which the embryo is more vulnerable to DNA damage.  Further expression 

analysis of embryos at different stages of development up to the blastocyst stage may 

identify key indicators of normal in vitro development and implantation potential. 

 

This project provided preliminary evidence on the DNA repair pathways that may be 

active in the MII oocyte and the blastocyst.  However, in order to fully understand DNA 

repair activity in the human preimplantation embryo, we intend to investigate each 

repair pathway separately and in greater detail.  The highly expressed and differentially 

expressed DNA repair genes that have been identified in this project will serve as 

primary targets for further investigation by real-time PCR analysis on single 

preimplantation embryos at different stages of development up to the blastocyst stage. 

 

The preimplantation embryos will be classified into three main categories: normal 

embryos, embryos affected with a single gene disorder (from PGD cases) and 

chromosomally abnormal embryos (from PGS cases).  Embryo classification follows 

the criteria of Delhanty et al., (1997) which sorts the embryos into two main groups: 

normal and abnormal.  The chromosomally abnormal embryos can be further classified 

into abnormal non-mosaic, mosaic and chaotic embryos (Delhanty et al., 1997).  
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Collected embryos will be of different morphological quality; thus they will be further 

categorised according to grade.  The DNA repair genes that will first be investigated are 

listed in Table D.1 (Appendix) and were selected based on the microarray data as well 

as data available in the literature. 
 

Using fluorescent immunostaining, we could demonstrate that DNA repair genes found 

to be expressed in the human preimplantation embryo are in fact translated into protein; 

however, the only way to prove DNA repair activity in the human embryo is by 

performing functional assays.  The complexity of the DNA repair pathways justifies the 

need for a functional assay that measures DNA repair activity, which is the total 

outcome of several factors including gene expression, mRNA stability, effects of 

inhibitors, stimulators and environmental factors.  The in vitro insertion/deletion loop 

(IDL) and mismatch repair functional assay designed and optimised in the course of this 

project was up to 50-fold more sensitive than available methods.  However, in order to 

make it suitable for application on human oocytes and embryos, it requires further 

optimisation to achieve greater sensitivity. 

 

Fewer molecules of heteroduplex DNA constructs need to be used so that less nuclear 

extract is necessary to repair the templates.  Initially, this should be attempted using 

double labelled DNA constructs with 3, 21 and 24-nucleotide IDLs and analysis on the 

ABI PrismTM.  This would allow the detection of created homoduplex molecules even if 

the repair efficiency was low.  The use of mini-sequencing analysis for the detection of 

base-base mismatch repair may also improve sensitivity.  Furthermore, it may be 

necessary to circularise the DNA constructs or to protect the 5’ ends of the DNA 

molecules with biotin in order to prevent exonuclease degradation.  Although, this does 

not seem to be a major concern based on our initial results.  Finally, the ultimate goal 

will be to assess the repair of a single molecule of DNA.  This may be possible in the 

near future due to the development of lab on a chip technologies such as “digital 

microfluidics” (Advanced Liquid Logic, Inc.), which allows any reaction to take place 

in a liquid droplet that is electrically manipulated on a chip, minimising reaction 

volumes. 
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The initiation of a PGD service for couples with inherited mutations for DNA repair 

genes will allow future investigation of DNA repair in affected embryos donated for 

research.  DNA repair capacity may have an effect on the preimplantation embryo’s 

morphology and development between day 3 and day 5.  Preimplantation embryos 

carrying the BRCA1 c.68-69delAG mutation (better known as 185delAG) were 

collected for gene expression analysis on day 6 post fertilisation.  Preliminary 

observations of the affected embryos suggest that development may be impaired when 

the mutation is paternally inherited.  This may be because of the different demethylation 

rates of the parental genomes, which may result in a greater transcription potential for 

the paternal genome around day 3.  Future cases and the investigation of BRCA1 mRNA 

transcripts in the affected embryos using real-time PCR targeting SNPs will reveal if the 

hypothesis that the sex of the affected parent may have an impact on embryonic 

development is true.  Time-lapse photography of PGD embryos from fertilisation to 

embryo transfer may help pinpoint the time at which the embryo may be more 

vulnerable to exogenous stress. 

 

Although the MSH2 PGD case did not reach clinical application, the premise has been 

set for future cases.  It will be interesting to observe the effect of transitional MSH2 

deficiency on embryonic development in situations where the father carries the 

mutation.  Additionally, it would be important to investigate microsatellite instability 

(DNA content) in conjunction with gene expression analysis (mRNA content) in these 

embryos with the possibility of assessing functional MMR (protein content) in the 

future. 

