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Abstract

Imagination is more important than knowledge...

Albert Einstein

Computational haemodynamics play a central role in the understanding of blood be-

haviour in the cerebral vasculature, increasing our knowledge in the onset of vascular

diseases and their progression, improving diagnosis and ultimately providing better

patient prognosis. Computer simulations hold the potential of accurately characteris-

ing motion of blood and its interaction with the vessel wall, providing the capability to

assess surgical treatments with no danger to the patient. These aspects considerably

contribute to better understand of blood circulation processes as well as to augment

pre-treatment planning. Existing software environments for treatment planning con-

sist of several stages, each requiring significant user interaction and processing time,

significantly limiting their use in clinical scenarios.

The aim of this PhD is to provide clinicians and researchers with a tool to aid

in the understanding of human cerebral haemodynamics. This tool employs a high

performance fluid solver based on the lattice-Boltzmann method (coined HemeLB),

high performance distributed computing and grid computing, and various advanced

software applications useful to efficiently set up and run patient-specific simulations.

A graphical tool is used to segment the vasculature from patient-specific CT or MR

data and configure boundary conditions with ease, creating models of the vasculature

in real time. Blood flow visualisation is done in real time using in situ rendering

techniques implemented within the parallel fluid solver and aided by steering capa-

bilities; these programming strategies allows the clinician to interactively display the

simulation results on a local workstation. A separate software application is used

to numerically compare simulation results carried out at different spatial resolutions,

providing a strategy to approach numerical validation. This developed software and

supporting computational infrastructure was used to study various patient-specific

intracranial aneurysms with the collaborating interventionalists at the National Hos-

pital for Neurology and Neuroscience (London), using three-dimensional rotational

angiography data to define the patient-specific vasculature. Blood flow motion was

depicted in detail by the visualisation capabilities, clearly showing vortex fluid flow



features and stress distribution at the inner surface of the aneurysms and their sur-

rounding vasculature. These investigations permitted the clinicians to rapidly assess

the risk associated with the growth and rupture of each aneurysm. The ultimate goal

of this work is to aid clinical practice with an efficient easy-to-use toolkit for real-time

decision support.
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Summary

The true teacher defends his pupils against his own personal influence

Amos Bronson Alcott

Cardiovascular disease is the cause of a large number of deaths in the developed

world [7]. The undestanding of the blood behaviour in the vascular system, i.e.

haemodynamics, and its interaction with the tissues of the vasculature plays a crucial

role in the knowledge of the genesis, progression, diagnosis and treatment of vascular

diseases, such as aneurysms, arteriovenous malformations and atherosclerosis.

Patient-specific medicine is the tailoring of medical treatments based on the char-

acteristics of an individual patient. Since patient-specific data can be used as the

basis of simulation, treatments can be assessed for effectiveness with respect to the

patient in question before being administered, giving clinicians more information to

make their decisions. For example, planned surgery of an aneurysm could benefit

from a better understanding of the processes related to its formation, progression and

rupture, which are not well understood yet.

In the last fifteen years, computational haemodynamics has played a key role in

the understanding of haemodynamic phenomena and the improvement of medical

treatment.

This work is intended to aid the understanding of human intra-cranial patient-

specific haemodynamics through the use of efficient software consisting of a parallel

fluid solver, high performance computing and grid computing, and a number of ad-

vanced software applications which support effective patient-specific setups and in-

vestigations. The ultimate goal of this work is to aid clinical practice with an efficient

and easy-to-use toolkit for real-time decision support.

This thesis begins with an overview of blood circulation, cerebrovascular diseases

and imaging techniques used nowadays for diagnostic purposes, and computational

approaches which accurately characterise blood flow. In particular, some of the works

discussed at the end of the first chapter provide evidence of the correlation between

specific haemodynamic factors and vascular pathology progression, such as the effect

of a very low wall shear stress on the wall remodelling and aneurysm growth. The

employment of the simulation tool has played a crucial role in this context. In Chap-
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ter 6, key points related to those studies and discoveries are taken into account to

qualitatively assess rupture risk of malformed patient-specific cerebrovasculatures.

The simulation technique employed in this work is the lattice-Boltzmann

method which is the subject of the second chapter. Here, theoretical and practi-

cal aspects of the lattice-Boltzmann method are described. Furthermore, the main

advantages and limitations of the lattice-Boltzmann method with respect to other

techniques adopted to describe fluid flow dyanamics are discussed.

In this work, a high performance lattice-Boltzmann blood flow simulator, called

HemeLB, has been developed. Its description is the topic of Chapter 3; specifically,

the technical and performance aspects of HemeLB are outlined in detail.

The fourth chapter begins with a literature review concerning efficient visualisation

of static and time-varying fluid flow simulations. Then, the visualisation technique

developed and exploited in this work, and a discussion about its advantages and

limitations are presented. Specifically, our visualisation method adopts an efficient

in situ fluid flow rendering approach, incorporated in HemeLB, to effectively provide

visual feedback of the simulation results. The corresponding software application has

been enhanced with steering capabilities, built into HemeLB, to permit interactive

exploration, steering and analysis of the simulation.

An EPSRC-funded project called GENIUS (Grid Enabled Neurosurgical Imaging

Using Simulation) started during my PhD research with the aim of creating a grid-

based interactive simulation environment and integrate it into the clinical practice to

aid the knowledge of the genesis, progression, diagnosis and treatment of vasculature

diseases. The fifth chapter focusses on the grid infrastructure developed within the

GENIUS project. The simulation, visualisation and steering capabilities of HemeLB

played a fundamental role in this, but the fifth chapter discusses other aspects impor-

tant for the success of the GENIUS project, such as advance reservations, emergency

computing, the anonymisation of patient data and the seamless integration and usage

of all the components of the GENIUS middleware.

Chapter six firstly presents various fluid flow results of rectilinear geometries to

validate different boundary condition methods and the model specifically used in

HemeLB. Then, patient-specific blood flow models using different simulation setups

are presented. Here, various haemodynamic aspects related to three aneurysms are

discussed in detail to draw conclusions about their rupture risk. Furthermore, the

efficacy of our interactive simulation environment is demonstrated.

The thesis ends with a brief summary, concluding remarks and a discussion about

future work.
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Chapter 1

Haemodynamics

Teachers open the door. You enter by yourself.

Chinese Proverb

The interplay between haemodynamics and the mechanical and biological phenomena

associated with the wall of the vessels plays a crucial role in the diagnosis, progression

and treatment of vascular diseases.

This chapter provides a general overview of haemodynamics with some emphasis

on cerebral circulation and malformations, and outlines several aspects and studies

conducted in the last fifteen years to enhance the understanding of the pivotal points

concerning vascular pathologies, such as the interplay between their formation or

progression and blood flow behaviour.

1.1 Blood circulation

Blood is transported through the complex network of vessels, which form the cardio-

vascular system. In general, blood behaves like a Newtonian fluid in large vessels [8],

i.e. with diameter greater than 1 mm. The relationship between the shear rate and

shear stress of the fluid is linear and is proportional to the viscosity. In smaller vessels,

such as the capillaries, the blood behaviour is non-Newtonian [8].

The blood flow through the cardiovascular system is driven by the action of the

heart, which yields a pressure difference between the aorta and the veins. The blood

passes from the capillaries where the dissolved gasses and metabolites are exchanged

by diffusion; the resulting deoxygenated blood then returns to the heart via the veins.

1.1.1 Cerebral circulation

The brain is supplied with blood through the two vertebral arteries and the two inter-

nal carotid arteries (ICAs), accounts for 15 % of total cardiac output and consumes

25 % of the oxygen, which is substantial. The vertebral arteries join to form the
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basilar artery. The basilar artery and the ICAs fuse together to form the Circle of

Willis (CoW). The basilar artery has two branches, the left and right superior cerebral

arteries (SCAs). The basilar artery branches into the left and right Posterior Cerebral

Arteries (PCAs) which are linked to the ICAs through the Posterior Communicat-

ing arteries (PcomAs). The PcomAs divide the PCAs into the P1 and P2 segments.

The ICAs become the Middle Cerebral arteries (MCAs) and the Anterior Cerebral

Arteries (ACAs) branch from them. The anterior communicating artery (AcomA)

connects the ACAs and divides them into the A1 and A2 segments. The anatomy of

this structure is illustrated in Fig. 1.1.

Figure 1.1: Schematic illustration of the Circle of Willis.

The CoW usually allows the blood flow to be maintained even if one of the ar-

teries becomes blocked. Many people, in fact, do not experience serious cerebral

problems even if one of the important arterial links does not exist. Variations in the

CoW include one or more absent vessels, abnormally thin vessels and duplication or

triplication of vessels.

Blood passes from the veins called dural venus sinuses which drain into the internal

jugular vein. One of the largest veins is the Great Cerebral Vein, or vein of Galen.

Mean arterial pressure is typically between 60 and 140 mm·Hg. Cerebral vessels

have the ability to locally maintain a constant blood flow despite drastic pressure

alterations such as those following a vessel rupture or a vessel obstruction. For exam-

ple, if pressure is decreased by partially occluding an artery, blood flow initially falls,
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then returns towards normal levels over the next few minutes. Conversely, increases

in the mean arterial blood pressure lead to constriction of the vessels which in turn

reduces blood flow. The autoregolation mechanism is intrinsic to the vessels because

it is not subjected to neural and hormonal influences.

1.1.2 Blood flow parameters

The speed of sound within blood depends on Haematocrit1, temperature and fre-

quency and is between 1500 m/s and 1600 m/s while its viscosity substantially de-

pends on Haematocrit and shear rate [9]. Any part of the blood that is not a red

blood cell is occupied by plasma, whose density depends only on temperature and

is between 1000 kgm−3 and 1100 kgm−3. The viscosity depends on many factors,

but is fairly constant at high shear rates. A pulsatile period under normal physical

conditions is close to 1 s. The pressure at the ICA or basilar artery is often taken

to be periodic, with a systolic pressure of 120 mm·Hg and a diastolic pressure of

80 mm·Hg [1,10,11]. The waveform is shown in Fig. 1.2 [1]. The blood pressure grad-

ually decreases and becomes less pulsatile further down the arterial tree, as shown in

Fig. 1.3. The pressure waveforms of the ICAs are typically in phase, while they may

lag the flow at the vertebral arteries by 0.025 s or less [12]. A typical flow rate wave

form of the right ICA is shown in Fig. 1.4. The flow rates in each ICA and vertebral

artery are approximately 4.8 ml/s and 0.7 ml/s respectively; the venous pressure is

between 5 mm·Hg and 20 mm·Hg [13].

Figure 1.2: A typical pressure waveform at the internal carotid artery. Image taken

from [1].

1Proportion of blood volume that is occupied by red blood cells.
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Figure 1.3: Blood pressure as a function of arterial vessel calibre. This illustration

provides an indicative representation of the pulsatile pressure waveform as a function

of artery type. Image taken from [2].

Figure 1.4: Volumetric flow rate (in ml/s) waveform for three pulsatile cycles within

the right internal carotid artery measured by using phase contrast magnetic resonance

angiography, discussed in Sec. 1.3.2. Image taken from [3].
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1.2 Cerebrovascular diseases

Within this subsection, cerebrovascular diseases, such as cerebral atherosclerosis, cere-

bral aneurysm and arteriovenous malformation, are discussed in detail.

1.2.1 Cerebral atherosclerosis

Atherosclerosis is characterised by the presence of a plaque on the internal layer of

an artery. This plaque has the potential to rupture, or to occlude the affected artery

through the formation of a blood clot (thrombus). As a consequence, atherosclerosis

may have a great influence on the blood flow behaviour and the blood supply to

vital organs. For instance, atherosclerosis may provoke ischaemia, a reduction in

blood supply which destroys the brain tissue, or a stroke which in turn can lead to

haemorrhaging (bleeding).

In the case of thrombus, thrombolytic agents or anticoagulants may help to remove

the clot. Other therapies include the reduction of factors which have high risk associ-

ated with atherosclerosis, such as hypertension, diabetes and smoking. Alternatively,

an arterial deposit can be surgically removed or treated by angioplasty, which is the

widening of a vessel by using folded balloons followed by a stent placement. Finally,

a bypass can supply enough blood between the sections of the artery surrounding the

atherosclerosis.

1.2.2 Arteriovenous malformations

Figure 1.5: Normal vascular configuration (left) and AVM (right). Note that the

present AVM has a large (abnormal) vascular link (”fistula”) in the centre while

normal capillaries are around it. Figure taken from a presentation by Dr. Stefan

Brew, National Hospital for Neurology and Neuroscience, Queen Square, London.

An arterio-venous malformation (AVM) is an abnormal connection between veins

and arteries, as shown in Fig. 1.5. Structurally, arteries divide and sub-divide repeat-

edly, eventually forming a sponge-like capillary bed. An AVM lacks the high resistance
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of capillaries on the blood flow; it also causes the surrounding area to be deprived

of the functions of the capillaries e.g. removal of CO2 and delivery of nutrients to

the cells. The resulting tangle of blood vessels, often called a nidus has no capillaries

and abnormally direct connections between high-pressure arteries and low-pressure

veins. The small vessels of the nidus are prone to bleeding because their muscle layer

is deficient. One type of AVM is the vein of Galen aneurysm malformation (VGAM).

Treatment ranges from surgical resectioning, radiosurgery, embolisation to a combi-

nation of these; embolisation is the occlusion of blood flow with a glue deposited

upstream of the nidus by the use of endovascular catheters. The aim of treatment is

the complete removal of the AVM, since partial removal does not mitigate the risk of

haemorrhage. Surgical resectioning offers an immediate solution but is risky.

1.2.3 Aneurysms

An aneurysm is a localized dilation of a vessel caused by disease or weakening of the

vessel wall. Aneurysms most commonly occur in arteries at the CoW and in the aorta.

The bulge in a blood vessel can burst and lead to death at any time. The larger an

aneurysm becomes, the more likely it is to burst. Given enough time the aneurysms

which grow will inevitably experience rupture if not treated and if the aneurysm body

does not experience blood clotting so as to regulate the local circulation to a normal

behaviour. However, most aneurysms are small and around 50–80 % of all cerebral

aneurysms do not rupture during the course of the patient’s lifetime.

Aneurysm formation is due to a reduction in the thickness of the vessel wall whose

structural defects combined with haemodynamic forces cause that wall to swell.

The danger associated with aneurysm rupture is proportional to its size and aspect

ratio, and to some haemodynamic patterns (see Sec 1.4.1). An aneurysm is classified

as being large or giant if its size is between 1 cm and 2.5 cm or greater than 2.5 cm

respectively. An aneurysm may be fusiform orsaccular, in which case it resembles a

bubble (Fig. 1.6) [14].

Intracranial aneurysms are treated through clipping, coiling, embolisation or the

application of a stent. During clipping a permanent metal clip is located at the neck

of the aneurysm as in Fig. 1.7. Clipping can be incomplete or yield recurrence and

haemorrhage.

Aneurysm coiling is carried out by using a catheter to position a coil within the

aneurysm. The coil should fill the volume of the aneurysm; as a consequence, blood

clots within the aneurysm and flows outside. Coiling is illustrated in Fig. 1.8. Risks

to the patient associated with coiling include infections, haematomas, occlusion of the

parent artery, thromboembolic phenomena and rupture of the aneurysm.

A stent could be used to redirect the blood flow through the parent artery and

not the aneurysm (Fig. 1.9); the corresponding alteration in blood flow is facilitated
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Figure 1.6: A saccular (or bubble) aneurysm and a fusiform aneurysm on the left and

right hand side respectively.

if a blood clot forms on the spaces between the struts of the stent, which may occur.

Alternatively, the parent artery may be occluded by injecting glue.

Figure 1.7: Aneurysm clipping. Image taken from [4].

1.3 Angiography

Several imaging techniques are used nowadays to visualise the inside, or lumen, of

blood vessels. A medical imaging technique of this type is called ”angiography”. Some

of them are also employed to extract haemodynamic information, such as fluid velocity

and flow rate at some locations within the vessels. A non-invasive imaging method

is not risky and thereby more feasible and attractive than an invasive approach.

This argument is emphasised by the prospect to integrate blood flow simulation into

the clinician workflow and to assist doctors in the treatment of vascular pathologies

(see Sec. 1.5). The more important aspects of imaging techniques discussed here

concern the resolution and contrast which are crucial to perform reliable blood flow

modelling. Specifically, the employment of an accurate blood flow solver is important
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Figure 1.8: Aneurysm coiling. Image taken from [4].

Figure 1.9: A stent redirects the flow through the parent artery. Image taken from [4].
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for numerical investigation purposes but a precise geometrical representation of the

vessel walls is the first step towards a fully faithful simulation of the blood flow therein

(see Sec 1.4.1). Unfortunately, the spatial resolution of the most accurate imaging

techniques (0.5 mm) is not much higher than the typical diameter of the main cerebral

arteries (1-5 mm). However, it seems that blood flow simulation results pertaining to

poor geometrical models do not qualitatively differ from those achieved by accurately

defining the vasculature wall [15].

1.3.1 Angiography based on X-rays

During data acquisition through X-ray angiography, two scanners emit X-rays to-

wards the system under investigation along two (ideally orthogonal) projections. A

contrast agent is injected into the vascular tree to enhance the interaction between

X-rays and blood. Then, the resulting image slices are digitally subtracted from a

pre-injection scan to remove the presence of static material. This requires a double

dose of radiation and is called Digital Subtraction angiography (DSA). The contrast

and spatio-temporal resolutions are better than those obtained via Magnetic Reso-

nance angiography (MRA) and Computer Tomography (CT) scans [16] (see below);

unfortunately, catheterisation and adverse reaction to the contrast agent make X-ray

angiography a significantly invasive technique. Modern equipment usually provides

an isotropic resolution of 0.2–0.3 mm.

A recent development is three-dimensional rotational angiography (3DRA) [14,17],

for which the volumetric information is obtained through the acquisition of a series of

two-dimensional rotational projections at different angles. Unfortunately, 3DRA and

DSA are unable to visualize an entire lesion fed by more than one artery if a contrast

agent does not simultaneously pass through both ICAs (which entails performing two

simultaneous injections). Alternatively, the contrast agent may be injected into the

aortic arch, but this causes a serious patient risk. Recently, Castro et al. [18] have

reported a computational approach which merges the two sides of the vascular tree.

Finally, computer tomography angiography (CTA) uses X-rays to produce the

images but, unlike X-ray angiography, the brain is scanned in slices.

1.3.2 Magnetic Resonance Imaging

During magnetic resonance imaging (MRI), contrast is obtained by measuring, under

a static magnetic field, the difference in the magnetic spin relaxation properties of the

scanned materials. MRI is usually characterised by an inferior spatial resolution with

respect to techniques based on X-rays. However, MR angiograms can be enhanced

with paramagnetic contrast agents. Usually, the volumetric resolution is 0.4–1 mm.

A technique known as phase contrast MRI (PC-MRI) relies on appropriately vary-
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ing the magnetic field and can provide two and occasionally three-dimensional images

of one or more velocity components in a time-resolved manner [16]. For instance,

Wetzel et al. [19] evaluated this technique and quoted that the resolution was 0.05 s

in time and 1.5 mm in space; the scan took 15–20 minutes and the entire processing

time was about one hour. This data acquisition offers the prospect to probe the time-

varying velocity flow field of a real vasculature by avoiding to introduce error sources

connected to the assumptions which are typically made by simulation approaches;

for example, numerical blood flow predictions are usually based on assumptions like

rigid walls and Newtonian flow and are influenced by the approximate computerised

representation of the vasculature. However, the resolution of the blood flow obtained

with MRI is not sufficient to calculate and visualise secondary flow parameters, such

as the wall shear stress (WSS).

PC-MRA is usually used in image-based computational fluid dynamics (CFD) ap-

plications for providing flow-rate waveforms at some planar locations [3] like boundary

conditions, which allows cerebral circulation simulations to be more subject-specific.

For instance, with four optimally placed imaging planes, the boundary conditions at

all afferent and efferent arteries to the CoW can be specified [3]. The accurate mea-

surement of pressure, instead, involves the placement of a transducer inserted via a

catheter, which is invasive and dangerous for the patient.

1.3.3 Ultrasound

Ultrasound imaging is achieved through high-frequency (1–10 MHz) sound irradia-

tion. The intensity of the reflected soundwave is dependent on the properties of the

materials involved. Ultrasound images are normally collected without a reference

point, so these images are difficult to correlate in three-dimensions, which substan-

tially limits the applicability of ultrasound imaging in the context of computational

haemodynamics. Like PC-MRI, Doppler ultrasound can be used to provide real-time

measurements of the blood flow velocities within the vessel.

1.4 Blood flow modelling

Blood flow modelling entails handling complex phenomena which are characterised by

different time and space scales. Approximations are mandatory in order to emulate

the behaviour of macroscopic sections of the vascular tree within a reasonable compu-

tational time, and therefore to give useful insights into the interplay effects between

blood flow patterns and mechanisms associated with vascular pathologies.

In contrast to invasive medical imaging techniques, the simulation approach per-

mits one to study any possible geometry with no danger to the patient [3, 16, 20].

Furthermore, blood flow modelling provides the flow field description in terms of
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local velocity, pressure and stress, at any point with a good accuracy [20].

Finally, blood flow modelling enables one to study geometries which do not exist

in reality; consequently, the clinician can predict the result of treatment procedures

thereby aiding his/her expertise with a more rigorous and precise approach for pre-

operative treatment planning optimisation purposes [20].

In the next section, we review several works which stress the importance of nu-

merical techniques in the understanding of blood flow circulation processes, motivate

their employment to overcome the limitations connected to in vivo or in vitro mea-

surements, and help to identify the factors which lead to the initiation and progression

of vessel malformations, an their rupture in the most extreme case.

1.4.1 Haemodynamic investigations of vascular diseases

In vivo measurements may be very dangerous for the patient. One approach to carry

out risk-free measurements is to perform them on a liquid pumped into a reconstructed

model, as approached in [21]; unfortunately, it is expensive and/or impractical to em-

ploy this strategy several times in a day [21] while efficient CFD applications can

accurately model various vascular blood flows in hours with the employment of a

sufficient computing power. Non-invasive imaging techniques, such as Magnetic Res-

onance angiography, can provide a fairly accurate velocity descriptions at a resolution

of about 1 mm in space and 50 ms in time [19, 22–24]. CFD techniques offer the

possibility to accurately examine blood flow in terms of velocity distribution, but can

quantify several other parameters such as pressure, shear stress and vorticity, as well

as at greater spatial and temporal resolutions by appropriately defining the velocity

or pressure boundary conditions (blood flow velocity or pressure patterns on the bor-

ders of the vascular segment of interest); unfortunately, a typical clinical setting does

not provide subject-specific boundary conditions. When these are not available and a

scientist needs to approach a new vasculature he/she resorts to data available in the

literature and usually employs prescribed pressure profiles at all boundaries or only

at outflow ones (outlets) and velocity-controlled conditions for the inlets. Alterna-

tively, one may assume that the outlet pressure is the outflow times the downstream

peripheral resistance or that a structured tree is attached to the outlet (see [25] and

references therein) in which the root impedance is estimated using a semianalytical

approach based on a linearization of the equations which macroscopically describe the

fluid flow behaviour in the continuum limit (Navier-Stokes equations, see Chapter 2).

A few studies [26–28] showed that there is no significant difference between the

simulation results obtained through Newtonian and non-Newtonian blood flow mod-

els. In a Newtonian fluid, the relationship between the shear rate γ and the shear

stress σ is linear:
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σ = µγ (1.1)

where the dynamic viscosity µ does not dependent on the shear rate. The non-

Newtonian behaviour of the blood is due to the proteins in the plasma, and the

elasticity and aggregation of the red cells. This non-Newtonian behaviour is more

evident when the shear rate is small such as it occurs in arterioles and capillaries [8].

The viscosity is affected by these properties and, in general, increases with shear rate

and temperature (see [29] for the description of some blood flow models). The walls of

the arteries are distensible and elastic, and their diameter varies with the transmural

pressure. Their elastic behaviour is important for the propagation of the flow waves

and the overall blood circulation.

Zhao et al. [30] demonstrated that the flow field behaviour simulated by employing

fluid-structure interaction models is globally similar to the one achieved under the

rigid wall assumption. However, they observed a general reduction in the magnitude

of the WSS when the dynamics of the wall was considered. Unfortunately, fluid-

structure interaction modelling entails assuming several subject-specific parameters

since they are not usually provided in a standard clinical setting or by adopting state-

of-the-art clinical equipment [30,31]. Boutsianis et al. [32] showed that a finite-volume

fluid solver which is second order accurate in space can reproduce the in vitro blood

flow behaviour of an anatomically reconstructed abdominal aorta aneurysm within

an excellent approximation.

Several studies focussed on extra-cranial circulation further demonstrated the sen-

sitivity of blood flow patterns to geometric details [33–36]. Through the modelling of

either the blood via a CFD tool or the wall motion of femoral artery segments thanks

to intravascular ultrasound (IVUS) imaging, Liu et al. [37] found that the changes

in diameter and WSS were substantially influenced by local geometry displacements,

enforcing the evidence that the coupling between fluid and wall motions may be im-

portant in atheriosclerosis development. Myers et al. [33] obtained good agreement

between WSS patterns carried out through a computer model of a right coronary

artery and in vitro measurement.

In the study conducted by Hassan et al. [14] the blood flow simulation of an arterial

aneurysm and a vein of Galen aneurysm contributed to understand important blood

mechanisms and to assist the endovascular intervention process. Specifically, the

origin of the malformed structure and abnormal blood flow field was attributed to

the presence of a preaneurysmal stenotic segment between the two aneurysms, which

caused a very high velocity. The success of the endovascular intervention was achieved

through the application of twelve detachable coils and N-butyl cyanoacrylate injection

which stopped the blood flow through the venous aneurysm.

Thanks to a three year study, conducted on a set of patients and aided by WSS
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modelling via a CFD tool, Gibson et al. [38] showed that a low WSS promotes pro-

gression of atherosclerotic lesions. Their work and that conducted by Hoi et al. [39]

underlines the importance of obtaining an accurate patient-specific spatial reconstruc-

tion, since a geometric change can provoke a blood flow variation up to an order of

magnitude larger than the former.

Boyd et al. [40, 41] studied the effect of a simulated stenosis on the flow field

around a bifurcation through two and three-dimensional lattice-Boltzmann models.

They showed that the restriction is responsible for a highly rotational blood flow, low

velocity and stress.

The CoW is fed by the left carotid and right carotid arteries, and the basilar artery.

It allows the continuous supply of blood to the brain, even in the presence of flow

disruptions upstream. How these vessels feed the brain is of interest, as haemodynamic

perturbation at the CoW have consequences downstream in the cerebral vasculature.

Recently, Moore et al. [42] constructed a three-dimensional model to investigate

the blood flow patterns of different anatomical models of the CoW. Simulations in-

clude blood flow modelling of the three most common configurations of the CoW: a

complete CoW, a fetal P1 configuration and a missing A1 configuration.

Several studies have been carried out in the context of intra-cranial haemodynam-

ics in the last fifteen years. Botnar et al. [43] obtained very good agreement between

the velocity pattern in a carotid artery bifurcation achieved through CFD modelling

and MR imaging of the in vitro speciment. Ujiie et al. [44] correlated the aneurysm

hemodynamics to its aspect ratio, which is the ratio between its maximal diameter

and that of the neck (area between the aneurysm and its host vessel), and concluded

that an aneurysm with aspect ratio greater than 1.6 is prone to rupture.

Cebral et al. [3] made a remarkable effort to correlate haemodynamic factors to the

risk of rupture, taking into account several aneurysm configurations. They conclude

that a small inflow jet, small impingement region and a complex or unstable flow

patterns are prone to yield high and oscillating stress, and cause rupture through

elevated force and structural destabilisation at the walls.

Thanks to in vivo analysis of bifurcations of six canines, Meng et al. [45] showed

that high WSS and high WSS gradient provoke aneurysm-type remodelling of the

vessel wall.

Castro et al. [18] investigated the effects of unequal flow conditions in the ICAs on

the haemodynamics of AcomA aneurysms. A significant difference in flow conditions

between the ICAs, for instance that given by changing their relative phase, may cause

the flow far from them to change rapidly. Since the geometry can have a large effect on

the blood flow, the boundary conditions were set as far as possible from the aneurysms

or other complex parts, so that a Womersley flow profile [46] at the inlet would be

more accurate [14,47]. In general, when blood impinges on an aneurysm wall, there is
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a stagnation point at which the pressure is maximal but the WSS is zero. The WSS

is very high around it, caused by the bloodstream turning along the wall [14,47]. The

points of rupture have a relatively high pressure and WSS.

Castro et al. [18] found that curvatures in the parent artery upstream to the

aneurysm neck significantly influences the direction of the inflow jet. The WSS

becomes lower and shifted towards the neck if the inlets are positioned so as to

have shorter parent arteries. Milner et al. [48] demonstrated how averaged flow rate

wave forms or idealized carotid bifurcation models can substantially mask interesting

haemodynamic features that may be significant in the characterisation of vascular

pathologies. Venugopal et al. [49] remarked that it is important to impose patient-

specific inlet flow rates to accurately simulate the overall haemodynamics.

Alastruey et al. [13] studied the effects of anatomical variations on the cerebral

outflows of the CoW, both in healthy conditions and after a complete occlusion of an

ICA or VA. When one of the A1ACAs and P1PCAs is absent, the flow rate through

the communicating arteries is higher. The flows in the efferent arteries changed by less

than 15%. This suggests that flows through the communicating arteries are sufficient

to supply all areas of the brain in subjects with a small A1 ACA or P1 PCA. In

the anatomies tested with missing communicating arteries, the flows in the other

arteries changed by less than 1 %. The occlusion of the VA has relatively little effect

compared to the occlusion of the ICA. They also showed that the AcomA is a more

critical collateral pathway than both PcomAs if an ICA is occluded.

The factors which lead to vessel rupture are not fully understood yet. As shown

later, several works have been carried out to find those factors. Recently, Chatzipro-

dromou et al. [50] proposed a metric to assess the risk of cerebral aneurysmal growth

and atherosclerosis formation assuming a combination of parameters are relevant in

that assessment. Specifically, their risk metric is a function of the WSS, its temporal

variation and the vorticity of the flow; this choice is associated with the assumptions

that (a) a substantial chaotic blood flow provokes vasodilation and thus aneurysm

formation [51] and expansion, and (b) a low and oscillatory WSS causes vessel wall

thickening [38,52]. The risk metric was calculated by measuring these variables under

normal simulation conditions and under either: (i) increased blood flow conditions,

(ii) increased pulsatility or (iii) a combination of the two. Simulations with a cerebral

fusiform aneurysm highlighted the region which may exhibit further growth as at the

dome of the aneurysm, which likely correlated with the location of aneurysm rupture.

Unfortunately, the risk factor is a function of parameters that are not yet experi-

mentally measured; they should be used to properly formulate the dependence of the

risk factor on its variables, like local WSS and vorticity. Second, an important factor

which determines aneurysm formation may be a reduced vascular tone, which is not

directly caused by high WSS but is a function of multiple factors not well known yet.
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Finally, Chatziprodromou et al. correlated aneurysm and atherosclerosis formations

only to the substantial change in blood flow dynamics that can occur, for instance,

under stress or exercise conditions, but does not evaluate the vascular pathology risk

within a subject-specific blood flow condition.

Works by Shojima et al. [53], Joua et al. [54] and Boussel et al. [55] provided

evidence of the correlation between aneurysm growth and low WSS which contradicts

the conclusion reported by Hassan et al. [47]. Specifically, it was shown that, while

high WSS induces vasodilation initiation, low WSS facilitates the growing phase due

to acute wall remodelling and degeneration which, ultimately, may bring to rupture.

Nonetheless, aneurysm aspect ratio and spatially averaged WSS may be positively

correlated with risk of rupture [53]. Specifically, this point is not in conflict with the

conclusion reported in [53–55] since high and low WSS are likely to be mixed in the

same aneurysm area.

The @neurIST project [56] had the objective to provide an integrated decision

support system to assess the risk of aneurysm rupture and to optimise their treat-

ments. Specifically, the @neurIST project intends to provide an IT infrastructure for

the management, integration and processing of data associated with the diagnosis

and treatment of cerebral aneurysm and subarachnoid haemorrage. We are part of

the GENIUS (Grid Enabled Neurosurgical Imaging Using Simulation) project (see

Chapter 5). It aims at achieving some goals of the @neurIST project. However, the

GENIUS project stresses the aspects associated with the integration of the software

applications involved and high performance computing (HPC); this allows simula-

tion turnaround and user times to be shortened, such that patient-specific medical

simulation results can be obtained in a time frame which is clinically relevant.

