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Abstract

Predicting protein function from structure remains an active area of interest, particularly for the structural genomics
initiatives where a substantial number of structures are initially solved with little or no functional characterisation. Although
global structure comparison methods can be used to transfer functional annotations, the relationship between fold and
function is complex, particularly in functionally diverse superfamilies that have evolved through different secondary
structure embellishments to a common structural core. The majority of prediction algorithms employ local templates built
on known or predicted functional residues. Here, we present a novel method (FLORA) that automatically generates
structural motifs associated with different functional sub-families (FSGs) within functionally diverse domain superfamilies.
Templates are created purely on the basis of their specificity for a given FSG, and the method makes no prior prediction of
functional sites, nor assumes specific physico-chemical properties of residues. FLORA is able to accurately discriminate
between homologous domains with different functions and substantially outperforms (a 2–3 fold increase in coverage at
low error rates) popular structure comparison methods and a leading function prediction method. We benchmark FLORA on
a large data set of enzyme superfamilies from all three major protein classes (a, b, ab) and demonstrate the functional
relevance of the motifs it identifies. We also provide novel predictions of enzymatic activity for a large number of structures
solved by the Protein Structure Initiative. Overall, we show that FLORA is able to effectively detect functionally similar
protein domain structures by purely using patterns of structural conservation of all residues.
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Introduction

The prediction of protein function from structure has become of

increasing interest as a significant proportion [1] of structures

solved by the structural genomics initiatives (SGI) lack functional

annotation (for a review see [2]). Furthermore, structure-based

approaches are of particular interest for predicting binding sites

and/or catalytic sites for the purposes of protein engineering and

pharmaceutical development (for reviews see [2,3]). Many current

methods focus on encoding a ‘‘template’’ of functional residues

and then aligning this template to whole structures. The problems

with taking this approach are deciding what qualifies as a

functional residue (e.g. one directly involved in catalysis or ligand

binding) and creating biologically-accurate templates for the ever

increasing number of available protein structures being deposited

in the PDB [4]. Resources such as the Catalytic Site Atlas [5] are

carefully curated by hand and restricted to residues directly

involved in catalysis, whereas MSDSite [6] and PDBSite [7,8]

generate templates based on active site residues defined in the

PDB file by the authors. Although these resources are undoubtedly

extremely valuable, it is questionable whether sufficient coverage

of the PDB can be maintained when manual intervention is

required.

To address the problem of generating templates for all protein

structures, there are a number of methods that aim to do this

automatically. For example, the reverse template method [1]

(available as part of the PROFUNC suite [9]) decomposes a query

structure into tri-peptide fragments (putative catalytic triads),

which are then matched against a non-redundant set of PDB

structures using the search algorithm JESS [1]. Hits are evaluated

according to the sequence similarity of the local environment of

the template. The GASP method [10] uses a genetic algorithm to

construct templates based on their ability to discriminate between

different protein families against a background of representatives

from the SCOP database [11]. Similarly, DRESPAT [12]

implements a graph theoretical approach to discover structural

patterns associated with a given family of proteins to locate ligand

binding motifs (the PINTS method [13] uses a related approach).

MultiProt [14] can provide template of structures through a

multiple structure alignment. A recent extension of the Evolu-

tionary Trace method for binding site prediction was used to

create structural templates based on predicted functional residues

[15]. SiteEngines [16] produces templates by matching the

geometry and physico-chemical properties of residues in binding

site clefts. As well as atom or residue-level templates, other non-

template-based approaches seek to compare the electrostatic

properties of binding sites (ef-Site, [17], SURF’s UP [18]) or

surface accessible clefts which often co-locate with active sites

(pvSOAR (CASTp) [19]).

One inherent complexity of using PDB structures to transfer

annotations between enzymes is the binding state in which the

protein is crystallised — for example, structures crystallised with
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non-cognate ligands, substrate analogs, transition states or apo-

enzymes [20]. As a consequence, precise geometric matching in

the active site region can be problematic due to the conforma-

tional changes that occur on ligand binding. To address this issue,

the methods mentioned above use a variety of approaches such as

graph matching or geometric hashing with various tolerance

levels. The SOIPPA method [21,22] takes the alternative

approach of using a ‘‘geometric potential’’ to characterise the

shape formed by a given set of Ca atoms, to account for both local

and global relationships between residues across the protein

structure. In a recent ligand-binding site comparison analysis,

SOIPPA was able to detect distant similarities between very

different protein folds binding a range of adenine-containing

ligands [21].

Despite the many template methods present in the literature,

very few are publicly available to the general user. Hence, the first

step in assigning function by structure is often to use global

structure comparison methods (e.g. CE [23], DALI [24],

CATHEDRAL [25], MAMMOTH [26], FatCat [27], MSDFold

[28]), which can detect distant evolutionary relationships even

where sequence similarity is weak. These methods have been

specifically applied to function prediction (ProKnow [29],

Annolite [30]) to assign confidence values when inheriting GO

terms between related structures. However, detecting very distant

relatives remains a challenge as structure comparison methods

generally give an absolute measure (or score) of structural distance,

such as RMSD, and applying a cut-off at which one can deduce

that two proteins perform related functions results in many missed

relationships.