 

Evaluation of the embryo’s mismatch repair capacity can be achieved by investigating 

the extent of microsatellite instability (MSI) in embryos carrying mutations in MMR 

genes and normal/control embryos.  The investigation of chromosome breaks (H2AX 

loci) together with fluorescent immunostaining of BRCA1 and other important factors 

involved in double strand break repair (DSBR) (like MRE11, RAD50 and NBS1) in 

embryos carrying BRCA1 mutations, aneuploid and normal/control embryos may help 

understand the importance of DNA DSBR in the early human embryo. 
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The study of DNA repair gene expression in conjunction with the functional assessment 

of MMR and/or IDL repair efficiency will shed light on DNA repair activity in early 

human embryos in the context of IVF.  The two parts of the project complement each 

other and with the initiation of PGD for germline mutations in DNA repair genes 

provide a model system to study the role of specific genes in early human development. 
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A: Introduction 
Table A.1:  DNA glycosylases and endonucleases involved in human base excision repair (Christmann et al., 2003; Ronen and Glickman, 2001)  

Enzyme Gene Symbols Chromosome Mammalian Protein Size Substrate Specificity in DNA 

Uracil-DNA glycosylases UNG1 12 227 aa, 25.8 kDa Uracil 

3-Methyladenine-DNA glycosylase MPG 16 294 aa, 32 kDa 3-Methylpurines, hypoxanthine 

Thymine mismatch-DNA glycosylase MBD4 12q24 410 aa, 46 kDa Uracil and thymine paired with guanine 

MYH MYH, MUTYH 1p34.3-p32.1 
16 exons 429-546 aa, 47-60 kDa 

Adenine paired with 8-oxoguanine, Adenine paired 
with guanine (Binds thymine and guanine paired 
with 8-oxoguanine without apparent catalysis) 

NEIL1 hMMH1 - - Formamidopyrimidines oxidised pyrimidines (e.g 
thymine glycol) 

NEIL2 NEIL2 - - 5-Hydroxyuracil; 5-hydroxycytosine 

NEIL3 NEIL3 - - Fragmented and oxidised pyrimidines 

NTH1 or NTH1 NTH1, OCTS3 
16p13.3 
6 exons 
(8.9 kb) 

304/312 aa, 33.5/34.4 kDa Ring-saturated, oxidised and fragmented 
pyrimidines 

8-Oxoguanine DNA glycosylase OGG1 
3p26.2 
6 exons 
(7.8 kb) 

345/351/424 aa, 39/47 kDa 8-Oxoguanine paired with cytosine, thymine and 
guanine 

Single-strand selective 
monofunctional uracil DNA 
glycosylase 

SMUG1 12 270 aa, 29.8 kDa Uracil, high efficiency and preference for ssDNA 

Thymine DNA glycosylase TDG 12q24.1 
10 exons 410 aa, 46 kDa 

Guanine paired with uracil is the preferred substrate.  
Removes thymine from G:T, C:T and T:T and uracil 
from G:U (but not A:U) mispairs.   Does not remove 
thymine or uracil from ssDNA. 

AP endonuclease HAP1, APEX 14q11.2-12 35.5 kDa Apurinic and apyrimidinic sites 
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Table A.2:  Expression of DNA repair genes in mammalian oocytes and preimplantation embryos (from mRNA analysis) 

 

  

DNA repair 
pathway 

Gene Oocyte 
GV-MII 

1 to 4-cell* 
stage embryo 

4  to 10-cell 
stage embryo 

Morula Blastocyst Hatched 
blastocyst 

Specie Reference 

Mismatch 
Repair 

MLH1 
 
MSH2 
 
MSH3 
 
MSH6 
 
PMS2 
 

Low 
Medium 
Low 
High 
High 
High 
Low 
High 
Low 
Medium 

Low 
 
Low < 
 
High > 
 
Low < 
 
Low > 
 

Low 
 
Low > 
 
High > 
 
Low > 
 
Low < 
 

Low 
 
Low 
 
High > 
 
Medium 
 
Low 
 

Low 
 
Low < 
 
High > 
 
Medium > 
 
Low 
 

Low > 
 
Low < 
 
High < 
 
Medium > 
 
Low > 
 

Rh. Monkey 
Human 
Rh. Monkey 
Human 
Rh. Monkey 
Human 
Rh. Monkey 
Human 
Rh. Monkey 
Human 