1.5 Blood flow modelling as a pre-operational treat-

ment planning tool

It is currently difficult to assess whether the treatment will be successful before it is

carried out. Consequently, cerebral blood flow simulations may be an essential tool

for clinicians to assess the effects of treatments before they are administered.

It is essential to ensure that after a treatment there is a sufficient blood supply to

all areas of the brain, that blood flow through aneurysms or AVMs and inferred to

be excessive is reduced and that haemodynamic factors, such as the WSS and blood

pressure, are favourable and do not lead to complications. Blood flow simulation is

a valuable approach to confirm assumptions and better understand haemodynamic

factors. For instance, it is commonly believed that complex flow patterns are prone

to develop atherosclerosis and vasodilation; unfortunately, several related mechanisms

and their importance are not well understood yet. Therefore, with the use of CFD
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techniques ineffective or unnecessary treatments may be potentially avoided, while

risky patient-specific conditions may be treated with more precision.

Most of the effort of this PhD course has been directed to construct a modelling

pipeline which is easy to use, enables the effective employment of distributed com-

puting and large computational resources, and is powerful in terms of visual results,

interactive capabilities and turnaround times. The simulation technique is the lattice-

Boltzmann method (LBM) which is the topic of Chapter 2; the other aspects will be

discussed in detail in the other chapters. We anticipate that even though the accuracy

of the segmentation techniques and lattice-Boltzmann models employed in our work

are not very high, we are seeking more accurate approaches; furthermore, we have

successfully addressed several difficulties connected to our modelling pipeline.

1.6 Summary

This chapter has provided an overview about haemodynamics. Specifically, it pre-

sented a basic information on blood circulation. Then, it focussed the attention on

the decription of cerebrovascular diseases and on medical imaging techniques. We

have also reviewed several studies conducted in the last two decades to increase the

knowledge of several aspects regarding neurovascular pathologies, their formation,

progression and haemodynamic features. In this context, CFD techniques have played

a crucial role. Finally, this chapter ends by discussing the potential employment of

the simulation approach based on the lattice-Boltzmann method as a means to aid

pre-operative treatment planning.
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Chapter 2

The lattice–Boltzmann

method

As far as the laws of mathematics refer to reality, they are not certain; and as far as

they are certain, they do not refer to reality

Albert Einstein

In this chapter a survey of computational fluid dynamics (CFD) techniques including

in particular the lattice-Boltzmann method (LBM) is provided. Specifically, basic

concepts and limitations of the main CFD approaches are outlined. Then, the fun-

damental theory and work-flow of the LBM are given in detail and finally, some

variations of the most widely used LB schemes are discussed with some emphasis on

their advantages and limitations.

2.1 Computational Fluid Dynamics

Computational fluid dynamics (CFD) is the conventional methodology for fluid flow

modelling. Basically, CFD techniques directly solve the Navier-Stokes (NS) equations

through explicit discretisation. For instance, the finite-difference

method [57] replaces the partial derivatives of the NS equations with finite difference

discretisations derived from truncated Taylor series expansions, usually first or second

order accurate. Then, starting from an initial condition of the flow field and handling

boundaries with some care, an iterative approach based on the aforementioned dis-

cretisations provides the flow field at each time step.

The NS equations are valid if macroscopic length and time scales, usually esti-

mated as the characteristic size of the system considered and the time with which

macroscopic field variations take place, are much larger than the molecular ones, i.e.

the mean free path and time between subsequent particle collisions. In this limit the

fluid is always in local thermodynamic equilibrium, and considered as a continuum.
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Within this approximation, which holds for a large number of phenomena, the NS

equations yield an accurate representation of the macroscopic fluid behaviour.

The main NS equation-based CFD approaches are the finite-difference [57], finite-

volume [57] and finite-element [58] methods. Unfortunately, they fail to describe

processes characterized by microscopic time and space scales. Conversely, the huge

number of atoms in a macroscopic region prevents the employment of molecular- or

atomistic-level models, and consequently their adoption is limited to the study of very

small systems for a time of the order of the microsecond or less.

Mesoscopic formulations are well-suited to treat complex fluids, such as

multi-component and multiphase fluids, and also multiscale systems by embedding

microscopic models e.g. the molecular dynamics (MD) method. The integration of

mesoscopic and microscopic approaches is the only viable strategy to study a system

for which fine details, such as those located close to interfaces of a fluid mixture,

play a central role in some parts of it. Thus, these models can be applied to de-

scribe small scale phenomena, while macroscopic techniques can quickly characterise

the rest in order to keep the total computational time reasonable. The paper of Li

and Liu [59] (and references therein) offers a vast survey of microscopic approaches,

classical and ab initio MD methods, as well as mesoscopic ones e.g. the smoothed

particle hydrodynamics and mesh-free Galerkin techniques.

Other important approaches in the context of mesoscopic modelling are the dissi-

pative particle dynamics method [60] and the lattice-gas technique proposed by Mal-

evanets and Kapral [61]. The former is a mesh-free approach based on the dynamics

of fictitious mesoscopic particles which basically model large clusters of microscopic

fluid particles; the latter describes the motion of mesoscopic particles placed at the

sites of a rectilinear lattice through the application of stochastic rules.

2.2 The lattice-Boltzmann method

Nowadays, the LBM has substantial importance in various research fields which deal

with mesoscopic and continuum techniques [62]. First, a literature survey associated

with the LBM and its applications is presented. Here, an emphasis on haemodynamics

is given; then, the attention is focussed on the theoretical aspects.

2.2.1 Overview

The lattice-Boltzmann method is an effective and accurate simulation tool for the

investigation of several different problems [62, 63]. The accuracy and performance

of the LBM have been compared to those of the finite-difference [64, 65]), finite-

volume [66–69] and finite-element methods [69–72]. These studies reveal that the

LBM can provide simulation results more quickly than NS-based CFD approaches if
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a prescribed accuracy is aimed for. The LBM is simple, explicit in time and local

in space. Therefore, it yields very efficient executions on parallel machines [73]. The

LBM does not guarantee incompressibility but, in contrast to CFD techniques, it does

not require a computationally intensive elliptic Poisson equation to be solved at each

iteration to obtain the pressure field. These are important aspects for which one may

prefer the LBM over other CFD techniques for the simulation of large systems.

The accuracy of the LBM in haemodynamics has been demonstrated [68,74] and,

in this context, the method has been applied to several different studies [41, 68, 75–

82]. In haemodynamics a high level of parallelism is essential to rapidly capture

the complexity of a typical problem. Furthermore, the stress tensor can be directly

calculated from the non-equilibrium components of the distribution functions [83];

NS-based CFD approaches, instead, require the use of interpolation techniques which

increase the programming complexity, the computational time and inaccuracy.

The LBM has been employed for a large variety of purposes. It is also well-suited

to simulate turbulence, non-ideal gases, multicomponent fluids, fluids with suspen-

sions or in porous media, chemical-reactive flows, magnetohydrodynamical systems,

microchannel and non-Newtonian and anisotropic fluids. Finally, numerous studies

in turbulence modelling have been carried out through lattice-Boltzmann models.

Succi [62], Chen and Doolen [63] provide an extensive literature review of all these

research fields.

The success of the LBM method in the simulation of nonideal gases and mul-

ticomponent fluids with or without the presence of porous media, multi-phase and

microchannel flows resides in its kinetic nature and thus the ability to incorporate

small length-scale properties. Explicit interface tracking is not needed; this permits

one to effectively simulate fluid flows with complicated interface structures confined

in complex geometries due to simple and efficient boundary condition methods.

Fluid dynamics by means of the LBM with moving boundaries has already been

investigated by Hoekstra et al. [84] who exploited the boundary condition method

in [78]. However, Hoekstra et al. considered the walls as massless zero-thickness

structures and the equations of motion associated with the walls were not integrated

which results in an unrealistic physical representation.

Under the assumption that we have a Newtonian isothermal fluid with constant

viscosity and density, the equations of conservation of mass and momentum that

describe the macroscopic flow behaviour become the Navier-Stokes equations for a

Newtonian, incompressible and isothermal fluid:

ρ
∂u

∂t
+ ρ(u · ∇)u = −∇P + η∇2u + G, (2.1)

∇ · u = 0, (2.2)
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where u, P , ρ and ν are the fluid velocity, pressure, density and kinematic viscosity

(ν = η/ρ, η is the dynamic viscosity) respectively, and G is the body force. The first

equation describes momentum conservation and asserts that the acceleration is equal

to the sum of the pressure, viscous and external force while the second one describes

the mass conservation.

2.2.2 The lattice-Boltzmann method and the Lattice Gas Au-

tomata technique

The origins of the LBM reside in the development of the Lattice Gas Automata (LGA)

technique [85–87] and in the study of lattice gases [87–90]. In the LGA method, a set

of discrete particles is constrained to lie on the sites of a regular lattice and to have

discrete velocity vectors corresponding to the nearest neighbours of each node. At

each time step, the dynamics advance by moving each particle to one of its nearest

lattice sites (advection) whilst ensuring momentum conservation during the collision

stage. The method is very simple to implement, fast and unconditionally stable but

suffers from some drawbacks, such as lack of Galilean invariance1, and significant

noise in the results due to integer calculations and fluctuations inherently associated

with the LGA technique. These limitations do not afflict the LBM and the approaches

based on the direct discretisation of the NS equations.

2.2.3 The lattice-Boltzmann method and the Boltzmann ki-

netic theory of fluids

Fluids may be investigated through a kinetic theory developed by Boltzmann [91], a

bottom-up methodology that allows one to directly obtain macroscopic and thermo-

dynamics descriptions from their microscopic ones. It has been shown that the LB

equation is a special finite difference form of the continuous Boltzmann equation with

some approximations applied for hydrodynamic simulation purposes [92–95]. Some

aspects of the LBM, e.g. isotropy and Galilean invariance, have been studied by

Lallemand et al. [96]. Analytical solutions of simple systems with the LBM [97] has

further improved its understanding.

Transport phenomena can be studied through kinetic approaches based on the

Boltzmann equation, derived from Newton’s laws of motion in the limit of large

numbers of particles. The Boltzmann transport equation for monoatomic gases asserts

that the change of number of molecules nf , where n is the local number density,

f = f(x, ~ξ, t) is the distribution function and x and ~ξ are the position and velocity

1A frame of motion is Galilean invariant if the equations of motion do not change in all other

frames; Galilean variance leads to a velocity-dependent pressure and a density-dependent term in

the macroscopic description.
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vectors of a molecule respectively, is equal to the sum of the convection term, the

contributions due to the body force G and the collisions:

∂f

∂t
= −~ξ · ∂f

∂x
−G · ∂f

∂~ξ
+Q(f), (2.3)

where Q(f) is the quadratic collision operator. This equation can accurately de-

scribe the fluids in the kinetic regime, i.e. the molecules can be considered point-wise,

structureless particles such that the contribution associated with rotational and vi-

brational degrees of freedom do not play a significant role at the macroscopic level,

and the interaction range is negligible with respect to the free-collision motion scale

of the particles. In other words, the last equation can be employed for fluids with very

simple molecules whose sphere of influence is much smaller than the overage volume

per molecule. Under these circumstances, f is close to the Maxwellian distribution

f (eq)(~ξ) = ρ(2πRT )−D/2 exp(−(v − ~ξ)2/2RT ), (2.4)

where R, T , D and v are the ideal gas constant, the temperature of the fluid, the

spatial dimension and the macroscopic velocity respectively. Both Navier-Stokes and

Euler equations can be derived from the Boltzmann equation using the Chapman-

Enskog procedure.

2.2.4 Details of the lattice-Boltzmann method

Figure 2.1: Schematic illustration of the advection step of the lattice-Boltzmann

method (see text for details on the symbols).

McNamara and Zanetti [88] proposed that the Boltzmann equation should be

solved directly by modelling the set of particles in the LGA method as single-particle
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distribution functions instead of finding them through computationally-intensive av-

eraging of occupation numbers:

fi(x + ei, t+ 1) = fi
+(x, t) = fi(x, t) + Ωi(x, t), (2.5)

where fi(x, t) is the average number of particles at the lattice position x and time t

moving at velocity ei, the superscript “+” denotes a post-collisional state and Ωi(x, t)

stands for the lattice version of the collision integral in the continuum Boltzmann

equation. The advection stage is represented in Fig. 2.1 for a two-dimensional com-

putational lattice of 5 × 5 lattice sites. Various models have been proposed in order

to represent the collision operator [89,98]; the most widely adopted approximation of

the continuum collision term is that suggested by Bhatnagar, Gross and Krook [99]

for which the local distribution function is assumed to evolve towards its equilibrium

value, at a rate controlled by a single relaxation parameter τ :

Ω ≈ f (eq)(x, t)− f(x, t)

τ
. (2.6)

In light of this, Chen et al. [100] and Qian et al. [101] proposed the lattice BGK

equation:

fi(x + ei∆x, t+ ∆t) = fi(x, t)−
fi(x, t)− fi(eq)(x, t)

τ
, (2.7)

with various two and three-dimensional lattice structures and explicit values of the

coefficients within the formula of the equilibrium distribution functions

f
(eq)
i = ρwi

(
1 +

ei · u
cs2

+
(ei · u)2

2cs4
− u · u

2cs2

)
, (2.8)

where f
(eq)
i retains the terms of the Taylor series expansion of the Maxwellian distri-

bution up to O(Ma2) = O((u/cs)
2), wi is a weight coefficient and cs is the speed of

sound; the hydrodynamical density and velocity ρ and u respectively are determined

in terms of the distribution functions:

ρ =
∑
i

fi =
∑
i

f
(eq)
i , ρu =

∑
i

eifi =
∑
i

eif
(eq)
i . (2.9)

The discrete velocities ei and the weight coefficients wi must be chosen in order

to assure spatial isotropy. As discussed in [62] and references therein, the isotropy

conditions for a lattice are the following:

∑
i

wi = 1, (2.10)

∑
i

wieiαeiβ ∝ δαβ , (2.11)

45



∑
i

wieiαeiβeiγeiδ ∝ (δαβδγδ + δαγδβδ + δαδδβγ). (2.12)

where δij is the Kronecker delta function. The lattice BGK (LBGK) models are

isotropic, Galilean invariant, conserve mass and momentum during local particle col-

lision and do not exhibit noise caused by integer calculations. Furthermore, they are

second-order accurate in time and space (see below). However, in contrast to the

LGA method, the LBM is not unconditionally stable.

The LBM may be regarded as a specific finite-difference discretisation of the Boltz-

mann equation [95]. In fact, adopting the single time relaxation approximation for

the collision term and assuming no external force, the evolution of the distribution

function fi becomes

∂fi
∂t

+ ei · ∇fi = −fi − f
(eq)
i

τ
. (2.13)

If the time derivative is approximated by a first order time difference and the con-

vective term by a first order space discretisation, the finite difference equation for fi

is

fi(x + ei∆x, t+ ∆t)− fi(x + ei∆x, t)

∆t
+

fi(x + ei∆x, t)− fi(x, t)
∆x

= −fi(x, t)− f
(eq)
i (x, t)

τ
,

(2.14)

which is the standard LBGK equation with ∆t = ∆x = ∆y = 1:

fi(x + ei, t+ 1)− fi(x, t) = −fi(x, t)− f
(eq)
i (x, t)

τ
. (2.15)

At a first glance, the above discretisation resembles a first-order accurate discretisation

in space and time, but the above equation is second-order accurate in space and

time [102]. In fact, by applying the trapezoidal rule to the integral of the collision

term we have

fi(x + ei∆t, t+ ∆t)− fi(x, t)
∆t

= −fi(x + ei∆t, t+ ∆t)− f (eq)
i (x + ei∆t, t+ ∆t)

2τ

− fi(x, t)− f (eq)
i (x, t)

2τ
+O(∆t2),

(2.16)

which becomes explicit and specifically the LBJK equation reported above by setting

∆t = 1 and by performing the following variable changes for the distribution function

and τ :

τ ← τ +
1

2
(2.17)

fi(x, t) ← fi(x, t) +
fi(x, t)− f (eq)

i (x, t)

2τ
(2.18)
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The stress tensor, σαβ , can be recovered from the non-equilibrium components of

the the distribution function f
(neq)
i = fi − f (eq)

i [83]:

σαβ = −pδαβ −
(

1− 1

2τ

)∑
i=0

f
(neq)
i eiαeiβ . (2.19)

The von Mises stress is often employed in haemodynamic studies to evaluate the

effective stress [103]

σeff =

√
A+ 6B

2
, (2.20)

where A and B are defined in Equations (2.21) and (2.22):

A = (σxx − σyy)2 + (σyy − σzz)2 + (σzz − σxx)2 (2.21)

B = σ2
xy + σ2

yz + σ2
zx. (2.22)

Finally, the LBGK equation is valid if

(a) any two particles in the system are uncorrelated before and after their brief

collision; thus, the molecular chaos condition is satisfied2;

(b) the lattice spacing is much bigger than the mean free path; thus, we achieve the

low Knudsen number limit3;

(c) the velocity is much smaller than the speed of sound in the system considered;

consequently, we are in the limit of low Mach number.

Conditions (b) and (c) are necessary since the LB distribution functions are reliable

approximations in the limit of low Knudsen and Mach number, as described below.

2.2.5 Derivation of the Navier-Stokes equations

In this sub-section, it is shown that the LB equations recovers the Navier-Stokes ones

in the limit of low Knudsen and Mach numbers via the Chapman-Enskog procedure.

Specifically, LB models approach the Navier-Stokes equations with error terms, re-

ferred to as compressibility errors, proportional to the Knudsen number squared and

Mach number squared or cubed [105]. The Knudsen number Kn is [106]:

Kn =
l

h
=
λc∗

h
, (2.23)

where l is the mean free path, h is the characteristic length of the channel, c∗ is the

average molecular velocity due to thermal excitation and λ = l/h is the relaxation

2The many-body correlation function becomes a product of single particle distribution functions.
3See the paper by Toschi and Succi [104] for a deep theoretical discussion and a model well-suited

for simulations affected by high Knudsen numbers.
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time. Toschi and Succi [104] remarked that the accuracy of the LB model depends

on the Knudsen number, Mach number and lattice resolution. However, Maier et

al. [107] pointed out that, while for a duct flow problem neither the Mach number

nor the Knudsen separately represent good indices of the errors, their product yields

a fair estimate of the error behaviour.

The Chapman-Enskog expansion is employed to derive the macroscopic hydrody-

namic equations. Employing the Chapman-Enskog expansion, which is valid under

assumptions (b) and (c), a Taylor series expansion in space and time, and accurate

to second order in the Knudsen number Kn = ε is applied to the evolution of fi:

fi(x + ei∆x, t+ ∆t)− fi(x, t) = −fi(x, t)− f
(eq)
i (x, t)

τ
, (2.24)

where ∆x and ∆t are of the same order of ε; hence,

∂fi
∂t

+ ei · ∇fi +
ε

2

[
(ei · ∇)2fi + 2ei · ∇

∂fi
∂t

+
∂2fi
∂t2

]
= −fi − f

(eq)
i

ετ
. (2.25)

Assertions (b) and (c) permit the application of the Chapman-Enskog expansion and

thus

∂t = ε∂t0 + ε2∂t1 , ∂x = ε∂x, (2.26)

where t0 and t1 denotes the time-scales associated with advection (or convective

effects) and diffusion (or viscous effects) respectively. The single-particle distribution

function can be decomposed into its equilibrium part and non-equilibrium one, i.e.

into terms of different orders of magnitude:

fi = f
(eq)
i + εf

(neq)
i , (2.27)

with f
(eq)
i = f0

i and f
(neq)
i = f1

i + εf2
i + O(ε2). The converved quantities lead to

constraints on high-order terms f
(j)
i (solvability conditions):

∑
i

f ji = 0,
∑
i

eif
j
i = 0, j > 0; (2.28)

thus the higher order terms f1
i , f2

i , · · · do not contribute to the macroscopic density

and momentum, i.e. local mass and momentum are conserved during collision. By

employing Eq. 2.25 and by regrouping terms in power orders of ε we obtain

∂f
(eq)
i

∂t0
+ ei · ∇f (eq)

i = −f
1
i

τ
, (2.29)

to zero order in ε, and
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∂f
(eq)
i

∂t0
+
∂f1

i

∂t1
+ ei · ∇f1

i +
∂2f

(eq)
i

∂t20
+ 2ei · ∇

∂f
(eq)
i

∂t0
+ (ei · ∇)2f

(eq)
i =

∂f1
i

∂t1
+
(

1− 2

τ

)[∂f1
i

∂t0
+ ei · ∇f1

i

]
= −f

2
i

τ

(2.30)

to first order in ε. Using the last two equations, summing over all the directions i,

and exploiting the solvability conditions we recover the following mass and momentum

equations:

∂ρ

∂t
+∇ · (ρu) = 0, (2.31)

∂ρu

∂t
= −∇ ·Π, (2.32)

where the momentum flux tensor has the form

Παβ =
∑
i

(ei)α(ei)β

[
f

(eq)
i +

(
1− 1

2τ

)
f1
i

]
, (2.33)

The detailed form of the momentum flux tensor depends on the lattice structure of

the current LB model. For the LB D2Q9 (two dimensions and nine velocities) model,

Παβ = pδαβ + ρuαuβ + ν(∇α(ρuβ) +∇β(ρuα)), (2.34)

where p = ρ/3 is the pressure and ν = (2τ − 1)/6. With this form of momentum

flux tensor, the momentum equation becomes the Navier-Stokes one with no external

force:

∂t(ρuα) = −∂β(ρuαuβ)− ∂αp+ µ∂β∂βuα. (2.35)

The continuity and momentum equations reduce to the incompressible ones if the

density is constant.

2.2.6 Kernel of the lattice-Boltzmann method

In Fig. 2.2 we depict a pseudo-code of the LB computational work-flow based on the

simple LBGK model. Typically, in a preprocessing stage two buffers are allocated

to store the distribution functions at every lattice site belonging to the computa-

tional domain Ω and for any lattice direction i. These buffers are usually coined

“source” (fsource) and “destination” (fdest) buffers to recall that the streaming stage

of the LBM fetches the data at a lattice site and stores them at nearby ones. At

the beginning of the simulation, every element of fsource is usually set equal to the

corresponding equilibrium distribution function calculated with a unitary density and

zero velocity (steps aP and bP ).
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for each time step until convergence

for each x ! ", x # !"

fsource(x, i), fdest(x, i) =

for each x ! !"

fdest(x + ei, i) = fsource(x, i)  $i : x + ei ! "

% = %( {fsource(x, i)}i )

v = v( {fsource(x, i)}i )

f(neq)(i) = fsource(x, i) - fi
(eq)(%, v)  $i

fdest(x + ei, i) = f+(i) = fsource(x, i) -1/& f(neq)(i)  $i

% = 1, v = 0

fsource(x, i) = fi
(eq)(%, v)  $x ! ", $i

BCM

swap(fsource, fdest )

streaming

collision

preprocessing

+

(aP)

(aCS)

(bCS)

(dCS)

(aBCM)

k ! {{j=i}, {j"i}}(bBCM)

(bP)

(cCS)

BCM[ fsource(y, k), fdest(y, k), y ! {x, {neighbour(x)}}, %(y), v(y) ]

Figure 2.2: Schematic illustration of the computational work-flow of a LBGK method

(see text for details on the symbols).

Then, the LB simulation core proceeds until a user-defined number of time steps

and/or numerical convergence are reached by repetitively loading the elements of

fsource and storing them in fdest by following the standard collisional and propagation

rules for the interior lattice sites (namely streaming + collision stage “CS”)4. A

specialised function (in the figure “BCM” which stands for ”Boundary Bondition

Bethod”), instead, is applied to the boundary lattice sites where the elements of fdest

–and eventually those of fsource– are determined on the basis of the data of the current

site x and, in general, the neighbouring ones as well. At the end of each time step,

fsource and fdest are swapped.

In particular, during stage CS the local density and velocity are computed through

equations 2.9 (steps aCS and bCS), the non-equilibrium distribution functions through

step cCS while the streaming and collision steps are merged in step dCS where f+(i)

indicates the local post-collisional i-direction-wise distribution function. During stage

BCM, instead, for some directions (in the figure generically denoted by the letter

“i”) the elements of fsource and fdest are computed on the basis of the current and

neighbouring lattice sites, same and/or different lattice directions (in the figure k =

i or not) and the boundary data (“y” can be located at the boundary). Normal data

streaming occurs towards any lattice site within Ω.

We discriminate BCMs that need data stored at one or more neighbouring sites,

namely “non-local”, from the others (“local”)5. It is worth noting that local BCMs

4An interior lattice site is a site for which all the lattice velocity vectors departing from it are not

crossed by the domain boundary ∂Ω.
5Note that the parameters related to a point on the boundary surface (like the components of the
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are particularly well-suited for parallel approaches since they do not require one to

implement specialised processor-communication patterns to handle neighbouring in-

formation exchange. Furthermore, non-local BCMs can create significant computa-

tional and communicational unbalances because the processors may have very differ-

ent numbers of boundary sites and thereby may be subjected to different workloads

and amounts of data communications. In Chapters 3 and 6, we will describe and test

various local and non-local BCMs.

2.3 Non-standard LB schemes and improvements

Several works have aimed at augmenting the numerical properties of the LBM, like

its stability region, its accuracy and its convergence rate.

Some incompressible LB models eliminate the errors dependent on the Mach num-

ber if the fluid flow is steady [105,108]. Other LB models improve the stability region

and the accuracy in the presence of large pressure gradients. In particular, a LB sim-

ulation becomes unstable if the equilibrium distribution function becomes negative;

this tend to happen when the magnitude of the local velocity exceeds ≈ 0.3 in lattice

units which in turn may be caused by large pressure gradients. The lattice BGK

scheme with general propagation presented by Guo et al. [109] increases stability but

can yield a certain numerical diffusion. This scheme has been coupled with a nonideal

model [110] which takes the particle size into account in oder to provide a method in

which the compressibility errors are well controlled in the presence of large pressure

gradients.

Assuming that a physical phenomenon takes a total time T , the number of iter-

ations required to reach the fully developed solution is T/∆t. In the LB model, the

time step and lattice size depend either on the viscosity or the Mach number Ma:

∆t =
1√
3

∆x
Ma

|umax|
, (2.36)

∆t =
(2τ − 1)/6

ν
(∆x)

2
. (2.37)

Therefore, the time step varies linearly with the lattice size for a fixed Mach number.

Thus, poorly resolved computational grids are simulated very quickly if the Mach

number is high. On the other hand, the second equation reveals that the time step

varies as the square of the grid spacing for a fixed viscosity and relaxation parameter.

This is the same situation encountered in conventional NS equation-based fluid solvers

explicit in time. Unfortunately, τ and thus the viscosity must be kept low if a high

Reynolds number is required for a certain discretisation in space and time; this has

the effect to decrease the time step in physical units ∆t∗ = τ−1/2
3ν∗ (∆x∗)2 (the symbol

normal vector at that point) close to a boundary site can be stored within the data of the latter.
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∗ denotes physical unit) and the stability of the LBGK scheme [96]. An alternative

strategy to increase Reynolds number is to decrease ∆x maintaining the time step and

relaxation parameter within stability range. To sum up, the LBM can be considered

computationally expensive to simulate high Reynolds numbers flows.

A significant speedup in the convergence rate can be attained. Several LB methods

have been developed [111–113] in order to speed up the simulation of stationary flows,

especially in the low Reynold and Mach number regime. Kandhai et al. [70] proposed

an iterative momentum relaxation (IMR) technique, where the applied body force is

iteratively adapted on the basis of the change in fluid momentum which substantially

accelerate numerical convergence. Mach number annealing can be applied in order

to increase convergence rate of unsteady flows [103]. Unsteady simulations, instead,

can be speeded up by appropriately varying the available parameters, e.g. pressure

gradient and number of time steps, whilst maintaining constant the Reynolds number

and the Womersley parameter (see [114] and Chapter 6).

The fractional volumetric scheme of Zhang et al. [115] reduces the particle effective

evolution for each time step by a factor α, propagating only one fraction of the density

to the neighbouring site and therefore can remove unphysical spurious invariants,

increase stability, and is capable of simulating higher Reynolds number flows achieving

smaller viscosities. On the other hand, the total number of time steps to reach

convergence increases as 1/α.

In generalized LB equations and multiple-relaxation-time models [62,102,116] the

various relaxation times may be adjusted in order to increase stability, damping non-

hydrodynamic modes due to “ghost” variables [117] and decreasing spurious effects

due to discretisations. Another successful result in this direction can be achieved

enhancing the bulk viscosity [118].

Various approaches have been presented in order to tackle complex computa-

tional domains, either using grids that fit boundaries or adapting the computational

meshes to the physical behaviour of the system. The Boltzmann equation is a first-

order partial difference equation and thus the LBM can be easily adapted to non-

uniform grids [119–121], body-fitted meshes [122,123] or grid refinement (multilevel)

techniques [69, 124–129]. Coarse-grained LB approaches can borrow the adaptive

grid refinement concept [130, 131] adopted in conventional CFD methods in order

to increase or decrease the mesh resolution where required. Even multiscale LB ap-

proaches can yield faster results (within a prescribed accuracy) than finite-element

and finite-volume techniques especially for time-dependent flows and high Mach num-

bers [69,128].

Finite-difference [132], finite-volume [133–135] and finite-element and

Galerkin [136–138] schemes of the LBM are available. Finite-difference formulations

can yield a significant increase in numerical viscosity. Finite-volume and finite-element
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schemes permit to adapt the mesh to the physics and configuration of the system under

consideration. Finite-element schemes are more accurate and stable than the others.

For instance, the method in [138] is least-squares finite-element fourth-order accurate

in space and second-order accurate in time.

Lattice kinetic schemes that recover the Navier-Stokes equations [139–141] include

terms in the equilibrium distribution function that depend on the velocity gradient.

These schemes (a) can be adapted to complex geometries and arbitrary meshes with

the least-squares technique [141], and (b) do not need to store the distribution func-

tions since they can be directly calculated from the computed velocity and density

fields, thus drastically reducing memory requirement.

The fluid flow simulation through the LBM must face the problem of the adoption

of suitable boundary condition methods, especially when the confining walls have a

complex shape and are not aligned with the Cartesian planes. A discussion of bound-

ary condition methods well-suited for generic geometries is presented in Chapter 3

where we also present new algorithms for pressure and velocity boundaries.

2.4 Computational aspects

The LBM differs from methods which are directly based on the Navier-Stokes equa-

tions in several algorithmic computational aspects. These features are related to the

kinetic nature of the LBM:

1. the Boltzmann equation, from which the lattice-Boltzmann model is derived,

consists of a set of first-order partial differential equations, instead of second-

order as the Navier-Stokes ones, and the non-linear term of the Navier-Stokes

equations is hidden in the quadratic velocity terms of the equilibrium distribu-

tion function, which is local;

2. small length-scale models can be incorporated more easily into LBM;

3. the spatial and velocity discretisations are coupled, which prevents the direct

and easy realisation of models well-suited for problems involving different space

scales. However, finite-element, finite-volume formulations, non-uniform and

grid refinement formulations of the LBM overcome this obstacle;

4. the LBM can be inefficient for time-independent problems, especially when the

lattice resolution is high and the Mach number is low. A low Mach number is a

requirement for quasi-incompressible flows, including turbulence. However, the

LBM remains at least competitive to old-fashioned CFD techniques in this area

too. Furthermore, as discussed above, the convergence rate can be significantly

improved either for steady or unsteady flows;
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5. NS-based CFD techniques need to solve the Poisson equation for the pressure;

conversely, the LBM computes the pressure through an equation of state. This

feature makes the LBM capable to yield higher parallel performance than that

achieved by employing several other approaches.

2.5 Summary

This chapter was focussed on the LBM and its applications with an emphasis on its

advantages and disadvantages with respect to CFD techniques based on the direct

discretisation of the Navier-Stokes equations. The theoretical description was pro-

vided in detail. In particular, the LBM is explicit, second-order accurate in space

and time, and well-suited to solving problems involving turbulence, multi-phase, non-

Newtonian fluid and/or haemodynamics. Then, studies regarding non-standard LB

schemes aimed at improving stability, convergence and accuracy were reviewed. Fi-

nally, the main computational features of the LBM were listed. Specifically, its multi-

level or non-Cartesian formulations can be employed to model multi-scale systems.

