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Abstract

Biological systems typically consist of large numbers of interacting components and involve pro-
cesses at a variety of spatial, temporal and biological scales. Systems biology aims to understand
such systems by integrating information from all functional levels into a single cohesive model.
Mathematical and computational modelling is a key part of the systems biology approach and
can be used to produce composite models which describe systems across multiple scales. One of
the major difficulties in constructing models of biological systems is the lack of precise parameter
values which are often associated with a high degree of uncertainty. This uncertainty in parameter
values can be incorporated into the modelling process using sensitivity analysis, the systematic
investigation of the relationship between uncertain model inputs and the resulting variation in the
model outputs.

This thesis discusses the use of global sensitivity analysis in systems biology modelling and ad-
dresses two main problem areas: the application of sensitivity analysis to time dependent model
outputs and the analysis of multi-scale models. An approach to the analysis of time dependent
model outputs which makes use of principal component analysis to extract the key modes of varia-
tion from the data, is presented. The analysis of multi-scale models is addressed using group-based
sensitivity analysis which enables the identification of the most important sub-processes in the
model. Together these methods provide a new methodology for sensitivity analysis in multi-scale
systems biology modelling.

The methodology is applied to a composite model of blood glucose homeostasis that combines
models of processes at the sub-cellular, cellular and organ level to describe the physiological sys-
tem. The results of the analysis suggest three main points about the system: the mobilisation of
calcium by glucagon plays a minor role in the regulation of glycogen metabolism; auto-regulation of
hepatic glucose production by glucose is important in regulating blood glucose levels; time-delays
between changes in blood glucose levels, the release of insulin by the pancreas and the effect of the
hormone on hepatic glucose production are important in the possible onset of ultradian glucose
oscillations. These results suggest possible directions for further study into the regulation of blood
glucose.
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Chapter 1

Introduction

This chapter introduces the concept of systems biology and the use of mathematical models to
study biological systems. The main issues associated with the construction of systems biology
models are presented and the motivation and objectives for this research are discussed. The

chapter concludes by outlining the structure of the rest of the thesis.

1.1 Systems Biology

Biological systems, from gene networks and intracellular signalling pathways to organs and com-

plete organisms, consist of large numbers of components. The function and behaviour of such

systems can only occasionally be understood by studying the parts of the system (genes, proteins,

cells, organs) in isolation (Sauer et al., 2007). Rather, it is through the interactions of the compo-

nents that the properties and functions of these systems emerge (Editorial, 2004). To understand

the behaviour of such systems, we must not only study the component parts, we must also focus

on understanding the structure and dynamics of the system.

The behaviour of a system at any given level of biological organisation is also dependent on

the outputs and properties of systems at other levels. It is therefore important to consider the

hierarchy of biological levels and the ways in which they interact (Editorial, 2004). This requires

methods for simultaneously studying different levels of biological organisation (Dubitzky, 2006).

These are the approaches advocated in the field of systems biology (Kitano, 2002b). In contrast

to a reductionist approach, in which components such as genes or proteins are studied one at a time,

systems biology “seeks to understand complex biological systems in their entirety by integrating

all levels of functional information into a cohesive model” (Thiel, 2006).

While the modern concept of systems biology is a relatively new field, there is a long history of

systems thinking in biology. Bertalanffy (1968) emphasised the importance of a systems approach
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Introduction

in a variety of fields including biology in his concept of “systems theory” and classical physiology

has long adopted a systems-level view (Kitano, 2002a). The current systems biology movement is

characterised by its interdisciplinary nature involving the integration of experimental data from

multiple sources with computational and mathematical models and techniques (Sauer et al., 2007).

1.1.1 Modelling

Mathematical and computational models are a major tool for understanding biological processes

and a key part of the modern systems biology approach (Coatrieux, 2004). Modelling provides a

method for formally defining and analysing the structure of a system and allows us to combine

knowledge from different biological levels.

Mathematical models can be used for a number of purposes. They aid understanding by

allowing us to compare competing hypotheses about the underlying mechanisms involved in a

process. They may also suggest new hypotheses and experiments to test them. Models can

also be used to analyse the system behaviour, in particular the response to external stimuli and

perturbations. This can help locate important components of the system, investigate system

robustness and identify weaknesses in the model. Models may also be used to help “design”

aspects of biological systems to produce desired outputs (Bogle et al., 2009). In biotechnology or

synthetic biology applications the aim may be to optimise the production of system components

(Brent, 2004) while in physiology the aim is to design therapeutic interventions or treatments.

Model development typically follows an iterative cycle (Hangos and Cameron, 2001). Based on

existing knowledge a model structure is proposed. Available data is then used to provide values

for model parameters and initial conditions. The model is then validated against new data, often

taken from the literature to minimise development time and costs (van Riel, 2006). The model is

then refined based on the level of success of the validation stage. This process is usually repeated,

incrementally improving the predictive power of the model against experimental observations.

Examples of computational modelling in systems biology range from simulations of intracel-

lular signalling pathways (Lukas, 2004a,b) via models of whole cells (Nakayama et al., 2005) and

complete organs (Noble, 2007) to the Physiome Project which aims to “provide a framework for

modelling the human body, using computational methods that incorporate biochemical, biophysical

and anatomical information on cells, tissues and organs” (Hunter and Borg, 2003). The work pre-

sented in this thesis is largely concerned with the latter, models which cross a variety of biological

scales, combining information from sub-cellular, cellular and tissue levels to study physiological

processes.
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Introduction

1.1.2 Challenges

Multi-scale systems biology modelling projects bring a number of challenges. Three key issues are

discussed below: the difficulties of modelling across scales; the task of managing the data required

for and generated by modelling projects; the selection or estimation of precise parameter values.

As discussed above, biological systems involve processes at a variety of spatial and temporal

scales, and at different biological levels including intracellular networks, cell-cell interactions and

organ structure. Models constructed at each level will use different modelling paradigms and em-

ploy varying degrees of simplification. The choices at each level will be motivated by a number

of factors including the level of knowledge of the system, the availability of data and the compu-

tational demands of different approaches. The purpose or goal of the model should also be taken

into consideration when making these decisions (Cameron et al., 2005). A major computational

challenge is how to combine these models based on different algorithms, time-scales and levels of

detail, to produce multi-scale models which will allow us to investigate the system level behaviour.

Takahashi et al. (2004) suggest that there are two main approaches to solving this problem. The

first is to develop a combined algorithm which “binds strengths of existing simulation algorithms

to produce a unified simulation algorithm of wide utility”. The alternative is to embed existing

algorithms in some generic framework of “time advance and inter-module communication”. The

latter appears more fruitful. One example of this approach is the E-Cell Project (Matsuzaki, 2008),

a modelling framework designed for the simulation of whole cells. There are also a number of gen-

eral simulation frameworks, not specific to biological modelling, which are designed to allow the

integration of models at multiple scales. These include the high level architecture (HLA) (Kuhl

et al., 2002) and the dynamic information architecture system (DIAS) (Campbell and Hummel,

1998).

Another challenge is how to manage the mass of information associated with a modelling

project. In addition to the model equations, this information includes details of the biology repre-

sented by the model, parameter values and their sources, version history and model outputs. The

curation of models and the associated data is crucial to facilitate model reuse and the composi-

tion of larger models (Le Novere, 2006). To address this problem a number of repositories have

been created for the storage and curation of published models including the BioModels database

(Le Novere et al., 2006), the CellML model repository (Lloyd et al., 2008) and JWS Online (Olivier

and Snoep, 2004). In addition a number of languages have been developed specifically for the rep-

resentation of biological models. Such languages provide a common format in which to represent

models, allowing them to be shared and reused by researchers working with a variety of software
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tools. Two of the most successful are CellML (Lloyd et al., 2004) and the Systems Biology Markup

Language (SBML) (Hucka et al., 2003), both of which are XML (Extensible Markup Language)

based.

These two challenges were the focus of the UCL Beacon project “Vertical Integration Across

Biological Scales” (Finkelstein et al., 2004), a collaborative effort to develop tools and methodolo-

gies to tackle organ modelling projects, which was undertaken between 2002 and 2007. The project

developed a modular approach to model construction in which “composite” biological models are

constructed by connecting together smaller “component” models of individual phenomena and

processes. These component models may be constructed in different mathematical formalisms or

languages and, where possible, the reuse of existing models taken from the published literature

was recommended. A framework and model description language was developed which allows such

composite models to be specified and executed (Margoninski et al., 2006). This is an example of the

second approach to model construction outlined above. This framework was coupled with a model

management system and database applications to capture and share the information associated

with the models (Hetherington et al., 2006a).

One of the greatest challenges when building models of biological systems is estimating pa-

rameter values. The behaviour of the system may be strongly dependent on the values of some

or all of the parameters so “accurate and reliable quantification” (van Riel, 2006) is necessary for

the development of models. In reality the identification of exact parameters is a difficult task.

Values for specific parameters, such as intracellular reaction rate constants, measured in vivo are

rare (Zheng and Rundell, 2006) and it is more typical for parameters to be estimated from ex-

perimental measurements made in vitro. These may not accurately reflect the situation in the

complete system. Different laboratories may report different values based on different techniques

and conditions. Where parameter values can not be derived experimentally they may be estimated

by fitting of model simulations to experimental data.

As a result, parameters are often estimated within large ranges or associated with a high degree

of uncertainty. To deal with this “mismatch between available experimental data and modelling

requirements” various approaches for dealing with “incomplete information” in biological modelling

have been proposed (De Jong and Ropers, 2006). One approach is the use of sensitivity analysis

(SA) to investigate the effects of the uncertainties in parameters on the model behaviour. SA is used

in a variety of disciplines from environmental science to software engineering and in many fields

is seen as “a prerequisite for model building” (Saltelli et al., 2000a). In addition to incorporating

parameter uncertainty into the model, SA can be used to answer many of the questions typically

addressed via biological models (see section 1.1.1). In particular, SA examines the response of
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a model to perturbations, shedding light on the robustness of the model and helping to identify

control points in the system.

1.2 Research Area

My research will focus on the use of SA in biological modelling. While there is a history of

using SA in biology, in particular the use of metabolic control analysis (MCA), its application to

multi-component or multi-scale models of physiological systems is limited. SA has many potential

benefits in such cases:

• These models may contain large numbers of parameters whose values are uncertain or poorly

constrained. SA allows this uncertainty to be incorporated into the modelling process and

the resulting output uncertainty to be quantified.

• To reduce model output uncertainty, experimental effort should be focussed on refining those

parameters which contribute most to the variation. SA can be used to determine those

parameters and quantify their impact.

• SA can be used to identify the parts of the model which have no effect on system behaviour.

These parts may be removed or simplified, reducing model complexity.

• The complex structure of such models means the effects of perturbing the system will not

be obvious. SA provides a method for systematically investigating the effects of perturba-

tions, identifying those parameters which drive system output and suggesting targets for

interventions.

SA should be seen as a powerful tool for the construction and analysis of biological models. The

development and application of appropriate methods is an important task in the continued suc-

cess of an integrated approach to systems biology. This thesis will present the development of a

number of techniques, which build on existing methods, and provide a methodology for performing

sensitivity analysis of composite multi-scale biological models.

1.2.1 Context

The research described above will be carried out in the context of the UCL Beacon project (see

section 1.1.2). The project, which developed an approach to the construction and management

of systems biology models, focussed on the human liver and its role in glucose homeostasis as an

example system.
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Glucose is a major source of energy for the body in particular the brain and, as the brain

cannot store or produce glucose it requires a regular supply from the circulation. The level of

glucose in the blood must be tightly controlled (between 4.0-9.0mM) (Gerich, 2000) to maintain

normal physiological function. Prolonged hypoglycemia, a reduced blood glucose level, can result

in brain injury while hyperglycemia, elevated plasma glucose, leads to complications in the micro-

and macrovascular system which can result in increased risk of cardiovascular disease (Reusch,

2003). The failure of the glucose regulatory system is also an integral part of several physiological

disorders, most notably diabetes mellitus. It is estimated that the condition affects 171 million

people worldwide, a figure which is predicted to rise to 366 million by 2030 (Wild et al., 2004).

Using the modelling framework developed during the project, a composite model of glycogen

synthesis and breakdown in response to changes in the blood glucose level was produced. The

component models of this system will be used as examples for the development of the SA techniques

and the potential of the methodology will be demonstrated by application to the complete model.

1.3 Report Overview

Chapter 2 of this report presents a critical review of the published literature on the use of sensitivity

analysis to deal with sources of uncertainty in biological modelling.

In chapter 3 I will give an overview of the modelling approach developed during the UCL

Beacon Project and the glucose homeostasis model which was produced. This chapter will also

discuss my development of a more mechanistic model of the insulin signalling pathway, a key part

of the glucose regulatory system. These models are used as examples in my research into sensitivity

analysis techniques.

Chapters 4 and 5 describe the development of SA techniques which address various issues

related to the analysis of multi-scale systems biology models.

Chapter 6 presents a case study in which the methods are applied to the composite model of

glucose homeostasis.

Finally, in chapter 7 the conclusions of the research are presented and possible directions for

future work are discussed.
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Chapter 2

Applications of Sensitivity

Analysis in Systems Biology

This chapter presents a critical review of the published literature on the use of sensitivity analysis
in biological modelling. The concept of sensitivity analysis is introduced and the reasons for its
use in biological modelling are stated. The various sensitivity analysis approaches found in the
biological literature are then presented. The chapter concludes by highlighting the areas where

additional research is required and stating the aims of this thesis.

2.1 Introduction

The term sensitivity analysis (SA) has a variety of meanings in different disciplines. A good general

definition was given by Nestorov (1999) who described SA as “the systematic investigation of the

model responses to either i) perturbations of the model quantitative factors (e.g. inputs and/or

parameters) or ii) variations in the model qualitative factors (e.g. structure, connectivity modules

or submodels)”.

The majority of work in the field of SA has focussed on the investigation of quantitative factors.

Complex mathematical and computational models typically contain large numbers of parameters

whose values are not precisely known. Uncertainty in those values produces uncertainty in the

output of the model. Understanding and quantifying this uncertainty using sensitivity analysis is

an important part of the development and use of models (Saltelli et al., 2000b).

There are two main classes of SA: local methods, in which inputs are varied one at a time by a

small amount around some fixed point and the effect of individual perturbations on the output are

calculated; global methods, in which all inputs are varied simultaneously over their entire input
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space, typically using a sampling based approach, and the effects on the output of both individual

inputs and interactions between inputs are assessed. The use of both classes to study the sensitivity

of quantitative input factors in biological models will be discussed in this chapter.

2.1.1 Sensitivity Analysis in Biological Modelling

The estimation of precise parameter values is a major issue in the construction of biological models.

The model behaviour may be strongly dependent on the parameters (van Riel, 2006) and if those

parameters are uncertain any conclusions drawn from the model output must take into account

that uncertainty. This lack of precise parameter values can be addressed using sensitivity analysis

(De Jong and Ropers, 2006). By incorporating the uncertainty in parameters into the model we

can quantify the uncertainty in the output and in inferences we make from it.

Sensitivity analysis also allows us to analyse the affects of perturbations of the system from its

normal state and identify the parameters which are important in controlling the system behaviour.

This information can be useful in both an “understanding” context, suggesting hypotheses about

important mechanisms in a system, and a “design” context, suggesting how we may intervene in

the system to produce certain behaviours.

The use of sensitivity analysis is well established in mathematical modelling in many fields

including biology (Hetherington et al., 2006b). The best known example of SA in biology is the

use of metabolic control analysis (MCA) in the study of metabolism. The use of SA in other areas

of biology, such as cellular signalling, is less common (Hu and Yuan, 2006) although there are a

growing number of examples. Applications to multi-scale biological models are rare. The rest of

this chapter will discuss the use of SA in biology making reference to more general literature where

appropriate.

2.2 Metabolic Control Analysis

MCA was developed to “elucidate in quantitative terms to what extent the various reactions of

metabolic pathways determine the resulting fluxes and metabolite concentrations” (Heinrich and

Schuster, 1996). The basis of MCA are the various forms of control coefficient which measure the

response of the system variables after parameter perturbations. An example is given by the flux

control coefficients, defined as:

CJj
vk

=
(
vk

Jj

∆Jj

∆vk

)
∆vk→0

=
vk

Jj

∂Jj

∂vk
=
vk

Jj

∂Jj/∂pk

∂vk/∂pk
(2.1)
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where Jj is the steady state flux of metabolite j and ∆vk is the change in the activity of a reaction

k due to a change in a single parameter pk.

Similar equations can be specified for the control coefficients of the steady state concentrations

and a number of other coefficients have been proposed. A detailed description of MCA and its

applications can be found in (Heinrich and Schuster, 1996). In the early work of Kacser and Burns

(1973) control coefficients were referred to as sensitivities, highlighting the fact that MCA is a

specific example of the more general approach of local sensitivity analysis.

In the majority of MCA applications, the sensitivities are calculated at steady-state (Hu and

Yuan, 2006). In many systems, such as signal transduction pathways, it is the transient behaviour

of the system which is of more interest. MCA in its original form is not well suited to the study

of such processes (Liu et al., 2005). Ingalls and Sauro (2003) extended many of the concepts of

MCA to dynamical systems by defining time-varying concentration sensitivity coefficients which

measure the response to a perturbation along the entire model output trajectory. These coefficients

are equivalent to the time-dependent sensitivities defined in local sensitivity analysis and discussed

in the following section.

2.3 Local Sensitivity Analysis

For a general ODE model of the form:

dy
dt

= f(y,k), y(0) = y0 (2.2)

where y is the vector of variables, k is the m-vector of system parameters and y0 are the initial

values, the effect of a small parameter change on the solution can be expressed as a Taylor series

expansion:

yi(t,k + ∆k) = yi(t,k) +
m∑

j=1

∂yi

∂kj
∆kj +

1
2

m∑
l=1

m∑
j=1

∂2yi

∂kl∂kj
∆kl∆kj + ... (2.3)

The partial derivatives ∂yi/∂kj are known as the first-order local sensitivity coefficients and form

the sensitivity matrix S(t) = {sij} = {∂yi/∂kj}. sij(t) describes the effect on the ithoutput

variable at time t of a small change in the jth parameter around its nominal value. Generally it

will not be possible to find an analytical solution so numerical methods must be used to calculate

S at each time point.
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2.3.1 The Indirect Method

The “simplest conceptual route to calculating the local sensitivities” (Rabitz et al., 1983) is the in-

direct or finite-difference method. Using this method the model is solved at some chosen parameter

point and then at some perturbed value of each parameter, kj +∆kj while all other parameters are

held at their nominal values. The sensitivities can then be calculated using a forward difference

approximation.

sij(t) ≈ yi(kj + ∆kj , t)− yi(kj , t)
∆kj

(2.4)

The indirect method requires at least m+1 runs of the model (this rises to 2m if central differences

are used). For models with large numbers of parameters, or those that have significant run-times

this can make the indirect method computationally intensive.

Perhaps the biggest challenge when using the indirect approach is the selection of the parameter

step size. The finite difference approximation assumes local linearity around the nominal parameter

point. If the step size is too large this assumption does not hold. Conversely, if the step size is too

small, the difference between the original and perturbed solutions can be so small that numerical

errors in the solution become an issue. Saltelli et al. (2000a) state that finding the best value is a

trial and error process. De Pauw and Vanrolleghem (2003) assessed the “quality” of the resulting

sensitivity coefficients as the step size was changed. Their results indicated that the optimum step

size was both parameter and variable specific and as such could not be easily generalised.

Despite its problems, and recommendations against its use (Turanyi, 1990), the indirect ap-

proach is still frequently used. The primary reason is due to its simplicity and that, unlike the

direct approaches to be discussed below, it requires no extra “numerical machinery” (Rabitz et al.,

1983) other than that needed to solve the system of ODEs. More sophisticated methods require

access to and modification of the model code, something which is not always possible or desirable

(De Pauw and Vanrolleghem, 2003).

2.3.2 The Direct Method

In the direct approach the model equations (2.2) are differentiated with respect to the parameter

kj to give the following system of sensitivity differential equations:

d

dt

∂y
∂kj

= J(t)
∂y
∂kj

+
∂f(t)
∂kj

(2.5)
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where J(t) = ∂f/∂y and the initial condition for ∂y/∂kj is a zero vector.

There are a number of efficient methods to solve the sensitivity equations the most general

of which is the decoupled direct method (DDM) (Saltelli et al., 2000a). The direct method has

become increasingly popular in biology and has been applied in the analysis of a number of signal

transduction pathways. Yue et al. (2006) used the DDM to perform local sensitivity analysis of a

model of the NF-κB signalling pathway to identify the parameters which had an influence on the

oscillatory behaviour of the system. A similar approach was used by Hu and Yuan (2006) to study

the coupled MAPK-PI3K pathways and identify the most sensitive reaction steps. Liu et al. (2005)

also used the DDM to calculate the sensitivity of species concentrations in the epidermal growth

factor (EGF) mediated signalling network to changes in reaction rates as a function of both time

and EGF stimulus dose. This study highlighted the fact that in addition to varying with time,

sensitivities can be dependent on the external input to the model: the system was found to be

increasingly sensitive to internalisation processes at lower stimulus doses.

2.3.3 Feature Sensitivity Analysis

Turányi and Rabitz (in Saltelli et al., 2000a, chp. 5) suggest that in many cases we should be more

interested in the sensitivity of aspects of the model output rather than the sensitivity of the output

at a given time point. This is likely to be the case in models of biological systems where we may

wish to answer questions such as, what influences the maximum value of the species concentration

or how does the period of an oscillatory solution vary with the model parameters?

Frenklach (1984) suggested that the indirect method could easily be used to calculate “feature”

sensitivities by evaluating the feature from the original and perturbed model solutions and using

finite differences to find the sensitivities. As with the standard indirect method this approach

is very easy to implement and has been used in several studies of biological systems (Ihekwaba

et al., 2004; Hetherington et al., 2006b). The main problem with this approach is that it is very

model specific and its application is somewhat ad-hoc. For any given model we must select suitable

features and ideally implement computational algorithms to evaluate them. In some cases a feature

may not be present in all model runs (for example only certain parameter values may generate

oscillations in the model output). Even if the feature does exist it is possible that any automated

procedure may not locate it. This problem was encountered by Ihekwaba et al. (2005) in their

analysis of the NF-κB signalling pathway. They simply chose to ignore the missing values.

Feature sensitivities can also be derived from so called “elementary sensitivities” calculated

via the direct method. Goldenberg and Frenklach (1995) suggest the following procedure. The

solution to the model at parameter point k can be expanded into a Taylor series at each time
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point with respect to the parameter of interest kj . Truncating the expansion after two terms, the

perturbed solution can be approximated as:

ỹj = y + Sj∆kj (2.6)

where Sj are the sensitivities of the output to parameter kj . The feature of interest can now be

evaluated from the original and approximated perturbed solution and its sensitivity to kj calculated

as:

SF,j =
F̃j − F

∆kj
(2.7)

The authors found that this approximate approach produced results in good agreement with the

indirect approach discussed above while avoiding the need for numerous runs of the model. However

it does not overcome the other issues with the indirect method. It is still necessary to make a

suitable choice for ∆kj . Nor is it any less model specific than the use of the indirect method.

The features must still be selected and evaluated from the original solution and the approximated

perturbed output.

2.3.4 Limitations of Local SA

Local sensitivity analysis techniques have been applied in a number of signal transduction and

metabolic pathway models to analyse the time-dependent behaviour and identify important pa-

rameters and reaction steps. However local methods have a number of limitations. Firstly they

only investigate the behaviour of a model in the immediate region around the nominal parameter

values. In biology, input values are often very uncertain and cover large ranges which can not be

investigated using local techniques (Marino et al., 2008). Secondly, local techniques only consider

changes to one parameter at a time, with all other parameters fixed to their nominal values. In

biological systems it is likely that interactions between parameters will be important. Therefore it

is necessary to investigate the effects of simultaneous parameter variations of arbitrary magnitude

(van Riel, 2006). This requires the use of global SA methods.

2.4 Global Sensitivity Analysis

It is only relatively recently that global SA techniques have begun to be applied to biological

models (van Riel, 2006). In this section we discuss the application of a number of global methods

to models of biological systems.
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2.4.1 Sampling Based Methods

Sampling-based methods use Monte-Carlo (MC) techniques to explore the mapping between uncer-

tain model inputs and outputs. For a model with k inputs x = [x1, x2, ..., xk] a general sampling-

based approach involves five main steps (Saltelli et al., 2000a):

1. Define distributions D1, D2, ..., Dk that characterise the uncertainties in the inputs x

2. Generate a sample of size N , x1,x2, ...,xN , from the distributions defined in step 1

3. Evaluate the model for each element in the input sample to obtain a set of model outputs,

y(xi), i = 1, 2, ..., N

4. Quantify and display the uncertainty in the model outputs

5. Explore the mapping between uncertain inputs and the output uncertainty

The output of any MC analysis is very sensitive to the input distributions (Lipton et al.,

1995) therefore the characterisation of those distributions is probably the most important part

of sampling-based methods (Saltelli et al., 2000a). The choice of distribution will depend on the

purpose of the analysis and the available knowledge on the parameter values. When sufficient

information is available this can be used to assign specific distributions for each parameter, either

via parametric fitting to known distributions or using non-parametric density estimation techniques

(Silverman, 1986). For initial explorations of a model or when there is limited data on the weighting

of particular parameter values it may only be possible to identify minimum and maximum values of

a parameter. The natural choice is then to assume a uniform distribution across this range (Lipton

et al., 1995). This lack of information is often encountered in biological modelling and uniform

distributions are typically used. This is the approach taken by Segovia-Juarez et al. (2004) in their

analysis of a model of granuloma formation during M. tuberculosis infection.

The simplest way to generate a sample from the input distributions is to use random sampling.

The main issue with random sampling is that a large number of samples may be required to ensure

that the entire range of each input is sampled appropriately (Saltelli et al., 2000a). If the model of

interest is expensive to evaluate this can be a problem. Latin hypercube sampling (LHS) (McKay

et al., 1979) is a sampling procedure which has been shown to be more efficient than random

sampling (Helton and Davis, 2003). In LHS, the range of each input is divided into nLHS intervals

of equal probability. One value is selected at random from each interval for each input and the

values combined in a random manner without replacement to produce nLHS samples. LHS ensures

the entire range of each input is sampled and has been used in the analysis of a number of biological
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systems (Segovia-Juarez et al., 2004; Marino et al., 2008). An alternative to LHS are quasi-random

sequences such as the Sobol sequence which will be discussed below in relation to variance based

SA methods.

Once the input samples have been generated the third step is to evaluate the model for each set

of inputs and to store the results of each run. The details of this step are model and application

(the programme or language used to run the model) specific.