(Zheng et al., 2005) 
(Menezo, 2007) 
(Zheng et al., 2005) 
(Menezo, 2007) 
(Zheng et al., 2005) 
Menezo, 2007 
(Zheng et al., 2005) 
(Menezo, 2007) 
(Zheng et al., 2005) 
Menezo, 2007 

Nucleotide 
Excision 
Repair 

ERCC2 
 
XPC 
 

Low 
n.d. 
Low 
High 

Low < 
 
Low 
 

Low 
 
Low < 
 

Low 
 
Low < 
 

Low 
 
Low 
 

Low > 
 
Low 
 

Rh. Monkey 
Human 
Rh. Monkey 
Human 

(Zheng et al., 2005) 
(Menezo, 2007) 
(Zheng et al., 2005) 
(Menezo, 2007) 

Base 
Excision 
Repair 

APEX 
 
MBD4 
 
UNG 
 
XRCC1 
 
OGG1 
 

Medium 
High 
Low 
Medium 
Low 
High 
Low 
High+ 
n.d. 
Medium 

Medium < 
 
Low > 
 
Low < 
 
Low 
 
n.d. 
 

Medium 
 
Low < 
 
Low 
 
Low < 
 
n.d. 
 

Medium 
 
Low 
 
Low < 
 
Low < 
 
n.d. 
 

Medium 
 
Low 
 
Low 
 
Low > 
 
n.d. 
 

Medium > 
 
Low > 
 
Low < 
 
Low 
 
n.d. 
 

Rh. Monkey 
Human 
Rh. Monkey 
Human 
Rh. Monkey 
Human 
Rh. Monkey 
Human 
Rh. Monkey 
Human 

(Zheng et al., 2005) 
Menezo, 2007 
(Zheng et al., 2005) 
(Menezo, 2007) 
(Zheng et al., 2005) 
(Menezo, 2007) 
(Zheng et al., 2005) 
(Menezo, 2007) 
(Zheng et al., 2005) 
(Menezo, 2007) 



 
 
 
 
Appendix A 

 253 
 

Table A.2 (continued):  Expression of DNA repair genes in mammalian oocytes and preimplantation embryos (from mRNA analysis) 

DNA repair 
pathway 

Gene Oocyte 
GV-MII 

1 to 4-cell* 
stage embryo 

4  to 10-cell 
stage embryo 

Morula Blastocyst Hatched  
blastocyst 

Specie Reference 

Double 
Strand Break 
Repair 
 
 
 
 
 
 
 
 
 
 
 
 
 

BRCA1 
 
 
BRCA2 
 
G22P1 
 
MRE11A 
 
NBS1 
RAD50 
 
RAD51 
 
RAD54 
 

Medium 
Low 
High 
Medium 
Medium 
Low 
n.d. 
Low 
High 
n.d. 
n.d. 
Medium 
Medium 
Low 
Low 
Medium 

Medium 
n.d. / Low 
 
Low 
 
Low < 
 
Low < 
 
n.d. 
n.d. 
 
Medium < 
 
Low 
 

Medium < 
High 
 
Low > 
 
Low > 
 
Low < 
 
n.d. 
n.d. 
 
Medium > 
 
Low > 
 

Medium > 
Low 
 
Low > 
 
Low 
 
Low 
 
n.d. 
n.d. 
 
Medium > 
 
Low < 

Medium > 
Low > 
 
Medium 
 
Low > 
 
Low 
 
n.d. 
n.d. 
 
Medium > 
 
Low > 

Medium < 
Low 
 
High 
 
Low < 
 
Low > 
 
n.d. 
n.d. 
 
High 
 
Low > 

Rh. Monkey 
Human 
Human 
Human 
Human 
Rh. Monkey 
Human 
Rh. Monkey 
Human 
Rh. Monkey 
Rh. Monkey 
Human 
Rh. Monkey 
 Human 
Rh. Monkey 
Human 

(Zheng et al., 2005) 
(Wells et al., 2005b) 
(Menezo, 2007) 
(Wells et al., 2005b) 
(Menezo, 2007) 
(Zheng et al., 2005) 
(Menezo, 2007) 
(Zheng et al., 2005) 
(Menezo, 2007) 
(Zheng et al., 2005) 
(Zheng et al., 2005) 
(Menezo, 2007) 
(Zheng et al., 2005) 
(Menezo, 2007) 
(Zheng et al., 2005) 
(Menezo, 2007) 

Post-
Replication 
Repair 
 

UBE2A 
 
UBE2B 
 

Medium 
n.d. 
Medium 
n.d. 