Furthermore, the explicit and kinetic nature makes the LBM a competitive technique

for the parallel simulation of time-varying fluid flows in complex geometries.
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Chapter 3

The fluid solver, HemeLB

If your success is not on your own terms, if it looks good to the world but does not

feel good in your heart, it is not success at all.

Anna Quindlen

In this chapter, we describe the parallel lattice-Boltzmann (LB) fluid solver utilised

to perform the three-dimensional simulations carried out during this research. Its

development has required a substantial time since it has been revised, optimized

and benchmarked several times. Its performance has been investigated on various

platforms; this required considerable attention, especially in the context of cross-site

runs, which has often involved the employment of platforms and grid environments

not yet mature for those tests and influenced by several issues.

The parallel fluid solver has been augmented by several algorithmic tricks which

permit elimination of complex buffer accesses, computational branching and minimise

data pattern irregularity and data locality such that the resulting computational

core is very simple and fast. Furthermore, communication is minimised and the

novel topology-aware domain decomposition technique is shown to be very effective,

permitting tuning code execution in geographically distributed cross-site simulations.

The benchmark results presented indicate that very high performance can be

achieved on a single processor core, a parallel machine and on geographically dis-

tributed platforms.

HemeLB is a part of a complete problem solving environment wherein the medical

data from various imaging modalities are manipulated by the graphical editing tool

described in Chapter 6 and rendered by the in situ parallel ray tracer presented in

Chapter 4.

3.0.1 Overview

Fluid flow simulation of very large and complex systems requires the use of a suitable

physical model, substantial computational resources, as well as applications capable
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of exploiting them effectively. Much work has been done in order to speed-up single-

processor and parallel lattice-Boltzmann simulations in regular systems. However,

relatively few works are aimed at the improvement of lattice-Boltzmann simulations

of fluid flow confined in complex geometries. The parallel LB fluid solver, coined

HemeLB (“Heme” derives from Hemodynamics), represents a contribution in this

direction. HemeLB is currently used to investigate cerebral blood flow behaviour in

patient-specific systems (see Chapter 6).

In the context of LB simulations of fluid flows confined in non-regular systems,

particularly porous media [142,143], a number of studies have been carried out using

the strategy presented by Donath et al. [144] to reduce the memory requirements.

This approach avoids the storage of data associated with obstacles: one-dimensional

arrays, one for each data type, store the information about the fluid lattice sites which

represent the volume of the fluid. The identification of the neighbouring distribution

functions, needed during the LB advection stage, relies on an extra one-dimensional

connectivity buffer (see discussion in Sec. 3.2). An approach which employs slabs

to save memory is presented in detail by Argentini et al. [145] in the context of the

implementation of the LBM for regular systems.

It is well known that the lattice-Boltzmann method is memory-intensive because

the corresponding simulation requires several bytes per fluid site, little computation

during collision and a substantial transfer of non-contiguous data during the advection

stage. This is not ideal when using cache-based microprocessors for the simulation

of a large system1 because the arrays do not fit into the cache hierarchy2 and the

poor bandwidth and latency of the main memory cannot guarantee to keep the CPUs

busy; as a result, it is difficult or impossible to achieve a high performance.

Pohl et al. [147] and Schulz et al. [148] presented two different “compressed grid”

approaches which reduce the total memory consumption by a factor of almost two by

exploiting the deterministic data dependencies which occur in the propagation step.

The approach of Martys and Hagedorn [149] and Argentini et al. [145] is also useful

to reduce the total memory consumption by reducing the source or the destination

buffer (see Chapter 2 for this terminology) to three two-dimensional slab-like buffers

only –instead of a large three-dimensional matrix. However, these memory-saving

strategies do not solve the problem of modest performance on large systems since

non-contiguous data needed during the propagation step often reside far from each

other. One and three-dimensional loop blocking techniques [147, 150, 151] show a

similar performance improvement with respect to the approach of Martys and Hage-

dorn [149] and Argentini et al. [145] by augumenting space locality in small systems.

The technique which permits one to obtain a high performance on large systems seems

1A system may be considered to be large if it does not fit in any of the caches.
2The interested reader should consult Kowarschik and Weiß [146] for more detailed discussions

on cache memory organisation and effective utilisation.
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to be the n-way blocking presented by Pohl et al. [147], Iglberger [151], and Velivelli

and Bryden [152]. For three-dimensional systems, 4-way blocking relies on maximum

exploitation of the first-neighbour LB kernel by combining a three-dimensional space

blocking with a one-dimensional time one. Many time steps are performed on three-

dimensional blocks of different shapes involving access to the whole domain at one

time only. This strategy guarantees good spatial and temporal coherency, and deliv-

ers high performance (see also [153] and [154] for further benchmarks on cache-aware

LB implementations). Relatively simple prefetch and preload techniques [155, 156]

can lead to a significant increase in memory bandwidth and improve the overall per-

formance substantially. However, it is difficult if not impossible to apply the 4-way

blocking approach to flow simulation in “sparse” (non regular) systems because the

data workflow is completely irregular.

Domain decomposition strategies based on cubes, slabs or parallelepipeds [73,73,

157–159] yield good computational and communication load balancing when applied

to regular systems; unfortunately, they are not well-suited to complex ones.

Some domain partitioning strategies for lattice-Boltzmann codes well-suited for

non-Cartesian lattices already exist, and they are briefly reviewed here. The state-of-

the-art of domain decomposition, represented by the multilevel k−way partitioning

scheme [160,161], can be used to partition non-regular systems. The need for users to

explicitly implement these complex domain decomposition techniques can be avoided

by using existing software such as the METIS library [162], which can be incorporated

within parallel lattice-Boltzmann codes to obtain high quality partitions and thus

good execution performance on a large number of processors. However, even state-of-

the-art parallel multi-level implementations require O(N/106) seconds on O(N) graph

vertices3 even when performed on O(100) processors [160]. This leads to unreasonable

elapsed times whilst tackling systems with O(108) fluid lattice sites or more. More-

over, these partitioning algorithms require a substantial amount of memory, which

makes the use of a parallel approach compulsory as well as many processors even

for systems which are not very large. Generally speaking, these multilevel methods

use recursive bisection schemes for the initial partitioning. The interfaces between

partitions are then calculated and iteratively adjusted in order to improve workload

distribution, which is very important during the parallel simulation. As a conse-

quence, these strategies have a large associated computational cost; unfortunately,

they do not guarantee optimal communication or computational load balancing. For

instance, the parallel LB codes presented by Dupuis and Chopard [163] and Axner

et al. [164] employ the METIS library [162] to partition the system. Moreover, large

systems would require long pre-processing times due to the high computational cost

associated with the multilevel k−way partitioning method adopted in the METIS

3In our case, a vertex in a graph corresponds to a fluid lattice site.
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library [162].

The domain decomposition approach used in Pan et al. [165] is worthy of note. It

combines a one-dimensional data representation with connectivity [144] and is well-

suited for sparse systems, possessing an efficient parallelisation strategy based on the

orthogonal recursive bisection (ORB) algorithm [166]. In the ORB approach, the

computational grid is decomposed into two partitions such that the workload, due

to fluid lattice sites only, is optimally balanced. The same process is then applied

recursively k − 1 times to every partition, proceeding on the basis of orthogonal

bisections. The total number of processors must be equal to 2k. The amount of data

required for an efficient implementation is proportional to the total number of fluid

lattice sites N . Furthermore, the computational time scales as O(Nlog(N)); while

the domain decomposition is straightforward to implement and ensures good load

balancing, it does not produce a satisfactory communication balance.

In the strategy employed by Wang et al. [5] whilst reading the input dataset where

the disposition of the fluid lattice sites is stored the pid-th N/P (P is the number

of processors) fluid sites are assigned to the processor with rank pid regardless of

their location. The difference of fluid lattice sites per processor is either 0 or 1,

depending on whether N/P is an integer or not. Thus, the resulting computational

load balance is perfect. The recovery of the data to communicate is straightforward

since the fluid lattice sites adjacent to neighbouring processor sub-domains, called

here “interface-dependent lattice sites”, are stored in an orderly fashion [5]. Hence the

communication pattern is regular and no data flow discontinuities occur. The method

is simple, assures perfect load balancing, does not require CPU time to optimise the

decomposition and demands a memory consumption of O(N/P ) per processor, since

global data are not necessary. Wang et al. [5] maintained their approach to be superior

to that of the ORB technique. The approach itself is not new; in fact, it has been

exploited in the multilevel graph partitioning method as an initial processor-wise data

distribution prior to the execution of the latter. However, such domain decomposition

can be afflicted by poor communication balance even for simple systems, as will be

shown in Sec. 3.3.1.

Finally, space-filling curves [167] have been used to decompose sparse geometries

in computational fluid dynamics (CFD) applications [168]. The quality and the speed

of these partitioning strategies is sub-optimal, while the computational cost usually

increases as O(Nlog(N)), making them expensive for very large systems.

3.1 The HemeLB model

The lattice-Boltzmann model adopted in the HemeLB code is the lattice Bhatnagar,

Gross and Krook (BGK) D3Q15 (three-dimensional with 15 velocity directions) model
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presented by Qian et al. [101]. For the tests reported in the publication of HemeLB

and presented in [169] the D3Q15 model proposed by Zou et al. [105], coined D3Q15i,

has been employed; that LB model is incompressible for a stationary fluid flow, but

has a Galilean-invariant component, as discovered by my colleague Gary Doctors

(University College London). However, the numerical results carried out with the

D3Q15 and D3Q15i do not usually differ by more than 1%. The lattice BGK (LBGK)

equation is

fi(x + ei∆x, t+ ∆t)− fi(x, t) = −f(x, t)− f (eq)(x, t)

τ
(3.1)

where the local equilibrium distribution functions are

f
(eq)
i = wi

(
ρ+

ei · u
cs2

+
(ei · u)2

2cs4
− u · u

2cs2

)
, (3.2)

where wi is the weight coefficient, cs =
√

1/3 is the speed of sound, ei is the velocity

of the particle along the direction i, and the hydrodynamic density ρ and macroscopic

velocity u are determined in terms of the distribution functions from

ρ =
∑
i

fi =
∑
i

f
(eq)
i , u =

∑
i eifi
ρ

=

∑
i eif

(eq)
i

ρ
. (3.3)

The discrete velocities ei and the weight coefficients wi must be chosen in order

to ensure isotropic hydrodynamics (see [105] for details) and are identical to those

employed by Qian et al. [101].

3.1.1 Boundary condition methods

Figure 3.1: Schematic diagram of a smooth boundary for which both horizontal

inward-pointing directions indicated by the arrows originate from solid sites. Lat-

tice sites within the computational fluid domain are denoted by empty circles. Many

boundary condition methods are unable to determine the unknown distribution func-

tions at the central fluid lattice site.

The pressure and velocity boundary condition methods (BCMs) implemented in

HemeLB are new. Here, we present them together with some preliminary concepts and

one variant. Their development was motivated by the fact that, up to our knowledge,

accurate and simple BCMs which can handle any boundary configuration such as that

depicted in Fig. 3.1 are not available. Existing BCMs of a second-order accuracy for
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the velocity field are very complex to implement and compute, and are not convincing

(see below) thereby underpinning the need to investigate further models. Most of

them, in fact, cannot approach the boundary configuration shown in Fig. 3.1 and in

such a case the application of a first-order accurate BCM like the bounce-back rule

drastically degrade the accuracy of the simulation results everywhere [62].

Related work

The current state-of-the-art of BCMs well-suited for curved boundaries were presented

by Junk and Yang [170,171]. In particular, in Ref. [170] they deviced a velocity BCM

which is second-order accurate (in space) for the velocity and first-order accurate for

the pressure. The model is local, that is, does not need neighbour information and

can handle the topological configuration of Fig. 3.1 but has three caveats. First of

all, it is a generalisation of the bounce-back rule which is not very accurate even

in the most favourable boundary geometry (the boundaries are half way through

the lattice vectors and perpendicular to a Cartesian axis) where it is supposed to

yield second-order accurate results for the velocity field (see discussion and results of

Chapter 6). Its implicit version is the most attractive one in terms of stability and

accuracy but is very computationally demanding. Finally, it is particularly complex to

implement. The pressure BCM presented by Yang [171] is also very complex and does

not convice us in implementing it within a parallel code because of the programming

difficulties inherent in handling communication of neighbour data needed to handle its

special boundary-related treatments. In Chapter 6, we have tested it in conjunction

with the bounce-back rule in a boundary setup favourable in terms of accuracy and

mathematical formulation for implementation purposes; we anticipate that, in this

geometrical situation, our BCMs are competitive whilst being much simpler.

Ref. [170] showed that several other BCMs are second-order accurate (for the

velocity) in space and all of those which do not require second nearest neighbour

information reduce to the bounce-back method in terms of mathematical formulation

when the velocity boundary is parallel to a Cartesian axis and is half-way through

the lattice vectors; in this case, all their computation, accuracy and stability are the

same. Since we found that the bounce-back method is always fairly inaccurate, we

were motivated to develop and investigate new ideas. Below, we discuss some new

BCMs but we will stress that, as further discussed in Chapter 6, more research should

be conducted to fully exploit the intrinsic accuracy of the LBM.

Mathematical description

Here, we continue by describing our novel BCMs; we anticipate that one needs to

comprehend Sec. 2.2.6 and Fig. 2.2 of Chapter 2 in order to properly understand the

following discussion.
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The core notion of the new BCMs stems from the subdivision of the distribution

function into the equilibrium and non-equilibrium parts and their approximation at

time t+ ∆t with those at time t by means of extrapolation:

fi(x, t+ ∆t) ≡ fi
(eq)(x, t+ ∆t) + fi

(neq)(x, t+ ∆t), (3.4)

fi
(∗)(x, t+ ∆t) = fi

(∗)(x, t) +O(∆t) or (3.5)

fi
(∗)(x, t+ ∆t) = 2fi

(∗)(x, t)− fi(∗)(x, t−∆t) +O(∆t2), (3.6)

where the symbol “*” can be either eq or neq. Now, following the Chapman-Enskog

procedure (see Chapter 2)

fi = f
(eq)
i + εf

(neq)
i (3.7)

where the Knudsen number ε is proportional to ∆x and ∆t. As such, the error

connected to f
(neq)
i in the computation of fi and the macroscopic flow fields is O(∆t2)

if the former is approximated with a first-order extrapolation scheme. Similarly, the

error in the macroscopic flow fields introduced by omitting f
(neq)
i is O(∆t).

fi
(eq)(x, t) is calculated through ρ(x, t) and u(x, t) with an error proportional to

Ma2 (see Chapter 2). Unfortunately, in general the boundary does not pass through x

but their mutual minimum distance can be any between 0 and ∆x. As a consequence,

for complex boundaries, a big obstacle to the development of an accurate evaluation

of the inward pointing fi(x, t+∆t) may be the contribution due to the approximation

of fi
(eq)(x, t+ ∆t) since one has to commit errors also dependent on ∆x.

HemeLB is currently incorporating the simple local BCM called BCMHemeLB :

fi
+(x, t) = fi(x, t) = fi

(eq)(p̃, ũ) ∀i, (3.8)

fi(x, t+ ∆t) = fi
(eq)(p̃, ũ) ∀i : x− ei /∈ Ω, (3.9)

fi(x + ei, t+ ∆t) = fi
+(x, t) ∀i : x + ei ∈ Ω. (3.10)

The first and third equation represent a non standard pseudo-collisional state plus a

native streaming stage. In the second equation, the last condition refers to the inward

pointing (unknown) lattice directions. For a pressure BC with boundary pressure p,

ũ ≡ u(x, t) and we extrapolate in space by assuming p(x, t) = p. In this case,

the extrapolation error is proportional to the distance between x and the boundary

position x times the pressure gradient or Ma2:

p(x, t)− p(x, t) = O(∆x∇p) ∝ ∆xMa2. (3.11)

Analogously, for a velocity BC with boundary velocity u we have p̃ ≡ p(x, t) and

we impose u(x, t) = u with an error proportional to the lattice spacing and Ma:
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u(x, t)− u(x, t) = O(∆x∇u) ∝ ∆xMa (3.12)

Note that a lattice site can be close to a velocity boundary and to a pressure one at

the same time. As discussed above, because of the absence of the contribution due

to the non-equilibrium distribution functions (which yields an error proportional to

∆t), the overall BCMHemeLB ’s error is generally O(∆t) +O(∆xMa2) for a pressure

BC and O(∆t) +O(∆xMa) for a velocity one.

We have implemented a very simple and efficient scheme of the present BCM. In

the pre-processing stage, we initialise the elements of fdest like those of fsource. Then,

for a boundary lattice site x we replace the elements of fsource(x, i) with fi
(eq)(p̃, ũ)

for all i and we propagate the populations whose lattice vector does not cross the

boundary:

fsource(x, i) = fi
(eq)(p̃, ũ), ∀i, (3.13)

fdest(x + ei, i) = fsource(x, i) ∀i : x + ei ∈ Ω, (3.14)

This BC scheme slightly differs from its original formulation proposed earlier; here,

in fact, the inward pointing distribution functions are not explicitly set at time t+∆t

but remain equal to the post-collisional values as computed at time t−∆t. We verified

that the two versions yield identical velocity and pressure fields up to the first ≈ 5

digits. Notably, the last equation can be handled without invoking any conditional

statement thanks to the algorithmic trick presented in Sec. 3.2 which copies the value

of fsource(x, i) to a “ghost” buffer element ∀i : x + ei /∈ Ω.

BCMHemeLB is based on a first-order accurate extrapolation scheme in time and

space, is very simple and efficient, and can handle any boundary configuration. Unfor-

tunately, it decreases the intrinsic (second order) accuracy of the LBM (see Chapter 2)

and introduces an error proportional to Ma –instead of Ma2– for velocity-controlled

boundaries.

Now, we present a variant of the BCM discussed earlier called BCM+
HemeLB .

The post-collisional distribution functions are always calculated as carried out in the

LBM. The BCM consists of the first of the following equations (the second one is a

standard streaming step):

fi(x, t+ ∆t) = fi
(eq)(p̃, ũ) + fi

(neq)(x, t) ∀i : x− ei /∈ Ω, (3.15)

fi(x + ei, t+ ∆t) = fi
+(x, t) ∀i : x + ei ∈ Ω, (3.16)

For a pressure boundary, in contrast to the previous BCM where p(x, t) is assumed

to be equal to p, here we linearly interpolate p(x, t) by considering p and the pressure

at a nearest neighbour site, namely x̂:
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p(x, t) =
p+ qp(x̂)

1 + q
(3.17)

where q is the distance in lattice vector unit (in the range [0, 1]) between x and the

intersection between the pressure boundary and the lattice vector x− x̂. x̂ is chosen

so as to maximise the scalar product between the boundary normal and x − x̂. A

velocity boundary is treated in the same way.

It is worth noting that, in contrast to BCMHemeLB , this BCM is not local and

involves the information of one or two neighbouring lattice sites. Specifically, a lattice

site which is close to the pressure boundary as well as the wall generally requires to

load the macroscopic flow field located at two neighbours.

In contrast to BCMHemeLB , the extrapolation in space of the macroscopic flow

fields is substituted by an interpolation and is of a second-order accuracy –not of a

first-order one; therefore,

p(x, t)− p(x̃, t) = O(∆x2∇p) ∝ ∆x2Ma2, (3.18)

u(x, t)− u(x̃, t) = O(∆x2∇u) ∝ ∆x2Ma. (3.19)

The error in time is O(∆t) since the inward pointing lattice directions fi(x, t + ∆t)

are approximated with the values of the equilibrium and non-equilibrium distribution

functions obtained at time t.

3.2 The HemeLB computational core

In this section, we present the data layouts and algorithmic optimisations pertain-

ing to the computational core of HemeLB; specifically, these data organisations (a)

minimise memory footprint, (b) improve data locality, (c) avoid complex access to

buffer elements and (d) computational branching. The consequent single-processor

programming engine is very optimised (see Sec. 3.4.1).

3.2.1 Preliminaries

A sparse and complex system may occupy a small fraction of its bounding box. For

example, a highly complex vasculature is distributed in a space which may be less

than 1% of its bounding volume; of course, the LB simulation should only compute

tasks related to the volume within such a vasculature to be efficient. Moreover, the LB

advection stage entails handling copying the data of one spatial location to another.

A näıve approach to handle a LB simulation of a sparsely distributed system is to

resort to a three-dimensional array which corresponds to its bounding volume. Each

element of this array is a lattice site and represents a computational unit (voxel)

and a position in space. During the simulation, the voxels which do not spatially
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correspond to any vasculature volume, called “solid voxels” (or solid lattice sites),

can be skipped by employing a buffer –properly set up during the pre-processing

stage– which addresses the fluid voxels only. Additionally, it is trivial to propagate

data over a Cartesian grid. However, the total memory cost might be unfeasible.

A common strategy to approach LB simulations of a sparse system is to rely on

the so-called indirect memory addressing scheme. Essentially, this technique only

stores the information concerning the fluid voxels within two one-dimensional arrays

(one for fsource and one for fdest, see Chapter 2) and the connectivity between their

elements and needed during the advection step is maintained by means of another

buffer. In the pre-processing stage, the connectivity buffer is built through a lookup

table i.e. a three-dimensional array which maps a point in space to the corresponding

element of the aforementioned one-dimensional arrays. This lookup table can be too

memory costly. Additionally, the connections between the one-dimensional buffers can

be highly irregular which penalises the efficiency of cache-based processors if fsource

and fdest are large in size. Last, fluid voxels at the inlets or outlets and close to the

wall must be approached with different algorithms which usually forces one to call

several conditional statements. Below, we describe how we circumvent these memory

and performance related issues.

3.2.2 Handling sparse systems

empty macro-cell

fluid voxel

solid (void) voxel

Figure 3.2: Two-dimensional representation of the two-level hierarchical data organi-

sation of an idealised bifurcation (thick dashed edges). The bounding box comprises

4× 4 macro-cells. Its fluid and solid lattice sites of the Cartesian computational grid

are depicted by means of voxels with solid and dashed edges respectively. Only the

data associated with each non-empty macro-cell are allocated in memory.
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We present a simple data structure which is adapted to sparse systems by avoiding

retention of almost all information about the void component whist achieving good

data locality. The grid of the problem domain is split into a two-level representa-

tion: if any fluid lattice site is present within a cell of the coarse grid (macro-cell

or “block”), this is decomposed into a finer one as illustrated in Fig. 3.2. Multi-

level and hierarchical grids have previously been applied to lattice-Boltzmann simu-

lations [124, 128, 172–174]. These approaches have been used in the context of grid

refinement techniques to capture with sufficient accuracy small-scale hydrodynamic

behaviour within one or more subdomains of the system. No data are exchanged

between different grids belonging to the same level of resolution, but are transferred

to their parent coarser grids. In our approach, instead, a two-level data structure is

used to represent a domain with a single (unique) resolution. No data exchange takes

place between the coarser (parent) grid and the finer one: the distribution functions

are propagated within the latter only. This two-level structure saves memory with

respect to the “full matrix” representation when one or more parent cells are com-

pletely occupied by solid lattice sites since corresponding finer grids cannot then be

allocated. Furthermore, the indices of the lattice sites of a block are similar; this

means that the corresponding data are usually placed together in cache memories.

We work with the lattice sites of a block before stepping to another one and, since

the data to be exchanged during the LB advection step and between different blocks

are less than the others, we achieve some degree of spatial coherence. Specifically,

for one single loop over the lattice sites of a block with side b in lattice units, the

ratio between those interfacing with neighbouring blocks and the interior ones scales

as 1/b. On the other hand, cache utilisation is likely to become worse by increasing

the block size, as occurs in medium and large regular systems.

Multi-level grids with more than two levels can be adopted. However, we found

that a two-level grid with b = 8 represents a good tradeoff in terms of simplicity, cache

use and adaptivity to sparse systems. With this choice, if the coordinate along the X

axis of a lattice site is i, those of the corresponding block and its site are bi = i >> 3

and si = i− (bi << 3) respectively. Here, << and >> shift the data to the left and

right respectively; thus n << 1 = n ∗ 2, n << 2 = n ∗ 4 and so on.

We have two alternatives to store fsource and fdest. The first strategy, called

“direct two-level” is to format them as two-level arrays and to directly accomplish

the streaming step as described above; unfortunately, the mapping between different

array elements and discussed above is expensive to compute.

The second approach organises fsource, fdest and the connectivity buffer needed

during the propagation step through the indirect memory addressing scheme discussed

earlier. The two-level data grid (three-dimensional lookup table) is only employed

to build the connectivity buffer, which saves memory consumption during the pre-
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inlet voxel

outlet voxel

non-inlet/outlet voxel

Figure 3.3: Two-dimensional illustration of the two-level data layout (left image) set

up and used during the pre-processing stage only, and reordered data format of fsource

or fdest (right image) employed by HemeLB during the simulation. It is worth noting

that data related to different voxel types are kept separate in fsource and fdest. See

text for further details.

processing stage. This data layout –currently implemented in HemeLB– is shown in

Fig. 3.3 and avoids computing the indices of the two-level arrays during the streaming

step of the previous data layout implementation (direct two-level).

Additionally, some programming tactics, which we describe below, completely

circumvent computational branching and minimise data pattern irregularity.

At first, the streaming towards solid lattice sites appears to be avoided only by

including a conditional within the innermost loop indicating whether the neighbouring

lattice site is fluid or not. However, the conditional may be eliminated by streaming

every particle which would propagate towards a solid site to an unused ghost element

of the destination one. If N is the number of fluid lattice sites, the ghost buffer

element is covered by the (N + 1)-th one. The source buffer must also be sized with

N + 1 elements, since at the end of the LB time step they must be swapped (see

Chapter 2).

Second, handling different types of fluid lattice sites, e.g. interior or wall ones or

those residing at the inlets or outlets, appear to entail the use of an (expensive) inner

conditional. This may be avoided if, for instance, one regroups the one-dimensional

arrays in subgroups: the first N1 fluid sites will be (interior) non-boundary fluid sites,

the next N2 fluid sites are adjacent to the solid region and so on. This data reorgan-

isation, which is depicted in Fig. 3.3 is carried out during the pre-processing stage

where the one-dimensional connectivity buffer is set to properly handle the streaming
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stage. Furthermore, the fluid sites of a subgroup are located in close proximity and

sequentially addressed by a specialised LB routine and no computational branching

takes place.

To sum up, all these data structure and algorithmic optimisations minimise mem-

ory footprint, enhance cache and pipeline use, and engender high overall performance.

3.3 Parallel implementation

In this section, we present the parallelisation strategy adopted in HemeLB (Sec. 3.3.1)

which is shown to be well-suited to simulate fluid flow in large and complex systems.

The new domain decomposition approach is found to be fast and of high quality

(Sec. 3.3.1 and 3.4.2). The computational performance achieved with the adoption of

the algorithmic optimisations and domain partitioning technique presented in Sec. 3.2

and Sec. 3.3.1 respectively is reported in Sec. 3.4.

3.3.1 Domain decomposition

Figure 3.4: Two-dimensional illustration of the domain partitioning algorithm taking

place within a voxelised bifurcation. The first processor sub-domain (voxels covered

by black arraws) is created by expanding a volume region of fluid voxels through the

computational lattice from the left- and bottom-most fluid voxel. When N/P (N and

P are the number of fluid voxels and processors respectively) fluid voxels are assigned

to the first processor, a new propagation through the lattice, which will generate the

sub-domain to be assigned to the second processor, starts from another fluid voxel

(red arrows), and so on. See text for further details.

Parallel lattice-Boltzmann codes well-suited for complex systems often employ

graph partitioning techniques such as the multilevel k−way partitioning scheme [148,
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163] or the ORB approach [142,165,175] to decompose the computational domain into

a set of high quality sub-domains so as to achieve good workload and communication

balancing during the parallel execution.

Here, a domain decomposition approach based on a graph growing partitioning

(GGP) algorithm, a specific branch of the general category of graph partitioning tech-

niques, is presented. GGP partitioning techniques have been presented and used in

the past [176–178], but have never been adopted in LB simulations. Basically, the

GGP technique grows P partitions from P corresponding seed points by carrying out

a breadth-first expansion algorithm [142,142,165,175]. At the beginning of the GGP

scheme, all the fluid lattice sites are marked as “unvisited” and one of them is selected

and marked as “visited”, and assigned to the processor with identifier (or rank) 0. An

iterative search starts from this point and grows a region around it until the desired

number of (visited) fluid lattice sites N/P is reached, as explained below and illus-

trated in Fig. 3.4. The expansion proceeds by means of two “coordinate” buffers that

are used to locate the fluid lattice sites at the current and next iteration respectively.

For example, initially one coordinate buffer points to the first selected visited fluid

lattice site only, while the second buffer will contain the coordinates of the unvisited

neighbouring ones. At the end of every iteration the two aforementioned buffers are

swapped. The propagation from every fluid lattice site in the first coordinate buffer

to the neighbouring unvisited ones is constrained to follow the velocity directions in

the LB model used. When the number of fluid lattice sites reaches N/P , P − 1 sim-

ilar searches are performed. Particular care must be taken if a propagation cannot

continue because no further unvisited fluid sites surround the visited ones but the

sub-domain size is not N/P yet. In this case, another iterative search is started from

an unvisited fluid lattice site.

Next, we outline some implementation aspects. In general, each fluid lattice site is

checked more than once: the iterative search must start from an unvisited one which

is not known a priori ; the expansion does not proceed in a predefined order and, in-

evitably, entails repeatedly checking the status of the lattice sites. A dynamic look-up

table of the unvisited fluid lattice sites and the velocity directions from which the oth-

ers originate speeds up the iterative propagation by minimizing repeated accesses at

the expense of an increase in memory consumption. However, the algorithm updates

O(107) points per second on a modern processor core, and the memory consumption

is O(N) bytes. Furthermore, perfect load balancing is achieved: the difference in fluid

lattice sites between the smallest and largest partition is 0 or 1 if N is multiple of the

number of partitions or not, respectively4.

4In [169] we presented a coarse-level-based GGP approach (instead of the fine-level-based one

discussed in this section), which relies on the two-level representation and overcomes the limitations

related to the global data requirements and inherent speed but does not guarantee perfect load

balancing. The programming choice pursued has been dictated by the fact that the systems under
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Two-dimensional representations of the result of the proposed domain decompo-

sition method with 16 partitions applied to a square and a bifurcation with 1282 and

61451 fluid lattice sites respectively are provided on the right hand side of Fig. 3.3.1,

while the Wang et al. method [5] produced the images on the left hand side. The

grey-scale helps one to recognise the identifier of each partition. The two methods

always yield perfect load balancing. However, the shape of the partitions influences

the communication balance. With the new partitioning method the minimum and

maximum number of interface-dependent fluid lattice sites, i.e. the fluid sites ad-

jacent to neighbouring processor sub-domains, are halved and thus inter-processor

communications are drastically reduced. Adopting the method discussed by Wang et

al. [5] the minimum and maximum number of interface-dependent fluid lattice sites

are respectively 128/63 and 256/124 for the square and 190/123 and 2370/403 for the

bifurcation of those attained with the new GGP approach5. From Fig. 3.3.1, Wang

et al. method [5] appears a generalisation of the slab-based partitioning technique

for sparse systems and inherits the latter’s communication imbalance even when P

is very low with respect to N . Conversely, the success of GGP techniques, including

that presented here, relies in the nearly-spherical propagation of the visited fluid sites

at each iteration6. A good computation and communication balancing, as achieved

using the GGP algorithm, plays an important role since a fast computational core,

as in HemeLB, makes the effect of large and unbalanced communications even more

critical [5].