Analyses of CATH [31,32] have shown that although function

and structure are well conserved in the majority of superfamilies,

there are a significant number of highly diverse superfamilies where

this is not the case [31]. Moreover, the latter superfamilies are

disproportionately represented in both the PDB and in the genomes

and tend to exhibit a wide range of core biological functions across a

large range of species [33]. An analysis by Reeves et al. [31] showed

that relatives within these superfamilies tend to share a common

evolutionary core, but this core is embellished with different

insertions of secondary structure elements that often correlate with

changes in function. However, although structural embellishments

might change some facet of function (e.g. ligand specificity, protein-

protein interactions), others have found that relatives can still retain

other aspects in common (e.g. catalytic mechanism, such as kinase

activity) [34,35]. Therefore, calculating a global measure of

structural similarity or distance (e.g. RMSD) between two proteins

can be less informative than focussing on the structural motifs

relevant to a given aspect of function.

The FLORA algorithm presented here was designed to derive

structural templates for functional sub-groups (FSGs) within

diverse CATH superfamilies. FLORA first performs global

structure alignment across the superfamily to recognise the

distinctive structural patterns associated with each FSG and builds

templates based on these patterns. New functional homologues are

then detected by using the global structural alignments to relatives

in each FSG again, but only scoring the similarity over positions

identified by the FLORA motif. This approach performs very well

in discriminating between different enzymatic functions, compared

to global methods and another motif-based approach. Although

we benchmark here on enzyme superfamilies, the method is

applicable to superfamilies containing non-enzymatic relatives. To

test FLORA, we have automatically generated a large data set of

domains from 29 diverse superfamilies (containing multiple FSGs).

Our data set allows us to look at the variation of FLORA results

between superfamilies and to stress the importance of using a large

test data set for benchmarking methods. We have benchmarked

FLORA against CE [23], CATHEDRAL [25] and Reverse

Templates (RT) [1] to give an indication of how it performs in

comparison to other standard methods of function prediction. We

also present some examples of structural motifs identified by

FLORA and explain their functional relevance. Finally, we use

FLORA to make novel predictions of function for proteins solved

by the Protein Structure Initiative (PSI).

Methods

Generating a data set of functionally diverse domain
superfamilies in CATH

In order to benchmark FLORA as a protein function prediction

method, it was important to generate a relatively large and

unbiased data set. We focussed on functionally diverse superfam-

ilies ($3 functions at the third E.C. [36] level) in the CATH

database, where global fold similarity and evidence of homology is

not necessarily indicative of a functional similarity. An overview of

the protocol is shown in Figure 1.

All protein chains from PDB structures classified in CATH v3.1

were annotated with an E.C. number using PDBSprotEC [37],

which maps PDB chains to corresponding entries in the SwissProt

database [38]. E.C. annotations were then transferred from the

whole chain level to each constituent domain in a chain. Assigning

functional annotation to individual domains is not a straight-

forward process, as other domains in the chain (or indeed, residues

from other chains in the protein) may be required for the enzyme

to be catalytically active. This problem is dealt with more

extensively in the PROCOGNATE resource [39]. However, we

were only interested in finding domains that were ‘‘associated’’

with proteins of a given enzymatic function, as FLORA was

designed to consider all residues for inclusion in a template and not

just those in the active site.

To simplify the benchmark data set, all domains from enzymes

assigned more than one E.C. (i.e. multifunctional enzymes) were

Author Summary

Understanding how the three-dimensional (3D) molecular
structure of proteins influences their function can provide
insights into the workings of biological systems. Structural
Genomics Initiatives have been set up to investigate these
structures on a large scale and make the data available to
the wider biological research community. However, in a
significant number of cases, there is little known about the
functions of the structures that are solved. To address this,
computational methods can be used as a predictive tool to
guide future experimental investigations. One such
approach is to exploit global structural comparison to
assign the protein in question to an evolutionary family,
which has already been functionally characterised. How-
ever, this is problematic in some large evolutionary
families, which contain a number of different functional
sub-families. We have developed a new method (FLORA)
which is able to calculate 3D ‘‘motifs’’ which are specific to
each of these sub-families. Any new protein structure can
then be compared against these motifs to make a more
accurate prediction of its function. Our paper shows that
FLORA substantially outperforms other standard ap-
proaches for predicting function from structure. We use
our method to make confident functional predictions for a
set of proteins solved by the structural genomics projects,
which could not have been assigned reliably by global
structure comparison.

FLORA: Predicting Protein Function from Structure
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removed. This exclusion criterion removed less than 8% of

enzymatic chains in the PDB. In addition, any domains with an

incomplete E.C. number (e.g. 2.7.-.-) were also excluded.

All annotated domains in CATH were clustered at 60%

sequence identity and a representative taken from each cluster

(S60Rep). This threshold was applied as 60% has been found to be

an appropriate sequence cut-off for functional similarity [40,41].

Discovering homologous domains sharing more than 60%

sequence identity is trivial using BLAST [42] and other

sequence-base methods and we wished to generate a benchmark

data set that contained more challenging cases.