Medium < 
 
Medium 
 

Medium < 
 
Medium > 

Medium 
 
Medium > 

Low 
 
Medium > 

Low 
 
Medium < 

Rh. Monkey 
Human 
Rh. Monkey 
Human 

(Zheng et al., 2005) 
(Menezo, 2007) 
(Zheng et al., 2005) 
(Menezo, 2007) 
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Table A.2 (continued):  Expression of DNA repair genes in mammalian oocytes and preimplantation embryos (from mRNA analysis) 

DNA repair 
pathway 

Gene Oocyte 
GV-MII 

1 to 4-cell* 
stage embryo 

4  to 10-cell 
stage embryo 

Morula Blastocyst Hatched 
blastocyst 

Specie Reference 

Cell Cycle 
Checkpoint 
Control 
 

APC 
BUB1 
CDKN1B 
MAD2 
MDM2 
MTBP 
PLK1 
PLK3 
RB1 
TP53 
 
 

High 
Low 
Low 
High 
Low 
Low 
Low 
Low 
Low 
Low 
Low 
Medium 

Low 
n.d./ Low 
Low 
Low 
Low 
Low > 
Low < 
Low < 
Low < 
Low > 
Low < 

Low > 
Low > 
Low > 
Low > 
Low < 
Low < 
Low < 
Low > 
Low > 
Low > 
Low > 

Low 
Low 
Low > 
Low < 
Low > 
Low < 
Low > 
Low < 
Low 
Low < 
Low > 

Medium 
Low > 
Low > 
Low > 
Low 
Low < 
Low 
Low 
Low > 
Low > 
Medium 

Medium > 
High 
Low > 
high 
Low < 
Low > 
Low 
Low < 
High 
Low < 
High 

Human 
Human 
Rh. Monkey 
Human 
Rh. Monkey 
Rh. Monkey 
Rh. Monkey 
Rh. Monkey 
Human 
Rh. Monkey 
Human 
Human 

(Wells et al., 2005b) 
(Wells et al., 2005b) 
(Zheng et al., 2005) 
(Wells et al., 2005b) 
(Zheng et al., 2005) 
(Zheng et al., 2005) 
(Zheng et al., 2005) 
(Zheng et al., 2005) 
(Wells et al., 2005b) 
(Zheng et al., 2005) 
(Wells et al., 2005b) 
Menezo, 2007 

DNA 
Damage 
Sensors 

ATM 
 
ATR 
 
BLM 
CHEK1 
CHEK2 
 
RFC1 
PCNA 
TOPBP1 

High 
Low 
Low 
High 
Low 
Medium 
Low 
High 
n.d./Low 
High 
Low 

High 
Low < 
Low < 
 
Low 
Medium < 
Low < 
 
n.d. 
High < 
Low < 

High > 
Low > 
Low > 
 
Low < 
Medium < 
Low 
 
Low 
High < 
Low > 

High < 
Low 
Low 
 
Low > 
Medium 
Low < 
 
Low > 
High < 
Low > 

High > 
Medium 
Low 
 
Low > 
Medium < 
Low > 
 
Low > 
High < 
Medium 

High > 
High 
Low > 
 
Low > 
Medium > 
Low 
 
Low > 
High > 
Medium > 

Rh. Monkey 
Human 
Rh. Monkey 
Human 
Rh. Monkey 
Rh. Monkey 
Rh. Monkey 
Human 
Rh. Monkey 
Rh. Monkey 
Rh. Monkey 

(Zheng et al., 2005) 
(Wells et al., 2005b) 
(Zheng et al., 2005) 
(Menezo, 2007) 
(Zheng et al., 2005) 
(Zheng et al., 2005) 
(Zheng et al., 2005) 
(Menezo, 2007) 
(Zheng et al., 2005) 
(Zheng et al., 2005) 
(Zheng et al., 2005) 

Gene expression levels are relative and comparable only for same specie / study. 
 * prior to genome activation;  Rh. Monkey: Rhesus monkey;  n.d.: not detected /expressed 

>: Increase in expression level relatively to previous stage; <: Decrease in expression level relatively to previous stage 
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B: Materials and Methods 
 

General laboratory chemicals were obtained from VWR International (UK) and were of 

AnalaR grade.  This includes all general reagents like ethanol and salts used for the 

preparation of buffers. 