The parallel LB scheme presented by Schulz et al. [148] has been adopted. Briefly,

in this parallelisation strategy, after the collision of the interface-dependent fluid lat-

tice sites the propagation of their particles to the neighbouring processors is initiated

by means of non-blocking communications. Completion of these communications is

enforced only after the computation of interface-independent fluid lattice sites and the

data received from neighbouring sub-domains are copied into the destination buffer

of the distribution functions, which is swapped with the source one at the end of the

LB time step. This parallel scheme can overlap inter-processor non-blocking commu-

nication with the computation of the interface-independent fluid lattice sites. This

result may be particularly beneficial since the communication may be partially or

investigation are not enormous; in this case it is more important to increase load and communication

balancing during the simulation than saving pre-processing memory and speed.
5The differences in the values are also due to the presence of system boundaries and hence,

the inner partitions are more likely to share a larger number of distribution functions with the

neighbouring ones.
6In general, the precise shape of the advancing front involved in the GGP search depends on the

graph to be partitioned, the presence of obstacles and of visited graph vertices. At each iteration of

the GGP search, the visited fluid lattice sites involved at the previous step are arranged in a cube

for the D3Q15, D3Q18, D3Q19 and D3Q27 LB models if the propagation does not encounter any

obstacle.
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completely hidden. Interface-dependent and independent fluid sites are not irregu-

larly referenced through extra arrays but sequentially by reorganising them into two

different sub-groups of the same array, adopting the same algorithmic trick presented

in Sec. 3.2.

Figure 3.5: Two-dimensional partitions of a square and a bifurcation with 1282 and

61451 fluid lattice sites respectively, as obtained with the domain decomposition

method of Wang et al. [5] (left hand side images) and that presented in Sec. 3.3.1

(right hand side). In each image the number of partitions is 16 and their ranks are

coloured according to a grey-scale map. The identifiers of the interface-dependent

distribution functions between every pair of adjacent partitions are represented by

tiny grey segments. The grey intensity is proportional to the identifier. Adjacent

distribution functions have the same identifier and cannot be communicated during

each time step.

3.3.2 Parallel programming optimisations

We now discuss optimiations incorporated in HemeLB pertaining to parallel pro-

gramming techniques. The resulting code minimises the amount of intra-machine

communication yet hides the complexity inherent in the simulation of sparse sys-

tems; moreover, it optimises inter-machine communication in cross-site runs in grid
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deployments during each time step.

Minimisation of intra-machine communications

Sparse and complex systems present various difficulties in terms of parallel implemen-

tations. Generally, following domain decomposition, the identifiers of the distribution

functions to be communicated and the location of the corresponding fluid lattice

sites must be determined since they are not known a priori, as would be the case

for regular domain decompositions. One parallel approach which does not need this

step is that of Wang et al. [5]. Communicating the identifiers doubles7 the size of

inter-processing communications at each time step. In HemeLB this and other possi-

ble intermediate buffers and memory load/store operations are avoided. Specifically,

only the distribution function values must be exchanged between processors and the

data to fetch/store from/to the buffers to communicate are solely the ones which are

copied from the receiving buffer and stored into fdest; moreover, this stage involves a

single-pass only. The technique to handle these optimisations is outlined below.

The streaming of particles between two different processor sub-domains takes place

in three steps: (a) copying of the distribution functions from the source buffer fsource

to that to send to the neighbouring processor; (b) copying of the latter buffer into

the receiving one fto recv by means of a point-to-point communication; (c) copying

of the distribution functions from the receiving buffer fto recv to the destination one

fdest. Steps (a) and (c) represent the difficulty that must be faced if one wants to

avoid the use of extra buffers corresponding to multiple indices, because the interface-

dependent fluid lattice sites are not arranged regularly and therefore are not known

a priori. The connectivity buffer employed to load the distribution functions from

fsource to fdest may be used to accomplish step (a), but another buffer should be

exploited to indicate if the current distribution function must be copied into fdest or

the buffer to communicate. This can be avoided by extending the length of fdest to

accommodate the data to send to the neighbouring processors and properly setting up

during the pre-processing stage, the connectivity buffer needed to link the elements

between fsource and fdest. As a consequence, the loop related to the streaming stage

automatically copy the particles between intra-subdomain fluid sites and setup the

data to communicate. fsource is extended to accommodate the data to receive from the

neighbouring processors. During the pre-processing stage, each processor calculates

the interface-dependent lattice sites and store them in a buffer, labelled fid. An extra

buffer of indices, called fdest id is set thanks to fid during the pre-processing to copy

the data received from the neighbouring processors to fdest; thus step (c) is simply

7Usually, each distribution function is stored in 8 bytes; unfortunately, the same amount of

memory is usually required to store its velocity direction and the location of the interface-dependent

fluid lattice site.
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accomplished as follows:

fdest[fdest id[:]] = fto recv[:], (3.20)

where the symbol “:” means that all the elements of the arrays must be referenced.

With these tricks we have also optimised the copying of the distribution functions to

exchange between neighbouring processor sub-domains.

With the adoption of the features presented in this section, the resulting paral-

lel core becomes very simple and abstracts the programming complexity caused by

sparse representations. As a result, it avoids the need to reference buffer elements

in complicated ways and the use of costly conditionals, and minimises data pattern

irregularity. In conclusion, the optimisations discussed in this section and Sec. 3.2

permit us to maintain a low overall memory consumption and to drastically reduce

the execution time (see Sec. 3.4).

Optimisation of inter-machine communication

The exploitation of multiple machines permits us to gather the computational power

needed to quickly study a certain problem or to tackle “grand-challenge” problems

including very-large-scale fluid flow simulations. Several problems in the biological

and physical sciences require computational resources beyond any single supercom-

puter’s current capacity [179–182]. The advent of cross-site simulations is already

taking place today by means of the various geographically distributed MPI interfaces,

such as MPICH-G2 [183] and its new version MPIg [184]. An investigation of the

feasibility and scalability of cross-site HemeLB simulations using a geographically

distributed domain decomposition is presented in Sec. 3.4.3. The communication be-

tween remote machines is characterised by a latency one or more orders of magnitude

greater than that affecting intra-machine data exchanges, while the inter-machine

bandwidth is considerably lower than the intra-machine one. Thus, the optimisation

of inter-machine communications is essential for such an approach to be viable.

The GGP technique produces partitions of high quality (see Sec. 3.3.1). To further

minimise communication cost it might be useful to regularise the interfaces between

sub-domains which may be carried out by recursively subdividing the system into

m parts with m small (O(10)); this approach is equivalent to the ORB method (see

Sec. 3.0.1) if m = 2 and the partitions are obtained proceeding for orthogonal bisec-

tions. Thus, if the number of machines used is m, the strategy adopted subdivides

the system into m macro-partitions. The size of each one is chosen to be proportional

to the number of processors of the corresponding machine. A topology discovery

mechanism based on the MPI function MPI Attr get were implemented in HemeLB

in order to detect the number of machines used and the number of processors for each

machine.
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The topology discovery implementation, the two-level GGP decomposition and

the adoption of the Schulz et al. parallelisation scheme [148] permit us (a) to op-

timise inter-machine communications so as to hide high latency and low memory

bandwidth, and (b) to tune cross-site simulations to specific heterogeneous resource

distributions. Unfortunately, with regard to MPIg and MPICH-G2, only MPIg signif-

icantly hides inter-machine communications via non-blocking message transmissions

that occur between the supercomputing resources. The current parallel implementa-

tion of HemeLB does not optimise the domain decomposition to take into account

the different performance of the plurality of machines that may be present in a grid.

However, this heterogeneity may be taken into account simply by adopting the al-

gorithmic scheme used to consider the different numbers of processors used in each

machine, as discussed above.

Fast and cheap convergence criterion

Here, we present the approaches adopted in HemeLB to check the convergence status

in stationary and periodically time-varying non-turbulent simulations.

The fluid reaches a stationary flow behaviour if the inlet and outlet pressures are

not varying in time and the fluid flow is not turbulent. In this case, it is sufficient to

check if the velocity flow field between two successive time steps is invariant within a

prescribed tolerance. The velocity flow field at the current time step is compared with

that of the previous one, which can be stored in a compact one-dimensional buffer;

every element of that array is compared with the current velocity and substituted

with its value.

If the simulation is controlled by periodically-varying boundary conditions and

the fluid flow does not become turbulent the resulting fluid flow settles down to a

certain time-dependent flow field after a certain number of time periods (not known

a priori). In this case, unfortunately, the application of a convergence criterion is

more delicate: confronting the flow fields of two successive time periods, similarly to

the previous method, entails storing the velocity flow field associated with an entire

period. Therefore, a system comprising 1M fluid lattice sites only and 100K time

steps per period would require more than 2000 GB of memory, which is unreasonable.

A strategy to drastically reduce the memory footprint is to check convergence through

randomly selected spatio-temporal points.

In HemeLB we have implemented another idea: the convergence status is checked

by comparing the flow field of the current simulation at the current time step with

that obtained by a parallel simulation delayed by one time period with respect to the

first one. As a consequence, the memory consumption associated with some buffers

is doubled.
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3.4 Performance scenario

In this section, the single-processor-core performance of the serial cache-aware LB

programming engine adopted in HemeLB is presented and compared to the one di-

rectly exploiting the two-level representation. Then, the parallel performance and

scalability of HemeLB is discussed. Other benchmark results are given in Chapter 4

together with those achieved with our parallel visualisation method. Finally, cross-site

performance results are provided.

3.4.1 Single processor performance

Here, we present the single-processor performance of HemeLB which is compared

to that achieved by employing the two-level data representation explicitly. Essen-

tially, the purpose of this comparison is to verify the benefits associated with the

optimisations described in Sec. 3.2 (optimised buffer access, pattern regularity and

computational branching).

We carried out the benchmarks by applying the D3Q15 model and boundary

condition method presented in Sec. 3.1 to a set of bifurcations of different sizes. The

simulation cells are composed of 163, 323, 643, 1283, 2563 and 5123 lattice sites with

225, 1601, 12449, 98211, 780359 and 6253409 fluid lattice sites respectively. The

pressure profile of the largest system is shown in Fig. 3.6.

The benchmarks were obtained employing a single core of a Intel Core 2 Quad

2.5 GHz with 3 MB cache/core running the operating system Linux Fedora 8 64 bits,

and the compiler Intel 9.1 with flags −O3, −ipo, −xT. The performance in MSUPS

(millions of fluid site updates per second) is shown in Fig. 3.7 for the pure HemeLB

implementation and the HemeLB’s version which directly employs the two-level data

representation. Specifically, the second approach does not exploit the algorithmic

tricks which minimise pattern irregularity, complex buffer accesses and computational

branching, as outlined in Sec. 3.2.

The performance attained by HemeLB is superior to that achieved by the highly

tuned code developed by Donath et al. [144] and benchmarked on architectures sim-

ilar to ours: 8-20 versus 5-7 MSUPS. The pure implementation is more than two

times faster than its version which directly employs the two-level data representa-

tion (see Sec. 3.2 for details), especially during the simulation of small systems; this

demonstrates the enormous improvement due to the algorithmic tricks, presented in

Sec. 3.2, which optimise complex buffer access, data pattern regularity and avoid

computational branching8. The ratio between wall fluid sites and the other ones is

greater for smaller systems. Since the wall fluid sites are handled with less operations

8In [169] it is also shown that data reordering techniques, as the two-level representation imple-

mented in HemeLB, can produce higher performance than typical cache-aware optimisations such as

loop blocking due to better cache utilisation.
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Figure 3.6: External pressure profile of the stationary flow field pertaining to a bi-

furcation of 6253409 fluid lattice sites. The wall and pressure boundary conditions

applied to the no-slip walls and inlet/outlet lattice sites respectively are discussed in

Sec. 3.1. Red and blue colours represent maximum and minimum pressure respec-

tively. The colour of any fluid lattice site is linearly interpolated between those values

according to its pressure.
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Figure 3.7: Performance measured in millions of fluid site updates per second

(MSUPS) as a function of the cube root of the fluid lattice sites using HemeLB and a

HemeLB’s version (‘direct two-level’, see Sec. 3.2 for details) which explicitly adopts

the two-level data representation of HemeLB and therefore is cache-aware but does

not exploit the other optimisations presented in Sec. 3.2. The timing results were

conducted on a single core of a Intel Core 2 Quad 2.5 GHz with 3 MB cache/core

running the operating system Linux Fedora 8 64 bits; the compiler used was Intel 9.1

with flags −O3, −ipo, −xT.
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than the others (see Sec. 3.1), the aforementioned ratio as well as cache use affect the

performance behaviour as a function of system size.

3.4.2 Single-machine parallel performance

In this section, we report some benchmarks related to the parallel HemeLB code

presented in Sec. 3.3. Single-site parallel performance has been tested on HPCx, the

IBM Power5 1.5 GHz housed at Daresbury Laboratory (UK) [186] and on Abe, the

TeraGrid cluster of Intel quad-core 2.33 GHz processors located at the University

of Illinois’ National Center for Supercomputing Applications (NCSA) [187]. The

IBM machine is composed of a number of nodes communicating via the IBM High

Performance Federation Switch. Every node is comprised of 8 chips, each of 2 cores

that share L2 and L3 caches (see [186] for further details). The compiler flags used

are −qstrict, −qstrict induction and −O4. Each Abe’s node comprises 2 Intel

quad-core processors, which are interconnected by a Infiniband interface (see [187] for

further details). The compiler flags used are −O3, −xT and −ipo.

Benchmarks were conducted on a patient-specific system dicretised with 7.7M

fluid lattice sites obtained from a medical MRA dataset (Fig. 3.8 shows its pressure

profile). The LB model and the boundary condition method presented in Sec. 3.1

were used. The minimum number of processor cores used was 16.

In Fig. 3.9 we report HemeLB’s single-site performance in MSUPS as a function

of the number of processor cores. All benchmarks were obtained without checking for

instabilities or applying convergence criteria (their performance cost is insignificant if

they were rarely performed).

We note that HemeLB yields outstanding intrinsic performance and a superlinear

speedup behaviour is maintained up to at least 512 and 2048 processor cores using

platforms HPCx and Abe respectively. This depends on the fact that for a large

processor count each processor sub-domain is small thereby likely residing in caches,

which enhances performance. We investigated other systems and domain partitioning

methods [169]; there, we also demonstrated that the GGP scheme applied to the

coarsest level of the two-level data representation9 guarantees far better performance

than that achieved using Wang et al. method [5], and similar speed to that carried

out by adopting an ideal regular domain decomposition when simulating axis-aligned

fluid flows. Moreover, it was also shown that the intrinsic performance, measured in

MSUPS, does not significantly depend on the system shape.

The time required to accomplish the domain decomposition calculated by the

processor core with rank 0 and that required to manage the rest of the pre-processing

9The situation should be even more favourable by employing the partitioning scheme at the finest

level since the load balancing becomes perfect and the interfaces between adjacent subdomains are

more regular and of a higher quality (see Sec. 3.3.1 for further details).
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Figure 3.8: External pressure profile of the stationary flow field pertaining to the

benchmarked patient-specific system which comprises 7.7M fluid lattice sites. Red

and blue colours represent maximum and minimum pressure respectively. The colour

of any fluid lattice site is linearly interpolated between those values according to its

pressure.
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Figure 3.9: HemeLB’s single-site parallel performance measured in millions of lattice

site updates per second (MSUPS) as a function of the number of processor cores used

for the patient-specific system of 7.7M fluid lattice sites on platforms HPCx and Abe

(see Sec. 3.4.2 for further details). Ideal performance is depicted with dashed lines.

stage without considering input reading are only 1.55 and 0.846 seconds on 1024 cores;

on 64 cores, instead, those performance numbers are 1.70 and 1.353 respectively.

3.4.3 Cross-site parallel performance

Cross-site benchmarks where performed on the IBM Power5 AIX clusters housed

at Louisiana Tech, Tulane University and ULL, called Bluedawg, Ducky and Zeke

respectively comprising part of LONI (Louisiana Optical Network Infrastructure).

Each node of each cluster comprises 8 IBM Power5 1.9 GHz processor cores. The

network interface is a IBM High Performance (Federation) Switch [188]. The compiler

flags used are −O2− qstrict− qstrict induction.

We tested HemeLB on a patient-specific system with 4.69M fluid lattice sites. In

Fig. 3.10, the performance in MSUPS as a function of the number of LONI clusters

used is provided; 32 processor cores were employed for each cluster and the grid-

enabled MPI interface adopted for inter-machine communications is MPIg. Note that

high scalability and parallel efficiency are achieved even with the employment of all

three clusters; this is an impressive result considering that the simulation is running

across geographically distributed platforms.

It is difficult to compare HemeLB’s performance with that of other parallel lattice-

Boltzmann codes, developed for complex systems. Each code has been tested using

different lattice-Boltzmann models, architectures and flow field systems. However, to
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our knowledge, the parallel implementations that yield the best performance results

in terms of scalability and overall execution speed are those presented by Wang et

al. [5] and Axner et al. [164]. In [169] it was directly demonstrated that the domain

decomposition strategy adopted in [5] is drastically inferior to that incorporated in

HemeLB. Moreover, HemeLB exploits several novel optimisations that significantly

speed up computation. The fluid solver presented in [164] give a similar performance

to that achieved by HemeLB.

Figure 3.10: HemeLB cross-site performance in millions of fluid lattice site updates per

second (MSUPS) as a function of the number of LONI clusters, each contributing 32

processor cores (see Sec. 3.4.3 for further details). Ideal performance is depicted with

a dashed line. The fluid flow comprises 4.69 fluid lattice sites. MPIg was employed to

handle inter-machine communications. The executable was obtained compiling with

flags −O2, −qstrict −qstrict induction.

3.5 Conclusions

We have described a very efficient parallel LB code which is well-suited to study

sparse fluid systems. The fast and cheap computational core relies on a two-level data

representation and numerous algorithmic optimisations. HemeLB minimises memory

consumption when tackling complex sparse systems and yields a faster execution than

conventional implementations due to good cache use. Several optimisations were

described; they reduce redundant operations, increase pattern regularity, simplify

the computational core, eliminate computational branching, further reduce memory

consumption and optimise intra-machine communications.

The novel topology-aware domain decomposition is very fast and guarantees high

quality partitions. We have demonstrated its capability to effectively decompose a
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large system, and its excellent workload and communication balance. Consequently,

HemeLB’s parallel scalability and performance are very good. The ability to overlap

non-blocking communications with computation whenever possible through the use

of an optimised MPI implementation plays a central role if maximum computational

performance is to be realised. Moreover, a simple modification of the domain decom-

position technique permits us to optimise inter-machine communications in grid-based

cross-site runs. As a consequence, HemeLB can effectively tackle large and complex

systems via distributed heterogeneous computational resources.

One of the main objectives is to use HemeLB for the study of a variety of human

cerebral blood flow scenarios, ranging from normal to neuropathological conditions,

including aneurysms and arterio-venous malformations, as well as the entire intra-

cranial vasculature; some patient-specific simulation results are provided in Chap-

ter 6. The excellent parallel performance attained using heterogeneous resources is

particularly attractive for addressing patient-specific cerebral blood flows in clinically

relevant wallclock times (see Chapter 5 and 6). The use of sufficient aggregated com-

putational power permits us to tackle large systems in real time or nearly-interactive

rates.
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Chapter 4

High performance volume

rendering and steering of

time-varying fluid flow

To live a creative life, we must lose our fear of being wrong

Joseph Chilton Pearce

Recent algorithm and hardware developments have significantly improved our capa-

bility to interactively visualise time–varying flow fields. However, when visualising

very large dynamically varying datasets interactively there are still limitations in the

scalability and efficiency of these methods. Here we present a rendering pipeline which

employs an efficient in situ ray tracing technique to visualise flow fields as they are

simulated. The ray casting approach is particularly well suited for the visualisation

of large and sparse time–varying datasets, where it is capable of rendering fluid flow

fields at high image resolutions and at interactive frame rates on a single multi–core

processor using OpenMP. The parallel implementation of our in situ visualisation

method relies on MPI and no specialised hardware support, and employs the same

underlying spatial decomposition as the fluid simulator. The visualisation pipeline

allows the user to operate on a commodity computer and explore the simulation out-

put interactively. Our simulation environment incorporates numerous features that

can be utilised in a wide variety of research contexts.

4.1 Introduction

Volume rendering and isosurface visualisation have played a fundamental role in the

analysis of simulation results in the areas of turbulence, multicomponent fluid flow

and hemodynamics, amongst others. These visualisation methods provide us with an
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accurate and immediate description of complex three-dimensional volumetric data;

visualisation can be used to procure an overview of the large-scale dynamical features

as well as effective analysis of, for example, physical structures, small-scale phenomena

and turbulence patterns. The growth of large scale computational resources and the

resolution of data from medical scanning equipment have dramatically increased over

the last decade. The rapid and interactive visualisation of such volume data serves

as a fundamental tool by means of which scientists can explore and discover natural

processes, without sacrificing the fidelity of the source data. The role of efficient

visualisation engines is even more important when dealing with time-varying volume

data; the total amount of data can easily exceed high-end storage capabilities and its

effective visualisation can challenge cutting-edge computational resources.

Here, we focus on time-varying blood flow simulation on high-end computational

resources using HemeLB (Chapter 3) to perform fluid simulations within the cerebral

vasculature. HemeLB is a lattice-Boltzmann (LB) fluid solver which is designed to

simulate steady-state and pulsatile flow in sparse structures such as the human vas-

cular tree. Built into HemeLB is a ray casting algorithm which is the focus of this

chapter, whereby the details of the flow can be visualised as the fluid simulation is

running. Rather than generating the time-varying data, writing it to disk, then post-

processing it for visualisation purposes, we instead render the flow field directly within

the fluid simulation session, directly outputting rendered frames to a network connec-

tion (for example), avoiding lengthy I/O as well as pre-processing and post-processing

times. The isosurface and the volume rendering of time-varying flow field simulation

results can be interactively visualised on a remote computer. The interactivity is en-

abled through efficient steering capabilities such that we can modify simulation and

visualisation parameters at run-time, limited only by the network latency between the

remote computer and the simulation machine. The resulting interactive simulation

environment comprises two applications only: HemeLB with the integrated rendering

and network plus steering capabilities, and the application which displays the flow

field at run-time or a posteriori during a post-processing phase. HemeLB can also

write the hemodynamic state to file such that the resulting fields can be rendered

by other in-house post-processing tools or commercial visualisation software appli-

cations. The overall approach is very useful for the scientist to effectively explore

simulation output and to gain insight into the large parameter space associated with

such problems.

In this chapter, we begin with an overview of volume rendering techniques in

Sec. 4.2, then go on to present the various components of our visualisation pipeline

and our performance results in Sec. 4.3 and Sec. 4.4 respectively. We present our

conclusions in Sec. 4.5.

The steering approach was implemented by Dr. Steven Manos who also bench-

83



marked the steering-based interactive runs. Mazzeo contributed to the improvement

of the steering algorithm and was responsible for all the other implementations and

performance tests.

4.2 Related work

Recently, interactive rendering of large-scale volumetric data has become possible

through the efficient use of modern processors, multi-core architectures and algo-

rithm optimisations. Since the increased speed of processing units has surpassed the

improvement in memory bandwidth [190], rendering algorithms have focussed on min-

imising inefficient memory access [191–193]. Data must be exchanged between central

processing units (CPU), on-chip memory caches, main memory, hard disk and graph-

ics processing units (GPUs), as well as between different platforms, for example, in

the scenario where the rendering is performed on a remote machine which does not

have graphics capabilities. In this section, we provide an overview of the literature

surrounding volume rendering approaches encompassing the aforementioned aspects

with an emphasis on large time-varying datasets. Moreover, we do not discriminate

between isosurface and volume visualisations since the former can be seen as a special

case of the latter, that is, the visualisation of a certain three-dimensional region.

4.2.1 Visualisation of static volumetric datasets

Several rendering methods have focussed on the visualisation of static volumes. Com-

mon to all these methods is pre-processing, a strategy used to accelerate volume

rendering [192, 194–196]. Pre-processing involves setting up simple buffers and/or

encoding the original data in tailored orderings and data structures such that the

processing of unimportant parts of the dataset, which are transparent or occluded by

opaque volume regions, is minimised or ignored. Examples of pre-computation include

pre-shading and pre-gradient estimation and storage [191, 192]. Efficient transparent

region skipping is usually achieved by means of min/max multilevel spatial hierar-

chies, by using recursive grids [197], kd-trees [196] or octrees1 [192, 193]. These have

also been coupled with more exotic data structures [193]. Hidden volume removal

can be effectively carried out by using hierarchical occlusion maps (HOMs) [192] or

may be intrinsically handled by the method employed, e.g. ray tracing. In some

cases, pre-computation may be very time-consuming and require excessive storage

which impairs the upper limit of volume size that can be investigated. Extra buffers

1Kd-trees and octrees are recursive spatial hierarchies. Specifically, in a kd-tree each non-leaf

cell is comprised of two disjointed cells whose total spatial extent covers the space of the former.

The octree is identical to a kd-tree except for the fact that each non-leaf cell is comprised of four

non-overlapping cells.

84



to accelerate volume rendering may require three to four times the memory space

needed by the original dataset [191, 192], which is likely to be unacceptable. Grimm

et al. [193] circumvented this problem by designing a good compromise between pre-

computation and memory consumption by making use of on-the-fly gradient caching

and memory-cheap data structures. The min/max recursive grid presented by Parker

et al. [197] has an insignificant memory overhead; implicit kd-trees drastically reduce

storage consumption with respect to explicit ones [196]. On-the-fly computation may

also reduce overall rendering time [193, 198] since it mitigates the impact of costly

look-up table access.

Volume rendering on GPUs by means of two or three-dimensional textures offers a

high-quality interactive approach [199,200]. Unfortunately, it is not suitable for large

datasets due to the limited graphics card memory and memory bandwidth between

GPU and CPU which prevents fast out-of-GPU-core approaches. Furthermore, it

is difficult to skip transparent regions or take advantage of hidden volume removal

effectively [201]. Where the limited memory on current GPUs is not an issue, one

could perform the simulation and visualisation on GPU resources only.

Ray tracing is increasingly popular because advanced graphics effects can be built

into this technique. Its intrinsic complexity is lower than that of other methods for a

large dataset. Specifically for volumetric data, ray tracing has a complexity O(PN)

where P is the number of pixels of the screen, and N3 is the number of voxels.

If the technique can take advantage of early ray termination (ERT) [202] so that

each casted ray can be stopped after a few volume samples, the sampling complexity

becomes O(Plog(N)), while the one pertaining to other volume rendering methods

is usually O(N3). The use of min/max hierarchical spatial trees, as discussed above,

can drastically accelerate empty space ray traversal. Moreover, ray tracing inherently

employes frustum culling where volume regions outside the view frustum cannot be

seen and are not processed. The effectiveness of view-dependent methods has been

widely used in the visualisation of large systems [203]. Techniques based on multi-

resolution level-of-detail (LOD) schemes [204–206] have been demonstrated to be very

beneficial in speeding up rendering whilst maintaining visual accuracy.

Although the ERT algorithm was published many years ago [202], it is still one

of the most commonly used algorithms for volume rendering acceleration. Unfortu-

nately, parallel rendering approaches based on a static spatial decomposition of the

volumetric dataset (sort-last approaches) are not well-suited for the adoption of ERT

since they are not mutually affine, as explained by Matsui et al. [207]. These authors

presented an algorithm to take advantage of ERT, but their approach entails sub-

dividing processors between rendering and compositing tasks, employing a complex

communication pattern where frequent communications cannot always be overlapped

with computation.
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The state-of-the-art volume rendering of static datasets which does not utilise

LOD acceleration is represented by (i) the shear-image order ray casting method

(augmented with specialised hardware support) [208], which is an improvement over

the shear-warp technique [209], and (ii) ray tracing based on kd-trees [196, 206, 210].

The power of shear-image ray casting resides in its high computational and memory

coherency and small memory overhead, which are fundamental aspects in the effective

utilisation of modern architectures. The efficiency of ray tracing with kd-trees relies

on their ability to easily skip empty or transparent spaces. Furthermore, kd-tree

traversal algorithms, which take advantage of advanced hardware functionalities (e.g.

single instruction multiple data (SIMD) instructions), speed up execution when the

area of the projection of the volume voxel is comparable in size to the pixel [196].

4.2.2 Visualisation of time-varying volumetric datasets

Algorithms developed for the efficient visualisation of static volumes may be unsuit-

able for the interactive visualisation of time-varying volumetric datasets since they

often rely on optimisations that strongly depend on the dataset itself that now varies

over time.

In visualising a time-varying volume, each temporal frame can be considered indi-

vidually by using one of the aforementioned techniques, or by using approaches that

evaluate the temporal series as a whole and capitalise upon building suitable spatial

and temporal (4D) data trees. These techniques exploit temporal coherence between

data associated with the different time steps. This permits a trade-off between ren-

dering speed and quality [211] and can provide very accurate interactive visualisation

of time-varying vector fields by using pathlets mixed with volume rendering, as de-

veloped by Yu et al. [212]. In these cases, pre-processing carried out at the beginning

of the temporal visualisation minimises inter-time-step delay. For large time-varying

datasets with several time steps, the overhead of memory access can be an obstacle

depending on the platform used. Pre-processing time is typically large and 4D data

trees cannot be easily updated if extra time frames are added.

Min/max lossless-compression octrees can be attractive for interactive time-varying

volume rendering since they often require a fraction of the original memory foot-

print [213]. Unfortunately, they require a large pre-processing time; moreover, the

storage of long temporal sequences of a large system is prohibitive.

Another interesting category of techniques which have been used for time-varying

isosurface rendering does not utilise temporal coherence, instead minimising the im-

pact of I/O by reading from disk the portions of data necessary to construct the

current isosurface [214, 215]. To accelerate I/O during rendering, the entire dataset

must be properly formatted but, unfortunately, this requires a long pre-processing

phase.
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Compression and decompression techniques permit one to increase the size of the

rendered system and reduce communication between different hardware components,

but may be unsuitable for a system that varies rapidly in time since the decompression

cost can be too high [216].

Strengert et al. [216] report on remarkable work concerning parallel time-varying

volume rendering leveraging hierarchical texture data representations compressed

with wavelet techniques and rendered with GPUs. An adaptive decompression scheme

is adopted on each node before sending data to the local graphics board’s texture mem-

ory used during rendering; then, the node-dependent sub-images are blended by using

the compositing technique of Stompel et al. [217]. In general, compression techniques

have proved to be very useful in minimising storage requirements and the impact

of data transmission between different hardware components. This could permit a

dataset to fit in CPU or GPU memory; thus, costly data transfer is not necessary

and the rendering is substantially speeded up. If this is not the case, compressed

data is transferred into CPU or GPU memory more quickly than its uncompressed

counterpart; as a consequence, the employment of compressed data is beneficial for

out-of-core approaches whose efficiency strongly depends on the size of the data to

transfer between hard disk, CPU and GPU memory [218]. Unfortunately, compression

requires one to maintain both the raw and compressed versions of the dataset and it

may take seconds to perform encoding in the pre-processing phase and decoding dur-

ing rendering. However, the cost of the latter is not a problem if performed in GPU

hardware [218]. Furthermore, out-of-core rendering solutions that take advantage of

the use of multiple processors and parallel I/O further enhance interactivity [219].

Run-time visualisation techniques

An attractive approach to visualise time-varying data produced by a simulation is

to render the data whilst the simulation is running – i.e. run-time visualisation.

This overcomes the limitation in storing the volume data at several time steps (as in

a traditional post-processing technique), thus offering the possibility to visualise an

unlimited number of time frames and to provide immediate feedback on the ongoing

simulation2. This is particularly important in the context of computational steering

which permits one to adjust simulation parameters on the fly, thus visualising changes

immediately, augmenting exploration and scientific discovery [220,221].

One method to implement run-time visualisation is to frequently transfer sim-

ulation data to another platform as described by Yu et al. [222], Bellemann and

Shulakov [223] and Insley et al. [224]. Unfortunately, this methodology requires a

high-speed network, parallel I/O and powerful computational resources to be effec-

2Nonetheless, this strategy does not preclude writing to file the flow field at user-selected time

steps for conventional post-processing purposes.
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tive; furthermore, highly interactive rendering of large datasets is not guaranteed.

An emerging run-time visualisation technique which relies on performing the sim-

ulation and rendering within the same platform is called in situ rendering. There

are two main methods used to handle in situ rendering. One is to perform render-

ing on one processor or a subset of processors which differ from the one employed

for the simulation. This type of in situ rendering has been described by Rowlan et

al. [225] and Takei et al. [226]. The other strategy to handle in situ rendering is a

one-to-one kernel of simulation and rendering processes. Specifically, the latter re-

lies on a sort-last method in which each processor renders the subdomain for which

it is responsible while the simulation is running. The image is obtained through a

compositing stage which merges the processor-dependent sub-images. This in situ

approach was first developed by Ma [227] and subsequently employed by Lomdahl

for ultra-scale molecular dynamical simulations [228] and by Tu et al. for terascale

earthquake simulations [229]. It is the method we use in the present thesis.

