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Anticipating the timing of future events is a necessary precursor to preparing actions and allocating resources to sensory processing. This
requires elapsed time to be represented in the brain and used to predict the temporal probability of upcoming events. While neuropsy-
chological, imaging, magnetic stimulation studies, and single-unit recordings implicate the role of higher parietal and motor-related
areas in temporal estimation, the role of earlier, purely sensory structures remains more controversial. Here we demonstrate that the
temporal probability of expected visual events is encoded not by a single area but by a wide network that importantly includes neuronal
populations at the very earliest cortical stages of visual processing. Moreover, we show that activity in those areas changes dynamically in
a manner that closely accords with temporal expectations.

Introduction
Time frames almost every aspect of human behavior. We rely on
the sense of elapsed time to plan actions and anticipate salient
environmental events to guide behavior. Successful anticipa-
tion of environmental events requires capturing and encoding
knowledge about the temporal pattern of sensory stimulation.
Little is known about the neural mechanisms underlying the
ability to encode temporal expectancies in the human brain.
Several neurophysiological studies in monkeys have focused
on single cortical sites in either association- or motor-related
cortices (Onoe et al., 2001; Leon and Shadlen, 2003; Janssen
and Shadlen, 2005; Genovesio et al., 2006). For example, neu-
rons in lateral intraparietal area show anticipatory activity
reflecting an internal representation of the elapsed time used
to predict the probability that a certain event will occur (Jans-
sen and Shadlen, 2005). However, these studies do not clarify
whether this time-dependent activity is a property of an indi-
vidual cortical region or a shared property of a wider network
of areas that have been associated with temporal processing in
human studies (Lewis and Miall, 2003).

Neuropsychological studies emphasize the role of the cerebel-
lum and the basal ganglia (Ivry and Keele, 1989; Harrington et al.,
1998), whereas neuroimaging studies suggest the involvement of
higher-level parietal, premotor, and prefrontal cortices (Coull et
al., 2004; Bueti et al., 2008c). Rather less attention has been paid
to structures earlier in the visual pathway (Bueti et al., 2008a). It
has been suggested, on theoretical grounds, that primary and
extrastriate visual cortex may play a key role in encoding tempo-
ral variables. According to such a hypothesis, primary visual cor-
tex might allocate salience to retinotopic locations according to

statistical inhomogeneities in both the spatial and temporal pat-
tern of retinal input (Barlow, 1990; Schwartz et al., 2007). How-
ever, although primary visual cortex responses can be modulated
by attention before presentation of a visual stimulus (Kastner et
al., 1999; Sharma et al., 2003), in humans no previous study has
investigated whether such stimulus-independent signals in early
sensory structures can encode the changing temporal expectancy
that an external event might occur.

To investigate the neural correlates of temporal expectancy in
visual cortex and other cortical structures, 12 participants were
trained to anticipate the occurrence of a visual event. On each
trial, participants viewed a visual stimulus for several seconds and
were instructed to press a key as soon as its color changed from
blue to yellow. The timing of the color change was determined by
one of two different probability distributions. We examined both
neuroimaging and behavioral data for evidence of a neural signa-
ture of temporal expectancy.

Materials and Methods
Subjects
Twelve right-handed healthy human subjects (four female, mean age 25
years SD 5.2 years) with normal or corrected-to-normal vision gave writ-
ten informed consent to participate in this study, which was approved by
the local ethics committee.

Paradigm
The visual stimulus was an annulus subtending 12 degrees of visual angle
centered on central fixation. Each trial started with the presentation of a
blue annulus (the target) that after a variable interval of time (specified by
one of two possible probability distributions) changed color from blue to
yellow. The color change was the “go” signal. The stimulus luminance for
the target and the go signal were respectively 44 and 173 cd/m 2. Back-
ground luminance was 3 cd/m 2. The time interval between the presen-
tation of the target and the go signal was a random variable whose
probability distribution was fixed throughout a single session. The prob-
ability distributions and all the mathematical parameters used were
based on previous work in monkey (Janssen and Shadlen, 2005).

We used two probability distributions: unimodal and bimodal.
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The unimodal distribution U(t) of go times was a single Weibull func-
tion delayed (d) by 6 s:

U(t) � �3�(t � d)2 e��(t�d)3 for t � d
0 otherwise (1)

� � 0.05.
The bimodal distribution B(t) was the sum of two nonoverlapping

Rayleigh distributions, delayed by d1 and d2, as follows:

B(t) �
1

2
(R1 � R2),

where

Ri � � 2�i(t � di)e��i(t�di)2 for t � di

0 otherwise (2)

where �1 � 0.25, d1 � 2.50 s, �2 � 0.9, d2 � 13 s. The go time was drawn
with equal probability from R1 or R2.

Each probability distribution was associated with two different antic-
ipation profiles. Anticipation can be expressed in terms of hazard rate,
which is the conditional probability that an event will occur given that it
has not yet occurred. This is the probability that the go signal will occur at
time t divided by the probability that it has not yet occurred, as described
by the following:

h�t� �
f�t�

I � F�t�
, (3)

where f(t) is either U(t) or B(t), and F(t) is the cumulative distribution, as
follows:

�
0

t

f�s�ds. (4)

Based on the assumption that elapsed time is known with uncertainty
that scales with time, we calculated “subjective” hazard rates (see also
Janssen and Shadlen, 2005). To obtain these, the probability density
function f(t) � U(t) or B(t) was first smoothed with a normal distribu-
tion whose SD was proportional to elapsed time, as follows:

f̃ �t� �
1

�t�2��
��

�

f�t�e����t�2/�2�2t2�d�. (5)

The coefficient of variation, 	, is a Weber fraction for time estimation
(	 � 0.21; Gibbon et al., 1997; Janssen and Shadlen, 2005). Equation 5
implements the idea that participants’ estimates of elapsed time carry
uncertainty. Thus, an event occurring at objective time t0 is perceived as
if it occurred at t0 � 	. The subjective hazard rate is then obtained by
substituting f̃(t) and its defined integral, F(t), into Equation 3. We refer to
these subjective hazard rates as anticipation functions Au for the unimo-
dal distribution of go signals and Ab for the bimodal distribution.

