Modelling the Human and Technological Costs and Benefits of
USB Memory Stick Security

Adam Beautement Robert Coles Jonathan Griffin Christos Ioannidis
UCL Merrill Lynch HP Labs University of Bath
Brian Monahan David Pym* Angela Sasse Mike Wonham
HP Labs HP Labs & UCL HP Labs

University of Bath

Abstract

Organizations deploy systems technologies in order to support their operations and achieve their business
objectives. In so doing, they encounter tensions between the confidentiality, integrity, and availability of infor-
mation, and must make investments in information security measures to address these concerns. We discuss
how a macroeconomics-inspired model, analogous to models of interest rate policy used by central banks,
can be used to understand trade-offs between investments against threats to confidentiality and availability.
We investigate how such a model might be formulated by constructing a process model, based on empirically
obtained data, of the use of USB memory sticks by employees of a financial services company.

1 Introduction

Organizations deploy systems technologies in order to support their operations and achieve their business objec-
tives. In so doing, they encounter tensions between the confidentiality, integrity, and availability of information.

In formulating security policies that are intended to resolve such tensions to the organizations satisfaction,
people (e.g., CEOs, CIOs, CISOs, security managers) with responsibility for information and systems security
face the following two problems:

1. Poor economic understanding of how to formulate, resource, measure, and value security policies; and

2. Poor organizational understanding of the attitudes of users to both information and systems security and
of their responses to imposed security policies (see, for example, the UK Foresight ‘Cyber Trust and
Crime Prevention’ report [ST04]).

Consequently, the effectiveness and value of the policies with which users are expected to comply are very
difficult to assess, as are the corresponding investment decisions [And01, AM06]. We believe that, in order to
assess the effectiveness and value of security investments in a system, be they in people, process, or technology,
it is necessary to have a conceptualization (i.e., a model) of the system, including its users, and its economic
environment.

In this work, we present an entirely novel approach to the problem of modelling the economic effective-
ness of implementing security policies within an organization. The following are the key components of our
approach:

e We test the hypothesis that there is a trade-off between the components of investments in information
security that address confidentiality and availability (for our present purposes, we suppress integrity);

*Corresponding author; email: david.pym@hp.com

e We capture, for now primarily conceptually rather than mathematically, the trade-off between availability
and confidentiality using a model inspired by a macroeconomic model of the Central Bank Problem
[RMO1, RMO3]. Our approach, which considers aggregate values of confidentiality and availability under
variation in investment, stands in contrast to the microeconomic approaches described by Gordon and
Loeb [GL02, GLO06];

e Rather than provide a detailed mathematical formulation, which at this stage in our investigation we are
not ready to formulate, we conduct an empirical study together with a (rigorously structured) simulation
based on the empirical data and the processes executed by the system. Our simulations embody the
dynamics of the conceptual model;

e Our empirical data is obtained from semi-structured interviews with staff at two organizations, a financial
services company and a research organization, with a focus here on the financial services organization;

¢ We demonstrate the use of the model to explore the utility of trade-offs between availability and confi-
dentiality.

The results of our study, and variations upon it, will inform our efforts to design and calibrate economic models
of the kind we discuss.

The remainder of the paper is structured as follows: In § 2, we explain the form of the economic model
of the response of confidentiality and availability to security investments that is of interest to us; in § 3, we
expain how we have obtained our initial empirical data; in § 4, we explain the key features of our process-model
of the use of USB memory sticks and, in § 5, we explain how this model is realized in our systems modelling
language, Demos2k [Dem]; in § 6, we explain our experimental study, including its relationship to the economic
model we sketch in § 2; finally, in § 7, we explain how we intend to pursue this work, explaining the directions
empirical study, process modelling, and economic modelling. We also include two appendices, one containing
a summary of the empirical data and one containing the code for our (executable) model.

2 The Central Bank Problem and Information Security

A well-known problem in macroeconomics concerns the setting of interest rates by a central bank in order to
manage, say, inflation and (un)employment. The basic model derives from a line of work including Taylor
[Tay93], Barro and Gordon [RG83], Nobay and Peel [NP].

In very brief summary, for readers who may be unfamiliar with the background, the basic set-up of the
model is as follows [RMO1, RMO03]:

e Inflation and unemployment are related as
up = uy — A(my —) + e

for A > 0, where u;, u}', and 7, are, respectively, the rates of unemployment, natural (or target) un-
employment, and inflation; 7{ is the (public) forecast of inflation at time ¢, constructed at time ¢ — 1,
determined rationally as

= B m

where E;_; is the expectation conditional on the set of all relevant information available at time ¢t — 1,
denoted I;_1; n; is an aggregate supply disturbance;

o The natural (or target) rate of unemployment evolves over time, with Au} depending on the Au}’ ,s;

e The central bank affects the rate of inflation via a policy instrument, such as a base interest rate. Such an
instrument is imperfect, with imperfections represented by the error term ¢, in the following equation, in
which ¢, € I;_q:

T = iy + €;

e The central bank’s preferences for inflation and unemployment are captured by a utility, or loss, function
of the following form:

U) = (re =)+ () exp(aun =) = 2w =) = 1),

where 7} and u;}, respectively, are the target rates of inflation and unemployment, and ¢ is a parameter.
Here the target unemployment rate is the expected (natural) rate of unemployment:

uf = Et_l(u?).
It is assumed that the target inflation, 7}, can be approximated by a constant term [RMO1, RMO03].

Note that the utility function taken in this set-up employs the linex function [Var74, Zel86, CPP06], of the form

9(x) = (exp(aw) — ax — 1) /a?,

where « is a parameter. In comparison with the use of a quadratic utility function, the linex function admits
asymmetry whilst retaining the quadratic as the special (limit) case when « tends to zero.

We argue that a form of the central bank problem (model) can be deployed to explain trade-offs in invest-
ments in information security. In our present case, we are concerned with the trade-off between availability and
confidentiality, in the particular setting of the overall availability of information derived from the use of USB
memory sticks set against the overall increased exposure of confidential information that is a consequence of
their use. The analogy goes as follows:

e Availability and confidentiality, respectively, correspond to inflation and unemployment. The policy in-
strument is the level of investment in information security countermeasures;

e Availability and confidentiality are related as follows:

— As availability increases, the potential for exposures increases, and confidentiality decreases. Con-
fidentiality is also reduced by increased levels of threat to confidentiality

C=-MM+¢eo

where) is a parameter and e¢ is a non-decreasing stochastic process (so expectation non-zero) for
the threat to confidentiality;

— Availability depends both on the level of investment in information security, negatively in the case
of the study discussed in this paper, and on the level of threat to availability

AZ—’(/JI-FGA

where the instrument [is security investment or, perhaps, system complexity, 1 is a (possibly neg-
ative) parameter and € 4 is a non-decreasing stochastic process for the threat to availability. More
generally, we might require also a term in changes AT in the instrument I, with various dependen-
cies;

e For utility, in terms of expectations, we might take, for example,

¢

E(U(C, A)) = E(((explad] — aA —1)/a® + 502),

where ¢ is a parameter, as before;

e Such a formulation does have analytic solutions for I, in terms of expectation, of the form

1 cc 1 exp(%5E + x35)
I = E(@[EA — 7 — aA2¢) -+ PrOduCtLOg[T

where, as in Mathematica [Cen], ProductLog|z] is a solution for w in z = wexp(w). A discussion of
this solution and its significance is beyond our present scope, as is a discussion of a multi-period model.

D,

As we have remarked, in the context of information systems, the instrument I might be a measure of in-
vestment in information security, or a measure of the complexity of the system. For an example of the latter,
we might take a ‘complexity parameter’, x € [0, 1), and then take I = 1/(1 —). Then if z = 0, we have a
maximally simple system (a single unit) and, as x approaches 1, and so I approaches infinity, we can obtain an
arbitrarily complex system.

In business contexts, systems users who have access to confidential and business-critical information make
widespread use of USB memory sticks. They do so for good reasons: these devices efficiently enable data trans-
fer between all manner of business colleagues and partners. The use of these devices also exposes organizations
to risks of losses of confidential data, owing to their capability to transfer all kinds of data conveniently and
cheaply to anyone capable of receiving it. Thus there is a trade-off between availability and confidentiality (we
suppress consideration of integrity issues in this context, where it can be argued that they are minor), and there
is an incentive incompatibility between the users of the systems and owners of the policies.

In this paper, we study the use of USB memory sticks by the staff of a financial services firm, in the context
of a model of the form discussed above. We do not attempt to reify such a model analytically, even at this level
of detail. Rather, we demonstrate the dynamics of a simple instance using an executable model of the system of
USB users using a process model.

The model, built on the basis of empirically obtained data, executes processes that track availability and
breaches of confidentiality under specified levels of security investment. In assessing our experimental results
within the executable model, we employ, for illustrative purposes, perhaps the simplest form of utility function
that might possibly be useful:

U(C,A) = a(A - p0),

where « and (3 are parameters; the details of the choices here are explained in § 6.

3 An Empirical Study

To obtain an empirical basis for our model, we conducted a study to elicit factors that contribute to corporate
and individual security cost. One of the academic researchers conducted 17 in-depth interviews with security
staff, employees, and managers in the two companies that are partners in this research project. The interviews
remained anonymous.

The interviews were semi-structured, exploring

o the tasks and responsibilities of interviewees,

their perception of the risks facing the company,

their attitudes to the company’s security polices and security measures, and

the perceived impact of security measures on individuals’ tasks and responsibilites, and company produc-
tivity.

Whilst the interviews covered a range of security policies and measures, all interviewees were asked about one
specific security problem: USB sticks. They were asked

o if they used USB sticks (all did),

e how they used them as part of their tasks and responsibilities,

e about the relationship between the risks facing their company, and their USB stick usage,

o if whether any of their USB stick usage contravened the companies security policies, and if so,
e why they thought contravening the security policy was justified.

We suggested the company was considering making the use of encrypted USB sticks mandatory (for the finan-
cial services company, this was actually the case), and asked interviewees to

e cxplore the cost and benefits of such a policies for the company, and
e cxplain the cost and benefit for them and their tasks and responsibilities.

The interviews were transcribed, and analyzed using techniques from Grounded Theory. Grounded Theory
[SC90] is a qualitative data analysis method widely used in social sciences, which allows identification of
salient concepts and relationships between them. Over the past 10 years, the method has been successfully
applied to model user perceptions and attitudes in Human-Computer Interaction in general. Adams and Sasse
[AS99] used this approach to identify factors that affect employees’ perceptions of corporate security policies,
and [WSO01] modelled employee decision-making on compliance with password security policies.

For the study reported in this paper, only the sections on USB stick policies and tasks and situations sur-
rounding their usage were analyzed. We coded the interviews using axial coding (the first stage of Grounded
Theory) to produce an inventory of the individual employee’s cost and benefit associated with USB stick usage,
and the cost and benefit for the organization. Data were coded by two researchers independently.

The range of roles performed by the interview subjects was relatively diverse, from security managers to
part-time researchers, as was the range and frequency of security related comments they produced. There were
also noticeable differences in USB usage between the various interview subjects. From the interviews, we were
able to identify two main USB stick usage scenarios. These scenarios broadly corresponded to the type of
organization for which the subject worked. We have focused on the first of these scenarios in which the USB
stick is used as transport medium for data. This scenario is described in detail below. The second scenario,
corresponding to the research organization, in which the USB stick is also used as a primary data storage device
will not be covered here.

This scenario is more representative of the financial services organization. In this scenario, the USB stick
is primarily used for temporary storage for transit between locations such as an employee visiting a client
company to deliver a presentation. The data required to deliver the presentation would be copied from the
company’s computer system onto the USB stick and taken to the client’s location. Any data which must be
brought back to the home company can be copied from the client’s system onto the USB stick and brought back
by the employee.

The data in this case is always backed up, either on the home company’s system or the client company. The
data is never unique and so a loss of a security stick cannot constitute a long-term availability issue. While a
short term loss of availability can be detrimental — the cost is to the individual, with possible small collateral
reputation loss for the parent company if the clients need to resend data, etc. — it is unlikely to have a significant
impact on the company.

A far bigger concern for the security manager in this scenario is the potential confidentiality issues resulting
from company data being transported through unsecure locations while in transit to and from the client. If the
USB stick were to be lost or stolen at this time, while containing unencrypted data, then the cost in terms of
reputation and lost business would be to the company itself rather than the individual. While the company can
punish the individual internally, it cannot recoup its losses by doing so. This scenario encourages the security
manager to take a ‘confidentiality first’ approach when designing the USB control policy. We opted to focus
on this scenario when describing our individual and organizational costs as it provided a relatively simple set of
actions that encompassed the key points.

At this point we created a list of the actions required to complete the task in the scenario. This then was con-
verted into a set of tables detailing at each stage the task, the cost to the individual, the cost to the organization,
a possible failure mode at that juncture, and the cost to each of that failure. Appendix A contains the results of
the empirical study, in tabulated form.

The data obtained in our empirical study which has not been explored in this paper will be considered in
future work.