Uncertainty analysis of the model outputs can be performed in many ways. The first step

is to assess the overall uncertainty in the model output. For scalar model outputs this can be

summarised by the mean value and variance. More information can be obtained by plotting the

probability density function (PDF) or cumulative distribution function (CDF) of the output. If

the model output is time dependent, Helton and Davis (in Saltelli et al., 2000a, chp. 6) suggest

plotting the point-wise mean together with some appropriate point-wise percentiles to obtain a

picture of the output uncertainty.

The final step is to explore the effects of individual parameters on the model outputs. The

simplest approach is to examine scatter plots of the model output against parameter values for

each parameter. This approach is not practical for use with time-varying model outputs as we

would need to generate and examine a large number of plots, one for each time-point of interest.

A more quantitative assessment can be performed using regression or correlation analysis (Helton

and Davis, 2003). Several authors have made use of partial rank correlation coefficients (PRCC) to

study biological systems including Blower and Dowlatabadi (1994) who utilised SA to investigate

a model of HIV transmission and Segovia-Juarez et al. (2004) (see above). Such measures may

be calculated for scalar model outputs or at multiple time-points to investigate the sensitivity of

dynamic model outputs.

The problem with regression and correlation based indices is that they are only suitable when

the relationships between the parameters and the model output satisfy certain conditions of linear-

ity or monotonicity. Marino et al. (2008) applied various SA techniques to a number of biological

models and demonstrated that PRCCs are not accurate when non-monotonicities are present. As

there is no way to know a priori whether or not these conditions are satisfied they suggest it is

necessary to utilise methods which have no such constraints.

2.4.2 Variance Based Methods

Unlike the various forms of regression or correlation measures, variance based methods are model-

free, they are not dependent on assumptions about the relationships between model inputs and

outputs (Saltelli et al., 2000a). These methods are based on a partitioning of the total output
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variance and identify the amount of variation which is explained by the uncertainty in the param-

eters. Variance based measures are very powerful in “quantifying the relative importance of input

factors” (Saltelli et al., 2004). In addition to considering the importance of individual inputs (their

“main effects”) variance based methods can also be use to investigate the effects of interactions

between parameters. Usefully, this allows the “total effect” of a parameter, which includes all its

possible interactions with other parameters, to be quantified. As with PRCCs (and other forms

of correlation based measures) the variance based methods can be applied to scalar outputs or to

time-varying model outputs in a point-wise manner.

Two main approaches are commonly used for the calculation of the variance based sensitivity

indices. The Fourier amplitude sensitivity test (FAST) (Cukier et al., 1978) and its extended version

(eFAST) (Saltelli et al., 1999) (developed to allow the computation of “total effect indices”) are

based on an exploration of the uncertain parameters in the frequency space. eFAST was previously

considered the most efficient way to compute the main and total effects and was used by Marino

et al. (2008) as part of their methodology for applying global SA in systems biology. They suggested

that variance based techniques are a key tool due to their model-independence.

An alternative variance based approach is the method of Sobol (Sobol, 1993) which is based on

a decomposition of the variance into terms of increasing dimensionality. These partial variances are

estimated using MC integrals and the sensitivities are based on their ratio to the total variance.

The Sobol method is an attractive approach to the calculation of variance based indices as it

is relatively easy to implement. An improvement to the algorithm for computing the integrals

(Saltelli, 2002) also improved the efficiency of the method, making it comparable to that of eFAST.

The modified Sobol method requires N(k+ 2) model evaluations to calculate one estimate of both

the main and total effects, where N is of the order of a few thousand. The MC integral estimates

converge to their true value as the sample size, N , is increased however there is no a priori way

of knowing what N should be. In many applications this number can be reduced by using more

efficient sampling strategies. Both LHS (see above) and quasi-random sequences have been used.

Quasi-random sequences, such as the Sobol sequence, are deterministic sequences which maximise

coverage of the multi-dimensional input space for a given sample size. These have been shown to

be the most efficient sampling strategy under certain circumstances (Niederreiter, 1992) but their

performance declines as the number of parameters (and hence the dimension of the input space)

increases (Kucherenko et al., 2009). Zheng and Rundell (2006) calculated variance based measures

using both the eFAST and Sobol methods in their comparative study of SA techniques applied to

a model of the Erk-MAPK signalling pathway. Both methods were shown to produce consistent

results for both main and total effects with a comparable computational cost.
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Despite the improvements to efficiency of both the eFAST and Sobol methods variance based

techniques can still be prohibitively time consuming if the model contains a large number of inputs

or the model has a significant run time. In these circumstances an alternative approach is required.

2.4.3 Screening Methods

Screening methods are a class of sensitivity analysis techniques designed for use with models

containing large numbers of input factors. Their defining characteristic is their economy: they

typically require far fewer runs than alternative methods. The drawback to screening designs is

that they only provide a qualitative measure of importance. Using these methods, parameters are

ranked in order of importance but the difference in importance is not quantified. A number of

screening designs have been proposed in the literature of which the most robust and effective is the

Morris method (Morris, 1991; Campolongo et al., 2007). The Morris method uses the average and

standard deviation of a number of local sensitivity measures (or “elementary effects”), evaluated

at various points in the input space, to provide an approximate global importance measure. A

high average value implies that a parameter is important, a high standard deviation implies that

its effects are non-linear or the result of interactions with other inputs. The key to the Morris

method is an efficient design for the selection of the input points which optimises coverage of the

space and minimises the number of model evaluations required to calculate the elementary effects.

This approach has been shown to produce good agreement with the Sobol method, identifying the

same inputs as influential (Campolongo and Saltelli, 1997).

Due to its low computational cost the Morris method is an appropriate tool to study complicated

biological system models involving large numbers of parameters. Jin et al. (2008) used the Morris

method to study a model of circadian rhythm in Neurospora, a type of mould. The method was

selected for its low computational cost in comparison with other global SA techniques. Yue et al.

(2008) also used the method to study the NF-κB pathway which had previously been investigated

using local methods (Ihekwaba et al., 2004, 2005; Yue et al., 2006). The global nature of the Morris

method identified additional important parameters whose interaction effects were not captured by

local SA.

Weighted Local Measures

A variation on the concept of the Morris method has been developed in the biological literature.

Bentele et al. (2004), in their work on apoptosis, attempted to overcome the limitations of local

analysis by calculating local measures at a number of random points in the input space. A weighted

average of these local sensitivities was used to provide an approximation to the global importance
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of each parameter. This method was compared to PRCCs and the variance based measures by

Zheng and Rundell (2006) and found to be produce results which were inconsistent with the other

global approaches. They suggested that the agreement between methods could be improved by

increasing the sample size. This method appears to provide no benefit over the more established

Morris method.

2.5 Regionalized Sensitivity Analysis

An alternative approach to the global sensitivity analysis methods discussed above, commonly

termed regionalized sensitivity analysis (RSA), was introduced by Hornberger and Spear (Horn-

berger and Spear, 1980; Spear and Hornberger, 1980) in their model based analysis of estuarine

eutrophication (the acceleration of the natural ageing of a body of water) in Western Australia.

The key to RSA is the definition of the “behaviour” the model should reproduce. This is typically

defined via a set of constraints, often specified as inequalities, against which the output of the

model can be compared. The model is evaluated at various parameter values, using some form of

sampling based method, and the resulting model outputs are classified as either satisfying (B) or

not satisfying (B) the defined behaviour. The distributions of individual parameters associated

with B and B are then compared, in the original example using the Kolomogorov-Smirnov two

sample test, to identify those parameters which are influential in determining whether or not the

model produces the desired behaviour.

Unlike the methods discussed in the proceeding sections RSA incorporates the expected or

desired behaviour of the real system into the sensitivity analysis procedure. While other global

SA techniques identify the parameters which most influence the model output, RSA identifies

the parameters which are most important in producing specific behaviours in the model. These

may be qualitative, for example the presence of oscillations, or quantitative, the maintenance of

a system output within certain bounds. This may be useful in systems biology, particularly if we

are interested in designing interventions to produce specific behaviour in the system.

The RSA approach has been applied in a biological context by Cho et al. (2003) and Zi et al.

(2005). They called the method multi-parametric sensitivity analysis (MPSA) and used it to

identify the key components in the NF-κB and JAK-STAT signalling pathways respectively. In

both studies a model run was classified as satisfying the desired behaviour if its deviation from the

nominal model output was less than some threshold value. This form of “behaviour” definition

does not fully exploit the potential of RSA to include the observed behaviour of the system in the

analysis.
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While RSA has global properties (parameters are varied simultaneously and over their entire

ranges) it does not allow any investigation of interaction effects, as measured by the total effects of

the variance based methods or the standard deviation of the Morris method. Due to this limitation

Saltelli et al. (2004) suggest that further inspection of the unimportant factors is necessary to ensure

they are not involved in higher order interaction effects. Saltelli et al. (2004) also highlight another

limitation of RSA: it only considers variation in the acceptable-unacceptable direction so important

parameters may be missed if they only cause variation within the behavioural class.

2.6 Cross Scale Sensitivity Analysis

The majority of applications of sensitivity analysis in the biological literature have focussed on a

single level of biological organisation, typically sub-cellular signalling pathways. As discussed in

chapter 1 the behaviour of biological systems are dependent on the interactions between different

levels of organisation. Examples of sensitivity analysis of multi-scale models, investigating the

effect of parameter uncertainties across scales, are rare.

In a recent paper Wang et al. (2008) discussed the concept of “cross-scale sensitivity analysis”.

They studied a model of non-small cell lung cancer in which an ODE model of the EGFR-ERK

signalling pathway was coupled with a discrete 2-d lattice model describing the migration and

proliferation of cells. At each timestep the phenotypic trait of each cell is determined by the

outputs of its own sub-cellular pathway model. The study used an indirect local sensitivity analysis

to investigate the effects of perturbations in the parameters of the signalling pathway model on

the tumour expansion rate, a multicellular level output.

Marino et al. (2008) have also discussed the concept of multi-scale or multi-compartmental sen-

sitivity analysis. They defined the terms intra-scale/compartment and inter-scale/compartment

to describe parameters which affect outputs of the same or different scales/compartments respec-

tively. These ideas were demonstrated on a model of tuberculosis infection which consisted of two

compartments representing the lymph node and the lung. PRCCs and the eFAST method were

used to identify both intra and inter-compartmental important parameters.

An alternative approach to the analysis of multi-compartment models can be found in the field of

pharmacokinetic modelling. Nestorov (1999) introduced the concepts of auto and cross-sensitivity

to analyse whole body physiologically-based pharmacokinetic (PBPK) models. PBPK models are

used to study the absorption, distribution, metabolism and excretion of compounds in humans

and other animal species and consist of multiple compartments representing the various tissues of

the body. The effect of perturbing a parameter in a given tissue compartment was factorised into
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the resulting perturbation of the compound concentration in that tissue (auto-sensitivity) and the

effect of this tissue level change on the response of all other tissues (cross-sensitivity). This concept

has potential in systems biology modelling where a similar division could be made between, for

example, the effect of a rate constant on the output of its signalling pathway and the effect of

a perturbation in that output on the cellular or tissue level. Such a division could be used to

investigate the role of sub-processes on the system response. However, the method proposed by

Nestorov (1999) for calculating the sensitivities was based on a local approach and specific to the

form of PBPK models. This makes it unsuitable for use in a more general modelling context.

2.7 Conclusions

This chapter has presented a review of the published literature on the use of sensitivity analysis in

biological modelling. The concept of sensitivity analysis has a long history in biology in the form

of MCA. More recently the potential benefits in a wider setting have been recognised. There are a

growing number of applications of SA to be found in the literature, applied to a variety of systems

and using a range of techniques.

From the literature review three main issues surrounding the use of SA in biological modelling

can be highlighted. Firstly, there has been a reliance on local techniques in the biological literature.

The limitations of these methods has been recognised and there has been a growth in the use of

global techniques which should be continued. Secondly, in biology it is often necessary to study

the sensitivity of dynamic model outputs and while methods exist for the analysis of such systems

they have drawbacks. Finally, examples of the application of SA to multi-scale biological models

are limited. This is an area in which the systematic approach of sensitivity analysis could be

particularly useful. These three issues are discussed in more detail below.

2.7.1 Classes of SA

Sensitivity analysis techniques are typically divided into two broad classes. Local techniques,

which address small scale perturbations of individual parameters around some fixed point and

global techniques which investigate the simultaneous variation of model inputs over larger but

finite regions. Examples of both local and global sensitivity analysis can be found in the biological

literature. Until recently local methods were most common however more recently there has been

a growth in the use of global methods. These are typically more appropriate for biological models

where parameters may be associated with significant uncertainties and the likelihood of non-linear

relationships and interactions between inputs is high.
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Variance based techniques, such as the method of Sobol, are typically regarded as the most

powerful and generally applicable form of global SA. They are model independent and are able

to deal with both individual and interaction effects. Their utility in biological modelling has

been demonstrated and their use merits further investigation. The main issue with the variance

based techniques is their computational cost. Where this cost is prohibitive to timely analysis

of the model screening designs have the potential to provide useful information on the model

input/output relationships. One screening design in particular, the Morris method, has received

increased attention in recent years and has been applied in a small number of biological modelling

studies. The combined use of variance based techniques, where computational and time demands

allow, and the Morris method, where they do not, would seem to represent a suitable approach in

systems biology modelling. This approach will be used throughout this research.

2.7.2 Sensitivity Analysis of Dynamic Model Output

As discussed in section 2.3 in many systems it is the sensitivity of the transient or dynamic

behaviour of the system which is of interest. The most straightforward approach to the local sensi-

tivity analysis of such systems is to calculate time-varying sensitivities along the output trajectory

(Ingalls and Sauro, 2003). An alternative method is to define a set of scalar values which describe

the key features of the model output, for example the maximum value or the period of oscilla-

tions. Both of these approaches have been utilised in biological modelling but both have their

drawbacks. By looking at individual time-points, it is possible we may miss interesting features

of the model output. On the other hand, selecting a set of features is a highly problem-specific

approach (Campbell et al., 2006). There will be many possible features to choose from and for any

given model it is necessary to have some previous knowledge of the form of the output to make

appropriate choices. The same methods are also used in the application of global techniques to

dynamic models with the same drawbacks. There is the potential to develop alternative methods

which overcome some of these issues and this will be one focus of this thesis.

2.7.3 Sensitivity Analysis of Multi-Scale Models

The use of SA has been largely limited to models which focus on single biological scales. Given the

importance of hierarchical interactions in the function of most biological systems the development

and analysis of multi-scale models is an important goal. Multi-scale models will often have complex

structures in which the effects of uncertainties and perturbations will not be obvious. In addition

they may include large numbers of uncertain parameters. The potential of sensitivity analysis in
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such cases is clear.

One approach to the construction of multi-scale models is a modular approach in which models

representing different aspects of the overall system are combined to produce a composite model.

Sensitivity analysis techniques which make use of this modularity to investigate the importance of

both individual parameters and entire sub-processes on the model behaviour would represent an

advance on the current approaches to multi-scale SA.

2.7.4 Aims

The main aims of this thesis are summarised below:

• To develop a new approach for the global sensitivity analysis of dynamic model output

• To develop methods for the global analysis of multi-scale biological models

• To demonstrate the methods by application to a composite biological model

Chapters 4 and 5 discuss my development of sensitivity analysis methods which address the first

two aims. Chapter 6 demonstrates the application of these methods via a case study of a composite

model of blood glucose homeostasis which was developed as part of the UCL Beacon project.

The next chapter presents an overview of the glucose homeostasis model and the system it

describes. It also discusses my development of a mechanistic model of the insulin signalling path-

way, a key part of the regulatory system. This development was undertaken to address the lack of

biological detail in that component model. The development highlights both the modular nature

of the composite model and the reuse of published models.
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Chapter 3

Multi-Scale Modelling of Blood

Glucose Homeostasis

This chapter describes the composite multi-scale model of glucose homeostasis created at UCL and

further developed during my research. It begins with a brief overview of the biological system, with

particular reference to the role of the liver. The original component models which make up the

composite model are then introduced. The second half of the chapter details my development of an

alternative, more mechanistic, model of the insulin signalling pathway, a key component of the

system.

3.1 Introduction

The UCL Beacon project (see chapter 1) was an interdisciplinary project focussing on the develop-

ment of methods for the construction and management of multi-scale models of biological systems.

During the project a modular approach to model construction was adopted. This approach ad-

vocated the construction of multi-scale models by connecting together smaller component models

of phenomena and processes at different scales to produce a composite model of a system. This

method facilitates the reuse of existing models and allows component models to be modified or

replaced as and when new information about the system becomes available.

As an example of the approach adopted by the project a model of the glucose homeostasis system

was produced, with the main emphasis on the role of the liver and in particular the processes

of glycogen synthesis and breakdown. The model consisted of seven component models, some

developed in-house, others taken from the published literature, which describe various aspects of
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the biology. The models are connected via their inputs and outputs to produce a composite model

which reproduces the system level behaviour, the regulation of blood glucose levels in response

to external supply or demand. The composite model and its component sub-models provide an

example system for the development and demonstration of the sensitivity analysis methodology

presented in this thesis. This chapter provides an overview of both the biological system and the

existing model.

The sub-models of the glucose homeostasis model are constructed at a variety of levels of

detail depending on the existence of published models or the availability of experimental data and

biological knowledge. While a simple model may accurately reproduce the observed behaviour of

the sub-system the lack of detail limits its potential use for understanding and analysing the system

behaviour. If a component or mechanism is not represented in a model it will not be possible to

investigate its role using sensitivity analysis techniques.

This issue is particularly evident in the original model of the response of hepatocytes to insulin.

The insulin signalling pathway is a key component in the regulation of glucose. Defects in this

pathway can result in a reduced response of cells to insulin leading to insulin resistance which is

the primary cause of type 2 diabetes. This form of the condition accounts for 90% of diabetes

cases globally (Zimmet et al., 2001). Understanding the mechanisms underlying insulin resistance

can aid efforts to develop new treatments for the disease (Brady and Saltiel, 1999).

I have addressed the lack of detail in the insulin component model by developing a mechanistic

model of the insulin signalling pathway which is described in the second half of this chapter. The

new model is a modification of the model of Sedaghat et al. (2002) and illustrates the benefits

of model reuse in multi-scale systems biology modelling. The detailed model will allow us to

investigate the potential effects of perturbations in the insulin pathway on the function of the

glucose regulatory system.

3.2 Glucose Homeostasis

The regulation of blood glucose involves a balance between the supply of exogenous glucose from

food and the demands of the body for energy. This balance is maintained by the storage of

excess glucose (in the form of the polymer glycogen), its subsequent release, and the endogenous

production of glucose from amino acid precursors (gluconeogenesis). The liver acts as a reservoir

for excess glucose, storing glycogen for future use by other tissues. Following a mixed meal Taylor

et al. (1996) estimate that ∼ 19% of the ingested glucose is taken up by the liver and converted

to glycogen. Similarly, the liver makes a major contribution to the postabsorptive (fasting) blood
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glucose level being responsible for ∼ 80% of glucose released into the circulation (Gerich, 2000).

In the first 24 hours of fasting hepatic glycogenolysis accounts for between 40 and 80% of this

glucose production (Bollen et al., 1998). During prolonged starvation gluconeogenesis begins to

play an increasingly important role and is responsible for 93±2% of glucose release after 42 hours

(Landau et al., 1996).

3.2.1 Glycogen Metabolism

Glycogen synthesis and glycogenolysis (the breakdown of glycogen) are governed by the enzymes

glycogen synthase (GSyn) and glycogen phosphorylase (GPho). GSyn produces glycogen by form-

ing chains of glucose units linked via α-1,4 bonds. These chains are then combined (by branching

enzyme) to form “bush like” glycogen particles. Glycogenolysis involves the removal of the branches

by debranching enzyme and the liberation of individual glucose units from the free end of the chain

by GPho (Bollen et al., 1998).

GSyn and GPho both have an active, a, and an inactive, b, form. GSyn is inactivated (a →

b) by the reversible phosphorylation of multiple serine residues by a number of protein kinases,

including glycogen synthase kinase (GSK3) (Patel et al., 2004), and converted back to its active

form by a protein phosphatase (PP-1GL). GPho is converted to its active form via phosphorylation,

by phosphorylase kinase, and is inactivated by dephosphorylation by protein phosphatase-1G (PP-

1G).

The Regulation of Glycogen Metabolism

The processes involved in the regulation of glycogen metabolism in the liver are illustrated in figure

3.1 and a detailed review can be found in Bollen et al. (1998). A summary is provided here.

The synthesis and breakdown of glycogen is regulated by a pair of hormones, insulin and

glucagon, which are produced in the β and α cells of the pancreas respectively. Insulin is released

in response to elevated blood glucose and activates the storage of glucose as glycogen. Glucagon

is secreted when blood glucose levels fall and promotes the breakdown of glycogen to release

glucose. These hormones exert their influence on glycogen metabolism via a number of second

messengers including cyclic adenosine monophosphate (cAMP), cAMP-dependent protein kinase

(PKA), calcium (Ca2+), and Akt (also known as protein kinase B (PKB)).

The main effect of insulin is to inactivate GSK3 via phosphorylation by Akt. This prevents

the kinase from inactivating GSyn which allows glycogen synthesis to proceed. The mechanism of

insulin action is described in greater detail in section 3.4 where the development of a mechanistic

model of the pathway is described.
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Figure 3.1: The regulation of glycogen metabolism

Glucagon binds to G-protein coupled receptors (GPCR) on the surface of liver cells. GPCRs

are a class of receptors in which ligand binding causes a conformational change in the receptor

that allows the associated G-proteins to be activated via GDP-GTP exchange. At least two classes

of G-protein, Gs and Gq, are known to be coupled to glucagon receptors and are believed to be

involved in two distinct signalling mechanisms (Jiang and Zhang, 2003).

The primary pathway involves Gs proteins and the activation of the enzyme adenylate cyclase.

This leads to a large increase in the concentration of cAMP which binds to and activates PKA.

This in turn phosphorylates a number of proteins including phosphorylase kinase. Phosphorylation

of phosphorylase kinase increases its activity towards GPho, converting it to its active form. PKA

also inhibits glycogen synthesis by increasing the inactivation of GSyn (Jiang and Zhang, 2003).

The second effect triggered by glucagon results in a rise in intracellular calcium however the

mechanism by which this occurs is debated. Some studies have suggested that glucagon increases

calcium via a cAMP-dependent mechanism (Staddon and Hansford, 1989). Other evidence points

to a separate pathway triggered by activation of Gq proteins which regulate the activation of

phospholipase C (PLC). PLC produces the second messenger inositol trisphosphate (IP3) which

stimulates the release of calcium from intracellular stores (Hansen et al., 1998). Calcium effects

glycogen regulation by causing a conformational change in phosphorylase kinase, enhancing its

activity and causing more GPho to be converted to its active form. The end result is an increase

in the rate of glycogen breakdown. Like PKA, calcium may also inhibit glycogen synthesis by
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increasing the inactivation of GSyn. The contribution of this pathway to the regulation of glucose

levels by glucagon is contentious (Aromataris et al., 2006).

Glycogen metabolism is also regulated directly by glucose (Cardenas and Goldbeter, 1996).

Glucose binds to the active form of GPho inhibiting its activity and making it more susceptible to

inactivation by dephosphorylation. This reduces the rate of glycogen breakdown. The presence of

glucose, in the form of glucose-6-phosphate (Glc-6-P), also affects GSyn promoting its dephospho-

rylation to the active form. This results in an increased conversion of glucose into glycogen.

3.3 The Composite Model

The model discussed here was constructed using the modular approach developed during the UCL

Beacon project. The model describes the regulation of blood glucose levels via the synthesis and

breakdown of glycogen by the liver. It incorporates the effects of insulin, glucagon and glucose

on glycogen metabolism and the feedback between the liver and the pancreas which generates the

two regulatory hormones. The composite model consists of seven component models, which are

described briefly below, connected via their inputs and outputs as shown in figure 3.2.
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Figure 3.2: The structure of the model showing the seven components and their interactions.
Model inputs are represented by circles, model outputs by arcs.
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The models use a variety of different units depending on their origins. Where the connecting

variables are in different units appropriate scaling must be carried out to ensure consistency. Where

scalings are used these are discussed in section 3.3.8.

3.3.1 Pancreas Model

The pancreas model describes the production of the hormones glucagon, L(t), and insulin, I(t).

The release of the hormones is determined by a time-delayed threshold response to the level of

blood glucose, gB , taken from the blood model. The outputs of the pancreas model, glucagon and

insulin, provide inputs to the glucagon receptor, cAMP and insulin models. The model equations

are presented below. The units of the pancreas model are arbitrary.

dL

dt
=

1
τL

{
Θ2

(
h(−x), tLg

)
− L

Lmax

}
(3.1)

dI

dt
=

1
τI

{
Θ2

(
h(x), tIg

)
− I

Imax

}
(3.2)

x = ln
(
gB(t)
gref

)
(3.3)

where Θn (x, t) = xn/ (xn + tn) (a Hill function) and h(x) = x if x ≥ 0 and 0 if x < 0. Therefore

if gB(t) is below the reference value gref the pancreas releases glucagon and if gB(t) > gref insulin

is produced. Lmax and Imax define the maximum possible concentrations of glucagon and insulin.

Parameter Values

gref = 2.5, Lmax = 3, τL = 1/2, tLg = 1/8, Imax = 4, τI = 5/3, tIg = 1/2

3.3.2 Glucagon Receptor Model

This model describes the activation of Gq proteins by glucagon which regulates the activation of

PLC. Active PLC produces inositol trisphosphate (IP3) which acts as a second messenger in the

mobilisation of intracellular calcium.

The model is based on previous mechanistic models described by Nauroschat and an der Heiden

(1997) and Riccobene et al. (1999) and includes the following processes: ligand-receptor binding

and dissociation; desensitisation of ligand bound receptors by phosphorylation and its dependence

on active G-protein (Pitcher et al., 1992); the sequestration of receptors and its dependence on phos-
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phorylation state; the activation of G-protein sub-units by ligand-bound receptors; the inactivation

of G-proteins and its dependance on active PLC (Bourne and Stryer, 1992) and calcium dependent

kinase (Sanchez-Bueno et al., 1990) which is modelled as a dependence on calcium (Kummer et al.,

2000); the activation of PLC as a function of active G-protein. The model equations are:

dRr

dt
= k−1LRu − k1L(t)Rr − ksRr + krRs (3.4)

dRs

dt
= kspLRp + ks(LRu +Rr)− krRs (3.5)

dG∗
dt

= K23LRuG−G∗
(
kh +

kcal1

kcal2 +G∗
C0(t) +

kplc1

kplc2 +G∗
PLC∗

)
(3.6)

dLRp

dt
= kp

(
1 +

A0G∗
B1 +G∗

)(
LRu

B2 + LRu

)
− kspLRp (3.7)

dPLC∗
dt

= kPCG∗ −
kPC1PLC∗
kPC2 + PLC∗

(3.8)

where Rr, Rs, LRu and LRp are the free, sequestered, ligand bound and desensitised receptor

concentrations respectively. G and G∗ are the inactive and active G-protein concentrations, PLC∗

is active PLC and C0 is the calcium concentration. The following conservation constraints are also

imposed:

G0 = G+G∗ (3.9)

R0 = Rr +Rs + LRu + LRp (3.10)

where G0 and R0 are constants which represent the total G-protein and receptor concentrations.