S60Reps were then grouped within the superfamily if they

shared at least the first three E.C. numbers; to create what we will

subsequently refer to as a functional sub-group (FSG). A CATH

superfamily was then included in the data set if it contained at least

3 FSGs, where each enzyme family contained at least 4 S60Reps.

These criteria were chosen to create a sufficiently diverse data set,

which could be effectively assessed using leave-one-out bench-

marking.

The final domain data set (Dataset S1) comprised: 82 FSGs from

29 different CATH superfamilies (a total of 911 S60Reps domains),

covering all 3 major protein classes (a, beta and mixed a-beta).

Although the data set comprises ,2% of the total number of

superfamilies in CATH, these superfamilies account for ,48% of

domain sequences from functionally diverse superfamilies in Uniprot.

Furthermore, they represent a set of domains where global fold

similarity does not necessarily correlate with functional similarity.

The FLORAMake algorithm
An outline of the FLORAMake algorithm is shown in Figure 2.

The aim was to select a set of conserved vectors from a given

domain in a given FSG which when compared against relatives of

different functions/FSGs would produce a low score and similarly

a high score to relatives with the same function.

Align all domains in the superfamily using

CATHEDRAL. Methods which attempt to create structural

templates of residues associated with a given function rely on a

range of methods [1,12,15,16] for focussing on functionally

relevant regions of the protein. These targeted methods can

therefore be used to detect common motifs when calculating global

structural similarity might fail [25], but the performance is

partially dependent on the accuracy at which they predict

functional residues. The aim of FLORA was to explore the

whole protein domain to detect structural regions important for

the common functional roles of domains in the FSG. To do this

FLORA does not focus on predefined sites but performs global

structure comparisons across a given superfamily to attempt to

identify ‘‘hotspots’’ which are specific to a particular FSG. To

perform the global structure comparisons, FLORA exploits the

CATHEDRAL method (see Text S1). Compared to other

structure comparison methods, CATHEDRAL has been shown

to align the largest proportion of equivalent residues with respect

to manually curated alignments [25]. Therefore, by using

CATHEDRAL to align relatives, FLORA would be able to

consider a larger number of positions that could be functionally-

relevant for a given FSG.

The first step in our protocol was therefore to generate

structural alignments using CATHEDRAL between all pairs of

domains within each superfamily in the data set.

Identify structurally conserved residues. All pairs of

structure-structure alignments between domains in a given FSG

were analysed to identify aligned residues. A set of residues for

each domain was then generated from the pairwise alignments to

include only those residues that were aligned to residues in at least

75% of other domains in the FSG (to account for sub-optimal

alignments). A cut-off of 75% was chosen after exploring a range

of cut-offs (0–100%) and gave the fastest performance without

affecting the precision/recall of FLORA. These were designated

rescons positions.

Calculate vectors between conserved residues. For each

domain, vectors were calculated between all rescons positions. To

allow vectors to be appropriately compared between domains, a

vector was calculated between the Cb atoms of residues A and B

and then multiplied by a co-ordinate frame calculated from the

tetrahedral geometry of the bonds of the Ca of residue A as

Figure 1. Outline of benchmark data set generation.
doi:10.1371/journal.pcbi.1000485.g001

FLORA: Predicting Protein Function from Structure
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described in [43]. As the Ca geometry of residues A and B are not

identical, vectors were calculated in both the ARB and BRA

direction. However, we found that taking only one of these vectors

forward to the next steps in the algorithm gave the same

performance as using both, but increased the speed of FLORA

by halving the number of vectors that needed to be analysed.

Compare vectors across the superfamily. A given vector

from a domain in the FSG was compared to equivalent vectors in

domains across the whole superfamily. Equivalent vectors were

obtained from the CATHEDRAL structural alignment of the

domains being compared. For example, residues 93 and 105 in

CATH domain 1vl2A01 are equivalent to residues 92 and 108 in

1k92A01 according to the structural alignment. Hence, the vectors

93R105 (v1) and 92R108 (v2) were scored for similarity using the

formula below (which is identical to the vector score developed for

the SSAP [43] and CATHEDRAL [25] algorithms). We

experimented with different values of a and b, and found that

a = b = 2 gave the best performance (interestingly these were the

values used in the original implementation of SSAP [43]).

score~
a

jv1{v2jzb

Determine vectors that are more conserved within a

given functional sub-group (FSG). The next step in the

algorithm is to determine vectors for a given domain which are

more similar to equivalent vectors in other domains in the same

FSG than to those of relatives in the superfamily with different

functions (i.e. in different FSGs). The aim was to eliminate vectors

that are conserved mainly to preserve the common fold of the

superfamily. Two distributions were calculated for each vector: a)

scores to domains in the same FSG (DIST-F) and b) scores of

domains in different FSGs (DIST-S). The means of DIST-F and

DIST-S were then calculated and the vector was initially

determined to be FSG-specific if it satisfied the following inequality:

mean(DISTF){mean(DISTS)w0 ð1Þ

We experimented with various statistical tests (e.g. Wilcoxon

rank sum, calculating an empirical p-value), but found that the set

of selected vectors could be best reduced by jack-knifing the data

set and repeating the calculation above. That is, each domain in

the training set was removed in turn and FLORA only selects a

vector if the inequality is always satisfied.

