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Normal hypothalamopituitary development is closely related to that of the forebrain and is dependent
upon a complex genetic cascade of transcription factors and signaling molecules that may be either intrinsic
or extrinsic to the developing Rathke’s pouch. These factors dictate organ commitment, cell differentiation,
and cell proliferation within the anterior pituitary. Abnormalities in these processes are associated with
congenital hypopituitarism, a spectrum of disorders that includes syndromic disorders such as septo-optic
dysplasia, combined pituitary hormone deficiencies, and isolated hormone deficiencies, of which the com-
monest is GH deficiency. The highly variable clinical phenotypes can now in part be explained due to
research performed over the last 20 yr, based mainly on naturally occurring and transgenic animal models.
Mutations in genes encoding both signaling molecules and transcription factors have been implicated in
the etiology of hypopituitarism, with or without other syndromic features, in mice and humans. To date,
mutations in known genes account for a small proportion of cases of hypopituitarism in humans. However,
these mutations have led to a greater understanding of the genetic interactions that lead to normal
pituitary development. This review attempts to describe the complexity of pituitary development in the
rodent, with particular emphasis on those factors that, when mutated, are associated with hypopituitarism
in humans. (Endocrine Reviews 30: 790 – 829, 2009)
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I. Introduction

Congenital hypopituitarism (CH) is a syndrome with a
wide variation in severity and with many underlying

causes. It may present early in the neonatal period or later
in childhood. It can be associated with single or multiple
pituitary hormone deficiencies, and the endocrinopathy
can evolve to include other hormonal deficits. These con-
ditions are often associated with significant morbidity and
occasional mortality, and despite many advances and in-
creased understanding of some of the genetic mechanisms
involved, their etiology remains unknown in the majority
of cases. The frequent association of CH with other ab-
normalities, notably of the eye and forebrain, suggests that
many cases are the result of disordered embryogenesis be-
cause these are all structures that depend on normal de-
velopment of the anterior midline. The genetic cascade of
signaling molecules and transcription factors thought to
orchestrate development of the pituitary, but also of the
surrounding regions, is gradually being pieced together.
However, the definitive identity of mutant genes and/or
their relationship with phenotypes remain to be deter-
mined in the majority of cases.

Nevertheless, as we describe in this review, mutations
inanumberofdevelopmental geneshavebeen linkedwith,
and probably account for, several combined pituitary hor-
mone deficiency (CPHD) syndromes, often in association
with a number of extrapituitary defects such as optic nerve
hypoplasia, anophthalmia/microphthalmia, and fore-
brain defects such as agenesis of the corpus callosum and
absence of the septum pellucidum. Additionally, muta-
tions in a number of genes that are associated with cellular
differentiation, proliferation, or hormone production
have been discovered in association with isolated hor-
mone deficiencies. This review will describe the current
state of knowledge in our understanding of the etiology of
congenital CPHD in both mouse and human. In doing so,
we cover a wide range of factors implicated in pituitary
development and attempt to convey the rapid progress in
understanding made particularly over the last few years,
while also highlighting how much more remains to be
learned.

II. Embryonic Development of the Mouse
Pituitary Gland

A. Gross structure and function of the mature
pituitary gland

The pituitary gland is a central regulator of growth,
reproduction, and endocrine physiology and functions to
relay signals from the hypothalamus to various target or-
gans. The hypothalamus is the principal neural structure

regulating homeostasis in vertebrates and coordinates
complex signals from other regions of the brain and the
periphery to monitor and maintain the body’s internal
balance. Its primary neuroendocrine output is via neural
terminal arborizations in the median eminence, releasing
factors that control the release of hormones from pituitary
endocrine cells. It is also likely to provide an equally im-
portant trophic stimulus to the maintenance and plasticity
of the gland, although these factors are much less under-
stood. The pituitary, in turn, signals to peripheral organs
to regulate vital processes such as growth, puberty, me-
tabolism, stress responses, reproduction, and lactation.
The gland is situated within the sella turcica, a recess in the
sphenoid bone, at the base of the brain. The mature pitu-
itary gland is comprised of the adenohypophysis (consist-
ing of the anterior and intermediate lobes) and the neu-
rohypophysis (posterior lobe), which are functionally and
morphologically distinct structures whose close apposition
nevertheless raises intriguing developmental and functional
possibilities that are yet to be seriously explored.

The anterior lobe of the pituitary secretes hormones
from five different specialized hormone-producing major
cell types. In humans, in contrast to the mouse, the inter-
mediate lobe largely disappears during embryogenesis
with essentially no intermediate lobe in the human pitu-
itary, although the mechanism underlying this species dif-
ference is unclear. This simplified description conceals
rather more complex cellular relationships because there
are subpopulations within the same hormone cell types
[e.g., lactotropes (1)] and subsets of cells that coexpress
more than one hormone (e.g., somatomammotropes). The
proportion of these coexpressing cells can alter under dif-
ferent physiological (2) or pathological conditions (3).
Their adult function can be selectively regulated (1), and
it is probable that they are also specified by genetic cas-
cades that extend from fetal to adult life; factors such as
Ikaros, that might be involved in such coregulation, have
been identified (4). The processes determining cell fate,
migration patterns, and final location of the different
hormone-producing cells during development of the em-
bryonic Rathke’s pouch (RP) into the adult anterior lobe
requires a correct genetic program, and individual gene
deletions can result in misspecification and/or mislocation
of cells, although these sometimes still achieve a terminally
differentiated hormone phenotype (5–7).

The posterior lobe contains the terminal axonal projec-
tionsofmagnocellularneurons fromtheparaventricularand
supraoptic nuclei of the hypothalamus and specialized sup-
portive astroglia known as pituicytes, which surround the
projections. The magnocellular neurons produce oxytocin,
required during parturition and lactation, and arginine va-
sopressin, which is involved in the regulation of osmotic bal-
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ance. These peptide hormones are transported to the axon
terminals within the posterior pituitary where they are re-
leased as required under hypothalamic control.

Hypothalamic factors are rapidly transported via the
hypophyseal portal blood system to the adenohypophysis
where they regulate endocrine cell proliferation, hormone
synthesis, and hormone release from all the pituitary cell
types. Classically, these factors are thought of as specific
secretagogues, defined by the specificity of receptors on
their target cells. However, this is an oversimplification
because there are a much larger number of peptides and
other factors known to be coexpressed in subsets of these
hypophysiotropic neurons (8). These are also transported
and released into portal blood, probably in much smaller
quantities than the hypophysiotropic peptides, and may
modulate the secretion of anterior pituitary hormones and
possibly regulate anterior pituitary plasticity.

The neural and vascular connections are carried by the
pituitary stalk, which is responsible for conveying all the in-
formation from the hypothalamus to the pituitary gland.
This is a vulnerable essential bridge between brain and pitu-
itary, and any damage to the pituitary stalk, e.g., through
childbirth or other physical head trauma throughout life,
results in both anterior and posterior pituitary dysfunction,
although to a surprisingly variable extent. The stalk can be
visualized noninvasively using magnetic resonance imaging
(MRI) in both rodents and humans, and flow can be imaged
directly using fluorescence in rodents (I. C. A. F. Robinson,
unpublished data). The presence or absence of an intact stalk
or ectopic localization of the posterior lobe on imaging is an
important part of the description of the phenotype in human
pituitary dysfunction syndromes.

B. Morphogenesis of the pituitary gland
The three lobes of the mature pituitary gland have a

dual embryonic origin; the anterior and intermediate lobes
are derived from oral ectoderm, whereas the posterior pi-

tuitary originates from the infundibulum, a specific region
of the developing central nervous system (CNS) that forms
in the midline of the ventral diencephalon. This review
focuses on the mouse as a model organism for pituitary
development in mammals, given the increasing number of
mouse mutants that have been analyzed in which mor-
phogenesis of the pituitary has been affected. However,
fate map studies have shown that these processes are sim-
ilar in all vertebrate species studied, including zebrafish,
amphibians, chick, and rodents (9–13).

In the mouse, the first sign of pituitary development
occurs at 7.5 days post coitum (dpc) with the development
of the hypophyseal placode, a thickening of the ectoderm
in the midline of the anterior neural ridge. It is already
associated at this stage with the presumptive hypotha-
lamic territories, posteriorly adjacent, as described in
chick (14, 15). During the next 24 h, as the anterior neural
tube bends and rapidly expands, the hypophyseal placode
is displaced ventrally, within the ectoderm at the roof of
the future oral cavity. At approximately 9 dpc, the placode
forms a rudimentary Rathke’s pouch, the primordium
of the anterior and intermediate lobe. By 10.5 dpc, a
restricted region of the ventral diencephalon above
the pouch gives rise to the infundibulum from which the
posterior pituitary and pituitary stalk will derive. The
juxtaposition of Rathke’s pouch and the diencephalon
is maintained throughout the early stages of pituitary or-
ganogenesis. This close relationship is required for tissue
interactions between neural and oral ectoderm, which are
critical for the initial stages of pituitary specification. By
10.5 dpc, the pouch is fully developed, and at 12.5 dpc it
is completely separated from the underlying oral ectoderm
(Fig. 1). The lumen of the pouch persists as the pituitary
cleft, separating the anterior and intermediate lobes in the
mature gland. The iterative nature of the inductive inter-
actions required for pituitary morphogenesis makes it very

FIG 1. Mouse pituitary development in sagittal section. Stages of development are indicated in dpc. AL, Anterior lobe; AN, anterior neural pore;
DI, diencephalon; F, forebrain; H, heart; HB, hindbrain; I, infundibulum; IL, intermediate lobe; MB, midbrain; N, notochord; NP, neural plate; O,
oral cavity; OC, optic chiasma; OM, oral membrane; P, pontine flexure; PL, posterior lobe; PO, pons; PP, prechordal plate; RP, Rathke’s pouch; SC,
sphenoid cartilage. [Adapted from H. Z. Sheng and H. Westphal: Trends Genet 15:236–240, 1999 (317), with permission from Elsevier.]
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sensitive to both loss- and gain-of-function mutations. In
turn, such mutations can be informative as to the underlying
mechanisms driving invagination and shaping of the pouch
(16),cellmigration, tissuepatterning,andthespecificationof
individual cell fates. Although much remains to be learned,
we discuss the current state of knowledge below.

C. Endocrine cellular differentiation in the developing
pituitary gland

The definitive Rathke’s pouch comprises proliferative
progenitors that will gradually relocate ventrally, away
from the lumen as they differentiate. A proliferative zone
containing progenitors is maintained in the embryo in a
perilumenal area and was recently found to persist in the
adult (17, 18). Ventrally, relocalization is associated with
cell cycle exit (19), and it is not known whether this is an
active migration event or a passive process of cells driven
away by new cells proliferating in the perilumenal area.

The earliest phenotypic marker of differentiation within
the anterior pituitary is the expression of Cga, the gene en-
coding �-glycoprotein subunit (�GSU), which appears at
11.5 dpc in a restricted patch of cells in the ventral region of
Rathke’s pouch. These �GSU-positive cells also express the
transcription factor Islet-1 (Isl1) and correspond to prospec-
tive thyrotropes, which differentiate after initiating expres-
sion of Tshb at 12.5 dpc. However, this early population of
thyrotropes is short-lived and disappears at birth (20–22). In
the mature adult pituitary, Cga expression is only detected in
the thyrotrope and gonadotrope lineages (20).

At 12.5 dpc, corticotrope cells start to differentiate in a
domain just dorsal to thyrotropes, producing proopiomel-
anocortin (POMC) (22, 23). In the intermediate lobe, as
development proceeds, Pomc-expressing cells begin to be
detected at 14.5 dpc with gradually increasing expression
in melanotropes (21). Definitive thyrotropes are observed
at 14.5 dpc, characterized by the expression of Tshb in a
restricted number of cells within the anterior lobe. The
expression of Gh and Prl marks the differentiation of so-
matotrope and lactotrope lineages, respectively, begin-
ning at 15.5 dpc with the number of somatotropes in-
creasing dramatically and extending throughout the
central and lateral areas of the anterior lobe. Lactotropes
remain localized to a more restricted medial zone adjacent
to the ventral surface of the intermediate lobe. The gonado-
tropes are the last cell type to emerge, beginning at 16.5 dpc
with the onset of Lhb expression followed by Fshb 1 d later.

Inevitably, much of this description relies on the use of
hallmark differentiation markers to identify cell types.
However, recent unpublished birthdating studies (S.
Camper and S. Davis, Department of Human Genetics,
University of Michigan, personal communication) imply
that the first waves of many endocrine cell types may be
specified earlier and then migrate some distance before

these markers are expressed. This raises the question of
whether there are sorting cues for migrating cells leaving
progenitor pools, and how they end up in the three-
dimensional homotypic networks, shown recently in the
adult mouse pituitary gland (24). Many developmental
studies of the pituitary concentrate their analysis by care-
ful registration of sections in the midline to permit com-
parisons of anatomical sections over time. However, these
are likely to have given a very incomplete description of cel-
lular distribution in three dimensions, especially because the
majority of endocrine cells end up in the lateral rather than
medial portions of the gland. Advanced imaging and recon-
struction techniques, combined with fluorescent tags for dif-
ferent endocrine cell populations, will likely change our
views on the way the gland assembles its networks of cells
and maintains these through cell turnover and replacement
(P. Mollard, Institute of Functional Genomics, Montpelier,
France, personal communication).

D. Mouse genetic models unravel aspects of
pituitary development

The existence of spontaneous mutations and the ease of
generating engineered mutant strains of mice that exhibit
disrupted pituitary development place the mouse as the ma-
jor model for studying pituitary development. We will con-
sider several of the genes and their protein products that are
present fromearlystagesofpituitarydevelopmentandwhich
are required endogenously within Rathke’s pouch progeni-
tor cells for their maintenance and proliferation. Next, we
will discuss those that are active within cells of the ventral
diencephalon, but which are required for the induction, re-
gionalization, and maintenance of Rathke’s pouch. Finally,
we will review some of the molecules involved in endocrine
cell differentiation from 12.5 dpc, i.e., after Rathke’s pouch
is fully developed and has separated from the oral ectoderm.
Naturally occurring mutations and targeted ablation of sev-
eral hypothalamic hormones including GnRH, GHRH, and
TRH has shown that mice lacking these peptide hormones
generally have normal pituitary development. Hormone de-
ficiencies and the associated effects on downstream targets
fortheserespectivefactorsdevelopafterbirthandarebeyond
the scope of this review (25–28). Similarly, the description of
isolated hormonal deficiencies will not be reviewed because
most of the effects of these hormonal deficiencies are only
observed postnatally.

III. Factors and Signaling Pathways Present in
the Pituitary Primordium and Initially
Involved in Its Formation and Maintenance

A. SIX homeodomain proteins
These proteins contain a DNA binding homeodomain

homologous to that of Drosophila sine oculus protein.
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They form a family of six members in mammals that can
either activate or repress transcription. These factors work
in a complex network with other proteins, including EYA,
and DACH (encoded by the mammalian homologs of the
Eyes absent and dachshund genes in Drosophila). EYA is
a phosphatase, whereas DACH is able to recruit corepres-
sors, therefore, depending on the activity of the former,
transcription is either inducedor repressed.This transcrip-
tion factor network is iteratively used during organogen-
esis; retinal cell determination is a well-characterized ex-
ample (29–31). The SIX3/6 proteins can also interact with
the Groucho family of transcriptional repressors (32, 33),
which implies yet further links with, e.g., Wingless-type
MMTV integration site family (WNT) signaling pathways.

Four members of the SIX family are expressed during
pituitary development; but the exact role of these proteins
is difficult to determine due to likely functional redun-
dancy between them (Six1 and 4) and the severity of the
phenotype affecting anterior forebrain structures in
mouse mutants (Six3). The first demonstration of a role
for these proteins in pituitary development emerged from
studies on Six6. This is first expressed in the invaginating
pouch, but it soon becomes restricted dorsally in the peri-
lumenal region, where cell proliferation continues, distant
from regions involved in differentiation. In the adult pi-
tuitary, the protein is still strongly expressed (K. Rizzoti,
unpublished observations), implying a potential continu-
ing role in pituitary plasticity. Six6 is also expressed in the
developing eye and hypothalamus (31, 34). Liveborn
Six6�/� mice possess hypoplastic pituitaries, likely due to
an early impairment of progenitor proliferation (12). Ar-
guing by analogy with the retinal phenotype seen in the
same animals, the reduced pituitary proliferation is
strongly suggestive of a lack of repression of cell cycle
kinase inhibitors such as p27kip1 whose promoter is di-
rectly bound in vivo by the SIX6/DACH1 complex (31).
In contrast, SIX3 heterozygous deletion (in Six3�/�;
Hesx1�/� embryos) has recently been linked to increased
cell proliferation (see Section III.B and Ref. 35).

To date, disease-causing mutations in SIX6 have not
been identified in human patients with either eye defects or
pituitary hormone deficiencies (M. T. Dattani, unpub-
lished observations; and Ref. 36).