The model takes its inputs (glucagon (in µM) and calcium (in µM)) from the pancreas and calcium

models. The model output is the concentration of active PLC (in µM). This is converted into an

IP3 concentration which is used as an input to the calcium model.

Parameter Values

k−1 = 10s−1, k1 = 100µMs−1, ks = ssp = 5.2×10−3s−1, kr = 4×10−3s−1,K23 = 1×10−7s−1, kh =

0.2s−1, kcal1 = 1.47 × 103µMs−1, kcal2 = 3.54 × 101, kplc1 = 2.19 × 103µMs−1, kplc2 = 5.7, kp =

6.5 × 104s−1, A0 = 3, B1 = 100, B2 = 1 × 106, kPC = 6.06 × 10−4s−1, kPC1 = 0.282, kPC2 =

0.255, R0 = 126500, G0 = 100000
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3.3.3 Calcium Model

Changes in the cytoplasmic calcium concentration (C0) are a result of the following processes: the

influx of calcium from the extracellular medium (Jin), the release of calcium from intracellular

stores (Jrel), the removal of calcium from the cell by membrane pumps (Jout) and the reuptake

of calcium into the internal stores (JSERCA). In hepatocytes, the primary store of calcium is in

the endoplasmic reticulum (ER). The release of calcium is triggered by binding of IP3 to receptors

on the ER. The receptors are further activated by the increasing cytoplasmic calcium leading to

calcium induced calcium release (CICR). High levels of calcium inhibit the receptors preventing

further release. Excess calcium is pumped out of the cell by membrane bound pumps and rese-

questered back into the ER by the sarco/endoplasmic reticulum calcium ATPase (SERCA). These

processes are described by a simplified version of the model of Hofer (1999):

dC0

dt
= ρ ((Jin − Jout) + α (Jrel − JSERCA)) (3.11)

dCE

dt
= ραV ol (JSERCA − Jrel) (3.12)

Jin = v0 + vcΘ1 (IP3,K0) (3.13)

Jout = v4Θ2 (C0,K4) (3.14)

JSERCA = v3Θ2 (C0,K3) (3.15)

Jrel = (Uk1cal + k2cal) (CE − C0) (3.16)

U (IP3, C0) = [Θ1(IP3, dp)Θ1(C0, da)Θ1(Q,C0)]3 (3.17)

Q(IP3) = d2
d1 + IP3
d3 + IP3

(3.18)

The model takes its input, the concentration of IP3, from the G-protein model. The output (cal-

cium) is passed back to the G-protein model and also acts as an input into the glycogenolysis

model. All concentrations are in units of µM.

Parameter Values

ρ = 0.02µm−1, α = 2, V ol = 10, v0 = 0.2µMs−1, vc = 4.0µMs−1, v3 = 9µMs−1, v4 = 3.6µMs−1,K0 =

4µM,K3 = 0.12µM,K4 = 0.12µM, k1cal = 40s−1, k2cal = 0.02s−1, da = 0.4µM, dp = 0.2µM, d1 =

0.3µM, d2 = 0.4µM, da = 0.2µM

36



Multi-Scale Modelling of Blood Glucose Homeostasis

3.3.4 cAMP Model

This model describes the primary signalling mechanism triggered by the binding of glucagon to G-

protein coupled receptors, the cAMP dependent pathway. The activation of the receptors coupled

to Gs proteins stimulates adenylate cyclase which in turn synthesises cAMP from ATP. cAMP

subsequently activates the cAMP-dependent protein kinase also known as PKA. The production of

cAMP and the activation of PKA are modelled as threshold functions of the hormone concentration

and cAMP respectively. The model also includes the potential nuclear localisation of PKA.

dA

dt
= kAbkg + kAΘnR

(L(t), tR)− kAdegA (3.19)

dP

dt
= k−aP∗ − kaΘnA

(A, tA)P (3.20)

dPN∗

dt
= kNP∗ΘnN

(A, tN∗)− kNAPN∗ (3.21)

where A is cAMP, P is the fraction of inactive PKA, P∗ is the fraction of active PKA, PN∗ is the

fraction of active PKA in the nucleus and P + P∗ + PN∗ = 1.

Parameter Values

kAbkg = 1.2hours−1, kA = 5hours−1, n2, tR = 1, kAdeg = 4hours−1, k−a = 1hours−1, ka = 99hours−1, nA =

8, tA = 1, kN = 0.16hours−1, kNA = 0.16hours−1, nN = 8, tN = 1

3.3.5 Insulin Model

The insulin model describes the inactivation of GSK3 by insulin. The pathway from the hormone to

the kinase involves numerous steps (see section 3.4) however the model used here simply represents

the inactivation of GSK3 as a time-delayed threshold response to the concentration of insulin via

a single equation. The units of both insulin and GSK3 are arbitrary with unit insulin taken to

be the maximum insulin concentration possible. The parameters of the model were selected to

reproduce experimental observations.

dGSK3
dt

=
1

τGSK3
[Θn (I (t) , tI)−GSK3] (3.22)

Parameter Values

τGSK3 = 1.0, tI = 0.5, n = 8
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3.3.6 Blood Transport Model

The blood transport model describes the transport of glucose between the blood and the liver.

Glucose is transported into liver cells by the passive membrane glucose transporter GLUT2 where

it can be converted into Glc-6-P which can not be transported out of the cell. However, in this

and the glycogenolysis model (section 3.3.7) the total cellular glucose and Glc-6-P concentration is

represented by a single variable gC . The use of a single passive transport term would overestimate

the efflux of calcium from the cell. This is avoided by the inclusion of an additional influx term.

The modified model fits the data from a perfusive radiolabelling experiment in pigs (Munk et al.,

2001).

The blood model also includes a glucose drive term, M(t) which represents an external glucose

source or sink. A positive value indicates a glucose input, for example feeding, and a negative value

represents increased glucose utilisation, for example exercise. The blood glucose concentration is

in units of µM.

dgB

dt
= M(t)− kpggB + kcg(gC(t)− gB) (3.23)

Parameter Values

kpg = 0.003s−1, kcg = 0.006s−1

3.3.7 Glycogenolysis Model

This model describes the synthesis and breakdown of glycogen by the liver and the consequent

change in the cellular glucose concentration (in µM). The rate of change of glycogen, G, and

cellular glucose, gC are given by:

dG

dt
= Syn−Brk (3.24)

dgC

dt
= kpggB − kcg(gC − gB)− Syn+Brk (3.25)
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The terms Syn and Brk describe the synthesis and breakdown of glycogen and are given by:

Syn = kSynSta

[(
1
gC

)n

+
(

1
Glus

)n]−1/n

(3.26)

Brk = kBrkPho

[(
1
G

)n

+
(

1
Glys

)n]−1/n

(3.27)

kSyn and kBrk are the maximum rates of synthesis and breakdown, Sta and Pho are the relative

activities of glycogen synthase and glycogen phosphorylase and the final terms describe the increase

in synthesis (breakdown) with the level of glucose (glycogen) up to some saturating value Glus

(Glys). The activities of glycogen synthase and phosphorylase are given by:

dSta

dt
=

1
τSta

(Stainf − Sta) (3.28)

dPho

dt
=

1
τPho

(Phoinf − Pho) (3.29)

The activities of glycogen synthase and phosphorylase are regulated by a number of factors (see

section 3.2.1 and figure 3.1). The following factors are included here: active PKA, calcium, inactive

GSK3 and glucose. Rather than modelling the numerous biological processes involved in the

regulation the model uses the following logical operators:

AND : x ∧ y = xy, OR : x ∨ y = x+ y − xy, NOT :∼ x = 1− x (3.30)

together with hill functions of each of the variables to produce fuzzy logic statements that determine

the activity of glycogen synthase and phosphorylase:

Phoinf = [Θn(PKA, tPKA) ∨Θn(C, tC)∨ ∼ Θ(gC , tGlu)]∧ ∼ Θn(GSK3, tGSK3) (3.31)

Stainf = ∼ [Θn(PKA, tPKA) ∨Θn(C, tC)] ∧Θn(gC , tGlu) ∨Θn(GSK3, tGSK3) (3.32)

These statements represent the following qualitative features:

1. Phoinf increases as active PKA or calcium increase and decreases as glucose or inactive

GSK3 increase

2. Stainf decreases as active PKA or calcium increase and increases as glucose or inactive GSK3

increase
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Parameter Values

kSyn = 0.025s−1, Glus = 1000µM, kBrk = 0.1s−1, Glys = 1000µM, τPho = 60s, tPKA = 0.5, tC =

0.3µM, tGlu = 4781µM, tGSK3 = 0.5

3.3.8 Scalings

Where the models are constructed in different units it is necessary to use appropriate scaling values

to ensure consistency between connecting variables (see figure 3.2). The selected values are shown

in table 3.1 and discussed below. Where no value is given no scaling is required.

From To
Variable Model Variable Model Value
Glucose Blood Glucose Pancreas 2.5/4500

PLC Glucagon Receptor IP3 Calcium 100
Glucagon Pancreas Glucagon cAMP 0.8
Glucagon Pancreas Glucagon Glucagon Receptor 0.033

Insulin Pancreas Insulin Insulin 0.25

Table 3.1: Values of scaling parameters used to ensure consistency between the connecting
variables in the composite model.

The scaling of the glucose concentration between the blood and pancreas models is chosen

so that the reference level in the pancreas, gref = 2.5, at which the pancreas produces neither

glucagon or insulin is equivalent to a plausible level in the blood. This was chosen to be 80mg/dl

or 4500µM.

The active PLC concentration in the glucagon receptor model and the IP3 variable in the

calcium model are assumed to be proportional, with 100µM IP3 corresponding to 1µM active

PLC. This value was chosen so that the IP3 variable takes values in the range expected in calcium

oscillation modelling, given the range of values of PLC produced by the receptor model.

The scaling factors between the output of the pancreas (arbitrary units of glucagon and insulin)

are chosen to ensure that the variables take appropriate values in the cAMP, glucagon receptor

and insulin models. The units of glucagon in the cAMP model are defined in units of the hormone

receptor threshold, tR = 1. A scaling value for glucagon between the pancreas and cAMP models

of 0.8 was chosen to give appropriate values relative to the threshold. In the glucagon receptor

model, the concentration of glucagon is defined in µM. The scaling factor is selected to ensure

that the variable takes values in the physiological range in the glucagon receptor model. In the

insulin model, the concentration of insulin is taken to vary between 0 and 1 units (assuming
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normal pancreas function). The scaling value is chosen so that the maximum insulin concentration

produced by the pancreas model (Imax = 4) corresponds to unity in the insulin model.

3.3.9 Discussion

The composite model has previously been shown to display the expected qualitative behaviour in

response to a range of glucose challenges. It is also able to reproduce the results of a glucagon

challenge, the administration of a bolus of glucagon in a healthy patient (Lockton and Poucher,

2007). In addition an investigation of the effects of varying the insulin sensitivity (tI in the insulin

component model) on the model has identified a number of hypotheses about the operation of the

homeostatic system (Hetherington et al., 2009). The model also serves as a proof of concept for

the modular construction approach which allows published models to be re-used and components

to be easily replaced with alternative representations.

A number of the original component models are simplified descriptions based on empirical ob-

servations rather than a mechanistic knowledge of the biology. For example, while the processes

triggered by glucagon are modelled in detail the effects of insulin are described by a single equation.

While the simple insulin model is able to reproduce the inactivation of GSK3 observed experimen-

tally the lack of mechanistic detail limits its utility in analysing and understanding the system. As

discussed in the introduction to this chapter, the insulin signalling pathway is a key component

of the glucose regulatory system and defects in the pathway are important in the development of

type 2 diabetes. Modelling this pathway in more detail will allow us to investigate the effects of

perturbations of the pathway on the system behaviour. The remainder of this chapter describes

the development of a more detailed model of the insulin pathway.

3.4 The Insulin Signalling Pathway

Insulin has a number of effects including regulation of metabolism, cell growth and cell differen-

tiation. The actions of insulin are initiated when the hormone binds to its cell surface receptors

triggering a signalling pathway which has pleiotropic effects in virtually all tissues (Plum et al.,

2006). Figure 3.3 shows the known components of the insulin signalling pathway and their inter-

actions. There are three processes which relate directly to glucose homeostasis: glucose uptake,

control of glycolysis and gluconeogenesis and the regulation of glycogen synthesis.

In muscle and adipose tissue insulin increases glucose uptake by stimulating the translocation of

the hexose transporter, GLUT4, to the plasma membrane (Saltiel and Kahn, 2001). In liver cells,

the primary glucose transporter GLUT2 is not insulin-dependent so insulin does not affect the rate
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Figure 3.3: Insulin signalling pathway taken from the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway database (Kanehisa and Goto, 2000). The pathway from insulin to

the inactivation of GSK3 is shown in the red box.

of glucose uptake in hepatocytes. The second effect of insulin is the suppression of endogenous

hepatic glucose production (gluconeogenesis). This occurs at the level of gene transcription by

downregulating the production of enzymes necessary for the production of glucose from pyruvate

(Desvergne et al., 2006). It involves two main transcription factors, sterol response element binding

protein 1c (SREBP-1c) and FOXO1 (a member of the forkhead transcription factor family) (Carter

and Brunet, 2007). The third effect, and the one on which I will focus, is the effect of insulin on

the rate of glycogen synthesis. The pathway from insulin to glycogen is highlighted by the red box

in 3.3 and is described below.

The insulin receptor (INSR) is one of a family of receptor tyrosine kinases (RTK). These are

tetrameric proteins consisting of two extracellular α-subunits and two transmembrane β-subunits

(Saltiel and Kahn, 2001). In the absence of insulin (INS), the α-subunit inhibits the tyrosine kinase

in the intracellular portion of the β-subunit. Upon binding of the hormone, a conformational change

occurs which relieves the inhibition of the tyrosine kinase activity. Subsequently the kinase in one

β-subunit phosphorylates the other half of the receptor dimer. This autophosphorylation results in

a large increase in the catalytic activity of the receptor (Nystrom and Quon, 1999). The tyrosine

kinase activity of the insulin receptor is negatively regulated by dephosphorylation of the receptor
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by protein tyrosine phosphatases (PTPs) (Drake and Posner, 1998).

There are at least nine substrates of the insulin receptor four of which are varieties of the insulin-

receptor substrate (IRS) protein (White, 1998). IRS proteins are phosphorylated by the kinase

activity of the receptor and act as docking sites for molecules which contain specific sequences

known as SH2 domains. One such molecule is phosphoinositide 3-kinase (PI3K) which consists

of a regulatory p85 subunit and a catalytic p110 subunit. The p85 unit contains an SH2 domain

and is recruited to the plasma membrane of the cells by the activated IRS. This places it in the

vicinity of its physiological substrate, phosphatidylinositol (4,5) bisphosphate (PI(4,5)P2) which

it phosphorylates to produce PI(3,4,5)P3 (PIP3) (Lizcano and Alessi, 2002).

PIP3 binds to the pleckstrin homology (PH) domains of a variety of signalling molecules modi-

fying their activity and intracellular location. Two such molecules are phosphoinositide-dependent

kinase 1 (PDK1) and protein kinase B (PKB) also known as Akt. The co-localisation of these

molecules allows PDK1 to phosphorylate and activate Akt. There is also evidence that a second

kinase (referred to as PDK2) is also involved in the phosphorylation of Akt (Chan and Tsichlis,

2001; Dong and Liu, 2005). Akt in turn phosphorylates and inactivates glycogen synthase ki-

nase (GSK3). It is the inactivation of this kinase that allows glycogen synthesis to proceed at an

increased rate (see section 3.2.1).

3.5 Modelling the Insulin Signalling Pathway

In their 2002 paper, Sedaghat et al. (2002) presented a mathematical model of the insulin signalling

pathway. Their goal was to investigate the mechanisms by which insulin causes increased glucose

uptake in muscle. Their model produced good agreement with experimental results and has been

used in a number of further studies (Giri et al., 2004; Hori et al., 2006; Liu et al., 2009). It is the

most complete model of the insulin signalling pathway to be published to date.

It can be seen in figure 3.3 that many of the steps from insulin to GLUT4 are shared with the

pathway from insulin to GSK3. Consequently, it was decided to use the Sedaghat model (Sedaghat

et al., 2002) as the basis for a model of the inactivation of GSK3 by insulin.

3.5.1 Sedaghat Model

The Sedaghat model is constructed from three previously published and validated models (a de-

scription of the insulin receptor binding kinetics (Wanant and Quon, 2000), a model of receptor

recycling (Quon and Campfield, 1991) and a model of GLUT4 translocation (Quon, 1994)) cou-

pled with a description of the intracellular signalling pathway. Here we will reuse the first two
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components together with a modified representation of the post receptor signalling pathway which

describes the additional steps in the inactivation of GSK3 which were not included in the published

model.

Receptor Binding Subsystem

The receptor binding subsystem represents the association and dissociation of insulin and the phos-

phorylation and dephosphorylation of the receptor. Free receptors (x2) can bind a single insulin

molecule (x1). The ligand-receptor complex (x3) then undergoes phosphorylation. The phospho-

rylated, once-bound receptor (x5) can bind a second insulin molecule (which has no effect on the

phosphorylation state) resulting in a twice-bound phosphorylated receptor (x4). The dissociation

of the first insulin molecule leads to rapid dephosphorylation of the receptor. These processes are

represented schematically at the top of figure 3.4.

Figure 3.4: Schematic of the processes included in the insulin model. Triangles represent the
various states of the insulin receptor, x2 − x8. The circles represent the species in the post

receptor signalling pathway which are included as state variables in the model. Phosphorylated
(P) and unphosphorylated forms are modelled as separate species. IRS = insulin receptor
substrate, PI3K = phosphoinositide 3-kinase, PI(3, 4)P2, P I(3, 4, 5)P3 and PI(4, 5)P2 are

phophoinositol lipids, Akt = protein kinase B, GSK3 = glycogen synthase kinase.
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Receptor Recycling Subsystem

The second subsystem describes the synthesis, degradation, exocytosis (transfer to cell membrane)

and endocytosis (internalisation) of receptors. Free receptors are recycled directly into the internal

pool (x6) which undergoes constant turnover via receptor synthesis and degradation. Internalised

phosphorylated receptors (x7 (twice bound) and x8 (once bound)) undergo an additional step in

which they are dephosphorylated before they are added to the intracellular pool. The receptor

recycling subsystem is shown down the left hand side of figure 3.4. The equations for the receptor

binding and recycling subsystems are shown below:

dx2

dt
= k−1x3 + k−3x5 − k1x1x2 + k−4x6 − k4x2 (3.33)

dx3

dt
= k1x1x2 − k−1x3 − k3x3 (3.34)

dx4

dt
= k2x1x5 − k−2x4 + k−4′x7 − k4′x4 (3.35)

dx5

dt
= k3x3 + k−2x4 − k2x1x5 − k−3x5 + k−4′x8 − k4′x5 (3.36)

dx6

dt
= k5 − k−5x6 + k6(x7 + x8) + k4x2 − k−4x6 (3.37)

dx7

dt
= k4′x4 − k−4′x7 − k6x7 (3.38)

dx8

dt
= k4′x5k−4′x8 − k6x8 (3.39)

The receptor synthesis rate k5 is defined so that the net synthesis and degradation of receptors

is zero under basal conditions therefore k5 = k−5x6(0). If the intracellular receptor concentration

falls below its basal level an accelerated synthesis rate k5acc = 6k5 is used.

Post Receptor Signalling Pathway

The Sedaghat model includes a description of the pathway from the insulin receptor to the acti-

vation of Akt. It is assumed to be a closed system and the synthesis and degradation of signalling

molecules is not represented. The processes included in the model are shown in figure 3.4.

IRS (x9) is activated (x10) by the phosphorylated receptors and deactivated by PTP. The rate

of IRS activation is modelled as a linear function of the phosphorylated receptor concentration

(x4 + x5). Activated IRS binds with and activates free PI3K (x11) in a 1:1 stoichiometry. This

complex (x12) converts PI(4,5)P2 (x14) to PI(3,4,5)P3 (x13). This phophoinositol lipid is also

generated from PI(3,4)P2 (x15). The lipid phosphatases, SHIP2 and PTEN convert PI(3,4,5)P3
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back to PI(3,4)P2 and PI(4,5)P2 respectively. The activation of Akt (x16 → x17) is taken to be

dependent on the level of PI(3,4,5)P3 and any intermediate steps (e.g. the action of PDK1/2) are

not modelled.

dx9

dt
= k−7x10 −

k7x9(x4 + x5)
IRp

(3.40)

dx10

dt
=

k7x9(x4 + x5)
IRp

+ k−8x12 − (k−7 + k8x11)x10 (3.41)

dx11

dt
= k−8x12 − k8x10x11 (3.42)

dx12

dt
= k8x10x11 − k−8x12 (3.43)

dx13

dt
= k9x14 + k10x15 − (k−9 + k−10)x13 (3.44)

dx14

dt
= k−9x13 − k9x14 (3.45)

dx15

dt
= k−10x13 − k10x15 (3.46)

dx16

dt
= k−11x17 − k11x16 (3.47)

dx17

dt
= k11x16 − k−11x17 (3.48)

The rate at which PI(4,5)P2 is converted to PI(3,4,5)P3, k9, is taken to be a linear function of

active PI3K, (x12), increasing from some basal value in the absence of insulin to k9stim at maximal

stimulation. k−9 and k9basal are also defined in terms of k9stim.

k9 = ((k9stim − k9basal)
x12

PI3Kmax
+ k9basal) (3.49)

The rate of activation of Akt, k11, is taken to be a function of PI(3,4,5)P3, (x13), increasing from

zero to its maximal value as PI(3,4,5)P3 increases from its basal value, x13(0) to its maximal value

PIP3max.

k11 = k11d
(x13 − x13(0))

(PIP3max − x13(0))
(3.50)
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Initial Conditions and Parameter Values

The initial conditions and parameter values for the model taken from (Sedaghat et al., 2002) are

listed in tables 3.2 and 3.3.

Variable Description Value Units
x2 Unbound surface IR 9× 10−13 M
x3 Unphosphorylated once-bound surface IR 0 M
x4 Phosphorylated twice-bound surface IR 0 M
x5 Phosphorylated once-bound surface IR 0 M
x6 Unphosphorylated unbound intracellular IR 1× 10−13 M
x7 Phosphorylated twice-bound intracellular IR 0 M
x8 Phosphorylated once-bound intracellular IR 0 M
x9 Unphosphorylated IRS 1× 10−12 M
x10 Tyrosine-phosphorylated IRS 0 M
x11 Inactivated PI3K 1× 10−13 M
x12 Active IRS/PI3K complex 0 M
x13 PI(3,4,5)P3 in total lipid population 0.31 % of total lipid
x14 PI(4,5)P2 in total lipid population 99.4 % of total lipid
x15 PI(3,4)P2 in total lipid population 0.29 % of total lipid
x16 Inactivated Akt 100 % of total Akt
x17 Activated Akt 0 % of total Akt

Table 3.2: Initial conditions used in the insulin model. Abbreviations: IR=insulin receptor.

Parameter Reaction Value units
k1 Association rate of first insulin molecule to IR 6× 107 M−1 min−1

k−1 Dissociation rate of first insulin molecule from IR 0.20 min−1

k2 Association rate of second insulin molecule to IR 6× 107 M−1 min−1

k−2 Dissociation rate of second insulin molecule from IR 20 min−1

k3 Phosphorylation rate of surface IR 2500 min−1

k−3 Dephosphorylation rate of surface IR 0.20 min−1

k4 Endocytosis of free IR 0.00033 min−1

k−4 Exocytosis of free IR 0.003 min−1

k
′

4 Endocytosis of bound IR 2.1× 10−3 min−1

k
′

−4 Exocytosis of bound IR 2.1× 10−4 min−1

k−5 IR degradation 1.67× 10−18 min−1

k6 Dephosphorylation of intracellular IR 0.461 min−1

k7 Phosphorylation of IRS 4.16 min−1

k−7 Dephosphorylation of IRS 1.396 min−1

k8 Formation of IRS/PI3K complex 0.706× 1012 min−1

k−8 Separation of IRS/PI3K complex 10 min−1

k9stim Maximal conversion of PI(4,5)P2 to PI(3,4,5)P3 1.39 min−1

k11d Maximal phosphorylation of Akt ln(2) min−1

k−11 Dephosphorylation of Akt 10 ln(2) min−1

Table 3.3: Nominal parameter values for the insulin model.
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3.5.2 Modelling the Inactivation of GSK3

Glycogen synthase kinase (GSK3) regulates glycogen synthesis by inactivating glycogen synthase

(GSyn). Insulin inactivates GSK3, reducing the inactivation of GSyn resulting in an increased

rate of glycogen synthesis and a lowering of the blood glucose level. GSK3 is inactivated via

phosphorylation by Akt, the activity of which is described by the published insulin signalling

model described above.

To describe the inactivation of GSK3 two new variables representing the active and inactive

percentage of the total GSK3 concentration were added to the model. The rates of change of these

variables are described by equations 3.51 and 3.52:

dx22

dt
= k−15x23 − k15x22 (3.51)

dx23

dt
= k15x22 − k−15x23 (3.52)

where x22 is the percentage of active GSK3, x23 is the percentage of inactive GSK3, k15 is the

rate of phosphorylation (inactivation) of GSK3 by Akt and k−15 is the rate at which GSK3 is

dephosphorylated.

Initial Conditions

It is assumed that under basal conditions (no insulin) all GSK3 is active so that x22(0) =

100%, x23(0) = 0%. This follows from the assumption in (Sedaghat et al., 2002) that at basal

conditions no Akt is in the phosphorylated state.

Rate Constants

The half-time (t1/2) for inhibition of GSK3 by insulin is approximately 2 minutes (Hurel et al.,

1996; Cross et al., 1997). For a first order rate constant (Sedaghat et al., 2002):

k =
[ln(2)]
t1/2

(3.53)
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Using equation 3.53 we can define k15 = k15d = [ln(2)]/2 min−1 at equilibrium following max-

imal insulin stimulation. It is also assumed that maximal insulin stimulation produces a 60:40

ratio of inactive to active GSK3 (Cross et al., 1997) so that at equilibrium when k−15x23 = k15x22:

k−15 = k15/1.5 (3.54)

This means that we can constrain k−15 = [ln(2)]/3. The rate at which GSK3 is inactivated depends

on the activity of Akt. It is assumed that this rate, k15 increases from 0 to k15d = ln(2)/2 as a

linear function of the amount of activated Akt:

k15 = k15d
x17

Aktmax
P

(3.55)

where Aktmax
P is the percentage of phosphorylated Akt following maximal insulin stimulation.

