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ABSTRACT

This paper uses experiment design optimization to obtain
the optimal placement of scans during dynamic contrast
enhanced computed tomography. Here we construct and min-
imize an objective function based on the Cramer-Rao lower
bound (CRLB) to optimize the accuracy of the estimators.
Experiments based on simulated data are performed to com-
pare our scheme with current sampling methods. Results
reveal a significant reduction in error and variation of the
fitted parameters while simultaneously reducing the number
of scans, and thus the radiation dose received by the patient.
We also show that our acquisition scheme is robust to the pa-
rameter values, easily adaptable to various parts of the body
and therefore has great clinical potential.

Index Terms— computed tomography, dynamic con-
trast enhanced imaging, optimal sampling, Cramer Rao lower
bound

1. INTRODUCTION

Dynamic contrast-enhanced imaging with computed tomog-
raphy (DCE-CT, also known as perfusion CT) is a non-
invasive in-vivo technique that provides valuable information
about tissue and tumor microvascular function. The tech-
nique measures the uptake of a contrast agent injected into
the patient, by fitting a tracer kinetic model to the time course
of the signal. This procedure quantifies physiological param-
eters (e.g. blood flow, vessel permeability, blood volume)
that are useful for tumor grading, prognosis and treatment
monitoring [1, 2, 3, 4, 5].

The signal time course comes from repeated acquisitions
during an exam, typically lasting a few minutes, with some
fixed temporal schedule. The quality of the parameter esti-
mates depends on the number and the schedule of the acqui-
sitions. However, since the patient receives a dose of ioniz-
ing radiation with every image taken, a compromise has to
be found between the accuracy and precision of the param-
eters and the safety of the patient. The choice of imaging
schedule is usually empirical. The tracer concentration in-
creases rapidly in the first few tens of seconds after injection

and subsequently decays more slowly. Accordingly, the stan-
dard schedules employed have two phases: an initial phase of
acquiring successive images with as little separation as possi-
ble and a second phase with larger separation [2]. One such
scheme has an initial phase of 60 acquisitions with separation
∆tmin = 1s, limited by the rotation time of the scanner, and
the second phase contains around 10 images with separation
of 30s.

In this work, we use the active-imaging paradigm [6, 7]
and a tracer kinetic model to identify the optimal imaging
schedule. This both reduces the radiation dose and increases
parameter estimate accuracy and precision. Preliminary work
by Bisdas et al. [8] uses simulations to demonstrate that ex-
ponentially increasing spacing in the second phase improves
on the standard fixed spacing. Here we provide a much more
general optimization over the whole space of allowable sched-
ules.

Section 2 introduces the model and schedule optimization
algorithms. Section 3 shows the results of the optimization
and tests the performance of the new schedule in Monte Carlo
simulations. Section 4 provides some discussion and avenues
for further work.

2. THEORY

2.1. Tracer kinetics model and parameters of interest

The contrast agent used in DCE-CT circulates from the arte-
rial plasma to the capillaries. The artery supplies the intravas-
cular space (compartment 1) at a constant flow rate F . The
tracer then diffuses within the interstitial fluid (compartment
2) at a rate determined by the permeability-surface area prod-
uct PS. The tracer kinetics can be described by the conven-
tional two compartment exchange model (2XCM), a straight-
forward model that gives realistic results [4]. The model as-
sumes that the two compartments are homogeneous and in-
stantaneously well-mixed. The equations of the systems are

v1
dC1(t)
dt

= F (Ca(t)−C1(t))−PS (C1(t)−C2(t)) (1)

v2
dC2(t)
dt

= PS (C1(t)− C2(t)), (2)



where Ci and vi are respectively the tracer concentration and
the volume of the ith compartment. Thus the impulse residue
function R (ie. tissue response to a unit impulse function) of
the system is a biexponential function

R(t) = A exp(αt) + (1−A) exp(βt), (3)

where α, β and A depend only on the parameters of interest :
F , PS, v1, v2.

The tissue concentration Ctiss that we actually measure is
given by

Ctiss(t) = F

∫
R(t)Ca(t− τ)dτ, (4)

where

Ca(t) =
{ C0

ba+1Γ(a+1) t
a e−t/b if t > 0

0 otherwise
(5)

is a simplified version of the tracer concentration in the artery,
which we obtain by fitting a gamma function to measurements
from an arterial region in a clinical data set.