With respect to the previous class of run-time visualisation, this offers the ad-

vantage of reducing inter-machine communication such that only the current image

is communicated, which may also be compressed, to a host computer equipped with

graphics capabilities; alternatively, or additionally, every image may be written to

file.

4.3 The visualisation pipeline

The objective here is to interactively simulate and visualise large time-varying volu-

metric datasets generally discretised by a complex computational ensemble of cubic

voxels. The flow field is simulated by HemeLB (see Chapter 3). HemeLB can simulate

a time-dependent flow field in a regular or complex geometry, at hundreds of iterations

per second by employing a sufficient number of processors. While it is not necessary

to monitor a flow field at hundreds of time steps per second, it is undoubtedly useful

to visualise the output interactively, i.e. 5–20 frames per second (FPS), to enhance

exploration and scientific outcome. Real-time volume rendering of large time–varying

fields is a challenging problem, as we discussed in Sec. 4.2; in fact, in that section we

reported the state-of-the-art of time-varying volume rendering but the best results

are achieved at a rate of 5–10 frames per second [216]. Additionally, the storage of

large flow fields over hundreds or thousands of time steps is not feasible; the most

suitable approach to render several time frames is that offered by run-time strategies.

We have adopted the most extreme form of in situ visualisation: the rendering is

approached by a ray casting technique which has been incorporated in HemeLB such

that each processor ray traces its own subdomain, corresponding to the domain de-

composition used in HemeLB. We have implemented the ray casting method based on
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explicit min/max kd-trees described by Wald et al. and Friedrich et al. [196,206], one

of the fastest techniques to date for time-independent volumes (Sec. 4.2.1). Our sim-

ple ray caster relies on a novel data layout particularly suitable for sparse geometries

and out-performs the methods presented in [196,206] (see Sec. 4.4). Furthermore, in

contrast to these methods, ours does not need pre-processing, thus enabling efficient

visualisation of time-varying flow fields. Image compositing is handled by an opti-

mised binary communication pattern. We have also implemented steering capabilities

to interactively visualise the flow field in different ways and change its parameters on

the fly. The resulting steering and visualisation pipeline permit the fluid solver to run

without interruption and at near-maximum speed whilst visual feedback is provided

at maximum frequency.

The Message Passing Interface (MPI) [230] is employed to handle inter-processor

communication. All the software components, i.e. simulation, rendering, image com-

positing and steering, have been tightly integrated together to maximise performance.

4.3.1 Volume rendering core

We have implemented a simple ray casting algorithm with some optimisations and

novel features particularly well-suited for sparse, time-varying flow fields. First, we

consider frustum culling, hidden region removal and transparent region skipping, in

conjunction with effective volume rendering, and we justify the use of a ray tracing

method. Second, we provide the technical details pertaining to the basic and novel

features, and optimisations of our ray casting approach.

Frustum culling and hidden region removal

Ray casting, being an image-order front-to-back approach, is an effective visualisation

technique appropriate for large systems, and intrinsically employes frustum culling

and early ray termination (see Sec. 4.2).

Moreover, ray tracing is flexible and accurate since it operates with rays and not

with the volumetric data directly. However, since volume data and rays are generally

uncorrelated, e.g. the data access pattern over the volume is highly irregular, ray

casting tends to suffer from memory incoherency, and thus poor cache exploitation

and performance (for a detailed discussion, see for instance [193]). Therefore, ray

tracing should be enhanced with cache-aware optimisation; below, we discuss a new

data format to increase memory coherency and performance.

Transparent region skipping

The ability to quickly traverse transparent regions represents a fundamental ingre-

dient in efficient volume rendering. In ray casting transparent region skipping is

usually achieved by employing a hierarchical min/max acceleration structure, e.g. a
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min/max kd-tree [196] (as mentioned in Sec. 4.2). Here, each node in the tree en-

capsulates the minimum and maximum values of their daughters and each tree leaf

stores the minimum and maximum values of the spatially spanned voxels; ray traver-

sal entails starting from the root node and recursively proceeds in a front-to-back

order, examining smaller nodes only if they satisfy certain criteria. For example, for

isosurface rendering, a node is skipped if the isovalue is outside the min/max range

stored in that node; for volume rendering a node may be considered transparent if the

difference between the stored maximum and minimum is lower than a user-defined

threshold, as described in [210].

Acceleration structure for effective hidden region removal

With respect to time-varying volume rendering, the main bottleneck pertaining to

min/max trees and other more involved methods for handling transparent region

skipping is that they inherently depend on volume data; thus, if the latter changes

the former must be re-built, which offsets the benefits related to ray casting (de-

scribed above) and prevents interactive visualisation. Moreover, the employment of

optimised parallel min/max tree construction is not sufficient for large systems [210].

We circumvent this problem in the manner discussed below.

Generally the non-transparent part is sparse and occupies a small fraction of the

volume bounding box. We enhance the benefit offered by sparsity by means of the fol-

lowing method. During the preprocessing stage, the volume of interest is subdivided

into a set of disjoint subdomains by means of a simple graph growing partition-

ing (GGP) algorithm. Each subdomain is assigned the same number of voxels and

generally comprises one or more disconnected clusters of voxels (‘volume clusters’).

The GGP technique grows N subdomains from N corresponding seed points/voxels

by sequentially applying a breadth-first expansion algorithm to each seed point (see

Chapter 3 for a complete description). During volume rendering of each time frame

ray casting is applied to each volume cluster independently, considering only the rays

sent from the eye through every pixel spanned by the minimum viewport rectangle

containing the projected vertices of that cluster. Therefore, a set of sub-images is

produced, one for each volume cluster. All the sub-images are correctly assembled to

form the complete image; merging is aided through a look-up table. Specifically, a

z-buffer is used for isosurface ray casting and the associativity rule is exploited during

volume rendering [231]. Several advantages characterise this ray casting approach as

explained below; we also discuss the potential disadvantages and some techniques to

circumvent them.

Ray traversal is usually regarded as the most expensive aspect of ray tracing,

particularly in large systems [196]. Splitting the volume into a set of clusters, which

closely adhere to non-transparent regions, and ray casting them independently, holds
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the potential to drastically reduce the number of rays to cast, ray-box intersections

and traversal steps, as shown in Fig 4.1.

However, multiple rays are cast through a pixel if more than one cluster maps

to that pixel. This occurs when a particular view point results in two or more

screen-cluster projections overlapping. This leads to undesirable ray initialisations

and traversal steps following the first-hit voxels. One cannot avoid this situation for

viewpoints generally and, as a consequence, our method has a certain overhead which

may overwhelm its original benefits for a highly occluded cluster distribution. To

avoid this we could use an image-based occlusion map: we first quickly project each

cluster and determine their visibility in ascending order; secondly, for each pixel we

consider the cluster nearest to the image-plane and we do not proceed to the next

cluster if the ray is blocked.

If the bounding boxes of the clusters are not spatially disjointed some voxels

may be pierced multiple times i.e. by rays pertaining to different clusters. A parti-

tioning algorithm which is different from ours may be adopted to produce spatially-

independent axis-aligned subdomains. However, if the spatial distribution of clusters

is very sparse, the probability that a ray through a pixel spawns a non-transparent

region, and therefore multiple clusters, is very low.

A shortcoming inherent in our approach consists in not supporting advanced shad-

ing effects which are based on secondary rays, e.g. shadows, as long as they capitalise

upon rapid data access to any part of the global system information. However, this

feature is not precluded since one can maintain a global ray traversal acceleration

structure for secondary rays. Alternatively, the volume clusters themselves may be

embedded in a memory cheap hierarchical acceleration structure which, as a conse-

quence, encapsulates global information in the form of a spatial collection of local

clusters.

Optimisation of ray traversal steps, memory coherence and data updating

Our volume rendering method resembles object-order ray tracing algorithms [192,232].

In contrast to these our basic algorithm does not rely on global ray traversal and data

structures; this is the key aspect which significantly reduces the number of operations

(ray traversal steps) and enhances memory coherency.

When a ray traverses a large volume, it samples non-contiguous data that are likely

to reside far from each other in memory address space, thus provoking numerous cache

misses and poor performance. The volume data associated with a cluster is stored

in a two-level grid, namely a regular grid of macrocells (or bricks) each of which is a

rectilinear grid of voxels. Therefore, ray traversal is completely shifted from a global

approach over a large dataset to a cache-friendly local one. The multi-level represen-

tation further improves memory coherence [197]. Furthermore, our compact two-level

91
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Figure 4.1: Two-dimensional representation of a ray casting approach to handle vol-

ume rendering of a voxelised birfurcating 3D dataset; (a) standard technique (left

image) and (b) our method (three rightmost images) which decomposes this example

system into three volume clusters (see Sec. 4.3.1 for details). The transparent and

opaque voxels of the two-level grid used to accelerate ray traversal are represented

with dashed borderlines and black squares respectively. Non-empty macrocells com-

prise 4× 4 voxels. The computational cost of a ray is proportional to its thickness: a

ray that is only generated and is tested against a bounding box for intersection pur-

poses has the mimimum thickness, while a ray which also traverses empty and/or full

macrocells is thicker. The total number of ray generations and ray-box intersections

is 4 + 3 + 6 = 13 with our method (instead of 16); here, ray traversal within some

macrocells and voxels is avoided because the bounding boxes of the subdomains are

shrunk with respect to the original system (thus empty macrocells are not taken into

account). Conversely, our method considers post-first-hit ray traversal steps which

can be avoided in the conventional technique: our algorithm needs to assemble sub-

images pertaining to different subdomains in a single image.
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data structure incorporates an essential feature related to the pre-computation stage

needed to accelerate transparent region skipping, which we explain below.

Min/max tree construction is accomplished by propagating the minimum and max-

imum information from the voxels up to the node root through inner nodes, following

a bottom-to-top approach, as described in [210]. This time-consuming multi-pass al-

gorithm optimises the ray traversal stage of static volumetric data in the presence

of empty regions but simultaneously prevents rapid visualisation of time-varying vol-

ume data since it must be applied at every time frame. Fortunately, if we employ

a two-level data format, we have to update the finest grid only, which involves a

single step procedure. Further details are provided in Sec. 4.3.3 whilst discussing

the coupling between the fluid solver and the renderer. Additionally, we determine

concurrently whether a cluster of macrocells are completely transparent; in that case

their computation during ray casting is completely avoided.

Colour mapping

We have chosen to employ a zero-order scheme for volume rendering. Specifically, for

isosurface ray casting the ray is terminated at the nearest face of the first-hit voxel

with flow field value greater than the chosen isovalue; a colour-code maps the voxel

value to the pixel colour. During volume rendering, instead we calculate its integral

by considering each non-transparent voxel pierced by the ray; each contribution is the

colour associated with the voxel value multiplied by the segment pierced by the ray.

Zero-order approaches are fast but not very accurate. In fact, they can easily

produce artifacts like patchy and aliasing effects. However, if the volumetric dataset

is of a high resolution compared to the image display resolution, the visual accuracy

does not depend on the sampling interpolants but rather on the spatial resolution of

the simulated flow field. Furthermore, our volume rendering approach represents the

fastest way to scan all the voxels pierced by the ray, in contrast to most of the ray

casting techniques which sample the volume at small regular intervals. Additionally,

the use of high order extrapolation methods may be not suitable because our flow fields

are generally sparsely defined. Finally, sampling approaches whose order is not zero

require knowledge of data that pertain to adjacent subdomains which are not provided

by our fluid solver HemeLB; as a result, an extra communication stage should supply

this information, which entails complicating the implementation, allocating further

buffers and results in a less efficient strategy.

Optimised ray traversal engine

The voxel traversal technique developed by Amanatides and Woo [233] is employed

to rapidly determine the voxels pierced by the ray in front-to-back order. The two-

level clusters are explicitly and recursively traversed by using several optimisations
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as follows.

Ray traversal is handled by one of eight routines, depending on the x-, y- and z-

signs of the ray; this minimises the number of conditionals and saves computational

operations. Moreover, ray traversal at the macrocell and voxel levels are approached

by two different functions, which avoids further conditionals and ray-initialisation-

steps3. Additionally, the fact that several operations can be avoided is exploited

since (a) some parameters associated with the ray traversal at the finest level are

not necessary if the ray is stopped at the first voxel, (b) macrocell spatial extent,

needed to define the voxel of the finest level located by the current ray sample, can

be computed incrementally and (c) integer multiplications needed to refer the ele-

ment of the currently traversed grid, n, are minimised if one encodes in terms of the

(iMN, jN, k) triplet instead of the (i, j, k) one, where n = (iMN + jN + k) and the

grid has (L,M,N) cells. Furthermore, we have augmented several ray initialisation

and traversal steps with SIMD friendly code which can be easily vectorised on several

architectures. In Sec. 4.6 a pseudocode implementation shows various optimisations

of our ray traversal algorithm with respect to a näıve implementation.

The ray enters and leaves the minimum bounding box containing non-void voxels

of the current cluster; this eliminates further traversal steps. Moreover, the viewport-

projection of each cluster is very compact. The vertices of each mimimum bounding

box are pre-calculated. This optimisation which we have adopted doubles the speed of

the ray tracing overall. The resulting code is quite simple and compact; higher-level

hierarchies are not employed and complex pre-computation, such as caching [193], is

not performed (see the discussion in Sec. 4.2).

4.3.2 Further optimisations

In the following sections we discuss weaknesses and strengths of our ray casting ap-

proach, and describe further improvements to enhance its quality and speed, typical

of modern ray tracing systems.

Handling advanced rendering effects

We will see in Sec. 4.4.1 that our ray caster is very efficient and can render sparse

large-scale three-dimensional volumes at high image resolutions at tens of frames per

second on a single processor. Rendering quality may be easily enhanced through the

incorporation of trilinear interpolation and normal estimation by considering neigh-

bouring voxels adjacent to the ray samples. As we discussed in Sec. 4.3.1, this requires

special care at boundary voxels, for instance, through some extrapolation techniques.

3In a traditional recursive approach which handles several hierarchical levels this is more difficult

to control and involves the use of several conditionals and computations which may significantly

degrade performance. Our bi-level ray traversal overcomes these problems.
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Unfortunately, it is difficult to implement advanced rendering effects based on sec-

ondary rays, e.g. shadowing and global illumination, as in [196,206]; below, we explain

the reason and provide some ideas to circumvent the problem.

The object-based nature of our ray casting approach prevents straight forward

management of secondary rays. For a regular parallel domain decomposition the

maximum number of neighbouring partitions is 26; the irregular domain decomposi-

tion into a set of sparse subdomains prevents to limit a priori the subdomains from

which a ray may come from, which can be very large in number. In a shared memory

system, MPI communications can be substituted by appropriately protected shared

memory access operations, but our goal is to be able to render the flow field on any

platform. The problem related to the MPI communication of secondary ray data does

not hold when the processor count is small but might be a bottleneck when this is

large. One way to circumvent the problem is to partition the empty space between

the volume clusters by generating extra (empty) partitions such that each processor

has a compact set of neighbouring ones. Unfortunately, this technique slightly offsets

the advantage provided by rapid transparent region skipping which characterises our

ray casting method since each empty partition must exchange ray data with neigh-

bouring ones. One technique to render shadows adopts the shadow maps typical of

software based on polygon rasterisation. First, the flow field is rendered from the

light positions; for each light the corresponding image is stored in a buffer and even-

tually filtered; second, the flow field is rendered from the eye location which uses those

buffers to determine whether the current pixel is in shadow or not. In this procedure,

a projection from the three-dimensional location to the two-dimensional light buffer

is employed.

Culling of further ray traversal steps

In this subsection, we discuss optimisation techniques to further eliminate ray traver-

sal steps. As mentioned in Sec. 4.4.1, if each ray traverses several volume clusters

our object-based ray caster might result inefficient because some traversal steps are

performed for each partition, while the advantage of typical ray tracers is to stop

at the first hit. We can obviate this problem by projecting all the volume clusters

prior to the ray traversal stage; in this way we know how many of them are seen

from each pixel. Thus, we can use a standard ray tracing approach if their number

is above a certain threshold. In this hybrid technique we have the drawback of some

memory overhead due to the global ray traversal, but this is eventually alleviated by

re-using and linking the sparse representation of the novel data structure to a coarse

and global hierarchical grid.

We send rays through the minimum two-dimensional image rectangle containing

the eight vertices of the volume cluster. This often leads to unnecessary ray-box
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intersection tests. It can be avoided by scan converting (rasterising) the volume

box, which results in a compact representation of the pixels seen through this three-

dimensional projection.

Further exploitation of underlying hardware

Data structures may be aware of the underlying hardware architecture, which is rel-

evant to well exploit cache hierarchy and maximise performance [197]. In this work

however, we did not study the influence of the size of the macrocells on the ray casting

performance since we prefer to produce a platform independent solution.

Optimisation of spatial partitioning

Our ray casting performance is a function of the occlusion of the scene and the sparsity

of the volume to be rendered: a poorly occluded system with substantial empty space

is quickly rendered (see Sec. 4.3.1 and 4.4.1). We did not have further insight into

this topic, but show a performance plot as a function of the number of subdomains

for three different systems in Sec. 4.4.1. With some quantitative results or theoretical

arguments one can optimise the number of subdomains and volume clusters for the

current computational domain. Furthermore, the partitioning into subdomains can

be recursively performed and optimally selected by checking, at each level, the current

extent of occlusion and distribution of non-empty regions.

Enhancing hidden volume removal

One disadvantage of object-based rendering approaches is that some processing per-

taining to volumes outside the view frustum, i.e. of those which are culled, cannot

be avoided, given that substantial computation is dedicated to the other regions.

Moreover, in a parallel implementation this has a highly undesirable consequence:

processors dealing with culled volume clusters are idle while the others are respon-

sible for the majority of the computation. Thus, a significant load imbalance arises

when the user zooms into certain locations of the scene. One way to mitigate the

problem is to switch from a ray casting approach to a raster-based one to acceler-

ate the rendering of the visible parts for which the ray casting would be quite slow.

Thus, several improvements can be employed to enhance performance and quality, but

nonetheless our ray caster is very efficient (as shown in Sec. 4.4.1) and its simplicity

is the key of its usability.

4.3.3 In situ visualisation

In Sec. 4.2, we discussed some of the features of in situ visualisation techniques,

specifically coupling the lattice-Boltzmann fluid solver HemeLB and the ray casting
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technique, as presented in Sec. 4.3.1. Here, we describe our cheap cache-friendly data

format of each volume cluster and the communication pattern that permits us to

assemble the sub-images corresponding to different MPI ranks.

At the beginning of the simulation, a subdomain is assigned to each MPI rank,

each subdomain being represented by a set of clusters (see Sec. 4.3.1). Local fluid

simulation data on each MPI rank are based on reordered one-dimensional arrays

for efficient purposes (see Chapter 3 for further details). The mappings between the

two-level volume clusters and the one-dimensional arrays are maintained through a

two-level grid and ray casting is locally performed within each cluster (Sec. 4.3.1).

Therefore, the pressure or velocity magnitude or the stress flow field is directly stored

as a fragmented collection of two-level hierarchies, one for each cluster. The simulation

and the rendering are performed in double and single precision respectively. When

a voxel value is changed during the simulation we need to update the correspond-

ing one in the proper cluster. Here, the key aspect is played by a one-dimensional

array of pointers which are set once to map the one-dimensional simulation data to

the fragmented flow field. If we want to update the min/max values of the cluster

of macrocells to further cull traversal steps during ray casting (as discussed in Sec-

tions 4.2 and 4.3.1), we need to use an extra (short) array for each cluster sized as its

number of macrocells.

These data structures permit us to admit only a small memory overhead and to

directly and efficiently update the data whose layout is optimised for volume render-

ing. These are central aspects that distinguish our visualisation engine from many

others which are afflicted by long pre-processing times and/or substantial memory

overheads (see Sections 4.2 and 4.3.1).

4.3.4 The compositing scheme

The scheme developed by Stompel et al. [217] has been regarded as the most efficient

compositing method. Unfortunately, it has a serious disadvantage for the volume

rendering of sparse systems: it assumes that each subdomain is a parallelepiped and

thus its corresponding sub-image is “full”, which is not our case due the sparsity

of the spatial distribution of the non-transparent voxels. We have implemented a

binary tree communication pattern, as shown in Fig. 4.2. At each tree level each

subimage to be sent is larger than that at the previous level which favours point-to-

point communication bandwidth. At the same time, more and more processors are

idle and work load imbalance grows; however, this is inevitable consequence of storing

the entire image on one processor.

In contrast to the algorithm presented in [217], a compressed representation of each

sub-image is maintained: only coloured pixels are stored along with the identifier as

well as (a) the pixel colour and the length of the ray route for volume rendering or (b)
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Figure 4.2: Illustration of our binary tree communication pattern over time to handle

image compositing using 9 processors numbered 0 to 8. Each processor sends its

sub-image to a neighouring one with lower rank, specifically depending on the tree

level. The thickness of each arrow denotes the message size, while the one of each line

represents the time to merge the received sub-image. At the end of the process the

0-rank processor has the final image which can be written to file or communicated

to a remote computer. Load imbalance can arise, which is a result of the binary tree

communication pattern used as well as different sub-image sizes.

the first-hit voxel value and distance from the eye for isosurface ray casting. It is useful

to display the simulation results in different modalities; therefore, we have chosen to

render the current flow field by means of two isosurface-based and two volume-based

visualisations (see Sec. 4.4), which are accomplished through a single-step-per-pixel

ray traversal. The performance of this compositing scheme will be explored in Sec. 4.4.

4.3.5 Steering approach

Computational steering plays a crucial role in data exploration and scientific discov-

ery [220,221]. Some aspects concerning steering are discussed in Chapter 5 while the

details of the parameters which can be steered and monitored are outlined in Chap-

ter 6. Here, we describe a steering environment to monitor simulation results as well

as interact with the fluid solver and the ray caster to modify simulation and rendering

parameters at interactive frame rates.

Our novel strategy to handle run-time steering and visualisation involves minimis-

ing the need for high-bandwidth communication between different components and

software applications of our computational infrastructure - the renderer, fluid solver,

supercomputer and remote computer, and the coupling between steering and sim-

ulation/rendering (see Fig. 4.3). Outgoing composed images and incoming steering

signals are handled through two threads running on rank 0, and domain decomposi-

tion is performed in such a way to assign the rank 0 no lattice sites to avoid overload.
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Thus, the main task of rank 0 is to collect the composed frame as well as broadcast

necessary steering parameters to all other ranks. By using asynchronous threads in

this fashion, network bandwidth limitations, client disconnects, etc. do not affect the

speed of the underlying simulation. Frames are only rendered and composed when

no frame is being transmitted over the network to the client (i.e. as they are needed)

(Fig. 4.3). In this way, in contrast to other interactive environments, such as that

presented by Belleman and Shulakov [223], two important features arise and confer

our method a certain strength: (a) rendering is performed at a high maximum inter-

active frequency, only limited by the network bandwidth between the simulation and

steering/visualisation client, and (b) due to the asynchronous network transmission,

rendered image transfer does not affect the underlying simulation speed.

Compressed images are faster to be transferred; unfortunately, the time needed to

compress them may be much longer than the rendering time. Therefore, we do not

apply any compression scheme but we avoid the storage and network transmission of

non-coloured pixels by only sending the coloured ones.

Figure 4.3: Temporal sketch of our interactive simulation environment. Depending

on the pipeline stage from top to bottom, the number in each box refers to the

simulation time step currently processed, rendered or displayed, and finally explored.

The simulation and volume rendering take place on the same platform, while the

image of the flow field is transferred to a remote computer client and displayed. The

clinician can explore and interact with the simulation output by interactively using

the steering capabilities. One advantage of the scheme used is that the fluid solver

is not substantially affected by the speed of the other environment components (see

Sec. 4.3.5 and 4.4 for further details and performance results respectively).
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4.4 Performance results

In this section, we present an extensive overview of performance results of our visu-

alisation engine. We first report the single-processor performance of our ray caster

bi-level algorithm on time-independent fluid flows and compare it to one based on

an explicit kd-tree technique (Sec. 4.4.1). The conventional kd-tree-based ray tracing

algorithm relies on one kd-tree. Here, instead, we also monitor the performance of our

object-based subdivision technique (Sec. 4.3.1) by representing each volume cluster

by a separate kd-tree.

In Sec. 4.4.2 parallel performance (intrinsic speed and scalability) of the in situ

visualisation engine incorporated in HemeLB (Chapter 3) is discussed in the context

of our ray-caster and compositing approaches, for the simulation of time-varying flow

fields. In Sec. 4.4.3 performance of the remote interactive and steering capabilities is

discussed.

4.4.1 Ray casting performance

Figure 4.4: From left to right, we show the first, second and third models consid-

ered in this work (referred to as Model 1, Model 2 and Model 3). They correspond

to three highly-resolved digitally reconstructed patient-specific intracranial vascular

pathologies and comprise 1661545, 183228 and 249094 sparsely distributed fluid vox-

els respectively. In the three images, we depict 64 colour-coded subdomains. Each

subdomain is subdivided into one or more volume clusters which are rendered inde-

pendently by tracing rays through their minimal viewport rectangles (see Sec 4.3.1

for details). The boxes are outlined in black.

Here, we compare the single multi-core processor performance of our ray caster to

one relying on an explicit kd-tree [196,206], which is the state-of-the-art of software-

based isosurface visualisation of static flow fields (Sec. 4.2).

For the explicit kd-tree ray caster, as done in our object-based ray casting tech-

nique, the whole system is decomposed into a set of subdomains. Each volume cluster
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is represented by a two-level grid or an explicit kd-tree and ray traced independently.

Here, the domain decomposition is performed only once and during dynamically evolv-

ing in situ blood-flow simulations most of the data structures have already been

constructed by HemeLB; thus no pre-computation and replication of buffers is re-

quired (Sec. 4.3.3). All benchmarks were performed by having 8 × 8 × 8 voxels for

each macrocell and by not including the time to display the coloured pixels. Inter-

processor communications and hence the parallel compositing algorithm presented in

Sec. 4.3.3 were not needed here; the N sub-images were assembled by compositing

the image buffer of thread 0 with the remaining N − 1 threads.

The single-processor performance is evaluated by rendering the fluid flow con-

fined in three digitally reconstructed patient-specific aneurysms. The original medical

datasets comprise 512 × 512 × 400 voxels but we increased this resolution five times

along each axis for simulation accuracy purposes. However, the region of interest of

each model is much smaller than 2560× 2560× 2000 voxels and the fluid voxels, i.e.

the ones processed by the fluid solver, are sparsely distributed within compact bound-

ing boxes; there are 1661545, 183228 and 249094 fluid voxels for the first, second and

third model respectively; see Fig. 4.4 where they are subdivided into 64 subdomains.

For the remainder of this chapter we refer to these models as Model 1, Model 2 and

Model 3 respectively. Notably, these systems differ in terms of the number of fluid

voxels and in structural properties which diversify the level of visual occlusion (see

Chapter 6 for further details on these aneurysm models).

We use the ray caster to render the first-hit pierced voxels that have a flow field

value higher than a specified threshold. This allows us to render the pressure or

the stress at the outermost voxel (artery) layer, which is clinically important. The

conventional isovalue-based approach requires storage of the maximum flow field value

in the current volume cluster, macrocell or kd-tree node, as opposed to the min/max

counterparts which record either their minimum or the maximum values. We call these

incomplete min/max objects “zero/max” ones. This methodology is less restrictive

than a typical isovalue-based ray tracing which only considers the surface of voxels

adjacent to the current isovalue, and therefore is penalised because it forces us to

consider volume clusters or macrocells that do not contain the isovalue and are skipped

in a traditional isosurface technique.

The performance results in terms of frames per second (FPS) for a viewport of 8002

pixels achieved by using a single Intel Core 2 Quad 2.5 GHz and the Intel 9.1 compiler

with flags −O3, −ipo, −xT are reported in Figures 4.5, 4.6 and 4.7. We compare the

performance attained by the novel object-based zero/max two-level grid ray caster to

our object-based zero/max explicit kd-tree one. The whole system is decomposed into

a set of subdomains and each of their volume clusters is represented by a kd-tree (or a

bi-level grid), which is ray traced independently (see Fig. 4.4). The latter becomes a
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standard kd-tree ray caster running on a single processor core if the spatial partition

comprises a volume cluster; as a consequence, we check either its performance or test

the efficacy of the nature of our object-based technique. The structure of the kd-

tree node requires 128 bits and thus fits a cache line, which enhances performance.

Shared-memory parallel rendering of the subdomains is achieved by a relatively simple

OpenMP implementation, where the number of OpenMP threads used is the minimum

of four and the number of subdomains. Notably, the compositing stage is much simpler

than that presented in Sec. 4.3 since sub-frame buffers are merged with memory copy

operations.

We note that the single-core single-subdomain performance of the ray tracer based

on the bi-level grid is significantly higher than the one relying on the explicit kd-

tree. Notably, we did not include the computational time due the zero/max kd-tree

construction which is about 0.07 seconds when applied to the largest vasculature

(Fig. 4.5), and therefore comparable to the rendering time. Conversely, the updating

cost of the zero/max bi-level grid is insignificant and, if employed in combination with

a fluid solver through an in situ approach (as discussed in Sections 4.3.3 and 4.4.2),

can be performed with no intermediate processing tasks.

For all vasculatures, the single-core performance of the bi-level-based ray caster

becomes dramatically superior by splitting the vasculature into approximately 8 sub-

domains, which demonstrates the effectiveness of our partition-based visualisation

approach. The employment of OpenMP is also particularly beneficial; the ray caster

augmented with the bi-level scheme together with the partitioning sustains excellent

frame rates. Additionally, the performance obtained by visualising the isosurface of

the velocity flow field is similar to or better than that achieved by stopping the ray

casting at the first fluid voxel as carried out during the rendering of the pressure

distributed at the aneurysm wall.

4.4.2 Parallel ray casting performance and scalability

Here we report on parallel scalability and performance of the in situ visualisation

approach. For each vasculature four different visual modalities were simultaneously

rendered at 5122 resolution. Snapshots of the output of the three datasets used are

shown in Fig. 4.8. The Ranger supercomputer at the Texas Advanced Computing

Centre (62,976 AMD Opteron Barcelona processors with InfiniBand interconnects)

was used to perform the runs with the MVAPICH MPI library v1.0.1 and Intel v10.1

C/C++ compiler with flags −O3− xT− ipo. As carried out in the single-processor

performance scenario, each macrocell was 8× 8× 8 voxels in size.

The performance is shown in Fig. 4.9 as strong scaling, the problem size (number

of fluid sites) being kept constant as the number of processors is increased. Each

rank in the MPI communication space has its own subdomain and on each rank these
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Figure 4.5: The top-left image shows the pressure distribution at the wall of Model

1, a large aneurysm comprised of 1661545 fluid voxels, while the bottom-left image

depicts the part of the vasculature characterised by a velocity greater than 20% of

the maximum value. The colour scale depicts low (violet) values to high (red) values.

The plots on the right hand side report the performance achieved on a single Intel

quad-core 2.5 GHz with a viewport of 8002 pixels using various volume rendering

approaches as a function of the number of partitions in which every vasculature is

subdivided. Specifically, the horizontal dashed line is the single-core performance

achieved by the explicit kd-tree. We applied the object-based technique presented in

Sec. 4.3.1 to the ray caster based both on our bi-level grid and the explicit kd-tree;

their performances are also shown. See Sec. 4.4.1 for further details.
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Figure 4.6: The top-left image shows the pressure distribution at the wall of Model

2, a small aneurysm comprised of 183228 fluid voxels, while the bottom-left image

depicts the part of the vasculature characterised by a velocity greater than 20% of

the maximum value. The colour scale depicts low (violet) values to high (red) values.

The plots on the right hand side report the performance achieved on a single Intel

quad-core 2.5 GHz with a viewport of 8002 pixels using various volume rendering

approaches as a function of the number of partitions in which every vasculature is

subdivided. See Sec. 4.4.1 for further details.
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Figure 4.7: The top-left image shows the pressure distribution at the wall of Model

3, a small aneurysm comprised of 249094 fluid voxels, while the bottom-left image

depicts the part of the vasculature characterised by a velocity greater than 20% of

the maximum value. The colour scale depicts low (violet) values to high (red) values.