3.5.3 Model Validation

The published part of the insulin model described above was previously validated against exper-

imental data taken from the literature. The dynamics of IRS phosphorylation, PI3K activation,

PI(3,4,5)P3 production and Akt phosphorylation were found to show good agreement with experi-

mentally measured timecourses. The extended model has been validated by comparison with both

published data and experiments conducted in collaboration with members of the Beacon project.

Initial assessments of the modified model were performed against data taken from van Weeren

et al. (1998). The experimental conditions were replicated by applying a constant insulin input

of magnitude 1µg.ml−1 at t = 0 until t = 7 mins at which point the stimulus was removed.

Figure 3.5 shows the comparison between the model and data. It can be seen that the model

shows reasonable qualitative agreement with the data, replicating both the inactivation of GSK3

in response to insulin and the reactivation upon removal of the hormone.

To further validate the model, experiments were conducted to measure the inactivation time-

course of GSK3 in rat hepatocytes in response to varying insulin doses. The left hand panel of figure

3.6 shows the timecourse predicted by the model and the right hand panel shows the experimental

data.

The model displays the same dose dependent rise in phosphorylated GSK3 observed in the

experimental time-course. For 10nM and 100nM both the model and experimental data show that

49



Multi-Scale Modelling of Blood Glucose Homeostasis

 0

 20

 40

 60

 80

 100

 0  5  10  15  20  25  30  35

Ac
tiv

ity
 (%

 m
ax

)

Time (mins)

PKB
PI3-K
GSK3

Figure 3.5: Initial comparison of the model output and experimental data. Experimental data
taken from (van Weeren et al., 1998) is shown by data points joined by dashed lines. The model
prediction is shown by solid lines. In each case the system is stimulated by the addition of insulin

(1µg.ml−1) for 7 minutes at t = 0
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Figure 3.6: Timecourse of GSK3 phosphorylation in response to insulin. Panel a shows the
output of the mathematical model in response to a constant input of 1, 10 and 100nM insulin.

Panel b shows the phosphorylation of GSK3 measured in isolated rat hepatocytes following
addition of 1, 10 and 100nM insulin at t=0.
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maximal phosphorylation is reached after approximately 5 minutes. At 1nM insulin the rate of

phosphorylation is decreased (maximal phosphorylation is achieved at approximately 10 minutes)

and a lower maximum state is reached.

3.6 Discussion

This chapter has described a composite multi-scale model of blood glucose regulation which focuses

on the role of the liver in storing excess glucose as glycogen. The model is constructed by joining

together seven component models which describe various aspects of the complete system. The

composite model has previously been shown to reproduce the expected qualitative system level

behaviour in response to both glucose and glucagon challenges. The effects of varying insulin

sensitivity (via the threshold for insulin to inactivate GSK3, tI in the simple insulin model) have

also previously been studied.

The sub-models of the original model were constructed at different levels of detail depending

on the availability of existing models and biological knowledge. The lack of detail in certain

models limits their usefulness in understanding the function of the system. This lack of detail was

particularly apparent in the insulin model. To address this issue a mechanistic model of the insulin

signalling pathway was identified from the literature and modified to describe the inactivation of

GSK3 by insulin. The model has been shown to provide good agreement with experimental data

on the inactivation of GSK3 in liver cells.

The parameters of the component models have been taken from the literature, derived from

experimental observations or tuned by fitting or comparison of the model to data. As a result

the majority of the parameters have some associated uncertainty. It is important to investigate

how this uncertainty affects the model output. More generally, studying how variation in the

parameters effects the model behaviour can aid our understanding of the biological system and

suggest how its behaviour can be modified or controlled. Global sensitivity analysis techniques

provide a way to address these questions in a systematic manner.

The rest of this thesis describes the development of sensitivity analysis techniques suitable

for the study of composite multi-scale biological models using the components of the glucose

homeostasis model as examples. The methods will be applied to the complete model to investigate

the importance of the various sub-processes and reactions in the regulation of blood glucose.

51



Chapter 4

Global Sensitivity Analysis of

Time Dependent Model Outputs

This chapter describes a new approach to the application of sensitivity analysis techniques to time
dependent model outputs. It introduces the use of principal component analysis to automatically

identify the major modes of variation in a set of model outputs and shows how this technique can
be combined with two SA methods, the global variance decomposition method of Sobol and Morris’

screening design, to investigate the sensitivity of those modes to the model parameters. An
“overall” sensitivity, which measures the effect of a parameter on the complete model output, is

also defined. The approach is demonstrated on two of the component models of the glucose
homeostasis system.

4.1 Introduction

As discussed in chapter 2 much of the sensitivity analysis (SA) literature is focussed on analysis

of scalar model outputs (Saltelli et al., 2000a). This is true of many applications of SA in biology.

For example, in metabolic control analysis (MCA) the focus is on the sensitivity of the steady

state concentrations or fluxes to variations in the system parameters. However in many biological

systems it is the transient or dynamic behaviour which is of particular interest and we therefore

require methods which are appropriate for dealing with time dependent model output.

The typical approach to the analysis of such systems is to calculate sensitivities at multiple

time-points along the output trajectory. However, often we are interested in how the form or

shape of the model output depends on the parameters. This information is not well captured by

time-varying sensitivities. To address this problem a set of scalar values which describe the key

features of the model output can be defined and used as the output for any SA method. The

drawback of this approach is that it is problem specific. We must select an appropriate set of
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features, which typically requires prior knowledge of the form of the model output, and ideally

construct algorithms to automatically extract these features from the output data.

An alternative approach to sensitivity analysis of dynamic model output has been suggested by

Campbell et al. (2006). For a set of N model evaluations, the output of each model run is treated

as a function of time, yi(t), which can be expanded using an appropriate set of basis functions

Φ(t) = (φ1(t), φ2(t), ....., φm(t)) such that:

yi(t) =
m∑

k=1

ωikφk(t) for i = 1, ...., N (4.1)

The basis functions, φk(t), represent different aspects of the functional model output. The scalar

coefficients of the expansion, ωik, indicate how much of each basis function is contained in each

model run.

Sensitivity analysis techniques can be applied to the coefficients of the expansion to investigate

their dependence on the model parameters. If the coefficients of a given basis function Ωk =

(ω1k, ω2k, ...., ωNk) are sensitive to a parameter, then that parameter is important in producing

the type of variation in the model output which is described by the corresponding basis function,

φk. This approach was demonstrated by Campbell et al. (2006) on a simple example using a

graphical method to perform the sensitivity analysis.

The use of a basis set expansion, when coupled with more advanced global SA techniques, could

potentially be used to study the sensitivity of dynamic biological models. The development of this

method is presented in this chapter beginning with a discussion of the use of principal component

analysis (PCA) as a way to expand the functional model outputs.

4.2 Basis Set Expansion of Functional Data

The representation of data using a set of basis functions is an important step in most functional

data analysis techniques (Ramsay and Silverman, 2002). There are a number of standard pre-

defined basis sets that can be used to represent a set of functional model outputs. However, a

particular basis set will generally only be suitable for certain types of data (Campbell et al., 2006).

The choice of an appropriate basis is therefore problem specific much like the task of defining a set

of scalar features from the model output.

53



Global Sensitivity Analysis of Time Dependent Model Outputs

An alternative to using a pre-defined basis set is to determine the basis functions from the

data. The use of data-driven basis functions is largely problem-independent. Data-driven basis

functions are also often more interpretable in physical terms and typically capture the important

variation in the output in a smaller number of functions than pre-defined bases (Campbell et al.,

2006). The main strength of a data-driven approach is that the aspects of the output described by

the basis functions are based on the important types of variation in the data and not prior notions

of what we believe is of interest. This ability to automatically extract the features from the data

is particularly attractive as it avoids the risk of “blinding ourselves to important differences by

what we choose to look for” (Jones and Rice, 1992). One example of a data driven basis set are

principal components calculated via a principal component analysis (PCA).

4.2.1 Principal Component Analysis

PCA is a multivariate statistical procedure which seeks to reduce the dimensionality of a data set

made up of a larger number of interrelated variables while maintaining as much of the variation in

the data as possible (Jolliffe, 2002). The original data is transformed into a new set of variables

known as the principal components (PCs) which are uncorrelated and arranged such that successive

PCs contain decreasing amounts of the variation present in the original data.

For a set of N observations of q variables, y, PCA can be seen as finding the q weight vectors

ξz = (ξ1z, ...., ξqz)
′
, z = 1, ...., q for which the linear combinations:

fiz =
q∑

j=1

ξjzyij (4.2)

have the largest possible variance described by the mean square:

1
N

N∑
i=1

f2
iz (4.3)

subject to the constraints:

q∑
j=1

ξjz = 1 for z = 1, ...., q (4.4)

q∑
j=1

ξjkξjm = 0 k < m (4.5)

The first constraint ensures that the problem is well defined and that the sum of squares can not

be arbitrarily large. The second constraint ensures that the second and subsequent weight vectors

are orthogonal and hence unrelated to the previous ones. It is also important to subtract the mean
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from the data before performing PCA. This ensures that maximising the mean square of the fiz is

equivalent to maximising their variance. The amount of variation described by the PCs declines

as z increases. Therefore typically only a subset of the principal components, qs << q will be of

interest.

In the case of functional data, the variable values are replaced by functions yi(t) and PCA is

equivalent to finding the linear combinations of weight functions βz(t) which maximise the variation

in the fizs subject to continuous versions of 4.4 and 4.5.

fiz =
∫
βz(t)yi(t)dt (4.6)

The weight functions are the principal components of the data and constitute a set of basis

functions which represent the different types of variation within the data. The importance of the

different types of variation is measured by the fraction of the variance in the original data accounted

for by each PC. The principal component scores, fiz, are the coefficients of the expansion of the

original data using the PCs as basis functions.

The use of PCA to investigate collections of curves was previously suggested by Jones and Rice

(1992) as part of a method to display their important features and the technique is regarded as a

key tool in functional data analysis (Ramsay and Silverman, 1997).

4.2.2 Calculating Functional Principal Components

The calculation of principal components is generally defined in terms of the eigenanalysis of the

covariance matrix of the N × q matrix containing the mean centred data. The eigenvectors are

the principal components of the data and the eigenvalues describe the distribution of the total

variance. Details can be found in a number of textbooks (see for example Jolliffe, 2002) and

standard computer algorithms exist for the solution of the eigenequation.

In the case of functional data principal components can also be viewed in terms of an eigen-

analysis of the covariance function (Ramsay and Silverman, 1997). There are two approaches to

the calculation of functional principal components. These are described briefly below.

The first approach to calculating the principal components of functional data is to discretize the

N functions on some regular grid of time points. This data can be treated as a set of N observations

of T variables (where T is the number of time points at which the model is evaluated). This N ×T

matrix can then be passed to a standard PCA algorithm (e.g. R’s princomp routine) to calculate

the principal components and the associated scores. Using this method the maximum number of

principal components, q, is equivalent to the number of time points (i.e the number of variables).
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Models will typically be solved using some numerical method so the output will already be in the

form of discrete time-value pairs. The major problem with this approach is that the time points

must be evenly spaced. This may not be the case if the model is solved using a method with an

adaptive step size.

The second method for calculating the principal components of functional data requires the

data to first be expanded using some pre-defined basis set. The principal component analysis can

then be defined as an eigenanalysis problem in terms of the covariance of the coefficients of the

expansion (Ramsay and Silverman, 1997).

Software for the calculation of the principal components using this approach is provided in the

fda package (Ramsay et al., 2008) for the statistical programming language R (R Development Core

Team, 2008). The number of principal components, q, which can be calculated by this approach

is equal to the number of basis functions used in the initial expansion of the data.

The basis function approach is more flexible than the discretization approach. It does not

require the time points to be the same for each model run. Therefore this approach will be used

in the rest of this thesis.

4.2.3 Functional PCA of Model Outputs

The detailed insulin signalling pathway model described in chapter 3 is used to demonstrate the

use of functional PCA to extract the interesting modes of variation from a set of dynamic model

outputs.

The insulin model contains 21 parameters which have been extracted or derived from the

literature (see table 3.3 and section 3.5.2). These parameters may have a certain amount of

uncertainty or imprecision associated with them. Even if the parameters are known precisely we

may wish to investigate how perturbing them influences the system behaviour.

For the purposes of demonstrating the technique each parameter is assumed to vary uniformly

in a range of ±50% of its nominal value (see table 3.3). The uncertain parameters represent a

21-dimensional input space. A sample of 1000 input vectors was generated from this space using

the quasi-random Sobol sequence. The model was then evaluated for each input sample to produce

a set of 1000 model outputs.

The external input to the model was chosen to represent a constant concentration of insulin

of magnitude 1 × 10−6M , from t = 0 until t = 30 minutes after which the ligand is removed.

The model is run until t = 60 minutes to allow the dephosphorylation of GSK3 to be studied.

The model is solved in XPPAUT (Ermentrout, 2002). Figure 4.1 shows the set of model outputs

generated by the 1000 run sample.
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Figure 4.1: The output from a sample of 1000 evaluations of the insulin model.

This plot shows the typical shape of the model output in response to the chosen input function.

It also shows that there is considerable variation in the output due to the uncertainty in the model

parameters. The range of this variation is shown by the envelope which encloses all the curves.

However information about the behaviour of individual curves and the types of variation present

in the set is not clear from this type of display. Functional principal component analysis can be

used to extract this information.

The PCs of the insulin model output were calculated using the basis set method, implemented in

R via the fda package (Ramsay et al., 2008). Principal components calculated via the discretization

approach were identical. The left hand panels of figure 4.2 show the first three PCs for the output

of the insulin model.

The first principal component accounts for 90.6% of the variation in the model output indicating

that this is the dominant mode of variation found in the data. The first PC is positive throughout

the entire time course but places considerably more weight on times between ∼ 5-40 minutes, the

period in which the model output is typically in a steady state. This describes a vertical shift

in the time-course of inactive GSK3 with the greatest increase in the steady state concentration.

Model runs which have high positive scores for the first PC will have higher than average values

across all time points and significantly higher steady state values. Negative scores imply a reduced

concentration of inactive GSK3.
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Figure 4.2: The first 3 principal components of the insulin model output. The principal
components were calculated using a b-spline basis set. Panels a,c, and e show the PC curves.

Panels b,d, and f show the mean model output (solid line) plus (dotted line) and minus (dashed
line) a multiple of the principal components. The percentages show the amount of the total

variation described by each component. Together the first 3 principal components describe 99.7%
of the variation in the model output.
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The second PC accounts for a much smaller amount of variation, 8.4%. It places a negative

weight on times up to ∼40 minutes and a large positive weight on the subsequent part of the

time-course, after the stimulus is removed. Positive scores on this PC produce a small reduction

in the steady state concentration and an increase in the amount of inactive GSK3 present at later

times. This corresponds to a decrease in the rate at which GSK3 is de-phosphorylated after insulin

is removed from the system.

The third PC (0.7% of the total variation) places large positive weights on the early time points.

This period corresponds to the inactivation phase of GSK3. Positive scores on this component will

be found for model runs which have an increased rate of inactivation.

The interpretation of the PCs from plots of the components themselves is not always so straight-

forward (Ramsay and Silverman, 1997). A clearer picture can often be obtained by plotting the

mean function of the output sample plus and minus some multiple of the PCs. This approach is

demonstrated in the right hand panels of figure 4.2. The main effect of each PC, as described above,

is clearly shown in these plots: PC1 describes the variation in the steady state concentration, PC2

describes the variation in the rate at which GSK3 is dephosphorylated and PC3 the variation in

the inactivation process.

The multiple of the principal components to use in the construction of plots like figure 4.2 is

largely subjective and can be modified to produce interpretable results. Ramsay and Silverman

(1997) suggest plotting the mean, µ̂±0.2CPCz where C is the root-mean-square difference between

µ̂ and its time average, µ̄:

C2 = T−1‖µ̂− µ̄‖2 (4.7)

µ̄ = T−1

∫
µ̂(t)dt (4.8)

and the factor of 0.2 was chosen to give useful results. This approach was followed in figure 4.2

where a value of 0.5 was used to best illustrate the modes of variation.

This section has demonstrated how functional PCA can be used to extract the main modes

of variation from a set of output curves generated from a mathematical model. These modes of

variation can be interpreted in terms of specific aspects or features of the model output. Impor-

tantly the fraction of the total variation in the model output described by each mode decreases

rapidly with the order of the principal components. It is therefore only necessary to consider a

small number of the components to describe almost all the variation in the model output.

The second part of the proposed method is to study how these modes of variation depend on
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the model inputs. This is achieved by using the scalar PC scores as the “output” of the model in

the sensitivity analysis. The following section discusses the use of variance based SA techniques to

do this.

4.3 Variance Based Sensitivity Analysis

Variance based methods are a class of global sensitivity analysis techniques which “estimate how

much output variability is dependent on each of the input factors (taken singly and in combination

with one another)” (Archer et al., 1997). The importance of a (set of) factor(s) is based on how

much it (they) control the model prediction (Saltelli et al., 2000a) and is measured by the reduction

in the output variance obtained by “fixing” those factors (Homma and Saltelli, 1996). Variance

based methods are considered by many to be the best SA techniques for a wide range of scenarios

due to their model independence and their ability to quantitatively assess the impact of the model

inputs. The basic concept of this class of methods is illustrated below for a general model of the

form:

Y = f(X) (4.9)

where X = (x1, x2, ..., xk) is a k-vector of uncertain model factors.

If all the factors are allowed to vary over their entire range of values then the uncertainty in the

model output Y can be quantified by its unconditional variance VX(Y ). The question addressed by

variance based methods is: How does removing the uncertainty in factor xi (i.e. fixing it at its true

value) reduce the variance in the model output Y ? If the reduction in the variance achieved by

fixing xi is large then xi is an important factor in determining the variation in the model output.

The effect on the variance of fixing xi is given by the conditional variance:

VX−i(Y |xi = x∗i ) (4.10)

The notation X−i indicates that all other factors in X are allowed to vary. The true value of x∗i is

not known so the conditional variance is averaged over all possible values of xi:

Exi
(VX−i

(Y |xi)) (4.11)

(In future the subscript notation on the expected value and variance will be dropped for simplicity

so that in E(V (Y |xi)), E is understood to be over xi and V over X−i.)

The smaller the value of E(V (Y |xi)) the larger the influence of xi on the model output and the
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more important the factor. The total variance is a constant and can be expressed using the “law

of total variance” as:

V (Y ) = V (E(Y |xi)) + E(V (Y |xi)) (4.12)

Therefore, selecting factors with small E(V (Y |xi)) as important is equivalent to selecting those

with high values of Vi = V (E(Y |xi)), also known as the variance of the conditional expectation

(VCE). Various variance based sensitivity measures, and schemes to estimate them, have been

suggested in the literature. McKay (1995) defined the correlation ratio, η2 as the ratio of the VCE

to the total variance while Hora and Iman (1986) used the square root of the VCE as a measure

of the importance of factor xi.

Both these measures can be shown to be equivalent to the first order sensitivity indices of

the Sobol method (Sobol, 1993), a Monte Carlo variance-based method. The Sobol method is an

efficient technique for the calculation of the individual factor importance measures and also allows

investigation of higher order effects, i.e. the influence of interactions between input factors. An

overview of the Sobol method is provided in the following section.

4.3.1 The Method of Sobol

The method of Sobol (Sobol, 1993) is based on a decomposition of the model output Y = f(X)

into terms of increasing dimensionality. The function f(X) can be written as the sum:

f(X) = f0 +
k∑

i=1

fi(xi) +
∑

1≤i<j≤k

fij(xi, xj) + .....+ f1,2,...,k(x1, ...., xk) (4.13)

provided that f0 is a constant and the integral of every term over any of its variables is zero. A

consequence of this decomposition is that:

f0 =
∫

Ωk

f(X)dX (4.14)

The total variance of f(X) can be written as:

V =
∫

Ωk

f2(X)dX− f2
0 (4.15)
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This can also be decomposed in the same manner as the function itself:

V =
k∑

i=1

Vi +
∑

1≤i<j≤k

Vij + ...+ V12...k (4.16)

The terms of this decomposition are the contributions to the variance from term fi1...is
in (4.13)

and are given by:

Vi1...is =
∫ 1

0

...

∫ 1

0

f2
i1...is

(xi1 , ..., xis)dxi1 ...dxis (4.17)

The importance measures or Sobol indices are then defined as:

Si1..is
=
Vi1..is

V
(4.18)

The term Si1..is gives the fraction of the total variance which is due to any individual factor or

combination of factors. For example, Si = Vi/V , called the first-order sensitivity index, is the

contribution of xi to the output variation. Sij for i 6= j is that part of the variation due to xi and

xj which is not explained by the sum of the first-order effects of xi and xj . This is the variance

which is due to the interaction between those factors.

The key to the Sobol method is that the integrals in (4.14) (4.15) and (4.17) can be evaluated

using Monte Carlo integrals. For an input sample of size N with k-d elements Xm, each of which

is a model input vector:

f̂0 =
1
N

N∑
m=1

f(Xm) (4.19)

V̂ =
1
N

N∑
m=1

f2(Xm)− f̂2
0 (4.20)

The first order effects require estimates for the Vis which are given by equation 4.21 (for a derivation

see Homma and Saltelli (1996)):

V̂i =
1
N

N∑
m=1

f(X(1)
m )f(X(2)

(∼i)m, x
(1)
im)− f̂2

0 (4.21)

where the superscripts (1) and (2) refer to two different input samples. To calculate the V̂is we
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multiply values of the model output calculated using the first sample by values calculated using

the second sample, but with factor xi taken from the first sample. In other words, we “resample”

all factors except the factor of interest xi. Intuitively we can see that if xi is an important factor,

high values of f(X(1)
m ) will be multiplied by high values of f(X(2)

(∼i)m, x
(1)
im) and low values by low

values resulting in a high value for V̂i. If xi is not influential high and low values of the two terms

will be paired randomly and V̂i will be lower. The computational cost associated with calculating

a complete set of first order effects is N(k+1) model evaluations, one sample of size N to calculate

f̂0 and V̂ and k samples of size N, in which factor i = 1, ...k is kept the same. The accuracy of the

estimates provided by the Monte-Carlo integrals will increase as the sample size, N, is increased.

Unfortunately there is no way to know what a sufficient value of N will be before conducting the

analysis. It is therefore necessary to check the convergence of the indices as the sample size is in-

creased. Typically N will be of the order of a few hundred to a few thousand to obtain satisfactory

convergence of the indices.

The second order effects require estimates for Vij which are given by (Homma and Saltelli, 1996):

V̂ij =
1
N

N∑
m=1

f(X(1)
m )f(X(2)

(∼ij)m, x
(1)
im, x

(1)
jm)− f̂2

0 − V̂i − V̂j (4.22)

where all factors except xi and xj are resampled in the second term in the product. Similar

expressions can be derived for the higher order terms.

It can be seen from the definitions given above that the calculation of each effect requires the

evaluation of the model for an additional sample of size N. The decomposition in equation 4.16

contains 2k− 1 terms, therefore the total cost of evaluating all effects is N2k. This is not practical

unless k is small.

Total Effect Indices

As an alternative to calculating the entire set of indices, Homma and Saltelli (1996) suggested a

single measure which captures the total effect of a factor on the model output. The measure is

based on the idea introduced by Sobol (1993) of partitioning the factors into two subsets. If we

define one set to contain only factor xi and the other set X∼i contains all other factors then the

total variance can be written as:

V = Vi + V∼i + Vi,∼i (4.23)
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and the total effect of xi on the output is:

V tot
i = Vi + Vi,∼i = V − V∼i (4.24)

The total effect index is defined as:

STi =
V tot

i

V
= 1− V∼i

V
(4.25)

and describes the total variance accounted for by factor i individually and in all possible interactions

with other parameters. Saltelli (2002) showed that the total effects can be calculated together with

the first order effects for the extra cost of N model runs using equation 4.21 to estimate V∼i:

V̂∼i =
1
N

N∑
m=1

f(X(2)
m )f(X(2)

(∼i)m, x
(1)
im)− f̂2

0 (4.26)

The set of Sis and STis provide an efficient way to quantify the importance of individual inputs

and interaction terms at the expense of information about specific interactions.

The Sobol indices have a number of useful properties. Firstly the sum of the sensitivities of all

orders is always equal to 1 and the sum of the first order effects Si will be ≤ 1. The difference

between
∑

i Si and unity provides a measure of the amount of variance which is accounted for by

interactions. Similarly, for any parameter i, the difference between Si and STi indicates the extent

to which it is involved in interactions. The sum of the STis will typically be larger than 1 because

interactions are counted multiple times.
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Computing the Sobol Indices

The computation of the first order and total effect Sobol indices can be carried out using the

following steps:

1. Generate two N by k random input matrices X(1) and X(2)

2. Construct k, N by k “resample” matrices X(2)
(∼i), x

(1)
i in which the ith column is taken from

X(1)

3. Solve the model for each of the N(k + 2) input vectors

4. Calculate estimates for f0 and V using equations 4.19 and 4.20

5. Calculate estimates for Vi and V∼i using equations 4.21 and 4.26 for each parameter i =

1, ....., k

6. Calculate the Sis and STis

4.3.2 Principal Component Based Sobol Indices

In section 4.2.3 functional PCA was used to extract the key modes of variation from a Monte-Carlo

output of the insulin model. This section shows how the Sobol method can be used to investigate

how these modes of variation depend on the parameter values by applying the method to the PC

scores.

The application of the Sobol method to the principal components requires an additional step

in the computational algorithm outlined above. After evaluating the model for each input vector

functional PCA is used to calculate the principal components of the set of N(k+2) model outputs.

Steps 4-6 are then carried out for each principal component using the PC scores as the model

“output”. This gives us a set of first order and total effect indices Sz
i and Sz

T i for each PC

z = 1, ....q.

Using the same parameter ranges and input function described in section 4.2.3 the PCA Sobol

method was applied to the insulin model. A sample size N = 2000 was used to ensure convergence

of the indices. The PCs calculated from the Sobol output are the same as those shown in figure 4.2

as were the fractional variances they describe. The first order and total effect indices are shown in

figure 4.3 for the first three PCs.

Only 10 parameters have significantly non-zero effects on the model output. These are all

involved in the post receptor signalling pathway with the exception of k−3 the rate of insulin

dissociation. The parameters of the receptor recycling subsystem have no effect on the model
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Figure 4.3: The first order and total effect Sobol indices of the insulin model. The three plots
show the indices for the scores of the first three principal components.
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output. This would appear to agree with the view that post insulin receptor defects represent the

primary sites leading to insulin resistance (Pessin and Saltiel, 2000).