B. Paired-like homeodomain proteins

1. Hesx1
The transcription factor HESX1 is a member of the

paired-like class of homeodomain proteins (37), and it
functions as a transcriptional repressor (38, 39). TLE1, the
mammalian ortholog of the Drosophila protein Groucho,
and the nuclear corepressor N-COR both bind to HESX1
to exert repression (38). DNA methyltransferase 1 is also

capable of partnering with HESX1 to repress transcrip-
tion, possibly through CpG methylation of HESX1 target
genes (40). Hesx1 is one of the earliest markers of Rathke’s
pouch, initially present in the anterior neural ridge mid-
line, where the hypophyseal placode develops, and in the
adjacent rostral neural plate, a region fated to form the
forebrain and ventral diencephalon. It becomes restricted
to Rathke’s pouch by 9 to 9.5 dpc, where expression is
maintained until 13.5 dpc (41, 42). Its down-regulation is
absolutely required for cell determination to occur, in par-
ticular for the related paired-like homeodomain activator
Prophet of Pit1 (PROP1) to promote these events (see be-
low). Activation of the 5�Hesx1 promoter by the LIM
homeodomain proteins Lhx1 and Lhx3 (see below) is re-
quired for its early expression, whereas its 3� downstream
region contains elements both necessary and sufficient for
later expression in the developing Rathke’s pouch (43).

Hesx1 is essential for normal forebrain development,
and mice with a homozygous targeted disruption of Hesx1
display a range of forebrain defects (44, 45). The most
severely affected Hesx1 null embryos exhibited a signifi-
cant reduction in anterior forebrain (AFB) structures, es-
pecially of midline telencephalic commissural tracts such
as the corpus callosum and anterior commissure and of
olfactory bulbs, fully penetrant eye defects ranging from
microphthalmia to anophthalmia, and absence of the in-
fundibulum, in addition to dysmorphology of Rathke’s
pouch (45, 46). Andoniadou et al. (45) have shown that
the reduction of AFB tissue in the null mutants is caused by
the posteriorization of AFB precursors at early somite
stages. This in turn is related to the ectopic activation of
WNT/�-catenin signaling in the prospective AFB. Al-
though the pituitary gland is severely dysplastic and cel-
lular proliferation is enhanced, terminal differentiation of
the hormone-producing cell types is not affected at later
stages of development (38). A small percentage (5%) of the
most severely affected neonates are reported to lack an
anterior pituitary gland (38). However, recent studies
have shown that, in mice bearing a homozygous null mu-
tation in Hesx1 (Hesx1R160/R160C) that were severely af-
fected with defects of the telencephalon, eyes, and cranio-
facial structures, the anterior pituitary was ectopically
located in the roof of the nasopharyngeal cavity, as was
also observed in Hesx1�/� embryos (47). In contrast, the
more mildly affected homozygous mutants show the pres-
ence of a Rathke’s pouch that is correctly located, albeit
one that is morphologically abnormal with additional bi-
furcations and cell overproliferation. This results in the
apparent formation of multiple pituitary glands (38).
However, postnatally the overgrown gland becomes hy-
poplastic (38), perhaps due to defects in the hypothala-
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mus, because this controls the growth of the gland post-
natally and it is also affected by Hesx1 deletion (35).

Recently, embryos heterozygous for both Hesx1 and
Six3 null mutations were shown to display a phenotype
reminiscent of that of mildly affected Hesx1�/� em-
bryos. These show increased cell proliferation in the
pouch and a hyperplastic, dysmorphic gland, and it has
been suggested that derepression of the WNT pathway
could be involved (35). Thus both HESX1 and SIX3
seem to control progenitor proliferation in the same or
parallel pathways, and the later switch of expression
between the repressor HESX1 and the activator PROP1
is an important step toward proper cell determination
(see Section V).

The forebrain, eye, and pituitary deficits identified in
the Hesx1 null mutants subsequently led to the identifi-
cation of mutations in the human homolog HESX1 in
patients with various forms of hypopituitarism including
septo-optic dysplasia (SOD), CPHD, and isolated GH de-
ficiency (IGHD) (46, 48, 49).

2. Otx2
OTX2 is a homolog of the Drosophila orthodenticle

protein. In mammals there are two related proteins, OTX1
and OTX2, and their requirement for the formation of
anterior structures has been conserved throughout evolu-
tion from flies to mice (for review, see Ref. 50).

In the mouse, Otx2 is expressed early in development,
and in its absence gastrulation is impaired. As a conse-
quence, mutant embryos lack anterior structures corre-
sponding to the future head (51). Later in development, it
is still required for maintenance of the forebrain (52, 53).
Although its role during pituitary development has not
been precisely investigated, its requirement in anterior
structures implies that it is also necessary for Rathke’s
pouch development. It is in particular necessary for correct
Hesx1 expression in the forebrain (54).

Recently, mutations in OTX2 have been identified in
patients with eye disorders such as anophthalmia or mi-
crophthalmia, with or without variable hypopituitarism (see
below).

3. Pitx1
PITX1 contains a DNA binding homeodomain related

to that of Drosophila bicoid and orthodenticle (55, 56).
There are three Pitx proteins in mammals, and they play
important roles in different tissues during embryogenesis
(57). Interaction between PITX1 and the pituitary tran-
scription factor POU1F1 (previously termed PIT1; see be-
low) results in synergistic activation of the promoter of the
Prl gene and also, to a lesser extent, the Gh promoter (58,
59). PITX1 can also synergize with the transcription fac-

tors NEUROD1 and TBX19 (previously called TPIT) to
activate Pomc expression, whereas in gonadotrope cells it
activates Lhb expression in conjunction with the transcrip-
tion factors nuclear receptor 5A1 [NR5A1; also termed ste-
roidogenic factor 1 (SF1)] and Early growth response 1
(EGR1). PITX1 also appears to be essential for maintaining
the expression of �Gsu and the GnRH receptor (23, 59–62),
and it is an essential upstream regulator ofLhx3 (59, 63, 64).

Expression of Pitx1 is first detected in the anterior ecto-
derm at 8.0 dpc. By 9.5 dpc, Pitx1 is expressed throughout
the oral ectoderm and in Rathke’s pouch. Expression is
maintained throughout anterior pituitary development
in all hormone-producing cell types (58, 65). In the adult
pituitary, Pitx1 expression is highest in �GSU-expressing
thyrotropes and gonadotropes and some POMC-produc-
ing cells, with lower levels in other hormone-producing
cell types (66). Mice with a homozygous disruption of
Pitx1 die before or shortly after birth, reflecting the pleio-
tropic functions of the protein during development, with
a small subset exhibiting embryonic lethality at 11.5 dpc.
Morphogenesis of the pituitary in Pitx1 null embryos ap-
pears normal. However, at birth an increase in the levels
of Acth transcripts and protein was noted in corticotropes,
whereas the number of gonadotropes and thyrotropes, as
well as levels of LH� and TSH�, were greatly diminished
(67). The presence of the closely related transcription fac-
tor PITX2 in Rathke’s pouch could explain the absence of
early defects (see below).

4. Pitx2
PITX2 exhibits a large degree of sequence identity with

PITX1 (68, 69) and is similarly capable of activating the
promoters of most of the pituitary hormone genes (59, 70,
71). Expression of Pitx2 is initiated in the oral ectoderm at
8.5 dpc and is maintained throughout development of
Rathke’s pouch and in the surrounding mesenchyme (68,
72). Its expression is maintained in the adult gland mainly
in thyrotropes and gonadotropes (64). It is expressed in nu-
merous endocrine cell lines in vitro, as is PITX1 (64, 68).

Homozygous loss of Pitx2 results in early embryonic le-
thality with a severe phenotype, consistent with the wide-
spread expression of this gene (73–76). In contrast to Pitx1,
pituitary development is severely affected in Pitx2 null em-
bryos. Rathke’s pouch undergoes initial specification, but
Hesx1 expression is not maintained and development of the
pouch is arrested by 12.5 dpc (76). Studies have shown that
activation of the WNT signaling pathway or constitutive ac-
tivation of �-catenin can induce Pitx2 expression. In turn,
PITX2 controls genes such as cyclin D1 and Cyclin D2 that
regulate the cell cycle (77,78). It has thereforebeenproposed
that pituitary hypoplasia in Pitx2 null mice may result from
decreased cell proliferation (77). Another study shows how-
ever that lack of Pitx2 results in excessive cell death during
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early pituitary development, suggesting that it is required for
survival rather than proliferation (64). Indeed, it could be
involved in both survival and proliferation.

The expression patterns of Pitx1 and Pitx2 overlap dur-
ing early pituitary development, suggesting a possible re-
dundancy as intimated above; indeed animals mutant in
both genes show a more severe phenotype. Expression of
Lhx3 is undetectable in these, whereas single mutants do
show Lhx3 expression. This supports the notion of some
functional redundancy between PITX1 and PITX2; how-
ever, the single mutant phenotypes show that early devel-
opment is more dependent on PITX2 than on PITX1 (64).

By creating a hypomorphic allele of Pitx2, Gage et al.
(76) were able to assess its role in later stages of pituitary
differentiation. Generation of an allelic series containing
different combinations of Pitx2 wild-type, hypomorphic,
and null alleles showed that reduced dosage of Pitx2 is
proportional to the extent of pituitary hypoplasia and cel-
lular differentiation (79). Examination of hypomorphic
Pitx2 homozygous embryos, which survive postnatally,
revealed that the gonadotrope lineage was most pro-
foundly affected. Numbers of differentiated somatotropes
and thyrotropes were also reduced in mice homozygous
for the hypomorphic allele; however, the corticotrope
population appeared unaffected, as judged by the normal
expression of Pomc (79). Finally, overexpression of Pitx2
in the gonadotrope and thyrotrope lineages under the con-
trol of �GSU regulatory sequences results in exclusive ex-
pansion of the gonadotrope population (64). This speci-
ficity may rely on the requirement of PITX2 for the
expression of the genes encoding gonadotrope-specific
transcription factors GATA2, EGR1, and NR5A1 (SF1)
(79). In conclusion both factors are involved in progenitor
maintenance, or expansion, with a prominent role for
PITX2. Later on they are individually necessary within
specific endocrine cell populations.

The third member of this family, PITX3, which has a
major role in left-right asymmetry, has been implicated in
pituitary development in lower vertebrates, where it defines
an equivalence domain for the lens and anterior pituitary
placode (80).MutationsaffectingPITX3havebeenreported
in human patients with anterior segment dysgenesis and cat-
aract, and loss of expression in the lens is associated with
aphakia in mice (81, 82); however, because there is currently
little information pertaining to its role in pituitary develop-
ment in mammals, we will not discuss it further.

C. LIM homeodomain transcription factors

1. Isl1
ISL1 is a member of the LIM homeodomain family of

transcription factors, characterized by two tandemly re-
peated cysteine/histidine-rich LIM domains, involved in

protein-protein interactions between the N-terminal end
of the protein and the DNA-binding homeodomain. Com-
binatorial expression of LIM transcription factors has
been shown to be important in different cell specification
events (83), and it is becoming clear that related proteins
and cofactors for LIM proteins interact to regulate target
genes in pituitary cells (84, 85).

ISL1 is the first LIM protein to be expressed during
pituitary development; initially detectable at 8.5 dpc
throughout the oral ectoderm, it becomes restricted to the
pouch at 9.5 dpc. Between 10.5 and 11.5 dpc, its expres-
sion is gradually restricted to the ventral portion of the
pouch, which will begin to express Cga and subsequently
Tshb because the cells become rostral tip thyrotropes after
12.5 dpc (22). This dynamic expression pattern appears to
be dictated by interactions with the surrounding tissues
(see below).

Homozygous loss of Isl1 results in developmental ar-
rest by 10 dpc, at which time the oral ectoderm of mutant
mice has invaginated, but pouch formation is blocked at
an early stage. This suggests that the gene is necessary for
pituitary progenitor cell proliferation and/or maintenance
(86). Its function at later stages has not been described, and
to date no human mutations in ISL1 have been identified.

2. Lhx3
Lhx3 is expressed early during anterior pituitary devel-

opment, initially with strong uniform expression within
Rathke’s pouch at 9.5 dpc (87). Subsequently, although its
expression is maintained throughout the pouch, from 12.5
dpc it forms a gradient of expression with higher protein
levels dorsally (88–90). By 16.5 dpc, Lhx3 is present
throughout the pituitary, and expression persists into adult-
hood (89). Mice with a targeted homozygous disruption of
Lhx3 die shortly after birth and exhibit pituitary aplasia,
whereas heterozygous mice are normal. Although Rathke’s
pouch develops, its expansion is arrested in null embryos by
12.5 dpc (87). Moreover, whereas Hesx1 and Isl1 are ex-
pressednormallyat9.5dpcinthesemutants, theirexpression
fails to be maintained from 12.5 dpc (87, 90). Defects in cell
proliferation have been reported (87); however, increased
apoptosisappears tobethemajorcontributortothepituitary
hypoplasia (63, 90). Later during pituitary development, the
phenotype of Lhx3�/� pituitaries involves defects in the dif-
ferentiation of all endocrine cell types. Dorsoventral cell
specification appears impaired, and this may, in part, be due
to disrupted Notch signaling because Notch2 fails to be ex-
pressed in the mutants.

Failure to activate Pou1f1 (Pit1) results in a predictable
loss of lactotropes, somatotropes, and thyrotropes (87,
90) (see Section V). Gonadotropes also fail to fully differ-
entiate, probably due to the down-regulation of Foxl2 and
�GSU.Asimilar lossofbothTBX19(TPIT)andNEUROD1
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results in a dramatic reduction of corticotropes (90). In the
intermediate lobe, down-regulation of Tbx19 expression
is consistent with the observed absence of melanotropes.
Therefore, LHX3 is required for early progenitor survival
as well as late endocrine cell differentiation events, reflect-
ing its wide expression pattern both spatially and tempo-
rally. Its pleiotropic functions are reflected by its different
target genes: Fshb, Cga, Prl, Tshb, Gnrhr, and Pou1f1
(91–94) and partners including Pou1f1 and Isl1 (91, 95).

Mutations inLHX3havenowbeenidentified inanumber
of human pedigrees characterized by CPHD, a short stiff neck,
and variable sensorineural hearing loss (see Section VI).

3. Lhx4
Lhx4 is closely related to Lhx3 and is also expressed

throughout the invaginating Rathke’s pouch at 9.5 dpc.
Subsequently, however, the expression patterns of the two
genes differ (89, 96, 97). Although Lhx3 is widely ex-
pressed and maintained throughout the developing pitu-
itary, Lhx4 expression is transient, becoming restricted to
the future anterior lobe by 12.5 dpc and eventually down-
regulated at 15.5 dpc (89).

Homozygous Lhx4�/� mice die shortly after birth,
whereas heterozygous animals appear normal (89). As is
the case with Lhx3 null mice, loss of Lhx4 does not pre-
vent definitive pouch formation but results in the forma-
tion of a hypoplastic pituitary. However, in contrast with
Lhx3�/� mice, the anterior lobe of Lhx4�/� mice contains
all five of the differentiated cell types (89). Although there
is a slight reduction in cell proliferation, the small size of
the anterior pituitary is clearly due to a wave of apoptosis
completed by 14.5 dpc (88). LHX4 is also required for the
proper expression of Lhx3, specifically during early pitu-
itary development. This may also involve another pitu-
itary-specific transcription factor, PROP1, because em-
bryos lacking both LHX4 and PROP1 fail to express Lhx3
at early stages of pituitary morphogenesis (88).

Generation of mice with various combinations of Lhx3
and Lhx4 gene dosage using single and double knockouts
has revealed that a single wild-type allele of either Lhx3 or
Lhx4 is sufficient for the formation of a definitive pouch
structure, and that homozygous loss of both genes does
not prevent formation of a rudimentary pouch at 9.5 dpc,
but there is no progression beyond this stage. This strongly
suggests early functional redundancy when expression of
the two proteins overlaps (98). Later, however, normal
specification and terminal differentiation of the pituitary
cell types is entirely dependent on the presence of at least
one copy of Lhx3, not Lhx4, showing that functional re-
dundancy is temporally limited (98).

Heterozygous mutations within LHX4 have now been
described in a number of human patients with CPHD (see
Section VI).

D. SOX transcription factors
Sox2 together with Sox1 and Sox3 are all grouped into

the B1 subfamily of Sox genes (of which there are 20 in
mice and humans) based on their extensive homology. The
SOX proteins bind and bend DNA with their HMG do-
main; they can modulate gene activity as classical tran-
scription factors but, due to the nature of the acute bend
they induce in the DNA, they are also involved in the
assembly of transcriptional complexes (99–101). During
pituitary development, SOX2 is expressed in the early ec-
toderm and maintained throughout the pouch. Its expres-
sion is down-regulated as endocrine cell differentiation
proceeds. Expression is maintained in the prospective pro-
genitor proliferative zone, around the Rathke’s pouch lu-
men, during embryogenesis but also in the mature gland
(17). It is also expressed in the ventral diencephalon (see
below).

Sox2�/� null embryos die shortly after implantation
and therefore provide no information about its role in the
pituitary (102). However, about one third of Sox2 het-
erozygous mice show perinatal lethality, and we have re-
cently shown that the remaining animals are affected by a
mild hypopituitarism (103). We also detected in a pro-
portion of heterozygous mutants a mild hypoplasia of the
anterior pituitary gland from Rathke’s pouch stages until
adulthood (K. Rizzoti, unpublished observations), which
could underlie the hypopituitarism. SOX2 could therefore
be required for the maintenance or proliferation of pitu-
itary progenitor cells in the embryo. It may also be in-
volved in the regulation of expression of Hesx1 (103,
104). Along with the size reduction, the embryonic pitu-
itaries of Sox2 mutants displayed abnormal bifurcations
resulting in the presence of extra clefts in the adult gland
(103). These may be caused indirectly by the reduction of
SOX2 in the overlying neuroepithelium (see below).