4 The Conceptual Model

The empirical study discussed in §3 has presented ways in which USB sticks are used in two large organizations.
In particular, this study shows that certain classes of events and risks arise during the course of the life-histories

of USB sticks and their owners. This information provides a rich corpus that we can use to make modelling
decisions. Accordingly, we have embodied these classes of events and risks within the process model we now
present. More specifically, we take as the primary input to our model the data obtained from the financial
services organization.

For simplicity, we consider the organization of interest to consist in the collection of its individuals. Thus
we can capture the behaviour of the organization, at this rather crude level of abstraction, by capturing the
behaviour of a typical individual.

The purpose of our model is to embody the behaviour of our intended macroeconomics-inspired model of
the relationship between the confidentiality and availability of information owned by an organization that uses
USB memory sticks to support its operations. In this model, the instrument that is available to the organization
is investment in information security. For the purposes of this study, we identify the following three types of
investment:

e Training — individuals are trained to understand and work within the organization’s information security
policies;

o [T Support — the organization provides specialist IT personnel to help individuals resolve problems;

e Monitoring — the organization monitors the behaviour of the individuals with respect to its information
secuirity policies.

Our focus of attention for this model concerns the use of encryption of data held on USB memory sticks.

For each type of investment, we consider the idea of a transfer function which associates to a given level of
investment a certain parameter that is used to calculate the effect of a given level of investment. In the cases of
Training and IT Support, the transfer function returns a value in the real interval [0, 1]; in the case of Monitoring,
the transfer function returns a (real) time interval. There are many reasonable choices for these functions, and
we take simple exemplars, chosen primarily for their shape, on the presumption that more investment will
generally increase the business proficiency and efficacy of the matter of interest, and guided by the following
considerations:

e Whether they are monotonic increasing/decreasing;
e What limits they tend to;

e The presence of threshold effects for investment; and
o Algebraic simplicity.

We do not claim anything else for these particular functions — we do not know a priori what these functions
ought to be, and so we leave that as an open question for further investigation. We consider them in turn.

First, the Training transfer function: The idea is that this transfer function takes the portion of the overall
security investment budget allocated for training and specifies the probability of the individual making support
calls. As the budget for training increases, the individual becomes more proficient and needs to make fewer
and fewer support calls. We assume, however, that there is always a background need to make some support
calls; for example, to do with aligning the USB encryption with organizational systems configurations. Thus
the transfer function has output in [0, 1] and is monotonically decreasing with increasing training budget. We
further assume that a minimal amount of training is needed before there is any reduction in the probability of
an individual making a support call. The form we have chosen for this function, where inv is the investment
variable, is:

training TF (inv) = (b — ¢)(min(1, a/inv)) + ¢,

illustrated in Figure 1; the parameters a, b, and c are defined as follows:

e @ = minimum training investment threshold: The amount of investment needed before there is any effect
on training and reduction on the probability of needing support;

e b = maximum probability of needing support: This value is attained when no training at all is given;

e ¢ = minimum probability of needing support: We assume that there is a baseline, underlying need for IT
support, no matter how trained the employees are. Clearly, we require b > c.

Pr(Needing support)
1
b i
c
. a Investment in training ($),
min

Figure 1: The ‘Training’ transfer function

Second, the IT Support transfer function: The idea here is that as security investment in IT support increases,
the probability of a successful interaction with support also increases. The transfer function shows how this in-
vestment affects this probability and this time monotonically increasing. Just as for training, there is a minimum
amount of investment required before any benefit is realised. The form we have chosen for this function is:

ITsupportTF (inv) = max(0,b(1 — a/inv),
illustrated in Figure 2; the parameters a and b are defined as follows:

e ¢ = minimum IT support threshold: The minimum amount of investment required before there is any
effect on the probability of the success of IT support;

e b = maximum probability of successful support: This is naturally a limiting value, which we assume can
be achieved arbitrarily closely.

Finally, the Compliance Monitoring transfer function: The idea here is that as security investment in com-
pliance monitoring increases, this leads to an effective increase in the frequency with which compliance checks
are made, so potentially improving the effectiveness of monitoring. Consequently, the time interval between
checks will decrease. The transfer function specifying the time interval should therefore monotonically decrease
as budgeted investment increases — the form of this function is conveniently chosen to be:

monitoringTF (inv) = (b — ¢)(min(1,a/inv)) + ¢,
illustrated in Figure 3. The parameters a, b, and c are defined as follows:

e ¢ = minimum monitoring investment threshold: The minimum amount of investment required before
there is any reduction on the time interval between monitoring checks;

e b = maximum time interval between monitoring checks: A notional maximum amount of time between
checks — in practice, this can simply be a very large number;

Pr(IT support successful)

a Investment in IT support ($)

Figure 2: The ‘IT Support’ transfer function

e ¢ = minimum time interval between checks: It is assumed that each check must take some amount of time
to complete — thus the time interval between these checks cannot be less than this. Clearly, we require
b>c.

The transfer functions are used to determine the probability that a typical individual will employ encryption,
in the manner intended by the security policy, when using a USB memory stick. Note that we are not in a
position to give an analytic definition of this probability. Rather, this is the point at which we appeal to our
empirical data and the simulations provided by our model (the code is given in Appendix B). A key component
of the model is the individual’s scoring function,

indScore : R* - R,

expressing an individual’s cost—benefit over the following four indicators:

e Successful data transfers (frf) — successful transfer of data is treated as a proxy for an individual’s
productivity;

e Embarrassments (emb) — events which damage the reputation of the individual, such as inability to recall
a password in the presence of a customer;

e Reprimands (ding) — management may reprimand individuals for failing to comply with policy, and
repeated reprimands may lead to serious sanctions;

e Negative experiences with IT Support (nsup) — interactions with IT Support may be unsatisfactory, and
may fail to solve an individual’s problem.

For the present study, we take the scoring function to be given by
indScore(tr f,emb, ding, nsup) = dtSF (trf) + eSF(emb) + dSF(ding) + nsSF(nsup),

where dtSF, eSF, dSF, and nsSF are chosen functions that capture the dependency of the overall score on
the evident components. Note that the scoring functions eSF, dSF, and nsSF are all negative-valued and
decreasing because embarrassments, reprimands, and negative IT Support experiences all have negative impact
on an individual’s assessment of the cost-benefit trade-off of security activities.

Time interval between
monitoring checks (hours)

a Investment in
compliance monitoring (%)

Figure 3: The ‘Compliance Monitoring’ transfer function

As usual, there are many reasonable choices for these functions, and we take simple exemplars. In all
cases, the specific functions used depend on some specific ‘calibration parameters’. Rather than consider these
parameters in detail, we explain here just the general form of the functions.

First, the scoring function for successful data transfers, illustrated in Figure 4, captures the existence of a
limit on the maximum possible reward to the individual, no matter how high his productivity:

b

where a, b > 0 are calibration parameters.
dtSF
a ___
-b .

Successful data transfers

[

.

v

L

Figure 4: Individual scoring function for successful data transfers

Personal embarrassments reduce the individual’s score, so the scoring function eS'F', illustrated in Figure 5,

is negative decreasing; we assume that costs of embarrassments accumulate unboundedly:
eSF(emb) = —a(emb),

where a > 0 is a calibration parameter.

eSSk

Fersonal embarrassments

PR — 3

Figure 5: Individual scoring function for personal embarrassments

Reprimands from management also reduce an individual’s score, and the greater the number of reprimands,
the smaller the effect of subsequent reprimands. The function dSF, illustrated in § 6, has the following form:
b

1),

where a, b > 0 are calibration parameters.

\ A

\ dSF

~ Management reprimands

Figure 6: Individual scoring function for management reprimands

Finally, we consider the function nsSF, illustrated in Figure 7. Here we assume that the user’s response
to his failing to receive adequate support deteriorates as he experiences more such failures. We expect that it
eventually overrides other factors, representing the encryption technology’s becoming unusable and being given
up. We take

nsSF(nsup) = —a(nsup?)

10

with a calibration parameter a > 0.

I nsSF 1

P

g [' Negative support experiences'

Figure 7: Individual scoring function for support failures

The typical individual’s probability of using encryption is now obtained as follows:

e By using the above transfer and scoring functions, the model essentially becomes a function with a num-
ber of input parameters that maps over security investment, then security budget proportions, then proba-
bility of encryption, resulting in an overall numerical score as output. Formally, this is:

model : security-investment — security-budget-proportions —
probability-of-encryption — score

Intuitively, this function represents the typical individual’s score given all these input parameters. We also
assume, however, that the typical individual responds rationally to the organizational environment (as
determined by the security investment and the security budget proportions) by choosing how frequently
he uses encryption, so as to maximize his perceived overall score. This rational maximization of benefit
by the typical individual is therefore the basis for choosing the encryption probability;

e Mathematically speaking, our procedure for computing the probability p of encryption is to take p € [0, 1]
such that p is the (unique) value that maximizes the overall score as a function of security investment and
security budget proportions:

sup{model(sec)(sec—budget)(p) € R|p € [0,1]}

where sec € sec—range and sec—range is a subset of R, representing the range of security investments
to be investigated and where sec—budget ranges over the budgetry splits we could make (e.g., IT support,
etc.) Technically, this function might have several optima as p ranges over [0,1]; that is unlikely since the
transfer and scoring functions are clearly monotonic (and also concave/convex) and we assume that they
are sufficiently smooth for there to be a unique choice maximizing the score;

e This function is expressed in terms of an executable discrete-event model involving stochastically gen-
erated events (see § 5). Therefore, the numerical answers that we obtain are generally approximate. In
effect, the computation we are making involves fixing discrete values for the security investment, the
security budget proportions and then performing a range of experiments ranging over discrete values for
the probability of encryption. Each of these experimental variations are then performed a large number
of times in order to obtain statistically valid outcomes from which we choose the probability value that
maximizes the score. Intuitively, the multiple runs performed for each of the choices taken represents
finding the average score over our typical population (we assume, for now, a homogeneous population).

11

The probability of using encrytion has direct consequences for the utility function that derives from the
model. The calculation of this function is explained in § 6.

5 An Executable Model

The conceptual model described in the previous section is reified using our modelling tool, Demos2k [Dem,
Bir79], which executes discrete event models of systems of resources and processes. Demos2k has a rigor-
ous mathematical semantics [BT93, BT94, BT98, BTOla, BTO1b] based on process algebra [Mil83, Mil89,
PTO06, PT07], which can be understood in both asynchronous and synchronous terms. Our modelling tech-
nique is to deploy the discrete mathematical tools of resource semantics [Pym02, PT06, PT07], process algebra
[Mil89, PT06, PTO7], and probability theory/stochastic processes [Dem, Tof94] in the style of classical applied
mathematics (see [YMPO6] for another example of the approach); that is, we identify levels of abstraction that
are appropriate to the questions of interest, and avoid representing irrelevant detail.

We model the life-history of the composite entity ‘a typical individual together with his current USB stick’
to illustrate how various forms of risk are encountered within a given amount of time. By modelling these
risk encounters explicitly, we can obtain a better quantitative picture of how the risks identified are naturally
distributed. Modelling this composite entity (i.e., the ‘user’) allows us to ignore aspects of an individual’s own
life that do not involve any dealings with the USB stick.

For there to be any risk to confidentiality or availability, we need to introduce some particular sources of
hazard. For this investigation, there are two principal components contributing to the hazards that arise: the
user’s physical location and the categories of people with whom the user intentionally or unintentionally shares
data. For the purposes of this model, we broadly categorize the people we share data with as follows: whether
they are a colleague or business partner who might legitimately share the information (i.e., a ‘Friend’), or
someone who will actively misuse the information gained to somehow harm the organization or the user (i.e. a
‘Foe’), or, finally, someone who appears to the user as a Friend but in actual fact acts like a Foe (i.e., a “Traitor’).
Both of these aspects — location and categories of people we share data with — are explicitly represented in
the model.

The outcome of running the model will be values of various performance indicators gathered as a part of
simulating the life-histories:

e Number of successful data transfers to/from the USB device: This is used as a straightforward proxy for
productivity — we assume that using a USB stick to transfer data has business benefit;

e Total number of exposures: Occasions on which information was transferred to either a Foe or a Traitor;

e Total number of ‘reveals’: A ‘reveal’ is less significant than an exposure and arises when a colleague or
business partner (i.e., a Friend) is given information that they did not have a right to see. Because they are
Friends, they are not expected to use that information to cause harm to the organization or the user. One
way in which this can arise is via ‘accidental archiving’ — information that was unintentionally made
available alongside other information that was intended to be shared.

Various other indicators are also gathered as output from each run; these have already been discussed in § 4.
The model comprises three main concurrent processes: lifeUSB, movement, and measure:

e lifeUSB: This process captures the activities of the ‘individual plus his USB stick’. The user essentially
interacts with different kinds of people in different locations, and indicators are accumulated as a result.
Particular events involving the USB stick, such as add /modify, write, delete, etc., are randomly selected
according to (discrete) probability distributions, conditional upon current location. As a result of these
actions and interactions, we use a combination of time penalties and indicators to capture and account for
the risks encountered.

e Movement: This process concurrently and independently moves the user from location to location, spend-
ing some time in each place. The different locations we use are:

12

Home: The user’s personal home;

Desk: The main place of (solitary) work for the user;

Conf: This is where business meetings with Friends (and, potentially, Traitors) occur;

BizClient: Business meetings/workshops/conferences with business partners or other actors (i.e.,
principally Friends, but with some potential for talking to Traitors and Foes);

InTransit: This represents intermediate locations (e.g., on a plane, in a hotel, in a car) between main
locations.