The first PC primarily affects the maximal phosphorylation of GSK3. The conversion of

PI(4,5)P2 to PI(3,4,5)P3 (k9stim) and the de/phosphorylation of GSK3 (k−15 and k15d) are found

to be particularly important in producing variation in the scores on this component. The lesser im-

portance of PI3K activation and inactivation, k8 and k−8, supports the experimental observations

that reduced insulin stimulated activation of PI3K does not affect the downstream activation of

Akt (Kim et al., 1999). There is little interaction between parameters as indicated by the minimal

differences between the first order and total effects for individual parameters and the sum of the

first order indices,
∑

i S
1
i = 0.97.

The uncertainty in the second PC score is dominated by k−3 which accounts for 65% of the

variation in this component. k−3 describes the deactivation of insulin receptors resulting from

dissociation of insulin and dephosphorylation of the receptor by PTPs. This explains its impor-

tance in controlling the reactivation of GSK3 following removal of the external insulin input (the

behaviour described by the second PC). This result is also consistent with experimental evidence

that insulin signalling can be enhanced by reducing the activity of PTPs (Goldstein et al., 1998)

and that PTPs represent potential therapeutic targets for the management of insulin resistance

(Drake and Posner, 1998). Figure 4.3 also shows that there is an increased role of interactions in

the second PC (
∑

i S
2
i = 0.74). This is particularly evident in the case of k−3 where the difference

between the total and first order indices is 0.11.

The third PC (which describes the initial phosphorylation of GSK3) is largely controlled by

k−15, the dephosphorylation rate of the kinase. This is in line with the view that processes

downstream of Akt are crucial in propagating the insulin signal (Brady and Saltiel, 1999). As with

the second PC there is a significant interaction effect, especially for the parameters k8, k9stim,

k11d and k15d. The importance of interactions highlights the need to use global SA methods to

understand the behaviour of biological systems. Local methods, in which parameters are varied

one at a time do not allow the possible effects of interactions between parameters to be explored.

This section has shown how the Sobol method can be used to quantify the effects of the model

parameters on the modes of variation described by the principal components. It is also of interest

to know which parameters are most important in terms of their effect on the entire model output.

This information is given by the overall sensitivity indices, SO
i and SO

Ti defined in the next section.
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4.3.3 The Overall Sensitivity Index

The PC based Sobol indices Sz
i give the fraction of the variance in the zth PC score which is due

to the ith parameter. If we define V z
PC to be the fraction of the total variance described by the zth

PC then:

SO
i =

q∑
z=1

Sz
i V

z
PC (4.27)

quantifies the fraction of the total output variance due to the individual effects of parameter i.

This is a measure of the overall first order effect of parameter i on the model output. Similarly the

overall total effect of parameter i (including its interactions with other parameters) is given by:

SO
Ti =

q∑
z=1

Sz
T iV

z
PC (4.28)

Because the variance described by successive PCs decreases rapidly it is not necessary to include

all the principal components, z = 1, ...., q, in the summations in equations 4.27 and 4.28. A good

approximation of the overall sensitivities can be obtained by using a subset, qs, of the PCs.

Table 4.1 contains the overall first and total order sensitivities for the insulin model calculated

using 1,2,3 and 4 PCs. The parameters are listed in order of increasing importance (for qs = 2).

The results show that increasing the number of PCs beyond qs = 2 has a minor effect on the

quantitative values of the sensitivities and importantly makes no difference to the importance

ranking of the parameters.
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SO
i SO

Ti

Parameter qs = 1 qs = 2 qs = 3 qs = 4 qs = 1 qs = 2 qs = 3 qs = 4
k−1 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001
k−2 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001
k3 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001
k
′

−4 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001
k−5 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001
k6 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001
k1 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002
k2 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002
k4 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002
k−4 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002
k
′

4 0.00011 0.00016 0.00016 0.00016 0.00011 0.00016 0.00016 0.00016
k7 0.01446 0.01511 0.01511 0.01542 0.01641 0.01958 0.01967 0.02006
k−7 0.01671 0.02160 0.02160 0.02188 0.01680 0.02162 0.02163 0.02215
k−3 0.01890 0.07310 0.07310 0.07378 0.02141 0.08496 0.08513 0.08682
k−8 0.09520 0.09553 0.09562 0.09565 0.09525 0.09836 0.09891 0.09911
k8 0.09732 0.09800 0.09810 0.09810 0.09761 0.09889 0.09962 0.09982
k−11 0.11304 0.11420 0.11425 0.11425 0.11865 0.12267 0.12327 0.12346
k11d 0.11440 0.11548 0.11564 0.11565 0.12259 0.12638 0.12721 0.12739
k9stim 0.13634 0.13634 0.13642 0.13642 0.13906 0.14325 0.14411 0.14429
k15d 0.13687 0.13879 0.13901 0.13901 0.13910 0.14346 0.14441 0.14459
k−15 0.14253 0.14492 0.14887 0.14887 0.14827 0.15256 0.15694 0.15726

Table 4.1: The first and total order overall sensitivity indices of the insulin model. The overall
indices measure the sensitivity of the entire model output to the model parameters. The values

are calculated using 1, 2, 3 and 4 PCs. The inclusion of higher order PCs has a minimal effect on
the quantitative values of the indices. For qs > 2 no change is observed in the ranking of the

parameters by the overall sensitivities.

4.3.4 Time Varying Sobol Indices

The usual approach to sensitivity analysis of time-dependent model output is to calculate the sen-

sitivities at each discrete time point at which the model is evaluated. The time-varying sensitivities

of the insulin model have been calculated for comparison with the PC based results. The indices

are displayed as cumulative area plots. Such plots allow the information on multiple parameters to

be displayed in a single figure and provide a visual representation of the total amount of variance

explained by the first order effects.

Figure 4.4 shows how the first and total effect Sobol indices vary over time in the insulin model.

The ten most influential parameters are displayed, the indices for other parameters being zero or

close to zero. These are the same parameters identified as influential by the PCA based method.

It can be seen that there are three distinct phases in the sensitivity profiles. These correspond to

the first three principal components.

Between 0 and 10 minutes the model output describes the initial phosphorylation of GSK3. This

phase corresponds to the third PC. Like the PC based indices the variation in this phase involves
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interactions between the model parameters. However, unlike the PC indices, the sensitivity is

more evenly distributed among the parameters of the post receptor signalling pathway with less

importance ascribed to k−15. From ∼ 10 minutes to ∼ 35 minutes the model output is in steady

state, as described by PC1. The variation in this phase is almost completely described by individual

effects and dominated by the processes in the post receptor signalling pathway. From ∼ 35 minutes

onwards the importance of k−3 increases significantly, accounting for ∼ 40% of the variance at

t = 60 minutes. This is consistent with the results for the second principal component. There is

also an increase in the interaction effects during this phase.

In the case of the insulin model the time-varying sensitivities are relatively easy to interpret

and provide similar information about the model behaviour as the PC based indices. However,

the model output is quite simple and the behaviour is clearly divided into three phases which

correspond to the first three principal components. For more complicated functional output this

is not necessarily the case and it can be difficult to extract information about different aspects of

the output. This is shown by the analysis of the glucagon receptor model presented in the next

section.
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Figure 4.4: The time varying Sobol indices of the insulin model. Panel a shows the first order
indices, panel b shows the total effects. The indices are displayed as cumulative area plots.
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We can also obtain a measure of the effect of a parameter on the complete model output by

calculating the average of the time-varying sensitivity indices (first order or total) over all time

points.

SAvg
i =

1
T

T∑
j=1

Sj
i (4.29)

where Sj
i is the sensitivity of the model output at time point tj to parameter i and T is the number

of time points. Figure 4.5 shows the results for the insulin model. The ranking obtained using

SAvg is the same as that given by SO.
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Figure 4.5: The first order and total effect Sobol indices of the insulin model based on a time
average.

The problem with this measure is that, unlike the overall sensitivity indices (equations 4.27 and

4.28) in which the components of the sum are weighted by the amount of variance they describe,

each time-point is given equal weight in the summation in equation 4.29. This has the potential to

incorrectly identify as important parameters which have little effect on the overall variation in the

model output. This is demonstrated by the application to the glucagon receptor model presented

below.

As a final point, it is worth noting that the time-varying and PCA based sensitivities can be
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obtained from the same set of model evaluations. As the main expense of the variance based

methods is in the evaluation of the model it is possible to calculate both sets of indices to compare

the information they provide at little additional computational cost.

4.3.5 Application of the Sobol Method to the Glucagon Receptor Model

This section demonstrates the application of the approach developed above to the glucagon receptor

model. The model (see section 3.3.2) describes the activation of PLC by glucagon via G-protein

coupled receptors. The behaviour of the model at its nominal parameter point in response to a

repeated glucagon stimulus is shown in figure 4.6. The model displays a reduced response to the

second stimulus due to desensitisation of the receptor.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  50  100  150  200

Ac
tiv

e 
PL

C

Time (secs)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  50  100  150  200

G
lu

ca
go

n 
(µ

M
)

Time (secs)

Figure 4.6: The output of the glucagon receptor model at its nominal parameter values in
response to a repeated glucagon stimulus (inset).

Principal Component Sobol Indices

The method was applied to the model using the repeated glucagon stimulus as an external input.

For the purposes of an initial exploration uniform distributions for each parameter in the range

±50% of the nominal values were used. Figure 4.7 shows the first three PCs of the model output

together with their effects on the mean timecourse. The first three components capture 98.2% of

the output variance.

The principal components are less easy to interpret than those of the insulin model. The first
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Figure 4.7: The first 3 principal components of the glucagon receptor model output calculated
from an expansion of the data using b-splines. Panels a,c, and e show the PC curves. Panels b,d,

and f show the mean model output (solid line) plus (dotted line) and minus (dashed line) a
multiple of the principal components. The percentages show the amount of the total variation
described by each component. Together the first 3 principal components describe 98.2% of the

variation in the model output.

74



Global Sensitivity Analysis of Time Dependent Model Outputs

PC primarily describes variation in the magnitude of the PLC response to glucagon stimuli. This

is the most important mode of variation in the data set. The second component describes the

sharpness of the PLC response to both stimuli. Model runs with positive scores on this component

have broader peaks of PLC while negative scores are associated with narrow peaks. Principal

component three also has an effect on both peaks, but most interestingly shows the existence of a

fluctuation in the first peak of PLC.

Figure 4.8 shows the first order and total effect indices for the first three PCs of the PLC

timecourse. PC1 is most sensitive to K23, the rate of G-protein activation and kplc1, which governs

the inactivation of G-proteins by PLC. This suggests that it is the amount of activated G-protein

which is most important in driving the magnitude of the PLC response. The importance of kplc1

is consistent with experimental evidence that PLC plays an important role in switching off the

signal from GPCRs. It achieves this by increasing the activity of GTPases which hydrolyse the

GTP bound to active G-proteins resulting in their deactivation (Berstein et al., 1992; Cook et al.,

2000). PC1 is also influenced by kp and B2 which are involved in the desensitisation of ligand

bound receptors. Receptor desensitisation is known to be an important part of GPCR signal

transduction, limiting “potentially harmful effects” resulting from prolonged receptor stimulation

(Kohout and Lefkowitz, 2003).

The second PC is controlled by the same parameters as PC1 and k−1 and k1, the rates of

receptor ligand binding and dissociation. These processes govern the amount of active receptor

which in turn produces active G-proteins. This suggests that these parameters play a role in the

sharpness of the PLC response.

The third PC is largely dependent on kplc1 and kPC which determine the deactivation of G-

proteins by PLC and the rate of PLC activation by active G-proteins. Both parameters also

have significant interaction effects as shown by the difference between their first order and total

effect indices. This suggests that the interaction between these parameters may be important in

producing the fluctuation in the first PLC peak.
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Figure 4.8: The first order and total effect Sobol indices of the glucagon receptor model. The
three plots show the indices for the scores of the first three principal components
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Figure 4.9: The first order and total effect overall Sobol indices of the glucagon receptor model.
These describe the effect of parameters on the entire model output.

Figure 4.9 shows the overall sensitivity indices for the glucagon receptor model. The following

parameters have minimal effects overall or on any individual component: ksp, ks, kr, kh, kcal1, kcal2,

kplc2, A0, B1, kPC1 and kPC2. This suggests that the sequestration of receptors is unimportant

(ksp, ks, kr) as is the affect of active G-proteins on the phosphorylation of ligand bound receptors

(A0, B1). While kplc2 is not identified as important, the other parameter involved in the inactivation

of G-proteins by PLC (kplc1) is found to be the second most important parameter overall. Perhaps

surprisingly, the parameters governing the deactivation of PLC (kPC1 and kPC2) have little effect.

The lack of sensitivity to kcal1 and kcal2 is expected as the calcium concentration was set to zero in

this analysis. The overall effects of k−1, k1 and kPC are also small because they only significantly

affect the lower order components which describe relatively small amounts of the total variance.

Time Varying Sobol Indices

Figure 4.10 shows the time varying Sobol indices for the glucagon receptor model. Unlike the case

of the insulin model where the output was relatively simple it is difficult to relate these results

to the different types of variation in the output described by the principal components. It is not

obvious from these plots that there is variation in both the magnitude and sharpness of the PLC
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response or that it is possible to see a fluctuation in the first response.
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Figure 4.10: The time varying Sobol indices of the glucagon receptor model. Panel a shows the
first order indices, panel b shows the total effects. The indices are displayed as cumulative area

plots.
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These results also highlight another problem with the use of time-varying sensitivities. Based

on figure 4.10 one might assume that kh was important in determining the behaviour of the

model. This view is supported by the time-averaged sensitivities calculated using equation 4.29 and

displayed in figure 4.11 which show kh to be the most important parameter. However, inspection

of the model output (figure 4.6) shows that in the periods where kh is shown to be important (the

time between glucagon stimuli) there is minimal variation in the model output. kh therefore has

a minimal effect on the overall variation in the model output as predicted by the use of principal

component based sensitivity measures.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

O
ve

ra
ll S

ob
ol

 In
di

ce
s

k -
1 k 1 k s
p k s k r

K 2
3 k h

k c
al

1

k c
al

2

k p
lc1

k p
lc2 k p A 0 B 1 B 2 k P

C

k P
C1

k P
C2

Parameter

First-order

Total

Figure 4.11: The first order and total effect Sobol indices of the glucagon receptor model based
on a time average.

4.4 Screening Methods

The preceding section has shown how the variance based method of Sobol can be combined with

PCA to investigate the sensitivity of time dependent output of biological models. The main draw-

back with variance based methods is their computational cost. When a model contains many input

factors or takes a long time to evaluate the computational expense may prohibit a complete quan-

titative sensitivity analysis using such methods. Even in the case of the insulin model, which takes
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approximately te = 2 seconds to evaluate and has k = 21 uncertain parameters, the computational

time required to generate a full set of first order and total effect Sobol indices is on the order of

days on a personal computer (the number of model runs required to generate a single estimate of

the Sis and STis using the Sobol method is N(k + 2). The insulin model needed a sample size of

N = 2000 to ensure convergence of the indices, therefore requiring 46000 model evaluations. At a

computational time of 2s per run, this requires approximately 1.06 days).

An efficient alternative to a quantitative analysis is provided by a class of SA methods known

as screening designs. The second half of this chapter describes the use of screening methods to

investigate the sensitivity of the principal components to the model parameters.

It is often assumed that the number of important factors in a model is small compared with

the total number of factors. This is based on the idea that the importance of the factors follows

Pareto’s Law (Saltelli et al., 2004) which suggests that, for many events, 80% of the effects come

from 20% of the causes. Screening designs, defined by Campolongo and colleagues (in Saltelli et al.,

2000a, chp. 4) as “any preliminary activity that, independently of the number of experimental runs

it uses, aims to discover which of the input factors involved in a model are important, i.e. control

most of the output variability”, can be used to generate a list of these few important factors which

can then be investigated in greater detail.

Typically screening methods are designed to have low computational cost, requiring a small

number of model evaluations. The trade off for this economy is that the methods tend to provide

qualitative measures of sensitivity, for example ranking the input factors in terms of importance,

but give no information about how much more important one factor is than another.

A number of screening designs have been proposed in the literature including one-at-a-time

(OAT) methods (in particular the method proposed by Morris (1991)), Cotter’s design (Cotter,

1979), iterated fractional factorial design (IFFD) (Andres and Hajas, 1993) and sequential bifur-

cation (SB) (Bettonvil and Kleijnen, 1997). IFFD and SB are both group-screening techniques

(Saltelli et al., 2000a) in which factors are combined into groups prior to the analysis. IFFD pro-

duces good results only if a very small number of inputs determine the variability in the model

output while SB requires the user to know the signs of the effects (i.e whether a factor has a

positive or negative influence on the output) before the analysis is performed. Cotter’s design is

computationally efficient and requires no prior assumptions about the input/output behaviour of

the model but it does have one main drawback. If a factor has effects on the model response which

cancel each other out it may not be identified as important by the method (Cacuci et al., 2003).

Compared to the other methods, Morris’s design (together with the extensions to it proposed by

Campolongo et al. (2007)) “has the benefit of a greater applicability” (Saltelli et al., 2004) and has
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been shown to be “a very good compromise between accuracy and efficiency” (Campolongo et al.,

2007). The method is described in the following section.

4.4.1 Morris’s OAT Method

One-at-a-time (OAT) designs evaluate the effect of varying one factor while all others are held

constant. The standard approach is to fix each input at some nominal value, often taken from the

literature, to define a “control” scenario. Each factor in turn is then varied to two extreme values,

usually equidistant either side of the nominal value. The differences between the model outputs at

the extreme and control values are then used to rank the inputs.

OAT designs are typically forms of “local” sensitivity analysis. The factors are varied by small

amounts around the nominal point and the results of the analysis only identify the model behaviour

in the small region of the input space around this point. The results are dependent on the choice

of this point and, especially if the model contains strong non-linearities, selection of a different

nominal point can produce vastly different outcomes. This problem can be overcome by using the

OAT method proposed by Morris (1991).

Morris’s OAT method is based on the standard OAT approach described above but removes

the dependence on the choice of control point by calculating r local measures for each factor at

different nominal points, X1, ...,Xr, where Xj is a k-vector of values xj1, ..., xjk for the k input

factors. The nominal points are chosen such that each input is varied over its entire range. The

distribution of these individual randomised local measures for a given factor can than be used as an

approximation of its global sensitivity. The numerical details of the method are described below.

For a model with k inputs, each of which can take one of p values in the set {0, 1/(p−1), 2/(p−

1), ..., 1}, Morris defines the elementary effect of the ith factor at point X (note we have dropped

the j subscript for convenience) as

di =
[y(x1, ..., xi−1, xi + ∆, xi+1, ..., xk)− y(X)]

∆
(4.30)

where ∆ is a predetermined multiple of 1/(p − 1) and X is such that X + ∆ is still in the set of

allowable values for each factor k. The distribution of elementary effects for input i, Fi, can be

approximated by generating a random sample of r elementary effects from Fi. r is typically in

the region of 10 (Campolongo and Saltelli, 1997; Saltelli et al., 2004). The mean and standard

deviation of this sample can be used to assess the importance of the factor. A high mean, µ,

indicates an input with an important overall effect on the output. A high standard deviation, σ,
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indicates a factor with non-linear effects on the output or one which is involved in interactions

with other factors. Plots of µ versus σ can be produced to visualise the results.

The simplest way to generate r samples for k factors requires 2rk runs. The model must be

run twice for each elementary effect, once at X and once at X + ∆. The key to the Morris method

is a more efficient design which requires r(k + 1) model runs to generate the necessary samples.

The method proceeds as follows:

• randomly select a base value X∗ for X, each component being sampled from the subset of

possible values {0, 1/(p− 1), ..., 1−∆}

• increase one or more of the components of X∗ by ∆ such that the resulting vector X(1) is

still in the set of possible values

• generate the second sampling point X(2) from X∗ with the property that it differs from X(1)

in the randomly selected ith component by ±∆.

• select X(3) such that it differs from X(2) for only one component j 6= i by ±∆

The last step is repeated to produce a succession of k+1 input vectors X(1), ...,X(k+1) in which

two consecutive vectors differ in only one component and any component i of the base vector has

been selected once to be increased by ∆. These k+ 1 vectors form a trajectory in the input space

and define a (k+1)×k matrix B∗ whose rows are the input vectors. If the model is then evaluated

for each vector (note that X∗ is not used to evaluate the model), an elementary effect can be

calculated for each factor as:

di(X(l)) =
[y(X(l+1))− y(X(l))]

∆
(4.31)

By generating r such “design” matrices B∗ we can produce a sample of elementary effects of size

r for each factor. B∗ can be constructed as follows:

B∗ = (Jk+1,1x∗ + (∆/2)[(2B− Jk+1,k)D∗ + Jk+1,k])P∗ (4.32)

where B is a (k+ 1)× k matrix with elements that are 0s and 1s such that for every column there

are two rows of B that differ in only one element (a convenient choice is a strictly lower triangular

matrix of 1s), Jk+1,k is a (k + 1) × k matrix of 1s, D∗ is a k-d diagonal matrix with elements

either +1 or −1 with equal probability and P∗ is a k × k random permutation matrix in which
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each column contains one element equal to 1 and all others equal to 0 and no two columns have

1s in the same position.

As with the Sobol method we can use this approach to investigate the sensitivity of the principal

components of the model output. After evaluating the model for each input vector in the r design

matrices PCA can be used to find the principal components of the set of r(k + 1) model outputs

and elementary effects calculated for the scores of each PC.

Extensions of the Morris Method

Two improvements to the Morris method have recently been proposed by Campolongo et al. (2007).

The first is the use of an alternative to the mean, µ, as a measure of a factor’s importance, the

second is an improved strategy for selecting the r design matrices. Both improvements are used in

the present study.

If the sample of elementary effects for a given factor contains both positive and negative ele-

ments, that is the relationship between the factor and the model output is non-monotonic, they

may cancel out producing a low value of µ for an important factor. To overcome this, it has been

suggested (Campolongo et al., 2007) that the mean of the absolute values of the elementary effects,

denoted µ∗ should be used. This modified Morris measure has been shown empirically to be a good

proxy for the total effect indices, STi, of the variance based measures.

The method proposed by Morris for constructing the r design matrices, B∗, does not ensure that

the resulting trajectories will give a good coverage of the input space. The improvement suggested

by Campolongo et al. (2007) is first to generate a large number of trajectories M ≈ 500−1000 and

then select the r trajectories with the highest “spread”. This is achieved by defining the distance

between two trajectories as the sum of the geometric distances between all the pairs of points and

selecting the set of r trajectories with the greatest total distance between them. This approach

improves the coverage of the input space without significantly increasing the computational cost,

the model is still only evaluated r(k + 1) times.

Scaling of Elementary Effects

In the description of the method given above it was assumed that each input takes values in

the range [0, 1]. In reality each parameter may have different ranges based on its uncertainty

distribution. This can result in different values for ∆ for each parameter. In these circumstances it

is important to consider the effect of ∆ on the elementary effects. As the calculation of elementary

effects involves division by the parameter step size, ∆ (see equation 4.31) parameters with small

values will produce larger effects. This can cause the incorrect classification of the importance of
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parameters. This problem can be overcome by applying scaling to the calculation of the elementary

effects.

The need to scale the elementary effects was highlighted by Sin and Gernaey (2009). They

suggested using “standardized elementary effects” calculated using equation 4.33:

di(X(l)) =
[y(X(l+1))− y(X(l))]

∆
σxi

σyj
(4.33)

where σyj and σxi are the standard deviations of outputs yj (in this case the PC scores) and inputs

xi. The scaling of the elementary effects also removes the dependence on the magnitude of the

model output. This allows the effects of a parameter on different outputs to be compared. This is

important in the definition of the overall Morris measure (see below). This approach to the scaling

of the elementary effects has been implemented in this work.

Overall Morris Measure

As with the PCA based Sobol indices we can define a measure of the overall importance of a

parameter on the entire output using the Morris method and the principal components. The

overall Morris measure µ∗Oi for parameter i is given by:

µ∗Oi =
q∑

z=1

µ∗,zi V z
PC (4.34)

While this is not a quantitative measure of the variance described by input i it does provide a

weighted measure of the overall effect of parameter i on the model output.

4.4.2 Application of the Morris Method to the Insulin and Glucagon

Receptor Models

The Morris method was applied to the insulin and glucagon receptor models using the same

parameter ranges and external input functions as used in the application of the Sobol method.

After constructing a design matrix, the model was evaluated for each of the r(k+ 1) input vectors.

Principal component analysis was then applied to the set of r(k + 1) model outputs and the

elementary effects calculated on the principal component scores.

When using the Morris method it is necessary to select appropriate values for p, the number of
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levels of each parameter, and r, the number of repetitions. The two are related in that increasing p

does not increase the performance of the method unless the number of repetitions is also increased.

There is no formal method for selecting r and p, but previous studies have suggested that good

results can be obtained using r = 10 and p = 4 (Campolongo and Saltelli, 1997). Tests on the

insulin and glucagon receptor models show that the values r = 20, p = 8 produce consistent

rankings of the parameters.

Insulin Model

Figure 4.12 shows the results of applying the Morris method to the insulin model. Panels a,c and e

show the first three principal components. They are qualitatively similar to those calculated during

the application of the Sobol method and represent the same types of variation in the model output.

They also account for similar proportions of the total output variance. Panels b,d and f show the

absolute mean µ∗ of the elementary effect against the standard deviation σ for each parameter.

The results show that the Morris method identifies the same 10 parameters as important as the

Sobol method and that many of the specific features of the quantitative sensitivities are captured.

For the first PC, k−3, k7 and k−7 are found to have a small effect while the remaining parameters

of the post receptor signalling pathway are identified as significantly more influential. The effect

of non-linearities or interactions is small, as indicated by the relatively low values of σ.

For the second PC, the parameters of the post receptor model are clustered together and found

to have more significant non-linear or interaction effects as shown by the higher values for σ. k−3

is identified as the most influential factor and also found to have a non-linear or interaction effect.

Panel f shows that k−15 is the most influential factor on the third PC as predicted by the Sobol

method. The importance of interactions on this PC is also captured by the high values of σ for

k8, k9stim, k−11, k11d and k15d.

The similarity between the ranking of parameters produced by the Sobol and Morris methods is

shown in figure 4.13 where the total effect indices of Sobol are plotted against the modified Morris

measure µ∗.

The overall effects of the parameters on the model output are shown in figure 4.14. The ranking

of the parameters is largely the same as that given by the overall Sobol indices (see table 4.1).
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Figure 4.12: The results of applying the Morris method to the insulin model. The left hand
figures show the first three principal components extracted from the data set. The variance
explained by each PC is shown in brackets. The right hand figures show the mean, µ∗, and

standard deviation, σ, of the elementary effects for each input. Number of levels p = 8, number
of repetitions, r = 20.
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Figure 4.13: A comparison of the Sobol and Morris methods for the insulin model. The total
effect Sobol indices are plotted with the modified Morris measure µ∗ for each of the first three

PCs.
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Figure 4.14: The overall Morris measures for the insulin model.