We also explored incorporating measures of sequence similarity

when scoring vectors, but in our hands this degraded the performance

of FLORA. This could be due to the fact that the benchmark data set

contained very diverse relatives and hence exploring the sequence

signal requires a more sophisticated approach.

Store function-specific vectors for each domain. At this

point, each domain in the FSG is associated with a set of FSG-

specific vectors, which we termed the ‘‘FSG-domain template set’’.

Scoring domains against templates (FLORAScan)
Matching and scoring FLORA templates. To score a given

query domain against the template for a given domain in a given

FSG relies again on the global structural alignment by

CATHEDRAL. Hence, the first step is to align the query

domain against an FSG domain but then only score the similarity

across the subset of template vectors. Essentially, we are

calculating a local score over the FLORA template from the

correspondence determined by a global structural alignment. Each

vector in the template set associated with the FSG domain is

Figure 2. Graphical outline of FLORAMake algorithm.
doi:10.1371/journal.pcbi.1000485.g002
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scored against the equivalent vector in the query domain (using

equation 1), based on the aligned residues from the global

alignment. Any vectors that are not aligned (i.e. gapped positions)

are given a score of zero. The total similarity of the query domain

against enzyme domain (the florascore) is simply the sum of these

similarities, normalised by the total number of vectors in the

template (Equation 2).

florascore~

PN

i~0

score(v1,v2)

N
ð2Þ

Where N = number of template vectors; v1 = template vector;

v2 = equivalent vector in query domain

Conversion to Z-score. We hypothesised that the extent to

which the structure of a domain can change before its enzymatic

function changes might be specific to the homologous superfamily.

For each FLORA domain-function template, a distribution of all

scores is calculated against all domains in different FSGs. The

florascore between a given pair of query and enzyme domains is

then transformed into a Z-score.

Leave-one-out benchmarking
As FLORA is essentially a pattern discovery method, it was vital

to assess its performance in an unbiased fashion. We took a

standard leave-one-out (or jack-knifing) approach as is often used

to test machine learning methods. For each superfamily, one test

domain was removed, while training on the remaining domains.

The test domain was then scored against all the resulting

templates. The aim of this process to was accurately reproduce a

situation where a novel domain is classified into a CATH

superfamily and then needs to be assigned to a functional group.

Analysis of the performance of function prediction
methods

The performance of FLORA, CATHEDRAL [25], CE [23]

and Reverse Template (RT) [1] were analysed by plotting

sensitivity (i.e. tp/(tp+fn)) versus precision (tp/(tp+fp)). We

compared the performance on individual superfamilies by

calculating AUC value (area under ROC curve).

Comparison of FLORA motifs to known functional
residues

In order to examine where residues identified by FLORA

overlapped with known functional residues, we compared the

location of FLORA positions to those in the Catalytic Site Atlas

[5] (v2.2.9).

For each functional sub-group (FSG), we selected the domain

that had the highest mean global structural similarity (measured by

CATHEDRAL) to all other members of the FSG as a

representative. All residues, from each relative within an FSG,

identified by FLORA and CSA annotations were then mapped

onto this representative using the CATHEDRAL structural

alignment. Consequently, for each FSG we had a representative

structure where all residues were annotated as FLORA positions,

catalytic residues, or neither. The CSA provided annotations for

61 out of 82 FSGs (74%). We then calculated the average distance

between the FLORA residues to the catalytic residues and the

average distance between non-FLORA and the catalytic residues.

Analysing function-specific regions identified by FLORA
FLORA produces a set of inter-residue vectors for each domain

in a given FSG that are considered to be specific to its enzymatic

function, in the context of its evolutionary superfamily. In order to

visualise where these vectors lay, we took each set of domain

templates for a given enzyme family and mapped them onto the

most representative structure — i.e. the structure with the greatest

cumulative global structural similarity to all other domains in the

family. A given residue was then coloured if it was involved in the

top 30% of FLORA template vectors. Residues that are conserved

across the whole superfamily (in 75% of relatives) were also

identified and those which overlapped with FLORA residues were

coloured gold.

Function prediction for PSI structural genomics targets
Despite targeting proteins with no significant sequence similar-

ity to existing structures in the PDB, Protein Structure Initiative

(PSI) structures can often be classified into one of the large, diverse

superfamilies in CATH by structure comparison methods once

their structure has been solved. However, these superfamilies

contain a significant number of relatives with different functions

and therefore to be able to further assign these proteins to a

specific functional sub-group is of great use for guiding future

functional studies. We took all PSI structures solved up to January

2008 that had been newly classified in v3.2 of the CATH database

and selected the 276 domains which fell into one the superfamilies

in our data set. These 276 were further clustered at 60% sequence

identity to produce a non-redundant test set of 104 domains,

which was then scanned against the FLORA templates for each

FSG in order to predict their function. To exclude hits that could

have been fairly confidently assigned using global structure

comparison, we removed any structures that matched a CATH

domain in v3.1 library with a SIMAX score,1.5 [25].