Each location naturally has its own associated risks and opportunities for interaction. The transitions
between locations follow the graph presented in Figure 8. Note that we assume that the user can move
directly between the workplace locations Desk and Conf without going via the riskier InTransit location.
Future locations for the user are chosen according to a location-dependent probability distribution, as well
as the period of time they spend there;

e Measure: A book-keeping process that samples the various indicators gathered on a regular basis through-
out each run.

Figure 8: Locations and roles

6 The Experimental Space

Now we have our executable model, we can use it to explore how the level of security investment by an organi-
zation is connected to particular levels of availability and confidentiality, as modulated and affected by changes
in typical employee behaviour, vis-a-vis his use of USB memory sticks. The organization’s choices of amount
and balance of security investment affect the usage of encryption on USB sticks by typical employees. This
usage results in levels of information availability and confidentiality loss, which translate into business value
for the organization.

Our experiments, performed using Demos2k [Dem] and its DXM experiment manager [Mon0S], varied the
following numerical instruments:

e Security Investment: This indicates the level of yearly investment per individual in security related cost.
The range we have explored is: 20, 50, 100, 200, 500;

e Budgetary Proportions: Although we have three areas in which to invest — training, IT support and
monitoring — we have specified a fixed value of training, since it is a one-off cost. So we have investigated

13

the trade-off between investment in IT support on the one hand, and monitoring on the other. In practice,
we have choosen to investigate 3 values of support proportion: 0.25, 0.5 and 0.75".

Each of these 15 (3 x 5) sample points represents a particular experimental variation. Following the approach
to obtaining the individual’s probability of using encryption, explained in § 4, within each of these variations
we then need to range over Pr(Enc), the probability of encryption, (from 0.1 to 0.9 in steps of 0.2) and finally
run each of these 300 times to obtain results of some statistical value.

For simplicty of presentation in this paper, we have had to restrict the number of experimental simulations,
and so we have adopted a coarse-grain ‘sampling’ strategy to choose parameters. We plan to conduct a more
thorough and systematic experimental investigation based on empirical evidence to support the form of the
transfer and scoring functions; where that is not possible, we hope to perform a systematic investigation of the
space of parameters. The objective of such an investigation is to provide detailed guidance for conditioning
economic models of the kind we have discussed.

6.1 Exploratory Fit of Additional Calibration Parameters

The transfer and scoring functions given are each dependent upon a number of numerical parameters — at this
stage, it has not been possible to find obvious choices for these parameters — there are no easy and obvious
sources of data, and there are no ‘natural scales’ that we could obviously exploit in order to make considered
and easily justified choices. Further empirical study and experimental work will be necessary to address this
issue.

Instead, we have taken the pragmatic decision to make choices of these parameters that illustrate a range
of behaviour. To do this, we have conducted a series of exploratory (ad hoc) searches through the space of
additional calibration parameters, helping to locate values of these parameters that yield useful observable
output. We cannot claim therefore that this study has given definitive or canonical results. We instead claim that
there is evidence here for examining the connections between these concerns in greater depth.

6.2 Some Confirmation of Expected Behaviour

As investment in monitoring and IT Support increased, we expected to see greater use of encryption; that was
observed.

We expected to see a variation in the effectiveness of that investment as the proportion spent on IT Support
vs. Monitoring was varied. As illustrated by the results below, we did not observe any such effect: the influence
of a given level of investment is roughly the same for different proportions. We expected to be able to see a
gradual increase in the use of encryption as investment increased, but the results show a fairly sharp transition
from probability of encryption of 0.1 to 0.9 between investment values of 100 and 200. (Examining the data in
more detail than shown here emphasizes this effect. The individual’s optimal choice of probability (as computed
from the experimental results) is always at one of the extremes, and never at a middle value.) We also expected
that, above and below certain limits, there would be little extra effect from further increasing or reducing the
investment level; this is not contradicted by the model (it is mildly confirmed).

6.3 Results

In § 4, we described how to extract information about our estimate for Pr(Enc) for a given level of security
investment and budgetary proportions, based upon the individual’s scoring function. Intuitively, this value is the
one that produces the maximum value of this scoring function at that investment level.

The table below gives the value of Pr(Enc), for the budgetary proportion dedicated to IT support vs security
investment:

"'A support proportion of 0.25 means that 1/4 of the total security investment goes towards IT support and the remainder goes towards
monitoring.

14

| [20] 50 [100 [200 [500 |

025 01{01] 01| 09] 09
0.5 0101} 01| 09] 09
075 01{01] 01| 09] 09

This table shows that, for security investment of 100 and below, the user’s best choice is Pr(Enc) = 0.1; that is,
rarely to use encryption. For security investment of 200 and above, the user’s best choice is Pr(Enc) = 0.9; that
is, nearly always to use encryption. (We did not consider Pr(Enc) of 0 or 1 because such utterly consistent user
behaviour is rare.)

Next we tabulate the observed values of the availability measure and of the confidentiality measure over the
15 sample points, with the user’s Pr(Enc) fixed at the corresponding value shown in the table above.

The availability measure is chosen to be the average number of successful data transfers per year carried out
by the user. This is under the assumption that the purpose of the USB stick is to enable the user to transfer data
on behalf of the organization.

1 20 | 50 | 100 | 200 | 500 |
0.25 || 165.0933176 | 164.0433177 | 165.106651 | 161.2066513 | 161.1899847
0.5 || 163.4533178 | 163.5266511 | 165.5766509 | 162.6299845 | 161.453318
0.75 || 164.7299843 | 165.6333176 | 164.2733177 | 1612266513 | 161.6966513

The confidentiality measure we use is a linear combination of the average number of events when confiden-

tial data is exposed and the average amount of confidential data exposed, both per year.

1 20 50 100 200 500
0.25 || 10.02999905 | 8.26666588 | 9.326665779 | 5.85666611 | 6.626666036
0.5 || 8.176665889 | 7.876665917 | 9.123332465 | 6.106666086 | 6.886666012
0.75 || 9.519999094 | 7.966665909 | 8.569999185 | 6.449999386 | 5.486666145

We can observe that there is a substantial change in both the organization’s availability and confidentiality
measures as the user’s probability of using encryption, Pr(Enc), changes from 0.1 to 0.9.

The results are all obtained as averages over 300 independent runs. These values conservatively have a
standard error of less than 10% of the values in the table. Given the number of runs required, it seems that the
standard error could be halved by performing 1200 runs.

All of these results are preliminary. Further, and quite extensive, experimental work will be required to
obtain adequate confidence interval estimates for the numbers quoted above.

6.4 A Utility Function

We have discussed, in § 2, a utility function approach to understanding the trade-offs between availability and
confidentiality. We suggest that the simplest utility function it seems reasonable to postulate is one of the form

U(C,A) = a(A = B0C),

where « and /3 are parameters, which captures a simple ratio between confidentiality and availability.

Below are some tabulations of values for this function for different values of «, (3, based upon the tables
of availability and confidentiality numbers presented above. Exploring parameters of the utility function, il-
lustrated in the tables below, we see that for values of 3 = 10 or 3, as spending on support and monitoring
increases, the gain from increased confidentiality clearly outweighs the consequent loss of availability. 3 = 0.1
results in the loss in availability as spending increases outweighing the gain in confidentiality. Values of /3 in the
region of 1 didn’t give us useful results for utility, because statistical variation in experimental results swamps
the difference between availability and confidentiality components of utility.

15

H 20 \ 50 \ 100 \ 200 \ 500
0.25 || 75.44987339 | 94.76066264 | 83.65550334 119.52117 | 110.5353456
0.5 95.12164829 | 98.70045181 | 86.57055909 | 118.2674243 | 107.814368
0.75 || 80.96557825 | 100.1055786 | 91.49626593 | 112.6352725 | 124.4002981
Figure 9: Utility function for a = 1.164, 8 = 10.000
H 20 \ 50 \ 100 \ 200 \ 500
0.25 || 96.33782579 | 99.36347244 | 97.85302782 | 102.4985371 | 100.8382374
0.5 99.13512178 | 99.82968844 | 98.62371136 | 102.979025 | 100.4695461
0.75 || 97.17035435 | 101.1403263 | 98.87822724 | 101.2426083 | 103.6402906

Figure 10: Utility function for a = 0.714, § = 3.000

7 Conclusions and Directions

We have reported a preliminary study. We have postulated an economic model that is suitable for capturing
the utility of trade-offs between investments against confidentiality and availability in the context of the use of
USB memory sticks in a financial services company. Building on empirically obtained data and on informed
observations concerning policy and technology, we have used a process model to demonstrate that the hypothe-
sized trade-off between confidentiality and availability does indeed exist, so providing evidence for the validity
of the model, and to investigate the behaviour of a simple version of this model, giving good evidence to sup-
port the approach and motivate further study. We have established that individuals make cost-benefit decisions
from their own (economic) perspective; we suggest organizations must understand that when making invetment
decisions.
The following is a brief list of possible research directions:

e Further exploration of our experimental space, with substantial statistical analyses to inform the detailed
formulation of economics models of the kind we have discussed;

e Mathematical and computational studies of the properties of these models;

e An investigation of game-theoretic approaches to the utility of the allocation security investment resources
against competing priorities such as confidentiality and availability;

e More basic empirical studies of the kind we have described; for example, more studies of portable data
storage media, or studies of network access control policies;

e Developments of our process modelling tool better to handle the structure of distributed systems.

The work reported here is the result of a highly interdisciplinary study. Such an approach seems to us to be
necessary to make progress in this area.
8 Acknowledgements
We are grateful to the many members of staff of HP Labs and Merrill Lynch who generously gave their time to

take part in our empirical studies. We also thank Jean Paul Degabriele for his advice on the early stages of this
work.

16

] H 20 \ 50 \ 100 \ 200 \ 500 \
0.25 || 100.9077518 | 100.3704883 | 100.9592029 | 98.77427677 | 98.71667626
0.5 100.013201 | 100.0767461 | 101.2607345 | 99.63418527 | 98.86262497
0.75 || 100.7156816 | 101.3667113 | 100.4932739 | 98.75008864 | 99.09835674
Figure 11: Utility function for o = 0.615, 8 = 0.100
References
[AMO6] R. Anderson and T. Moore. The economics of information security. Science, 314:610—
613, 2006. Extended version available at http://www.cl.cam.ac.uk/~rjald/Papers/
toulouse—-summary.pdf.
[AndO1] R. Anderson. Why information security is hard: An economic perspective. In Proc. 17th Annual
Computer Security Applications Conference, 2001.
[AS99] Anne L. Adams and M. Angela Sasse. Users are not the enemy: Why users compromise security
mechanisms and how to take remedial measures. Communications of the ACM, 42(12):40-46, 1999.
[Bir79] G. Birtwistle. Demos — discrete event modelling on Simula. Macmillan, 1979.
[BT93] G. Birtwistle and C. Tofts. An operational semantics of process-orientated simulation languages:
Part I tDemos. Transactions of the Society for Computer Simulation, 10(4):299-333, 1993.
[BT94] G. Birtwistle and C. Tofts. An operational semantics of process-orientated simulation languages:
Part IT pDemos. Transactions of the Society for Computer Simulation, 11(4):303-336, 1994.
[BT98] G. Birtwistle and C. Tofts. A denotational semantics for a process-based simulation language. ACM
ToMaCsS, 8(3):281 — 305, 1998.
[BTOla] G. Birtwistle and C. Tofts. Getting Demos Models Right — Part I Practice. Simulation Practice and
Theory, 8(6-7):377-393, 2001.
[BTO1b] G. Birtwistle and C. Tofts. Getting Demos Models Right — Part II ... and Theory. Simulation
Practice and Theory, 8(6-7):395-414, 2001.
[Cen] Mathematica Documentation Center. http://reference.wolfram.com/mathematica/guide/mathematica.html.
[CPP0O6] Mark Clatworthy, David Peel, and Peter Pope. Are analysts’ loss functions asymmetric? Technical
Report 005, Lancaster University Management School, 2006.
[Dem] Demos2k. http://www.demos2k.org.
[GLO2] L.A.Gordon and M.P. Loeb. The Economics of Information Security Investment. ACM Transactions
on Information and Systems Security, 5(4):438—457, 2002.
[GLO6] L.A. Gordon and M.P. Loeb. Managing Cybersecurity Resources: A Cost-Benefit Analysis. McGraw
Hill, 2006.
[Mil83] R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science, 25(3):267-310,
1983.
[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
[Mon08] B. Monahan. Dxm: Demos experiments manager. Forthcoming HP Labs Technical Report, 2008.