Glucagon Receptor Model

Figure 4.15 shows the principal components and Morris measures for the first three PCs of the

glucagon receptor model. As with the insulin model the principal components represent the same

type of variation as found via the Sobol method. The mean and standard deviation of the elemen-

tary effects show that the same parameters are identified as important in determining the model

behaviour. This is shown more clearly in figure 4.16 in which the Sobol and Morris measures are

plotted side-by-side. While the ranking is not identical the same subset of parameters is shown to

be important by each method.
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Figure 4.15: The results of applying the Morris method to the glucagon receptor model. The
left hand figures show the first three principal components extracted from the data set. The

variance explained by each PC is shown in brackets. The right hand figures show the mean, µ∗,
and standard deviation, σ, of the elementary effects for each input. Number of levels p = 8,

number of repetitions, r = 20.
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Figure 4.16: A comparison of the Sobol and Morris methods for the glucagon receptor model.
The total effect Sobol indices are plotted with the modified Morris measure µ∗ for each of the

first three PCs.
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The overall effects (figure 4.17) also show the same qualitative information as the Sobol overall

indices (see figure 4.9).
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Figure 4.17: The overall Morris measures for the glucagon receptor model.

4.4.3 Computational Times

This section has shown that the Morris method produces sensitivity information which is consistent

with the results of the variance based method of Sobol. Importantly the computational time

required to calculate these results is of the order of tens of minutes, significantly less than the

Sobol method. The main computational effort of both methods is the evaluation of the model.

The two methods require r(k + 1) and N(k + 2) model runs respectively. Typical values for r

are of the order of 10 (Campolongo and Saltelli, 1997; Saltelli et al., 2000a) while N is of the

order of a thousand. For a given model, the Morris method therefore requires fewer model runs

and hence has a lower computational cost. As an example, the computational time for the insulin

model (k = 21) using the Morris method (r = 20) is approximately 15 minutes while for the Sobol

method (N = 2000) it is 1.06 days. For the glucagon receptor model (k = 18) the Morris method

(r = 20) takes approximately 9.5 minutes to evaluate the model compared with 16.7 hours for the

Sobol method (N = 2000).
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The reduced computational cost of the Morris method means it is practical to run the analysis

numerous times, for example to study the effects of different external inputs on the sensitivity of

the model.

4.4.4 Investigating the Effect of the Input Function

The behaviour of the insulin model (and any model in general) will depend on the external input,

in this case the insulin concentration. It is also possible that the sensitivities are dependent on the

external model input as found by Liu et al. (2005) when using a local sensitivity analysis to study

a model of epidermal growth factor mediated signalling. To investigate this potential dependence

the Morris method was applied to the insulin model for a range of insulin concentrations. Figures

4.18 and 4.19 show how the principal components and their sensitivities (measured by µ∗) depend

on the concentration. The principal components are qualitatively similar and describe the same

types of variation for each insulin concentration. The distribution of the total variance is also

similar.

The most obvious difference in the sensitivities is the increased importance of k1, the association

constant for the first insulin molecule, as the insulin concentration is changed. It is realistic that at

lower insulin concentrations, when there is insufficient ligand to saturate the receptor the affinity

of the receptor for insulin would have a greater effect on the model output. However, it should be

noted that the relationship between the importance of k1 and the insulin concentration appears to

be non-monotonic.

These results show the importance of considering the effect of different scenarios or input

functions on the sensitivity of the model. Depending on the external inputs to the model, different

parameters are identified as important.

In the case of the composite model described in chapter 3 the external input to a given com-

ponent model is dependant on the behaviour of the other sub-models. It is therefore necessary

to study the complete model to understand the sensitivity of the system to uncertainties in the

component model parameters. The next chapter discusses approaches to this task.
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Figure 4.18: The effect of the external insulin concentration on the first three principal
components of the insulin model. (1× 10−12 (red), 1× 10−10 (blue), 1× 10−8 (green), 1× 10−6

(black)).
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Figure 4.19: The effect of the external insulin concentration on µ∗ for the first three PCs.
(1× 10−12 (red), 1× 10−10 (blue), 1× 10−8 (green), 1× 10−6 (black)).
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4.5 Discussion and Conclusions

In biological modelling we are often interested in the dynamic output of a model. However, the

current approaches to the sensitivity analysis of dynamic model outputs have drawbacks. In

particular the use of time-varying sensitivities makes it difficult to draw conclusions about the

effects of parameters on specific features of the model output. This chapter has discussed an

alternative approach to performing this analysis. The method, based on a suggestion by Campbell

et al. (2006), uses a principal component analysis of the functional model output to extract the key

modes of variation from the data. Sensitivity analysis is then applied to the principal component

scores to investigate how these modes depend on the model parameters.

In section 4.3 this approach was developed using the variance based method of Sobol to perform

the sensitivity analysis. The Sobol method is a global SA technique which quantifies the fraction

of the total variance in the model output accounted for by each parameter, both on its own and

through its interactions with other parameters. The PC based approach was applied to both the

insulin and glucagon receptor sub-models of the multi-scale glucose homeostasis model described

in chapter 3.

The results were compared to the time-varying sensitivities also calculated using the Sobol

method. The results demonstrate that the PC based measures provide additional information on

important behaviours of the model which would not be inferred from the time-varying indices.

This is a key benefit of the use of principal components; the features are extracted directly from

the data and are based on the important variation in that data rather than predetermined ideas

of what is important.

The use of principal component analysis also allows the definition of an overall sensitivity, the

importance of a parameter on the entire model output. This overall sensitivity weights the modes

of variation described by the PCs by the amount of variance they account for. This avoids the

problem encountered when using time-varying sensitivities of incorrectly identifying a parameter

as important when it describes little of the variance in the overall output.

The main drawback of the Sobol method is its computational cost particularly when a model

contains a larger number of parameters. In the second half of this chapter the use of a more efficient

sensitivity analysis technique has been presented. The Morris method is a screening design which

provides a measure of the sensitivity of parameters at a reduced computational cost. The method

is based on a series of local measures or elementary effects and provides a qualitative measure of

the overall importance of a parameter and its non-linear or interaction effects.

The Morris method was applied to the insulin and glucagon receptor models using the principal
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component scores as the model “output”. The method identified both the same important modes

of variation and the same important parameters as the more costly Sobol method and provides a

practical approach to the analysis of models containing large numbers of parameters.

The efficiency of the Morris method means it can be used to perform repeat analysis, for

example to study the effects of the external inputs to a model on the sensitivities. Analysis of

the insulin model showed that the sensitivities are dependent on the insulin concentration. In a

composite model this input will be determined by the behaviour of the other component models

highlighting the importance of studying the complete system. This will be discussed in more detail

in chapter 5.

A similar approach to the sensitivity analysis of dynamic model output has recently been utilised

by Lurette et al. (2009) to study an epidemiological model describing the infection dynamics of

salmonella in pigs. The methodology was presented by Lamboni et al. (2008) in a technical report

of the French National Institute for Agricultural Research where it was applied to an agronomic

model of wheat production. The method used a factorial design for the model parameters and

an analysis of variance (ANOVA) to calculate the contributions of individual parameters and two-

factor interactions to the variance in the principal component scores. The sensitivity analysis

methods presented here have the advantage of capturing higher order interactions.

There are limitations to the approach described in this chapter. The approach can be consid-

ered as exploratory. Its major benefit is that it allows us to identify the most important types

of variation in the model output and investigate how these types of variation are sensitive to the

model parameters without any prior assumptions. If however we are interested in a specific type

of behaviour of the model there is no guarantee that it will be well captured by the principal

components because it may not be important in terms of the main variation in the data. Alterna-

tively it may be combined with other types of variation into a single principal component. This is

particularly the case in the higher order effects where multiple physical effects may be described by

a single PC. A better approach to this type of analysis is to implement a computational algorithm

to extract a scalar measure of the feature of interest directly from the data and apply sensitivity

analysis to this value. This approach has previously been used in the analysis of biological systems

(Ihekwaba et al., 2004; Hetherington et al., 2006b). In such cases it may be useful to complement

the specific study with a PCA based analysis. Because the main computational cost of any sensi-

tivity analysis is in the evaluation of the model this will not add significantly to the time required

for the analysis.

A second potential limitation is the ability of principal component analysis to deal with a set

of model outputs which display very different behaviours. This issue was highlighted by Jones
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and Rice (1992) in their use of PCA to investigate the variation in clusters of “similar” curves.

It was suggested that individual curves which are “wildly different” from the general trend would

significantly influence the output of PCA and should be removed by inspection before performing

the analysis. This problem has not been observed in the set of models analysed in this thesis and it

is not apparent where such a situation might arise in the output of a deterministic computational

model. However it is a potential issue which should be considered in future applications of the

approach.
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Chapter 5

Sensitivity Analysis of Composite

Biological Models

This chapter discusses approaches to the sensitivity analysis of composite models consisting of

multiple component models at one or more scales. Two complimentary approaches are presented.

The first uses a group sensitivity analysis to investigate the importance of the various component

models. This is followed by a discussion and demonstration of the concepts of intra and inter

sensitivities which can be used to study the propagation of individual parameter uncertainties

throughout a composite model.

5.1 Introduction

Biological systems, such as the signalling pathways analysed in chapter 4, do not operate in isolation

but form part of larger systems involving processes at a variety of temporal, spatial and biological

scales. The output of a given sub-system can affect, and be affected by, the function of other

sub-systems and the behaviour of the complete system is dependent on these interactions.

Mathematical and computational models are a powerful tool for studying multi-component or

multi-scale systems. They allow us to combine information from different levels into a complete

description of the system. One way to construct such models is to adopt a modular approach,

combining “component” models of the various sub-processes to form a “composite” model describ-

ing the entire system in which component models are connected via their output variables which

act as inputs to other sub-models.

Composite models may contain large numbers of uncertain parameters and have complex struc-
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tures in which the effects of uncertainties and perturbations will not be obvious. Uncertainty in

a component model parameter will not only influence the component model output but may be

propagated through the system, affecting the output at other levels. Sensitivity analysis provides

a way to systematically investigate the effects of such uncertainties.

Most applications of sensitivity analysis in biological modelling have focussed on a single com-

ponent or scale, typically intracellular signalling pathways. This chapter presents approaches to

the analysis of composite models which include multiple component models at one or more scales.

The next section describes the use of group sensitivity analysis to investigate the importance of

component models in controlling the system level behaviour. The second half of the chapter in-

troduces the concepts of intra (within sub-model) and inter (between sub-model) sensitivities and

shows how these can be used to investigate the effect of individual parameters on the function of a

composite model. The work presented in this chapter makes use of the principal component based

approach for the sensitivity analysis of time dependent model output presented in chapter 4.

5.2 Group Sensitivity Analysis

Group sensitivity analysis refers to the use of SA techniques to look at the sensitivity of a model

output to groups of parameters. The ability to work with groups of parameters is a desirable

feature of sensitivity analysis techniques because it reduces the computational cost of the analysis.

If a model contains a large number of parameters it may not be practical to perform a complete

analysis. By considering groups of parameters the number of model evaluations required can be

reduced; the number of parameters k is replaced with the number of groups G < k in formulae for

the number of model runs needed to calculate the sensitivity measures. This reduced computational

demand means it is practical to perform the analysis. However the increased efficiency comes at

the cost of information about the importance of the individual parameters belonging to a group.

This section shows how a group SA approach can be utilised to investigate the sensitivity of

composite models by treating the parameters of each component model as a group. In addition

to increasing the computational efficiency of the analysis (which may be important for composite

models containing large numbers of parameters) the use of group SA allows us to study the sensi-

tivity of the composite model to uncertainty in the output of each component model rather than

individual parameters. This information can be used to identify the component models which are

most important in determining the composite model behaviour. The rest of this section shows

how the Morris method can be used to perform group sensitivity analysis and demonstrates its

application on a biological model.
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5.2.1 The Morris Method on Groups

The ability to work with groups is an important feature of the variance based methods, including

the method of Sobol. It has also been shown (Campolongo et al., 2007) that the Morris method

can be used to look at groups of parameters. Due to the computational efficiency of the Morris

method and its ability to provide results which are consistent with the more expensive variance

based techniques (see chapter 4) this method was chosen to investigate the potential of group SA

in the analysis of composite biological models.

The Morris method, which was introduced in chapter 4, approximates a global sensitivity

measure by calculating r local measures, referred to as elementary effects, for each uncertain

parameter. For a model with k parameters, each of which can take one of p values in the set

{0, 1/(p− 1), 2/(p− 1), ..., 1}, the elementary effect of the ith parameter at point X = (x1, ...., xk)

is:

di =
[y(x1, ..., xi−1, xi + ∆, xi+1, ..., xk)− y(X)]

∆
(5.1)

where ∆ is a predetermined multiple of 1/(p − 1) and X is such that X + ∆ is still in the set of

allowable values for each parameter. The r elementary effects are calculated at different points in

the input space which are chosen so that each parameter is varied over its entire range. The mean

and standard deviation of the elementary effects give a measure of the global importance of the

parameter. A high mean implies a parameter is important and a high standard deviation means

its effect is non-linear or a result of interactions with other parameters.

To extend the Morris method to groups of parameters all the parameters belonging to a group

must be moved simultaneously before we re-evaluate the model and calculate the elementary effect.

Consider the case of a group of two parameters, u = (x1, x2). The elementary effect at point X is

given by:

|du(X)| = |y(X̂)− y(X)|
∆

(5.2)

where X̂ is a point in the input space in which x̂1, x̂2 have been either increased or decreased by ∆

with respect to x1, x2. As individual parameters can be increased or decreased by ∆ it is necessary

to use absolute elementary effects, one of the improvements to the original method proposed in

Campolongo et al. (2007).
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The key to the Morris method is the algorithm for generating the input points which is designed

to minimise the number of model runs required to obtain a sample of elementary effects for each

parameter. Details of the procedure are given in chapter 4. To apply the method to groups of

inputs it is necessary to modify the original algorithm to allow groups of parameters to be changed

while still minimising the number of model evaluations required. Campolongo et al. (2007) did not

provide details of their algorithm so a suitable approach had to be developed here.

Computational Algorithm

To generate the inputs for the group Morris method it was decided to use a two stage process.

First the order in which the groups of parameters will be perturbed is determined. This is achieved

by generating a G x G random permutation matrix, G∗ (where G is the number of groups). This

gives us a randomised order in which to change the groups of parameters.

The original algorithm (see equation 4.32) is then used to generate an input matrix B∗j of size

kj for each group j = 1, ...., G in which each element will have been increased or decreased by ∆

(kj is the number of parameters in group j). The first and last rows of these matrices gives us an

initial and modified point for each group. These values are then combined, in an order determined

by the permutation matrix G∗, to give us one input trajectory. This procedure is repeated r times

where r is the number of effects we wish to calculate for each group. The model is then evaluated

at each point and the absolute elementary effects are calculated.

The algorithm is illustrated by a simple example. Consider a model with 7 parameters divided

into G = 3 groups with k1 = 3, k2 = 2 and k3 = 2. We assume each parameter varies in the range

[0, 1] and can take p = 3 values, 0, 1/2, 1. First we generate a G x G permutation matrix:

G∗ =


0 1 0

1 0 0

0 0 1



This says we will move group 2 then group 1 and finally group 3. We then generate the three

Morris matrices B∗j , j = 1, ...., 3:
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B∗1 =



0 1/2 0

0 1/2 1/2

1/2 1/2 1/2

1/2 1 1/2


,B∗2 =


1 1/2

1 1

1/2 1

 ,B∗3 =


0 1

1/2 1

1/2 1/2



The first and last rows of these matrices represent the initial and perturbed parameter points for

each group. Finally we combine these rows, based on the order in G∗, to produce one group input

trajectory:

B∗ =



0 1/2 0 1 1/2 0 1

0 1/2 0 1/2 1 0 1

1/2 1 1/2 1/2 1 0 1

1/2 1 1/2 1/2 1 1/2 1/2



The first row of B∗ is the initial parameter point. In the second row the k2 = 2 parameters of

group 2 have been changed to their perturbed values. In the third row the k1 = 3 parameters of

group 1 have also been changed and in the final row the k2 parameters of group 3 are changed.

Test Case

To test the implementation of the Morris method on groups it was applied to the g-function (Sobol,

1993). This function is commonly used as a benchmark for sensitivity analysis methods because

it is possible to calculate analytical values for the variance based sensitivity indices.

g =
k∏

i=1

gi(Xi), where gi(Xi) =
|4Xi − 2|+ ai

1 + ai
(5.3)

where 0 ≤ Xi ≤ 1, i = 1, ...., k are the uncertain inputs, uniformly distributed in the range [0,1],

and the ai ≥ 0 are fixed parameters which determine the relative importance of the Xi. The

smaller the value of ai the more important Xi is in determining the value of g.

For the test a g-function with 9 inputs was used. Three different scenarios were considered. In

each case the parameters were divided into three groups u, v, w. The groupings are designed to test

the ability of the approach to handle different mixtures of important and unimportant parameters.

Details of the parameter groups, the associated ais and the results of applying the method are

given below together with the analytical Sobol indices.
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Case 1

Parameters ai

a1 = 0.02, a2 = 0.03, a3 = 0.05, a4 = 11, a5 = 12.5, a6 = 13, a7 = 34, a8 = 35, a9 = 37

Groups

u = [X1, X2, X3], v = [X4, X5, X6], w = [X7, X8, X9]

Morris Group µ∗

µ∗(u) = 7.58564, µ∗(v) = 1.23745, µ∗(w) = 0.17666

Analytical Sobol Indices ST

ST (u) = 0.995, ST (v) = 0.010, ST (w) = 0.001

Case 2

Parameters ai

a1 = 0.02, a2 = 0.03, a3 = 0.04, a4 = 0.05, a5 = 0.06, a6 = 0.07, a7 = 34, a8 = 35, a9 = 37

Groups

u = [X1, X3, X5], v = [X2, X4, X6], w = [X7, X8, X9]

Morris Group µ∗

µ∗(u) = 10.62385, µ∗(v) = 10.42485, µ∗(w) = 0.24845

Analytical Sobol Indices ST

ST (u) = 0.694, ST (v) = 0.686, ST (w) = 0.001

Case 3

Parameters ai

a1 = 0.02, a2 = 0.03, a3 = 0.05, a4 = 11, a5 = 12.5, a6 = 13, a7 = 34, a8 = 35, a9 = 37

Groups

u = [X1, X4, X8], v = [X3, X5, X9], w = [X2, X6, X7]

Morris Group µ∗

µ∗(u) = 4.4971, µ∗(v) = 3.3537, µ∗(w) = 3.7821

Analytical Sobol Indices ST

ST (u) = 0.436, ST (v) = 0.393, ST (w) = 0.429
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The results of the test case show that the method produces rankings which are consistent with

the Sobol method. The results are also in agreement with the results obtained by Campolongo

et al. (2007) who used the same test case to demonstrate the potential of the Morris method for

performing group sensitivity analysis. These tests indicate that the algorithm outlined above and

its implementation are correct. The next section discusses the application of the method to a

biological model.

5.2.2 Application of the Group Morris Method to The Insulin Model

To investigate the utility of the group approach for studying composite biological models it was

applied to the insulin component model. The insulin model is taken from Sedaghat et al. (2002)

and modified to describe GSK3 inactivation as described in chapter 3. The model makes use of two

previously published models of receptor binding (Wanant and Quon, 2000) and receptor recycling

(Quon and Campfield, 1991) together with a model of the post-receptor signal propagation. A

schematic representation of the model is shown in figure 3.4. For the purposes of demonstrating

the group approach this can be viewed as a composite model consisting of three component models.

To perform the analysis the parameters were divided into three groups, u, v and w, associated

with the three sub-models:

• u = Parameters in the ligand-receptor binding sub-system

• v = Parameters in the receptor recycling subsystem

• w = Parameters in the post receptor subsystem

In total there are 21 uncertain parameters. Groups u and v contain 6 parameters each and group

w contains the remaining 9 parameters. The parameters assigned to each group are shown in table

5.1.
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Parameter Reaction Group
k1 Association rate of first insulin molecule to IR u
k−1 Dissociation rate of first insulin molecule from IR u
k2 Association rate of second insulin molecule to IR u
k−2 Dissociation rate of second insulin molecule from IR u
k3 Phosphorylation rate of surface IR u
k−3 Dephosphorylation rate of surface IR u
k4 Endocytosis of free IR v
k−4 Exocytosis of free IR v

k
′

4 Endocytosis of bound IR v

k
′

−4 Exocytosis of bound IR v
k−5 IR degradation v
k6 Dephosphorylation of intracellular IR v
k7 Phosphorylation of IRS w
k−7 Dephosphorylation of IRS w
k8 Formation of IRS/PI3K complex w
k−8 Separation of IRS/PI3K complex w
k9stim Maximal conversion of PI(4,5)P2 to PI(3,4,5)P3 w
k11d Maximal phosphorylation of Akt w
k−11 Dephosphorylation of Akt w
k15d Maximal phosphorylation of GSK3 w
k−15 Dephosphorylation of GSK3 w

Table 5.1: Grouping of parameters in the insulin model.

The Morris method was used to measure the sensitivity of the GSK3 output to each of the

three groups of parameters. As in the individual parameter analysis of the insulin model described

in chapter 4 each parameter was allowed to vary in the range ±50% of its nominal value and

an external insulin input of magnitude 1 × 10−6M was used. The overall Morris measure, which

describes the sensitivity of the entire GSK3 output trajectory, was calculated for each group of

parameters (see chapter 4 for a discussion of overall sensitivities). Five replicates of the analysis

were performed to check the reproducibility of the method at the given sample size. Figure 5.1

shows the results of the analysis. The results are displayed as a bar chart and are also tabulated to

show the values for µ∗O(v) which can not be read from the plot. They show that the system-level

output is most sensitive to uncertainty in the post-receptor signalling sub-model while uncertainty

in the receptor recycling component is largely insignificant. This is consistent with the view that

post receptor mechanisms represent the primary sites leading to disruption of the insulin signalling

process (Pessin and Saltiel, 2000).
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2 2.449 0.045 9.452
3 2.049 0.078 12.21
4 2.712 0.068 8.849
5 1.922 0.059 11.75

Figure 5.1: Results of applying the group Morris method to the insulin component model
(r = 20, p = 8). The parameters are arranged into three groups associated with the three

sub-system models: u = Parameters in the ligand-receptor binding sub-system, v = Parameters
in the receptor recycling subsystem, w = Parameters in the post receptor subsystem. Five

repetitions were performed. The groups were consistently ranked w more important than u more
important than v. The table shows the numerical values which indicate that group v is largely

insignificant.

In chapter 4 sensitivity analysis was performed on the individual parameters of the insulin model

using both the Morris and Sobol methods. This analysis identified 10 influential parameters. One

of these is involved in receptor binding and ranked 8th (in descending order of importance). The

remaining 9 are involved in post receptor steps. None of the influential parameters are involved

in the recycling process. (See chapter 4, figures 4.3, 4.12, 4.13 and 4.14 and section 4.3.2 for a

discussion of these results). Based on this sensitivity analysis of individual parameters we would

expect to find µ∗O(w)� µ∗O(u)� µ∗O(v), indicating that group w is more important than u which

in turn is more important than group v, and would also expect µ∗O(v) to be approximately zero,

indicating that it is largely insignificant. The results shown in figure 5.1 are consistent with these

predictions.

These results demonstrate the potential benefits of using a group approach to study composite

models. Firstly the approach is more economical than an individual parameter analysis. The

Morris method requires rk(k+ 1) model evaluations to calculate a set of sensitivity measures for a

model with k parameters and rG(G+1) runs when these are assigned to G groups (the subscripts k

and G indicate that we may use different values of r for individual and group based analysis). In the

case of the insulin model (k = 21, rk = 20 and G = 3, rG = 20) analysing groups of inputs requires
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80 model runs compared with 440 for the individual parameter analysis. Generally, provided:

rG < rk
(k + 1)
(G+ 1)

(5.4)

the group approach will require fewer model runs.

More importantly in the analysis of a composite model a group approach gives us information

about how uncertainty in the different component models, rather than the individual parameters,

influence the system behaviour. This information can be useful in understanding the behaviour

of the system, suggesting which sub-processes are most important in driving the system level

behaviour. It is also useful for model development, suggesting which component models we should

try to refine because they are important or those which could be simplified because uncertainty

in their output has little effect on the system level behaviour. In the case of the insulin model,

the group analysis suggests that we should focus on the post-receptor signalling component as it is

the uncertainty in this sub-model output which is most important in determining the system level

behaviour.

This benefit of a group approach could also been seen as a limitation. By focusing on groups of

parameters we lose information about the importance of individual parameters. We can overcome

this problem by combining an initial group based analysis with an individual parameter study.

Performing a group analysis first has another potential benefit. If the group analysis identifies a

component model as being insignificant we can exclude the parameters of that model from further

analysis. For example, the insulin model analysis shows that we could leave the parameters of the

receptor recycling sub-system out of any individual level analysis. This reduces the computational

cost of the individual analysis and simplifies the amount of sensitivity information we need to

process.

The following section describes the use of sensitivity analysis to look at the importance of

individual parameters both within and across component models and discusses how we can use

this information to help understand the behaviour of the system.

5.3 Intra and Inter-Sensitivity Analysis

As mentioned in the introduction the majority of applications of sensitivity analysis in biological

modelling have focussed on models of a single component or scale. A small number of studies have

considered multi-scale or multi-component models. Wang et al. (2008) applied sensitivity analysis

to a multi-scale model of lung cancer. They used local SA techniques to look at the effects of
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uncertainties in the molecular level parameters on the cellular level behaviour. They referred to

this as cross-scale sensitivity analysis. Marino et al. (2008) considered the general case of a model

with variables at different scales (for example molecular and cellular) or in different compartments

(e.g. different organs). They defined the terms intra and inter-scale (compartment) sensitivity

analysis to describe studies looking at the effects of parameters on outputs at the same or different

scales (compartments) respectively. They demonstrated these concepts on a two compartment

model of tuberculosis infection.

More generally, for a composite model consisting of multiple component models (which may

represent processes at different scales) we can use the terms intra-sensitivities to refer to the

sensitivity of an output variable to parameters of the same sub-model (i.e within a component)

and inter-sensitivities to refer to the sensitivity of a variable to parameters of a different sub-

model (across components). This section shows how these concepts can be used to investigate

the behaviour of a composite biological model by combining them with the PCA based sensitivity

analysis approach presented in chapter 4. The basic idea is outlined below.