Sox2 expression is also seen in specific subpopulations
of hormone-negative cells in the postnatal and adult pi-
tuitary (17). Some of these line the cleft and are probably
direct descendents of the luminal cells lining Rathke’s
pouch; others are scattered in adjacent tissue of the ante-
rior pituitary. It has recently been shown that SOX2-pos-
itive cells, dissociated from adult pituitaries, are able to
form pituispheres in culture (17). These are free-floating
balls of cells derived clonally by proliferation of a single
cell. The majority of cells within the spheres retain Sox2
expression when grown in growth factors [epidermal
growth factor (EGF) and fibroblast growth factor (FGF)],
but they can be induced to differentiate by removing
growth factors and allowing the spheres to attach to a
substrate. They quite rapidly lose SOX2 and give rise to
endocrine-producing cells. All the endocrine cell types
found in the anterior lobe can be found (essentially at
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random) in the attached clumps of cells. If the pituispheres
are kept in growth medium and dissociated into single
cells, these can give rise to secondary pituispheres, which
have similar properties to the primary spheres. Together
these data provide in vitro evidence for the presence of
self-renewing progenitor or stem cells, marked by Sox2
expression. It is therefore possible that at least some of the
SOX2-positive cells in the adult pituitary also represent
multipotent pituitary progenitor/stem cells. These could
play a role in pituitary plasticity when changing physio-
logical situations, such as lactation or pregnancy, lead to
changes in numbers and types of endocrine cells (17).

Lineage tracing studies will be necessary to show the
contribution of such adult stem progenitors to normal en-
docrine cell turnover. A subsequent report attempted to do
so, although this did not concern Sox2 expression (18).
Although the conclusions were in broad agreement with
the notion that there are stem/progenitor cells located in
the region of the cleft, additional methods are required to
prove this. Moreover, further work is required to show
whether SOX2 is important for the identity and properties
of these cells as stem/progenitor cells as it is for other stem
cells types, such as embryonic stem cells and neural stem
cells (102, 105).

De novo SOX2 mutations have now been identified in
a number of patients with eye defects such as anophthal-
mia or microphthalmia in association with hypogonado-
tropic hypogonadism and variable GH deficiency (GHD),
as well as a number of other features such as agenesis of the
corpus callosum, hypothalamic hamartomata, esophageal
atresia, and sensorineural hearing loss (see Section VI).
Unlike the murine phenotype, where haploinsufficiency is
associated with a generalized reduction in pituitary cell
numbers, inhumans thephenotype consistently appears to
include hypogonadotropic hypogonadism, whereas GHD
is rarer and other cell types do not seem to be affected.

E. WNT/�-catenin and Notch signaling pathways

1. WNT/�-catenin signaling
WNT signaling pathways are repeatedly involved dur-

ing embryogenesis and are implicated in cell proliferation,
determination, and differentiation events and also in de-
termining cell polarity. WNT ligands activate their signal-
ing cascade by binding to a complex comprising Frizzled
receptors and LRP proteins (low density lipoprotein-re-
lated receptor). At least three alternative pathways can
then be activated: 1) a �-catenin-dependent pathway that
affects transcriptional activity, usually through binding
TCF/LEF proteins, which can then function as transcrip-
tional activators; 2) the planar cell polarity pathway; and
3) a Ca2�-mediated pathway related to cell adhesion (for
review, see Ref. 106 and references therein).

A pathway involving signaling via WNT/Disheveled/
�-catenin activates the expression of Pitx2, promoting the
proliferation of pituitary precursors (77). The identity of
the WNT ligand inducing this pathway is not known, but
the expression of several candidate ligands has been de-
tected within the developing gland (107–109). In partic-
ular, Wnt4 is expressed in the pouch from 9.5 dpc, and its
deletion results in pituitary hypoplasia (108, 110). How-
ever, the origin of this defect is not clear. It was originally
shown that �GSU expression, in particular, was reduced
in Wnt4�/� embryonic pituitaries (110), whereas a more
recent report finds reduced POU1F1 (PIT1), but normal
levels of �GSU (108). TCF4, a downstream effector of
WNT/�-catenin signaling, is present in Rathke’s pouch
and also in the ventral diencephalon. Its deletion induces
the presence of abnormal bifurcations of the pouch, al-
though this may be due to its deletion in the overlying
CNS (see below). However, Tcf4 mutants also show
pituitary hyperplasia (111, 112), which could be ex-
plained by the expansion of Six6 expression in the
pouch at 11.5 dpc (113).

The phenotypes of WNT4 and TCF4 appear contra-
dictory, but in the absence of WNT signaling, TCFs ac-
tively repress transcription, so the two loss of function
mutations are not comparable. Nevertheless, these data
suggest that in the absence of WNT ligand, TCF4 restricts
SIX6 expression to control progenitor cell proliferation;
but in the presence of WNT, proliferation is encouraged.
This may also reflect a more complex crosstalk of path-
ways controlled by different ligands secreted both by the
ventral diencephalon and within the pouch (107, 108).
Furthermore WNTs and �-catenin can cooperate with
other signaling pathways, in particular the Notch signal-
ing pathway (106), and it may therefore not be surprising
to obtain different phenotypes when manipulating the li-
gand vs. either intermediate central effectors like �-catenin
or specific downstream effectors.

2. Notch signaling
Notch proteins are transmembrane receptors display-

ing an extracellular domain made of epidermal growth
factor-like repeats and an intracellular domain comprising
Ankyrin-like repeats. Four Notch receptors are present
in mammals. Upon activation by ligands (in mammals,
Delta1, -2, -3, and -4; Jagged1 and -2), the intracellular
domain of Notch is released and translocates to the nu-
cleus where it activates transcription via its main effector,
the protein RBP-J/CSL. Among its transcriptional target
genes are members of the Hairy enhancer of Split (Hes)
and bHLH transcription factors (for review, see Ref. 106).
This signaling pathway mediates the process of lateral in-
hibition where cells within groups are singled out to adopt
a particular fate. It is used iteratively during development,
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and from flies to mammals, to direct or influence cell fate
decisions.

During pituitary development, Notch2, Notch3,
Jagged1, and Hes1 are expressed at 9.5 dpc in the invag-
inating pouch. They are then quickly down-regulated
from the differentiating zone ventrally but maintained
dorsally around the lumen of Rathke‘s pouch (114, 115).
Notch signaling pathway components are expressed by
cells in the adult gland in the same locations that are pro-
posed to contain progenitor/stem cells as those mentioned
above (see Section III.D) (116).

To gain insight into Notch signaling function, Zhu et al.
(115) deleted Rbp-J exclusively in Rathke’s pouch, result-
ing in the premature differentiation of corticotropes. Such
a phenotype is also observed when a downstream effector
ofNotch,Hes1, is deleted (117).This latterphenotypewas
correlated with decreased proliferation (115, 117); how-
ever one study also reported increased cell death (7). In
Rbp-J�/� embryos, Prop1, a direct target of RBP-J (115),
fails to be up-regulated at 12.5 dpc. As a consequence,
Pou1f1 (Pit1) fails to be expressed (see below). Therefore
Notch signaling could be required to prevent early (cor-
ticotrope) differentiation and maintain undifferentiated
progenitors fated for a later (POU1F1-dependent) fate. In
this way, Notch signaling would allow the generation of
different endocrine cell types by controlling the time and
therefore the context in which they differentiate.

IV. Regulation of Rathke’s Pouch Development
by the Ventral Diencephalon

Experimental manipulation of embryos from several spe-
cies, as well as Rathke’s pouch explant experiments in
rodents, have shown that signals from the diencephalon
are essential not only for the induction and maintenance of
Rathke’s pouch, but also for the regionalization within the
pouch that allows the emergence of the different endocrine
cell types (22, 110, 118–123). Recently, however, careful
examination of the expression patterns of signaling mol-
ecules within the ventral diencephalon has revealed their
presence for longer than previously thought, raising ques-
tions about a prolonged influence of the developing in-
fundibulum on the pituitary (124).

Genetic evidence that signals from the neural ectoderm
are crucial for pituitary morphogenesis initially came from
the targeted disruption of the transcription factor Nkx2.1
(also known as T/ebp, Ttf1, Titf1). This results in the loss
of the ventral forebrain and the complete absence of Rath-
ke’s pouch, although Nkx2.1 is not expressed in the latter.
This confirmed a role for the ventral diencephalon in the
maintenance and survival of the pouch (125). It does not
provide the only influence, however, because the sur-

rounding mesenchyme is also involved (126) (see also Sec-
tions IV.A and IV.B).

A. Bone morphogenetic proteins and fibroblast growth
factors: synergy and antagonism

1. Bmp4
Bone morphogenetic proteins (BMPs) belong to a fam-

ily of 20 secreted molecules, which bind to serine-threo-
nine receptor kinases that in turn transduce an intracel-
lular activation cascade. Some members of the BMP family
are involved in multiple events during embryogenesis.
BMP4 is the earliest signaling molecule known to be ex-
pressed in the prospective infundibulum, arising at 8.5
dpc, as Rathke’s pouch is first visible; it is maintained there
until 14.5 dpc (22, 124).

Complete deletion of Bmp4 usually results in early em-
bryonic lethality (127); however, histological analysis of a
few mice that survived to 10 dpc failed to show any sign
of pouch formation or even a thickened ectodermal pla-
code (86). In contrast, in Nkx2.1 null mutants where the
Bmp4 expression domain is initially present, a rudimen-
tary pouch forms but fails to enlarge by cell proliferation
(86). Moreover, ectopic expression of the BMP2/BMP4
antagonist noggin within the oral ectoderm and Rathke’s
pouch results in early arrest of pouch development at 10
dpc (110). Also deletion of the gene encoding for the BMP
receptor, Bmpr1a, in Rathke’s pouch at 9.5 dpc resulted in
an underdeveloped structure at 10.5 dpc (early lethality
prevented investigations at later stages) (124). In contrast,
noggin null embryos showed expanded domains of Bmp4
activity within the ventral diencephalon resulting in a
range of Rathke’s pouch phenotypes from an enlarged,
rostrally displaced pouch to induction of a second pouch
resulting in pituitary duplication (124). All these data im-
plicate BMP4 as the earliest secreted molecule required in
the ventral diencephalon for induction and maintenance
of Rathke’s pouch.

Several lines of evidence show that expression of Isl1 in
the developing anterior pituitary is regulated by BMP4
signaling from the ventral diencephalon. First, the timing
of expression of Isl1 throughout Rathke’s pouch coincides
with the maximum expression of Bmp4 at 9.5 dpc, which
declines by 11.5 dpc as Isl1 becomes down-regulated. Ad-
ditionally, ectopic expression of Bmp4 within the pouch
expands the Isl1 expression domain within the anterior
lobe (110), whereas noggin null mice show ectopic ex-
pression of Isl1 in the mesenchyme adjacent to Rathke’s
pouch. Furthermore, loss of BMPR1A within Rathke’s
pouch prevents expression of Isl1 (124). Therefore regu-
lation of Isl1 expression could, at least partially, be re-
sponsible for the maintenance and survival effects of
BMP4 on Rathke’s pouch progenitor population.
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2. FGFs
Members of the FGF family activate receptor tyrosine

kinases, and their extracellular association with heparan-
sulfate proteoglycans is crucial for their activity in multi-
ple processes during embryogenesis.

Three of the 23 members of this family (Fgf8, Fgf10,
and Fgf18) begin to be expressed in the infundibulum by
9.5 dpc, 24 h later than the onset of Bmp4 (22, 110, 123)
Transcripts from Fgfr2, encoding an FGF receptor, have
been detected in Rathke’s pouch adjacent to the domain of
Fgf8 expression (86). This timing of expression corre-
sponds to the ability of the infundibulum to inhibit dif-
ferentiation dorsally, by down-regulating the expression
of Isl1 and thereby restricting it to ventral prospective
thyrotropes, and also to maintain proliferative progeni-
tors by inducing the expression of Lhx3 and Lhx4 in the
pouch. Indeed, treatment of pouch explants by Fgf8 in-
duced Lhx3 expression, whereas Isl1 expression was re-
stricted away from the source of the factor (22). At later
stages (16.5 dpc), Lhx3 expression appears to be indepen-
dent of FGFs (124). In contrast, treatment with a specific
FGF receptor antagonist, mimicking the loss of FGF sig-
naling, induced down-regulation of Lhx3 and ectopic dif-
ferentiation of prospective thyrotropes (Isl1�;�Gsu�) and
corticotropes (Acth�) in the dorsal region along with sig-
nificantly reduced proliferation (128). Later, at around
11.5 dpc, FGF8 can restrict corticotrope differentiation to
an intermediate zone of the pouch in between ventral thy-
rotropes and dorsal proliferative progenitors in contact
with the factor source (22). Moreover, early ectopic ex-
pression of Fgf8 under the control of the Cga (�GSU)
promoter within Rathke’s pouch results in severe dysmor-
phogenesis and enlargement of the pituitary, with an ex-
pansion of Pomc-expressing cells (corticotropes and mela-
notropes) and loss of the other cell lineages (110, 123).
Finally, terminal differentiation requires exit from the cell
cycle and FGF8 signaling down-regulation (22). Although
homozygous disruption of Fgf8 results in early embryonic
lethality before gastrulation, precluding any study of its
role in Rathke’s pouch development (129), deletions of
Fgf10 or the gene encoding its receptor, Fgfr2IIIb, con-
firmed the proposed proliferative effect of FGFs on the
pouch. They both result in a poorly formed Rathke’s
pouch with widespread apoptosis resulting in absence of
the pituitary (130, 131). All these data show a proliferative
role for FGFs from the ventral diencephalon onto Rathke’s
pouch after an initial induction by BMP4; however, an
additional signaling source is also required for correct pat-
terning of the pouch. Intriguingly, in humans, mutations
of FGF8 and the receptor FGFR1 appear to be associated
with Kallmann syndrome, resulting in isolated hypogo-
nadotrophic hypogonadism (132–134).

3. Bmp2
In contrast with Bmp4, Bmp2 is first expressed in the

ventral mesenchyme adjacent to Rathke’s pouch at 10.5
dpc along with Bmp7, but then gradually it is also found
throughout the pouch itself, first ventrally then expanding
dorsally, from 10.5 to 12.5 dpc (22, 124). In vitro, BMP2,
-4, or -7 is able to mimic the influence of ventral mesen-
chyme on pouch explants by inducing Isl1 expression and
therefore favoring a ventral thyrotrope cell lineage (22).
Therefore, because BMP4 regulates early expression of
Isl1 throughout the pouch, BMP2 may subsequently be
responsible for its ventral maintenance. Maintenance of
Bmp2 expression under control of the Cga promoter re-
sulted in a hyperplastic gland with strong expansion of the
expression domain of the transcription factor Gata2,
which is present in gonadotropes and thyrotropes but is
also involved in determination of POU1F1 (PIT1) lineages
(see below) (110). However, as observed with FGF8,
down-regulation of BMP signaling is necessary for termi-
nal differentiation (110). In agreement with these data,
expression of a dominant-negative BMPR1A receptor (as
deletion of the gene is lethal early in development) induced
the formation of a hypoplastic gland where POU1F1
(PIT1) cell lineages are essentially absent and the gonado-
trope population is reduced, whereas corticotropes and
intermediate lobe melanotropes are present (110).

In vitro, BMP signaling inhibits Pomc transcription
(135). Based on these results, it has been classically pro-
posed that BMP2 (and BMP7 in ventral mesenchyme) may
induce the proliferation and determination of ventral cell
types at least partially through regulation of Isl1 and
Gata2, whereas at the same stages FGFs induce dorsal cell
proliferation and restrict, along with BMPs, corticotrope
determination to an intermediate domain (summarized
in Fig. 2).

The field has therefore been stimulated by the notion,
derived from a reasonable and consistent interpretation of
data obtained a while ago, that organizing gradients
across the developing pouch are crucial for spatial differ-
entiation signals. However, the presence of a dorsal FGF
source antagonizing a ventral BMP signal has not been
formally demonstrated in situ, and whereas the expression
pattern of BMP2 is indeed restricted ventrally at 10.5 dpc,
it is present throughout the pouch at 12.5 dpc, which is not
consistent with a gradient model (124). Therefore, the
presence of several BMP inhibitors, including chordin,
noggin, NblI, and FstlI, within the infundibulum, the pi-
tuitary, and surrounding mesenchyme, as well as receptor
tyrosine kinase inhibitors of the Sprouty family in the
pouch, may all shape and modulate the range of activities
of BMP and FGF signaling in a rather more complex local
fashion. Moreover, they may interact with migrating
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streams of cells specified much earlier than previously
thought, where the simple gradient model may not apply.

This suggests that simple gradients are not sufficient
and that proper morphogenesis of the pouch depends on
more interactions, including the program of cellular re-
sponsiveness interacting with concentration, and time of
exposure of individual opposing extracellular factors. Ul-
timately, however, it is the downstream signal transduc-
tion pathways that integrate and converge these signals to
a set of transcription factors that are critical for cell-fate
specification, and the challenge will be to identify what
these are, how they are controlled in temporal sequence
(both on and off) and how they function to activate spe-
cific differentiation pathways (110, 124, 136).