 

Adenosine 5’-triphosphate disodium salt hydrate (ATP), Beta-mercaptoethanol (Beta-

ME), Bovine serum albumin (BSA), Bromophenol blue, Dimethylsulphoxide (DMSO), 

Dithiothreitol (DTT), Ethidium bromide, Ethylene diamine tetraacetic acid (EDTA), 

Formamide (deionised), Glucose, Glutathione (reduced), Glycerol, Igepal, Phenol red, 

Polyvinyl alcohol (PVA), Sodium acetate (3M solution), Sodium dodecyl sulfate (SDS), 

Tricine and Tween 20 were of molecular grade and supplied by Sigma Chemical 

Company (UK).  All reagents were stored at room temperature except for ATP and 

glutathione, which were stored at 4ºC, and BSA, which was stored at -20ºC.  ExoI and 

SAP were obtained from New England Biolabs (UK) and PCR grade Proteinase K was 

obtained from Roche (UK).  All enzymes were stored at -20ºC. 

 

A CP323P Sartorius scale was used to weigh the necessary chemicals.  All solutions 

were prepared with deionised Millipure water and sterilised by autoclaving before use.  

 

B.1 Solutions for single cell isolations 

PBS/PVA PBS supplemented with 0.1% (w/v) PVA 

PBS/PVA/ RNasin®** 0.75% (v/v) or 0.3U/µl RNasin® in PBS/PVA 

Dissociation buffer (DB)* 0.8g NaCl, 0.02g KCl, 0.005g Na H2PO4, 0.1g 

Glucose, 0.1g EDTA, 0.1g NaHCO3 and 0.010g phenol 

red in 100ml Millipure water  

 

**Prior to use, 40µl of 10mg/ml BSA were added to 

960µl of dissociation medium 

Alkaline lysis buffer (ALB)** 200mM NaOH and 50mM  DTT 
*stored at 4ºC 
**freshly prepared prior to use 
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B.2 Solutions for DNA extraction from whole blood 
 

TKM1 

(low salt buffer) 

10mM Tris-HCL (pH 7.6), 10mM KCl, 10mM MgCl2 

and 2mM EDTA 

TKM2 

(high salt buffer) 

10mM Tris-HCL (pH 7.6), 10mM KCl, 10mM MgCl2, 

0.4mM NaCl and 2mM EDTA 

TE buffer 10mM Tris-HCl and 1mM EDTA (pH 8.0) 

 

 

B.3 Solutions for Agarose Gel Electrophoresis 
 

10× TBE buffer+ pH 8.0 90mM Tris-HCl pH 8.0, 90mM Boric acid and 2mM 

EDTA disodium salt (Na2EDTA) 

Loading buffer 70% (v/v) 1×TBE and 30% Glycerol + 0.25% (w/v) 

Bromophenol blue  

Ethidium Bromide solution 10mg/ml ethidium bromide 
+ 1× TBE was prepared from the dilution of stock 10× TBE buffer 

 

 

B.4 Solutions for separation of DNA strands using Dynabeads® 
 

2× B&W buffer* 10mM Tris-HCl (pH 7.5), 1mM EDTA and 2M NaCl 

1× B&W buffer* 1 in2 dilution of 2× B&W buffer 

Sodium Acetate 3M Sodium Acetate solution purchased from Sigma 

0.1M NaOH** 1M NaOH was freshly prepared and diluted (1/10) to 

0.1M 
 

*stored at 4ºC 
**0.1M NaOH can be stored at -20º for up to 3 months. 
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B.5 DNA Purification using the MinElute PCR Purification kit (QIAGEN, UK) 

Protocol: 