17

[NP]

[PTO6]

[PTO7]

[Pym02]

[RG&3]

[RMO1]

[RMO3]

[SC90]

[STO4]

[Tay93]

[Tof94]

[Var74]

[WSO01]

[YMPO6]

[Ze186]

R.A. Nobay and D.A. Peel. Optimal Monetary Policy in a Model of Asymmetric Bank Preferences.
London School of Economics, Mimeo.

David Pym and Chris Tofts. A calculus and logic of resources and processes. Formal Aspects
of Computing, 18(4):495-517, 2006. Erratum (with Collinson, M.) Formal Aspects of Computing
(2007) 19: 551-554.

David Pym and Chris Tofts. Systems Modelling via Resources and Processes: Philosophy, Calculus,
Semantics, and Logic. In L. Cardelli, M. Fiore, and G. Winskel, editors, Electronic Notes in Theoret-
ical Computer Science (Computation, Meaning, and Logic: Articles dedicated to Gordon Plotkin),
volume 107, pages 545-587, 2007. Erratum (with Collinson, M.) Formal Aspects of Computing
(2007) 19: 551-554.

DJ. Pym. The Semantics and Proof Theory of the Logic of Bunched Implications, volume 26 of
Applied Logic Series. Kluwer Academic Publishers, 2002. Errata and Remarks maintained at:
http://www.cs.bath.ac.uk/~pym/BI-monograph-errata.pdf.

R.Barro and D. Gordon. A Positive Theory of Monetary Policy in a Natural Rate Model. Journal of
Political Economy, 91:589-610, 1983.

Francisco J. Ruge-Murcia. The inflation bias when the central bank targets the natural rate of
unemployment. Technical Report 2001-22, Département de Sciences Economique, Université de
Montréal, 2001.

Francisco J. Ruge-Murcia. Inflation targeting under asymmetric preferences. Journal of Money,
Credit, and Banking, 35(5), 2003.

Anselm L. Strauss and Juliette M. Corbine. Basics of Qualitative Research: Grounded Theory Pro-
cedures and Techniques. Newbury Park, CA: Sage, 1990.

Office Of Science and Technology. Foresight: Cyber trust and crime prevention project: Executive
summary. 2004.

John B. Taylor. Discretion versus policy rules in practice. Carnegie-Rochester Conference Series on
Public Policy, 39:195-214, 1993.

C. Tofts. Processes with probability, priority and time. Formal Aspects of Computing, 6(5):536-564,
1994.

H. Varian. A bayesian approach to real estate management. In S.E. Feinberg and A. Zellner, editors,
Studies in Bayesian Economics in Honour of L.J. Savage, pages 195-208. North Holland, 1974.

Dirk Weirich and M. Angela Sasse. Pretty good persuasion: A first step towards effective password
security for the real world. In Proceedings of the New Security Paradigms Workshop, Cloudcroft,
NM, September 2001), pages 137-143. ACM Press, 2001.

M. Yearworth, B. Monahan, and D. Pym. Predictive modelling for security operations economics
(extended abstract). In Proc. I3P Workshop on the Economics of Securing the Information Infras-
tructure, 2006. Proceedings at http://wesii.econinfosec.org/workshop/.

A. Zellner. Bayesian prediction and estimation using asymmetric loss functions. Journal of the
American Statistical Association, 81:446-451, 1986.

A Empirical Data

The following data tables represent our empirical results obtained from interview:

18

‘uoner
-np Y} I0J PI[y[nFun SI I[OX
[ensn JIoy) SuluBdW UONBZIU
-e310 oY) UIIIM WOIJ UYe)
10 (039 90UBIBI[O AJLINDJS) UOT)
-BI)SIUTWIPE PUE SISO [RUONIP

“JUOUIIUASAI FuNeaId Jjels Aq
palsem oW Se Ud9s 9q Aewr

(dn-y1e3s) | -pe 3uneard padInosino Iy} $SQUQANDR)Je uo Jurpuadeq
193pnq Juwuren | -1 9q 0) PIdAU SIOJONISUT ‘QuoN | ‘Surureny Aq dn ueye) Qwi], ‘Sururen jyelis
"$Y[SB) QUIINOI
Q10w I19yjo uo sown uorerd "QouRUUTR "SQOTAQP J[IqOW PAJRII0S
-wod Juruayi3ug Arenuslod J10J QUIPJO UAYe) SUIdq SUONR)S | -SB pue YI0MIaU [] Y} SS0Ioe
1500 dn-1re1g | 109fo1d ay) uo pasnooj Jyels 11 "QUON | -Iom 0} onp yIom pAdnisig | 9Iemljos 9y} JO uole[[BISU]

“Jop10 3urssaooid/Iuryewr

JOo uonenSIUIUpPE ‘9IBM "SOSUQDI] pu® dIBM

1500 dn-1e)S | -1JOos JO AB[INO [BIOUBUL] "QUON | -1JOs 3uI[[onuod Jo Iseyaing
“IopI10 urssadoxd/3ur

-Yew JO UOT)RISIUTUIPE ‘QIBM sYons gSN

1500 dn-1e)S | -piey J10J AB[INO [BIOURUL] QuUON | juaroygns Jo aseyoind eniuy

‘uday sowdq

150)) [euoneziue3i()

‘udoy soun(|

}S0)) [enpIAIpu]

uonOy

$1502 dn-jae)§

19

*$JIqeY I3y} ul 93uBYD 0} Jue)
-s1sa1 axe o[doad se w1} J10YS
oy} UI $9SSAMS [euonIppy “Ao1
-jod juaelulns Q10w 0) onp

‘A3o[0ut09) mau Aq paimb

“QUON “QUON] ‘QuoN | seonoeid Supjiom pooIsay | -o1 sjiqey Supyiom ur a3uey)d
peNil ‘pIom
"QUON "QUON ‘QUON | U0 peo[9ARIuS0D paseardu] | -ssed [[eo91 0) JuSWAIINDIY
aAnonpoIdiay
yse} siy) Sundwo) -Unod 2q [[IM ey} uo pards Sur
-je paysem A durs 9q [[im -9q Jo SuI[eej 9)eaId OS[e UL
SOOINOSAI UQY) QATIORJJOUL JT parpuey Aprood ST T T Iom
193pnq | ‘poyewr uo Jurpuadap ‘pels s,99Ko1dwd 1dnisip Aew pasn ‘Korjod
Sunoyiuowr Apreak | poddns 1oy yIom [euonIppy QuoN | poyrowr oy uo Surpuadog | yum oouerdwod FULIOUOA
‘Sururer pue (-919 “ysop djoy ‘so3ed
193 | 1500 JgeIs ysop djoy ‘s qom goM ‘UONBIUSWINOOP) SWSIUE
-pnq 1oddns A[Jeok | jJo QoueudUIBW pUB UONEBAID) "QUON QuoN | -yoow poddns sasn dn unyeg
‘[101ked a3 03 JJels Surppe ‘parreIsur are sojepdn/soyored
JreyIssaoau Aew ‘Jyels yxoddns mau se UuoT)BISIOM "QIBM1JOS
“QUON | L] UO peODIOM PIseaIouf QuoN | 03 uondnisip o1pourad | SuI[ONUOd JO OOUBUUIBIN

‘uday sowdq

150)) [euoneziue3i()

‘udoy soun(|

}S0)) [enpIAIpu]

uonOy

(P3u0d) 3500 dn Jae)g

20

‘T1eo 1od
-dns e se readde pinom ‘yons

‘soohord
-wo Judroyyour Aojduwe 03 uaas

‘peas
Suroq Jons gsn 2yl sjuaraxd

19Indwod s Jul[d
0] Pajoouuod pue 23e10ls 31od

se pajuasaidor Aprordxa JoN | se sso[uoneindol pojLIOYU] | IN[IB] 9IBM)JOS IO dIBMPIRH "9[qQISISeN | -SueI} WOIJ PoAOWIRI S
“JUSWIALQ [839[Jo/pue [BIOURU
‘gSN | -y & opnpour pue Y3y yonw

10J 1500 Juowade[dar 90 Aq | 2q pP[NOd SSO[2y} Pasn JoU sem ‘uon "uorned

punoj Ji amsodxe oqissod
‘(3JoU) SopnJour) JUIAD SSO[

uond£ious J1 -orjqnd opewr st
QInyrey J1 998J JO SSO[[enud0g

JIsuen
UI Iy UD[03S/3S0] YOus gSN

-epodsueny Juiduex
-Ie 1S00 [BIOURUL]

-0[SJuaI[o 01 payiodsuen pue
19)ndwrod woj porowaI gsn

‘sjuedronred
pouLIOJUT $S9] QWS Aq eyep
reoundwa 9y} ur pasrer uIdd
-uo0d ® SI 31 se 219y sreadde Iy
‘[Opow Sowa(] 9y} Ul papn[oul
jou SI JI yons se pue A1
-un AI9A JUSAQ QIN[Iej SIY)
sayew A3o[ouyd9) pue senbru

“197e] uonejuasald ay) Jo oI
-[re} oy Suisned ‘mou papods

‘uorsstwisueny Surmp payd£Aro
-ud SI pue Jons gS 2Yy) 0juo

-o91 uondAIous UIQPOJA | JOU SI JOIIQ Y} Sso[un duoN | -pardAIous Appos1ioour st eleq 9[qI3113aN | Joindwod woiy pardoo st vleq
‘Juowooed ‘1o1nd

-1 JO 1S00 [eIOURUY [[BUIS | -WIOD Y} AQ PIyIIUSPY/pPaloou ‘19nd

“[ons gSN 2y} anssIa1 0} JJeis | -uod Sureq yous gs) siueaaid -Wod 0} PIjoUUOd pue oFe

110ddns 10§ [[80 ® se pajeal], | 1oddns JO jUoUISOAUL QUWIL], | QIN[IBJ IBMIJOS IO dIeMpPIeH 9IqISI[SaN | -103S WOIy uaye) SI Yons SN

‘udayf sowdq

150 danpiey |

JUIAT dan[ieq

1500 pIYdddxy

uonpy

$)S0J [euoneZIUL3I()

21

asn
10J 3509 juowaoe[dar ‘o0 Aq

“JUOWISLQ [B39[Jo/pue [BIOURU
- ® 9pnpour pue IaySiy yonuw
9q PINOd SSO[AY) Pasn JoU sem

‘uon

“uoIIBO0] S,U0n
-ezIuesio 9y) 0} yoeq payod

punoj j1 ainsodxe o[qissod | uondAious jy -orqnd spew sI Jsueny | -euodsuen Juiuer | -suen pue 1ndwod S UL
‘(1JoU) SOpN[OUI) JUSAY SSOT | QIn[IeJ JI 998 JO SSO[[eNU)0d | UI S[IYM U[0IS/ISO[YOS gSN | I8 1S00 [eIOUBUL] | WIOIJ PIAOWNRI SI YOUS gS()
‘10)30dwos ‘(uonpuasaxd oy

‘PUSL]
J1 [BOAQI IOJTRI], © ST ONZea[0d

I0 juerd Ayuomisnnun ue
se yons Ayed papusjurun ue

Jo Adoo e ureja1 01 ysim Aay)
jsonbaxr 1oyy 1@ 1oIndwod

IO JUAI[D JI JUAd dInsodxy | "eiep [enuapyuod Jo arnsodxy | Aq PIssoodr Blep [BIIUSPYUOD) QIqQISISON | SJUSID Qy) uo Y[SI el
‘sookord
(uomoesuer) [nFssad0Ns | -wd Juaroyyour Aojdure 0) usas | passadde Jureq eiep sjueaaid ‘19Indwod s Juard 03 pardod
SS9[QUO OS[e) Juowisselrequyg | se sso] uoneindar pajuoyup | spiomssed Jo ainfrey [[BO9Y QIqI313aN | pue paidArousun st BlRQQ
[-uday] sowd(] 150 danpiey | JUIAT danyrey | 1500 pajoadxy uony |

(P3uU0)) S150) [eUOnRZIUBSI()

22

“sjuedronted
POULIOJUT SSO] SWIOS
Aq ®ep reond
-Wo 9Y) Ul pIsrer
wIouod B ST 1

se o1y sieadde
J Tepow sowd(]
9y} ur popnjour
jou SI JI yons se

pue A[yIun A1oa
JUQAS QInjIej SIy)
soyew A3o[ouyoa)
pue sanbruyo9)
uondAIous uIpOIN

"AOU P3JI)3p 10U ST JOLID
9y} pue peaI 9q jouued BIEp
Y} JT 1500 JuedOYIUIS "9[qe
-peaI [[13S SI BIEp 9} JI SUON

‘pardL1o

-ud Apoamodour st ele(q

‘Areuad oy,

-9ouenedwr
Suneard ‘own 3Juo] ®
e} 0) WIS [[IM SIY)
eiep pardArououn Suriioy
-sueI} 0) pasn SI Iasn JJ
‘paidAIous pue posow
SI elep ouum Ae[_g

"UOISSTW
-sueny Suunp paydAIous st
pue yons gsn 2yi oyuo 1ind
-wod woiy pardod sr ereq