The plots on the right hand side report the performance achieved on a single Intel

quad-core 2.5 GHz with a viewport of 8002 pixels using various volume rendering

approaches as a function of the number of partitions in which every vasculature is

subdivided. See Sec. 4.4.1 for further details.
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Figure 4.8: Snapshots of the simulation results obtained with our in situ visualisation

system. The three different sets of four images correspond to three different types of

vascular pathologies which are Models 1 (top-left set), 2 (top-right set) and 3 (bottom

set). For each model, the volume rendering of the velocity and stress flow fields of

the flow half way through a pulsatile cycle are depicted on the top-left and top-right

images respectively. The wall pressure and wall stresses are shown in the bottom-left

and bottom-right images respectively.
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Figure 4.9: Parallel scalability and performance of the in situ rendering system for

the vascular pathologies shown in Fig. 4.8, namely Model 1, 2 and 3. The flow

field is simulated using the parallel fluid solver HemeLB and the volume rendering

is performed by the in situ object-based ray caster built into HemeLB (Sec. 4.3.1).

Performance of the fluid solver alone (FS) and the fluid solver with volume rendering

(FS+VR) are shown as time steps per second.

subdomains are split into multiple volume clusters. The scalability of the fluid solver

alone as well as use of in situ rendering at every time step is particularly clear in

the first dataset with 1661545 fluid sites (≈ 1600 sites per rank using 1024 cores).

Once the number of fluid sites per rank drops below 1500−3000 scalability is reduced

because of the heavy increase in communication relative to computation on each MPI

rank. Of course this depends on many factors associated with the machine, such as

the MPI communication fabric and the local processor speed. It is worth noting that

the scalability of the fluid solver plus ray tracer is superlinear for 128 to 256 cores for

Model 1 and 16 to 64 cores for Models 2 and 3.

High LB simulation rates (up to 0.831 × 109 fluid site updates per second) are

achieved even with volume rendering taking place at every time step. Most pulsatile

hemodynamic simulations are run using 25×103 to 100×103 time steps per pulsatile

cycle, so practically speaking we can simulate and visualise a pulse in less than 60

seconds in a typical dataset. The impact of the volume rendering is less than 10%;

however, in practice volume rendering does not take place at every time step since,

during an interactive session the flow field does not need to be rendered at more than

25 frames per second (FPS). This is discussed in the following section.
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4.4.3 Interactive performance

Table 4.1: Performance results for interactive steering with the display outputs for

the three datasets used; their snapshots are shown in Fig. 4.8 when the image size is

large.

Dataset #cores Image size FPS LB steps/s LB steps/s

(zoom) wo Steer/Vis

Model 1 1024 tiny (0.5) 15.2± 1.9 170± 26 323

large (20) 1.5± 0.5 170± 75

Model 2 128 tiny (0.5) 16.2± 0.5 641± 23 670

large (25) 0.5± 0.1 626± 52

Model 3 128 tiny (0.5) 8.6± 0.5 306± 40 653

large (28) 3.5± 0.5 275± 51

The key enabling capability realised by using this integrated rendering approach is

to be able to visualise fluid flow as the underlying LB simulation is taking place. The

near-optimal number of cores in terms of scaling to run on for the three models were

1024, 128 and 128 cores respectively (Fig. 4.9). Simulations were run within advance

reservations on the Ranger cluster at the Texas Advance Computing Centre located in

Austin, Texas on the US TeraGrid, manually reserved by local systems personnel. On

other infrastructure which supports it we use HARC, the Highly Available Resource

Co-allocator, for user-set advance reservations [234]. Transmission of the steering

and rendered frames took place over a shared network infrastructure to/from UCL in

London. Typical results are shown in Table 4.1. The frame rate is heavily dependent

on the (fluctuating) network bandwidth, with large rendered frames in the order of 1.5

MB. The LB time-step rates are slightly lower than those plotted in Fig. 4.9 because

we run in the full-production mode, instead of the benchmarking one; therefore, here

the timing results include the computation of several blood flow parameters (see

Chapter 6 for details).

The impact of steering and network transmission is evident from the reduction of

the underlying LB speed as compared to the results in Fig. 4.9. For example, peak

performance of Model 3 is of the order of 650 steps/s and is reduced to 306 ± 40

step/s during the interactive session. This is due to the two threads attached to rank

0 which deal with network transmission of rendered frames and handling of incoming

steering signals; they are in contention for CPU resources with the underlying LB

execution. Although rank 0 has no lattice sites associated with it, it still takes part in

global MPI communications and is synchronous with respect to the rest of the MPI

communication space; therefore any decrease in performance on rank 0 affects other
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ranks.

Even so, the underlying LB simulation is executed at a high enough rate that

hemodynamic features such as the change in the stress at the vessel walls can be

observed interactively; the evolution of a pulsatile cycle of blood flowing through an

aneurysm can be observed by a clinician within a few minutes. Even over international

links, the network delay is minimal and delays in changes of the rendered images due

to steering rotation, zoom, colourmap editing, etc., are rarely observed.

We have presented a visualisation pipeline to efficiently render and interactively

explore time-varying flow fields. The main parts of the visualisation pipeline are the

ray casting engine, the interactive steering capabilities and in situ rendering approach.

An essential requirement for maintaining optimal levels of performance is to keep

the computational impact and memory required by the rendering and interactive

kernels low with respect to the fluid solver. The object-based ray casting approach

built on a bi-level grid is faster than an explicit kd-tree approach, which is the state-of-

the-art of software isosurface rendering static datasets. The parallel implementation

presented here is based on MPI and as a result our software is highly portable.

To the best of our knowledge no other technique for the visualisation of highly-

resolved time-varying flow fields matches the performance reported here. Steering has

been incorporated as a means to adjust rendering and simulation parameters inter-

actively, drastically reducing turnaround time for result generation. The approaches

presented here are quite simple and straightforward to implement; we encourage adop-

tion of these concepts by other research groups involved in visual studies of fluid

dynamics, particularly in the lattice-Boltzmann arena.

At the core of this approach is our aim of furnishing researchers and clinicians in

our group with software to interactively examine blood flow through the human vas-

culature. The time from data acquisition to the delivery of visual output is minimised,

making it ideal for clinical use where timeliness is of highest priority.

4.5 Conclusions

We have presented a visualisation pipeline to efficiently render and to interactively

explore time-varying flow fields. The main components of the visualisation pipeline are

the ray casting engine, the interactive capabilities and in situ rendering architecture.

The first two aspects present a number of novel features; every one is highly optimised

and, consequently, the performance of the entire software application is very high.

One of its essential characteristics is to keep the computational impact and memory

footprint required by the rendering and interactive kernels low with respect to the

fluid solver, which is highly desirable. The object-based ray casting approach relying

on our bi-level grid is faster than that based on the explicit kd-tree, which is the state-
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of-the-art of isosurface rendering of static datasets. The parallel implementations are

based on MPI and, as a result, our software is highly portable and can be used in either

shared memory systems or distributed ones. To the best of our knowledge, no other

technique for the visualisation of highly-resolved time-varying flow fields matches our

performance. Furthermore, the entire software package is extremely useful for us,

since it is aimed at effectively investigating flow fields confined in cerebral vascular

trees. Steering has been incorporated, which is very important as a means to play

with rendering and simulation parameters in real time, to shorten turnaround and

compute times. Finally, we emphasize that the new algorithms are quite simple and

we wish to encourage their implementations and adoption by other research groups

involved in other scientific activities.

We have already mentioned the weaknesses and strengths of our ray casting ap-

proach. For example, it is difficult to fully exploit occlusion culling and to imple-

ment complex rendering effects like shadows and global illumination through inter-

reflections. However, our visualisation system is very fast for time-varying sparse

volumetric datasets by leveraging on compact memory-coherent data structures and

optimised ray traversal. Furthermore, our in situ rendering core and interactive ca-

pabilities are cheap in terms of computational resource requirements, robust and fast

for our current purposes.

4.6 Appendix: Näıve versus optimised ray traversal

engine

Here, we provide pseudocodes for the näıve and optimised ray generation and traversal

engines (Sec. 4.3.1). The core traversal algorithm is that presented by Amantides

and Woo [233]. Entry point location and ray data initialisation needed for voxel

traversal are always optimised by setting the voxel dimension equal to one (therefore

multiplications or divisions by the voxel dimension are not needed). Below, the voxel

traversal is suitable for isosurface rendering, while the algorithmic version optimised

for volume rendering is slightly different. We assume that the x-, y- and z- signs of the

ray r.∗ are 0, 1 and 1 respectively, i.e. r.dir[0] ≤ 0, r.dir[1] > 0 and r.dir[2] > 0; the

other seven cases of macrocell (brick) and voxel traversal are handled in a similar way.

r.org[:] is the ray origin and r.inv[i] = 1/r.dir[i]. 0..n indicates a loop for which the

count runs from zero to n; if n = 3 the corresponding loop can be easily vectorised by

several compilers on various architectures. B SIZE is the number of voxels along each

side of every brick, 1 << B SHIFT = B SIZE and B SHIFT2 = 2 ∗ B SHIFT. In contrast

to the näıve algorithms, the optimised ones approache x, y, z computations by means

of SIMD-friendly code. Most of the declarations are omitted for brevity while blank

lines and bold text indicate the differences between the two versions.
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Näıve ray generation
for each cluster c

calculate its rectangular projection;

perform clipping if needed;

for each pixel (i, j) therein

calculate ray parameters r.∗;

ray versus cluster-box → (t near, t far);

skip (i, j) if t near > t far or

if another ray has been sent through

(i, j) and the registered intersection

is closer to the viewpoint;

if (TraverseBricks011(t near, r, cluster[c]))

update pixel data;

Optimised ray generation
for each cluster c

/∗ cluster[c].x[:] are the coordinates of

the cluster-box vertices with lower values ∗/

cx[0..3] = cluster[c].x[0..3]− viewpoint.x[0..3];

calculate its rectangular projection;

perform clipping if needed;

for each pixel (i, j) therein

calculate ray parameters r.∗;

ray versus cluster-box → (t near, t far);

skip (i, j) if t near > t far or

if another ray has been sent through

(i, j) and the registered intersection

is closer to the viewpoint;

r.org[0..3] = t near ∗ r.dir[0..3]− cx[0..3];

if (TraverseBricks011(r, cluster[c])

r.t min = r.t min + t near;

update pixel data;

Näıve brick traversal
int TraverseBricks011(t, Ray&r, Cluster&c)

x[0..2] = r.org[0..2] + t ∗ r.dir[0..2]− c.x[0..2];

i[0..2] = (int)(INV B SIZE ∗ x[0..2]);

i[0..2] = max(0, min(c.bricks[0..2]− 1, i[0..2]));

bx[0..2] = c.x[0..2] + (i[0..2] << B SHIFT);

b id = ((i[0] ∗ B SIZE + i[1]) ∗ B SIZE) + i[2];

if brick[b id] is not empty or culled

if (TraverseVoxels011(i, c.x, brick[b id], t, r))

return OPAQUE;

tmax[0] = (bx[0] + B SIZE− 1− r.org[0]) ∗ r.inv[0];

tmax[1] = (bx[1] + B SIZE− r.org[1]) ∗ r.inv[1];

tmax[2] = (bx[2] + B SIZE− r.org[2]) ∗ r.inv[2];

tdelta[0..2] = B SIZE ∗ r.inv[0..2];

while(1)

if (tmax[0] < tmax[1])

if (tmax[0] < tmax[2])

i[0] = i[0]− 1;

if (i[0] < 0) return TRANSPARENT;

b id = ((i[0] ∗ B SIZE + i[1]) ∗ B SIZE) + i[2];

if brick[b id] is not empty or culled

if (TraverseVoxels011(· · · , tmax[0], r))

return OPAQUE;

tmax[0] = tmax[0]− tdelta[0];

else

similar to above

else

if (tmax[1] < tmax[2])

similar to above

else

similar to above

end while

Optimised brick traversal
int TraverseBricks011(Ray&r,Cluster&c)

i[0..3] = (int)(INV B SIZE ∗ r.org[0..3]);

i[0..2] = max(0, min(c.bricks[0..2]− 1, i[0..2]));

bx[0..3] = (i[0..3] << B SHIFT)− r.org[0..3];

i[0] = i[0] ∗ c.bricks[1] ∗ c.bricks[2];

i[1] = i[1] ∗ c.bricks[2];

b id = i[0] + i[1] + i[2];

if brick[b id] is not empty or culled

x[0..3] = −bx[0..3];

if (TraverseVoxels011(bx,x,brick[b id], 0, r))

return OPAQUE;

tmax[0..3] = (bx[0..3] + B SIZE) ∗ r.inv[0..3];

tdelta[0..3] = B SIZE ∗ r.inv[0..3];

tmax[0] = tmax[0]− tdelta[0];

while(1)

if (tmax[0] < tmax[1])

if (tmax[0] < tmax[2])

i[0] = i[0]− c.bricks[1] ∗ c.bricks[2];

if (i[0] < 0) return TRANSPARENT;

bx[0] = bx[0]−B SIZE;

b id = i[0] + i[1] + i[2];

if brick[b id] is not empty or culled

x[0..3] = tmax[0] ∗ r.dir[0..3]− bx[0..3];

if (TraverseVoxels011(· · · , tmax[0], r))

return OPAQUE;

tmax[0] = tmax[0]− tdelta[0];

else

similar to above

else

if (tmax[1] < tmax[2])

similar to above

else

similar to above

end while
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Näıve voxel traversal
int TraverseVoxels011(bi[], cx[], voxel[], t, Ray&r)

bx[0..2] = cx[0..2] + (bi[0..2] << B SHIFT);

x[0..2] = r.org[0..2] + t ∗ r.dir[0..2]− bx[0..2];

i[0..2] = max(0, min(B SIZE− 1, (int)x[0..2]));

tmax[0] = (bx[0] + i[0]− r.org[0]) ∗ r.inv[0];

tmax[1] = (bx[1] + i[1] + 1− r.org[1]) ∗ r.inv[1];

tmax[2] = (bx[2] + i[2] + 1− r.org[2]) ∗ r.inv[2];

while(1)

v id = (i[0] << B SHIFT) + i[1];

v id = ((v id << B SHIFT) + i[2];

if voxel[v id] is opaque

register voxel value(s);

r.t min = t;

return OPAQUE;

if (tmax[0] < tmax[1])

if (tmax[0] < tmax[2])

i[0] = i[0]− 1;

if (i[0] < 0) return TRANSPARENT;

t = tmax[0];

tmax[0] = tmax[0]− r.inv[0];

else

similar to above

else

similar to above

end while

Optimised voxel traversal
int TraverseVoxels011(bx[],x,voxel[], t,Ray&r)

i[0..2] = max(0, min(B SIZE− 1, (int)x[0..2]));

tmax[0..3] = (bx[0..3] + i[0..3] + 1) ∗ r.inv[0..3];

tmax[0] = tmax[0]− r.inv[0];

i[0] = i[0] << (B SHIFT2);

i[1] = i[1] << B SHIFT;

while(1)

v id = i[0] + i[1] + i[2];

if voxel[v id] is opaque

register voxel value(s);

r.t min = t;

return OPAQUE;

if (tmax[0] < tmax[1])

if (tmax[0] < tmax[2])

i[0] = i[0]− SQUARE B SIZE;

if (i[0] < 0) return TRANSPARENT;

t = tmax[0];

tmax[0] = tmax[0]− r.inv[0];

else

similar to above

else

similar to above

end while

Notably, the optimised codes are organised in a way to drastically reduce the to-

tal number of operations of the most demanding ray traversal task (voxel traversal

which is already speeded up by letting the voxel size equal to one), and to be further

accelerated by SIMD-wise operations with vector length of 4.
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Chapter 5

Haemodynamics on

computational grids

Nothing changes your opinion as a friend so surely as success – yours or his

Franklin P. Jones

Fluid flow simulation in combination with patient-specific medical imaging data help

to understand haemodynamic features of normal and malformed vasculatures and

provides a tool which surgeons can use in real time to help plan courses of surgical

treatment (Chapter 1).

Certainly, the fluid modelling of something as complex as the vascular structure

of the brain requires large-scale computational resources; for real-time results, typi-

cal unsteady flow simulations require hundreds or thousands of processor cores. In

order for patient-specific medical simulation to function in a real-world setting, not

only is the correctness of the results important, but their timeliness is imperative

to effectively support surgeons in making operative decisions. Various facets of high-

performance computing are used to achieve this: (a) efficient blood flow modelling, (b)

effective segmentation and manipulation of medical datasets, (c) in situ visualisation,

(d) remote steering and visualisation, (e) distributed computing, (f) advance reserva-

tions and urgent computing capabilities, (g) automated job launching, (h) rapid data

migration and (i) transparent access to resources.

This chapter focuses on how these various capabilities are implemented and ex-

ploited to provide a persistent, stable framework to aid courses of neurovascular

surgery planning. The resulting problem solving environment is easy to use and

very effective, and has played a key role in the studies presented in Chapter 6. The

surgeons can use this middleware, not only to examine the pressure and velocity vari-

ations through the vasculature, but also to predict what changes might occur as a

result of surgical intervention, which would be an invaluable addition to their surgical

tool kit.
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5.1 Overview

In this section, the individual software components which make up the problem solv-

ing environment are described. These were developed wholly by us, colleagues at the

University College London, Manchester University and staff of the Louisiana Optical

Network Initiative (see the acknowledgements at the end of the thesis). Specifically,

Mazzeo developed the fluid solver HemeLB (Chapter 3), all its in situ visualisation ca-

pabilities (Chapter 4), the graphical-editing tool which pre-processes the data needed

by HemeLB (see Chapter 6) and the rendering core of the HemeLB-GUI (see Sec. 5.2),

Dr. Steven Manos and Stefan Zasada implemented the steering capabilities and the

Application Hosting Environment respectively (see Chapter 4 and Sec. 5.2) while sev-

eral people and institutions (cited in Sec. 5.2) contributed to the other aspects and

kernels of the infrastructure e.g. the job reservation system and urgency computing

mechanism.

5.1.1 Previous work

In Hassan et al. [47], an efficient modelling pipeline which includes data pre-processing,

accurate CFD-based haemodynamic characterisation and visualisation of results was

presented. Belleman and Shulakov [223] presented an efficient pipeline to handle visu-

alisation and exploration of results while the simulation is running. Insley et al. [224]

presented a similar interactive simulation system further enhanced by advanced grid

capabilities. Sloot et al. [235–238] built a more complete and effective grid-based

toolkit that incorporates several interoperating software packages to address haemo-

dynamic studies. Specifically, their tools reconstruct and manipulate the medical

dataset, distribute the computation on one of the 16 European sites involved in the

CrossGrid project [239], handle the visualisation of the results, access the medical

image repositories, deal with data migration between different software applications

and monitor the results.

5.1.2 Present work

In the problem solving environment presented in this work, the parallel lattice-

Boltzmann code HemeLB (see Chapter 3) is employed to effectively simulate fluid flow

within complex intracranial vasculatures. Rather than relying on post-processing vi-

sualisation, an in situ volume rendering approach is used (see Chapter 4). Each

rendered image is transmitted over the network to a lightweight client, resulting in

immediate real-time visualisation of the blood flow field. The lightweight client per-

mits one to steer HemeLB, where physical parameters of the vascular system along

with various visualisation properties can be adjusted in real time. HemeLB is used

in combination with MPIg, the latest release of the successor to MPICH-G2 [183],
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for cross-site runs on resources across the NGS (UK) [240], TeraGrid (US) [241] and

LONI (US) [188] (see Chapter 3). The use of HARC (Highly Available Robust Co-

scheduler) for advance reservations plays a crucial role in surgical treatment planning,

along with SPRUCE (Special PRiority and Urgent Computing Environment) for ur-

gent computing purposes. These various aspects have been combined together within

the Application Hosting Environment (AHE) [242–244] to support automated launch-

ing of applications onto various computational resources.

In this work, we address the use of computational grids and in particular fed-

erations of these grids, such as the TeraGrid and the UK National Grid Service

(NGS) [240] to conduct patient-specific simulation of the intracranial vasculature,

conducted as part of the GENIUS (Grid Enabled Neurosurgical Imaging Using Sim-

ulation) project1 [245]. This project is being conducted in collaboration with consul-

tant radiologists at the National Hospital for Neurology and Neurosurgery (NHNN)

in London, U.K.

GENIUS requires access to computational resources in a fashion that goes beyond

the typical batch job submission scenario which is the standard access mechanism

offered by the majority of HPC service providers. The existing policies at these sites

are not suitable for medical applications as they stand. To support patient-specific

medical simulations, where life and death decisions might be made using a grid-

computing platform, new modes of computation need to be introduced. Similar to

booking and prioritising laboratory pathology testing, simulations can be given urgent

priorities, or they can be booked in advance [246, 247]. Furthermore, the ability to

perform this type of computing allows a user to be physically available when the

simulation takes place, which is essential for interactivity purposes.

Since the scientist or the clinician is at an arbitrary geographical distance from

where the simulation and visualisation are carried out, computational steering and

high performance parallel capabilities have been added to HemeLB, to allow for the

remote interactive exploration of cerebral blood flow (see Chapter 4).

This chapter begins by outlining our infrastructure in Sec. 5.2, detailing its various

features which include advance reservations, emergency computing, the Application

Hosting Environment, cross-site runs and distributed computing, computational steer-

ing and dedicated lightpath networks. HemeLB is presented in Chapter 3 while the

visualisation approach is described in detail in Chapter 4. Then, the use of these

grid technologies in a clinical context, the acquisition of patient-specific neurovascu-

latures, the anonymisation of patient datasets, and the clinical workflow are discussed

in Sections 5.3.1, 5.3.2 and 5.3.3 respectively.

1GENIUS [245] is a joint US/UK high-end computing project, funded by the UK EPSRC & US

NSF.
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5.2 Grid infrastructure

In working with consultant neuroradiologists, there are various clinical work-flow as-

pects which need to be adhered to. Probably of most importance is the timeliness,

where results from medical imaging to blood flow simulation and visualisation must

be obtained within a few weeks to 10-30 minutes in extreme emergency situations (as

stated by clinicians). Other factors include the transparency of the software interface,

since the details concerning the underlying computational infrastructure are not of

concern to clinicians. Some of these issues have been addressed in GENIUS through

extensive collaboration and discussions with clinicians, as well as observation of their

work-flow practices.

GENIUS requires that clinicians can access multiple machines interactively, to

steer and visualise simulations in a time frame that is clinically relevant. To achieve

the required turn around times such simulations cannot be run in normal batch

queues; they need to be given a higher priority, and require some form of on-demand

computing to succeed.

These requirements lead to a demand on resource providers to implement policies

and tools that allow computational access to be gained as and when required, so that

such methodologies can be incorporated into a clinician’s day to day activities, rather

than just providing such facilities on an ad hoc basis [246].

The GENIUS project also has advanced networking needs, typically requiring

resources to be connected with dedicated lightpath links in order to perform inter-

machine simulations and facilitate real-time steering and visualisation. In addition

to these hardware requirements, suitable middleware tools are needed to hide the

components of the grid from researchers and clinicians. We discuss the infrastructure

requirements of GENIUS in greater detail in the following sections.

5.2.1 Advance reservations

To interact with a blood flow simulation and explore its results in real time, a scientist

or a clinician must be physically present during the corresponding run; therefore, if

the computational resource exploited for the simulation are shared by other users

he/she should be able to reserve some minutes or hours at a time in which he/she

can monitor and control the simulation. Implementing an advance reservation system

across a single grid entails handling some difficulties: each grid has its own policies

and systems for making advance reservations, if it has any at all. Additionally, the

high performance network provision between grids may also be limited.

A few systems exist to allow users to co-reserve time on grid resources. GUR

(Grid Universal Remote) [248, 249] is one such system, developed at San Diego Su-

percomputer Center (SDSC) [250].
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HARC, which was developed by Dr. Jon MacLaren, is a widely deployed open-

source system that allows users to reserve multiple distributed resources in a single

step [234]. HARC is employed within GENIUS on a regular basis to make single

and multiple machine reservations to conduct interactive blood flow simulations and

visualisations.

5.2.2 Emergency computing

As well as the need to reserve computational resources in advance, GENIUS makes

use of so-called urgent computing middleware in order to gain immediate access to

resources in emergency situations. Such middleware allows a high priority job, in this

case a brain blood flow simulation, to pre-empt the applications running on a machine.

This model applies to slightly different situations than the advance reservation case;

the latter would be of most use when a clinician knows in advance that a simulation

needs to be performed at a specific time. The former model is most useful when a

medical simulation needs to be performed urgently, but the need for the simulation

is not known in advance.

SPRUCE [247] is an urgent computing solution that has been developed to address

the growing number of problem domains where critical decisions must be made quickly

with the aid of large-scale computation. HemeLB has been used with SPRUCE on

the Lonestar cluster at the Texas Advanced Computing Center (TACC), and demon-

strated live on the show floor at Super Computing 2007, where real-time visualisation

and steering were employed to control HemeLB within an urgent computing session.

5.2.3 The Application Hosting Environment

Hospital clinicians and technicians, have no experience using high performance com-

pute resources and computational grids. To prevent them from having to learn and

deal with a large stack of different middleware tools in order to execute the required

data processing and simulation workflow, a clinical interface based on the Application

Hosting Environment [242–244] has been developed.

The Application Hosting Environment (AHE) is a lightweight mechanism for rep-

resenting scientific applications, and allowing users to interact with those applications

using simple client tools. AHE enables the launching of hosted applications on a va-

riety of different computational resources, from national and international grids of

supercomputers, through institutional and departmental clusters, to single processor

desktop machines. It does so transparently, meaning that the end user is presented

with a single interface and access mechanism to launch applications on all of these

resources. AHE also provides mechanisms for file transfer and job management, al-

lowing the user to move input and output data between their desktop and target

117



computational resource, and to monitor or terminate applications as they run. For a

fuller discussion see [243,244].

Within GENIUS, AHE is used to host the HemeLB code at target sites on Ter-

aGrid, LONI and UK NGS, and to launch simulations using data derived from a

patient. We have simplified the AHE’s GUI to better support the needs of clinical

users.

5.2.4 Distributed computing

HemeLB can employ a small number of processor cores from a number of machines

in order to run a simulation, rather then requiring a large number of cores from a

single machine, which substantially increases the potential number of target resources

available, and therefore the number of clinical simulations that can be conducted at

any one time.

HemeLB has been combined with MPIg, the latest release of the successor to

MPICH-G2 [183], a version of MPI that allows simulations to be distributed across

multiple resources, using the Globus middleware for inter-machine communication.

MPIg hides latency much more effectively than its predecessor. The communica-

tion costs of geographically distributed domain decomposition being overlapped with

computation become almost negligible, meaning that cross-site runs with HemeLB

on large models run very efficiently [184]. A requirement of running MPIg models is

that cross-site reservations of compute time can be made on all of the resources on

which the problem is being distributed; we use HARC for this.

5.2.5 Computational steering

Computational steering [221] allows a user to make more efficient use of computa-

tional resources by providing a means by which he/she can remotely interact in real

time with a simulation. By monitoring the progress of simulations, aided by on-

line visualisation, the computational scientist avoids losing cycles due to redundant

computation or even doing the wrong calculation. By tuning the value of steerable

parameters, the scientist quickly learns how the simulation responds to perturbations

and can use this insight to design subsequent computational experiments.

In the case of the GENIUS project, computational steering is currently being

used to control simulation and in situ visualisation parameters through asyncronous

socket-based communications between the server and the client (see Chapter 4).

The scientist employes an in-house graphical user interface (GUI) running on

the ‘steering client’ to view and set parameters or stop the running simulation; a

snapshot of the GUI interface which controls HemeLB’s execution is given in Fig. 5.1.

It enables control of view parameters e.g viewpoint position and zoom-factor, and
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verify performance and flow field characteristics like the average inlet velocity and

the maximum wall shear stress (see Chapter 6 for further details).

Figure 5.1: GENIUS GUI screenshots. The GENIUS GUI co-reserves a certain num-

ber of hours with HARC (top left), generates the computational model (top right),

launches the corresponding simulation (bottom left) and interactively monitors and

steers HemeLB (bottom right).

5.2.6 Dedicated networking with lightpaths

Computational grids are usually connected using shared TCP/IP networks. Within

GENIUS, we seek to use low-latency, high-bandwidth optical networks wherever pos-

sible. These lightpaths provide several features that are not achievable using regu-

lar, best-effort networks, but which are needed for high performance grid computing.

These are not necessary within networks such as the TeraGrid or LONI, since they are

already interconnected with dedicated high-speed networks. However, to shift data

between these remote resources to local facilities, such as the angiography suite at the

NHNN, dedicated lightpaths are required. They are also ideal to support distributed

and interactive simulation and visualisation.

GENIUS makes use of a purpose-built dedicated 1 Gb/s lightpath network which

spans the UK and US, designed to culminate on a desktop workstation within the an-

giography suite at the National Hospital for Neurology and Neurosurgery in Queen’s

Square, London (Fig. 5.2). From within the suite control room, clinicians can inter-
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Figure 5.2: The GENIUS lightpath network. Dedicated gigabit links are used to

connect computational infrastructure such as the TeraGrid and LONI directly to the

NHNN angiography suite. In the case of the NGS2 Manchester and Oxford nodes, a

dedicated link is used to facilitate cross-site MPIg runs, with the NGS2 Manchester

→ UCL link used for steering, visualisation and medical data transfer.

actively run, steer and visualise subject-specific neurovascular blood flood on remote

resources using the contention-free lightpath network.

The topology-aware data communications implemented in HemeLB take advan-

tage of the asynchronous communication capability provided by MPIg which hides

latency much more effectively than earlier MPI versions suitable for cross-site runs;

as a consequence, the corresponding simulations run very efficiently (see Fig. 5.3 and

Chapter 3 for further details).

Visualisation of fluid flow fields has been traditionally addressed as a post-processing

step. The drawback here is that large amounts of data must be transferred between

different platforms in different locations, requiring large storage capacities, high band-

widths and big local I/O. The rendering method adopted is a sort-last ray tracing

technique in which each processor-subdomain is rendered independently. See Chap-

ter 3 and Chapter 4 for all the technical details about the fluid solver and the in situ

visualitation approach of HemeLB respectively.

5.3 Medical simulation in the operating theatre

In bridging the gap between computational science research and its use in the op-

erating theatre, various clinical and scientific issues need to be addressed which are

discussed in the following sections.

120



5.3.1 Acquiring patient-specific neurovasculatures

During angiography, the clinician uses a contrast enhancing fluid, injected into the

blood stream, to examine the blood flowing through the vasculature. A recent ad-

vance in medical imaging is three-dimensional rotational angiography (see Chapter 1).

The scanner, in this case a Siemens Artis Zee [251], has recently been installed in the

new angiography suite at the NHNN in Queens Square, London. Using standard

image segmentation techniques [252] the three-dimensional vasculature can be ex-

tracted from these high-contrast projections and used as the input configuration to

HemeLB. We have developed an efficient graphical-editing tool to quickly reconstruct

and manipulate the medical datasets needed by HemeLB (see Chapter 6 for details).

5.3.2 Data anonymisation

In using high performance computing resources on a federated intercontinental grid

for medical simulation, data will not only cross administrative boundaries from within

the hospital network to the (untrusted) outside world, but also international borders.

Thus, data needs to be suitable anonymized. Thus, an important aspect of this work

involves development of methods by which data can be anonymized within the hospital

network, before transfer over high-speed network links to remote intercontinental

computing resources.

5.3.3 The clinical work-flow

The software environment developed within GENIUS aims at hiding unnecessary

grid-computing details from clinicians, whilst bringing to the forefront the details

and processes which clinicians need to be aware of. These include (i) data acquisi-

tion, (ii) the process of image segmentation to obtain a 3D model of the neurovascular

structure, (iii) the specification of boundaries, and their pressure or velocity condi-

tions, and (iv) interactions with the real-time rendered simulation. The clinical grid

computing interface relies on the GENIUS desktop client, designed to easily handle

and automate all those steps (see Fig. 5.1).