Consider the case of a two component model consisting of model A and model B. The output of

model A, Y(A), is the input to model B. Sensitivity analysis is performed on the composite model

allowing the uncertain parameters of both sub-models to vary. The sensitivities of both model

outputs to each parameter are calculated using the PCA based approach. The intra-sensitivities

of model A tell us how its output depends on its own parameters while the inter-sensitivities of

model B tell us how its output, Y(B), depends on the parameters of model A. Comparing these

sensitivity measures can tell us if and how the effects of a perturbation in a component model

parameter are propagated through the system. Assume that the output of model A is oscillatory

and that its period and amplitude vary due to uncertainty in the model parameters. If parameter

kA1 effects the amplitude of Y(A) and also effects Y(B) then we can infer that the amplitude

of Y(A) is important in determining the behaviour of model B. Conversely, if parameter kA2

effects the period of Y(A) but has no effect on Y(B) this suggests that the period of A is not

important. This information may be useful in helping us understand the system function and also

in suggesting potential interventions. For example in the system described above we may expect

other perturbations which affect the amplitude of Y(A) to have similar effects on the output of

model B as perturbing kA1. The following section demonstrates this approach on a composite

biological model.

It is important to note that looking at multiple outputs does not significantly increase the

computational demands of a given sensitivity analysis technique. We can use the same set of

model runs to look at any number of model outputs. The only extra cost is in the additional data
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processing required to calculate the sensitivity measures and in the extra memory requirements to

store the additional output data.

5.3.1 A Two Component Example

The use of intra and inter-sensitivities is demonstrated on a two component system consisting of the

glucagon receptor and calcium models. The system, shown schematically in figure 5.2, describes

the change in the cytoplasmic calcium concentration caused by binding of glucagon to cell surface

receptors. Details of the individual models are given in chapter 3. This system contains many of the

typical features we may expect to find in composite biological models including non-linear terms

and feedback loops and therefore is a good example to investigate the potential of the approach.

Figure 5.2: Schematic of the two component model combining the glucagon receptor and
calcium sub-models. The receptor sub-model produces an output of IP3 (assumed to be

proportional to the PLC concentration) which is passed as an input to the calcium sub-model.
The calcium model describes the dynamics of the concentration of free intracellular calcium.
There is also a negative feedback mechanism in which calcium inactivates active G-proteins,

inhibiting the production of IP3 via PLC. The external input to the system is the concentration
of glucagon.
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The output of the composite model at the nominal parameter values in response to a sustained

glucagon input of 0.2µM (200nM) introduced at t = 20s is shown in figure 5.3. This replicates the

experimental conditions studied in Hansen et al. (1998) where glucagon was shown to produce a

similar transient rise in intracellular calcium in hamster kidney cells expressing human glucagon

receptors. Mine et al. (1993) also measured similar transient spikes in calcium in isolated rat

hepatocytes in response to nM concentrations of glucagon.
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Figure 5.3: Output of the two component model at the nominal parameter values in response
to an external glucagon input of 0.2µM at t = 20s.

Sensitivity analysis of the model was performed using the Morris method coupled with PCA.

This screening design was introduced in chapter 4 and shown to produce results consistent with the

variance based method of Sobol at a greatly reduced computational cost. In total 35 parameters

were allowed to vary in the analysis (18 parameters from the glucagon receptor model, 17 from the

calcium model).

Results

Sensitivity of the Calcium Output

First we consider how the calcium concentration depends on the parameters of the two sub-models.

The overall Morris measure, defined in chapter 4 (see equation 4.34), is used to measure the effect

of parameters on the entire output. The left hand side of figure 5.4 shows the sensitivity to the

glucagon receptor sub-model parameters, the right hand side shows the sensitivities to the calcium

sub-model parameters.
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Figure 5.4: The overall sensitivities of the two component model calcium output computed
using the Morris method. The left hand side of the figure shows the sensitivities to the glucagon
receptor model parameters (inter-sensitivities) and the right hand side shows those of the calcium

model parameters (intra-sensitivities).

The parameters of the calcium model which have the largest influence on its output are (in

decreasing order of importance) da, d2, k1cal, v3, v4, K3 and vc. Of these, the three most important

are related to the release of calcium from the endoplasmic reticulum (ER). This release is triggered

by the binding of IP3 to receptors on the ER (IP3R) which are further stimulated by increasing cal-

cium, causing so called calcium induced calcium release (CICR). At higher calcium concentrations

calcium inhibits IP3R preventing calcium release. da is the threshold for calcium induced calcium

release (CICR), d2 is one of three parameters governing the inhibition of the IP3R by calcium and

k1cal is the maximal rate of IP3R meditated calcium release. These results are consistent with the

view that calcium release from the ER plays a major role in producing calcium oscillations (Marhl

et al., 2000). This is supported by evidence from various cell types that inhibition of IP3R (by

heparin) blocks calcium oscillations (Carroll and Swann, 1992; Nett et al., 2002).

The calcium output is also sensitive to the parameters of the ER pump term, K3 and v3,

which describe the uptake of calcium by the endoplasmic reticulum calcium ATPase (SERCA).

This supports experimental evidence that addition of thapsigargin which inhibits SERCA activity

disrupts intracellular calcium dynamics (Aguado et al., 2002) by causing depletion of the ER store

of calcium. The influx and efflux of calcium from the extracellular medium is also important in

determining the calcium output as shown by the sensitivities of vc, the maximal rate of influx,
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and v4 the plasma membrane pump rate. This suggests that the presence of calcium in the

extracellular medium and its movement into and out of the cell is important in producing the

calcium dynamics. While it has been shown that calcium oscillations occur in cells in calcium-

free medium the maintenance of these oscillations requires extracellular calcium (Visegrady et al.,

2000). It is likely that an influx of calcium is required to replenish calcium in the ER and sustain

the oscillations (Jones et al., 2008).

The calcium concentration is also shown to be sensitive, although to a lesser extent, to the

parameters of the glucagon receptor model. The parameters which have most effect are K23, kcal1,

kp, B2, kPC , kPC1 and kPC2. The effect of these parameters on the calcium model output is

propagated via their effect on IP3, the variable which links the two models. Therefore by looking

at the effect of these parameters on the modes of variation in the IP3 output we can draw some

conclusions about the behaviours of the IP3 output which are important in determining the calcium

output.

Sensitivity of the IP3 Output

The overall sensitivities of the IP3 output to the glucagon sub-model parameters are shown in

figure 5.5. The IP3 sensitivity ranking is largely the same as that obtained for the stand alone

glucagon receptor model (see section 4.4.2). The most important parameters in determining the

IP3 output are K23, kplc1, kp and B2. The only significant difference is the increased importance

of kcal1 and kcal2, the parameters describing the negative feedback of calcium on active G-proteins.

This is due to the presence of a non-zero calcium concentration when the model is coupled with

the calcium model (in the analysis of the individual glucagon receptor model calcium was set at

zero).

Propagation of Uncertainty

Figure 5.5 also shows the sensitivities of the calcium output to the IP3 parameters (these have

already been discussed above). By comparing these we can draw some conclusions about the

function of the complete system. One observation of interest is that kplc1 which is the second most

important parameter in terms of the IP3 output is only the 10th most important in terms of its

effect on the calcium output. Looking at the results for each principal component, it is apparent

that the high overall ranking of kplc1 is primarily due to its high score on PC1. Figure 5.6 shows

the first principal component, its effect on the mean model output and the values of µ∗.
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Figure 5.5: The overall sensitivities of the two component model IP3 and calcium outputs to
the glucagon receptor model parameters. Sensitivities are calculated using the Morris Method.

Figure 5.6 shows that the first PC describes variation in the magnitude of the IP3 output. Sim-

ilarly the most important type of variation in the calcium output is uncertainty in the magnitude

of the response (not shown). One explanation for the lack of effect of kplc1 on the calcium output is

therefore that the magnitude of the IP3 concentration does not effect the magnitude of the calcium

response. This is consistent with the behaviour of the standalone calcium model. Hofer (1999)

showed in his original paper (from which the calcium model is taken) that the amplitude of the

calcium oscillations produced by the model are largely independent of the IP3 dose over a large

range of values. The other parameter which is very important in determining the variation in PC1

is K23. In contrast to kplc1 this parameter is important in terms of the calcium output (see figure

5.5). This can be explained by its higher scores on PC2 and PC3 of the IP3 output when compared

to kplc1.
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Figure 5.6: Panel a shows the first principal component of the IP3 output of the two component
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5.4 Discussion and Conclusions

Biological systems typically consist of sub-systems which operate at different scales (cellular vs

molecular) or take place in different compartments or organs. Mathematical models are a powerful

way to investigate such systems allowing us to combine information from different levels into a

complete system. One approach to the construction of such models is to connect together models

of the various components to produce a composite model of the entire system. This chapter has

discussed approaches for performing sensitivity analysis of such models. These approaches make

use of the PCA based SA methods described in chapter 4.

Two techniques have been presented. The first uses the concept of group SA to investigate

the importance of the various component models on the behaviour of the composite model. It

was shown that the Morris method could be used to perform group sensitivity analysis using a

standard test case. The method was then applied to the insulin model, treating it as a composite

model comprising of receptor binding, receptor recycling and post-receptor signalling component

models. The results indicated that the post-receptor signalling component is most important and

that the receptor recycling sub-system is insignificant in producing variation in the system level

output. These results were consistent with the findings of our previous individual parameter level

analysis.

The group approach allows us to identify where we should focus future modelling efforts (refining

the description of the post receptor signalling pathway). The use of group analysis is also very

economical, requiring fewer model runs than an individual parameter analysis. In the analysis of

the insulin model the k = 21 parameters were combined into G = 3 groups reducing the number of

model runs from r(k+1) = 440 to r(G+1) = 80. It may also allow us to reduce the computational

demands of future analysis by identifying the groups of parameters which we could exclude from

further analysis (in the case of the insulin model the 6 parameters of the receptor recycling sub-

system could be fixed at their nominal values).

The second half of this chapter has discussed the application of individual parameter level

analysis to composite models. The concepts of intra and inter sensitivities were introduced and it

was suggested how we could use these ideas to investigate the effects of parameters both within

and across components. The idea was demonstrated on a two component model consisting of the

glucagon receptor and calcium models described in chapter 3. By using the principal component

analysis approach and comparing the effects of parameters on their own component model output

and the output of other components we can try to understand how uncertainty in a parameter is

propagated through the system. For example, analysis of the two component example suggested

115



Sensitivity Analysis of Composite Biological Models

that uncertainty in the magnitude of the glucagon receptor model output (IP3) had a limited effect

on the calcium dynamics. This type of information may be useful in understanding the function

of the system and in suggesting potential therapeutic targets or interventions.

It is suggested that these two approaches can be combined to provide an efficient methodology

for the analysis of composite models. First a group analysis is performed to identify the important

component models and suggest any parameters which can be excluded from further analysis. This

is followed by an individual parameter level analysis in which both intra and inter sensitivities

are considered allowing us to investigate the mechanisms by which parameter uncertainties are

propagated through the system. The next chapter presents the application of this methodology to

the composite model of glucose homeostasis described in chapter 3.
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Chapter 6

Sensitivity Analysis of a

Composite Model of Blood

Glucose Regulation

This chapter presents an application of the sensitivity analysis approaches discussed in chapters 4

and 5 to the composite model of glucose homeostasis presented in chapter 3. The results of the

analysis suggest a number of hypotheses about the function of the glucose homeostasis system and

identify future directions for the development of the model.

6.1 Introduction

In this section the methods developed in chapters 4 and 5 are applied to the composite model

of glucose regulation described in chapter 3. The model consists of seven component models

representing various aspects of the biology:

• Pancreas Model - describes the production of glucagon and insulin by the pancreas as a

function of the blood glucose concentration

• Glucagon Receptor Model - describes the activation of Gq protein coupled receptors by

glucagon and the subsequent activation of IP3

• Calcium Model - describes the IP3 dependent intracellular calcium dynamics

• cAMP Model - describes the activation of Gs protein coupled receptors by glucagon and the

subsequent activation of PKA in a cAMP dependent manner
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• Insulin Model - describes the signalling pathway initiated by binding of insulin to cell surface

receptors resulting in inactivation of GSK3

• Blood Model - describes the transport of glucose between the blood and the liver

• Glycogenolysis Model - describes the synthesis and breakdown on glycogen by the liver in

response to glucose levels, GSK3, calcium and PKA

When connected together these models describe the response to an external input of glucose or

an increased demand for glucose by the body. The model behaviour has previously been explored

at the nominal parameter point in response to different external challenges and it was shown that

the model is able to reproduce qualitative experimental observations. In addition the effects of

varying individual parameters, namely the sensitivity of the glycogenolysis model to insulin, have

been studied (Hetherington et al., 2009).

By performing a more detailed sensitivity analysis we hope to increase our understanding of

the system function. The results of the analysis will provide information on how the different

components of the system control the output. This may suggest new avenues for research into the

regulation of blood glucose levels. In addition it will help us focus modelling effort on the most

relevant parts of the model to improve its performance and utility.

The analysis presented in this chapter is separated into four stages:

1. Examine the behaviour of the model at the nominal parameter values

2. Define distributions for the uncertain parameters

3. Perform a group SA

4. Perform an individual parameter SA

First we examine the behaviour of the model at the nominal parameter values. We then need to

define distributions for the uncertain parameters. The third step is to perform a group sensitivity

analysis, treating the parameters of each of the seven component models as a separate group. This

analysis will allow us to investigate which component models are most important in driving the

system level behaviour and also to identify any sub-models which are insignificant. The parameters

of these unimportant models can be excluded from further analysis.

The final stage is to perform an individual parameter level analysis using the PCA-based Morris

method. Using this method we can identify the most important individual parameters and explore

the ways in which uncertainty in sub-model parameters influences the system level behaviour.
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6.2 Behaviour of the Model at the Nominal Parameter Point

Before performing any sensitivity analysis it is useful to study the behaviour of the model at

the nominal parameter values and to see how this behaviour depends on the external glucose

concentration driving function. A variety of different input functions could be considered. In this

chapter we will focus on the response to continuous glucose inputs. For positive values this is

intended to represent the conditions of continuous enteral nutrition (delivery of a nutritionally

complete diet directly into the stomach) or continuous glucose infusion which have both been used

to study the response in humans (Kraegen et al., 1972; Simon et al., 1987). Mathematically this

is represented as a step function M(t) = M , a constant (units of mM/s), for t ≥ 500s.

Figure 6.1 shows the output of the model at the nominal parameter point for a range of glucose

values. Four different types of behaviour are displayed. For negative glucose inputs blood glucose

falls from its initial state and is stabilised at a lower value by the release of glucose from the liver.

Once the glycogen stores in the liver have been depleted the blood glucose level falls to zero at

a rate determined by the external input. For low positive inputs (M = 5) blood glucose rises

to an elevated stable level. For intermediate inputs (M = 15) the glucose level also rises to a

new elevated steady state but first “overshoots” this value. For high positive inputs (M = 25)

the model is unable to regulate the blood glucose level which rises without limit. This is because

glucose can not be converted into glycogen at a sufficiently fast rate to accommodate the external

input.

Both the rise without limit and the decay to zero are probably non-physiological behaviours.

The model only describes the glucose ⇀↽ glycogen inter-conversion and does not include processes

which would take place under these extreme circumstances. At low glucose levels gluconeogenesis

(the production of new glucose from lactate, glycerol and amino acids) would help limit the onset

of hypoglycemia (Landau et al., 1996). At high glucose levels excess glucose would be diverted into

a number of other pathways which are not included in the current model. These include increased

uptake by other tissues including skeletal muscle and the kidney (Meyer et al., 1998), increased

synthesis of fatty acids by the liver (Postic and Girard, 2008) and the excretion of excess glucose

into the urine (Kaneko et al., 1978).

In the rest of this chapter sensitivity analysis is applied to the model to see how the model

output is affected by uncertainty in the nominal parameter values. The first step in applying the

analysis is to define uncertainty distributions for the model parameters. This task is discussed in

the next section.
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Figure 6.1: The output of the composite model at the nominal parameter values for different
external glucose inputs.

6.3 Defining Parameter Distributions

The selection of appropriate parameter distributions is an important part of global SA methods

because the results of the analysis may be dependent on the choices (Lipton et al., 1995). It can

also be the most difficult and time consuming stage of performing the analysis (Saltelli et al.,

2000a). The choice of distribution is often governed by the availability of data.

A framework for determining parameter distributions for MC simulations based on available

data was proposed by Lipton et al. (1995). If the specific distribution type of a parameter is known

(for example a normal distribution) we can try to estimate the parameters of that distribution (for

example the mean and variance) using the available data. If the distribution is not known we can

try to select a class of distributions based on our knowledge of the parameter, for example is it

continuous or discrete and are there bounds on its possible values? We can then use goodness-

of-fit (GOF) techniques to identify the most likely distribution and then estimate the parameters

of that distribution as described above. If these steps are not successful bootstrapping techniques

(Davison and Hinkley, 1997) can be used to try to generate a distribution from the available data.

If bootstrapping techniques can not be used due to the small number of available data values

then uniform distributions between the minimum and maximum values can be used. This process

is shown in the flow diagram in figure 6.2. In many fields where “hard data” is not typically

available “expert opinion” (Cooke, 1991) is often used to define uncertainty distributions (Clemen

and Winkler, 1999).
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Figure 6.2: Framework for selecting input distributions in Monte Carlo simulations (Based on
Figure 1 in Lipton et al. (1995)).

The purpose of the analysis is also important when selecting the parameter distributions. In

the case of a biological or physiological system a sensitivity analysis may have a number of different

aims. If we are interested in understanding the behaviour of the system under normal conditions we

need to select ranges which represent the variation in the parameters observed in normal subjects.

Alternatively we may wish to investigate the important parameters in a particular disease state or

condition. In this case we should extend the ranges to include plausible values associated with the

condition of interest.

More generally we may be interested in investigating the parameters which the model output

is sensitive to. For example we may wish to identify potential targets via which we may influence

the system output. In this type of analysis the uncertainty distributions need not be based on

the experimentally observed uncertainty in the model parameters. For example we may include

parameters whose value is not regarded as uncertain to investigate the potential effects of artificially

perturbing those parts of the system. A convenient form of input distribution in these cases is to

adopt uniform ranges based on a percentage of the nominal parameter values. This is the approach

followed in this chapter where the main aim is to demonstrate the potential of the methodology

developed in chapters 4 and 5.
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6.4 Group Sensitivity Analysis

This section describes the application of a group level sensitivity analysis to the composite model.

The parameters are grouped by component model. This allows us to investigate which component

models are most important in driving the system level behaviour and identify any component

models which are insignificant.

The composite model contains seven component models giving us seven groups of parameters:

glycogenolysis (9), blood (2), pancreas (7), insulin (21), cAMP (13), glucagon receptor (18) and

calcium (17) (numbers in brackets indicate the number of parameters in each model/group).

The Morris method by groups was applied to the composite model for different external glucose

inputs ranging from M = −25 to M = 25 in steps of 2.5. The model is solved from t = 0 to

t = 7200s (2 hours).

Values of r = 30 and p = 10 were used. These were shown to produce consistent rankings of

the component models in replicates of the analysis. Figure 6.3 shows the overall sensitivity (µ∗O) of

the blood glucose concentration to each of the component models as a function of the magnitude of

the external glucose function. The data points show individual replicate values and the line shows

the average across all three replicates.
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Figure 6.3: The results of applying a group sensitivity analysis to the composite model using
the Morris method. Parameters were grouped by component model. The overall Morris measure
is displayed as a function of the external glucose input. Data points show the results for three

replicates of the analysis, lines show the average sensitivity calculated over all replicates.

The results show that the sensitivities depend strongly on the magnitude of the glucose input.

In particular there is a clear divide between the results for positive and negative inputs. The results

for the different component models are discussed below.

6.4.1 Glucagon Receptor and Calcium Models

The glucagon and calcium sub-models are shown to be unimportant for all external input values.

This is unsurprising for positive values where blood glucose would not be expected to fall sufficiently

below the threshold for production of glucagon by the pancreas. Under these conditions the

glucagon signalling pathways will not be activated meaning the release of calcium from the ER will

not be triggered. The lack of importance for negative inputs is of more interest. This indicates

that even when glucagon is produced uncertainty in the glucagon receptor and calcium models

does not affect the blood glucose dynamics. This suggests that calcium plays a minor role in the

regulation of glycogen metabolism.
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There is debate regarding the physiological importance of glucagon dependent increases in

cytosolic calcium (Exton, 2001; Aromataris et al., 2006). The results of the sensitivity analysis

support the view that its role in glycogenolysis is minor. This is consistent with a number of

experimental studies including Pittner and Spitzer (1993) who showed that inhibiting glucagon

activation of PLC and IP3 does not affect the ability of the hormone to stimulate glycogen phos-

phorylase suggesting that activation of calcium in an IP3 dependent manner is not important for

the regulation of glycogen metabolism.

6.4.2 Blood and Glycogenolysis Models

The blood and glycogenolysis models are found to be the two most important across all inputs.

The glycogenolysis model is most important for positive inputs, the two models then converge to

a point at approximately M = −5 where they are ranked approximately the same. They then

diverge for more negative values with the glycogenolysis model becoming more important again.

The high sensitivity values for the glycogenolysis model imply that the synthesis and breakdown

of glycogen are the most important parts of the system. This result is understandable, the amount

of glucose being stored or released by the liver is crucial to determining the blood glucose level.

The individual parameter analysis presented in section 6.5 will allow the importance of the different

parts of this process to be investigated.

The importance of the blood model may be due to a number of different effects as a result of

the connections between the component models (see figure 3.2). Firstly uncertainty in the blood

model directly affects the amount of blood glucose via changes in the transport of glucose between

the liver and the blood. Secondly uncertainty in the blood glucose concentration due to variations

in the blood model parameters will affect the production of glucagon and insulin by the pancreas.

This uncertainty will feedback onto the blood glucose concentration via the hormonal regulation

of glycogen metabolism. Finally the importance of the blood model may in part be due to the

auto-regulatory effect of blood glucose on glycogen metabolism. Autoregulation is known to play

an important role in the maintenance of normoglycemia (Moore et al., 1998). In studies in human

subjects hyperglycemia in the presence of sub-basal insulin and glucagon concentrations has been

shown to reduce hepatic glucose production by ∼ 80% (Sacca et al., 1978). The main effect

appears to be inhibition of glycogenolysis with gluconeogenesis not significantly reduced (Rossetti

et al., 1993). Hypoglycemia has also been shown to influence hepatic glucose production in a

hormone independent manner (i.e. not via the increased production of glucagon by the pancreas).

Experimental evidence also indicates that autoregulation is more important in the response to

severe hypoglycemia than at higher blood glucose levels (Bolli et al., 1985). This is consistent
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with the increase in importance of the blood model between M = −2.5 and M = −5 (for larger

negative inputs lower blood glucose levels will be experienced). The individual parameter analysis

presented in section 6.5 may shed light on which mechanisms are important.

6.4.3 The Pancreas, Insulin and cAMP Models

The importance of the pancreas, insulin and cAMP models are also dependent on the glucose

input. For positive inputs the pancreas and insulin models are important and the cAMP model is

insignificant. For negative inputs the situation is partially reversed with the pancreas and cAMP

models identified as influential and the insulin model found to be unimportant.

Positive Inputs

For positive inputs the blood glucose concentration will typically remain above the threshold value

below which the pancreas produces glucagon. This explains the lack of importance of uncertainty

in the cAMP model for such inputs.

The sensitivity to both the pancreas and insulin models varies non-monotonically with the

external glucose input. Both start at low values and increase with increasing glucose peaking

between M = 10 and M = 15. Their importance then decreases for larger inputs.

At low positive inputs blood glucose will not regularly exceed the threshold at which the

pancreas begins to produce insulin. This could explain why uncertainty in the pancreas model

has little effect on the model behaviour. If only minimal amounts of insulin are present then

uncertainty in the insulin model will also have a minimal effect on the system level behaviour.

As the glucose input increases, blood glucose will reach higher values and stimulate the produc-

tion of more insulin by the pancreas model. The uncertainty in the pancreas model then becomes

more important as it affects the amount of insulin produced. The increase in insulin means the

insulin model is activated and uncertainty in the model becomes important, producing uncertainty

in the level of active GSK3. This uncertainty is propagated to the glycogenolysis model affecting

the rate of glycogen synthesis and the blood glucose level.

Beyond M = 20 the liver begins to be unable to cope with the external glucose input as the

rate of glycogen synthesis reaches its maximum. At this point uncertainty in the active GSK3 con-

centration caused by uncertainty in the pancreas and insulin models is unimportant in controlling

the glucose concentration which tends to increase without limit (see figure 6.1).
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Negative Inputs

For negative inputs the pancreas model will produce little insulin meaning the insulin model will

be unimportant as shown by the group analysis. The sensitivity to the pancreas and cAMP model

display a similar pattern to that of the pancreas and insulin model for positive inputs. Both

increase in importance with increasingly negative inputs peaking in importance at approximately

M = −5. Their importance then decreases as M becomes more negative.

The behaviour can be explained in a similar way as that of the pancreas/insulin models. At

small negative values little glucagon is produced. As a result neither the pancreas or the cAMP

models is important. As the input becomes more negative the blood glucose level falls producing

more glucagon and triggering the cAMP model. Both the pancreas and cAMP models increase in

importance. At higher values the glycogen stores in the liver are rapidly emptied such that the

effects of cAMP on glycogenolysis are less important.

6.4.4 Fixing Model Parameters

The next section presents an individual level parameter analysis of the blood glucose concentration.

By studying the effects of individual parameters both within and across components it is hoped

we will be able to gain a better understanding of the ways in which component level uncertainties

influence the system level behaviour.

Before performing the analysis we can use the results of the group analysis to reduce the

number of uncertain parameters in the analysis thus reducing the computational time required.

The group sensitivity analysis results suggest that we can fix the 35 parameters of the glucagon

receptor and calcium models for the purposes of the individual level sensitivity analysis. We can

also fix the parameters of the cAMP and insulin models for certain external glucose inputs as

these only appear to significantly influence the system level output for negative and positive inputs

respectively. Figure 6.3 does show that there is possibly some overlap for small positive values at

which the cAMP model has a minor effect. This is possibly the result of oscillations in the blood

glucose concentration around the threshold value for the production of insulin or glucgaon. It is

possible that a similar effect may be observed for the insulin model. To ensure we do not miss

these possible effects the insulin and cAMP parameters will be included in the full analysis for

values in the region M > −5 and M < 5 respectively.
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6.5 Individual Parameter Sensitivity Analysis

An individual parameter analysis was applied to the composite model using the Morris method

coupled with PCA. The analysis was performed for a range of external glucose inputs. A maximum

of 52 parameters were allowed to vary in the analysis (the parameters varied in the group analysis

with the exception of the glucagon receptor and calcium parameters which were fixed at their

nominal values (see above)). For high positive inputs (M > 5) 39 parameters were analysed (the

13 parameters of the cAMP model were fixed to their nominal values). Similarly for large negative

inputs the 21 parameters of the insulin model were fixed giving 31 uncertain parameters.