* Qouanradxa 1od
-dns oane3ou, 9Iq
-1ssod y3m 10ddns
I0J [eD ® Se pajeai],

"PapoIa owir) SpIe3aI se
JIOIId JO UISIRN ‘Iosn Qy) O}
POISAI[OP pPUB PUNOJ ST YO1S
qsn pasuoyne-Luedwod
MIU ©B Q[IYM SSAI)S PIIBID
-0sse pue Ae[op jueoyrugig

1o)ndwod ayy
AQq Ppaynuopypaouuod 3ul
-9q Jons gSn suaadxd ain
-[Te] 9IEM)JOS IO QIBMPIEH]

"QUON

"aIempIey MaU
soynuapI pue spuy Jond
-wod J[Iym Ae[Ap [[RWS

‘Tond
-Wwod 0} pajoauuod pue o3e
-10}S WIOIJ Uaye) ST YOS SN

‘uday sowdq

150D danyrey |

JUIAT dIn[ie]

‘uday sowd(|

150D Pajoadxy |

uoyOy

$)S0D [eNpIAIPU]

23

- Qouanradxae o0d
-dns oane3ou, 9[q
-1ssod yim 1oddns

“INJ00 OS[e [[IM AILINO3S
qol 1noqe ssang UL YPIm
Q0BJ JO SSO[puB JUSWISSEI
-TeqUIQ PIIBIOOSSY "9[qIS
-sod 193u0] ou uonejussaid

‘peas Sut
-9q Yous gsn ayl syuaaaxd

"aIempIey Mau
soynuapt pue spuy Jond

‘19)ndwod s Jual[d 0}
parosuuod pue a3eiols jrod

I0J [[e0 ® SB PIJRAI], | SB 1S00 QIN[iej WINWIXEJA | 9IN[IeJ 9IeM1JOs JO oIeMpIe] "QUON] | -WO0O o[IyMm AB[Op [[BWS | -SUBI) WOIJ PaAOWI SN
asn

oedar 01 Ajeuad “INJ00 OS[E [[1M AJ1INJ9s

own ‘Juowedeuew | qol Jnoqe ssonS JUAID YIM

woij Surp juenbos | Q0] JO SSO] pue JUSWISSEI

-uod pue ‘90 AQ | -TeqWId PoJRIdOSSY '9[QqIS ‘uon “UOT}BIO] S JUSI[O

punoj J1 ainsodxe
9[qrssod JuaAd SSO

-sod 193u0] ou uoneiuasaid
Se]SO0 QIn[Ie] WNUWIXBA

“Jisuer) ur
S[IYM ud[01s/ASO] Yous gsn

-BO0[JISUBILU], oY)
Uy3no1y} JUSWIAOIA

"9qI1[SaN

0] pouodsuen pue ond
-WOd WOIJ PaAOWAl gSN

‘Juowdgde
-uew woyj s3urg

‘Juou
-o3euew woty puewndoy

‘yoeaiq Aorjod SI9A09SIP
Suuojiuowr s uoneziuesi

- uond£1o
-ugesnqoid, uon
-ouny ay) Aq poyjon
-U0d SI 2210YD SIY],

"POAES U92q ARY }0JJO
pue QW Se 1Joudq B se
U93S 9q UAQ AeW {QUON

ons gs Y} 0o eyep
pardLiousun sordoo pue Aor
-Tod sa10u31 IO punoIeYIOM
e 10J 51do 19sn A[oAneuId) Y

‘uday sowdq

1500 danjreq

JUIAG] dan[req

‘udoy soun(|

1500 pPIYdAdxy

uondy

(PU0D) §)500 [ENPIAIPU]

24

asn
oedar 01 Ajeuad

Qwn ‘Juoweeurwr
woiy Suip juonbos
-uod pue ‘904 £q
punoj J1 ainsodxo
9[q1ssod JuaAd SSO

‘uonezruesio oY)
urnpim uoneindoar Teuosrod
IOAO UIAOUOD pue juawaoerd
-01 3UDe9s Ul JUAWISIAUL
own) pue $SaI)s RIS [[BWS

“Jisuer) ut
JIyM UD[0Js/ASO] Yons gsN

‘uon
-BO0[JISUBILU], oY)
U301y} JUSWIAOIA

"9[qI31[SoN

"UOT)BIO[S, UOT)
-eZ1Ue3I0 9} 03 yoeq pauod
-suen} pue 1ojndurod s Judrd
WOIJ POAOWAI ST oUs SN

‘(uonoesuen
[NJSS00nS $S3] AUO
OS[e) UONEdO[UO
Surpuadop juour
-SSBITRQUID 9[qQISSOJ

‘[enplalpur oy} 0}
puI A[9SO[O AI0W ST We[q
SE QIn[IeJ AIeM]JOS/aIempIey
uey) 10Jea13 A[qeqoid ‘o[qrs
-sod 103u0] ou uonejussaid
Se]SO0 QIN[Ie] WNUWIIXBJA

"passadoe
3uraq eyep syuaAaaxd spiom
-ssed Jo o} [[BO9Y

‘Ayreuad oy,

“JUAL[O Ay}
0) oNp SSANS PASBAIOUL
asned pue Ae[op 1o3uo]
oI WS [[im ST
uay) ejep poaydArousun
Suraowr 03 pasn ST Jasn
JI "paaow pue paydAIous
-Un S BJep Se AB[op QWOS

19)ndwod s Jualrd 03 pardod
pue padLououn st elRQ

"BIEp [RNUIPLUOD
Jo amsodxyg ‘I0Inodwod 10
JUST[O AY)Iom)snIjun ue se
yons Aured popuojuriun ue £q
Passador BIEp [EIIUSPLUOD)

"2IqI31[SoN

‘(uonyeyuasaid oy
Jo Adoo e ureja1 01 ysim Aayy)
jsonbax 1oy e 19Indwiod
SJUQIO Y} uo 1J9[SI BB

‘uday sowdq

1500 danjreq

JUIAT dan[rey |

‘udoy soun(|

1500 pPIYdAdxy

uondy

(PU0D) §)500 [ENPIAIPU]

25

B The Demos2k Model

(» USB risk study

Model of data transfer between different locations and players
to describe various risks etc.

LIFECYCLE elements of risk model:

Players:
Holder - the USB stick’s "main user".
Friend - legit. colleague of holder.
Traitor - Malicious (internal) agent.
Foe - Malicious (external) agent.
Locations:

HOME - Holders HOME (zero risk of capture by Foe).

DESK - Holders business base (low risk of capture of capture by Foe).
CONF - Business meeting (containing friend only) .

BIZCLIENT - Business meeting - possible capture opportunity.

TRANSIT - intermediate location - hotel and transport
(e.g. car, plane, etc).

2nd itn: BM (based upon JFG verbal comment)

- eliminated "data" - no need to represent data - just use counts.
- eliminated bins for counts everywhere

— changed USB bin into counts for encrypted and decrypted data

Init version - BM

*)

| TIMESCALING CONSTANTS

(x The approach taken here is to:

- Assume a "working day" of 8hrs within which USB relevent events can
happen including all relevent movements of location, such as travelling
to/from business clients or travel to/from home. We don’t model the fact
that travelling to and from home is regular everyday, nor holidays, etc
, etc.

- Choose a negexp distribution of times between USB events having a
highish average time (e.g. around three hours) to capture the fact

that other stuff happens.

*)

cons hrs =1, // time unit = hrs
cons mins = hrs/60;

cons secs = mins/60;

cons msecs = secs/1000;

cons days = 8 % hrs; // days = working time
cons weeks = 7 % days;

cons months = 4 % weeks;

cons years = 365 x days;

cons decades = 10 % years;

26

cons centuries = 100 x years;

cons millenia = 10 % centuries;

//cons measurelnterval = 1 * days; // for closer observation
cons measurelnterval = 1 *x years; // for fast runs

(* |

\ RUNTIME |

| *)

cons runTime = (1 x years) + (lxsecs);

| TIME COSTS & PENALTIES |

// time interval between actions
cons timePasses = negexp (3 * hrs);

// time cost for using encryption/decryption
cons encryption_time_costs = negexp(2 % mins);
cons decryption_time_costs = negexp(2 % mins);

// time taken to replace password
cons password_replacement_time = normal(l = hrs, 5 % mins);

// time taken to find a mislaid USB (chosen to give approx.
// of giving up after 1 day)

cons mislaidTime = negexp(0.4343 * days);

cons mislaidTimeLimit = 1 % days;

// time penalty for replacing a USB
cons USB_replacement_time_penalty = negexp (3 x days);

27

10%

chance

(x I
\ SLOW-CYCLE AND OTHER COSTS |
\ *)

cons cash = 1; // DOLLAR VALUE - 1 cash unit = 1$
cons activeSecurityInvestment = (100 % cash); //PARAMETER TO EXPLORE
cons supportProportion =1/2; //PARAMETER TO EXPLORE
cons trainingBudget = (100 = cash);

cons supportBudget (activeSecurityInvestment x supportProportion);
cons monitoringBudget = activeSecurityInvestment - supportBudget;

// Budgets are done in absolute amounts or amounts per year.
// Simple USB stick with bundled encryption
cons newUSBStick = 100; // This is also used
// when a USB stick is lost
cons softwarelLicence = 0;
cons installationAndMaintenance 0; // Assumed basic enough that the
// users just pick it up and use it
// (or install the software themselves).
cons totalOneOffCosts = newUSBStick
+ softwareLicence
+ installationAndMaintenance;

// Approach: Separate budgets for training, on-going support and
// monitoring for compliance, tracked as experiences of the holder
// but not directly influencing probUseEncryption in the Demos model

// Training and support costs and effectiveness

cons trainingInvestmentThreshold = 50 = cash; // must spend above this on training
// to gain any benefit at all

cons trainingMaxProbNeedSup =0.1; // chance per attempt of needing support
// with no training at all

cons trainingMinProbNeedSup = 0.001; // no matter how much training, there’ll

// always be some need for support

try [trainingBudget > trainingInvestmentThreshold] then {
cons probNeedSupport = (trainingMaxProbNeedSup - trainingMinProbNeedSup)
* (trainingInvestmentThreshold / trainingBudget)
+ trainingMinProbNeedSup;

} etry [] then {
cons probNeedSupport = trainingMaxProbNeedSup;
cons testNeedSupport = binom (1, probNeedSupport);
cons supportInvestmentThreshold = 5 % cash; // Below a minimum spend, no useful support
cons supportMaxEffect =0.9; // No matter what you spend, some support

// calls won’t get dealt with successfully

try [supportBudget > supportInvestmentThreshold] then {
cons probSupportCallSucceeds = supportMaxEffect =
(1 - supportInvestmentThreshold / supportBudget) ;

} etry [] then {
cons probSupportCallSucceeds = 0;
}
cons testSupportCallSucceeds = binom (1, probSupportCallSucceeds);

28

cons negativeSupportFailsTransaction = 1; // Does a negative support experience cause

// the attempted action or transfer to fail?

// Monitoring costs and effectiveness

cons monitorInvestThreshold = 20 % cash; // Below a minimum spend, no monitoring
cons monitorMaxMeanInterval = 1 % years; // Interval between checks at minimum spend
cons monitorMinMeanInterval = 1 % hrs; // Can’t check faster than this

try [monitoringBudget >= monitorInvestThreshold] then {

cons
cons

monitorActive = 1; // there is monitoring
monitorMeanInterval

(monitorMaxMeanInterval — monitorMinMeanInterval)
* (monitorInvestThreshold / monitoringBudget)
+ monitorMinMeanInterval;

cons monitorPolicyInterval = negexp (monitorMeanInterval);
} etry [] then {
cons monitorActive = 0; // no monitoring
cons monitorMinTimeToNextDing = 1 * weeks; // If the holder has got a ding from

// Individual

cons
cons
cons
cons
cons
cons

dtSF_a
dtSF_b
eSF_a
dSF_a
dSF_b
nsSF_a

// management, he can’t get dinged again
// until this interval has passed.