The two probability distributions and the associated anticipation
functions were used to select the distribution of random go times. We
refer to these distributions of random go times as the “time schedule.”

The change of the annulus color from blue to yellow represented the go
signal, prompting participants to press a key as fast as possible. Partici-
pants were instructed to keep track of the elapsed time to predict the
occurrence of the go signal and hence prepare to respond to it as fast as
possible. Participants were tested on both time schedules (unimodal and
bimodal) in separate scanning sessions on different days. Each scanning
session was preceded by a behavioral training session held a few days (on
average 2 d; range 1– 4 d) before scanning. The training session consisted
of, on average, 600 trials of the same time schedule. Each scanning session
consisted of four runs of 50 trials each (200 trials in total). Six partici-
pants performed the unimodal schedule before the bimodal, whereas the
remaining six did the opposite.

Functional MRI scanning
A 3 T Siemens Allegra system was used to acquire T2*-weighted echop-
lanar image (EPI) volumes with blood oxygenation level-dependent
(BOLD) contrast. Each EPI volume comprised 32 slices (2 mm axial with
an in-plane resolution of 3 � 3 mm) positioned to cover the whole brain.
For the main experiment, each run consisted of, on average, 303 volumes
(range 271–326). The first five volumes of each run were discarded to
allow for T1 equilibration effects. Volumes were acquired continuously
with a repetition time (TR) of 2.08 s per volume. In addition, a T1-
weighted anatomical image was acquired for each participant.

In six participants, additional fMRI data were collected to identify the
boundaries of early retinotopic visual cortex. Two additional runs of 200
EPI volumes were collected using similar coverage and scanning param-
eters to the main experiment. In each run, participants passively viewed
flashing checkerboard patterns (stimulus size was 26 deg in width and 22
deg in height) covering either the horizontal or vertical meridian, alter-
nating with rest periods for 16 epochs of 26 s.

Behavioral data analyses
Because both anticipation functions could affect the pattern of reaction
times (RTs) under either schedule, we ran for each participant and for
both schedules a multiple regression analysis incorporating the following
potential explanatory variables:

RT(t) � we � wuAu (t � �) � wbAb (t � �) � 
. (6)

Here RT are the reaction times; we is a constant term; wu and wb are the
weights for the Au (unimodal) and Ab (bimodal) anticipation functions,
respectively, delayed by time shift �; and 
 represents noise, which is
assumed to be Gaussian with uncertainty derived from the sample
means. We sought to explore the contribution of both anticipation func-
tions to participants’ RTs under both behavioral schedules, and to inves-
tigate the direction of the correlation between response and anticipation
functions. On individual wu and wb values we ran a 2-by-2 ANOVA with
schedule (bimodal/unimodal) and anticipation function (Au/Ab) as
main factors. A two-sample t test (Bonferroni corrected with � level �
0.05) was then performed to compare the wu and wb values within each
schedule. We tested the hypothesis that under each schedule RTs were
better explained by the appropriate anticipation function (Au in unimo-
dal and Ab in bimodal) and that the correlation between RTs and antic-
ipation functions was more negative for the anticipation function
appropriate for the schedule. In other words, we predicted that in the
unimodal schedule wu � wb and in the bimodal schedule wb � wu.

We first analyzed the behavioral data acquired in the training and in
the scanning sessions separately. Because there were no substantial dif-
ferences comparing the results of these analyses, for each time schedule
we then collapsed the data acquired during training and scanning ses-
sions and we performed the analysis on these collapsed data.

Functional MRI data analyses
Main experiment: whole-brain analysis. Functional imaging data were
analyzed using Statistical Parametric Mapping software (SPM2, Well-
come Department of Imaging Neuroscience, University College Lon-
don). All image volumes were realigned spatially to the first volume and
slice time corrected. Resulting volumes were spatially normalized to a
standard EPI template volume based on the Montreal Neurological In-
stitute reference brain in the space of Talairach and Tournoux (Talairach
and Tournoux, 1988) and resampled to 2 mm isotropic voxels. The nor-
malized image volumes were then smoothed with an isotropic Gaussian
kernel (FWHM � 7 mm). The data acquired in the two scanning sessions
were analyzed together using an event-related random-effects model.
Voxels that were activated in the experimental conditions were identified
using a statistical model containing regressors that represented the tran-
sient responses evoked by the individual trials in each condition. The
event-related changes in evoked activity were modeled by convolving an
empirically derived hemodynamic impulse response function with trains
of unitary events that were aligned with the trial onsets. Each component
of the model served as a regressor in a multiple regression analysis that
included the onset of the stimulus target, the onset of the go signal, and
the motion correction parameters as effects of no interest. The two an-
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ticipation functions Au and Ab (as specified by Eq. 5) were instead the
variables of interest. The data were high-pass filtered (cutoff frequency
0.0083 Hz) to remove low-frequency signal drifts, and global changes in
activity were removed by proportional scaling. The resulting parameter
estimates for each regressor at each voxel were then entered into a
second-level analysis where each participant served as a random effect in
a within-participants 2-by-2 ANOVA with schedule (unimodal and bi-
modal) and anticipation functions (Au and Ab) as main factors. Appro-
priate corrections were made for nonsphericity (Friston et al., 2002) and
correlated repeated measures.