SIMAX~
max (l1,l2)rmsd

nAl

Results

FLORA was designed as a generic method to create structural

motifs that can discriminate between different functional sub-

groups (FSGs) within diverse domain superfamilies, purely using

patterns of structural conservation — FLORA makes no

assumptions as to the physico-chemical properties of functionally

important residues and uses a purely structure-based conservation

score (i.e. sequence similarity is not used to select or score

equivalent motif vectors, see Methods). We created a benchmark

data set of diverse enzyme superfamilies in the CATH database

[44], although FLORA can be applied to protein structures

grouped by any function or superfamily annotation scheme.

We tested the performance of FLORA against global structure

comparison methods (CE [23], CATHEDRAL [25]) and the

Reverse Template (RT) method [1]. The residue positions

identified by the FLORA templates were examined to determine

whether they co-located to functional regions in the protein

structures. Finally, we used FLORA to predict broad enzymatic

functions for a set of structural genomics targets solved by the

Protein Structure Initiative [45].

How well does global structural similarity (CATHEDRAL
and CE) predict membership of functional sub-groups
(FSGs)?

To fairly benchmark any function prediction algorithm, it is

important to compare against current methods. Unfortunately, the

vast majority of function prediction methods are not publicly

FLORA: Predicting Protein Function from Structure
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available, however here we compare against CE as this method

has been used as a benchmark for other structure-based function

prediction methods (e.g. [10,21]). We also compare the perfor-

mance of FLORA against a more sensitive structure comparison

method (CATHEDRAL [25]) and a leading function prediction

method (RT [1]).

Initially, we investigated to what extent global structure

comparison could be used to reliably assign function. The graph

of sensitivity versus precision (Figure 3) shows the ability of CE and

CATHEDRAL to discriminate between domains in the same

enzyme family across our entire data set. It can be seen that at

high precision (,90%), CATHEDRAL outperforms CE, although

the sensitivity is still very low (18%). We suspect that the superior

performance of CATHEDRAL over CE is due to the fact that it is

able to generate improved alignments of homologous structures by

aligning more equivalent residues (as shown in [25]). The

performance of both methods shown here is fairly poor for

correctly classifying domains into FSGs, but it is obviously

important to note that neither of the methods was designed to

detect functional relationships.

Using FLORA to predict membership of functional sub-
groups

FLORAMake and FLORAScan were applied to the domain

data set and the performance was assessed using a leave-one-out

approach (described in the Methods section). It can be seen

from Figure 3 that even at high precision, FLORA significantly

outperforms CATHEDRAL, CE and RT — e.g. 90% precision,

CATHEDRAL detects only 15% of true functional homo-

logues, versus 27% for RT and 61% for FLORA. These results

show that the FLORA algorithm significantly outperforms

global structure comparison. This can be explained by the fact

that although FLORA uses the same alignments as CATHE-

DRAL, it only scores those positions which have been identified

as functionally-relevant (i.e. captured by the FLORA template)

within a given FSG. Furthermore, FLORA uses data from

multiple structures and is able to accurately discover function-

ally-relevant structural motifs and discover more than twice the

number of functional homologues at 90% precision than RT.

This suggests that where the data are available, exploiting

multiple structures with similar functions can improve the

sensitivity of function prediction methods. However, where

these is not available, methods such as RT [1] can be very

valuable.

How does the performance of FLORA vary between
superfamilies?

FLORA was benchmarked on 29 functionally diverse enzyme

superfamilies and the performance quoted thus far refers to an

average calculated over the entire data set. Figure 4 shows the

performance per superfamily (as measured by the Area Under

ROC Curve (AUC)) for FLORA and CATHEDRAL. It can be

seen that where FLORA is able to perfectly discriminate between

domains in different functional sub-groups (i.e. AUC = 1.0),

CATHEDRAL is also able to do so as functionally-similar

domains must share high global structural similarity. However,

for all but one (CATH code: 3.30.830.10) of the superfamilies in

the data set, FLORA out-performs CATHEDRAL. Superfamily

3.30.830.10 comprises two FSGs (aminopeptidases and carboxy-

peptidases), which contain domains that are part of larger multi-

domain complexes. For example, the protein chain 1hr6A

actually contains two homologous yet non-identical domains

(,30 sequence identity), both of which are members of this

superfamily — i.e. a domain duplication has produced the multi-

domain architecture 3.30.830.10::3.30.830.10. As a conse-

quence, it is more biologically meaningful to align this

superfamily at the chain level, which indeed improves the

performance of FLORA (AUC increases from 0.32 to 0.88,

see next section and Figure 5). Although there is only one

example of this case in our data set, it will be important to

account for domain duplications when building templates in the

future. For example, we encountered similar problems in a

superfamily of periplasmic binding domains (CATH

3.40.190.10), where a domain duplication creates a receptor of

two halves involved in the transportation of small ligands

(unpublished data).