B. Sonic Hedgehog signaling
There are three mammalian hedgehog proteins—Sonic

Hedgehog (SHH), Indian Hedgehog (IHH), and Desert
Hedgehog (DHH)—that can act as morphogens during
development to elicit different cellular responses and in-
duce different cell fates. Again, these are thought to act
according to the distance from the source of hedgehog
(affecting the “quantity” of signal), duration of this signal,
and competence of the receiving cells. These pathways are
also involved for different purposes in adults. Hedgehog
ligands bind to and activate the transmembrane receptor
Patched, whereupon the Smoothened coreceptor is re-
leased, which activates transcription factors of the GLI

family that can either activate or repress transcription of
target genes.

Sonic Hedgehog (Shh) is expressed in the ventral dien-
cephalon, as well as throughout the oral ectoderm, from
which expression becomes excluded specifically within
Rathke’s pouch as soon as it appears (110, 123). Shh ex-
pression is subsequently lost within the oral epithelium at
12 dpc and within the ventral diencephalon by 14 dpc. In
contrast, the patched receptor is highly expressed in Rath-
ke’s pouch (123), and three members of the Gli gene family
of transcription factors (Gli1, Gli2, and Gli3) are also
expressed in the ventral diencephalon and within Rathke’s
pouch (137); therefore the developing gland is competent
to receive and respond to SHH signaling.

The effect of complete loss of SHH on pituitary devel-
opment in mice cannot be directly assessed because Shh
null mice exhibit cyclopia and a generalized loss of midline
structures of the brain, including the regions expressing
Nkx2.1 (138). By expressing an antagonist of hedgehog
signaling, Hip, ectopically within the oral ectoderm and
Rathke’s pouch, Treier et al. (123) showed that pouch
development was arrested in transgenic embryos. A rudi-
mentary pouch was formed because BMP4 and FGF sig-
naling from the ventral diencephalon were not disrupted;
however, the pouch was severely hypoplastic. Lhx3 ex-
pression was gradually lost, except from the cells in con-
tact with the infundibulum, whereas Bmp2, Gata2, then
subsequently Pomc and Tsh, were not expressed.

FIG 2. Schematic representation of the developmental cascade of genes implicated in human pituitary development with particular reference to
pituitary cell differentiation.
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In a complementary experiment, overexpression of Shh
under the control of Cga regulatory sequences led to up-
regulation and maintenance of Bmp2 expression within
the developing pituitary at 17.5 dpc, resulting in overex-
pansion of the thyrotrope and gonadotrope cell types
(123). In contrast to a previous study where levels of in-
duced BMP2 were much higher (110), terminal differen-
tiation in the presence of BMP2 was observed (123). Ad-
ditionally, Lhx3 expression was slightly increased, and
pituitary volume was dramatically enhanced. Explant ex-
periments further showed that SHH along with FGF8 is
involved in Lhx3 induction and therefore progenitor pro-
liferation (123). These observations suggest that Shh sig-
naling in both the ventral diencephalon and the oral ec-
toderm is important for normal pituitary development,
regulating progenitor proliferation probably in part
through regulation of Bmp2 and Lhx3 expression. How-
ever, the spatial and temporal specificities of its action are
unclear: how could SHH, which is present both dorsally
and ventrally, favor a “ventral” fate in the pouch or set up
a simpledorsoventral gradient signalingmodel?Also,how
does it interact with other signaling pathways both in time
and space?

Clearly, while some actors, described here, are now
identified, their temporospatial roles and interactions re-
main to be determined.

C. WNT/�-catenin signaling
During pituitary development, WNT signaling path-

ways are required both within the pouch (see above) and
in the ventral diencephalon. Wnt5a is the only member of
this extensive gene family known to be expressed in the
ventral diencephalon (110), and deletion of the gene in-
duces in particular a misshaping of the pouch with the
presence of extra bifurcations (139), similar to that ob-
served in Sox2 or Sox3 mutant embryos (see below). This
phenotype may be the consequence of a disruption of the
sharp ventral boundary of FGFs and BMP4 expression
domains in the infundibulum at 10.5 dpc, resulting in the
recruitment of a wider region of the oral ectoderm con-
tributing to Rathke’s pouch with consequent multiple bi-
furcations within it (112).

A similar phenotype as seen in Wnt5a�/� mutants is
also observed in Tcf4 null mice (111, 112), and the ab-
normal bifurcations observed are similarly mirrored by an
expansion of FGF and BMP expression patterns in the
ventral diencephalon (112). However, TCF4 is present not
only in the ventral diencephalon but also in Rathke’s
pouch itself, where it may control progenitor cell prolif-
eration. Therefore, in the ventral diencephalon, the func-
tion of WNT signaling might be more to control the in-
fundibular expression of FGFs and BMP4 to ensure
correct proper shaping and/or extent of the pouch. It

should also be borne in mind that the WNT signaling
pathway can interact with that of Notch, so phenotypes
may not solely be due to the effects of �-catenin on LEF/
TCF-mediated transcription (106).

D. Sox3 and Sox2
Sox3, along with Sox2, is expressed throughout the

CNS with particularly high levels of expression noted in
the ventral diencephalon, including the infundibulum and
presumptive hypothalamus (140, 141). Deletion of Sox3,
which is situated on the X chromosome, induces a variable
phenotype mainly characterized by hypopituitarism and
craniofacial defects (141–143). Rathke’s pouch in Sox3y/�

hemizygous embryos presents abnormal bifurcations that
persist in the adult gland as extra clefts. The protein is not
normally present in the pouch, but it is strongly expressed
in the ventral diencephalon, suggesting that impaired sig-
naling from the overlying mutant CNS could induce the
formation of additional bifurcations. Expansion of the
expression domains of BMP4 and FGF8 observed at 10.5
dpc could explain these. This expansion is probably due to
an abnormal morphology of the infundibulum, which is
less evaginated toward the pouch and therefore artificially
expanded ventrally. Additionally, a reduction in cell pro-
liferation was observed within this region (141).

In humans, both duplications and loss of function mu-
tations in the gene are associated with variable hypopitu-
itarism and variable learning deficits, often associated
with abnormal midline structures such as hypoplasia/
agenesis of the corpus callosum (see Section VIA).

SOX2 is also expressed in the ventral diencephalon,
and additional bifurcations have also been observed in the
pouches of Sox2�/� embryos, although at a lower fre-
quency (103). Although we cannot rule out a direct effect
of a reduction of SOX2 in the pouch (see above) to explain
the additional bifurcations, it is possible that SOX2 is also
involved in development of the ventral diencephalon. In
agreement with this, deletion of one copy of Sox2 on the
Sox3y/� background results in a much more severe ventral
forebrain phenotype (K. Rizzoti, unpublished data).

As observed in Sox2 heterozygotes, the anterior lobe is
hypoplastic in Sox3y/� animals, but the origin of this re-
duction is not known. By 15.5 dpc, expression of Sox3 is
initiated in the developing pituitary, in a small subset of
Pou1f1 (Pit1)-positive cells, and later in some lactotropes.
This expression is maintained in the adult (K. Rizzoti and
C. Galichet, unpublished data). However, the hypopitu-
itarism phenotype in the Sox3y/� animals is unlikely to be
a consequence of the deletion of the gene in the pituitary
itself because thephenotypeappearsonlyafterbirth, as the
hypothalamus starts to control pituitary secretion. This
suggests that deletion of Sox3 in the CNS may have been
the cause of the hypopituitarism in the global mutants.
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The similarity in the morphological abnormalities of
Rathke’s pouch between Sox3 mutants and mutants in-
volving the WNT pathway suggests their interplay during
pituitary organogenesis. Studies in Xenopus have demon-
strated that XSOX3, as well as XSOX17� and XSOX17�,
are capable of interacting with �-catenin and repressing
the activity of TCF-mediated signaling (144). Other mem-
bers of the SOXB1 family have also been reported to sup-
press �-catenin-mediated TCF signaling (145). SOX2 has
also been reported to inhibit WNT/�-catenin signaling in
murine osteoblasts, where it represses the activity of a TCF
responsive reporter, via an association of �-catenin with
the C-terminal domain of SOX2 (146). These experimen-
tal models suggest that interactions between the SOX
proteins and �-catenin and the consequent effects on
�-catenin target genes may be important for pituitary
development.

V. Factors Regulating Cellular Differentiation

The definitive Rathke’s pouch, formed by 11.5 dpc, ini-
tially contains undifferentiated proliferative progenitors.
Gradually, these will differentiate and give rise to the five
endocrine cell types present in the anterior pituitary. Nat-
urally occurring mutations, but also studies on the role of
specific genes during development, have led to the char-
acterization of several transcription factors involved dur-
ing endocrine differentiation. Regulated expression of
these, both in time and space, is required to obtain the full
set of endocrine cells at birth. We will now discuss the best
studied/most representative among these factors.

A. Prop1
PROP1 is, like HESX1, a member of the paired-like

family of homeodomain transcription factors. It is ex-
pressed exclusively during pituitary development where,
in contrast to HESX1, data suggest it is capable of func-
tioning both as a transcriptional activator and repressor in
a context-dependent manner (38, 147). Prop1 expression
is first apparent at 10 dpc within Rathke’s pouch, at a stage
when Hesx1 is still present. Expression of Prop1 peaks at
12 dpc throughout the pouch and is then markedly de-
creased, being maintained until 15.5 dpc only in the peri-
lumenal area where progenitors are located (39, 147).

The Ames dwarf mouse (df) was found to harbor a
naturally occurring mutation in the homeodomain of
PROP1, lowering its DNA binding activity (39). In fact,
mice homozygous for a targeted deletion of Prop1 show a
nearly identical phenotype to the Ames mutation, so it is
more or less equivalent to a null allele (148). df/df mice are
deficient in GH, prolactin (PRL), TSH, and gonadotropins
and exhibit severe proportional dwarfism, hypothyroid-

ism, and infertility (39, 149, 150). Moreover, no interme-
diate lobe differentiation marker is expressed, and vascu-
larization of the developing gland is abnormal (151).
Morphologically, the gland is clearly hypoplastic in
adults, whereas at 14.5 dpc, it appears enlarged and dys-
morphic. In fact, this is due to a failure of dorsal progen-
itors in the perilumenal area to relocate ventrally and dif-
ferentiate (152). Normally, these progenitors express
Notch2 from 12.5 dpc (116), and ventral relocalization is
accompanied by down-regulation of CyclinD2 (cell cycle
exit). However, in Prop1 mutants, dorsal cells fail to ex-
press Notch2, and CyclinD2 expression is down-regu-
lated while cells are still in the perilumenal area (116, 149,
152). Ward et al. (152) suggest that down-regulation of
NOTCH2 may be coupled with premature cell cycle exit
and defects in localization, in parallel with the role of
Notch in CNS precursors; however, another study
failed to show this down-regulation and suggested in-
stead that Notch signaling is essential for PROP1 main-
tenance (see above) (117). Finally, a late wave of apo-
ptosis and a reduction in proliferation in df/df mice
postnatally probably explain the subsequent pituitary
hypoplasia (114, 151, 152).

The switch of expression from the repressor HESX1 to
the activator PROP1 is an important step during devel-
opment of the gland because it is required for emergence
of both the POU1F1 (PIT1; GH, PRL, and TSH) and go-
nadotrope lineages (38). It has been known for some time
that PROP1 is directly involved in the activation of Pou1f1
(Pit1) expression (149, 153), but more recently, Olson et
al. (107) showed that in vitro PROP1 and �-catenin
form a complex, along with other cofactors. Genetic ap-
proaches combined with chromatin immunoprecipitation
then suggest that these complexes directly repress Hesx1
while activating Pou1f1 (Pit1) expression (107). This rep-
resents a significant progression during pituitary develop-
ment from progenitor proliferation and maintenance (as a
result of the repressive actions of HESX1) to cell determi-
nation [activation of Pou1f1 (Pit1)] (107). Finally, over-
expression of Prop1 under Cga promoter control results in
a delay in Fsh� expression leading to delayed puberty and
also an increased risk of pituitary adenomas. This high-
lights the importance of correct temporal regulation of
Prop1 expression (154, 155).

The gonadotropin deficiency observed in the Ames
dwarf (df) remains unexplained. In elegant studies that
unraveled the phenotype of the Ames dwarf, Bartke (156)
showed that male mice produced spermatozoa that were
motile, histologically normal, and capable of fertilizing
ova. However, most remained sterile although a few un-
treated males were fertile and sired litters. Administration
of T4 or GH singly or in combination resulted in fertility
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of most males (157). Similar treatment regimens resulted
in sexual maturation in females, although fertility did not
ensue, possibly due to the absence of LH. Hence, the im-
paired fertility in Ames mice could be explained/exacer-
bated by concomitant untreated GHD and hypothyroid-
ism, although these interactions are complex because
thyroid hormone deficiency worsens GH deficiency, and
replacement of both is necessary to restore growth and
metabolism and for achieving functional sexual matura-
tion. Interestingly, the administration of T4 to �GSU�/�

mice led to gonadotrope hypertrophy, which had previ-
ously been lacking in these hypogonadal mice. Appropriate
thyroid function and timing may be required to establish
the sensitivity of gonadotropes to feedback regulation by
gonadal steroids (158).

In humans, PROP1 mutations are the most common
cause of CPHD, including GH, TSH, gonadotropin, and
evolving ACTH deficiencies. These are variable in onset
and phenotype and may be associated with a pituitary
mass that spontaneously involutes to result in a hypoplas-
tic anterior pituitary (see Section VI.B).

B. Pou1f1
POU1F1 (previously termed PIT1) is a member of the

POU homeodomain family of transcription factors char-
acterized by two highly conserved protein domains, a
POU-specific domain and a POU-DNA binding homeodo-
main. Pou1f1 (Pit1) is expressed relatively late during pi-
tuitary development, becoming detectable from 13.5 dpc
in prospective somatotrope, lactotrope, and thyrotrope
cells (159). It reaches maximum expression in differenti-
ating GH, PRL, and TSH cells by 16 dpc, persisting in
these into adulthood (20, 159). It is required for the pro-
duction of GH, PRL, and TSH�, respectively, as well as for
the expression of Ghrhr (160, 161). Recently, analysis of
Pouf1 (Pit1) regulatory regions has shown that its early
activation involves different enhancers, one of them
bound by the giant zinc finger protein ATBF1 (162).

Two naturally occurring recessive mouse mutants ini-
tiated the dissection of POU1F1 (PIT1) function. First, the
Snell dwarf (dw) mouse harbors a point mutation within
the POU homeodomain (p.W261C) affecting DNA bind-
ing. Second, the Jackson dwarf (dwJ) mouse fails to ex-
press Pou1f1 (Pit1) as a consequence of a chromosomal
rearrangement (163). Both strains exhibit an identical
phenotype comprising postnatal, but not embryonic, an-
terior pituitary hypoplasia and GH, TSH, and PRL defi-
ciencies (163). In dw/dw mice, expression of Pou1f1 is
normal until 18.5 dpc, at which time it is significantly
reduced, eventually becoming extinguished postnatally.
The presence of POU1F1 binding sites within its own reg-
ulatory sequences suggests that Pou1f1 (Pit1) can regulate
itself (164, 165). The presence of normal GH, TSH, and

PRL populations in the embryo shows that POU1F1
(PIT1) is dispensable for their initial emergence but
required for their postnatal expansion; indeed, in
Pou1f1�/� (Pit1�/�) pups, it is a reduction in prolifer-
ation along with some apoptosis that leads to hypopla-
sia (151). In postnatal endocrine cells, expansion is
known to be under hypothalamic control, but there are
also other signals involved locally in the gland. How-
ever, the basis of the Pou1f1�/� (Pit1�/�) postnatal phe-
notype is still unknown.

It has been shown that POU1F1 (PIT1) is able to inhibit
the transcription factor GATA2 (see below) indepen-
dently of its DNA binding properties to prevent gonado-
trope fate, whereas in thyrotropes, the two act in synergy
to promote the thyrotrope fate (166). This may explain
how overexpression of Prop1, which activates POU1F1
(PIT1), delays gonadotrope differentiation (see above). In
somatotropes, the POU1F1 (PIT1) target gene Math3, en-
coding a bHLH transcription factor, allows terminal dif-
ferentiation and is repressed by Notch signaling, probably
preventing premature differentiation (115). POU1F1
(PIT1) function is therefore more than “promoting its own
lineage”; it impacts on the regulation of other cell types
ensuring that the proper balance of endocrine cell types is
achieved.

POU1F1 (PIT1) is reported to regulate its target genes
by binding to response elements of their promoter regions
and recruiting coactivator proteins, such as the cAMP re-
sponse element-binding protein-binding protein (167)
and other transcription factors like LHX3 to the tran-
scriptional complex (168).

In humans, mutations in POU1F1 are associated with
GH, PRL, and variable TSH deficiency, with a small an-
teriorpituitarygland identified in themajorityof cases (see
Section VI.B).