Scoring Function calibration parameters
572.8;

156.6;

1.271;

79.44;

100;

0.01708;

// Utility function parameters - *x* PARAMETERS TO EXPLORE

cons

cons epsilon

alpha

// components

cons
cons
cons
cons

gammal
gammaz
gamma3
gamma4

of confidentiality loss

10; // exposures
1;

0; // reveals

0;

29

(x I
\ EVENTS, COMMANDS and ACTIONS |
\ *)

cons NON_EVENT = -1000; // event of not selecting something to do
cons ev__DO_USB_ACT = 1001; // event of performing a USB stick operation
cons ev__DO_USB_INTERACTION = 1003; // event of interacting with other players
cons ev__LOSE_USB = 1004; // event of losing current USB stick

cons ev__LOSE_PASSWORD = 1005; // event of losing the password

cons ev__ CHANGE_PASSWORD = 1006; // event of changing the password

// type ev = DO_USB_ACT | DO_CHANGE_LOC | DO_USB_INTERACTION
// | LOSE_USB | LOSE_PASSWORD | CHANGE_PASSWORD

(* I
\ ENCRYPTION OPERATION CODES
\ *)

cons opn__DO_NOTHING = 2001; // operation of doing no encryption
cons opn__ENCRYPT_DATA = 2002; // operation of performing encryption
cons opn__DECRYPT_DATA = 2003; // operation of performing decryption

// type opn = DO_NOTHING | ENCRYPT_DATA | DECRYPT_DATA

(x |
\ USB ACTIONS |
\ *)

cons usb_act__ READ_DATA = 3001; // action of reading data from USB stick
cons usb_act__ ADD_DATA = 3002; // action of adding data to USB stick

cons usb_act__ DEL_DATA = 3003; // action of deleting data from USB stick
cons usb_act__ WIPE_DATA = 3004; // action of wiping all data from USB stick

// type usb_act = READ_DATA | ADD_DATA | DEL_DATA | WIPE_DATA

(x I

| LOCATIONS |

| *)

cons loc__HOME = 4001; // holders’ HOME

cons loc__DESK = 4002; // holders’ office DESK (i.e. solitary work)
cons loc__CONF = 4003; // holders’ office MEETINGs

cons loc_ BIZCLIENT = 4004; // holders’ BUSINESS CLIENT

cons loc__ TRANSIT = 4005; // holder in transit

// type loc = HOME | DESK | CONF | BIZCLIENT | TRANSIT

(* |
| PLAYERS / ROLES
\ *)

cons NOONE = -5000; // value representing a non-choice of a player.

cons player__ HOLDER = 5001; // principal player: the holder of the USB stick

cons player_ FRIEND = 5002; // holders colleague: someone to receive data

cons player_ TRAITOR = 5003; // '"insider’ adversary indistinguishable from colleague
cons player__ FOE = 5004; // "external’ adversary

30

// type player = HOLDER | FRIEND | TRAITOR | FOE

| PASSWORDS |
| *)
cons pwd__NO_PASSWORD = 6001;
cons pwd__HAS_PASSWORD = 6002;

// type pwd = NO_PASSWORD | HAS_PASSWORD

// the status of the holders password
var holderPasswordStatus = pwd__HAS_PASSWORD;

31

| MISC. DECISIONS and CHOICES |

// decision of adding new data
cons doAddNewData = binom(1l, 40/100);

// proportion of data added to the USB stick that is confidential -
// NB: whether data is confidential is treated as independent of

// whether the data is encrypted, for now at least

cons propConfidentialWrite = 0.5;

cons testConfidentialWrite = binom(l, propConfidentialWrite);

// proportion of data to delete
cons propDataDeleted = uniform(10/100, 60/100);

// probability of accidental copying unintended material when giving a
// USB stick data to someone

cons probAccidentalArchive = 3/100;

cons testAccidentalArchive = binom(l, probAccidentalArchive);

// probability that exposure happens, given that we have the opportunity to perform exposure,
cons probExposureHappensByFoe = 30/100;

cons testExposureHappensByFoe = binom(l, probExposureHappensByFoe);
cons probExposureHappensByTraitor = 3/100;
cons testExposureHappensByTraitor = binom(l, probExposureHappensByTraitor);

// probability that an exposure is detected by the organization
cons probExposureDetected = 20/100;
cons testExposureDetected = binom(l, probExposureDetected);

// (conditional) probability of FOE discovering/finding/aquiring a lost USB
cons prob_foe_findsUSB [loc__HOME] = 1/100;

cons prob_foe_findsUSB [loc__DESK] = 0;

cons prob_foe_findsUSB [loc__ CONF] = 2/100;
cons prob_foe_findsUSB [loc__ BIZCLIENT] = 5/100;
cons prob_foe_findsUSB [loc__ TRANSIT] = 5/100;

| SIMPLE POLICY FLAGS

cons allow_unencrypted_usage = 1;

cons allow_encrypted_usage =1;

cons allow_unencrypted_write_when_encryption_fails = 0;

cons autoDeletelInForce = 0; // Is there an auto-deletion policy in force

cons autoDeletionPeriod = 2 » weeks; // Check after autoDeletionPeriod (approx.) and
// delete everything older than autoDeletionPeriod

| ENABLE ADVERSE ROLE PLAYERS

// flag to control adverse roles
cons enable_TRAITOR_player =1;
cons enable_FOE_player =1;

32

(x I
\ CHOICES OF ACTIONS and EVENTS (POLICIES) |
\ *)

// probability of using encryption to protect data confidentiality
// Generally we vary this parameter directly in dxm
cons probUseEncryption = 0.5;

// choice of encrypting content when putting new data on the USB
cons chooseToEncryptData =
pud [((1 - probUseEncryption), opn__DO_NOTHING),
(probUseEncryption, opn__ ENCRYPT_DATA)];

// USB actions for holder

cons choiceUSBAction =

pud [((43 / 100), usb_act__ADD_DATA
((55 / 100), usb_act__READ_DATA
((1 / 100)
()

’

)
),
, usb_act__ DEL_DATA),
(1 / 100), usb_act___WIPE_DATA)

:| 4

// Selection of events to happen to holder, conditioned upon location
// Game-theoretically, these are moves by Nature
cons chooseEventForHolder [loc__ HOME] =
pud [((91 / 100), NON_EVENT),
(6 / 100), ev___DO_USB_ACT),

(

(o0 / 1), ev___DO_USB_INTERACTION),
((1 / 100), ev__LOSE_USB),
((2 / 1000), ev__ _LOSE_PASSWORD),
((18 / 1000), NON_EVENT),
((0 / 1), ev__ CHANGE_PASSWORD)

1i

cons chooseEventForHolder [loc_ DESK] =

pud [((95 / 100), ev___DO_USB_ACT),
((0 / 1), ev___DO_USB_INTERACTION),
((1 / 100), ev__LOSE_USB),
((2 / 1000), ev__LOSE_PASSWORD),
((18 / 1000), NON_EVENT),
((1 / 100), ev__CHANGE_PASSWORD),
((1 / 100), NON_EVENT)

17

cons chooseEventForHolder [loc_ CONF] =

pud [((60 / 100), ev___DO_USB_ACT),
(35 / 100), ev__DO_USB_INTERACTION),
(1 / 100), ev__LOSE_USB),

(

(

((2 / 1000), ev__LOSE_PASSWORD),
((18 / 1000), NON_EVENT),
((0 / 100), ev__ CHANGE_PASSWORD),
((2 / 100), NON_EVENT)

cons chooseEventForHolder [loc__ BIZCLIENT] =
pud [((40 / 100), ev___DO_USB_ACT),

((57 / 100), ev__DO_USB_INTERACTION),
((1 7/ 100), ev__LOSE_USB),
((2 / 1000), ev__ LOSE_PASSWORD),
((18 / 1000), NON_EVENT),
((0 / 1), ev___CHANGE_PASSWORD)

33

cons chooseEventForHolder [loc_ TRANSIT] =

pud [((97 / 100), NON_EVENT) // nothing happens to the USB
((0 / 1), ev__DO_USB_ACT),
((0 / 1), ev__DO_USB_INTERACTION),
((1 / 100), ev__LOSE_USB),
((2 / 1000), ev__LOSE_PASSWORD),
((18 / 1000), NON_EVENT),
((0 / 1), ev__CHANGE_PASSWORD)

17

// choosing who to interact with, conditioned by location

cons chooselInteraction [loc_ HOME] =
pud [(1, NOONE), // no-one to interact with
(0, player_ HOLDER),
(0, player_ FRIEND),
(0, player_ TRAITOR),
(0, player__FOE)

17

cons chooseInteraction [loc_ DESK] =
pud [(1, NOONE), // solitary working
(0, player__ HOLDER),
(0, player_ FRIEND),
(0, player_ TRAITOR),
(0, player_ FOE)

17

cons chooseInteraction [loc_ CONF] =
pud [(0, player_ HOLDER ,

(0.05, player_ TRAITOR
(0, player_ FOE
1i

)
(0.95, player_ FRIEND),

)

)

cons chooselInteraction [loc_ BIZCLIENT] =
pud [0, player__ HOLDER),

0.9, player_ FRIEND),

0.1, player_ TRAITOR),

0, player__ FOE)

cons chooselInteraction [loc_ TRANSIT] =
pud [(1, NOONE),
(0, player_ HOLDER),
(0, player_ FRIEND),
(0, player_ TRAITOR),
(0, player_ FOE)

17

// Determining where to go next, conditioned by (current) location

// note: loc__ TRANSIT is naturally a transient location ... and so NOT a destination.
cons chooseDestination [loc_ HOME] =
pud [(0, loc__ HOME ,

(1/3, loc__CONF
(1/3, loc__BIZCLIENT
17

’

)
(1/3, loc__DESK)

)

)

cons chooseDestination [loc_ DESK] =
pud [(1/5, loc_ HOME ,

(2/5, loc__CONF
(2/5, loc__ BIZCLIENT

’

)

(0, loc__DESK),
)
)

34

cons

cons

1;

chooseDestination

:I 4

chooseDestination

[

[

loc__ CONF]

pud [(1/5, loc__HOME),
(2/5, loc__DESK),

(0, loc__CONF),

)

(2/5, loc__BIZCLIENT

loc___BIZCLIENT

pud [(1/5, loc__HOME),
(2/5, loc__DESK),

(2/5, loc__CONF),

)

(0, loc__ BIZCLIENT

17

// Conditional distribution capturing the amount of time

cons
cons
cons
cons
cons

chooseTimeSpentAt
chooseTimeSpentAt
chooseTimeSpentAt
chooseTimeSpentAt
chooseTimeSpentAt

[

[
[
[
[

loc__ HOME]
loc__DESK]
loc__ CONF]

loc___BIZCLIENT]

loc___TRANSIT

]

(2.5 * hrs)
1 x hrs) +

(
(
(1 % hrs) +
(15 * mins)

35

spent at each location.
+ negexp (5 * hrs);
negexp (2 * hrs);
negexp (2 * hrs);
negexp (2 * hrs);

+ negexp (15 * mins);

(x I
\ USB STATE VARIABLES
\ *)

var USB_encrypted_items = 0; // number of encrypted data items

bin (USB_encrypted_list, 0); // encrypted data with times of creation
var USB_unencrypted_items = O0; // number of unencrypted data items

bin (USB_unencrypted_list, 0); // unencrypted data with times of creation
var USB_location = loc__DESK; // where is the holder now?

var timeForAutoDelete = 1; // Is it time to make an auto-deletion check yet?

// Starts as Yes to get the policy going

(> I
\ REWARD / PENALTY and OUTPUT SUMMARY VARIABLES |
[*)

var items_created = 0; // number of items created

var encrypted_created = 0; // number of encrypted items created
var unencrypted_created = 0; // number of unencrypted items created
var successful_transfers = 0; // number of successful interactions
var successful_reads = 0; // number of successful reads

var successful_writes = 0; // number of successful writes

var failed_transfers = 0; // number of failed interactions

var failed_reads = 0; // number of failed reads

var failed_writes = 0; // number of failed writes

var USB_losses = 0; // number of times USB is lost or mislaid
var USB_replacements = 0; // number of USB replacements.

var lost_passwords = 0; // number of lost passwords

var password_changes = 0; // number of changed passwords

Definition: An EXPOSURE is an opportunity for public release of confidential material.
A REVEAL is an opportunity for unintended release of confidential material to a friend.
Opportunities for exposure arises when:-

1. USB stick is lost and then found by a "foe".
2. a "traitor" copies unencrypted confidential info off a USB stick.

Opportunity for a reveal arises when:-—
1. confidential info is accidentally archived to a friend’s PC.
*)

var exposures = 0; // number of times that traitor/foe gets to read USB stick
var data_amount_exposed = 0; // amount of data captured by traitor/foe

var reveals = 0; // number of reveals i.e. accidental archives.

var data_amount_revealed = 0; // amount of data revealed 1i.e. accidental archives.

var confidentiality_loss = 0; // (exposures * data_amount_exposed)

var mean_time_between_exposures = -1; // average time between exposures

var time_of_first_exposure = 0; // DEMOS_TIME of first exposure

var time_of_ last_exposure = 0; // DEMOS_TIME of last exposure

36

var

var

var

var

var

embarrassments

negativeSupportExperiences
dingsFromManagement

individualScore

orgUtility

number of times a read or add action or an interaction
fails when visiting a customer

(USB_location == loc__BIZCLIENT)

number of times the holder needed some form of support
and didn’t get what he needed

number of times the holder is caught by management
violating encryption policy

result of computing individual’s scoring

function on the above values and successful actions

Value of organization’s utility

37

(x I
\ CLASSES: SCORING FUNCTIONS |
\ *)

class doSupportExperience = {
local var neg = 0;
repeat {
getSV (negSupExp, [], true);
neg := 0;
try [testNeedSupport == 1] then {
try [testSupportCallSucceeds == 0] then {
negativeSupportExperiences := negativeSupportExperiences + 1;
neg := 1;
}
etry [] then {}
etry [] then {}

putSV (negSupExp, [negl);
}
}

class monitorPolicyCompliance = {
local var timeNextDingAllowed = DEMOS_TIME; // Initial value to ensure the holder
// can get dinged from the start
try [monitorActive == 1] then {
repeat {
hold (monitorPolicyInterval);

try [USB_unencrypted_items > 0 && DEMOS_TIME > timeNextDingAllowed] then {

dingsFromManagement := dingsFromManagement + 1;
timeNextDingAllowed := DEMOS_TIME + monitorMinTimeToNextDing;
etry [] then {}