5 volumes of PB buffer were added to one volume of PCR product (250µl to 50µl 

amplified DNA) and mixed well by pipetting.  The colour was checked for suitable 

pH≤7.5, if necessary the pH was adjusted with sodium acetate solution (pH 5.0).  The 

mixture was transferred to a MinElute column placed in a 2ml tube (provided) and 

centrifuged at 13,000 rpm (10,000g) for 30 seconds at room temperature in a bench-top 

microcentifuge (MSE Microcentaur, Sanyo, UK).  The flow-through was discarded and 

the MinElute column was placed back in the same tube.  750µl of buffer PE were added 

to the column and the centrifugation step was repeated as above, discarding the flow-

through and replacing the MinElute column in the same tube.  This was followed by 

another centrifugation for 1 minute at 13,000 rpm (10,000g).  The MinElute column 

was then transferred to a new collection tube.  10µl of buffer EB were added to the 

centre of the MinElute column membrane.  The new tube with the column was left to 

stand for one minute and then centrifuged for 1 minute at 13,000 rpm (10,000g).  The 

MinElute column was discarded and the purified DNA (free from primers, dNTPs, 

enzymes or salts) was obtained in the collection tube.  This DNA was immediately used 

or stored at 4ºC. 

 

Solution composition: 

Buffer PB contains guanidine HCl and isopropanol, add pH indicator 

Buffer PE Add 96-100% ethanol (~80% v/v) 

Elution buffer EB 10mM Tris.Cl (pH 8.5) 

 

 

B.6 Nicking of heteroduplex DNA substrates 

 
1X NE Buffer 2 10mM Tris-HCl, 50mM NaCl, 10 mM MgCl2, 

1mM dithiothreitol (DTT) (pH 7.9 at 25°C) 
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B.7 Solutions for Exposure of Heteroduplex Constructs to Nuclear Extracts 
 

MMR Reaction Mix 6.67ng/µl substrate (heteroduplex construct), 6.67g/l 

nuclear extract and 50ng/µl BSA 

Solution 1 20mM Tris-HCl (ph 7.6), 1.5mM ATP, 1mM 

Glutathione, 0.1mM of each of the 4 dNTPs, 5mM 

MgCl2 and 110mM KCl 

Stop Solution 25mM EDTA, 0.67% SDS, 90µg/ml Proteinase K 

Nuclear Extracts dilution 

buffer++ 

20mM Hepes (pH 7.9), 100mM KCl, 1mM MgCl2, 

20% glycerol, 0.5mM PMSF and 0.5mM DTT 
 
++ Buffer in which the nuclear extracts were provided 
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C: Results 

Figure C.1:  ABI PrismTM 3100 panels showing sequences obtained from selected homozygous DNA samples used to prepare G.T and A.C heteroduplexes 

a. Homozygous control A/A 

 

 
  

 rs 1981929 SNP 
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Figure C.1 (continued):  ABI PrismTM 3100 panels showing sequences obtained from selected homozygous DNA samples used to prepare G.T and A.C 

heteroduplexes 

 

b. Homozygous control G/G 

 

 
  

 rs 1981929 SNP 
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Figure C.2:  ABI PrismTM 3100 panels showing the sequences obtained with primer set A (MSH2_4SNPs) for the selection of informative SNPs for the couple   

undergoing PGD for the MSH2 exon 8 deletion 

a. Female partner 

 

b. Proband (male) 

 

 rs7607076 SNP 

 rs17224423 SNP  rs17036586 SNP 
 rs7607312 SNP 

 rs7607076 SNP 

 rs17036586 SNP 
 rs7607312 SNP 

rs17224423 SNP 
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Figure C.2 (continued):  ABI PrismTM 3100 panels showing the sequences obtained with primer set A (MSH2_4SNPs) for the selection of informative SNPs for the 

couple   undergoing PGD for the MSH2 exon 8 deletion 

c. Affected relative 

 
 

 

  

 rs7607076 SNP 

 rs17036586 SNP 
 rs7607312 SNP 

 rs17224423 SNP 
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Figure C.3:  ABI PrismTM 3100 panels showing the sequences obtained with primer set B (rs1981929) for informativity assessment of the rs1981929 SNP for the 

couple undergoing PGD for the MSH2 exon 8 deletion 

a. Female partner 

 
 

b. Proband (male) 

 

 rs1981929 SNP 

 rs1981929 SNP 
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Figure C.3 (continued):  ABI PrismTM 3100 panels showing the sequences obtained with primer set B (rs1981929) for informativity assessment of the rs1981929 

SNP for the couple undergoing PGD for the MSH2 exon 8 deletion 

c. Affected relative 

 
 

 

  

 rs1921929 SNP 
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Figure C.4:  ABI PrismTM 3100 panels showing the sequences obtained with the BRCA1 c.3339T>G primer set to confirm the mutation specified in the patient’s 

genetic report 

a. Female partner 

 

b. Proband (male) 