We sought to identify brain areas whose activity during the waiting
time between target onset and go signal followed the anticipation func-
tion associated with the appropriate random go times. These effects were
specified by appropriately weighted linear contrasts and determined us-
ing the t statistic on a voxel-by-voxel basis. The contrasts used were as
follows: Au 	 Ab in unimodal time schedule and Ab 	 Au in bimodal time
schedule to check for areas positively correlated with the anticipation
function appropriate to the behavioral schedule. A statistical threshold
was used of P � 0.05FDR (Genovese et al., 2002) corrected for multiple
comparisons across the entire brain volume.

Onsets of both the target and the go signal were modeled as variables of
no interest to ensure that brain responses associated with these events
could not confound our analysis. For completeness, we generated SPM
contrasts associated with each of these events. These contrast maps were
then entered into second-level random-effects analyses, and statistical
inferences for each contrast were derived using one-sample t tests. The
results of these control analyses are displayed in supplemental Figure 1
(available at www.jneurosci.org as supplemental material).

To independently test for the goodness of the fit between anticipation
functions and data, we further analyzed whole-brain activity on those
trials from the bimodal schedule where the go signal had appeared at late
trial times (after 10 s). In these trials there was no change in the stimulus
before 9 s. Nevertheless according to our hypothesis, the signal should be
highly correlated with expectation in this early part of the trial. The
first-level general linear model (GLM) included the onset of the stimulus
target, the onset of the go signal, and the motion correction parameters as
effects of no interest. Two distinct bimodal regressors each modeling a
different part of the bimodal trial were used as effects of interest. The
early Ab regressor modeled the expectation of the first 9 s of the trial,
whereas the late Ab the last 10 s. The two bimodal regressors were ob-
tained, splitting the original bimodal anticipation function Ab (as speci-
fied by Eq. 5) in two parts, taking the values above and below 9 s. To test
the hypothesis that the BOLD response in long trials was correlated with
the expectation in the early part of the trial, SPM contrasts associated
with the early bimodal regressor were generated for each participant and
were entered into a second-level one-sample t test. A statistical threshold
was used of P � 0.05FDR (Genovese et al., 2002) corrected for multiple
comparisons across the entire brain volume.

For visualization of time course data, the region of interest (ROI)
method was used. ROIs were constructed by creating mask volumes for
left mid-calcarine sulcus, cerebellar vermis, right supramarginal gyrus,
right supplementary motor area, right midfrontal cortex, by taking the
peak voxel from each individual subject from within a 10 mm sphere
centered on the group peak co-ordinate. For each ROI, the raw fMRI
signal was extracted from the acquired volumes to form a continuous time
series. Trial onsets and offsets were marked in this continuous time series and
then shifted by three volumes to account for the hemodynamic lag. Trials of
different lengths were then aligned to their onset, z-transformed, and aver-
aged to give rise to time course for each region of interest in bimodal and
unimodal schedule. Importantly, none of the inferential statistics reported in
the paper were based on the outcome of this procedure, and extraction of the
time course was performed simply to illustrate the results.

Supplementary retinotopic mapping analysis. Data were spatially re-
aligned to the first volume, coregistered to each individual participant’s
T1 image, and spatially smoothed with a narrow Gaussian kernel of 5 mm
full-width half-maximum. The data were high-pass filtered (cutoff fre-
quency 0.0083 Hz) to remove low-frequency signal drifts and then sub-
mitted to a within-participant analysis, using a voxelwise GLM that
comprised three delayed boxcar waveforms for each scanning run to

extract the mean activity evoked by horizontal or vertical meridian stim-
ulation and rest. Freesurfer (http://surfer.nmr.mgh.harvard.edu/) was
used to generate inflated and flattened representations of occipital cortex
from each participant’s T1-weighted structural image. SPM2 was used to
generate activation maps from the fMRI data using appropriately
weighted linear t contrasts for the comparison of horizontal and vertical
meridian stimulation epochs. Six ROIs (left and right V1, V2/V3 dorsal,
V2/V3 ventral) were obtained by delineating the borders between visual
areas using the activation patterns from the meridian localizers according
to standard definitions (Sereno et al., 1995; Wandell, 1999). In each
retinotopic ROI, we next identified voxels that responded to the stimulus
in the main interest by selecting two sets of voxels according to their
estimated response to stimulus onset from the regression analysis here of
the main experiment (see above). Using the t maps for this contrast,
strongly visually responsive voxels were defined as those above the 95th
centile of voxel responses within the retinotopic ROI, whereas nonre-
sponsive voxels were defined as those below the fifth centile. This per-
mitted us to define subsets of visually responsive and visually
nonresponsive voxels for each retinotopic area. Note that the contrast
used to define this subset of voxels was independent of those subse-
quently characterized. Finally, we extracted the parameter estimates from
the SPM2 regression analysis for the two anticipation functions (Au and
Ab) in the two behavioral schedules within each ROI for both visually
responsive and visually nonresponsive voxels. This procedure allowed us
to determine whether expectancy related activity in occipital areas was
specific to the portion of cortex selective for the visual stimulus or more
widespread. Because there were no significant differences between the
left and right hemispheres and between dorsal and ventral V2/V3 (data
not shown), for these analyses data were collapsed across hemispheres
(for V1 and V2/V3) and across ventral and dorsal regions (for V2/V3).
Estimates of activation within each retinotopic ROI were then entered in
repeated-measures ANOVAs with anticipation function (Au and Ab) and
behavioral schedule (unimodal and bimodal) as within-subject factors
and the two sets of voxels as between-subjects factor.