C. Gata2
GATA2 belongs to a family of six transcription factors

characterized by the presence of at least one N-terminal
transactivation domain and a zinc finger DNA binding
domain. It has dual functions as a stem cell maintenance
factor in some tissues (169), but also promotes differen-
tiation in others (for review, see Ref. 170). Gata2 starts to
be expressed at 10.5 dpc in the ventral Rathke’s pouch,
where it is induced by BMP2 (166) along with �-GSU, the
common subunit of LH, FSH, and TSH. It therefore marks
prospective, then definitive, gonadotropes and thyro-
tropes; its expression is maintained in the adult (166).
GATA2 has been shown in vitro to activate the Cga pro-
moter (171) and also to induce Tsh� expression in synergy
with POU1F1 (PIT1) (166, 172).

Deletion of Gata2 results in embryonic lethality at 10.5
dpc because of yolk sac hematopoiesis defects (173).
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Therefore, to study its function, a dominant-negative form
of the molecule was expressed under control of Cga reg-
ulatory elements. As a consequence, gonadotropes were
lost and thyrotropes reduced, whereas the Pou1f1 (Pit1)
expression domain was expanded (166). In contrast, ec-
topic expression of Gata2 under control of the Pou1f1
(Pit1) promoter resulted in dorsal expansion of the gona-
dotrope population to the detriment of Pou1f1 (Pit1)-de-
pendent lineages (166). Therefore, GATA2 may promote
and be required for specification of the gonadotrope and
thyrotrope lineages, respectively, in opposition and in syn-
ergy with POU1F1 (PIT1) (166).

Further evidence of the function of GATA2 in promot-
ing gonadotrope and thyrotrope fate has recently been
provided by a specific inactivation of the protein in �GSU-
positive cells. In these mutants, where more than 90% of
the �GSU-positive cells inactivate GATA2, the TSH and
LH population is reduced in neonates, but only tran-
siently. However, in adult animals, levels of circulating
TSH and FSH stay low, and the function of gonadotropes
and thyrotropes is abnormal. The transient nature of the
reduction in endocrine populations could be due to the
observed up-regulation of the closely related GATA3
(174). The differences in phenotypes observed between
expression of a dominant negative and the deletion of the
gene may be explained by the wider range of action of the
dominant negative, which may also inhibit other members
of the family such as GATA3, and possible residual
GATA2 function in the conditionally ablated mice (175).
However, both studies clearly highlight the requirement
for GATA2 in the differentiation of gonadotropes and
thyrotropes and also for the function of these cells in the
postnatal gland.

D. Nr5a1
Nuclear receptor 5a1, encoded by the gene Nr5a1 (also

named steroidogenic factor-1, SF1) is an orphan nuclear
receptor involved as a transactivating factor in steroid hor-
mone biosynthesis. Phospholipid binding has been shown
to increase its transactivation activity, although it is un-
certain whether these should be considered as conven-
tional ligands (for review, see Ref. 176). NR5A1 (SF1) is
expressed throughout the adrenal and reproductive axes
during development and postnatal life, regulating several
genes involved in sex determination, reproduction, and
steroidogenesis, including in the hypothalamus and pitu-
itary those encoding the GnRH receptor, LH, FSH, and
�GSU (61, 177–179). In the developing pituitary, GATA2
is capable of inducing Nr5a1 (Sf1) expression in the de-
veloping gonadotropes, with initial onset of expression at
13.5 dpc; therefore, after the initiation of �GSU expres-
sion but before that of LH� and FSH� (166, 180). It has
been shown in vitro that interaction of NR5A1 (SF1) with

the transcription factors EGR1 and PITX1 (61), and also
more recently with �-catenin (181), is involved in activa-
tion of Lh�.

Nr5a1 (Sf1) null mutant mice exhibit adrenal and go-
nadal agenesis, male-to-female sex reversal, ablation of
the ventromedial hypothalamic nucleus, and selective loss
of gonadotropin, �GSU, and Gnrhr expression (180, 182–
185). However, exogenous GnRH treatment at very high
doses in Nr5a1 (Sf1) null mice is capable of inducing go-
nadotropin expression, demonstrating that gonadotropes
are present and can respond to stimulation (185). Mice
with a conditional deletion of Nr5a1 (Sf1) specifically
within the pituitary (as a result of conditional ablation in
�GSU expressing cells) also have gonadal hypoplasia with
a dramatic decrease in pituitary gonadotropin expression,
and fail to develop normal secondary sexual characteris-
tics, whereas the adrenal glands and hypothalamus are
unaffected. Also in these mice, supraphysiological doses of
GnRH can result in LH� expression, suggesting that in the
absence of NR5A1 a cofactor, possibly EGR1, can alone
activate Lh� (186). These data show that pituitary ex-
pression of Nr5a1 (Sf1) is necessary for gonadotrope mat-
uration, representing one of the functions of this factor in
reproductive axis development.

Mutations of NR5A1 in humans are associated with
46XY sex reversal with adrenal failure, 46XY gonadal
dysgenesis, and 46XX ovarian insufficiency and prema-
ture ovarian failure (187, 188). The detailed description of
the role of this gene in human disease is beyond the scope
of this review.

E. Tbx19
TBX19 (previously referred to as TPIT) is a member of

the T-Box family of transcription factors comprising 17
members in mouse. The T-box is the DNA binding domain
of these factors, and some of them also have a transacti-
vation domain. In the case of TBX19 (TPIT), transcrip-
tional activation requires association with the coactiva-
tors sarcoma virus/p160, but it can also interact with other
partners (for review, see Ref. 189). Tbx19 (Tpit) is exclu-
sively expressed in the developing pituitary, first at 12.5
dpc in POMC-positive cells, then in corticotropes and
melanotropes, where it is maintained in the adult gland
(23). It is capable of directly activating Pomc expression in
association with PITX1 (23).

Tbx19 (Tpit) deletion in mice induces severe ACTH
and glucocorticoid deficiencies, in addition to adrenal hy-
poplasia and pigmentation defects. In the pituitary of these
mice there is very little POMC expression, and the inter-
mediate lobe is hypoplastic. In the embryo, the transient
expression of NeuroD1 in precorticotropes is not affected,
and premelanotropes are also present. Therefore both cell
lineages are initially specified in normal numbers. This
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suggests that TBX19 (TPIT) is required for the maturation
and maintenance of both populations (5). Interestingly,
the hypoplastic intermediate lobe of Tbx19�/� (Tpit�/�)
embryos contains both gonadotropes and POU1F1-inde-
pendent thyrotropes (therefore similar to those arising
from the early transient populations), suggesting that
TBX19 (TPIT) may normally inhibit acquisition of these
fates. Indeed, when it is overexpressed, the number of
�GSU-positive cells in mice is reduced. Tsh� expression is
normal, but the population of gonadotropin-expressing
cells is greatly reduced. Different functions of TBX19
(TPIT) may underline its ability to repress gonadotrope
fate. First, it is able to directly repress Cga (�GSU) expres-
sion in vitro; and second, there is a mutual antagonism
betweenTBX19 (TPIT)andNR5A1(SF1), independentof
DNA binding activity (5). Therefore, TBX19 (TPIT) pro-
motes and is required for corticotrope and melanotrope
fate while actively repressing gonadotrope identity.

Mutations in TBX19 (TPIT) are the commonest cause
of isolated ACTH deficiency presenting in the neonatal
period in humans (see Section VI.C).

VI. Disorders of Pituitary Development
in Humans

In this section, we discuss pituitary development in hu-
mans. It is clear that useful knowledge has been gained
from comparing genotype/phenotype analyses in mice and
humans. In general, there are great similarities (Fig. 3 and
Table 6), although there are notable exceptions, so one
should remain cautious in extrapolating detailed mouse
phenotypes to humans. In contrast to the mouse, there are
obvious limitations in what can be directly investigated in
human pituitary development. Human studies are also
prone to ascertainment or referral bias, and often cases are
too rare to generalize with confidence about phenotypic
prevalence. What is less often appreciated is that many
mouse studies are light on phenotypic detail, particularly
postnatally, which hampers comparison with most human
data, and that strain background effects in mice can also
have major effects on phenotypic penetrance.

Congenital hypopituitarism encompasses a group of
different etiological disorders. It may manifest as isolated
deficiency of a single pituitary hormone; for example
IGHD, ACTH deficiency, gonadotropin deficiency (hy-
pogonadotropic hypogonadism), TSH deficiency, or cen-
tral diabetes insipidus. Alternatively, several pituitary hor-
mone axes may be defective, resulting in a CPHD that may
also be associated with extrapituitary defects such as optic
nerve hypoplasia or midline forebrain abnormalities.
Clinical features of hypopituitarism are often variable and
may occur early in the neonatal period or later with

growth failure or abnormal pubertal development. IGHD
is by far the most common endocrinopathy and may
present with growth failure with an incidence ranging
from 1 in 3,500 to 1 in 10,000 births (190–194). At the
more severe end of the spectrum, SOD is a rare congenital
anomaly with a prevalence of approximately 1 in 10,000
(195). It is a genetically and phenotypically heterogeneous
disorder characterized by a clinical triad of midline fore-
brain abnormalities, optic nerve hypoplasia, and hy-
popituitarism. Each of these components can occur in
isolation or in combination. The majority of cases of hy-
popituitarism are idiopathic in origin; however, familial
inheritance, which may be either dominant or recessive,
accounts for between 5 and 30% of all cases (196). The
etiology of many cases still remains unknown and is likely
to involve a combination of both genetic and environ-
mental factors. Both genetic and environmental factors
have been implicated in the etiology of SOD, for exam-
ple (195, 197). Environmental agents such as viral in-
fections, vascular or degenerative changes, and expo-
sure to alcohol or drugs have been implicated in the

FIG 3. Midline sagittal hematoxylin and eosin-stained sections
showing pituitary organogenesis during human embryonic
development. A, Midline sagittal section of a Carnegie stage (CS) 13
embryo (approximately 5 wk of development) showing the
invagination of the oral ectoderm to form Rathke’s pouch (arrow). B,
Sagittal section of CS14 embryo showing the developing Rathke’s
pouch (Rp) coming into contact with the overlying neuroectoderm. C,
Sagittal section of CS15 embryo showing the definitive Rathke’s pouch
becoming separated from the oral ectoderm (oe). D, Definitive
Rathke’s pouch (Rp) shown in sagittal section fully separated from the
oral ectoderm maintaining contact with the neural ectoderm of the
diencephalon (Di) at CS17. Scale bars: A and D, 300 �m; B and C, 100
�m. [Images were kindly provided courtesy of D. Gerrelli, Medical
Research Council-Wellcome Trust Developmental Biology Resource,
University College London Institute of Child Health, London, United
Kingdom.]
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etiology of SOD. The condition presents more com-
monly in children born to younger mothers, and it clus-
ters in geographical areas with a high frequency of teen-
age pregnancies (195, 198, 199).

Several genes causing abnormal pituitary function
when mutated in the mouse have also been implicated in
human pituitary development by the identification of mu-
tations in their human orthologs in patients with various
hypopituitary phenotypes. These can be broadly catego-
rized into three groups: 1) mutations in genes involved in
early development and patterning of the forebrain and
pituitary; these tend to result in syndromic forms of hy-
popituitarism in association with extrapituitary defects
affecting other tissues where they are expressed, most of-
ten the eyes, optic nerves, or midline forebrain structures;
2) genes that are involved at initial stages of pituitary cell
differentiation often resulting in CPHD; and 3) mutations
in genes encoding specific hormone subunits or required
for specification of particular cell types giving rise to iso-
lated pituitary hormone deficiencies. This review will fo-
cus on the early developmental genes as well as those in-
volved in cellular differentiation.

A. Syndromic hypopituitarism: early developmental
genes

1. HESX1
The variable phenotype of midline forebrain defects,

ocular abnormalities, and pituitary dysplasia observed in
Hesx1 null mice is highly similar to that observed in hu-
man SOD. Consistent with this observation, five homozy-
gous and eight heterozygous mutations have been identi-
fied in HESX1 (OMIM 601802) in a small proportion of
hypopituitary patients, although these have highly vari-
able phenotypes and no obvious phenotype-genotype cor-
relation. Dattani et al. (46) reported a homozygous mu-
tation at a highly conserved arginine residue of the
homeodomain (p.R160C) resulting in loss of DNA bind-
ing of the mutant protein, which was identified in two
siblings (born to consanguineous parents) who manifested
a severe SOD phenotype with panhypopituitarism. MRI
revealed anterior pituitary hypoplasia, an ectopic or un-
descended posterior lobe, agenesis of the corpus callosum
with an absent septum pellucidum, and optic nerve hyp-
oplasia with a small optic chiasm (Fig. 4B) (46, 197, 200).
A second homozygous mutation was identified in a girl
presenting with GH and gonadotropin deficiency, subse-
quently evolving to deficiencies of ACTH and TSH. She
had hypoplasia of the anterior pituitary and an unde-
scended posterior pituitary, but with normal optic nerves
and no midline forebrain defects. This mutation, a thre-
onine/isoleucine substitution at residue 26 (p.I26T), lies in
a highly conserved engrailed homology domain in the ami-

no-terminal part of the protein that is crucial for tran-
scriptional repression. The mutation was shown to result
in partial loss of repressor function in vitro, in part due to
impaired interaction with the TLE1 corepressor (48). The
milder phenotype associated with the latter mutation was
supported by recent data in the mouse (47).

Two siblings from a third consanguineous family were
found to be recessive for an Alu-element insertion in exon
3 of HESX1, which contains the homeobox (201). Af-
fected individuals homozygous for the mutation had apla-
sia of the anterior pituitary and undetectable anterior pi-
tuitary hormone levels, although the posterior pituitary
and infundibulum were normal. One sibling had unilat-
eral blindness as a result of coloboma of the right eye,
whereas the other had no ophthalmic abnormalities but
displayed a left-sided diaphragmatic hernia and aortic co-
arctation and died shortly after birth. Two additional pa-
tients with recessive HESX1 mutations and anterior pitu-
itary aplasia in the absence of a posterior pituitary or optic
nerve malformation have also recently been reported.
Sequencing HESX1 in these unrelated individuals re-
vealed that one was homozygous for a 2-bp deletion
(c.449_450delAC) resulting in a frameshift, whereas the
other was homozygous for a mutation in the splice donor
site in intron 2 (c.357 � 2T�C). Both mutations would be
predicted to disrupt the homeodomain and constitute null
alleles (202).

To gain further insights into the molecular basis of im-
paired HESX1 function by the p.R160C and p.I26T mu-
tations, Sajedi et al. (47) recently generated mouse mu-
tants carrying these alleles. Mice homozygous for the
p.R160C mutation displayed pituitary and forebrain de-
fects identical to those observed in Hesx1 null embryos,
whereas those homozygous for the p.I26T allele showed
pituitary defects and ocular abnormalities comparable to
those of Hesx1 null mice, but no defects in the telenceph-
alon, suggesting that the p.I26T mutation yields a hypo-
morphic allele, whereas p.R160C effectively produces a
null allele; this could explain its more severe phenotype in
both mice and humans. The fact that the p.I26T mutant
protein retains DNA binding but has impaired transcrip-
tional repressor function due to its inability to interact
with TLE1 suggests that this particular protein-protein
interaction is absolutely required for normal pituitary and
eye development. The p.R160C substitution yields a pro-
tein with no DNA binding properties but is able to repress
transcription, indicating the necessity of HESX1:DNA in-
teractions for normal HESX1 function during develop-
ment. The expression pattern of HESX1 in human em-
bryos parallels that of other vertebrates, suggesting a
conserved evolutionary role in forebrain, eye, and pitu-
itary development (47). Additionally, these data as well as
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those of Andoniadou et al. (45) support the hypothesis
that the pituitary gland is most sensitive to reductions in
HESX1 dosage, followed by the eyes and then the fore-
brain. This would appear to be the case in both humans
and mice (45, 47). Eight additional heterozygous muta-
tions of HESX1 have been identified in individuals with

various degrees of hypopituitarism and SOD
(Table 1). In general, these heterozygous
HESX1 mutations are associated with milder
phenotypes, and haplotype analysis in familial
cases has revealed that such mutations are
associated with incomplete penetrance, with
some affected individuals inheriting the muta-
tion from an apparently unaffected parent.
This raises the possibility that such heterozy-
gous mutations are not acting independently to
cause disease and that affected individuals may
harbor additional mutations in HESX1 (e.g.,
promoter/enhancer regions) or in other gene
products interacting with HESX1.

We have screened approximately 850 pa-
tients for mutations in HESX1 including more
than 300 with SOD; 410 with isolated pituitary
dysfunction, optic nerve hypoplasia, or midline
neurological abnormalities; and 126 patients
with familial inheritance of the condition. The
overall incidence of coding region mutations in
HESX1 within this cohort is approximately
1%, showing that mutations in HESX1 are a
rare cause of hypopituitarism and SOD (199).
It is possible that homozygous mutations in
HESX1 result in early embryonic lethality and
that the few patients identified with HESX1
mutations represent the minority of surviving
individuals. If so, it follows that there is a
greater likelihood of identifying mutations in
genes that are not associated with other ma-
jor embryonic defects in surviving patients
with CPHD.

2. PITX2
Mutations in PITX2 in humans are associ-

ated with Axenfeld Rieger syndrome (OMIM
601542), a genetically and phenotypically het-
erogeneous disorder characterized by malfor-
mation of the anterior segment of the eye, den-
tal hypoplasia, a protuberant umbilicus, and
brain abnormalities (72). Reduced GH concen-
trations and a small sella turcica, probably re-
flecting pituitary hypoplasia, have been noted
in some patients (203), suggesting a role for
PITX2 in pituitary development and hypopi-
tuitarism in humans, but its importance and

prevalence remains unclear.