 

  c.3339 
 

  c.3339T>G  
    Both C+A peaks as heterozygous individual 
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Figure C.4 (continued):  ABI PrismTM 3100 panels showing the sequences obtained with the BRCA1 c.3339T>G primer set to confirm the mutation specified in the 

patient’s genetic report 

c. Unaffected relative 

 

 

 

  

  c.3339 (TAG) 
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Table C.1: Complete list of R-values and ΔR-values calculated for all heteroduplex samples exposed to nuclear extracts (listed in Table 3.13) 

Sample 
number 

Loop 
size 

Nick 
 

Calculation of R-value* 
 

R-value 
unprocessed substrate 

R-value 
negative control 

R-value 
substrate + N.E. 

ΔR post exprosure 
to nuclear extracts 

1 3 no p.h. 582 strand/p.h. 585 strand 0.96 0.99 0.98 0.01 
2 3 long p.h. nicked 585 strand/p.h. 582 strand 1.25 1.28 1.32 -0.04 
3 3 long p.h. nicked 585 strand/p.h. 582 strand 1 0.92 0.58 0.34 
4 3 long p.h. nicked 585 strand/p.h. 582 strand 1.25 1.28 1.17 0.11 
5 3 short p.h. nicked 582 strand/p.h. 585 strand 0.75 0.72 0.62 0.1 
6 3 long p.h. nicked 585 strand/p.h. 582 strand 0.83 1.34 1.34 0 
7 3 short p.h. nicked 582 strand/p.h. 585 strand 1.22 1.31 1.31 0 
8 3 short p.h. nicked 582 strand/p.h. 585 strand 1.78 1.76 1.73 0.03 
9 3 long p.h. nicked 585 strand/p.h. 582 strand 1 0.92 0.7 0.22 
10 3 short p.h. nicked 582 strand/p.h. 585 strand 0.75 0.72 0.52 0.2 
11 3 short p.h. nicked 582 strand/p.h. 585 strand 1.21 1.28 1.19 0.09 
12 3 short p.h. nicked 582 strand/p.h. 585 strand 1.78 1.74 1.69 0.05 
13 3 no p.h. 582 strand/p.h. 585 strand 1.04 0.93 0.91 0.02 
14 3 no p.h. 582 strand/p.h. 585 strand 1.06 1 1.01 0.01 
15 3 short p.h. nicked 582 strand/p.h. 585 strand 2.69 2.66 2.6 -0.06 
16 3 short p.h. nicked 582 strand/p.h. 585 strand 0.75 0.72 0.65 0.07 
17 3 no  p.h. 582 strand/p.h. 585 strand 0.96 0.99 0.98 0.01 
18 3 long p.h. nicked 585 strand/p.h. 582 strand 1.25 1.28 1.28 0 
19 3 no p.h. 582 strand/p.h. 585 strand 1.06 1 0.98 0.01 
20 3 short p.h. nicked 582 strand/p.h. 585 strand 1.04 0.93 0.94 0.01 

* The numbers indicate the sizes (in bases) of the two strands in the heteroduplex construct; p.h.: peak height; + N.E.: exposed to nuclear extract 
∆R = Rnegative control – Rsample exposed to N.E., where R = peak height of short or nicked strand/peak height of complementary strand. 
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Table C.1 (continued): Complete list of R-values and ΔR-values calculated for all heteroduplex samples exposed to nuclear extracts (listed in Table 3.13) 

Sample 
number 

Loop 
size 

Nick 
 

Calculation of R-value 
 

R-value 
unprocessed substrate 

R-value 
negative control 

R-value 
substrate + N.E. 