Results
Behavioral analysis
The time course of temporal anticipation in this task is formal-
ized by the hazard rate, defined as the conditional probability that
an event will occur given that it has not yet occurred (see Mate-
rials and Methods). To take into account the fact that time esti-
mation follows Weber’s law (Gibbon et al., 1997) with the
estimation error increasing proportionally to the duration esti-
mated, the standard formulations of the hazard rate were re-
placed with their temporally blurred versions, which are termed
subjective hazard rates or anticipation functions (Ab for bimodal
and Au for unimodal; see Eq. 5 in Materials and Methods and also
Janssen and Shadlen, 2005). The anticipation functions associ-
ated with the two probabilistic time schedules were clearly differ-
ent (Fig. 1A). When go times (i.e., when the annulus changed
color) were drawn from the unimodal distribution, the anticipa-
tion function increased monotonically with elapsed time. In con-
trast, when go times were drawn from the bimodal distribution,
the anticipation function was triphasic: it rose, fell, and rose
again.

Within each schedule, go RTs showed a clear negative corre-
lation with the relevant anticipation function, demonstrating
that participants reliably learned to anticipate the timing of the
visual signal under both probabilistic time schedules. Figure 1B
shows the data for three individuals plus the group mean. In the
unimodal schedule, RTs decreased with longer waiting times. In
the bimodal schedule, RTs decreased initially and then rose again
for go times that happened to be drawn from the first mode (from
3 to10 s). For go times that were drawn from the second mode of
the distribution (from 13 s onwards) RTs decreased monotoni-
cally with increasing go time. Individual reaction time data ac-
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quired in both time schedules were fitted
by a weighted sum of the two anticipation
functions (see Materials and Methods, Eq.
6). The results of the multiple regression
(Fig. 1C, D) showed that participants’ re-
action times were inversely correlated
more strongly with the anticipation func-
tion appropriate to the behavioral sched-
ule (interaction schedule by anticipation
function F(1,12) � 13,52 P � 0.003; in uni-
modal schedule wu � wbT11� �6.91 P �
0.001, in bimodal schedule wb � wuT11�
�3.8 P � 0.001). Thus these behavioral
data establish that participants were able
to represent the passage of time and the
time-dependent probability that the go
signal was about to occur.

Whole-brain fMRI analysis
We next analyzed our fMRI data to deter-
mine whether they contained a similar
signature of temporal anticipation. We
hypothesized that neural populations en-
coding the conditional probability of vi-
sual events would show activity better
correlated with the unimodal (versus bi-
modal) anticipation function under the
unimodal schedule, but better correlated
with the bimodal (versus unimodal) an-
ticipation function under the bimodal
schedule. The use of the two anticipation
functions as GLM regressors provided
quantitative fitting of the two subjective
hazard rates (which differed in their tem-
poral profile) to the data, which was, in
other words, a measure of how well the
appropriate anticipation function fitted
the BOLD response.

We also included regressors that mod-
eled (and removed) variance associated
with the physical (color) change in the vi-
sual stimulus per se (see Materials and
Methods).

In the whole-brain analysis, we found
that several brain areas demonstrated a
pattern of activity correlated with the
appropriate anticipation function in the
corresponding experimental conditions.
Strikingly, the largest cluster (n � 283) of
significantly activated voxels (P � 0.05
FDR corrected for multiple comparisons

Figure 1. Model of temporal expectancy and behavioral findings. A, Subjective hazard rate (h(t) values, see Eqs. 3 and 5 in
Materials and Methods) for the bimodal (red; Ab) and the unimodal (blue; Au) schedules are plotted as a function of time.
B, Behavioral data and model predictions are plotted for three example participants and the group (n � 12). Each individual graph
plots the reaction time as a function of time for the unimodal (blue open squares) and bimodal (red open squares) time schedules.
The thick line superimposed on each graph represents the hazard function model obtained by fitting the data to a weighted sum
of the two anticipation functions (see Eq. 6 in Materials and Methods). The model predicted an inverse correlation between RTs and
the appropriate anticipation function. It is apparent that the model fits the data well, both for individual participants and for the
group. C, Scatter plot of regression weights for unimodal ( y axis) and bimodal (x axis) anticipation functions under different
anticipation schedules (unimodal schedule: blue, bimodal schedule red). Each dot represents one participant (n � 12). Each point
represents the pair of regression coefficients obtained by regressing RTs with the two anticipation functions within the same
schedule. Thus, red points refer to pairs of wb and wu obtained in the bimodal schedule, and blue points refer to wb and wu obtained
from unimodal schedule (see Eq. 6 in Materials and Methods). D, Mean regression coefficients of 12 participants, separately
for bimodal (red) and unimodal (blue) anticipation functions under the unimodal and bimodal timing schedule. The regression