Figure 3. Graph of sensitivity versus precision to show the performance of CE, CATHEDRAL, RT and FLORA for the prediction of
enzyme family.
doi:10.1371/journal.pcbi.1000485.g003

FLORA: Predicting Protein Function from Structure
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Comparison of the performance of FLORA using single
domains versus whole protein chains

At this point, it can be seen that simply focussing at the domain

level FLORA is able to very effectively improve the recognition of

structures in the same FSG. This is interesting given that the

majority of structure-based function prediction methods tend to

use the whole protein chain. A possible explanation of the power

of FLORA could be that the domains in our data set form a core

part of the enzymatically active region of the whole protein.

Alternatively, it could be that the selected vectors for each

template also contain residues that interact with other enzymatic

domains within the chain, and it is these interaction sites that

FLORA is detecting.

To see whether any improvement could be achieved by using

the whole protein chain, we used CATHEDRAL to re-align the

corresponding PDB chain for each of the domains in the data set

and performed an identical benchmark as before. Figure 5 shows

that the performance increase of using whole chains over using the

component domains is minimal. This suggests that there is enough

of a structural signal at the domain level and adding vectors from

Figure 4. Histogram of the performance of FLORA versus CATHEDRAL for individual superfamilies, assessed using the AUC (area
under ROC curve) statistic. The superfamilies were ranked according the AUC, with the worst performing listed first.
doi:10.1371/journal.pcbi.1000485.g004

Figure 5. Graph of sensitivity versus precision to show the performance of using FLORA at the domain level and chain level. The
performance of RT (which works at the whole chain level) is shown for comparison.
doi:10.1371/journal.pcbi.1000485.g005
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other domains in the protein chain does not seem to be

advantageous. It also means that FLORA could be used to

transfer functional annotation between relatives with different

multi-domain architectures, therefore expanding the scope of the

method.

Where do FLORA template residues lie on the structure?
The benchmarking analysis presented above shows that

FLORA is indeed able to correctly discriminate between

homologous domains from different FSGs better than global

structure comparison, despite using global alignments to deter-

mine residue correspondence. This suggests that although a global

alignment may not be perfect, especially between very distant

relatives, it still aligns enough residues that are important for

maintaining different functions. To examine where these function-

specific residue lay, we chose a representative structure for each

enzyme family and visualised the conserved FLORA residues (see

Methods section).

We have analysed these motifs further in domains from the

HUP superfamily (CATH 3.40.50.620 [46]), which is the subject

of particular attention within our group. HUP domains are very

diverse in terms of sequence, structure and function, and are

involved in various essential biological processes (e.g. protein

translation). In addition, several proteins with HUP domains have

attracted attention due to their medical importance (e.g. [47]).

Domains in this superfamily adopt a Rossmann-like fold with a

central parallel b-sheet surrounded on both sides by a-helices. The

main active site is always located in the C-terminal half of the

central b-sheet and is generally involved in nucleotide-binding.

HUP domains in the FLORA dataset divide into 3 major FSGs

when clustered using the first three digits of the E.C. numbers. In

the following section, we consider one representative member of

each of these FSGs to describe motifs identified by FLORA.

The first FSG consists of the catalytic domain of class I

aminoacyl-tRNA synthetases (EC 6.1.1.-). These enzymes are

essential for protein translation as they catalyse the ligation of

amino-acids to their cognate tRNAs in a two-step mechanism that

involves ATP. The HUP domains of aminoacyl-tRNA synthetases

are found in many different multi-domain contexts in CATH,

which appear to partially depend on the amino-acid substrate

(data not shown). In representatives from this group, (S. cerevisiae

arginyl-tRNA synthetase, PDB: 1f7u), FLORA identifies two

major motifs, one of which is located in the amino-acid and ATP

binding site, whereas the other covers residues in loops that bind

the tRNA (Figure 6A).

The next FSG in the HUP superfamily is a group of metabolic

enzymes called nucleotidyltransferases (EC 2.7.7.-), which transfer

nucleotidyl groups from nucleotide tri-phosphates to other

compounds. The nucleotidyltransferase we have analysed further

(Th. Thermophilus pantetheine phosphate adenylyltransferase PDB:

Figure 6. Representatives from the Tyrosyl-Transfer RNA Synthetase superfamily (3.40.50.620) in CATH. A 1f7u, B 1od6, C 1k92. FLORA
residues are shown in green.
doi:10.1371/journal.pcbi.1000485.g006
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1od6), is a relatively small protein and consists of a homo-hexamer

of single HUP domain subunits. FLORA identifies two motifs in

this domain, one of which locates in the main active site in the C-

terminal half of the central b-sheet, whereas the other maps to the

inter-subunit interface (Figure 6B).

Finally, the third FSG consists exclusively of argininosuccinate

synthases (EC 6.3.4.5), which catalyse the ATP-dependent

synthesis of argininosuccinate from citrulline and aspartate. These

enzymes are homo-tetramers in which each subunit is comprised

of a nucleotide-binding HUP domain and an additional domain

involved in multimerisation and catalysis. Three motifs are

identified by FLORA in E. coli argininosuccinate synthase: one is

located in the nucleotide-binding site (C-terminal half of the

central b-sheet), another consists of residues at the interface with

other subunits of the tetramer, whereas the third motif is

comprised of residues from N-terminal a-helices that are not

involved in any identified interactions to our knowledge

(Figure 6C). The location of these a-helices on the outward

surface of the tetramer cannot exclude the possibility that these

FLORA residues might be involved in interactions that have yet to

be described in the literature.