}
}

etry [] then {}

}

// results of individual scoring functions

var score_dt = 0;
var score_e = 0;
var score_d = 0;
var score_ns = 0;

’

// Individual Scoring Function

class doIndScore = {

local var trf = 0;

local var score = 0;

local var duration = 0;

repeat {
getSV (indScore, [], true);
duration := DEMOS_TIME / years; // normalize to amount per year
trf := successful_transfers; // simple and consistent
score_dt := dtSF_a * (1 - dtSF_b / (trf/duration + dtSF_b));
score_e := - eSF_a * embarrassments/duration;
score_d := dSF_a % (dSF_b / (dingsFromManagement/duration + dSF_b) - 1);
score_ns := - nsSF_a x (negativeSupportExperiences/duration)

* (negativeSupportExperiences/duration);

score := score_dt + score_e + score_d + score_ns;

putSV (indScore, [score]);

}
}

// individual results
var utility_a = 0;
var utility_c = 0;

38

// Utility function for organization
class doUtility = {

local var u = 0;
local var duration = 0;
repeat {
getSv(utility, [], true);
duration := DEMOS_TIME / years; // normalize to amount per year
utility_a := successful_transfers / duration; // simple and consistent
utility_c := (gammal * exposures + gamma2 x data_amount_exposed +
gamma3 * reveals + gamma4 * data_amount_revealed) / duration;
u := alpha * (utility_a - epsilon * utility_c);

putSv(utility, [ul);

39

(* I
| CLASSES : USB ACTIONS

\ *)
class doUSBadd = {

local var total = 0;
local var enc = 0;
local var neg = 0;
repeat{
getSV (USBadd, [], true);
trace("|> doing USB add data ...");
total := USB_encrypted_items + USB_unencrypted_items;
try [total == 0 || doAddNewData == 1] then {

// choose to add new data onto the USB stick
items_created := items_created + 1;
trace (">> ITEM CREATED");

// 1is encryption permitted/available for use by me?
try [allow_encrypted_usage == 1] then {

enc := chooseToEncryptData;

try [enc == opn__ENCRYPT_DATA] then {
syncV (negSupExp, [], [negl); // encryption involved - possible need for support
try [negativeSupportFailsTransaction == 1 && neg == 1] then {
failed_writes := failed_writes + 1;
try [USB_location == loc_ BIZCLIENT] then {
// not good to fail in front of the client
embarrassments := embarrassments + 1;

}

etry [] then {}

etry [holderPasswordStatus == pwd__HAS_PASSWORD] then {
successful_writes := successful_writes + 1;
encrypted_created := encrypted_created + 1;
syncV (USBencryptedWrite, [], []);

}

etry [] then {
// can’t encrypt material - so failure

// Is unencrypted usage permitted when encryption fails?

try [allow_unencrypted_write_when_encryption_fails == 1] then {
successful_writes := successful_writes + 1; // but it’s still successful,
unencrypted_created := unencrypted_created + 1;
syncV (USBunencryptedWrite, [], [1);
etry [] then {
trace (">> xx%% FAILED *x%x* WRITE");
failed_writes := failed_writes + 1;
try [USB_location == loc_ BIZCLIENT] then {
// not good to fail in front of the client
embarrassments := embarrassments + 1;

etry [] then {}

}

// lack of password detected - so get new password
syncV (PWDchange, [1, [1);

40

I guess

etry [] then {
// chose to write unencrypted
successful_writes := successful_writes + 1;
unencrypted_created := unencrypted_created + 1;
syncV (USBunencryptedWrite, [1, [1);

}
}

etry [] then {
// encryption unavailable
successful_writes := successful_writes + 1;
unencrypted_created := unencrypted_created + 1;

syncV (USBunencryptedwWrite, []1, [1);

}
}

etry [] then {
// Modifying - not creating data

try [allow_encrypted_usage == 1] then {
enc := chooseToEncryptData;

try [USB_unencrypted_items == |

(USB_encrypted_items > 0 && enc == opn__ENCRYPT_DATA)] then {
syncV (negSupExp, [], [negl); // encryption involved - possible need for support
try [negativeSupportFailsTransaction == 1 && neg == 1] then {
failed_writes := failed_writes + 1;
try [USB_location == loc_ BIZCLIENT] then {
// not good to fail in front of the client
embarrassments := embarrassments + 1;
}
etry [] then {}

}

// modifying (existing) encrypted material

etry [holderPasswordStatus == pwd__HAS_PASSWORD] then {
hold (decryption_time_costs); // decrypt content
hold(encryption_time_costs); // reencrypt content

successful_writes := successful_writes + 1;
etry [] then {
// can’t encrypt/decrypt material - so failure
//failed_encryptions := failed_encryptions + 1; // not counted here more

trace (">> *xx* FATILED xx*x ENCRYPTED READ/MODIFY");
failed_writes := failed_writes + 1;
try [USB_location == loc_ BIZCLIENT] then {
// not good to fail in front of the client
embarrassments := embarrassments + 1;

etry [] then {}

// lack of password detected - so get new password
syncV (PWbchange, [], []);

}

etry [] then {
// modifying unencrypted material
// USB_unencrypted_items > 0
successful_writes := successful_writes + 1;
}
}
etry [] then {
// modifying unencrypted material

41

// USB_unencrypted_items > 0 -— since total > 0
successful_writes := successful_writes + 1;

}
}

trace("|> completed USB add data ... ");

putsSv (USBadd, []);

}
}

class doUSBunencryptedWrite = {

repeat{
getSV (USBunencryptedWrite, [], true);
try [allow_unencrypted_usage == 1] then {
try [testConfidentialWrite == 1] then {
USB_unencrypted_items := USB_unencrypted_items + 1;
putVB (USB_unencrypted_list, [DEMOS_TIME]) ;
}
etry [] then {}

trace (">> UNENCRYPTED WRITE");

etry [] then {
trace (">> x%x%x FAILED x*%%x UNENCRYPTED WRITE");

putSV (USBunencryptedWrite, []);

}
}

class doUSBencryptedWrite = {
repeat{
getSV (USBencryptedWrite, [], true);

try [allow_encrypted_usage == 1] then {
try [testConfidentialWrite == 1] then {
USB_encrypted_items := USB_encrypted_items + 1;
putvVB (USB_encrypted_list, [DEMOS_TIME]);
}
etry [] then {}
trace (">> ENCRYPTED WRITE");

hold(encryption_time_costs);

etry [] then {
trace (">> xx%x FAILED xx%x ENCRYPTED WRITE");

}

putSV (USBencryptedWrite, []);

}
}

class doUSBread = {

local var total = 0; // total number of items
local var prob_reading_unencrypted_item = 0; // probability of reading unencrypted item
local var neg = 0;
repeat{
getSV (USBread, [], true);
total := USB_encrypted_items + USB_unencrypted_items;
prob_reading _unencrypted_item := 0;

42

try [total > 0] then {
trace("|> doing USB read data ...");
prob_reading_unencrypted_item := USB_unencrypted_items/total;

// toss coin to determine what we do here
try [binom(l, prob_reading_unencrypted_item) == 1] then {
successful_reads := successful_reads + 1;

etry [] then {
try [USB_encrypted_items > 0] then {
syncV (negSupExp, [], [neg]); // encryption involved - possible need for support
try [negativeSupportFailsTransaction == 1 && neg == 1] then {
failed_reads := failed_reads + 1;
try [USB_location == loc__BIZCLIENT] then {
// not good to fail in front of the client
embarrassments := embarrassments + 1;
}
etry [] then {}
}
etry [holderPasswordStatus == pwd__HAS_PASSWORD] then {
successful_reads := successful_reads + 1;
hold(decryption_time_costs);

}

etry [] then {
failed_reads := failed_reads + 1;
try [USB_location == loc__ BIZCLIENT] then {
// not good to fail in front of the client
embarrassments := embarrassments + 1;
}
etry [] then {}

// read of encrypted material failed due to lack of password
// now get a new password.
syncV (PWDchange, [1, [1);

, }

etry [] then { hold(0); }

}

trace("|> completed USB read ...");

}

etry [] then { hold(0); }

putSVv (USBread, [1);

}
}

bin (temp_bin, 0); // temporary repository for use in doUSBdelete
// gets filled and emptied twice each time through

class doUSBdelete = {
local var who = 0;
local var total 0;
local var remaining =
local var i = 0;
local var selected = 0;
local var t = 0;

0;

repeat{
getSV (USBdelete, [], true);

total := USB_encrypted_items + USB_unencrypted_items;

43

try [total > 0] then {
trace("|> doing USB delete ... ");

remaining := rnd(USB_encrypted_items % (1 - propDataDeleted));

// Randomly select remaining items to keep from USB_encrypted_list

// Is there a nicer way to do this?

i := 0;

selected := 0;

while [getVB (USB_encrypted_list, [t], true)] {

try [binom (1, ((remaining-selected)/ (USB_encrypted_items-i))) == 1] then {

putVB (temp_bin, [t]);
selected := selected + 1;

etry [] then {}
i =1+ 1;
}
do selected {
getVB (temp_bin, [t], true);
putVB (USB_encrypted_list, [t]);

USB_encrypted_items := selected;

remaining := rnd(USB_unencrypted_items x (1 - propDataDeleted));

// Randomly select remaining items to keep from USB_unencrypted_list
// Is there a nicer way to do this?

i := 0;

selected := 0;

while [getVB (USB_unencrypted_list, [t], true)] {

try [binom (1, ((remaining-selected)/ (USB_unencrypted_items—-1i))) == 1] then {

putVB (temp_bin, [t]);
selected := selected + 1;
etry [] then {}
i =1+ 1;
}
do selected {
getVB (temp_bin, [t], true);
putVB (USB_unencrypted_list, [t]);

}

USB_unencrypted_items := selected;
trace("|> doing USB delete ... ");
etry [] then { hold(0); }
putSV (USBdelete, []);

}
}

class doUSBwipe = {

local var who = 0;
local var total = 0;
local var t = 0;
repeat{
getSV (USBwipe, [], true);
total := USB_encrypted_items + USB_unencrypted_items;

try [total > 0] then {

trace("|> doing USB wipe ... ");

44

USB_encrypted_items = 0;
while [getVB (USB_encrypted_list, [t], true)] { // empty out the list

USB_unencrypted_items := 0;
while [getVB (USB_unencrypted_list, [t], true)] { // empty out the list
trace("|> exiting USB wipe ... ");

}

etry [] then { hold(0); }

putSV (USBwipe, [1]);

}
}

45

(* |
| CLASSES : USB LOSS, REPLACEMENT and EXPOSURE |
I *)
// Accidental archive
class doUSBreveal = {

local var now = 0;

local var amount = 0

’

repeat {
getSV (USBreveal, [amount], true);
trace ("|> doing accidental archive of USB ... ");
reveals := reveals + 1;
data_amount_revealed := data_amount_revealed + amount;
trace (">> #%* REVEAL xxxx (loc = %v, amount = %v)", USB_location, amount);
trace (" |> completed accidental archive of USB ... ");
putSV (USBreveal, []);

class doUSBexposure = {
local var now = 0;
local var amount = 0;

repeat {
getSV (USBexposure, [amount], true);

try [amount > 0] then { // only counts as an exposure if amount > 0
trace ("|> doing USB exposure ... ");
now := DEMOS_TIME;
try [exposures == 0] then {
time_of_first_exposure := now;

etry [] then { hold(0); }

exposures := exposures + 1;
data_amount_exposed := data_amount_exposed + amount;
time_of_last_exposure := now;
// If an exposure 1is detected, the holder gets a reprimand from management
try [testExposureDetected == 1] then {
dingsFromManagement := dingsFromManagement + 1;
etry [] then {}
trace("|> completed USB exposure ... ");
etry [] then {}
putSVv (USBexposure, []);

}
}

// Location-indexed probability of foe/customer acquiring USB stick
class doUSBloss = {

local var probUSBfoundByFoe = 0;

local var timeMislaidFor = 0;

repeat{
getSV (USBloss, [], true);

trace("|> doing USB loss ... ");
USB_losses := USB_losses + 1;

46

probUSBfoundByFoe := prob_foe_findsUSB [USB_location];

try [binom(l, probUSBfoundByFoe) == 1] then {
trace (">> xEXPOSURE BY FOEx - USB was lost and then somehow recovered by FOE");
syncV (USBexposure, [USB_unencrypted_items], []);

etry [] then { hold(0); }

timeMislaidFor := mislaidTime;

try [timeMislaidFor < mislaidTimeLimit] then {
// can’t be productive (at least in this way) until it’s found
hold (timeMislaidFor);
}
etry [] then {
// Give up and report it lost
hold (mislaidTimeLimit);
syncV (USBreplace, []1, [1);