4

coefficient associated with unimodal anticipation function
(Au ) was more negative under the unimodal than under the
bimodal time schedule. The opposite was true for the coeffi-
cients associated with bimodal anticipation (Ab, ). The plots in
C and D show for the group and for the single subject that RTs
are better explained by the anticipation function appropriate
to the behavioral schedule. These data demonstrate that par-
ticipants learned to anticipate the go signal in the two time
schedules and responded faster when the expectation of the
stimulus was higher.
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across the whole brain) was located in the mid-calcarine sulcus
bilaterally (left: �6, �84, 12, peak z � 4.21; right: 9, �84, �9,
peak z � 3.59) (Fig. 2, Table 1). Both calcarine foci demonstrated
relative increases in the signal evoked under the appropriate an-
ticipation function (versus the other function): Au 	 Ab in the
unimodal schedule and Ab 	 Au in the bimodalschedule (Fig. 2,
right column). The mid-calcarine foci were not the only brain
areas whose response appropriately followed the two anticipation
functions in the different experimental conditions. A large cluster
(196 voxels) centered on the cerebellar vermis (�3, �54, 3, peak

z � 4.27) including left and right IV and V lobules (according to
standard cerebellar taxonomy by Schmahmann et al., 1999; left:
�6, �45, �6, peak z � 4.26; right: 9, �45, �3, peak z � 4.07)
showed activity significantly correlated (P � 0.05 FDR corrected)
with the anticipation functions (Fig. 3). In addition, right inferior
parietal cortex (supramarginal gyrus SMGnvoxel � 21: 57, �42, 39,
peak z � 4.23), right supplementary motor area (SMAnvoxel � 31:
6, �21, 51, peak z � 4.24) and right midfrontal cortex (midfron-
talnvoxel � 12: 45, 27, 36, peak z � 3.77) were also significantly
modulated by temporal expectation (Fig. 3).

Our analysis procedure explicitly distinguished variability in
the signal due to temporal expectation from that due to the visual

Figure 2. Functional MRI results. Visual areas correlated with the anticipation functions
appropriate to the behavioral schedules. The left panel shows group (n � 12) peaks of
activation in the left and right mid-calcarine sulcus that show significantly greater differ-
ences in activity comparing the bimodal (versus unimodal) anticipation functions under
the bimodal behavioral schedule with the unimodal (versus bimodal) anticipation func-
tions under the unimodal behavioral schedule. In each case activations are overlaid on a
sagittal slice of a template T1-weighted anatomical image in the space of Talairach and
Tournoux (see top right of each individual panel for coordinates). Right panels plot the
signal change (percent) for unimodal (blue) and bimodal (red) regressors under unimodal
or bimodal schedules. Error bars represent SE. In each case it is apparent that there is
greater correlation of activity with the unimodal regressors under a unimodal behavioral
schedule or the bimodal regressors under a bimodal schedule.

Table 1. Stereotactic brain MNI coordinates (in millimeters) for regions activated in
the following contrasts: Au> Abin unimodal time schedule and Ab> Auin bimodal
time schedule (see Materials and Methods for details)

Anatomical structure x, y, z coordinates (mm) Z score Voxels (n)

Occipital cortex 283
Mid-calcarine sulcus L �6, �84, 12 4.21
Mid-calcarine sulcus R 9, �84, �9 3.59

Cerebellum 196
Vermis �3, �54, 3 4.27
IV–V lobules L �6, �45, �6 4.26
IV–V lobules R 9, �45, �3 4.07

Parietal cortex
Supramarginal gyrus R 57, �42, 39 4.23 21

Frontal cortex
Supplementary motor area R 6, �21, 51 4.24 31
Midfrontal R 45, 27, 36 3.77 12

A statistical threshold of�0.05FDR (Genovese et al., 2002) corrected for multiple comparisons across the entire brain
volume was used.

Figure 3. Functional MRI results. Areas correlated with the anticipation functions ap-
propriate to the behavioral schedules. Activation consistent with temporal anticipation
was also observed in the cerebellar vermis, right SMG, right SMA, and midfrontal cortex.
On the left panel activations are overlaid on a sagittal or axial slice of a template T1-
weighted anatomical image; the right-hand panels plot the BOLD signal change (percent)
for unimodal (blue) and bimodal (red) regressors under unimodal or bimodal schedules.
Error bars represent SE.
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onset of the go signal (see Materials and Methods for details). To
confirm the success of this procedure and provide an indepen-
dent quantitative measure of the goodness of the fit between time
courses and the subjective hazard rates, we then analyzed whole-
brain activity on only those trials from the bimodal schedule
where the go signal had appeared at late trial times (after 10 s). For
this trial type, there was never any change in the stimulus early in
the trial (before 9 s), yet our temporal expectation hypothesis
predicted that signal should nevertheless be correlated with high
expectation early in the trial. To test this hypothesis we used
two distinct bimodal regressors modeling expectation of re-
spectively the first (early Ab) or of the second part of the
bimodal trials (late Ab). Consistent with the hypothesis that a
bimodal expectation profile modulated brain activity in bi-
modal trials independently from the stimulus presentation, we
found that activity in V1, vermis, right SMG, SMA, and mid-
frontal cortex was significantly correlated with the early bi-
modal regressor (all loci P � 0.05 FDR-corrected for multiple
comparisons; see supplemental Table 1 and supplemental Fig.
2, available at www.jneurosci.org as supplemental material).
This observation converges with our previous analysis to pro-
vide compelling evidence that activity in these areas changed
as a function of time in accordance with expectations, and that
this response was not stimulus-driven.