Analyses of residues identified by FLORA in these domains and

others in this superfamily (data not shown) suggest that FLORA is

generally able to target motifs known to be involved in different

aspects of molecular function, like binding interfaces or catalytic

sites. This behaviour is somewhat expected from FLORA, which

was specifically designed to detect such function-related signatures

in homologous domains. By mapping catalytic residues from the

CSA onto each FSG representative (see Methods), we found that in

59% of cases the FLORA residues were closer to the functional site

than other residues in the domain. This is interesting as it means

that in a significant number of FSGs, FLORA is identifying other

positions in the protein, for example those involved in interaction

sites as demonstrated by the examples discussed above. In the

particular case of the HUP superfamily mentioned above, it is

noteworthy that in each FSG, FLORA not only identifies functional

regions which are unique to the FSG (e.g. the tRNA binding site in

aminoacyl-tRNA synthetases), but also residues in the main

nucleotide-binding active site which is shared by HUP domains

from all FSGs at the C-terminal half of the central b-sheet. Although

this would require further investigation, it suggests that FLORA is

able to detect relatively small differences in residue positions and

orientations between similar active sites in different FSGs.

Examining similar representatives from the Class I aldolase

superfamily (3.20.20.70) reveals that FLORA template residues

(Text S1) tend to cluster around the active site of the enzymes

(data on active site residues from the Catalytic Site Atlas [5]),

which suggest that it is where the majority of structural features

characteristic of each FSG occur.

Using FLORA to predict functions for PSI structures
Our analysis thus far has shown that FLORA is able to

substantially improve on the performance of global structure

comparison for reliably assigning domains to functional sub-

groups. We therefore sought to use it to make novel predictions for

structural genomics targets from the PSI. As a data set, we took

structures that had been assigned to superfamilies in the latest

version of CATH (v3.2) and scanned these against the FLORA

templates. Using the benchmark curve from the leave-one-out

benchmark, we took a score cut-off corresponding to a precision of

95% (Z-score.3.4) to ensure high confidence in our assignments.

All hits above this cut-off were collated, rather than simply taking

the top hit so that we could account for bi-functional enzymes and

observe any conflicting predictions (i.e. those structures which hit

more than one FSG template). A complete table of results is shown

in Text S1.

104 domains from our v3.2 PSI set correspond to 94 PDB

structures. Of these 94, we were able to make predictions for 66

(70.4%) with FLORA. To assess the added value of using FLORA

over global structure comparison, we took out any PSI structures

that matched a domain in CATH with a SIMAX score,1.5 (see

Methods). This left us with 51/66 (78%) predictions that could not

be easily assigned with CATHEDRAL. This supports the earlier

benchmark of FLORA, which shows that scoring structural

similarity over all FSG-specific residues can dramatically increase

the number of functional homologues we are able to detect.

Figure 7 shows the structure of 2pbl (a putative thiol esterase

from the Joint Center For Structural Genomics) superposed

against its best hit 1epx. A closer superposition of the active site

shows conservation of the surrounding secondary structures and

even the positions of the catalytic residues. FLORA finds

significant hits to all members of the FSG (E.C. 3.1.1-, Carboxylic

ester hydrolases) in superfamily 3.40.50.1820, despite none of the

domains superposing with an RMSD less than 4, indicating that

2pbl is a distant relative of other superfamily members. The other

FSG in the superfamily corresponds to E.C. 3.4.16.-, which is a

group of Serine-type carboxypeptidases to which FLORA assigns

no significant hits. FLORA predicts 2pbl to be a carboxylic ester

hydrolase, as opposed to a Thiolester hydrolase (E.C. 3.1.2) as

suggested by the authors. However, given that there are no

examples of thiolesterases currently in the superfamily it is possible

that they are in fact closely related to the carboxylic ester

hydrolases. Biochemically, this function is certainly closer than the

peptidase function of FSG (EC 3.4.16.-).

FLORA predicted NESG structure 2bdt with the E.C. number

2.7.1.-, which is a group including enzymes such as fructose 1-,6

bisphosphate. When this structure was published, it was assigned

as a putative gluconate kinase but currently has no official E.C.

annotation.

PDB 1vm8 from the JESG consortium was functionally

characterised when the structure was solved as UDP-n-acetylglu-

cosamine pyrophosphatase and given the E.C. number E.C.

2.7.7.23. Again, FLORA correctly predicts the E.C. number as

2.7.7.-, despite low global structural similarity to any domains in

the template data set.

1ylo is a hypothetical protein solved by the MCSG consortium

in 2005. FLORA predicted the E.C. number 3.4.11.-, which

comprises a group of amino-acid specific peptidases, with

significant hits (Z-score.4) to three domain templates in our data

set. A BLAST search indeed reveals significant hits (.99%

sequence identity) to annotated amino peptidases, as the protein

has now been functionally characterised since its structure was

solved. Again, these trivial hits were not in the data set we used,

which demonstrates the power of FLORA to find functional

homologues even after significant evolutionary divergence.