2.2. Active Imaging

The active-imaging framework uses a parametric model relat-
ing the image intensity to tracer kinetic parameters and identi-
fies the optimal imaging parameters for estimating the physi-
ological parameters. In short, it solves the optimal experiment
design problem for quantitative imaging. The technique has
proved successful in quantitative MRI for improving param-
eter estimates [6] and even revealing previously inaccessible
parameters [7]. Here we use the approach to find the optimal
CT schedule for estimating the parameters F , PS, v1 and v2

of the model above.
The goal is to minimize simultaneously the variances σ2

i

of every model parameter pi. The parameters have differ-
ent scales, so we normalize them by the inverse square of
the parameters values and consider the objective function∑n

i=1 p
−2
i σ2

i . However, the σ2
i are unknown so we use the

Cramer-Rao lower bound (CRLB) [9] in their place. For
Gaussian noise with standard deviation σ, the ijth term of the
Fisher information matrix J is :

Jij(t) =
1
σ2

N∑
n=1

∂Ctiss(F, PS, v1, v2; tn)
∂pi

× ∂Ctiss(F, PS, v1, v2; tn)
∂pj

(6)

where t = (t1, t2, .., tN ) is the schedule of imaging times.
The diagonal elements of J−1 provide the CRLBs, which are
lower bounds on the variances of the corresponding parame-
ters that often correlate well with the true variance [9]. Thus

Fig. 1. Plot of the Ctiss curve with the a priori parameter
settings used for the optimization, and the acquisition times
denoted as circles.

we minimize the following objective function with respect to
the schedule t :

V =
4∑

i=1

p−2
i [J−1]ii . (7)

The function V depends on the parameters p1, .., p4, so the so-
lution does too. The optimization requires a priori values for
the parameters and our results are specific for this set of pa-
rameters. Unless otherwise specified, we will assume in this
paper F = 70 ml/min/100g, PS = 17 ml/min/100g, v1 = 5
ml/100g, v2 = 20 ml/100g. These values correspond to in-
vivo measurements from extracranial head and neck tumors
[8].

Following [7], we minimize the objective function using
SOMA [10] with five repeated runs to check for convergence
in each of the experiments that follow. The stochastic search
is essential to avoid local minima and find good solutions
in this high dimensional optimization. The minimization is
performed with a population size of 100, 300 cycles of mi-
grations and otherwise default settings. The algorithm has a
computation time of a few hours.

3. EXPERIMENTS AND RESULTS

3.1. Full optimization

The first experiment tests the hypothesis that the active-
imaging optimization can find better schedules than the stan-
dard schedules. Thus we run the optimization with the only
constraint on the schedule being ti+1 − ti ≥ ∆tmin. Figure
1 shows the optimized schedule with N = 70.

Most consecutive acquisition times are separated by
∆tmin. The measurements form four main clusters, which



Standard Bisdas et al. Full Parametric
protocol protocol optimized optimized

9.44 10.9 9.03 6.81

Table 1. Values of the objective function (arbitrary unit) for
the standard protocol, the schedule proposed by Bisdas et al.
[8], and the solutions found in experiment 3.1 and 3.2

correspond to periods when the measurement is particularly
sensitive to different parameters. The first cluster during the
initial rise in the signal is sensitive to F ; the second cluster
near the peak is sensitive to F , v1 and PS; the third cluster
during the decreasing in the concentration is sensitive to v1,
PS, v2; the fourth cluster is sensitive to v2 and PS. A few
other measurements are spaced out in between the four clus-
ters. We consistently see the same pattern in repeated runs of
the optimization. The scattered measurements appear to be
important to know the general form of the curve.

3.2. Parametric approach

The full optimization in section 3.1 is very high dimensional
so the global optimum is hard to find. However, the experi-
ment suggests a broad form of the optimal schedule. In the
second experiment, we add constraints to the schedule to give
it the form of the optimal solution and reduce the dimension
of the optimization. Specifically, we describe the 4 clusters
of measurements with minimal separation with only 7 param-
eters N1, N2, N3, T1, T2, T3, T4 where Ni and Ti denote
respectively the number of acquisitions and start of each clus-
ter. For example, the acquisition times of the first cluster are
T1, T1 + ∆tmin, T1 + 2∆tmin, .., T1 + (N1− 1)∆tmin. N is
fixed so N4 is not a parameter.

Preliminary experiments reveal that the extra measure-
ments between the clusters in the schedule in Figure 1 are
important. We include them in addition to the parametrized
schedule as 10 measurements starting after the end of cluster
3 with exponentially-increasing intervals. Figure 2 compares
all the schedules. Table 1 shows that the optimized schedules
have a lower V than the standard protocols. The parametric
optimization problem is much simpler to solve and we find
a schedule with even lower V in only a few tens of minutes.
The next section considers only optimized parametric sched-
ules.

3.3. Simulations and evaluations

The goal of these experiments is to compare the performance
of schedules. In each experiment, we sample Ctiss according
to the schedule, add Gaussian noise for baseline SNR of 10,
fit the model to estimate the parameters and repeat for 1024
independent trials. We compute two performance criteria:

Fig. 2. Comparison between the different schedules. The pro-
tocols do not have the same duration because the last acquisi-
tion time is not fixed but optimized like the others. The para-
metric optimized schedule has N1 = 9, N2 = 10, N3 = 13,
N4 = 12, T1 = 9s, T2 = 23s, T3 = 47s, T4 = 150s.