3. SOX2
Heterozygous mutations within SOX2 in humans have

been associated with bilateral anophthalmia or severe mi-
crophthalmia. Additionally, the phenotype of hypopitu-

FIG 4. A, Midsagittal MRI scan of the head of a normal child. Note the well-formed
corpus callosum (CC), the optic chiasm (OC), and the posterior pituitary (PP), which
appears as a bright spot within the sella turcica. B, Sagittal MRI scan of two siblings
with a homozygous p.R160C mutation in HESX1. In the first sibling (i) the splenium
of the corpus callosum is more hypoplastic than the rest of the structure and the
posterior pituitary is partially descended as compared with the other sibling (ii) who
has a severely hypoplastic corpus callosum, ectopic posterior pituitary, and lack of
visible pituitary stalk (PS). C, Coronal and sagittal MRI scans from one patient [panels
(i) and (ii)] and sagittal scan from a second patient (iii) with SOX3 duplication
showing anterior pituitary (AP) hypoplasia, partial hypoplasia of the infundibulum (I)
in the first patient, which is completely absent in the second, and an ectopic
posterior pituitary which is more severe in patient 2. D, MRI scan from patients with
SOX2 mutations. Sagittal section from patient with c60insG mutation showing
anterior pituitary (ap) hypoplasia with normal posterior pituitary (pp) and
infundibulum (i) and a hypothalamic hamartoma (h). E, Sagittal MRI scan in patient
with compound heterozygosity for p.E230K and p.R172Q mutations in POU1F1,
showing hypoplasia of the anterior pituitary gland with a normal posterior pituitary
and infundibulum. F, Sequential MRI scanning of a patient with a 13-bp deletion
(c.112_124del13) in PROP1 reveals waxing and waning of a pituitary mass (arrow);
(i) on initial presentation, (ii) after 4 months, (iii) after 12 months, and (iv) 21 months
after initial MRI. [Panels A and B were derived from Brickman et al. (200); panel C
was derived from Woods et al. (220) and reproduced with permission from Elsevier
(University of Chicago Press); panel D was derived from Kelberman, et al. (103) and
reproduced with permission from the American Society for Clinical Investigation.
Panels E (copyright 2005, The Endocrine Society) and F, derived from Turton et al.
(Refs. 274 and 250, respectively), were reproduced with permission.]
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itarism characterized by anterior pituitary hypoplasia and
gonadotropin deficiency (hypogonadotropic hypogonad-
ism) with genital abnormalities in males is present in all
cases where neuroimaging and endocrine investigations
have been performed to date (103, 104, 204, 205). Fore-
brain defects reported in some patients include hypoplasia
of the corpus callosum, hypothalamic hamartoma, and
hippocampal malformation (Fig. 4D) (103, 206), associ-
ated with additional abnormalities including esophageal
atresia, sensorineural hearing loss, and learning difficul-
ties. To date, 22 de novo intragenic heterozygous muta-
tions have been identified in 27 patients, including eight
nonsense, 10 frameshift, and three missense mutations
(103, 204, 205, 207–212). Additionally, seven de novo
heterozygous deletions of the entire gene and one case of
a partial 3� deletion have been reported (204, 205, 212,
213), as well as three heterozygous nonsynonymous
changes identified in individuals who inherited the variant
from a clinically unaffected parent (103, 214). SOX2 ge-
netic variation is catalogued online (see http://lsdb.hgu.
mrc.ac.uk/home.php?select_db�SOX2). GHD has been
described in some patients (103), and many patients with
SOX2 mutations manifest hypogonadotropic hypogo-
nadism (103, 104, 210), which has obvious implications
for their clinical management. Continued endocrine fol-
low-up of individuals with SOX2 mutations and timely
diagnosis and treatment of GH and sex steroid deficiencies
would help prevent their associated long-term morbidities.

It is of interest to note that SOX2 expression is not
uniform in the developing hypothalamus in humans (104),

suggesting that haploinsufficiency for SOX2 may affect
only certain populations of glia, neuroendocrine neurons,
their progenitors, or their afferent inputs. The report of a
patient with isolated hypogonadotropic hypogonadism
without pituitary hypoplasia on imaging (210) suggests
that SOX2 might be involved independently at multiple
levels during the development of the hypothalamo-pitu-
itary-gonadal axis, including the neural processes neces-
sary for establishing or maintaining the population of
GnRH neurons in the hypothalamus, their migration,
and/or formation of an appropriate terminal field in the
median eminence. These could be additional to the more
direct involvement of SOX2 in Rathke’s pouch morpho-
genesis. Because mice with haploinsufficiency of Sox2
show more generalized pituitary deficits, the apparent se-
lectivity for SOX2 mutations impairing primarily the go-
nadotrope axis in human subjects is intriguing and unex-
plained, and it is a reminder that phenotypic details differ
significantly between human and mouse.

SOX2 shows overlapping domains of expression with
LHX3 and HESX1 within Rathke’s pouch and the devel-
oping anterior lobe during human embryonic develop-
ment (47, 104, 215, 216). Moreover, SOX2 can bind to
sequences within the proximal promoters of both genes
and activate transcription in vitro, suggesting that it might
be a regulator of LHX3 and/or HESX1 during pituitary
development. SOX2 is also capable of repressing �-cate-
nin mediated transcriptional activation in vitro. Muta-
tions that result in a truncated protein lose this inhibitory
activity, which is mediated by the carboxyl-terminal do-

TABLE 1. Mutations identified in the HESX1 gene in patients with SOD and hypopituitarism

Mutation Inheritance Endocrine phenotype Neuroradiological findings Ref.

p.Q6H (2 reports) Dominant GH, TSH, LH, FSH deficiency; GH
deficiency, evolving TSH, ACTH
deficiency

AP hypoplasia, ectopic PP 49, 295

p.I26T Recessive GH, LH, FSH deficiency; evolving
ACTH, TSH deficiency

AP hypoplasia, ectopic PP, normal ON 48

c.306_307insAG Dominant GH, LH, FSH deficiency;
hypothyroidism

AP hypoplasia, ON hypoplasia 296

p.Q117P Dominant GH, TSH, ACTH, LH, FSH deficiency AP hypoplasia, ectopic PP 297
c.357 � 2T�C Recessive GH, TSH, ACTH, PRL deficiency AP aplasia, normal PP, normal ON 202
Alu insertion (exon 3) Recessive Panhypopituitarism AP aplasia, hypoplastic sella, normal PP and

infundibulum
201

p.E149K Dominant GH deficiency AP hypoplasia, ectopic PP, infundibular
hypoplasia

199

c.449_450delCA Recessive GH, TSH, ACTH deficiency AP aplasia, normal PP, normal ON, thin CC,
hydrocephalus

202

p.R160C Recessive GH, TSH, ACTH, LH, FSH deficiency AP hypoplasia, ectopic PP, ON hypoplasia, ACC 46
p.S170L Dominant GH deficiency Normal AP, ON hypoplasia, ectopic PP, partial

ACC
49

p.K176T Dominant GH deficiency, evolving ACTH, TSH
deficiency

Ectopic PP 297

g.1684delG Dominant GH deficiency AP hypoplasia, ON hypoplasia, ACC, absent PP
bright spot

298

p.T181A Dominant GH deficiency AP hypoplasia, normal ON, absent PP bright spot 49

AP, Anterior pituitary; PP, posterior pituitary; ON, optic nerve; (A)CC, (agenesis of the) corpus callosum.

Endocrine Reviews, December 2009, 30(7):790–829 edrv.endojournals.org 809



main and is independent of either the HMG domain or the
ability to bind DNA (104, 146). Disruption of interactions
with �-catenin and the consequent effects on regulation of
�-catenin target genes may also be one mechanism by
which loss-of-function mutations in SOX2 can result in
abnormal pituitary morphogenesis.

4. SOX3
A number of pedigrees have been described with X-

linked hypopituitarism and mental retardation, mapping
involving duplications of Xq26–27 encompassing SOX3
(OMIM 313430) (217–219), with the smallest described
duplication to date being approximately 690 Kb (220). Of
the three annotated genes in this interval, only Sox3 was
expressed in the murine infundibulum. The phenotypes of
affected males with X-linked hypopituitarism involving
duplications within this region are variable. All affected
males manifest GH deficiency associated with anterior pi-
tuitary and infundibular hypoplasia with an undescended
posterior pituitary and abnormalities of the corpus callo-
sum (218). Some individuals are also deficient in ACTH,
TSH, or gonadotropins, and panhypopituitarism has been
documented (219), with varying degrees of developmental
delay or mental retardation.

Further implication of SOX3 in X-linked hypopituitar-
ism came from the identification of patients harboring an
expansion of one of the polyalanine tracts within the gene
(220, 221). Laumonnier et al. (221) identified an in-frame
duplication of 33 bp occurring between nucleotides 711 to
743 and cosegregating in affected males in a large family
with X-linked mental retardation and GH deficiency. This
duplication encodes an additional 11 alanine residues,
predicts an expansion of this polyalanine tract from 15 to
26 residues, and was associated with a phenotype of short
stature, IGHD, and mental retardation, with facial anom-
alies in some, but not all, patients. A second expansion of
seven alanine residues within the same tract has been iden-
tified in three siblings of a consanguineous pedigree pre-
senting with profound and complete panhypopituitarism
in association with anterior pituitary hypoplasia, an ab-
sent or hypoplastic infundibulum, and an ectopic/unde-
scended posterior pituitary (Fig. 4C) (220). Interestingly,
there was no evidence of mental retardation or craniofa-
cial dysmorphism in these individuals. A deletion resulting
in contraction of the same polyalanine repeat by nine res-
idues has also been reported in two brothers with mental
retardation; however, the significance of this finding re-
mains unknown because functional studies have not been
performed and the deletion was also present in the mater-
nal grandfather of the patients who was clinically unaf-
fected (221).

Consistent with the presence of the SOX3 locus on the
X chromosome, all patients described to date are male,

with female carriers appearing clinically unaffected. How-
ever, no mutations involving SOX3 have been found in
patients with sex reversal, gonadal dysgenesis, or infertil-
ity (222, 223). It is striking that patients presenting with
duplications involving SOX3, or loss-of-function polyala-
nine tract expansion mutations, show essentially similar
phenotypes, comprised of infundibular hypoplasia and
variable hypopituitarism. This suggests that the dosage of
SOX3 is quite critical for normal hypothalamopituitary
development. Given the observation that Sox3 is not nor-
mally expressed in Rathke’s pouch in the mouse, our cur-
rent view is that morphological defects of the anterior
pituitary might be secondary to disruption of infundibular
development and signals thereof.

5. LHX3
Eight homozygous mutations in LHX3 (OMIM

600577) have been identified in 13 patients from eight
unrelated consanguineous families, in addition to a single
patient who was found to be compound heterozygous for
two missense mutations within the gene (Table 2). These
patients usually present with a multiple anterior pituitary
hormone deficit, with sparing of ACTH in the majority of
cases, although patients with ACTH deficiency have also
recently been described (216). Pituitary morphology is
variable between patients with LHX3 mutations: most
patients have a hypoplastic anterior pituitary with a nor-
mal posterior pituitary and midline structures (216, 224,
225); conversely, an enlarged anterior pituitary has also
been reported in a patient that was not evident in a pre-
vious MRI scan performed 10 yr earlier (224). Addition-
ally, a patient with a hypointense lesion in the anterior
pituitary consistent with a microadenoma has also been
described (226).

The majority of patients with LHX3 mutations re-
ported to date have also exhibited a short rigid cervical
spine with limited neck rotation and trunk movement.
Again, the skeletal phenotypes can vary, and a single pa-
tient with normal neck rotation and no other syndromic
features has been reported (225). Analysis of LHX3 ex-
pression during human development shows a pattern of
expression in the developing embryonic pituitary highly
similar to that observed in the mouse. Expression is de-
tected within Rathke’s pouch at 5 wk of development and
later in the anterior and intermediate region of the pitu-
itary, but not in the posterior lobe. Expression of LHX3 is
also observed in specific regions of the spinal cord corre-
sponding to interneuron and motor neuron populations
(215). The underlying mechanism of the vertebral and
skeletal defects in patients with LHX3 mutations is un-
clear because expression is not detected in the sclerotome
or myotome, the tissues giving rise to the vertebrae and
skeletal muscle (Ref. 215, and our unpublished observa-
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tions). More recently, we have reported an additional phe-
notype of sensorineural deafness in association with ho-
mozygous loss of LHX3. The severity of hearing loss is
also highly variable and can range from profound to very
mild and may be missed in some cases (216). A direct role
may be implicated here because LHX3 is expressed in
specific regions of the inner ear in a pattern highly con-
served between humans and mice, and it is likely to have
a role in cochlea hair cell development (216, 227–229).

Most missense mutations identified in patients have
diminished capacity to activate transcription of the pro-
moters of several potential LHX3 target genes including
CGA, PRL, FSHB, TSHB, and POU1F1 (230, 231).
Frameshift mutations or deletions of several exons or the
entire gene have also been reported and are likely to rep-
resent null alleles as a result of premature protein trunca-
tion or nonsense-mediated degradation. The results sug-

gest that whereas complete lack of LHX3 results in
pathogenesis, a single functional copy may be sufficient
for normal pituitary development.

6. LHX4
To date, four separate reports have described six het-

erozygous mutations within LHX4 (OMIM 602146; Ta-
ble 3), with all patients exhibiting GH deficiency and as-
sociated short stature on presentation, again with variable
additional endocrine deficits and extrapituitary abnor-
malities. A heterozygous intronic mutation that abol-
ishes normal splicing of LHX4 was initially reported by
Machinis et al. (232) in a three-generation family segre-
gating in a dominant and fully penetrant manner. The
probands presented with short stature and were found to
be GH, TSH, and ACTH deficient, with anterior pituitary
hypoplasia, an undescended posterior pituitary, and ab-

TABLE 2. Mutations identified in LHX3 in patients with CPHD and associated extrapituitary phenotypes

Mutation Endocrine phenotype Associated abnormalities Deafness phenotype Ref.

p.Y116C (3 patients) GH, TSH, PRL, LH, FSH deficiency.
Severe anterior pituitary
hypoplasia. Severe growth
retardation.

Elevated and anteverted shoulders,
restriction of cervical spine
rotation. No vertebral
malformation.

Mild to moderate bilateral
sensorineural hearing
loss on reinvestigation.

216, 224

23-bp deletion GH, TSH, PRL, LH, FSH deficiency.
Enlargement of anterior
pituitary. Growth retardation.

Abnormal steepness of cervical
spine, no vertebral
malformation.

Profound sensorineural
deafness on
reinvestigation.

216, 224

g.159delT GH, TSH, PRL, LH, FSH deficiency.
Hypointense pituitary lesion.
Growth retardation.

Normal alignment and
configuration of cervical spine.
Limited neck rotation. Large
anterior and posterior
fontanelle, hypertelorism and
jaundice.

Not described. 226

p.A210V (2 patients) GH, TSH, PRL, LH, FSH deficiency.
Enlarged anterior pituitary.
Growth retardation.

Short neck, elevated shoulders,
limited neck rotation, loss of
lordosis of cervical spine.
Hypoglycemia, prolonged
jaundice, facial dysmorphism.

Not described. 225

p.E173X GH, TSH, PRL, LH, FSH deficiency.
Anterior pituitary hypoplasia.

Short neck with limited rotation,
short arms, hypoglycemia,
hyponatremia, dry skin,
depressed nasal bridge.

Not described. 225

p.W224X GH, TSH, PRL, LH, FSH deficiency.
Growth retardation.

No syndromic features, normal
neck rotation.

Not described. 225

LHX3 gene deletion GH, TSH, PRL, LH, FSH deficiency.
Anterior pituitary hypoplasia.

Short neck with limited rotation,
loss of cervical lordosis.
Hypoglycemia, prolonged
jaundice, retarded psychomotor
development.

Not described. 225

c.80–32_775 � 454
del3,088 (3 patients)

GH, TSH, PRL, LH, FSH, ACTH
deficiency. Anterior pituitary
hypoplasia. Severe growth
retardation.

Short neck with limited rotation,
vertebral abnormalities. Spinal
stenosis, hyperextensible joints,
hyperextensible skin.

Mild to moderate bilateral
sensorineural hearing
loss.

216

p.K50X GH, TSH, PRL, LH, FSH, ACTH
deficiency. Anterior pituitary
hypoplasia.

Short stiff neck, skeletal dysplasia.
Prominent cranial frontal bones.

Profound bilateral
sensorineural deafness.

216

Splice acceptor site
mutation in intron 3
(c.455–2A�G)
(6 patients)

GH, TSH, PRL, LH, FSH deficiency.
Aplastic/hypoplastic/cystic
anterior pituitary.

Short neck with restricted rotation.
Hypoglycemia, neonatal
jaundice, cervical lordosis and
thoracolumbar scoliosis. Facial
dysmorphism.

Moderate to severe
sensorineural deafness.