As an additional qualitative check of these findings we visual-
ized the BOLD time course of those trials from the bimodal
schedule where the go signal had appeared at late trial times.
Figure 4 shows the time course of the hemodynamic response in
the mid-calcarine sulcus, in the vermis, in the right SMG, in
the SMA, and in the midfrontal cortex under the unimodal (A)
and bimodal (B) schedule. Activity was enhanced when the
probability associated with the appearance of the go signal was
highest, approximately 
6 s (3 TRs) and 
17 s (8 TRs) in the
bimodal schedule (Fig. 4, right column) and 
10 s (5 TRs) for
the unimodal schedule (Fig. 4, left column). Examination of
signals in Figure 4 clearly showed that activity in V1, in the
vermis, in the right SMG, in the SMA, and in the midfrontal
cortex rose early (
6 s or 
3 TRs) during this bimodal trial
type, even though there was no physical change in the visual
stimulus at that time.

The decline of the BOLD response observed at the last data
point in the unimodal schedule (Fig. 4, left column) was unex-
pected. According to the unimodal anticipation function, activity
in unimodal trials should progressively increase as a function of
time. One possible explanation of the observed decay is that the
BOLD activity follows the probability of the stimulus rather than
the subjective hazard rate (that would fit with the decay of the
signal after the point of maximum probability). Alternatively this
decay might be an artifact attributable to both the reduced num-
ber of trials ending after 10 s (�15%) and the short intertrial
interval (
4 s) used. The intertrial interval was kept short to
avoid cross-correlation between unimodal and bimodal regres-
sors. It is conceivable that the last data point reflects a time where
the task is already finished and participants are no longer expect-
ing the go signal.

Retinotopic analyses
Probabilistic cytoarchitectonic maps (Eickhoff et al., 2005) con-
firmed that the visual cortex activation exhibiting activity that
correlated with the appropriate hazard function in the group
analysis was located in V1 (coordinates for left and right calcarine
foci were associated respectively with 80 and 100% probability of
being located in V1). Nevertheless, we next sought to confirm this

finding using retinotopic mapping in individual participants to
explore whether the effects we observed were limited to stimulus-
responsive regions of V1, and whether the observed differential
activation in medial occipital cortex also encompassed extrastri-
ate visual areas. In a subset of the 12 participants we therefore
mapped the visual areas using conventional retinotopic mapping
(see Materials and Methods for details). Six ROIs were defined:
for left and right V1 and for dorsal and ventral V2/V3 (V2/V3d,
V2/V3v). The retinotopic analysis allowed us to test the possibil-

Figure 4. fMRI time course activity. Time course of BOLD contrast activity plotted as a func-
tion of time relative to trial onset (time unit is TR � 2.08), for unimodal (continuous line) and
bimodal (dotted line) time schedule. For the bimodal schedule only the trial where the go signal
occurred at late trial times (after 11 s) were considered. Error bars are SEs. See Materials and
Methods for details of data analysis. It is apparent that the time course of activity in V1, cere-
bellar vermis, SMG, SMA, and midfrontal cortex shows a unimodal pattern in unimodal trials
and a bimodal pattern in bimodal trials. In particular there is a clear rise in activity early in the
bimodal trial even though no physical stimulus change has taken place. This provides conver-
gent evidence that the signal changes we observed represent a neural correlate of temporal
expectation unconfounded by signal changes associated with physical changes in the stimulus
per se.
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ity that expectancy related activity in occipital areas might be
spatially selective (i.e., restricted to the portion of cortex encod-
ing the annulus). For each participant and in each ROI we iden-
tified the amplitude of BOLD response for the two different
anticipation functions under the two behavioral schedules in two
subsets of voxels: visually responsive to stimulus onset, and visu-
ally nonresponsive to stimulus onset (see Materials and Methods
for details). Figure 5A shows these responses averaged across the
group and collapsed across hemispheres (for V1 and V2/V3
ROIs) and across ventral and dorsal regions (for V2/V3 ROIs).
Retinotopic areas V1, V2, and V3 all showed significantly greater
BOLD responses for the anticipation function appropriate to the
behavioral schedule (Au 	 Ab in unimodal and Ab 	 Au in bi-
modal). However, this effect was present only in the portions of
V1 and V2/V3 spatially selective for the visual annulus (Fig. 5A,
left panel) (spatial selectivity was confirmed by a significant triple
interaction of anticipation function by behavioral schedule by
sets of voxels: F(1,10) � 8.9, P � 0.01 for V1; F(1,10) � 26.5, P �
0.001 for V2/V3). This retinotopic specificity was also consistent
with inspection of the activation profile in the relevant contrast
(Au 	 Ab in unimodal and Ab 	 Au in bimodal schedule), over-
laid on individual retinotopic maps. Activations in visual areas
were limited to the retinotopic area stimulated by the annulus
(Fig. 5A,B).

Discussion
Together, our findings indicate that in humans, temporal infor-
mation used to make predictions about behaviorally relevant vi-
sual events is encoded not in a single area but in a network of
distributed cortical loci. Moreover, these data represent the first
evidence of retinotopically specific signals reflecting temporal ex-
pectancies in human primary visual cortex and extrastriate visual
areas V2/V3. We observed temporal modulation along the path-
way that brings incoming information from primary sensory to
motor areas through a visuomotor integrative region repre-
sented by the parietal cortex. In nonhuman primates, neurons
encoding temporal expectation can be found in lateral in-
traparietal cortex (Leon and Shadlen, 2003; Janssen and
Shadlen, 2005) and area V4 (Ghose and Maunsell, 2002). Such
observations are consistent with our finding that neuronal
populations in inferior parietal cortex and extrastriate areas
showed signal modulations in accord with the anticipation
functions. However, our new data go beyond this earlier work
by showing that the amplitude of signals from neuronal pop-
ulations at the earliest stages of cortical processing in human
primary visual cortex are already tightly locked to temporal
expectation in the absence of any stimulus changes (Figs. 2 and
3; see also supplemental Fig. 2, available at www.jneurosci.org
as supplemental material).