Discussion

FLORA is a novel algorithm which exploits patterns of

structural conservation to derive templates for different functional

sub-groups (FSGs) within diverse domain superfamilies. Unlike

many other methods which focus on generating templates based

on known or predicted functional residues [1,10,15], FLORA

considers all residues to provide a more discriminating functional

fingerprint. We have shown it is able to use these templates

effectively to discriminate between domains with different

functions better than global structure comparison (CATHE-

DRAL), CE and RT.
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By generating a superfamily-specific Z-score, we found that the

performance of FLORA increases significantly. This suggests that

the degree of structural variation that confers a change in function

is specific to each superfamily and the absolute structural similarity

must be compared to a background distribution. Therefore, as has

also been identified at the sequence level [40,41], function

prediction methods should account for the divergence of the

superfamily, rather than adopt one similarity measure that applies

to all superfamilies. However, we acknowledge that a represen-

tative distribution can only be obtained in sufficiently populated

superfamilies.

Another important novelty in our approach was to create a

large data set comprising 29 superfamilies (which is made

publically available). Although FLORA performed well across

Figure 7. Superposition of PSI structure 2pbl (dark grey) with 1tqh (superfamily 3.40.50.1820, EC 3.1.1.-). FLORA positions are coloured
as in previous figures and catalytic residues are shown in light blue. It can be seen that there is reasonable agreement in the region of the active site.
doi:10.1371/journal.pcbi.1000485.g007
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the majority of superfamilies, this was not universally true, which

suggests that function prediction methods should be benchmarked

across as diverse a data set as possible. We have also shown that

CATHEDRAL outperforms CE, probably due to producing

superior alignments outside of the conserved structural core.

Although global structure comparison is not always able to reliably

find distant functional relatives, we feel it is appropriate for

benchmarking new methods to give a guide of the value they add

to structure-based function prediction.

As detailed in the methods, FLORA calculates vectors based on

the geometry of Cb side chain atoms. However, a re-implemen-

tation using just Ca co-ordinates produces almost identical

performance on the data set (data not shown). This is encouraging

as it increases applicability of our method to theoretical and

homology-based models.

One of the major ways in which FLORA differs to other

methods is by focussing on the domain, rather than at the whole

chain or protein complex level. Simply because a domain is

present in a given enzyme does not necessarily mean it contributes

to or confers catalytic activity. Indeed it might be responsible for

protein-protein interactions or other aspects of function, such as

locating the protein in a given part of the cell. We have shown that

except in the case where there has been a domain duplication

(superfamily 3.30.830.10), deriving structural motifs at the domain

level performs as well as aligning whole multi-domain chains. Our

hypothesis is that where FLORA does not locate conserved

positions around the active site, it is able to find parts of the

domain that interact with other catalytic domains. We intend to

undertake more detailed analysis of other CATH superfamilies to

confirm this.

FLORA makes no assumptions about the physico-chemical (e.g.

solvent accessibility or polarity) or sequence conservation proper-

ties of residues in the templates it derives, only that they show high

structural conservation within a given functional sub-group. As a

consequence, we observed residues both around the enzymatic

active sites and in other locations in the protein. In two of the

example superfamilies presented here, we have shown that

FLORA template vectors co-locate around the active site. This

is possibly due to structural changes in the protein that allow for

different relatives to bind different ligands. However, this trend is

not observed across the whole data set, where only 59% of

FLORA template vectors are on average closer to the active site

than other residues in the protein. This suggests that it is not only

the enzymatic site that is important for discriminating between

different FSGs, but other locations in the structure related to

domain-domain or protein-protein interfaces.

The substantial improvement in performance of FLORA over

global structure comparison has allowed us to assign 70% of

structural genomics targets, assigned to superfamilies in our data

set to functional sub-groups, in this case predicting the type of

catalytic reaction they perform. Of our FLORA predictions, 78%

could not have been reliably made by standard structure

comparison techniques, as we were able to transfer annotation

from far more distant relatives (RMSD.4 Å). Although some of

the predictions we made are supported by experimental work that

occurred after the structure was solved, the accuracy of the rest

remains for future functional characterisation work.

Taken in the context of our previous analysis of functional

divergence across large domain superfamilies in the CATH

database [31], we have shown that it is indeed possible to derive

structural templates that can be used to characterise these different

functional sub-groups, without explicitly focussing on known or

predicted catalytic residues. Both CATHEDRAL and FLORA

exploit the same algorithm to align structures, but the performance

increase observed by FLORA is due to the fact that it identifies

those positions which are distinctive to a function group and only

scores the structural similarity over these positions, whereas

CATHEDRAL calculates a global score. Although we have

benchmarked here using CATH enzyme superfamilies, FLORA

can be applied to any other functional or superfamily classification

(both enzyme and non-enzyme) where there are sufficient

structural data. We are currently implementing FLORA as a

web service for the structural biology community.
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