229
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sent pituitary stalk on MRI (232). Other affected family
members presented with short stature associated with
IGHD and a normal posterior pituitary. Additional man-
ifestations included a poorly formed sella turcica and
pointed cerebellar tonsils. Subsequent follow-up revealed
that the male patient developed gonadotropin deficiency
at the age of 18, whereas his younger sister began spon-
taneous puberty (233). A second, de novo mutation, pro-
ducing a p.P366T substitution, was associated with a
more severe panhypopituitary phenotype. MRI demon-
strated a hypoplastic anterior pituitary, an undescended
posterior lobe, a poorly developed sella turcica, Chiari
malformation, and respiratory distress syndrome. Func-
tional studies confirming the pathogenic nature of this
mutation on the resultant protein were not performed
(234); however, the mutation was absent in both unaf-
fected parents, and the similarity in phenotype is consis-
tent with other patients harboring mutations demon-
strated to disrupt LHX4 function in vitro.

In a screen of 253 patients, Pfaeffle et al. (235) identi-
fied an additional three heterozygous missense muta-
tions—one occurring between the two LIM domains of
the protein (p.R84C) and two within the homeodomain
(p.L190R, p.A210P). The p.A210P mutation was identi-
fied in two female siblings presenting with short stature
and GH deficiency; MRI showed that both had a hypo-
plastic anterior lobe with cystic lesions but a eutopic
posterior pituitary. One sister had a more severe hy-
popituitary phenotype with additional TSH, ACTH, and
gonadotropin deficiencies, whereas the other had only
partial TSH deficiency. The mutation was inherited from
their father who had short stature and low GH, but no
evidence of other hormone deficiencies (235). The p.R84C
mutation was identified in a single male patient presenting
with short stature and was found to be GH and TSH de-
ficient, later developing gonadotropin deficiency with pu-
bertal failure. The p.L190R mutation was associated with
GH, TSH, and ACTH deficiency. Patients with both of the
latter mutations had a small anterior pituitary and an un-
descended posterior pituitary on imaging, with no abnor-

malities in other regions of the brain. More recently, two
brothers have been described with a single base insertion
in exon 3 (c.293_294insC) resulting in a frameshift after
codon 99. Both siblings presented with GH and TSH de-
ficiencies with pituitary hypoplasia and a poorly devel-
oped sella turcica. The youngest brother also had a hyp-
oplastic corpus callosum and an undescended posterior
pituitary. Their father, who also harbored the mutation,
was GH deficient and had experienced delayed puberty
(233). The same genetic screen also identified two other
nonsynonymous variants (p.T90M and p.G370S); how-
ever, these changes did not alter LHX4 function in vitro
and may represent rare neutral variation.

Functional in vitro analyses of mutant LHX4 proteins
showed that they either fail to bind DNA or show reduced
transactivation properties at the promoters of potential
LHX4 target genes including POU1F1, CGA, and TSHB
(233, 235, 236). This could account for LHX4 haploin-
sufficiency leading to GH, TSH, and gonadotropin defi-
ciencies. The additional brain malformations suggest that
LHX4 may be involved in the coordination of brain de-
velopment and skull shaping. It is interesting to note that
Lhx4�/� heterozygous mice display no observable phe-
notype, suggesting a difference in the requirement of
LHX4 dosage between the two species.

7. OTX2
Mutations in OTX2 (OMIM 600037) have been im-

plicated in the etiology of 2–3% of anophthalmia/mi-
crophthalmia syndromes in humans (237–239). To date,
two complete deletions and 12 heterozygous intragenic
mutations (of which six have been shown to be associated
with functional compromise) have been associated with
severe ocular and CNS phenotypes, including develop-
mental delay and seizures. The association of deletions of
14q22–23 (which also includes the candidate genes
BMP4, RTN1, SIX6, SIX1, and SIX4) with anophthal-
mia, hypopituitarism, and ear abnormalities (240) led to
the investigation of the role of OTX2 in hypothalamo-
pituitary development. A heterozygous de novo 2-bp in-

TABLE 3. Reported mutations in the LHX4 gene

Mutation Associated endocrine phenotype Neuroradiological findings Ref.

c.607–1G�C GH deficiency, variable TSH, ACTH, gonadotropin
deficiency

AP hypoplasia, normal PP or undescended PP with
absent pituitary stalk, poorly formed sella turcica,
pointed cerebellar tonsils

232

p.P366T Panhypopituitarism AP hypoplasia, undescended PP, poorly developed
sella turcica, Chiari malformation

234

p.R84C GH, TSH, evolving gonadotropin deficiency AP hypoplasia, ectopic PP 235
p.L190R GH, TSH, ACTH deficiency AP hypoplasia, undescended PP 235
p.A210P GH deficiency, variable TSH, ACTH, gonadotropin

deficiency
Hypoplastic AP, normal PP 235

c.293_294insC GH deficiency, variable TSH, gonadotropin deficiency AP hypoplasia, variable undescended PP 233

AP, Anterior pituitary; PP, posterior pituitary.
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sertion (c.576_577insCT) in exon 3 of OTX2 was iden-
tified in a Japanese patient with bilateral anophthalmia and
panhypopituitarism associated with a small anterior pitu-
itary gland, an ectopic/undescended posterior pituitary, and
an absent infundibulum with a Chiari malformation (241).
The mutation generates a protein lacking the C-terminal
transactivation domain, which failed to activate the promot-
ers of HESX1 and POU1F1 as compared with the wild-type
protein. No dominant-negative activity was observed.

A de novo heterozygous frameshift mutation
(c.402insC) was identified in a Japanese female with bi-
lateral anophthalmia in association with short stature and
partial GHD with a normal anterior pituitary gland on
MRI (242). The mutation resulted in a truncated protein
that was associated with reduced transactivation at the
IRBP, POU1F1, and HESX1 promoters. A further het-
erozygous point mutation (p.N233S) in the C-terminal
transactivation domain was identified in two unrelated
children with CPHD who presented with neonatal hypo-
glycemia (243). The first patient had a small anterior pi-
tuitary associated with an undescended/ectopic posterior
pituitary and an absent or severely hypoplastic infundib-
ulum, whereas the second patient had a hypoplastic an-
terior pituitary gland. The mutant p.N233S protein (243)
was able to bind to a consensus OTX2 binding sequence
but showed reduced transcriptional activation properties
compared with wild-type OTX2. Furthermore, the mu-
tant protein acts as a dominant-negative inhibitor of the
HESX1 promoter in vitro, suggesting that the hypopitu-
itary phenotypes of these patients may be due to disrupted
expression of HESX1 (243). The OTX2 gene consists of
three exons that encode a 297-aa protein that contains a
homeodomain and a proline, serine, threonine-rich C-
terminal region that encompasses a highly conserved
SIWSPA peptide sequence and a tandemly repeated OTX
tail, and is required for anterior neural plate induction.
Because it appears to regulate the expression of HESX1, it
is possible that mutations in the protein compromise the
development of the forebrain and ventral diencephalon, in
addition to any direct effect within Rathke’s pouch.

8. GLI2
Recently, the Sonic Hedgehog (SHH) signaling path-

way has been implicated in more complex disorders of
pituitary development. Mutations within SHH (OMIM
600725) are associated with holoprosencephaly (244).
Three members of the Gli gene family of transcription
factors have been implicated in the mediation of SHH
signals, and heterozygous loss of function mutations
within the GLI2 gene (OMIM 165230) have been identified
in patients with holoprosencephaly (245). Phenotypic pen-
etrance was variable, with the disorder transmitted through
a parent carrying the mutation but showing no obvious phe-

notype in one family. In all affected individuals with GLI2
mutations, pituitary gland function was abnormal, accom-
paniedbyvariablecraniofacialabnormalities.Other features
included postaxial polydactyly, single nares, single central
incisor, and partial agenesis of the corpus callosum.

B. Combined pituitary hormone deficiency: genes
involved in pituitary cell differentiation

1. PROP1
As a result of the identification of Prop1 as the gene

underlying the Ames dwarf phenotype, the first mutations
in PROP1 (OMIM 601538) were identified in human pa-
tients with hypopituitarism characterized by GH, TSH,
and PRL deficiencies in addition to reduced gonadotro-
pins and failure to enter spontaneous puberty (246). Sub-
sequently, 26 distinct mutations have been identified in
more than 180 patients from over 21 different countries,
implicating PROP1 mutations as the most common ge-
netic cause of CPHD accounting for approximately 50%
of familial cases (247–249), although the incidence in
sporadic cases is much lower (247, 250). All affected
individuals exhibit recessive inheritance, and the ma-
jority of mutations identified involve the DNA binding
homeodomain, which is highly conserved between human
and mouse, showing 91% identity at the nucleotide level
(246, 251). The mutations in PROP1 identified to date in-
clude nonsense, missense, frameshift, intronic, and deletion
mutations (Table 4). The majority of the mutations are pre-
dicted to result in complete loss of function by ablating DNA
binding and transcriptional activation, although some mis-
sense mutations retain partial activity (246, 252, 253). By far
the most common mutation, accounting for 50–72% of all
familial PROP1 mutations in multiple unrelated families
(247, 248, 254), is a 2-bp deletion within exon 2 resulting in
a frameshift at codon 101 and the introduction of a termi-
nation codon at position 109 (often referred to as p.S109X).
The deletion occurs within three tandem GA repeats, so the
2 bp deleted cannot be defined; consequently this mutation
has been referred to as c.296delGA and c.301_302delAG in
different reports. This mutation is likely to represent a mu-
tational hot spot within the gene, rather than a common
founder mutation (247), and combined with the incidence
of the c.150delA mutation, accounts for approximately
97% of all known PROP1 mutations.

Homozygosity for mutations in PROP1 is typically as-
sociated with a deficit of GH, TSH, PRL, and gonadotro-
pins, although the time of onset and severity of hormone
deficiency varies. Most patients present with early-onset
GH deficiency and growth retardation; however, normal
growth in early childhood has been reported in a patient
whoattainednormal finalheightwithoutGHreplacement
therapy (255, 256). In this case, the patient presented with
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gonadotropin deficiency with the evolution of other hor-
mone deficiencies later in life. TSH deficiency is also highly
variable and has been reported as the initial presenting
symptom in some cases (248, 257, 258), whereas other
patients show delayed onset (257, 259). Onset of ACTH
deficiency is significantly correlated with increasing age,
and most patients exhibit normal ACTH and cortisol lev-
els in early life (260–263); however, patients as young as
6 yr have been described with cortisol deficiency empha-
sizing the necessity for complete and continued clinical
assessment of patients with PROP1 mutations (264, 265).

Although PROP1 has been shown to play a critical role
in mouse gonadotrope differentiation, the spectrum of hu-
man gonadotropin deficiency is extremely variable in pa-
tients with PROP1 mutations, ranging from early hypo-
gonadism with a micropenis and undescended testes and
complete lack of pubertal development to spontaneous,
albeit often delayed, onset of puberty with subsequent
deficiency of gonadotropins, requiring hormone replace-
ment therapy (248, 257, 259, 262). Variation in the timing
and severity of gonadotropin deficiency could mean that
hypogonadism in patients with PROP1 mutations is ac-
quired and late evolving rather than early congenital, con-
sistent with a role for PROP1 in maintenance or terminal
differentiation of gonadotropes rather than initial speci-
fication (266). However, a number of individuals with
mutations may have congenital gonadotropin deficiency,
given the presence of a micropenis and bilaterally unde-
scended testes at birth (250).

The pituitary morphology in patients with PROP1 mu-
tations is unpredictable; most cases show a hypoplastic or
normal-sized anterior pituitary gland on imaging, with a
normal pituitary stalk and posterior lobe, although some
reports have documented an enlarged anterior gland (246,
259, 260, 267). Longitudinal analyses of anterior pitu-
itary size over time have revealed that several patients with
an enlarged anterior gland at initial scanning in childhood
show spontaneous regression and involution, so that MRI
in older patients often demonstrates anterior pituitary hy-
poplasia, although the size of the pituitary can wax and
wane during this time (Fig. 4F) (250, 258, 263). The pi-
tuitary enlargement consists of a mass lesion interposed
between the anterior and posterior lobes, possibly origi-
nating from the intermediate lobe (258) or Rathke’s pouch
remnant in the cleft, although the underlying mechanism
for the mass remains unknown. Evidence from the mouse
(see above) suggests that PROP1 regulates the migration
of progenitor cells from Rathke’s pouch into the develop-
ing anterior pituitary, and in the absence of functional
PROP1, undifferentiated cells are trapped in the perilu-
menal area resulting in enlargement of the anterior pitu-
itary followed by apoptosis (152). Such a mechanism
would be an attractive explanation for the human imaging
findings, but of course would be difficult to establish and
cannot account for the waxing and waning of the mass.
Earlier biopsies of such a mass failed to reveal any defin-
itive histopathology, with no cell types identified (266),
and such material is now likely to prove elusive because the

TABLE 4. Reported mutations in the PROP1 gene

Nucleotide change Location Type of mutation Effect on protein Ref.

c.2T�C Exon 1 Missense (initiation codon) No translation 299
c.109 � 1G�T Intron 1 Splice site Aberrant splicing 265
c.112_124del13 Exon 2 Frameshift Premature truncation 264
c.149_150delAG Exon 2 Frameshift Premature truncation 300
c.150delA Exon 2 Frameshift Premature truncation 263
c.157delA Exon 2 Frameshift Premature truncation 301
c.211C�T Exon2 (HD) Missense p.R71C 302
c.212G�A Exon2 (HD) Missense p.R71H 302
c.217C�T Exon 2 (HD) Missense p.R73C 248, 251
c.218G�A Exon 2 (HD) Missense p.R73H 259
c.247C�T Exon 2 (HD) Nonsense p.Q83X 303
c.263T�C Exon 2 (HD) Missense p.F88S 252
c.295C�T Exon 2 (HD) Nonsense p.R99X 259
c.296G�A Exon 2 (HD) Missense p.R99Q 304
c.296_297delGA c.301_302delAG Exon 2 (HD) Frameshift Premature truncation 246
c.310delC Exon 2 Frameshift Premature truncation 253
c.343–11C�G Intron 2 Splice site Aberrant splicing (loss of exon 3) 253
c.343–2A�T Intron 2 Splice site Aberrant splicing 251
c.349T�A Exon 3 (HD) Missense p.F117I 246
c.358C�T Exon 3 (HD) Missense p.R120C 246, 257
c.373C�T Exon 3 Missense p.R125W 253
c.467insT Exon 3 Frameshift Premature truncation 305
c.582G�A Exon 3 Nonsense p.W194X 255
c.629delC Exon 3 Frameshift Altered transactivation domain at codon 210 306

HD, Homeodomain.
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masses no longer require surgical removal in patients with
identified PROP1 mutations.

The evolving nature of hormone insufficiencies in pa-
tients with PROP1 mutations suggests a progressive de-
cline in the anterior pituitary axis, so such patients require
regular monitoring for the development of hormone def-
icits that may not be apparent on initial presentation. The
highly variable nature of the phenotype associated with
PROP1 mutations, even between siblings within the same
family carrying identical mutations (253, 257), together
with the observation of phenotypic differences in Prop1
mutant mice on different genetic backgrounds, again im-
plicate unidentified genetic modifiers playing a role in the
severity and onset of disease pathogenesis.

2. POU1F1 (PIT1)
Mutations within POU1F1 (PIT1; OMIM 173110)

were first reported in 1992 by four independent groups
(268–271) and are generally associated with GH, PRL,
and TSH deficiencies with variable anterior pituitary hy-
poplasia, consistent with the phenotype of Snell and Jack-
son dwarf mice. Deficiencies of GH and PRL are generally
complete and present early in life, whereas TSH deficiency
can be highly variable. The majority of cases present with
early TSH deficiency; however, in some cases hypothy-
roidism occurs later in childhood (269, 272, 273). We
have recently described a 21 yr old with GH and PRL
deficiency who has normal thyroid function to date (274)
with a POU1F1 mutation identical to that found in an
unrelated patient who developed central hypothyroidism
in the second year of life. MRI of patients with POU1F1
mutations demonstrates a small or normal-sized anterior
pituitary gland with a normal posterior pituitary and in-
fundibulum, but with no extrapituitary abnormalities
(Fig. 4E). A total of 28 different mutations in POU1F1
have been described to date; 23 of these show recessive
inheritance, including a complete gene deletion and a re-
cent report of a splice site mutation (275), whereas five are
dominant mutations, found in over 60 patients from sev-
eral different countries (Tables 5 and 6). Of these, the
amino acid substitution p.R271W is the most frequent hav-
ingbeenidentified inseveralunrelatedpatients fromavariety
of different ethnic backgrounds (270, 271, 276–282).

The p.R271W mutant protein is capable of binding to
DNA and appears to act as a dominant-negative inhibitor
of transcription by wild-type POU1F1 (PIT1) protein
(270, 283), although this has been disputed (284). The
only other mutations reported in more than one pedigree
are the recessively inherited mutations p.R172X (reported
in three pedigrees) (268, 273, 285), p.A158P (two pedi-
grees) (269), p.P239S (three pedigrees) (286), and
p.E230K identified in five pedigrees from three different
countries (274, 287). Studies of POU1F1 in CPHD pa-

tient cohorts suggest that the incidence of mutations in
cases of sporadic CPHD is quite low (approximately
3–6%), whereas the incidence among familial patients
with hypopituitarism is much greater (25%) (274, 288).