Clinicians are not concerned with where simulations are running, nor the details

of advance reservations; thus features such as advance reservations and emergency

computing capabilities, job launching and resource selection are done behind the

scenes. Fig. 5.4 shows the clinical work-flow from the clinician’s perspective. This

environment is particularly important given the time scales involved in the clinical

decision making process. From the acquisition of a 3DRA dataset to the corresponding

treatment, a time scale of 10 to 30 minutes occurs often in emergency situations, and

the workflow has to adapt to this. The patient-specific medical-simulation process

within GENIUS is as follows:
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Figure 5.3: Our clinical workflow. The patient-specific dataset is acquired through a

medical scanner. Then, the dataset is segmented and manipulated to impose blood

flow conditions at the boundaries of the selected region of interest. The corresponding

data are migrated to a supercomputer where the blood behaviour is simulated and

rendered during a HARC pre-reserved slot. The simulation is interactively monitored

and controlled by means of the steering capabilities implemented in HemeLB and our

graphical user interface (see 5.3.3 for further details).

1. A dataset derived from a patient’s scan is anonymised locally in the hospital and

uploaded from the medical imaging workstation to a DICOM server (co-located

with the ‘UCL AHE server’), which is dual-homed on both the UCL production

and lightpath network. The two networks are physically separate in order to

adhere to NHNN network security policies.

2. The client software connects to the DICOM server, giving the clinician the

ability to browse and download a patient dataset.

3. The data is segmented into the three-dimensional neurovasculature and bound-

ary conditions are applied by a clinician or an operator. These can be patient-

specific values measured by a clinician; alternatively, typical values may be used.

4. The data files which describe this system and other patient-specific settings are

staged using AHE to a remote computational resource.

5. The job can be executed within a pre-reserved slot which has been booked using

HARC, as a cross-site or single-site run.

6. As the job commences running, the client connects to the back end node hosting

rank 0, which is used for steering and visualisation purposes.

Notably, it would be impossible to compress the above steps into the required clinical
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time frame without the availability of an urgent computing system, or pre-reserved

slots on remote resources.

5.4 Discussion

In this chapter, we have discussed middleware which brings together a number of

capabilities to enable the use of computational grids for patient-specific cerebral blood

flow simulation. HemeLB is at the core of the GENIUS project, and its efficiency

and scalability entails simulating complex pulsatile blood flows rapidly enough to fit

into the urgent timeframe of a real clinical scenario since the velocity, stress and

pressure fields can be visualised in real-time, without the need for post-processing

(see Chapter 4 and 6)2. The long-term objective is to determine the direct clinical

utility not only of cerebral haemodynamics, but also real-time patient-specific medical

simulation methods in general, where clinical studies will be required.

In achieving the goal of using simulation within a clinical environment, various

computing modalities need to be employed: advance reservations, urgent capabilities,

distributed and grid computing, the Application Hosting Environment, real-time vi-

sualisation, steering and fast lightpath networks. These modalities are necessary pre-

requisites to achieve the crucial medical factor of timeliness of results. We hope that

our effort will contribute to the realisation of a persistent and robust system through

which grid computing will be adopted for routine use within a clinical environment.

2The flow field can still be output on files at regular time intervals for advanced post-processing.

Several images are usually written to files for visual feedback.
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Chapter 6

Fluid flow simulation in

simple and patient-specific

systems

Imagination is the beginning of creation. You imagine what you desire, you will

what you imagine and at last you create what you will

George Bernard Shaw

In this chapter, we present various simulation results. First, we test the accuracy

of different boundary condition methods (BCMs) by simulating fluid flow dynamics

within two-dimensional channels, three-dimensional square ducts and cylinders. The

two-dimensional results witness that the LBM is of a second-order accuracy in time

while the error dependent on the lattice resolution is much smaller than that connected

to the Mach number if the latter is not very low. Therefore, the accuracy is very high

for simulations with low local velocities (in the order of 0.01 in lattice units). In

three dimensions and with curved boundaries, the application of BCMs available in

the literature as well as those proposed in Chapter 3 prevents achieving the intrinsic

accuracy of the LBM mentioned above.

In the second part of this chapter, computational investigations of patient-specific

neurovascular pathologies performed by means of the grid computing capabilities

described in Chapter 5 are presented in detail. Specifically, time-varying blood flow

behaviour were simulated with the fluid solver HemeLB (Chapter 3) and visualised

through the in situ visualisation techniques described in Chapter 4.
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6.1 Simulations of fluid flow in simple geometries

In this section, simulation results of fluid flowing through two-dimensional channels

and three-dimensional square ducts and cylinders are presented in order to assess the

accuracy of the LBGK model (see Chapter 3) as a function of spatial and temporal

resolutions, Mach number (Ma) and the use of different BCMs.

First, two-dimensional results of a steady fluid flow show that it is possible to

recover the analytic velocity description within machine accuracy when an incom-

pressible LBGK model and a BCM, which is consistent with the mathematical for-

mulation of that model, are employed. The other two-dimensional simulation results

confirm that the LBM is of a second-order accuracy in time and that the error is also

proportional to Ma2.

Then, three-dimensional results obtained with a LBGK model are presented to

test the accuracy of different boundary condition approaches; specifically, the BCM

used in HemeLB and described in Chapter 3 is simple, efficient and its accuracy is

superior other local BCMs [98]; its variant (Chapter 3), instead, is non-local but more

accurate and still simple to implement.

6.1.1 Two-dimensional results

Stationary and time-varying Newtonian fluids flowing within a two-dimensional chan-

nel are simulated through the LBGK models coined D2Q9 [101] and its incompressible

counterpart D2Q9i [105].

We employed the BCM proposed by Zou and He [253]. It can be only applied to

planar boundaries perpendicular to the Cartesian axes (see discussion below). For a

pressure-controlled boundary with pressure p = ρcs
2, the inward pointing distribution

functions and macroscopic velocity u(t+ ∆t) are computed by means of the following

system of equations:


ρ =

∑
i fi(x, t+ ∆t),

ρu(t+ ∆t) =
∑
i eifi(x, t+ ∆t),

fi+(x, t+ ∆t)− f (eq)
i+ (x,u(t+ ∆t)) = f

i+
(x, t+ ∆t)− f (eq)

i+
(x,u(t+ ∆t)),

(6.1)

where i+ is the inward pointing distribution function (see Chapter 2 for a discussion

about BCMs and definitions) perpendicular to the pressure boundary and e
i+

=

−ei+ . The last equation is the bounce-back principle while the others are formulae

of the LBM1. The total equations are six and if the uknown values are more than the

equations the system can only be solved if one employs some extra rules. Therefore,

1This approach is referred to as “consistent” BCM because of the employment of the LB equations

themself plus the bounce-back rule.
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the original formulation of this BCM cannot be applied to any boundary configuration.

For a pressure boundary perpendicular to a Cartesian axis we assume that the velocity

components parallel to the boundary are zero. In this case, for the D2Q9, D2Q9i and

D3Q15 LBGK models the system in question can be solved and is explicit. A velocity

boundary condition is approached in the same manner. To this end, we are able to

approach any boundary lattice site of a two-dimensional rectangular channel whose

pressure and zero-velocity boundaries are aligned with the Cartesian axes except the

four corner lattice sites (see Fig 6.1). Here, the pressure and the velocity are both

controlled but the inward pointing distribution functions are five and the equations

are four. To circumvent the problem, Zou and He [253] proposed to assume that

the inward pointing distribution functions depicted at the left and topmost corner

of Fig 6.1) are equal. Below, the accuracy of the LBGK models D2Q9 [101] and

D2Q9i [105] is studied as a function of Ma, spatial and temporal resolutions.

Walls
Pressure boundaries

Figure 6.1: Two-dimensional illustration of a lattice within a channel of size (Lx, Ly)

(Ly is the height) whose fluid flow is confined by the horizonal no-slip walls and is

driven by the pressure-controlled vertical boundaries. The boundary sites are denoted

by empty circles. Note that the total fluid lattice sites are (Lx + 1)× (Ly + 1).

Steady fluid flow

The fluid within a rectangular channel of dimensions (Lx, Ly) with no-slip wall con-

dition is driven by a pressure gradient −∆P which is constant in time along the axis

X parallel to the centerline of the channel. The fluid flow in the laminar regime is

described by the Poiseuille formulae:
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∂p

∂x
= −∆P,

∂p

∂y
= 0, (6.2)

uy = u0

(
1− 4y2

L2
y

)
, ux = 0, (6.3)

p(x) = pi −
2x+ Lx

4
∆P, (6.4)

where ux and uy are the velocities along axes X and Y respectively, p(x) is the pressure

along the vertical line located at position x, pi = cs
2 + ∆P Lx

2 that at the inlet, u0 is

the centerline velocity (peak velocity) and

∆P =
8νu0

L2
y

, (6.5)

The initial condition for each lattice site is given by the equilibrium distributions

calculated with a unitary density and zero velocity and the steady-state is considered

to be attained if

∑
i

∑
j

√
(ux(i, j, t)− ux(i, j, t− 1))2 + (uy(i, j, t)− uy(i, j, t− 1))2∑

i

∑
j

√
ux(i, j, t)2 + uy(i, j, t)2

≤ Tol (6.6)

where Tol = 10−10 and (i, j) refers to a lattice site location. The error in the velocity

field with respect to the analytical solution (u′x, u
′
y)(i, j) is

ξu =

∑
i

∑
j

√
((u′x − ux)(i, j))2 + ((u′y − uy)(i, j))2∑
i

∑
j

√
(u′x(i, j))

2
+ (u′y(i, j))

2
, (6.7)

while the error in the density field is

ξρ =

∑
i

∑
j |(ρ′ − ρ)(i, j)|∑

i

∑
j |ρ′(i, j)− 1|

, (6.8)

where ρ′(i, j) is the analytical solution. Accuracy results for Re = 1.28 (Re =
u0Ly

ν ),

ν = 0.05 and u0 = 0.064∆x (the lattice resolution is ∆x = 1/Ly, Lx = 2Ly) are given

in Table 6.1 while the same results but at Re and u0 ten times higher are provided in

Table 6.2.

By combining the LBGK model D2Q9i and the BCM presented by Zou and

He [253] we achieved a formidable accuracy which can also be increased by decreasing

Tol (not shown). The number of time steps needed to achieve convergence is clearly

proportional to 1/∆x2 when Ma is decreased while it scales as ∆x if Ma is kept con-

stant. The errors obtained with the D2Q9 and Re = 12.8 (Table 6.2) are an order of

magnitude higher than those attained at Re = 1.28 (Table 6.1) for a certain spatial

resolution. This suggests that the error is dominated by Ma –not by ∆x. To clarify

this ambiguity, we conducted other simulations at a constant Re and Ma by using the

D2Q9 model. The corresponding results are shown in Table 6.3.
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∆x = 1/4 ∆x = 1/8 ∆x = 1/16 ∆x = 1/32 order

D2Q9 ξρ 9.42e-6 3.37e-7 1.49e-8 8.46e-10 4.48

ξu 2.72e-3 6.42e-4 1.56e-4 3.85e-5 2.05

ts 643 2469 9237 34151

D2Q9i ξρ 2.05e-11 8.48e-12 3.64e-12 6.97e-12 MA

ξu 1.03e-9 4.34e-9 1.74e-8 6.93e-9 MA

ts 643 2469 9237 34153

Table 6.1: Errors, orders of accuracy and number of time steps (ts) for the two-

dimensional Poiseuille flow simulated with the LBGK models coined D2Q9 and D2Q9i

at Re = 1.28 with u0 = 0.064∆x and ν = 0.05. “MA” means that accuracy similar

to the machine precision is achieved. See text for further details.

∆x = 1/4 ∆x = 1/8 ∆x = 1/16 ∆x = 1/32 order

D2Q9 ξρ 2.28e-3 1.89e-4 1.25e-5 7.94e-7 3.84

ξu 4.56e-2 1.27e-2 3.26e-3 8.21e-4 1.93

ts 656 2443 9283 34573

D2Q9i ξρ 3.58e-11 1.34e-11 6.51e-12 4.44e-12 MA

ξu 6.73e-10 4.83e-9 1.56e-8 5.64e-8 MA

ts 656 2455 9291 34581

Table 6.2: Errors, orders of accuracy and number of time steps (ts) for the two-

dimensional Poiseuille flow simulated with the LBGK models coined D2Q9 and D2Q9i

at Re = 12.8 with u0 = 0.64∆x and ν = 0.05. “MA” means that accuracy similar to

the machine precision is achieved. See text for further details.

∆x = 1/4 ∆x = 1/8 ∆x = 1/16 ∆x = 1/32

Re = 1.28 ξρ 9.42e-6 3.00e-6 2.97e-6 3.16e-6

u0 = 0.016 ξu 2.72e-3 2.57e-3 2.50e-3 2.46e-3

ts 643 1285 2501 4833

Re = 12.8 ξρ 2.28e-3 2.54e-3 2.79e-3 2.93e-3

u0 = 0.16 ξu 4.56e-2 4.67e-2 4.69e-2 4.70e-2

ts 656 1273 2544 4953

Table 6.3: Errors and number of time steps (ts) for the two-dimensional Poiseuille

flow simulated with the LBGK model coined D2Q9 with ν = 0.2∆x. See text for

further details.
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It is evident that the error in the computation of the velocity field is controlled

by Ma –not by ∆x; the behaviour of the error in the density field is similar but

when Re = 1.28 we have ξρ(∆x = 1/4) ≈ 3ξρ(∆x = 1/8). This means that ξρ is

governed by ∆x in this case only. This is confirmed by the fact that ξρ continued

to grow by maintaining Re = 1.28 and u0 = 0.016 whilst decreasing ∆x to 1/2:

ξρ(∆x = 1/2) = 2.50 × 10−5 versus ξρ(∆x = 1/4) = 9.42 × 10−6 (the error in the

velocity field is still constant: ξu(∆x = 1/2) = 0.00293 ≈ ξu(∆x = 1/4) = 0.00273).

In conclusion, the results provided above show that the LBM is intrinsically very

accurate for the simulation of steady flow within a rectilinear channel in two dimen-

sions. The error is dominated by Ma2 and does not significantly depend on the spatial

resolution.

Unsteady fluid flow

Now, a similar study is presented to analyse the error of the LBM as a function of

temporal resolution. While steady flows are characterised by Re, the time-varying

fluid flow description depends on Re as well as the Womersley parameter

α =
Ly

2

√
2π/(Tν) [21], where T is the time period of the time-dependent boundary

pressure (or body force) which drives the fluid.

The current investigation analyses the accuracy in time of the D2Q9 and D2Q9i

models by maintaining Re and α constant. The fluid flow in the laminar regime under

a pressure gradient −∆P (t) = −∆P 0 cos(wt + π/2) is described by the following

formulae:

uy(t) =
4∆P 0

ρπ

∞∑
m=0

(−1)m

2m+ 1
cos

(2m+ 1)πy

Ly

{
ν π

2

4 [m] cos (ω̃) + ω sin (ω̃)

ω2 + ν2(π
4

16 )[m]2

}
(6.9)

ux(t) = 0, (6.10)

p(x, t) = pi(t)−
2x+ Lx

4
∆P (t), (6.11)

where ω = 2π/T , ω̃ = ωt+ π
2 , ux(t) and uy(t) are the velocities along axes X and Y

respectively, p(x, t) is the pressure at position x and time t, pi(t) = cs
2 + ∆P (t)Lx

2

and [m] is an abbreviation for

[
(2m+ 1)2

(Ly/2)2

]
. (6.12)

uy(t) is the velocity profile provided by Fan and Chao [254] for a two-dimensional

channel. The simulation is assumed to be converged if

1

T

∑
t

∑
i

∑
j

√
(ux(i, j, t)− ux(i, j, t− T ))2 + (uy(i, j, t)− uy(i, j, t− T ))2∑

i

∑
j

√
ux(i, j, t)2 + uy(i, j, t)2

≤ Tol,

(6.13)
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T = 1e+ 3 T = 2e+ 3 T = 4e+ 3 T = 8e+ 3 order

Re = 0.664 ξu
T 4.06e-3 9.69e-3 2.68e-3 9.28e-4 1.82

cycles 8 8 8 8

Re = 6.64 ξu
T 4.90e-3 1.11e-2 2.87e-3 9.18e-4 1.89

cycles 8 8 8 8

Re = 66.4 ξu
T unstable 2.27e-1 6.24e-2 1.56e-2 1.93

cycles 8 8 8 8

Table 6.4: Errors and number of time cycles for the two-dimensional time-varying

fluid flowing thorugh a rectilinear channel simulated with the LBGK model coined

D2Q9. ν = 400∆t while umax = 8.3∆t, umax = 83∆t and umax = 830∆t for Re equal

to 0.664, 6.64 and 66.4 respectively. See text for further details.

where Tol = 10−10. The simulation error in the velocity field with respect to the

analytic solution (u′x, u
′
y) were calculated by means of the following formula:

ξu
T =

1

T

∑
t

∑
i

∑
j

√
((u′x − ux)(i, j, t))2 + ((u′y − uy)(i, j, t))2∑
i

∑
j

√
(u′x(i, j, t))

2
+ (u′y(i, j, t))

2
. (6.14)

The flow fields during the current and previous time cycles are advanced in time and

compared through the method presented in Chapter 3.

The simulation error in the velocity field as a function of temporal resolution

∆t = 1/T is given in Table 6.4 for various Reynolds numbers by using the D2Q9

model, ∆x = 1/32 and α = 2.0053.

The D2Q9 model is second-order accurate in time. The number of cycles needed

to converge does not depend on ∆t or Ma. For a certain temporal resolution the

simulation error for Re = 0.664 is very similar to that attained with Re = 6.64, while

the error corresponding to Re = 66.4 is an order of magnitude higher. This means

that the error is proportional to ∆t2 for low Mach numbers and not very low temporal

resolutions, while it depends on Ma2 for high velocities. Specifically, from the caption

of the table we can see that the accuracy becomes higher if the maximum velocity

is lower than a critical value of about 0.1 in lattice units. The D2Q9i model is less

sensitive to Ma. In fact, for Re = 66.4 ξu
T is equal to 3.49 × 10−2, 7.41 × 10−3 and

9.20 × 10−4 for ∆t = 1/2000, ∆t = 1/4000 and ∆t = 1/8000 respectively, which

means that the critical velocity in lattice units is ≈ 0.2.

6.1.2 Three-dimensional results

We implemented and studied various BCMs including the approaches presented in

Chapter 3 and a few ones available in the literature. We tested all these techniques

in conjunction with the three-dimensional LB model called D3Q15 (see Chapter 3).
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Specifically, we implemented the BCM presented by Zou and He [253] and that of

Yang [171] to handle pressure-controlled condition at planar axis-aligned boundaries,

and the BCM presented by Guo et al. [6] for generic pressure and velocity BCs; the

no-slip wall condition was also applied using the bounce-back rule. We simulated fluid

flowing through axis-aligned square ducts and cylinders whose centerline is parallel

to a Cartesian axis or inclined. We provide accuracy results after reviewing the

aforementioned BCMs.

Zou and He’s boundary condition method

The BCM proposed in [253] was extensively described in Sec. 6.1.1 where we showed

that, in conjunction with the D2Q9 and D2Q9i models, the Poiseuille fluid flow within

a axis-aligned channel can be recovered within a high accuracy for non-high Mach

numbers. Here, we emphasise that, in three dimensions and with the D3Q15 model,

this method cannot be applied to the lattice sites of a complex irregular boundary

or the edges of a square duct because the number of inward pointing distribution

functions (see Chapter 2 for some BC-related concepts and terminology) is larger

than the available equations (see [253] for further details). We do not assume extra

rules; hence, we only apply the method to the lattice sites positioned at the pressure

boundaries and which are not in contact with the no-slip walls. For these corner

lattice sites the inward pointing distribution functions are set as follows:

fi(x, t+ ∆t) = fi
(eq)(p,0) + fi

(neq)(x, t), (6.15)

where p is the pressure boundary at position x and time t + ∆t. As discussed in

Chapter 3, the error related to the fact that, in general, x does not coincide with the

wall is O(∆xMa) while the error due to the contribution of the non-equilibrium part

is O(∆t2). The BCM presented by Zou and He was employed in conjunction with the

bounce-back method for the simulation of fluid flow in a square duct where the wall

was at half way through the lattice vectors, that is, qu = 1/2 in Fig. 6.2. In this case,

however, the aforementioned BCM does not spoil the second-order accuracy of the

bounce-back rule (see [62]), as shown in the simulation results (below). The applica-

tion of the bounce-back method to wall lattice sites controlled by the pressure gave

unstable results: at every time step, the velocity flow field substantially oscillated in

magnitude. This phenomenon is known as “checkerboard effect” [255]; notwithstand-

ing Kandhai et al. [255] noted that the D3Q19 model is not significantly influenced

by this numerical issue, we found out that, in our case, the situation did not improve

by replacing the D3Q15 model with the D3Q19 one.
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No-slip walls
Pressure boundaries

qu

qp

f(eq)
up(p(x,y-qu,t),0) ! f(eq)

up(p(x,y,t),0)

f(neq)
up(x,y-qu,t) ! f(neq)

up(x,y,t)

Y

X

(x,y)

(x,y-qu)
fup=?

Figure 6.2: Two-dimensional illustration of a lattice within a channel of size (Lx, Ly)

(Ly is the height) whose fluid flow is confined by the horizonal no-slip walls and is

driven by the pressure-controlled vertical boundaries. The lattice sites close to the

boundaries are denoted by empty circles. Note that the total fluid lattice sites are

(Lx − 1) × (Ly − 1) if qu = qp = 1. At the bottom, we show the approximations

employed by Guo et al. [6] to approach pressure-controlled boundaries (see text for

further details).
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Guo et al.’s boundary condition method

We also explored the BCMs proposed by Guo et al. [6]. We refer to Fig. 6.2 for

a schematic illustration in two dimensions. The the post-collision inward pointing

distribution function at coordinates (x, y − 1) is

fup
+(x, y − 1, t) ≡ fup(eq)(x, y − 1, t) +

(
1− 1

τ

)
fup

(neq)(x, y − 1, t) (6.16)

obtained by decomposing the distribution function into its equilibrium and non-

equilibrium parts, but p(x, y − 1, t), u(x, y − 1, t) and fup
(neq)(x, y − 1, t) are not

defined. Guo et al. [6] proposed to use the following approximations:

fup
(neq)(x, y − 1, t) = fup(x, y, t)− fup(eq)(x, y, t) +O(∆x2), (6.17)

u(x, y − 1, t) = u(x, y, t) +O(∆xMa) (pressure boundary), (6.18)

p(x, y − 1, t) = p(x, y, t) +O(∆xMa2) (no-slip wall). (6.19)

We note that a boundary with pressure p, in general, is not located at position (x, y−

1); therefore p(x, y − 1, t) = p+ O(∆xMa2). A similar discussion holds for a generic

velocity boundary. To void introducing the last approximation whilst simulating fluid

flow within a square duct whose boundaries are perpendicular to the Cartesian axes,

we impose qu = qp = 1 (see Fig. 6.2) so as to have p(x, y−1, t) ≡ p and u(x, y−1, t) ≡ 0

for pressure and velocity BCs respectively.

Bounce-back (BB) rule

For a non-slip boundary, the BB rule sets an inward pointing distribution function

fi(x, t+ ∆t) equal to post-collision value pertaining to the opposite direction [62]:

fi(x, t+ ∆t) = fi(x, t), (6.20)

where ei = −ei. Hence, the bounce-back method simulates the advection of a particle

(population) which moves along the lattice direction −ei, bounces against a no-slip

wall and is reflected back. Albeit a viscosity-dependent slip velocity, the BB rule

is often employed to impose a zero-velocity at the lattice sites close to a complex

non-slip wall. In the LBM, each particle travels a unitary distance at each time step.

Therefore, the reflected particle returns to position x if the wall is at half way through

the lattice vector corresponding to direction i (qu = 1/2 in Fig. 6.2). In effect, when

this is the case the BB method is second-order accurate in space while in the other

configurations it becomes first-order accurate [62], as confirmed by our results (see

below). As discussed in Chapter 3 and shown by Junk and Yang [170], several velocity

BCMs reduce to the BB for the particular favourable boundary configuration cited
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earlier; hence, we thought it was important to compare the accuracy results given by

new or existing methods with that attained by the BB rule whilst adhering to that

specific situation which is very simple to approach.

Yang’s boundary condition method

The BCM recently presented by Yang [171] handles pressure-controlled lattice sites.

The core idea was enriched with various rules to approach all the geometrical config-

urations which can occur at any pressure boundary topology. We did not implement

and explore all the facets of the method but we approached this for an axis-aligned

pressure boundary only. In this case, the inward pointing distribution function at

time t+ ∆t and boundary position x is calculated as follows:

fi(x, t+ ∆t) = −fi(x, t+ ∆t) + fi(x, t) + fi(x, t) + 2wi(ρ(x, t)− ρ(x, t)), (6.21)

where ei = −ei, ρ(x, t) is the prescribed density and wi depends on the LB model

(see Chapters 2 and 3). Yang proved that the method is second-order accurate in

space for the velocity and first-order accurate for the pressure, but our results do not

exhibit such a behaviour unless the Mach number is extremely low.

Accuray of Results

The simulation results connected to the BCMs reviewed above and described in Chap-

ter 3 are reported here. The results of Sec. 6.1.1 show that the LBM is intrinsically

very accurate within a large range of spatial and temporal resolutions if the Mach

number is ≈ 0.1 or below. Hence, the intrinsic spatial accuracy of various BCMs

as a function of spatial resolution at sufficiently low Reynolds and Mach numbers is

discussed. Then, some results related to Re � 1 are provided. The fluid flows were

simulated within square ducts and cylinders.

First, we provide the results concerning the simulation of fluid flowing within

a square duct with dimensions (Lx, Ly, Lz) = (Lx, Lx, Lz) and whose boundaries

are perpendicular to the Cartesian axes and driven by a pressure gradient −∆P

directed along axis Z. The analytical description is given by the following formulae

(see Ref. [254]):

∂p

∂z
= −∆P,

∂p

∂x
= 0,

∂p

∂y
= 0, (6.22)

uz(x, y, t) =
64∆P

νπ4

∞∑
m=0

∞∑
n=0

g(x, y), (6.23)

ux(x, y, t) = uy(x, y, t) = 0, (6.24)

p(z) = pi −
2z + Lz

4
∆P, (6.25)
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BCM ∆x = 1/4 ∆x = 1/8 ∆x = 1/16 ∆x = 1/32 order

Guo et al. [6] ξρ 3.53e-1 1.72e-1 1.91e-1 2.81e-1 8.36e-2

ξu 9.42e-1 4.84e-1 3.18e-1 3.94e-1 0.44

ts 75 611 2936 10102

BB + ξρ 1.07e-1 6.76e-2 2.80e-2 9.41e-3 1.18

Zou and He [253] ξu 5.34e-1 1.77e-1 4.70e-2 1.18e-2 1.84

ts 815 3345 14155 57116

BB + ξρ 1.04e-1 8.97e-2 6.59e-2 5.36e-2 0.331

Yang [171] ξu 5.51e-1 2.14e-1 9.91e-2 7.12e-2 0.997

ts 933 2178 8221 30491

BCMHemeLB ξρ 1.03e-2 1.16e-2 1.44e-2 2.85e-2 -0.472

ξu 6.04e-1 3.53e-1 1.68e-1 7.23e-2 1.03

ts 108 513 2025 7085

BCM+
HemeLB ξρ 1.12e-2 1.92e-2 1.90e-2 1.40e-2 -9.51e-2

ξu 1.22e-1 7.01e-2 3.70e-2 2.09e-2 0.856

ts 190 634 2168 7148

Table 6.5: Errors, orders of accuracy and number of time steps (ts) for the fluid flow

within a square duct and simulated with the LBGK model coined D3Q15, Re = 0.754,

maximal velocity umax = 0.03772∆x and ν = 0.05. See text for further details.

where

g(x, y) =
(−1)m+n

(2m+ 1)(2n+ 1)
cos

(2m+ 1)πx

Lx
cos

(2n+ 1)πy

Ly
, (6.26)

for ux, uy and uz are the velocities along axes X, Y and Z respectively, p(z) is the

pressure along the plane perpendicular to the axis Z and at position z, pi = cs
2+∆P Lz

2

that at the inlet.

The convergence criterion and the error computation in the velocity and pressure

fields are those described in Sec 6.1.1 which were modified to accommodate the third

dimension. For the three-dimensional results we set Tol = 10−6.

We set qu = 1 and qp = 1 (see Fig. 6.2) whilst employing the BCM described

by Guo et al. [6]. The BB method was used in conjunction with the pressure BCM

proposed by Zou and He [6] and that presented in Yang [171]; in these cases, we set

qu = 1/2 and qp = 0 so as to maximise accuracy (see previous discussions). The

BCMs presented in Chapter 3 and coined BCMHemeLB and BCM+
HemeLB were

employed with qu = 0 and qp = 0.

Accuracy results for Re = 0.753, ν = 0.05 and maximal velocity umax = 0.03772∆x

(the lattice resolution is ∆x = 1/Lx, Lz = 2Lx = 2Ly) are given in Table: 6.5.

We note that for ∆x = 1/16 the most accurate simulation was achieved with
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BCM ∆x = 1/4 ∆x = 1/8 ∆x = 1/16 ∆x = 1/32 order

Guo et al. [6] ξρ 3.54e-1 3.15e-1 1.04e-1 9.25e-2 0.741

ξu 9.39e-1 5.99e-1 1.98e-1 1.93e-1 0.884

ts 933 2178 8221 30491

BCMHemeLB ξρ 3.14e-1 1.06e-1 5.05e-2 4.03e-2 0.996

ξu 9.96e-1 8.79e-1 5.78e-1 3.17e-1 0.556

ts 108 513 2025 7085

BCM+
HemeLB ξρ 2.79e-1 1.39e-1 6.73e-2 8.19e-2 0.635

ξu 9.35e-1 2.84e-1 1.23e-1 1.06e-1 1.06

ts 190 634 2168 7148

Table 6.6: Errors, orders of accuracy and number of time steps (ts) for the fluid

flow within a cylinder inclined by polar and vertical angles θ = π/3 and φ = 2π/9

respectively and simulated with the LBGK model coined D3Q15, Re = 0.64, maximal

velocity umax = 0.032∆x and ν = 0.05. See text for further details.

BCM+
HemeLB while for the highest resolution the best accuracy was obtained with

the BB method plus the BCM of Ref. [253]. The accuracy behaviour of the BCM pre-

sented by Guo et al. [6] appears very poor at any resolution. The BCMs BCMHemeLB

and BCM+
HemeLB are of a zero-order accuracy for the pressure and of a first-order

accuracy for the velocity; notably, for ∆x = 1/32 BCMHemeLB is more accurate than

the BB method plus that developed by Yang [171]. It is worth noting that BB-based

simulations need a number of iterations to converge an order of magnitude higher

than that related to BCMHemeLB and BCM+
HemeLB .

Now, we present the simulation results of fluid flow within a cylinder of radius R

and driven by the pressure gradient

∆P =
4νu0

R2
, (6.27)

where u0 is the centerline (peak) velocity. The formulae of the analytic pressure and

velocity fields and of the convergence criterion are similar to those given in Sec. 6.1.1.

As for the square duct, Tol = 10−6.

The results in Table 6.6 were obtained by rotating the cylinder of φ = 2π/9 rad

along the Y axis and θ = π/3 along the X axis so as to have different boundary-lattice

intersections. In practise, qu and qp can be any. Re = 0.64, ν = 0.05 and the maximal

velocity is 0.032∆x (∆x = 1
2R ).

The new methods are competitive or superior to the BCM proposed by Guo et

al. [6]. However, the accuracy is much lower than that achieved in the two-dimensional

tests for similar or even higher Mach numbers. This means that, here, the error is

dominated by that connected to the BCM –not to the LBM. High Reynolds number
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cannot be achieved easily by adopting these BCMs. For example, the simulation

with ∆x = 1/32, umax = 0.0133, Re = 114 and ν = 0.00375 is stable by only using

BCMHemeLB where ξρ = 0.379 and ξu = 0.385. This means that we should wait for

implementing more advanced BCMs into our parallel tool HemeLB but Mazzeo and

Gary Doctors are exploring various alternatives in order to increase the accuracy of

three-dimensional fluid flow simulations in complex geometries.

6.2 Patient-specific cerebral blood flow simulations

In this section, three computational studies regarding blood flow modelling of in-

tracranial aneurysms are presented in detail. Several works focussed on aneurysms

were reviewed in Chapter 1. The intention of our investigations is to assess the efficacy

of our computational tools (see Chapter 5 for their overview) in the haemodynamic

characterisation of subject-specific vascular pathologies. In particular, we aim at ver-

ifying the presence of haemodynamic phenomena whose correlation to mechanisms,

e.g. wall remodelling, has been recently demonstrated by other research groups.