Our results demonstrate a relationship between BOLD signals
and subjective hazard rate. However, we cannot rule out the pos-
sibility that the neural responses we observed follow the actual
stimulus probability more or less closely than the subjective esti-
mation of the stimulus probability (i.e., subjective likelihood or
subjective hazard rate). Indeed, the actual and the subjective haz-
ard rates were too closely correlated to be used as separate regres-
sors in our fMRI model. We found that the behavior of our
participants was significantly modulated by the subjective hazard
rate (Fig. 1B), so it is therefore reasonable to suggest that the
neural responses we observed might reflect motor preparation
processes. This might in turn raise the question of whether such
neural responses might therefore be correlated with the actual
motor response. However, we can rule out the possibility that the

Figure 5. Retinotopic analyses. A, Activation patterns for the six participants for whom
retinotopic mapping data were obtained (see Materials and Methods for full details). The
panels show the percentage change in BOLD V1 and V2/V3 associated with either unimo-
dal (blue bars) or bimodal (red bars) regressors in two behavioral schedules (U, Unimodal;
B, bimodal). In both V1 and V2/V3 significant expectancy related effects (Au 	 Ab in
unimodal schedule and Ab 	 Au in bimodal schedule) were observed only for the voxels
that were spatially selective for the stimulus (left, P � 0.01 and P � 0.02 for respectively
unimodal and bimodal behavioral schedule in V1; and P � 0.045 and P � 0.001 for
unimodal and bimodal behavioral schedule in V2/V3). No significant differences between
the two anticipation functions were observed for voxels that were spatially unrelated to
the stimulus (right). Error bars represent SE. B, Activity correlated with temporal antici-
pation in retinotopic visual maps. SPM maps of activity in the contrast Au 	 Ab in the
unimodal behavioral schedule and Ab 	 Au in the bimodal behavioral schedule overlaid
on the flattened retinotopic map of two representative participants (S1–S2). Left-hand
panels show the left occipital cortex (Lh), right-hand panels show the right occipital cortex
(Rh). V1, V2/V3d, V2/V3v borders (in black) are defined based on standard retinotopic
mapping procedures (Sereno et al., 1995).
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actual motor response (i.e., RTs) is the sole factor driving the
BOLD signals we observed. First, we found modulation of neural
responses associated with temporal expectation early in long bi-
modal trials, at a time when there was no visual stimulation and
no motor response (see Results; also see supplemental Fig. 2,
available at www.jneurosci.org as supplemental material). In ad-
dition, our observations of expectancy-related activity not only in
motor-related brain regions, like premotor and parietal cortex,
but also in early visual regions, make an explanation in terms of
motor responses alone less likely.

In humans, shifts in the baseline activity of primary visual
cortex in the absence of any visual stimulation have been ob-
served (Kastner et al., 1999; Haynes et al., 2005; Silver et al., 2007).
This activity is sustained during the time delay preceding stimu-
lus onset, is associated with the deployment of covert spatial at-
tention, and regulated by parietal structures (Chawla et al., 1999;
Haynes et al., 2005). In the present study we did not explicitly
manipulate spatial attention (i.e., spatial expectancy) but instead
required participants to focus on temporal expectation. In con-
trast to earlier studies, our new findings now show that in the
absence of a stimulus, V1 activity reflected temporal expectancy;
and critically, such modulation had temporal dynamics that were
closely locked to the subjective likelihood that a stimulus will
occur. As with spatial expectancy, we found that temporal
expectancy-related activity in retinotopic visual cortex was spe-
cific to the retinotopic location of the expected stimulus (Fig. 5).
However, there were also important differences from previous
studies of spatial attention. Specifically, we did not observe any
difference in the amplitude of the BOLD response comparing
parietal, premotor cortex, and visual areas (Kastner et al., 1999).
Moreover, the parietal activation associated with temporal ex-
pectancy that we observed was not located in the intraparietal
sulcus, like most studies on covert orienting of spatial attention
report (Corbetta and Shulman, 2002; Sylvester et al., 2009).
Rather, it was centered on the inferior parietal lobule, a location
often associated with temporal processing (Buhusi and Meck,
2005; Bueti and Walsh, 2009).

In humans, mechanisms of attentional orienting to time have
been investigated with neuroimaging and electrophysiological
methods (Nobre et al., 2007). These studies emphasize the effects
of temporal predictability on motor preparation and response
selection processes. Orienting attention to time has no effect on
early ERP components (P100) of target analysis (Griffin et al.,
2002; Doherty et al., 2005) and is correlated with the activation of
premotor and parietal regions of the left hemisphere (Coull and
Nobre, 1998). An important difference between this earlier work
and the present study is that the temporal distribution of events
in our task was continuous rather than binary (short versus long
in Coull and Nobre, 1998) or fixed according to a rhythm
(Doherty et al., 2005). The presence of such variability, in our
experimental paradigm, may have induced participants to focus
more on the temporal aspects of the task rather than on the
preparation of the response. The accurate representation of the
elapsed time was indeed very relevant for the efficiency of the pre-
diction, as shown by our behavioral results (Fig. 1B). Moreover,
in contrast to these previous studies, our data now demonstrate
that temporal expectations affect activity not only in parietal and
premotor regions but also in retinotopic visual cortex, including
primary visual cortex.