6.5.1 Overall Sensitivities

Figure 6.4 shows the overall sensitivities of the composite model output to individual parameters as

a function of the external glucose input. The overall sensitivities measure the effect of a parameter

on the entire model output. The results for the parameters of different component models are plot-

ted separately to improve the presentation. It is clear that the most important parameters belong

to the glycogenolysis and blood models while the important parameters in the other component

models are ranked similarly (compare the y axis scales in figure 6.4). The interesting features of

each component model are discussed below.

Blood and Glycogneolysis Models

Figure 6.4a shows the results for the blood and glycogenolysis models. The blood model which

describes the transport of glucose between the liver and the blood consists of a passive transport

term and an additional active influx term which is included to account for the selective transport

of glucose but not Glc− 6−P out of the liver. As the total pseudo-glucose concentration (glucose

and Glc−6−P ) is represented as a single variable the efflux from the liver would be overestimated

without the additional term. The individual parameter SA indicates that kpg, the rate of active

transport into the liver, is more important for positive glucose inputs while kcg, the rate of passive

transport along the glucose gradient, is more important for negative inputs. This result makes

biological sense. When blood glucose levels are high (due to a positive external input) we would

expect transport into the liver to be most important, when blood glucose is low (due to a negative

input) we would expect the release of glucose from the liver to become important.

tGlu is found to be the most important parameter in the glycogenolysis model. This parameter

determines the threshold value around which glucose affects the activity of glycogen phosphorylase

(GPho) and glycogen synthase (GSyn). This suggests that auto-regulation of hepatic glucose
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Figure 6.4: The overall sensitivities of the composite model calculated via the Morris method.
Results are shown as a function of the external glucose input.
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production by glucose is an important part of the control of blood glucose levels (Moore et al.,

1998). The thresholds for active PKA (tPKA) and GSK3 (tGSK) are far less important. This could

suggest that the affects of PKA and GSK3 on the activity of GPho and GSyn are not important.

This seems unlikely given the importance of the pancreas, insulin and cAMP models. It is possible

that the threshold values are less important because PKA and GSK3 display switch like behaviour

and are typically well above or below the threshold values. Uncertainty in the threshold value may

therefore have little influence on their affect on glycogen metabolism. The threshold for calcium

to influence the metabolism of glycogen, tC is insignificant. This is consistent with the conclusion

from the group analysis that the activation of calcium by glucagon is not important in regulating

glycogenolysis.

For positive inputs the parameters describing the maximal rate of synthesis of glycogen (kSyn

and Glus) are important because the liver will be converting large amounts of excess glucose into

glycogen. As the external glucose input is reduced the importance of these parameters is reduced

and the rate of glycogenolysis (kBrk and Glys) becomes more important. For negative inputs

glycogen breakdown is more important than glycogen synthesis.

Pancreas Model

Figure 6.4b shows the results for the pancreas model parameters. Two different groups of pa-

rameters are shown to be important depending on the input function. For positive values the

most important parameters are gref (the blood glucose level above (below) which the pancreas

produces insulin (glucagon)), tIg (the Hill function threshold for insulin production) and Imax, the

maximum concentration of insulin produced. τI , the time-scale for insulin production, is much

less important. This suggests that the amount of insulin produced by the pancreas has a greater

effect on the overall variation in the blood glucose concentration than the speed of its release. As

expected the parameters governing glucagon production are unimportant.

For negative inputs a similar pattern is observed with the parameters describing insulin and

glucagon reversed. As for positive inputs gref is the most important parameter. This is followed

by Lmax and tLg with τL less important. Again this suggests that it is the amount of hormone

produced rather than the time-scale of the production which is most important in determining the

overall variation in the output. The parameters controlling insulin production are not important

for negative inputs.
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Insulin Model

The important parameters of the insulin model are the same as those identified via the analysis of

the stand-alone model presented in chapter 4 (including k1 which was shown to be important when

the external input was varied (see section 4.4.4)). Figure 6.4c shows how the overall sensitivity

to each of the 11 important parameters varies with the external glucose input (results for the 10

insignificant parameters are not shown). Each parameter shows the same qualitative variation;

unimportant at negative and low positive values, increasing in importance with increasing glucose

before falling again for high values. This variation is consistent with the group analysis results.

cAMP Model

Figure 6.4d shows the sensitivities of the blood glucose level to the cAMP model parameters.

These display a similar variation with the external glucose input as the group sensitivity of the

cAMP model (see figure 6.3); the importance of the individual parameters is low for positive and

small negative inputs, increases for intermediate negative inputs then falls as the magnitude of the

glucose input is increased further.

The model describes three processes: the production of cAMP, the activation of PKA and

the nuclear localisation of active PKA. The parameters which govern nuclear localisation of active

PKA (kN , tN , kNA and nN ) are not important. This process was originally included to allow future

extensions of the model to describe transcriptional level regulation. While it may play a role at the

transcriptional level (Kawaguchi et al., 2001) the results of the analysis indicate that the nuclear

localisation of PKA does not affect the short term regulation of blood glucose levels.

The most important parameters are involved in the production or degradation of cAMP (tR

and kAdeg) or the activation of PKA (tA). Both the production of cAMP and the activation of

PKA are described by Hill function dynamics. Interestingly for both processes it is the threshold

values (tR and tA) which are more important than the maximal rates (kA and ka). The rate of

deactivation of PKA (k−a) appears to be largely unimportant.

6.5.2 Principal Component Sensitivities

In this section the individual principal component based sensitivities are discussed. These results

identify the main types of variation in the model output and allow us to investigate whether

different parameters are important in producing the different types of variation.

Of particular interest is the role of the insulin signalling pathway in determining the model

output. Insulin signalling is a key component in the regulation of blood glucose and defects in the
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pathway are believed to be important in the onset of type 2 diabetes (Brady and Saltiel, 1999).

Understanding how perturbations of this pathway affect the system output could potentially aid

efforts to develop treatments for the condition. We will therefore focus on an external input value

(M = 15) where the group and overall sensitivity analysis indicates that the insulin model is

important

Principal Components

Figure 6.5 shows the first three principal components of the blood glucose concentration for an

external input of M = 15. Panels a,c and e show the principal components, b,d and f show the

mean model output plus (dotted line) and minus (dashed line) a multiple of each component.

The first principal component describes variation in the magnitude of the blood glucose concen-

tration. Because the principal component is negative at all time-points, model runs with positive

scores on this component will have a lower than average concentration while negative values will

produce higher concentrations.

The main effect described by the second principal component is variation in the “overshoot” of

the initial rise in blood glucose above its elevated steady state (see figure 6.1). Model runs with

high scores for this component will have large transient rises in blood glucose.

PC3 describes the possible onset of oscillations in the blood glucose concentration. These

oscillations have a period of approximately 50 minutes but are not sustained and decay to a

single constant value. While not identical, these oscillations display a qualitative similarity to the

oscillations which have been observed experimentally in blood glucose under a variety of conditions

(Kraegen et al., 1972; Simon et al., 1987; Polonsky et al., 1988; Shapiro et al., 1988). Known as

ultradian oscillations, these occur with periods of between 50 − 120 minutes (Simon et al., 1987;

Simon, 1998). Figure 6.6 shows an example of oscillations in blood glucose recorded in human

subjects during oral glucose administration.
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Figure 6.5: The principal components of the composite model output at M = 15. The left hand
panels show the principal components, the right hand panels show the mean output (solid line)

plus (dotted line) and minus (dashed line) a multiple of the corresponding component.
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Figure 6.6: Ultradian oscillations in blood glucose observed during oral glucose administration
(adapted from Kraegen et al. (1972))

.

Sensitivities

Figure 6.7 shows the sensitivities of the first three principal components to the individual param-

eters of the composite model. Panel a shows the values of µ∗ which provide a measure of the

importance of a parameter. Panel b shows the values of σ which indicate the extent to which the

importance of a parameter is non-linear or dependent on interactions with other parameters.

The first principal component is primarily controlled by tGlu, kSyn and Glus. tGlu is the

threshold for blood glucose to regulate hepatic glycogen metabolism suggesting that auto-regulation

of glucose production is important in determining the steady state glucose concentration. This

is consistent with the view that auto-regulation plays an important role in the maintenance of

normoglycemia (Moore et al., 1998). The importance of kSyn and Glus is logical as they affect the

rate of glycogen synthesis and hence the extent to which hyperglycemia can be avoided by storage

of excess glucose as glycogen.

tGlu becomes less important for the other components (PC2 and PC3). This is coupled with

an increased importance of the insulin component model parameters (k1 - k−15) and tGSK , the

threshold for GSK3 to affect glycogen metabolism, particularly for PC2. Together these results

suggest an increased role of insulin dependent mechanisms in producing the transient excursion in

blood glucose and the onset of oscillatory behaviour relative to their effect on the magnitude of

the steady state concentration. The importance of the parameters of the insulin model are largely

similar. It is therefore difficult to draw any conclusions about the relative importance of specific

parts of the pathway on the different types of variation in the blood glucose concentration.
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Figure 6.7: The principal component sensitivities of the composite model at M=15. Results are
shown for the first three principal components. Panel a shows the values of µ∗ which measures
the total sensitivity. Panel b shows the values of σ which measures the effect of interactions or

non-linearities.
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The parameters governing glycogen breakdown kBrk and Glys are also found to be very im-

portant for the occurrence of oscillatory behaviour (PC3). This suggests that the balance between

glycogen synthesis and glycogenolysis is important in producing oscillations. This is supported

by figure 6.7b which shows that interactions become increasingly important for the higher order

principal components.

Interestingly the time-scales of both insulin production in response to glucose (τI) and the

inactivation of GPho in response to changes in the various signals including inactivation of GSK3

by insulin (τPho) are more important in terms of PC3 (which describes oscillatory behaviour) than

they are for the other components. Previous studies have concluded that the mechanisms that

generate ultradian oscillations are unclear. Two main hypotheses have been proposed: that the

oscillations are caused by pulsatile secretion of insulin by the pancreas or that they are the result of

the feedback between insulin secretion and glucose production and utilisation (Tolic et al., 2000). A

number of models have been developed to investigate the second hypothesis. The results of Sturis

et al. (1991) suggest that the occurrence of ultradian oscillations is dependent on the existence of a

delay between the production of insulin and its subsequent effects on glucose production. Li et al.

(2006) have highlighted the potential role of a second delay, the lag between increases in blood

glucose and the secretion of insulin. The hypothesised importance of these time delays is consistent

with the results of the sensitivity analysis which show the importance of the corresponding time-

scales in the composite model.

6.5.3 Intra and Inter Sensitivities

The previous discussion has focussed on the effects of parameter uncertainties on the system level

output. The following section discusses whether any additional information about the system

can be uncovered by looking at the component model variables using the ideas of intra and inter

sensitivities introduced in chapter 5, section 5.3.

Continuing the focus on the role of the insulin signalling pathway, which motivated the analysis

of the principal component based sensitivities presented above, we compare how the parameters

of the insulin model affect their own model output (GSK3) and the blood glucose concentration.

Figure 6.8 shows the first three principal components of the GSK output together with the µ∗ values

calculated for the parameters of the insulin component model for an external input of M = 15.

The first PC (shown in figure 6.8a) describes a variation in the maximum inactivation of GSK3.

PC2 (figure 6.8c) appears to show variation in the time at which GSK3 begins to be inactivated.

The third PC shows the possibility of an overshoot in the amount of inactive GSK3 similar to the

overshoot in blood glucose shown in figure 6.5d.
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The sensitivities show that the same set of parameters are important in all three types of

variation. These are the same set of 11 parameters identified as affecting the blood glucose con-

centration (k4, k−4 and k,
4 have a very small effect but these are insignificant compared to the

other parameters). An interesting feature is the increased sensitivity to k−3 of PC2. This suggests

that the rate of deactivation of the insulin receptors may be important in controlling the delay in

inactivation of GSK3.

We can compare the sensitivities of the GSK3 output to those of the blood glucose concentration

to see whether we can draw any conclusions about the way in which uncertainty in the insulin model

effects the system level output. Inspection of figure 6.7 does not highlight any obvious differences in

the sensitivities of the glucose output to k−3. This suggest the behaviour described by PC2 is not

particularly important in producing variation in the blood glucose output. This idea is supported

by the ranking of k−11 as the most important of the insulin model parameters with respect to the

main modes of variation in the glucose output. This parameter is ranked less important for the

second PC of the GSK3 output than for PC1 and PC3.
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Figure 6.8: The principal component sensitivities of the GSK3 output of the composite model
at M = 15. The left hand panels show the variation described by the PCs (mean output (solid

line) plus (dotted line) and minus (dashed line) a multiple of the principal component). The right
hand panels show the sensitivities to the parameters of the insulin component model calculated

via the Morris method.
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6.6 Discussion

This chapter has presented an application of the methodology for the sensitivity analysis of com-

posite biological models which was developed in chapters 4 and 5. The approaches were applied

to the composite model of glucose regulation introduced in chapter 3.

The case study has demonstrated the potential of the approach. The results of the analysis

suggest a number of hypotheses about the behaviour of the system and avenues for future model

development which are discussed below.

The results of the group level analysis suggest that the role of glucagon dependent calcium

activation on blood glucose regulation is of minor importance. The role of calcium in regulating

glycogenolysis is still unclear (Aromataris et al., 2006). Our finding is consistent with a number

of experimental studies including Pittner and Spitzer (1993) which indicate its role in propagating

the glucagon signal is secondary to that of cAMP dependent mechanisms.

Auto-regulation of hepatic glucose production by glucose levels also appears to be important.

This is demonstrated by the sensitivity of the model output to tGlu, the threshold for glucose to in-

fluence GPho and GSyn. The importance of auto-regulation in human subjects is well documented

(Sacca et al., 1978; Bolli et al., 1985; Rossetti et al., 1993; Moore et al., 1998).

For positive glucose inputs the principal components display two interesting behaviours: a tran-

sient “overshoot” in the blood glucose concentration and the possible onset of oscillations in blood

glucose (although these are unsustained). It is possible that these oscillations are representative

of the ultradian oscillations observed in human subjects during glucose infusion (Kraegen et al.,

1972) or enteral nutrition (Simon et al., 1987). The sensitivities of these principal components

suggest an increased importance of the insulin model parameters in producing these behaviours.

They also suggest that the time-scales of insulin production by the pancreas (τI) and changes in

the activity of GPho (τPho) are important in generating the oscillations. This is consistent with

previous modelling studies (Sturis et al., 1991; Li et al., 2006) which hypothesise a crucial role for

time delays (between the production of insulin and its subsequent effects on glucose production and

increases in blood glucose and the secretion of insulin) in the occurrence of ultradian oscillations.

The results of the analysis can also be used to suggest directions for future developments and

refinement of the model. In particular the importance of the glycogenolysis model suggests that

this should be the focus of further development. The regulation of GPho and GSyn by the various

signals (glucose, cAMP, calcium and GSK3) is currently modelled using fuzzy logic statements.

Developing a more mechanistic model of these regulatory processes (which are described in section

3.2.1 and illustrated in figure 3.1) would allow us to investigate their role in the control of blood
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glucose levels in greater detail.

The sensitivity analysis also suggests that the glucagon receptor and calcium components could

be simplified or possibly removed from the composite model without affecting its ability to describe

the regulation of blood glucose levels.

The benefits of the two stage approach, a group analysis followed by an individual parameter

analysis were also demonstrated. In particular it was shown that a group analysis can allow us to

exclude certain parameters from the more detailed analysis increasing the computational efficiency.

The concepts of intra and inter scale sensitivities proved less successful in the analysis of the

composite model. Looking at the sensitivities of GSK3 and glucose to the insulin model parameters

did not suggest any obvious additional information about the importance of the parameters of the

insulin signalling pathway. This highlights the major limitation of the approach. It is largely

exploratory and it may be necessary to look at lots of different combinations of inputs and outputs

to identify interesting features of the model. Performing this task via visual inspection of the

sensitivity plots is time consuming and difficult. In addition any conclusions could be regarded as

subjective. A potential solution to this problem is the development of automated ways to extract

information from the sensitivity scores. This idea is explored further in the discussion of future

research directions.
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Chapter 7

Conclusions

This chapter summarises the work that has been described in this thesis. In section 7.1

conclusions about the use of sensitivity analysis in biological modelling are presented. The

contribution of my research is then discussed (section 7.2). Finally some directions for future

research are suggested.

7.1 The Use of Sensitivity Analysis in Systems Biology

Biological systems typically consist of large numbers of interacting components and involve pro-

cesses operating across a variety of spatial, temporal and biological scales. Systems biology aims to

understand such systems by integrating information from all functional levels into a single cohesive

model. Mathematical and computational modelling is a key part of the systems biology approach

providing a method for formally defining and analysing the structure and function of a system.

Sensitivity analysis should be regarded as an important part of the development and use of

computational models in systems biology. SA allows us to incorporate parametric uncertainty into

the modelling process and to systematically investigate the effects of variations and perturbations

of parameter values on the system behaviour.

The results of sensitivity analysis can further our understanding of a system. For example they

may provide support to one of a number of competing hypotheses about the important mechanisms

underlying the behaviour of a biological system. They may also suggest new hypotheses which can

be investigated experimentally.

Sensitivity analysis can also be used to identify control points in a system. This information

could be used to suggest potential targets for therapeutic interventions. This presents the future

possibility of using computational models and sensitivity analysis techniques for “in silico” drug
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identification.

Sensitivity analysis can also be used to drive model development. Attempts to improve the

estimation of parameter values should focus on those parameters which are shown to have a signif-

icant impact on the model. If the analysis identifies parts of the model which have little effect on

the system function it may be possible to remove or simplify these parts to reduce the complexity

of the model. Conversely if a particular sub-process significantly influences the model output we

should focus on developing or refining that part of the model.

7.2 Contributions

This thesis has attempted to address two main issues with the application of sensitivity analysis

in biological modelling: the analysis of time dependent model output and the study of composite

or multi-scale models. The contributions of this research to these two problems are discussed in

more detail below.

More generally this thesis has investigated the use of global SA techniques in systems biology.

Global techniques allow the effects of simultaneous parameter variations across large ranges to

be studied. This is important in biological modelling where parameters may vary by significant

amounts and interactions between parameters are frequently found to be important. There has

been a growing use of global methods in the biological modelling literature in recent years which

should be continued. This research has demonstrated the suitability of two SA techniques, the

variance based method of Sobol and Morris’ screening design. The two methods were found to

produce consistent results, the latter at a much lower computational cost.

7.2.1 Analysis of Time Dependent Model Output

When studying biological systems we are often interested in the sensitivity of dynamic model

outputs. This thesis has proposed a new approach to the analysis of such systems which is based

on a principal component analysis of the model output coupled with a global sensitivity analysis.

The approach allows us to investigate the sensitivity of features of the model output rather than

the output value at specific time points. These features are extracted directly from the data

and are based on the important variation in that data rather than predetermined ideas of what

is important. The use of principal components analysis also allows the definition of an overall

sensitivity which measures the importance of a parameter on the entire model output.

The approach can be considered as exploratory. If we are interested in a specific type of be-

haviour of the model there is no guarantee that it will be well captured by the principal components.
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In such cases it may be more appropriate to implement a computational algorithm to extract a

scalar measure of the feature of interest directly from the data and apply sensitivity analysis to

this value.

7.2.2 Analysis of Composite Models

The second focus of my research has been the analysis of composite models which describe biological

systems consisting of processes at different scales or in different components. This thesis has

suggested two complimentary approaches to the analysis of such models.

The use of group sensitivity analysis has been demonstrated as a way to investigate the impor-

tance of the different components of the system. This approach, which utilised a modified version

of the Morris method was shown to produce useful results. In addition it provides a way to reduce

the computational cost of a full analysis by identifying non-influential parameters which could be

excluded from future SA.

The potential of intra and inter scale sensitivity analysis was also investigated. This approach

suggests applying SA both within (intra) and across (inter) components to identify interesting

patterns in the sensitivity of the model.

7.2.3 Analysis of Glucose Homeostasis Model

The methodology has been applied to a composite model of blood glucose homeostasis. This case

study demonstrated the potential of the approach on a real system of interest. The results suggest

a number of interesting points about the system:

• The mobilisation of intracellular calcium in a glucagon dependent manner plays a minor role

in the regulation of glycogen metabolism

• Auto-regulation of hepatic glucose production by glucose is important in regulating blood

glucose levels

• Time delays between changes in blood glucose, the production of insulin by the pancreas and

the effect of the hormone on hepatic glucose production are important in the possible onset

of ultradian oscillations
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7.3 Directions for Future Research

7.3.1 Analysis and Development of the Glucose Homeostasis Model

An immediate extension of the research presented in this thesis is to use the proposed methodology

to explore the composite blood glucose model in greater detail. In particular it would be of interest

to study the sensitivity of the model using parameter ranges representative of different disease

states, specifically diabetes. This may provide information on the mechanisms which are most

important in producing the system behaviours which are observed in patients with diabetes or

other conditions.

The results of the analysis presented in chapter 6 could also be used to direct development

of the model. In particular the SA results suggest that the glycogenolysis model is important in

producing the observed variation in the model output. This process is presently modelled using a

fuzzy logic approach in which the effects of the various regulatory signals are modelled as simple

threshold functions. The development of a more mechanistic model of the regulation of glycogen

phosphorylase and glycogen synthase would allow us to investigate the role of these processes in

the control of blood glucose in greater detail.

7.3.2 Automation of the Processing of SA Results

Sensitivity analysis of biological models can produce large amounts of sensitivity data which needs

to be processed. The amount of data is increased by the use of the methods presented in this thesis

which suggests looking at multiple model outputs across multiple scales or components.

The results of a sensitivity analysis are typically processed via visual inspection of the sensitivity

measures in tabulated or graphical form. It would be interesting to investigate the use of automated

procedures for processing the SA results, for example by defining threshold values for importance

or insignificance against which the sensitivity measures could be compared. Automated approaches

may be particularly useful in identifying interesting features in an intra and inter scale analysis

which may not be apparent from visual inspection alone.

7.3.3 Improvement of Standard SA Techniques

The work in this thesis has made use of standard SA techniques, combining them with other

procedures (e.g. PCA) to develop a methodology for sensitivity analysis of biological models.

There is potential for developing new standard methods to be used in this framework.

Of the methods utilised here the Morris method provides an efficient way to identify important
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and non-influential parameters in a model. The cost of this efficiency is a lack of a rigourous

quantification of the contribution of a parameter to the output uncertainty. The variance based

methods, including the method of Sobol, provide such a measure by calculating the reduction in the

variance of the model output which could be achieved by fixing a given model parameter. However

such methods have a high computational cost which makes them unsuitable for the analysis of

systems containing large numbers of parameters.

The qualitative ranking provided by the Morris method is suitable for exploratory style analysis.

However future applications to biological systems may require a more quantifiable measure of

sensitivity. If the aim is to design interventions for regulating the system output it would be

important to quantify the effects of perturbing different targets. Therefore a goal of further research

is the development of SA methods which combine the computational efficiency of the Morris method

with the sort of quantitative measures provided by the method of Sobol.
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List of Abbreviations

List of Abbreviations

Akt Akt Protein Kinase (Also known as protein kinase B (PKB))
ANOVA Analysis of Variance
ATP Adenosine Triphosphate
cAMP Cyclic Adenosine Monophosphate
CICR Calcium Induced Calcium Release
CDF Cumulative Distribution Function
DDM Decoupled Direct Method
eFAST Extended Fourier Amplitude Sensitivity Test
EGF Epidermal Growth Factor
EGFR Epidermal Growth Factor Receptor
ER Endoplasmic Reticulum
ERK Extracellular Signal-Regulated Kinase
FAST Fourier Amplitude Sensitivity Test
GDP Guanosine Diphosphate
Glc-6-P Glucose-6-Phosphate
GPCR G-Protein Coupled Receptor
GPho Glycogen Phosphorylase
GSyn Glycogen Synthase
GSK3 Glycogen Synthase kinase
GTP Guanosine Triphosphate
IFFD Iterated Fractional Factorial Design
INSR Insulin Receptor
IP3 Inositol Trisphosphate
IP3R Inositol Triphosphate Receptor
IRS Insulin Receptor Substrate
JAK Janus Kinase
LHS Latin Hypercube Sampling
MAPK Mitogen-Activated Protein Kinase
MCA Metabolic Control Analysis
MC Monte-Carlo
NF-κB Nuclear Factor κB
OAT One-at-a-time
ODE Ordinary Differential Equation
PBPK Physiologically-Based Pharmacokinetic
PC Principal Component
PCA Principal Component Analysis
PDF Probability Density Function
PDK1 Phosphoinositide-Dependent Kinase 1
PI3K Phosphoinositide 3-Kinase
PIP3 Phosphatidylinositol (3,4,5)-Trisphosphate
PKA cAMP-Dependent Protein Kinase
PKB Protein kinase B
PLC Phospholipase C
PRCC Partial Rank Correlation Coefficient
PTP Protein Tyrosine Phosphatase
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List of Abbreviations

RSA Regionalised Sensitivity Analysis
RTK Receptor Tyrosine Kinase
SA Sensitivity Analysis
SB Sequential Bifurcation
SERCA Sarco/Endoplasmic Reticulum Calcium ATPase
STAT Signal Transducers and Activators of Transcription
VCE Variance of the Conditional Expectation
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Nomenclature

Nomenclature

B∗ Morris method input matrix

di Elementary effect of the ith parameter
E Expected value
G Number of groups in the group Morris method
G∗ Group perturbation matrix for the Morris method
N Number of model evaluations
p Number of levels in the Morris method
q Maximum number of principal components
qs Subset of PCs used in overall sensitivity measures
r Number of sample points or elementary effects for each parameter in the Morris method

Sj
i First order Sobol index for jth output for ith parameter

Sj
T i Total effect Sobol index for jth output for ith parameter

SO
i Overall first order Sobol index for ith parameter

SO
Ti Overall total effect Sobol index for ith parameter

SAvg
i Time averaged first order Sobol index for ith parameter

SAvg
Ti Time averaged total effect Sobol index for ith parameter
T Total number of time-points in model solution
V Variance

V z
PC Variance described by the zth principal component

X Vector of model parameters

xi ith element of X

yi Output of the ith model evaluation
z Index of PC
∆ Step size in the Morris method
µ̂ Mean model output
µ̄ Time average of µ̂

µi Mean of the elementary effects of the ith parameter

µ∗i Mean of the absolute elementary effects of the ith parameter

µ∗O Overall Morris measure for ith parameter

σi Standard deviation of the elementary effects of the ith parameter
Φ Set of basis functions

φk The kth basis function in Φ

Ωk Set of coefficients of the kth basis function

ωik Coefficient of the kth basis function for the ith model evaluation
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