Thus, we seek to qualitatively evaluate aneurysm rupture risk on the basis of blood

flow behaviour, which is valuable in the context of medical treatment planning.

We emulate the haemodynamics of each pathology at different spatio-temporal res-

olutions for numerical convergence purposes. In the near future, we plan to ascertain

the impact of our software applications in real clinical scenarios, such as pre-operative

planning and intra-surgical contexts. As discussed in Chapter 1, simulations make

this possible by performing virtual surgery and by examining in advance the effect

of particular treatment courses. We emphasize the importance of achieving accurate

haemodynamic results in a short time to meet intra-surgical planning requirements.

We will show that we can simulate the blood flow within a highly-resolved aneurysm

model in minutes by conglomerating sufficient computational power.

The patient-specific volumetric datasets were obtained by means of the three-

dimensional Rotational Angiography Imaging (3DRA) technique (see Chapter 1 and

below for further details). Their three-dimensional reconstruction and boundary con-

dition setup, needed for blood flow simulation, are carried out with an advanced

in-house graphical-editing tool. The corresponding blood flow models were simulated

and rendered at different spatial and temporal resolutions through HemeLB and its

in situ visualisation approach. The results were analysed to determine blood flow

behaviour in the patient-specific geometries and, in particular, in areas of the vas-

culatures potentially subjected to wall rupture. They indicate that some regions of

the aneurysms are affected by a disordered velocity pattern and a very low stress,

and consequently are prone to extensive wall remodelling, growth and rupture (see

Chapter 1). We are currently exploring the use of more sophisticated segmentation
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techniques and implementing more advanced BCMs in order to increase the accuracy

of the segmentation process and of the fluid solver.

6.2.1 Patients, images and vascular models

We modelled three patient-specific aneurysms of different size and positioned in var-

ious locations within the cerebral vasculature. All volumetric data were obtained in

DICOM format with a 3DRA scanner (see Chapter 1), specifically a Siemens Artis

Zee [251] installed in the new angiography suite at the National Hospital for Neurol-

ogy and Neurosurgery (NHNN). The isotropic resolution is 0.449 mm and comprises

about 400 slices of 5122 pixels each while every pixel is represented by 16 bit grey-

scale. As discussed in Chapter 1, blood flow simulations are sensitive to geometrical

variations in the shape of the segmented vasculature. In this context, we can conclude

that our simulation results cannot be quantitative or very reliable since the diameter

of the vessels and the size of the aneurysms considered here is only 3− 20 times the

pixel resolution. However, Geers et al. [15] show that qualitative information can be

extracted even if the spatial resolution is about two times coarser than ours. Further-

more, we aim at using sub-pixel image processing to enhance segmentation accuracy

and at developing more accurate BCMs for our LB solver.

In this work, the three vascular models were reconstructed with an efficient in-

house graphical-editing tool (see Fig. 6.3). Each vasculature can be segmented and

manipulated within one minute by the following process. The software takes the

patient-specific dataset as input, and can interactively select and visualise the corre-

sponding two-dimensional slices. The mouse serves to pick up a pixel of the vascu-

lature after which it is quickly segmented; this stage entails knowing where to find a

point of interest of the vasculature. However, all the human interventions are aided

by the interactive capabilities of the tool, which quickly obviate errors occurred in any

user intervention. The resolution of the medical dataset is not adequate for simula-

tion purposes; consequently, it is increased to a user-selected value, typically between

three and five times along each axis. The grey intensity at the spatial locations cor-

responding to the voxels of the computational grid which are in between the pixels of

the original medical dataset are obtained by means of trilinear interpolation.

A standard threshold-based segmentation technique [252] is used to extract the

vasculature, permitting the adjustment of the three-dimensional model in real-time

with minimal memory consumption thanks to hierarchical data structures and an

efficient clustering algorithm. Furthermore, several keyboard and mouse actions per-

mit the user to interactively change the threshold, the corresponding reconstruction

and visual parameters, as well as to select a different slice, edit, delete and cre-

ate boundaries with ease. Specifically, the latter are generated perpendicular to the

mouse-location-defined vessel and the mouse-based definition of inflow/outflow condi-

138



Figure 6.3: Snapshot of the graphical editing tool used to segment vasculatures and

configure inflow/outflow boundary conditions. Several functions, as listed on the

menu on the left hand side, are employed to configure boundary geometry and pa-

rameters. Here, we can see two boundaries (grey and green triangles) and the cropped

vasculature therein.
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Model M1 M2 M3

pathology aneurysm aneurysm aneurysm

location right MCA left ICA right MCA

size large large small

Table 6.7: Geometrical information of the vascular patient-specific models investi-

gated in this work; “small” and “large” mean about 5 mm and slightly more than

10 mm respectively. MCA and ICA stands for middle cerebral artery and internal

carotid artery respectively.

tions, together with the information pertaining to the fluid voxels, serve as input for

the blood flow simulator HemeLB (see Chapter 3). Table 6.7 lists some geometrical

details of the three patient-specific vascular pathologies.

Threshold-based segmentation techniques can be subjected to considerable errors

especially when the user is not an expert of vascular systems. We have recently

enabled our graphical-editing software to import the segmentation results output by

another tool thereby shifting the segmentation task to more accurate open-source or

commercial tools.

6.2.2 Blood flow modelling and visualisation

Blood flow was modelled using HemeLB and all numerical or visual results were

obtained through its parallel and grid-based in situ capabilities (see Chapters 3, 4 and

5). The simulations were monitored and steered in real-time using the GUI described

in Chapter 5 while the simulation was running on the NGS-2 node [240] located at

Leeds, UK; HARC was used to co-reserve the corresponding slots (see Chapter 5). We

have also employed the supercomputing infrastructure Ranger of the TeraGrid [241]

to demonstrate that we can accomplish the simulation of a highly-resolved cerebral

vasculature in minutes.

Simulation setup

We have observed that the blood flow simulations in complex geometries with the

LBM are prone to become numerically unstable, especially when the vasculature is

highly-resolved. The origin of this is simple to understand since, in this case, the

distance in lattice points between the boundaries is large and a high pressure gradient,

which is traditionally at the origin of the numerical instability of the LBM [62], must

be imposed to drive the fluid. Additionally, the viscosity is very low and this tends

to yield sudden high spatial pressure gradients, in particular in the early stage of the

simulation where the flow field rapidly passes from the arbitrary initial setup to the

flow distribution that is close to the fully developed one.

140



If the vasculature is highly-resolved, several time steps are needed to transmit

information between inflows and outflows, and generally any part of the system. We

point out that a similar problem occurs when using other CFD techniques based on

the direct discretisation of the Navier-Stokes equations: the pressure field calculated

at every time step to guarantee fluid incompressibility entails solving a linear system

with an iterative approach, that is repeatedly propagating any information between

nearest-neighbour grid points, which requires many more steps to converge when the

system is more complex and sparsely distributed [36]. We select a reasonable number

of time steps for a specific spatial resolution and restart the simulation, doubling the

number of time steps if an instability occurs. This overcomes the use of a temporal

resolution which is too low for the current model, at the expense of a little increase

in computational time2. We tried to adjust viscosity and boundary conditions during

the first pulsatile cycle to reduce instability incidence. For example, viscosity can be

smoothly varied in time from a high value to the user-defined one. Analogously, the

pressure conditions can be adjusted to begin with a zero pressure gradient and slowly

adjust them to reach the nominal values at the end of the first pulsatile cycle. We

experimented with these strategies but they did not noticeably reduce the occurrence

of instability. However, we chose to start the simulation at a certain time during the

diastole so as to flatten or minimise the pressure distribution (see text below).

Blood was assumed to have a constant density ρ = 1000 kg/m3 and dynamic

viscosity µ = 0.004 Pa·s. The inflow condition was a sinusoidal pressure pulse varying

between 90 and 96 mm·Hg for model M1 and between 90 and 100 for model M2

and M3. 70 cardiac cycles were assumed to take place in a minute. At the outlet

boundaries, a constant pressure equal to the minimum pressure attained at the inlets

is imposed.

The boundary configurations were selected with care. The location of the outlets

with respect to the inlet are set by assuming that the corresponding distal vascular

beds have a similar total resistance to flow so that the decision to fix the outlets at

the same pressure is reasonable. This rule of thumb takes into account the length of

the vascular route between the inlet and the outlet, and the corresponding curvature

profile.

Furthermore, the boundaries were set in relatively straight sections so as to avoid

biasing the simulation results by the simplified boundary conditions, as discussed by

Hassan et al. [47], which is important. The flow field was always initiated by setting all

the distribution functions equal to the equilibrium ones calculated with zero velocity

2As shown below, a simulation takes about four pulsatile cycles to numerically converge and to

make the influence of the initial conditions negligible. As cited earlier, instability usually appears

in the early stage of the first pulsatile cycle. In this case, the corresponding number of time steps

and computational time are modest with respect to those needed to perform the total simulation at

twice the temporal resolution.
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and outlet pressure (equal for each outflow boundary). In our set up, this causes

the pressure gradient between any neighbouring lattice sites to vanish, and therefore

substantially prevented numerical instability at the beginning of the simulation (see

discussion at the beginning of this subsection).

The conversion between physical and lattice units is easily obtained by considering

that the Reynolds and Womersley numbers of a particular fluid flow behaviour do

not depend on the current system or resolution in time and space; hence, Re∗ =

u∗maxD
∗/ν∗ = Re = umaxD/ν and α∗ = D∗

2

√
2π/(T ∗ν∗) = α = D

2

√
2π/(Tν), where

D is the characteristic length scale of the system and the symbol “∗” denotes a

parameter in physical units, assuming that the characteristic velocity u ∝ ∇pD
2

ρν in

both lattice and physical units3:

u

u∗
=

D

D∗
T ∗

T
, (6.28)

ν

ν∗
=

(
D

D∗

)2
T ∗

T
, (6.29)

∇p = ∇p∗
(

ρD

ρ∗D∗

)(
T ∗

T

)2

, (6.30)

where D is interchangeable with the resolution of the computational lattice ∆x.

Numerical analysis

Each model was simulated at different spatial and temporal resolutions. Several

haemodynamic and numerical properties were analysed through a number of parallel

algorithms whose calculations run concurrently with HemeLB. The convergence cri-

terion is the three-dimensional version of Eq. 6.13 with Tol = 10−6. T is the number

of time steps needed to complete a cardiac cycle. Number of fluid lattice sites (vox-

els), number of cardiac cycles to achieve numerical convergence (cycles), maximum

velocity magnitude vmax and von Mises stress (see Chapter 2, Eqn. 2.20) smax as

a function of spatial resolution ∆X (mm) and T are reported in Table 6.8 where

∆Xk = 0.449/k mm for k = 1, 2, 3 and the corresponding Tk are 25K, 50K and

100K for M1, 50K, 50K and 100K for M2, and 25K, 50K and 50K for M3. For

brevity, Resk stands for the spatio-temporal resolution (∆Xk, Tk). These spatial and

temporal resolutions were chosen in order to achieve numerically stable results whilst

maintaining the computational time reasonable. In Table 6.8, we also report the av-

erage < vi > and peak vmaxi inflow velocity magnitudes calculated by considering the

component of the velocity parallel to the inflow boundary normal of each inlet voxel

at every time step of the last pulsatile cycle.

3Eq. 6.30 holds for fluid flowing through a cylindrical channel with a circular section (Poiseuille

flow) or a rectangular one (see Eq. 6.22), and we assume it to be valid in general.
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Resolution Res1 Res2 Res3

Model M1 M2 M3 M1 M2 M3 M1 M2 M3

voxels 126K 361K 54K 298K 857K 128K 581K 1670K 249K

cycles 4 6 3 4 6 3 5 6 3

vmax 1.14 1.53 1.21 0.996 1.42 1.30 1.18 1.45 1.191

smax 67.5 84.63 70.1 51.3 87.7 90.2 88.2 101 91.3

< vi > 0.132 0.0913 0.0316 0.0895 0.105 0.0568 0.160 0.127 0.0673

vmaxi 0.682 0.633 0.237 0.496 0.546 0.406 0.856 0.918 0.297

Table 6.8: Blood flow results pertaining to the vascular patient-specific aneurysms

M1, M2 and M3 investigated in this work. Velocity and stress values are expressed

in m/s and Pa respectively. smax and vmax are the maximum values of the von Mises

stress (see Chapter 2, Eqn. 2.20) and of the velocity magnitude respectively, < vi >

and vmaxi are the average and peak inflow velocity magnitudes respectively. “voxels”

and “cycles” are the number of fluid sites and cardiac cycles to achieve numerical

convergence respectively. See text for further details.

For models M1 and M2, the absolute maximum velocity magnitude double the

maximum velocity at the inlet, while their ratio is between three and five for the

last model. The maximum inlet velocity perpendicular to the inflow boundary is

between 4.4 and 7.5 times its average value. Generally, the maximum stress increases

as the spatio-temporal resolution becomes higher. The velocity flow field in terms of

the estimated quantities is slightly faster by employing the highest resolution. This

is probably due to the largest ratio of interior voxels over superficial ones which,

approximating the surface of the vasculature in a staircase fashion (see Chapter 3),

tend to significantly slow down blood motion. This is not well explored yet but we aim

at circumventing it by incorporating more accurate and boundary-fitting schemes.

We have developed a post-processing tool which numerically compares the simu-

lation results carried out at different spatial resolutions. The tool takes as input the

fluid flow results carried out at the highest resolution and at the first simulation time

step and stores it in a memory-cheap hierarchical grid. Then, it reads the results per-

taining to the lowest resolution and, for each fluid lattice site, the software computes

the difference between its flow field values (pressure, velocity and stress) and those

stored in the hierarchical grid at the appropriate spatial location4.

Specifically, for each simulation the blood flow results at one hundred equally-

spaced time steps were output by HemeLB. With this approach we can evaluate the

average L1-error with respect to the blood flow model achieved with Res3 taken as

4Sometimes, a fluid voxel at the lowest resolution does not have the spatial counterpart at the

highest resolution and viceversa. In general, the geometrical similarity between two systems which

differ in terms of resolution only, depends on the reconstruction stage.
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Model M1 M2 M3

Res1 Res2 Res1 Res2 Res1 Res2

Pressure 0.166 0.0525 0.178 0.0953 0.542 0.234

Velocity 53.1 26.3 37.3 22.0 66.2 25.4

Stress 52.9 30.1 46.8 28.6 63.5 34.5

Table 6.9: Average L1-errors in percentage calculated by considering the difference in

the pressure, velocity and von Mises stress flow fields of the three aneurysm patient-

specific models M1, M2 and M3 of Table 6.7 carried out with the two lowest spatio-

temporal resolutions compared with the results of the highest one. See text for further

details.

reference. Its average value is reported in Table 6.9.

By observing Table 6.9, we note that the velocity and stress flow fields vary sub-

stantially between different spatio-temporal resolutions. This indicates that Res2 is

not appropriate to accurately study these complex geometries. As discussed in Chap-

ter 1, small variations in the geometrical representation can lead to large differences

in the simulation results. Specifically, if a path connects some parts of the model in

a slightly different way which could depend on a poorly resolved representation of

the vessel wall and therefore on the spatial resolution, the fluid flow behaviour may

be affected by completely different haemodynamic features. This is an important as-

pect amplified by the presence of vortices which influence the haemodynamics of our

models, as shown below.

Visual feedback

The in situ rendering technique can display different visual modalities. Here, we show

the visual results obtained by employing the rendering choice discussed below. The

parallel ray tracer (see Chapter 4) performs the volume rendering of the velocity and

von Mises stress flow fields and calculates the wall pattern of the latter flow field and

that of the pressure distribution. Each visual modality is performed in a very efficient

single-pass technique, that is, a single ray is sent through a pixel of the viewport to

accomplish all four rendering modes at once.

The simulation of model M3 at the highest spatio-temporal resolution was also

performed on 512 processor cores of the supercomputer Ranger of TeraGrid [241]5.

It took approximately 9 minutes and ran at a rate of 287 time-steps per second

by avoiding the convergence test (see Sec. 6.2.2), notwithstanding the continuous

5Ranger and the aforementioned NGS-2 node are composed by AMD Opteron processors, but

Ranger has many more cores and its interconnect is considerably faster than the one installed on the

NGS-2 node. Unfortunately, HARC cannot be used to co-reserve time on Ranger: the slots needed

by us to conduct the interactive sessions on Ranger were reserved by its support team.
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visualisation of results and steering of visual parameters at a highly interactive rate6.

This demonstrates the efficacy of our simulation environment.

Blood flow motion is not properly perceived through volume rendering techniques.

Massless time-dependent particles were continuously generated at random inlet po-

sitions and were allowed to follow the blood flow to form so-called streaklines [256],

which substantially help to understand blood flow behaviour. Specifically, the velocity

of each particle was obtained by tri-linearly interpolating the eight nearest-neighbour

voxel values at the current particle location x; at each time step, the interpolated

velocity v(t+ ∆t) was employed to update the particle position through a first order

accurate symplectic (conservative) integration scheme: x(t+∆t) = x(t)+∆tv(t+∆t).

We note that the nearest neighbour voxels can reside outside the vasculature, where

we assume there is zero velocity, or can be located in an adjacent processor subdomain;

in this case, we perform data communication. The corresponding parallel (in situ)

technique dynamically exchanges information between neighbouring processors whilst

minimising the size of the messages to communicate. Specifically, the identifiers and

the velocity of the voxels computed by neighbouring processors are communicated on

demand; thus, we do not transmit all the interface-dependent information correspond-

ing to the region between different sub-domains. Particle data are communicated in

a similar way, and particles are created or deleted if they move across different sub-

domains, or their velocity is below a user-defined value (10−4 lattice units in our

case). The streaklines are displayed by superimposing particle visualisation, coloured

accordingly to its velocity, onto the wall patterns in order to maximise visual feedback

and scientific exploration.

The rendering snapshots of the three vascular models simulated at the highest

spatio-temporal resolution and corresponding to the systolic and diastole peaks of

the cardiac cycle are shown in Figs. 6.4, 6.5 and 6.6. The visual perception of the

time-varying blood flow behaviour is not clear by statically displaying two time frames

only. However, one can note that the fluid flow velocity and stress patterns at the

systole is drastically different from that of the diastole. Wall stress at the body of M1

and M2 is very low. During the interactive session mouse-based events enabled the

analysis of superficial pressure and stress, and confirmed that stress levels oscillated

around 0.01 Pa at the tip of M1 and M2. The streakline distribution is very disordered

in those models. Moreover, M2 and M3 are characterised by a large pressure drop

between the malformation and the outflow branches.

Videos comprising 100 images7 (written to file by HemeLB) clearly show other

phenomena. Blood flow motion is very disordered in M1 where vortices dynamically

change their structure close to the surface of the aneurysm. The systolic phase pro-

6Notably, the simulation completes much more quickly if visual feedback is not provided at all

times.
7These videos are provided at http://ccs.chem.ucl.ac.uk/∼marco/PatientSpecificSimulations/.
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vokes a sudden change in the blood circulation of M2. In the first stage of the pulsatile

cycle the blood slowly flows through the route directly connecting the inlet and the

outlet. Then, blood is rapidly injected into the aneurysm that provokes the formation

of different vortices and a rapid increase in the stress distribution which extends to-

wards the tip (impingement zone). Finally, the blood is quickly pumped through the

outlet to leave a quasi-stationary aneurysm haemodynamics. The blood behaviour

of M3 is less disordered but a vortex starts to develop from the upper side of the

malformation and propagates up to its neck close to the lower artery. Nonetheless,

its structure changes slightly over time. Shojima et al. [53], Joua et al. [54] Boussel

et al. [55] correlated aneurysm growth with low wall shear stress (see Chapter 1). In

conclusion, typical conditions of aneurysms prone to experience further growth and

rupture extensively characterise models M1 and M2.

6.3 Conclusion

We have explored the intrinsic accuracy of the LBM in two dimensions. The cor-

responding results indicate that the LB can be very accurate in the simulation of

steady and time-varying fluid flow within complex geometries. We also tested the

accuracy of the LBM in three dimensions in conjunction with a few existing and

new boundary condition methods. Their accuracy is poor compared to that attained

in two dimensions which suggests that further investigation of velocity and pressure

boundary conditions is required, especially for complex geometries.

We have validated the model used in HemeLB and a variant by simulating fluid

flow in planar and curved boundaries. We plan to compare the simulation results of

complex geometries obtained by HemeLB with those achieved with a well-validated

fluid solver adopting the same conditions and parameters; this work is in progress.

We can also compare computational results with those achieved with accurate in

vitro measurements as accomplished by Boutsianis et al. [32]. This would be a more

robust validation approach since it can also quantify the approximations introduced

by assuming that the blood is a Newtonian fluid and that the vessel walls are rigid.

In vivo velocity measurements are not impossible to obtain (see Chapter 1). We

also plan to perform whole-brain blood flow simulations and to study arterio-venous

malformations. Patient-specific boundary conditions were not available; we aim at

acquiring pressure conditions through further collaboration with clinicians working

at the National Hospital for Neurology and Neuroscience (NHNN), Queens Square,

London. However, we plan to investigate the adoption of different segmentation tech-

niques by using the open-source software ITK (Insight Segmentation and Registration

Toolkit) [257] to reconstruct the vasculatures with a high fidelity.

We have demonstrated that we are able to simulate patient-specific haemodynam-
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Figure 6.4: Eight snapshots subdivided in two panels with four quadrants each ob-

tained at the diastolic (uppermost panel) and systolic (lowermost panel) pressure

peaks of the aneurysm model M1 obtained at the highest spatio-temporal resolution

(see Sec. 6.2.2 for details). For each panel, the volume rendering of the velocity and

von Mises stress flow fields are displayed within the top left and top right quadrants

respectively; the bottom right and bottom left ones show the pressure and von Mises

stress wall distributions, and particle traces (streaklines).
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Figure 6.5: Eight snapshots subdivided in two panels with four quadrants each ob-

tained at the diastolic (uppermost panel) and systolic (lowermost panel) pressure

peaks of the aneurysm model M2 obtained at the highest spatio-temporal resolution

(see Sec. 6.2.2 for details). For each panel, the volume rendering of the velocity and

von Mises stress flow fields are displayed at the top left and top right quadrants re-

spectively; the bottom right and bottom left ones show the pressure and von Mises

stress wall distributions, and particle traces (streaklines).
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Figure 6.6: Eight snapshots subdivided in two panels with four quadrants each ob-

tained at the diastolic (uppermost panel) and systolic (lowermost panel) pressure

peaks of the aneurysm model M3 obtained at the highest spatio-temporal resolution

(see Sec. 6.2.2 for details). For each panel, the volume rendering of the velocity and

von Mises stress flow fields are displayed at the top left and top right quadrants re-

spectively; the bottom right and bottom left ones show the pressure and von Mises

stress wall distributions, and particle traces (streaklines).

149



ics in real time, which gives a surgeon a powerful diagnostic tool to examine the effect

of particular treatment courses in clinically relevant time scales. However, patient-

specific medical simulation is a rather novel concept in medicine, and studies need

to be developed and conducted which can give us insights into the verification and

validation of such computational techniques, especially when used in real time. For

example, by increasing accuracy in the image acquisition and segmentation processes,

and in the blood flow simulation we may aim at giving powerful, reliable and quanti-

tative information and in less time. For instance, our studies show that is necessary

to discretise our systems with a very large number of fluid lattice sites because the

fluid solver is not accurate; by using more accurate blood flow models and medical

data, we can circumvent the aforementioned issue. Additionally, we may visualise the

results in a way the clinicians are more familiar with.

Controlled clinical studies must be designed in which subgroups of patients would

be recruited for treatment using current best practice, with and without computa-

tional simulation assistance, to assess the benefit to the patient. This issue of assess-

ing “benefit” is not uncommon when new medical technologies are introduced. For

example, a recent publication comparing the treatment of aneurysms by employing

two-dimensional angiography and 3DRA was not able to make any firm conclusion

about the advantage of using 3DRA [17]. However, in one particular case, where

the vasculature surrounding an spinal aneurysm was sufficiently complicated, 3DRA

gave the clinician a better understanding of the connective vascular structure. In con-

clusion, more studies are needed in order to confirm the benefit of the our software

applications.
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Conclusion

The highest result of education is tolerance

Helen Keller

Summary

This thesis began with a summary of concepts in the fields of haemodynamics and

medical imaging techniques and reviewed numerous works of blood flow modelling

carried out in the last fifteen years.

In Chapter 1, after a brief introduction of the main computational fluid dynamics

techniques, we presented varous theoretical concepts, shortcomings, capabilities and

computational aspects of the lattice-Boltzmann method.

Then, the thesis described the lattice-Boltzmann fluid solver, called HemeLB,

which was employed to obtain patient-specific blood flow results. Its computation and

communication kernels are higly optimised and its development required a substantial

amount of time over the last three years. The efficiency and scalability allow us

to characterise haemodynamics of a highly-resolved patient-specific vasculature in

a clinically relevant turnaround time frame if a sufficient computational power is

employed. This is demonstrated in Chapter 6.

Chapter 4 presented our in situ interactive simulation and visualisation environ-

ment; its design and optimisation required a substantial effort and its capabilities

permit us to visualise the simulation results in real time, and steer visual and sim-

ulation parameters from a commodity desktop while the blood flow is modelled and

rendered by a supercomputer.

Between July 2007 and December 2008 part of our scientific activity was funded by

the EPSRC project called GENIUS. Chapter 5 was focussed on the grid middleware

developed within the GENIUS project; specifically, it permits one to easily control a

series of software applications and facilities thanks to a simple graphical user interface.

Specifically, the latter can control the tools to (a) book the computational resources

in advance, which is very useful for interactive sessions, (b) support automated job

launching, (c) recontruct a patient-specific vasculature and (d) simulate, visualise and

steer the corresponding blood flow field.
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Finally, the thesis ended providing some blood flow results in rectilinear and

patient-specific geometries. In particular, the lattice-Boltzmann method used in

HemeLB recovers the analytical description of the time-dependent square duct fluid

flow within acceptable accuracy, but currently only for low Re numbers. The haemo-

dynamic studies qualitatively assessed the difference in accuracy between the simu-

lation results obtained with different spatio-temporal resolutions, and demonstrated

how, in the future, the model could potentially estimate the rupture risk of aneurysms.

Furthermore, the efficacy of our software applications for image-based blood flow mod-

elling was demonstrated.

Discussion and future work

Nowadays, the simulation tool plays an essential role in the modelling of blood flow-

ing within complex vasculatures, but its accurate characterisation entails performing

a large number of calculations. This can be accomplished by using a single processor

for several hours and specialised software applications. Conversely, this work is the re-

sult of our aspiration to provide scientists and clinicians an user-friendly programming

environment to approch this problem and as quickly as possible. The corresponding

objective entailed handling a series of connected problems. For example, the use of

grid computing is fundamental whenever an institution does not have the private

access to large computational resources. Grid computing, in turn, entails employ-

ing stable and robust environments. Furthermore, the complexity of the resulting

system complicates and lenghtens some user tasks or even makes its employment im-

possible to non-expert users. The ambition to aid treatment planning during either

pre-operative sessions or intra-surgical contexts pushed us to approach simulations on

multiple machines, advance reservation of resources and urgent computing by augu-

menting existing collaborations or creating new ones. We have successfully addressed

these issues. We have developed very high performance tools to preprocess medical

images and model blood flow at impressive time scales. The rate at which our fluid

solver processes data led us to approach the issue related to their effective visualisa-

tion and analysis. We overcame lenghty postprocessing stages by embedding parallel

algorithms suitable for the calculation of several parameters and fast parallel visual-

isation methods with the fluid solver. We have also designed an optimised steering

technique which permits one either to steer simulation parameters or to obtain the

visual feedback returned by the fluid solver and its rendering components.

In Chapter 6, we mentioned some concepts related to the numerical instabilities

which are particularly frequent during the simulation of complex highly-resolved vas-

culatures. However, we have spent a considerable time addressing this problem and

we plan to diminish its impact.
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We have also developed a number of useful programs to visualise, analyse and

simulate two- and three-dimensional systems in different ways. These tools (not

described in the thesis) were needed to study different boundary conditions, visualise

different fluid flow patterns, improve performance and so on.

We can compare the simulation results obtained by means of HemeLB with those

achieved through other fluid solvers; this important task will be accomplished soon to

assess HemeLB accuracy in complex geometries. Giulia Di Tomaso and Vanessa Diaz

(Dept. of Mechanical Engineering, University College London), can obtain the simu-

lation results by employing the commercial software ANSYS CFX [258], while Greg

Sheard (Monash University, Australia) can use a fluid solver based on the spectral

element method [259].

In general, the accuracy of the vascular reconstruction is more important than

that related to precise haemodynamic parameters, such as the precise inflow boundary

condition [33–36]. For instance, too much smoothing in the segmentation process may

mask genuine arterial morphology, while too little smoothing yields large spurious

errors in wall stress patterns [260]. We need to better analyse the sensitivity of

the simulation to the quality of the segmentation process. Specifically, we need to

consider the employment of more accurate segmentation tools than that presented in

Chapter 6. In this context, we will study the effect of the position of the inflow and

outflow boundaries, because their approximate flow field setup, as inevitably occurs,

affects the blood flow downstream.

We plan to implement non-Newtonian features and to study fluid flow confined by

non-rigid walls by incorporating an elasticity model suitable for vessels subjected to

small displacements, which is a reasonable assumption in non-large cerebral arteries

(see Chapter 1). Once the related implementation has been validated, we will quan-

titatively verify the difference between the blood flow behaviour obtained with the

corresponding LB code and the one which does not take into account elasticity and

non-Newtonian effects.

We will also evaluate the application of inflow and ouflow boundary conditions

which are not determined solely by specific pressures as carried out in Chapter 6; for

example, a resistance model where setting the pressure to be proportional to the flow

rate is assumed to be adequate to model outflow at non-large vessels where pressure

and velocity are in phase [25]; this would be suitable in situations where it is impossible

to measure or estimate outlet pressures, as in an arterio-venous malformation.

We can also estimate other blood flow observables, e.g. the oscillatory shear index,

the wall shear stress and its temporal variation, the vorticity of the flow in order to

eventually better correlate haemodynamic patterns to critical areas of the patient’s

vasculature.

The interplay between blood flow dyanamics and vessel wall mechanisms is essen-
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tial to have important insights into the processes which lead to the formation and

progression of vascular diseases. For instance, some of the publications discussed

at the end of the first chapter provide evidence of the correlation between specific

haemodynamic factors and vascular pathology progression, such as the effect of a

very low wall shear stress on the wall remodelling and aneurysm growth. A long-term

goal consists in considering and comparing the effects of different patient conditions,

for instance rest versus exercise condition, symmetric versus asymmetric inflow condi-

tions, and correlate haemodynamic observables to pathology formation or progression

by means of the evaluation of physiological temporal changes in the patient vascu-

lature, as carried out by Boussel et al. [55], which is very interesting and profitable.

Collaboration with clinicians based at the National Hospital for Neurology and Neu-

roscience (Queen Square, London) will be invaluable for this scientific work as well as

other future directions. For instance, a clinician can measure in vivo haemodynamic

parameters whose employment during the simulation can lead to a highly accurate

numerical subject-specific blood flow representation. Furthermore, by incorporating

a computational approach based on the coupling between haemodynamic description

and biomechanical wall responses, it will be possible to model the temporal change

of the structure of a patient vasculature, and therefore to accurately predict pathol-

ogy formation and progression; this will be possible if the computational method

describing vessel mechanisms is based on experimental data.

Finally, by further collaborating with clinicians we can investigate patient-specific

problematics on a regular basis to aid their making-decision process. For instance, the

fluid solver will be used as a tool to model haemodynamic conditions in the presence

of a real vasculature and a configuration similar to the post-interventional situation to

assess the effectiveness of a certain treatment, such as coling, embolisation or surgical

intervention. Moreover, by performing whole-brain simulations, we will investigate the

role of the Circle of Willis on the rest of the cerebral circulation, including malformed

regions downstream, and the haemodynamic interplay between an anomaly in the

Circle of Willis itself and the rest of the system.

All these points and future working directions still need to be addressed. Our

computational infrastructure is a promising clinical toolkit but whether it is eligible

to be used for clinical scenarios remains an open issue.
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