Protocol & nb of scans CV Error
(% of param. variation) (Max/Mean) (Max/Mean)
Standard 70 scans (0%) 17.8 % 2.3 %

Standard 70 scans (10%) 19.2% / 17.7% 2.8% / 2.3%
Standard 70 scans (20%) 21.3% / 17.9% 3.4% / 2.5%

Bisdas 70 scans (0%) 14.3% 1.8%
Bisdas 70 scans (10%) 14.7% / 13.8% 2.2% / 1.7%
Bisdas 70 scans (20%) 15.5% / 14% 2.0% / 1.7%

Optimized 70 scans (0%) 10.0% 0.8%
Optimized 70 scans (10%) 11.7% / 10.5% 1.1% / 0.9%
Optimized 70 scans (20%) 12.6% / 10.9% 1.6% / 1.0%
Optimized 55 scans (0%) 10.6% 0.8%
Optimized 55 scans (10%) 12.4% / 11.6% 1.0% / 1.0%
Optimized 55 scans (20%) 13.9% / 12.0% 1.6% / 1.1%
Optimized 35 scans (0%) 14.1% 1.3%
Optimized 35 scans (10%) 17.1% / 15.1% 1.4% / 1.1%
Optimized 35 scans (20%) 17.3% / 14.9% 2.0% / 1.4%

Table 2. Values of the mean error and coefficient of varia-
tion over the four parameters of interest, for different proto-
cols, with fixed parameters values (0%) or varying in different
ranges (+/- 10% or 20%)

the relative error Ei = |p̄i − pi|/pi (where p̄i is the mean of
the 1024 parameter estimates) and the coefficient of variation
CVi = STDi/pi , where STDi is the standard deviation of
the 1024 estimates of pi.
We run three experiments with differents values of the param-
eters. First, we simulate Ctiss curves with the exact values
of the parameters used to optimize the schedule. The second
(resp. third) experiments are designed to test whether the
performance of our solution is sensitive to the value of the
parameters. Thus we take random values for the parame-
ters within a range of +/- 10 % (resp. 20%) of the values
with which the schedule has been optimized. We simulate
Ctiss curves with these sets of parameters and compute the
worst-case and average of the criteria. All the results are
summarized in Table 2.



The optimized schedule with 70 measurements provides
parameters estimates with much lower CVs and errors than
the standard schedules. The results reveal that our schedule
is robust to variations of parameters within a range of 10% or
20%. If we are particularly interested in minimizing the radi-
ation dose received by the patient, it is possible to reduce the
number of measurements. With 55 acquisitions, the estimates
still have a lower CV and error than from other schedules with
70 measurements. Even with only 35 measurements, the error
is reduced although the estimates are less stable and the CVs
are a bit higher. This suggests that we can reduce the radiation
dose by half and still have a low error, which has important
clinical implications.

4. DISCUSSION

The experiments show that optimizing the acquisition sched-
ule in DCE-CT offers significant opportunity to both reduce
radiation dose and improve parameter estimates.

We repeated our Monte-Carlo simulations with different
SNR. Results show that our optimized schedules provide a
lower error and CV than the standard protocols whatever the
SNR, but the difference is more significant for lower SNR.

The results shown in this paper were computed with pa-
rameter values that reflect extracranial tumors. Similar exper-
iments with values typical of rectal tumors and normal tis-
sues, and cerebral meningioma also provide improved param-
eter accuracy and precision using a similar parametric model
(composed of 4 clusters of measurements and several individ-
ual measurements) although N1, N2, N3, T1, T2, T3 and T4

depend on the specific parameters values chosen.
In this study, we used active imaging in static mode,

which means that we computed the optimal schedule before
the actual examination, but we could use the same princi-
ples dynamically. If we estimate the parameters during the
exam, we could optimize the remaining acquisition times and
thus tailor the protocol to the patient. However, preliminary
experiments suggest only minor improvements.

The way the contrast product is injected into the patient
can also be optimized. Results of preliminary experiments re-
vealed that the best way is to inject the contrast product as a
bolus (i.e. all at once at the start of the exam), which corre-
sponds to the standard protocol.

Limitations of our work remain. We only used simulated
data. Future work will employ real clinical data to confirm
that our solution provides better estimates and can be used in
practice. Moreover, in this study we used an independently
measured arterial input function. That is, it was not measured
using the same schedule as the tissue tracer concentration.
Further work will include a more realistic model of the arterial
input (e.g. [11]) and the optimization of the schedule for mea-
suring both the tissue and arterial tracer concentration. It will
also include measured arterial input functions and explore the
influence of their variability.
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