Functional analysis has been performed for a relatively
small number of mutations and has revealed effects on
DNA binding (274), protein-protein interactions [p.S179R
mutation (289)], and retinoic acid induction of the
Pou1f1 (Pit1) gene distal enhancer either alone or in com-
bination with wild-type POU1F1 (PIT1) [dominant-
negative p.K216E mutation (290)]. Further analysis is
required to understand the molecular mechanisms under-
lying mutations such as the dominant-negative p.P14L
and p.P24L mutations.

C. TBX19 and ACTH deficiency
Several recessive mutations have been identified in the

TBX19 (TPIT) gene located at 1q23–24, encoding the
transcription factor TBX19 (TPIT), resulting in severe
ACTH deficiency, profound hypoglycemia associated
with seizures in some cases, and prolonged cholestatic
jaundice in the neonatal period. Mutations within TBX19
(TPIT) were initially identified in two patients who pre-

TABLE 5. Mutations identified in the POU1F1 gene in
patients with CPHD

Mutation
Type of

mutation Location Inheritance Ref.

p.Q4X Nonsense Exon 1 Recessive 307
p.P14L Missense Exon 1 Dominant 308
p.P24L Missense Exon 1 Dominant 271
p.F135C Missense Exon 3 Recessive 272
p.R143Q Missense Exon 3 Recessive 271
p.R143L Missense Exon 3 Recessive 288
p.K145X Nonsense Exon 3 Recessive 309
p.A158P Missense Exon 4 (POU) Recessive 310
p.Q167K Missense Exon 4 (POU) Dominant 311
p.R172Q Missense Exon 4 (POU) Recessive 274
p.R172X Nonsense Exon 4 (POU) Recessive 268
p.E174G Missense Exon 4 (POU) Recessive 285
p.W193R Missense Exon 4 (POU) Recessive 312
p.W193X Nonsense Exon 4 (POU) Recessive 287
p.L194Q Missense Exon 4 (POU) Recessive 288
c.682 � 1G�A Splice site Intron 4 recessive 275
p.K216E Missense Exon 5 Dominant 290
p.E230K Missense Exon 6 (HD) Recessive 287
p.F233L Missense Exon 6 (HD) Recessive 313
p.P239S Missense Exon 6 (HD) Recessive 286
c.725_726delAA

(reported as
p.Q242R)

Frameshift Exon 6 (HD) Recessive 314

c.747delA Frameshift Exon 6 (HD) Recessive 312
p.E250X Nonsense Exon 6 (HD) Recessive 315
c.778insA Frameshift Exon 6 (HD) Recessive 274
p.F262L Missense Exon 6 (HD) Recessive 314
p.R271W Missense Exon 6 (HD) Dominant 270
p.V272X Nonsense Exon 6 (HD) Recessive 317

HD, Homeodomain; POU, POU specific.
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TABLE 6. Comparison of murine and human genes, proteins, and phenotypes

Gene Protein
Murine loss of function

phenotype Human phenotype
Inheritance murine/

human

HESX1 HESX1 Anophthalmia or microphthalmia,
agenesis of corpus callosum,
absence of septum pellucidum,
pituitary dysgenesis or aplasia

Variable: SOD, CPHD, IGHD with
EPP. Anterior pituitary hypoplastic
or absent. Posterior pituitary
ectopic or eutopic

Dominant or recessive in
humans, recessive in
mouse

Frequency of mutations: �1% (199)
OTX2 OTX2 Lack of forebrain and midbrain,

olfactory placode, optic
placodes

Anophthalmia, APH, ectopic
posterior pituitary, absent
infundibulum. Frequency of
mutations: 2–3% of
anophthalmia/microphthalmia
cases (239)

Heterozygous:
haploinsufficiency/
dominant negative

SOX2 SOX2 Homozygous null mutants:
embryonic lethal

Hypogonadotropic hypogonadism;
APH, abnormal hippocampi,
bilateral anophthalmia/
microphthalmia, abnormal corpus
callosum, learning difficulties,
esophageal atresia, sensorineural
hearing loss, hypothalamic
hamartoma

De novo
haploinsufficiency in
humans, heterozygous
mutation associated
with haploinsufficiency
in mouse

Heterozygous mice and further
dose reduction: poor growth,
reduced fertility, CNS
abnormalities, anophthalmia;
pituitary hypoplasia with
reduction in all cell types

Frequency of mutations: 8/235
(103); 10% (212)

SOX3 SOX3 Poor growth, weakness,
craniofacial abnormalities,
ACC, hypothalamic and
infundibular abnormalities

IGHD and mental retardation,
hypopituitarism; APH,
infundibular hypoplasia, EPP,
midline abnormalities Frequency
of mutations 6% (duplications),
1.5% (mutations) (220)

X-linked recessive in both
mice and humans

GLI2 GLI2 N/A Holoprosencephaly, hypopituitarism,
craniofacial abnormalities,
polydactyly, single nares, single
central incisor, partial ACC

Haploinsufficiency

Frequency of mutations: 1.5% (245) In humans
LHX3 LHX3 Hypoplasia of Rathke’s pouch GH, TSH, gonadotropin deficiency

with pituitary hypoplasia. ACTH
insufficiency variable. Short, rigid
cervical spine. Variable
sensorineural hearing loss

Recessive in both

Frequency of mutations: 1.3% (225)
LHX4 LHX4 Mild hypoplasia of anterior

pituitary
GH, TSH, cortisol deficiency,

persistent craniopharyngeal canal
and abnormal cerebellar tonsils;
APH, ectopic/eutopic posterior
pituitary, absent infundibulum

Recessive in mouse,
dominant in humans

Frequency of mutations: 1.2% (235)
PROP1 PROP1 Hypoplasia of anterior pituitary

with reduced somatotropes,
lactotropes, thyrotropes,
corticotropes and
gonadotropes

GH, TSH, PRL, and gonadotropin
deficiency. Evolving ACTH
deficiency. Enlarged pituitary with
later involution

Recessive in both

Frequency of mutations: 1.1%
sporadic cases, 29.5% familial
cases (250)

POU1F1 POU1F1 (PIT1) Anterior pituitary hypoplasia with
reduced somatotropes,
lactotropes and thyrotropes

Variable anterior pituitary hypoplasia
with GH, TSH, and PRL
deficiencies

Recessive in mouse,
dominant/recessive in
humans

Frequency of mutations: 3.8%
sporadic cases, 18% familial cases
(274)

ACC, Agenesis of the corpus callosum; APH, anterior pituitary hypoplasia; EPP, ectopic posterior pituitary; N/A, not available.
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sented with very similar symptoms of isolated ACTH de-
ficiency (23), with very low basal plasma cortisol concen-
trations and no ACTH response to CRH, but a cortisol
response to corticotropin administration. Consistent with
its pituitary expression restricted to POMC cells, muta-
tions in TBX19 (TPIT) are frequently associated with neo-
natal isolated ACTH deficiency, but never with cases of
juvenile onset deficiency. Twelve independent mutations
have been identified, including nonsense, missense, frame-
shift, and splicing mutations in addition to a 5.2-Kb
genomic deletion encompassing exons 2 and 3 (23, 291–
294). All of these mutations have been shown or are pre-
dicted to result in loss of TBX19 (TPIT) function (291,
292), and all patients appear to be homozygous or com-
pound heterozygous for TBX19 (TPIT) mutations, with
unaffected heterozygous parents, implying a recessive
mode of inheritance.

Vallette-Kasic et al. (292) have reported the largest se-
ries to date and demonstrated TBX19 (TPIT) mutations in
17 of 27 patients from 21 unrelated families, suggesting
that mutations in this gene are the principal molecular
cause of congenital neonatal isolated ACTH deficiency.
Three patients carry only one mutant TBX19 (TPIT) al-
lele, although their family history implied recessive inher-
itance, so additional, as yet unidentified, mutations may
be present in regulatory regions of the gene in some cases
(292). In contrast with most other developmental gene
mutations, TBX19 (TPIT) mutations present a relatively
selective endocrine phenotype with normal function of all
other pituitary axes. Severe hypoglycemia, associated with
seizures and failure to thrive in some cases, and prolonged
cholestatic jaundice are classically associated with ACTH
deficiency presenting in the neonatal period (23, 292).
Furthermore, Vallette-Kasic et al. (292) noted that in their
series about 25% of families with segregating TBX19
(TPIT) mutations (five of 21) suffered a neonatal death,
suggesting that isolated ACTH deficiency may be an un-
derestimated cause of this.

VII. Conclusion

Over the past decade, there has been an explosion in the
knowledge of the genetic cascade that orchestrates hypo-
thalamo-pituitary development. Several transcription fac-
tors and signaling molecules are critical for organ com-
mitment and cell differentiation and proliferation at a very
early stage of gestation. Knowledge of the expression pat-
tern of these genes has helped explain the wider phenotype
in patients with hypopituitarism, for example those with
SOD who have associated forebrain and eye defects. The
mouse has served as an excellent model for understanding

the genetic basis of congenital hypopituitarism in humans,
although the correlation between mouse and human
disease phenotypes is variable (Table 6). This candidate
gene approach, based on mouse studies, has led to the
identification of several human mutations that disrupt
hypothalamopituitary development resulting in specific pat-
terns of hormone dysfunction. However, there are many
genes that remain to be identified and in future will
enable more extensive screening of the large number of
patients who lack a definitive etiology. Our understand-
ing of the etiology and molecular mechanisms of these
disorders will undoubtedly lead to improvements in the
management of these patients.
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Maury M, Simeone A, Brûlet P 1995 Forebrain and mid-
brain regions are deleted in Otx2�/� mutants due to a
defective anterior neuroectoderm specification during gas-
trulation. Development 121:3279–3290

52. Kurokawa D, Kiyonari H, Nakayama R, Kimura-Yoshida
C, Matsuo I, Aizawa S 2004 Regulation of Otx2 expression
and its functions in mouse forebrain and midbrain. Devel-
opment 131:3319–3331

53. Kurokawa D, Takasaki N, Kiyonari H, Nakayama R,
Kimura-Yoshida C, Matsuo I, Aizawa S 2004 Regulation
of Otx2 expression and its functions in mouse epiblast and
anterior neuroectoderm. Development 131:3307–3317

54. Rhinn M, Dierich A, Le Meur M, Ang S 1999 Cell auton-
omous and non-cell autonomous functions of Otx2 in pat-
terning the rostral brain. Development 126:4295–4304

55. Lamonerie T, Tremblay JJ, Lanctôt C, Therrien M, Gauthier
Y,Drouin J1996Ptx1,abicoid-relatedhomeoboxtranscrip-
tion factor involved in transcription of the pro-opiomelano-
cortin gene. Genes Dev 10:1284–1295

56. Driever W, Nüsslein-Volhard C 1988 The bicoid protein de-
termines position in the Drosophila embryo in a concentra-
tion-dependent manner. Cell 54:95–104

57. Gage PJ, Suh H, Camper SA 1999 The bicoid-related Pitx
gene family in development. Mamm Genome 10:197–200

58. Szeto DP, Ryan AK, O’Connell SM, Rosenfeld MG 1996
P-OTX: a PIT-1-interacting homeodomain factor ex-
pressed during anterior pituitary gland development. Proc
Natl Acad Sci USA 93:7706–7710

59. Tremblay JJ, Lanctôt C, Drouin J 1998 The pan-pituitary
activator of transcription, Ptx1 (pituitary homeobox 1),
acts in synergy with SF-1 and Pit1 and is an upstream reg-
ulator of the Lim-homeodomain gene Lim3/Lhx3. Mol En-
docrinol 12:428–441

60. Poulin G, Turgeon B, Drouin J 1997 NeuroD1/�2 con-
tributes to cell-specific transcription of the proopiomela-
nocortin gene. Mol Cell Biol 17:6673–6682

61. Tremblay JJ, Drouin J 1999 Egr-1 is a downstream effector
of GnRH and synergizes by direct interaction with Ptx1
and SF-1 to enhance luteinizing hormone � gene transcrip-
tion. Mol Cell Biol 19:2567–2576

62. Tremblay JJ, Marcil A, Gauthier Y, Drouin J 1999 Ptx1
regulates SF-1 activity by an interaction that mimics the
role of the ligand-binding domain. EMBO J 18:3431–3441

63. Zhao Y, Morales DC, Hermesz E, Lee WK, Pfaff SL, Westphal
H 2006 Reduced expression of the LIM-homeobox gene
Lhx3 impairs growth and differentiation of Rathke’s pouch
and increases cell apoptosis during mouse pituitary develop-
ment. Mech Dev 123:605–613

64. Charles MA, Suh H, Hjalt TA, Drouin J, Camper SA, Gage
PJ 2005 PITX genes are required for cell survival and Lhx3
activation. Mol Endocrinol 19:1893–1903

65. Lanctôt C, Lamolet B, Drouin J 1997 The bicoid-related
homeoprotein Ptx1 defines the most anterior domain of the

Endocrine Reviews, December 2009, 30(7):790–829 edrv.endojournals.org 819



embryo and differentiates posterior from anterior lateral
mesoderm. Development 124:2807–2817

66. Lanctôt C, Gauthier Y, Drouin J 1999 Pituitary homeobox
1 (Ptx1) is differentially expressed during pituitary devel-
opment. Endocrinology 140:1416–1422

67. Szeto DP, Rodriguez-Esteban C, Ryan AK, O’Connell SM,
Liu F, Kioussi C, Gleiberman AS, Izpisúa-Belmonte JC,
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Soussi-Yanicostas N, Coimbra RS, Delmaghani S, Compain-
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N, Lorini R, Amselem S 2006 Novel HESX1 mutations
associated with a life-threatening neonatal phenotype, pi-
tuitary aplasia, but normally located posterior pituitary
and no optic nerve abnormalities. J Clin Endocrinol Metab
91:4528–4536

203. Idrees F, Bloch-Zupan A, Free SL, Vaideanu D, Thompson
PJ, Ashley P, Brice G, Rutland P, Bitner-Glindzicz M,
Khaw PT, Fraser S, Sisodiya SM, Sowden JC 2006 A novel
homeobox mutation in the PITX2 gene in a family with
Axenfeld-Rieger syndrome associated with brain, ocular,
and dental phenotypes. Am J Med Genet B Neuropsychiatr
Genet 141:184–191

204. Fantes J, Ragge NK, Lynch SA, McGill NI, Collin JR,
Howard-Peebles PN, Hayward C, Vivian AJ, Williamson
K, van Heyningen V, FitzPatrick DR 2003 Mutations in
SOX2 cause anophthalmia. Nat Genet 33:461–463

205. Williamson KA, Hever AM, Rainger J, Rogers RC, Magee
A, Fiedler Z, Keng WT, Sharkey FH, McGill N, Hill CJ,
Schneider A, Messina M, Turnpenny PD, Fantes JA, van
Heyningen V, FitzPatrick DR 2006 Mutations in SOX2
cause anophthalmia-esophageal-genital (AEG) syndrome.
Hum Mol Genet 15:1413–1422

206. Sisodiya SM, Ragge NK, Cavalleri GL, Hever A, Lorenz B,
Schneider A, Williamson KA, Stevens JM, Free SL, Thompson
PJ, van Heyningen V, Fitzpatrick DR 2006 Role of SOX2
mutations in human hippocampal malformations and epi-
lepsy. Epilepsia 47:534–542

207. Ragge NK, Lorenz B, Schneider A, Bushby K, de Sanctis L, de
Sanctis U, Salt A, Collin JR, Vivian AJ, Free SL, Thompson P,
Williamson KA, Sisodiya SM, van Heyningen V, Fitzpatrick
DR 2005 SOX2 anophthalmia syndrome. Am J Med Genet
A 135:1–7; discussion 8

208. Hagstrom SA, Pauer GJ, Reid J, Simpson E, Crowe S,
Maumenee IH, Traboulsi EI 2005 SOX2 mutation causes
anophthalmia, hearing loss, and brain anomalies. Am J
Med Genet A 138:95–98

209. Zenteno JC, Gascon-Guzman G, Tovilla-Canales JL 2005
Bilateral anophthalmia and brain malformations caused
by a 20-bp deletion in the SOX2 gene. Clin Genet 68:564–
566

210. Sato N, Kamachi Y, Kondoh H, Shima Y, Morohashi K,
Horikawa R, Ogata T 2007 Hypogonadotropic hypogo-
nadism in an adult female with a heterozygous hypomor-
phic mutation of SOX2. Eur J Endocrinol 156:167–171

211. Chassaing N, Gilbert-Dussardier B, Nicot F, Fermeaux V,
Encha-Razavi F, Fiorenza M, Toutain A, Calvas P 2007
Germinal mosaicism and familial recurrence of a SOX2
mutation with highly variable phenotypic expression ex-
tending from AEG syndrome to absence of ocular involve-
ment. Am J Med Genet A 143:289–291

212. Bakrania P, Robinson DO, Bunyan DJ, Salt A, Martin A,
Crolla JA, Wyatt A, Fielder A, Ainsworth J, Moore A, Read
S, Uddin J, Laws D, Pascuel-Salcedo D, Ayuso C, Allen L,

824 Kelberman et al. Development of the Anterior Pituitary Gland Endocrine Reviews, December 2009, 30(7):790–829



Collin JR, Ragge NK 2007 SOX2 anophthalmia syn-
drome: 12 new cases demonstrating broader phenotype
and high frequency of large gene deletions. Br J Ophthal-
mol 91:1471–1476
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