ΔR post exprosure 
to nuclear extracts 

21 21 no p.h. 561 strand/p.h. 582 strand 0.94 0.86 0.81 0.05 
22 21 long p.h. nicked 582 strand/p.h. 561 strand 1.8 1.76 1.89 -0.13 
23 21 long p.h. nicked 582 strand/p.h. 561 strand 1.8 1.76 1.75 0.01 
24 21 short p.h. nicked 561 strand/p.h. 582 strand 2 1.02 0.95 0.07 
25 21 no p.h. 561 strand/p.h. 582 strand 1.38 1.48 1.36 0.12 
26 21 no p.h. 561 strand/p.h. 582 strand 1.5 1.6 1.62 -0.02 
27 21 no p.h. 561 strand/p.h. 582 strand 1.5 1.6 1.3 0.3 
28 21 no p.h. 561 strand/p.h. 582 strand 0.94 0.86 0.83 0.03 
29 21 long p.h. nicked 582 strand/p.h. 561 strand 1.8 1.76 1.87 -0.11 
30 21 long p.h. nicked 582 strand/p.h. 561 strand 1.68 1.59 1.6 -0.01 
31 24 no p.h. 561 strand/p.h. 585 strand 0.93 0.9 0.81 0.09 
32 24 short p.h. nicked 561 strand/p.h. 585 strand 0.89 0.91 0.87 0.04 
33 24 no p.h. 561 strand/p.h. 585 strand 1.49 1.59 1.62 -0.03 
34 24 no p.h. 561 strand/p.h. 585 strand 1.49 1.59 1.3 0.29 
35 24 short p.h. nicked 561 strand/p.h. 582 strand 1.68 1.59 1.4 0.19 
36 24 no p.h. 561 strand/p.h. 585 strand 1.48 1.6 1.55 0.05 
37 24 no p.h. 561 strand/p.h. 585 strand 1.38 1.48 1.37 0.11 
38 24 long p.h. nicked 585 strand/p.h. 561 strand 1.69 1.59 1.58 0.01 

* The numbers indicate the sizes (in bases) of the two strands in the heteroduplex construct; p.h.: peak height; + N.E.: exposed to nuclear extract 
∆R = Rnegative control – Rsample exposed to N.E., where R = peak height of short or nicked strand/peak height of complementary strand   
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D: Concluding remarks & future work 

Table D.1: List of DNA repair genes to be investigated in human oocytes and preimplantation embryos for mRNA expression analysis 
Gene 
 

DNA damage response pathway 
 

Expression in preimplantation embryos  
according to other studies 

Specie 
 

Reference 
 

APEX BER Moderate Rh. Monkey (Zheng et al., 2005) 
OGG1* BER Not detected Rh. Monkey (Zheng et al., 2005) 
UNG*, MPG*, SMUG1*,TDG*  BER ? - - 
XRCC1* BER Low Rh. Monkey (Zheng et al., 2005) 
BUB1 CCCC Low to high at HB stage Human (Wells et al., 2005b) 

TP53 CCCC Low 
Low to high at HB stage 

Rh. Monkey 
Human 

(Zheng et al., 2005) 
(Wells et al., 2005b) 

PCNA* DNA polymerase/DNA damage detection High Rh. Monkey (Zheng et al., 2005) 

BRCA1 DSBR Moderate 
Low overall; High at 4-cell to 10–cell stage 

Rh. Monkey 
Human 

(Zheng et al., 2005) 
(Wells et al., 2005b) 

BRCA2* DSBR Low to high at HB stage Human (Wells et al., 2005b) 
MRE11A DSBR Low Rh. Monkey (Zheng et al., 2005) 
RAD50* DSBR Not detected Rh. Monkey (Zheng et al., 2005) 
RAD51 DSBR Moderate; High at HB stage Rh. Monkey (Zheng et al., 2005) 
RAD54* DSBR Low Rh. Monkey (Zheng et al., 2005) 
XRCC5 (Ku70) DSBR ? - - 
ATM 
 

DSB Repair & DNA damage detection 
 

High 
Low to high at HB stage 

Rh. Monkey 
Human 

(Zheng et al., 2005) 
(Wells et al., 2005b) 

MLH1 MMR Low Rh. Monkey (Zheng et al., 2005) 
MLH3 MMR ? - - 
MSH2* MMR Low Rh. Monkey (Zheng et al., 2005) 
MSH3* MMR High Rh. Monkey (Zheng et al., 2005) 
MSH5* MMR ? - - 
MSH6 MMR Low Rh. Monkey (Zheng et al., 2005) 
PMS1* MMR ? - - 
PMS2 MMR Low Rh. Monkey (Zheng et al., 2005) 
CDK7* NER ? - - 
ERCC1 NER ? - - 
ERCC2 NER Low Rh. Monkey (Zheng et al., 2005) 
LIG1* NER ? - - 
ATR* NER & DNA damage detection Low Rh. Monkey (Zheng et al., 2005) 

*DNA repair genes found to be differentially expressed in human blastocysts compared to MII oocytes according to our microarray results 
?: No data available in the literature; CCCC: Cell Cycle Checkpoint Control; HB: Hatched Blastocyst 
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