It has been suggested (Barlow, 1990; Schwartz et al., 2007) and
recently emphasized (Schwartz et al., 2007) that one of the com-
putational roles of the primary visual cortex is the allocation of
salience to image locations based on statistical inhomogeneities

in space or time. Although several studies have demonstrated
such a role for V1 in the spatial domain (Knierim and van Essen,
1992; Kapadia et al., 1995), our results now provide physiological
evidence for a representation of temporal statistics of the visual
environment in V1. Consistent with this, V1 in rats can show
sustained responses after stimulus presentation reflecting two
different reward timings (Shuler and Bear, 2006). The role of
sensory areas in temporal processing is a very recent finding
(Bueti et al., 2008b) and indeed is the subject of some debate
(Walsh, 2003; Ivry and Schlerf, 2008). Transient disruption of
V5/MT can affect temporal discrimination of visual durations
(Bueti et al., 2008a), providing some converging evidence for a
role of visual cortex in temporal processing. The present findings
now demonstrate the existence of a temporal signal much earlier
in the visual pathway and in the primary visual cortex and show
that this modulation here is retinotopic specific. This finding also
accords with purely psychophysical data in humans (Johnston et
al., 2006; Kanai et al., 2006), showing that the apparent duration
of a visual stimulus can be selectively distorted in a spatially
restricted region of the visual field, suggesting the presence of
retinotopically specific mechanisms that can encode temporal
information. The existence of a temporal modulation of signals
in extrastriate areas V2/V3 is consistent with two psychophysical
studies showing the effects of saccadic eye movements on the
subjective representation of time (Morrone et al., 2005; Burr et
al., 2007). These two studies, together with a theoretical model
(Walsh, 2003), suggest the involvement of areas of the visual
dorsal stream, important for spatial representations and visuo-
motor transformations, in temporal encoding networks. To-
gether with our finding that primary and secondary visual cortex
can encode time-dependent changes in stimulus expectation, we
tentatively propose the presence in theses areas of local temporal
mechanisms enabling the computation of elapsed time when vi-
sual information is task relevant.

Cerebellum, parietal cortex, SMA, and prefrontal cortex
are all implicated in aspects of timing (Spencer et al., 2003;
Coull et al., 2004; Vallesi et al., 2007; Bueti et al., 2008c), but
nevertheless their specific functional roles concerning tempo-
ral processing are far from clear. Our data showing similar
types of temporal modulation in accordance with the appro-
priate anticipation function may suggest that elapsed time is
represented in areas wherever this information is needed
(Onoe et al., 2001; Ghose and Maunsell, 2002; Leon and
Shadlen, 2003; Janssen and Shadlen, 2005). Timing signals in
visual (V1, V2/V3, our data; V4, Ghose and Maunsell, 2002; V5,
Bueti et al., 2008a,c), visuomotor (parietal cortex), and motor
(SMA, cerebellum) areas may all reasonably contribute to both
the representation of an expected stimulus and the efficiency with
which one can react to it. The striking correspondence between
the response patterns of BOLD signals associated with temporal
expectancy we observed in humans and patterns of single neuron
firing in monkeys (Janssen and Shadlen, 2005) is consistent with
a specific computational model of time processing (Durstewitz,
2003). This model originates from the observation that during
tasks where animals have to hold a response for predictable
amount of time (i.e., working memory, behavioral conditioning,
reward timing tasks), neural activity in cortical (prefrontal, pari-
etal, and premotor cortices) and subcortical (thalamus) brain
areas, increases slowly and linearly during the delay period
and reaches a maximum when choice stimuli or the expected
stimulus/reward appears. According to this model, temporal
information is embedded in the slowly climbing anticipatory
activity of neurons (Durstewitz, 2004). The temporal modu-
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lation of the BOLD response between target onset and go sig-
nal observed here could be considered the homolog in humans
of the same anticipatory “slowly rising” delay activity observed
in monkeys.

Nevertheless, although our data show a widespread represen-
tation of temporal information in the human brain, they do not
rule out the possibility that such information is only generated in
a subset of these areas with specialization for temporal processing
(e.g., the cerebellum), and passed on to the network. This repre-
sents an intermediate view between centralized (Allan, 1979;
Treisman et al., 1990) and distributed (Ivry, 1996; Karmarkar and
Buonomano, 2007) temporal mechanisms in which there is some
devolution of timing modules. Our data do not distinguish these
possibilities, but set out candidate structures whose causal in-
volvement in temporal expectation can now be probed using
techniques that transiently disrupt cortical function such as
transcranial magnetic stimulation (Alexander et al., 2005; Bueti
et al., 2008a,b).

In conclusion, our data show that humans are able to learn
features of probabilistic time schedules for changes to a simple
visual stimulus. If interpreted in the context of temporal pro-
cessing, these findings represent the first evidence of the in-
volvement of primary visual cortex and extrastriate areas
V2/V3 in temporal coding. In the alternative context of an
attentional interpretation, our data show for the first time that
attentional mechanisms can be dynamically time locked to
expectations and that this temporal modulation affects very
early stages of visual processing.
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