}

trace("|> completed USB loss ... ");

putSVv (USBloss, []);

}
}

class doUSBreplace = {
local var t = 0;
repeat{
// This holds for replacement time penalty
getSV (USBreplace, [], true);
trace("|> doing USB replacement ... ");

USB_encrypted_items := 0;
while [getVB (USB_encrypted_list, [t], true)] { // empty out the list

USB_unencrypted_items := 0;
while [getVB (USB_unencrypted_list, [t], true)] { // empty out the list

}

USB_replacements := USB_replacements + 1;
hold (USB_replacement_time_penalty);

trace (" |> completed USB replacement ... ");
putSV (USBreplace, []);

(% |
| CLASSES : PASSWORD ACTIONS

\ *)
class doLosePassword = {

local var t = 0;

repeat{
getSV (PWDlose, [], true);
trace("|> doing password lose ... ");
lost_passwords := lost_passwords + 1;
holderPasswordStatus := pwd__NO_PASSWORD;

hold (password_replacement_time) ;

trace("|> completed password lose ... ");

47

putSV (PWDlose, []);

}
}

// Changing the password does not lose the current encrypted content on USB stick.
class doChangePassword = {

repeat{
getSV (PWDchange, [], true);
trace("|> doing password change ... ");
password_changes := password_changes + 1;
holderPasswordStatus := pwd__HAS_PASSWORD;
trace("|> completed password change ... ");
putSV (PWDchange, []);

48

(x I
| CLASSES : USB LIFECYCLE |
\ *)
class doUSBaction = {

local var act = 0;

repeat {
getSV (USBaction, [act], true);

// dispatch switch/case:

try [act == usb_act__ ADD_DATA] then {
syncV (USBadd, [], [1);

}

etry [act == usb_act__READ_DATA] then {
syncV (USBread, [], []);

}

etry [act == usb_act_ DEL_DATA] then {
syncV (USBdelete, [1, [1);
}

etry [act == usb_act__ WIPE_DATA] then {
syncV (USBwipe, [1, [1);

etry [] then { trace("USBaction : BAD ACTION CODE %v", act); close; } // impossible ?

putSV (USBaction, []);

}
}

class doInteractWithUSB = {
local var action = 0;
local var who = 0;
local var total = 0; // total number of items
local var prob_reading_unencrypted_item = 0; // probability of reading an unencrypted item
local var neg = 0;

repeat{
get3V (USBinteract, [], true);
trace("|> doing USB interaction ... ");

who := chooselnteraction [USB_location];

// 1f no TRAITOR’s or FOE’s enabled, then map to FRIEND

try [who == player_ TRAITOR] then {
try [enable_ TRAITOR player == 0] then { who := player_ FRIEND; }
etry [] then { hold(0); }

}

etry [who == player_ FOE] then {
try [enable FOE_player == 0] then { who := player_ FRIEND; }
etry [] then { hold(0); }

}

etry [] then { hold(0); }

// now process the interaction
try [who <> NOONE] then {

total := USB_encrypted_items + USB_unencrypted_items;
prob_reading_unencrypted_item := 0;

try [total > 0] then {

prob_reading_unencrypted_item := USB_unencrypted_items/total;
try [who == player_ HOLDER] then {
trace ("USBinteract : Holder can’t interact with self!"); close;

49

}

// Here both the FRIEND and TRAITOR cases are taken as being very similar - after
// all the TRAITOR player is supposed to be indistinguishable to the FRIEND - and
// so the accounting should treat them broadly the same way.

etry [who == player_ FRIEND || who == player_ TRAITOR] then {
try [binom(l, prob_reading_unencrypted_item) == 1] then {
// unencrypted case
//successful_reads := successful_reads + 1; // not counted here any more
successful_transfers := successful_transfers + 1;

// if player is actually a TRAITOR
try [who == player_ TRAITOR] then {

try [testExposureHappensByTraitor == 1] then {
// TRAITOR exposes/extracts unencrypted material only from USB stick
trace (">> xEXPOSURE BY TRAITOR*x - read USB");
syncV (USBexposure, [USB_unencrypted_items], []);

}

etry [] then { hold(0); }

}

etry [] then {
// accidental archive of accessable material - i.e. USB_unencrypted_items
try [testAccidentalArchive == 1] then {
syncV (USBreveal, [USB_unencrypted_items], []);
}

etry [] then { hold(0); }

}
}

etry [] then {
syncV (negSupExp, [], [negl); // encryption involved - possible need for support
try [negativeSupportFailsTransaction == 1 && neg == 1] then {
failed_transfers := failed_transfers + 1;
try [USB_location == loc_ BIZCLIENT] then {
// not good to fail in front of the client
embarrassments := embarrassments + 1;
}
etry [] then {}
etry [holderPasswordStatus == pwd__HAS_PASSWORD] then {
// encrypted case
successful_transfers := successful_transfers + 1;

hold (decryption_time_costs);

// if player is actually a TRAITOR
try [who == player_ TRAITOR] then {

try [testExposureHappensByTraitor == 1] then {
// TRAITOR exposes/extracts EVERYTHING on USB stick
trace (">> xEXPOSURE BY TRAITORx - read USB");

syncV (USBexposure, [total]l, []);
etry [] then { hold(0); }
}
etry [] then {
// accidental archive of accessable material - i.e. EVERYTHING!!!
try [testAccidentalArchive == 1] then {
syncV (USBreveal, [totall, []1);

}

50

etry [] then { hold(0); }

}

etry [] then {
failed_transfers := failed_transfers + 1;
try [USB_location == loc__BIZCLIENT] then {
// not good to fail in front of the client
embarrassments := embarrassments + 1;
etry [] then {}

}
}
}
etry [who == player_ FOE] then {
try [testExposureHappensByFoe == 1] then {
// FOE exposes/extracts unencrypted material from USB stick
trace (">> xEXPOSURE BY FOEx - read USB");
syncV (USBexposure, [USB_unencrypted_items], []);
}

etry [] then { hold(0); }

}

etry [] then {
trace ("USBinteract : BAD PLAYER CODE %v", who);
close;

} // impossible 2

}

etry [] then { hold(0); }

}

etry [] then { hold(0); }

trace (" |> completed USB interaction ... ");
putSV (USBinteract, []1);

// Implement auto-deletion of old data from the USB stick
class doUSBautoDelete = {

local var t = 0;

local var threshold = 0;

repeat {
getSV (USBautoDelete, [], true);
timeForAutoDelete := 0;

entity (scheduleAutoDelete, scheduleAutoDelete, autoDeletionPeriod);

// Delete anything created more than autoDeletionPeriod ago;

threshold := DEMOS_TIME - autoDeletionPeriod;

while [getVB (USB_encrypted_list, [t], (t<=threshold))] {
USB_encrypted_items := USB_encrypted_items - 1;

while [getVB (USB_unencrypted_list, [t], (t<=threshold))] {
USB_unencrypted_items := USB_unencrypted_items - 1;
putSV (USBautoDelete, []);

class scheduleAutoDelete = {
timeForAutoDelete := 1;

51

Movement process - this is a genuinely concurrent activity which shows
where USB actions take place. We are not modelling the holder per se -
what we are modelling are the USB relevant actions made on the holder’s
USB stick.
Thus movement simply happens at some stochastic rate, conditioned upon
by the current location. This represents the time spent in a give place
determines when to move on. The current location also influences where
to go next.
Valid patterns of location change:

DESK <-> CONF

DESK <-> TRANSIT <-> BIZCLIENT

CONF <-> TRANSIT <-> BIZCLIENT

HOME <-> TRANSIT <-> DESK

HOME <-> TRANSIT <-> CONF

HOME <-> TRANSIT <-> BIZCLIENT

%)

class movement = {
local var waitingDuration = 0;
local var newDest = USB_location;
repeat {
waitingDuration := chooseTimeSpentAt [USB_location];

hold(waitingDuration); // this represents the time spent in any given location.
trace (" |> Current location is %v", USB_location);

// Are we currently in transit?
try [USB_location <> loc__ _TRANSIT] then {

// starting transition - so choose (non-transit) destination stocastically
newDest := chooseDestination [USB_location];

try [newDest <> USB_location] then {

try [USB_location == loc_ CONF] then {
try [newDest == loc_ DESK] then {
USB_location := newDest;
etry [] then {
USB_location := loc__TRANSIT;

}
}

etry [USB_location == loc_ DESK] then {
try [newDest == loc_ CONF] then {
USB_location := newDest;
etry [] then {
USB_location := loc_ TRANSIT;
etry [] then {
USB_location := loc__TRANSIT;

}

52

}

etry [] then { hold(0); }

}

etry [] then {

// we are currently in transit
USB_location := newDest;

}
}
}

class lifeUsB = {
//local var who =
local var event = 0;
local var action = 0;
local var neg = 0;

player__ HOLDER;

trace("1ifeUSB starts ...");
repeat {

hold (timePasses);

//who := player__ HOLDER;

trace("|> 1ifeUSB (a) : USB_location = %v", USB_location);
event := chooseEventForHolder [USB_location];

trace("|> 1ifeUSB (b) : event = %v", event);

// dispatch switch/case:

try [event == NON_EVENT] then {
// nothing happens
hold(0);
}
etry [event == ev_ DO_USB_ACT] then {
// Apply auto-delete policy
try [autoDeleteInForce == 1 &&
USB_location == loc_ DESK && timeForAutoDelete == 1] then {
syncV (USBautoDelete, [], []);
}
etry [] then {}
action := choiceUSBAction;
syncV (USBaction, [action], []);

}

etry [event == ev__DO_USB_INTERACTION] then {
syncV (USBinteract, [], []);

etry [event == ev_ LOSE_USB] then {
syncV (USBloss, [1, [1);
}

etry [event == ev___LOSE_PASSWORD] then {
syncV (PWDlose, [1, [1);

etry [event == ev__CHANGE_PASSWORD] then {
syncV (negSupExp, [], [negl); // encryption involved - possible need for support
try [negativeSupportFailsTransaction == 1 && neg == 1] then {
hold(0); // We don’t record failed password changes
}
etry [] then {

syncV (PWDchange, [1, [1);

}

53

etry [] then {
trace("1ifeUSB : BAD EVENT CODE %v", event);
close;
} // impossible ?
}
}

54

| MEASUREMENT and ADMIN

var demos_sample_tick = 0;
var DAY = 0;

class measure = {
priority(-1);
repeat {
trace("-———---"""""""""""""""""""" - ———————— ")

trace ("day=%v",

trace ("USB_unencrypted_items=%v",
trace ("USB_encrypted_items=%v",

trace ("successful_transfers=%v",
trace ("successful_writes=%v",
trace ("successful_reads=%v",

trace ("exposures=%v",
trace ("data_amount_exposed=%v",

trace ("reveals=%v",
trace ("data_amount_revealed=%v",

trace ("items_created=%v",
trace ("encrypted_created=%v",
trace ("unencrypted_created=%v",

trace("failed_transfers=%v",
trace("failed_writes=%v",
trace("failed_reads=%v",

trace ("USB_losses=%v",

trace ("USB_replacements=%v",
trace ("lost_passwords=%v",
trace ("password_changes=%v",

trace ("dingsFromManagement=%v",

trace ("negativeSupportExperiences=%v",

trace ("embarrassments=%v",

USB_unencrypted_items) ;
USB_encrypted_items) ;

successful_transfers);
successful_writes);
successful_reads);

exposures) ;
data_amount_exposed) ;

reveals);
data_amount_revealed);

items_created);
encrypted_created) ;
unencrypted_created) ;

failed_transfers);
failed_writes);
failed_reads);

USB_losses) ;
USB_replacements) ;
lost_passwords) ;
password_changes) ;

dingsFromManagement) ;

negativeSupportExperiences) ;

embarrassments) ;

trace ("+Httttttt Attt bbb AT

hold (measurelInterval);

DAY := DAY + measurelnterval/days;

demos_sample_tick := demos_sample_tick + 1;

55

| ENTITIES

entity (doSupportExperience,
entity (monitorPolicyCompliance,
entity (doIndScore,

entity (doUtility,

entity (measure, measure, 0);
entity (USB, 1ifeUSB, 0);
entity (movement, movement, 0);

// sync entities - transactions that happen within the

%)

doSupportExperience,
monitorPolicyCompliance,
doIndScore,

doUtility,

0);
0);
0);
0);

life of the USB

// despatch class helper

jfg - moved here to match
seeding with original version

unencrypted write helper
encrypted write helper

reveals i.e. accidental archive
of USB to other PC

exposure

entity (sync_USBAction, doUSBaction, 0);
entity (sync_USBadd, doUSBadd, 0);
entity (sync_USBread, doUSBread, 0);
entity (sync_USBdelete, doUSBdelete, 0);
entity (sync_USBwipe, doUSBwipe, 0);
entity (sync_InteractWithUSB, doInteractWithUSB, 0)y; //
//
entity (sync_USBunencryptedWrite, doUSBunencryptedWrite, 0); //
entity (sync_USBencryptedWrite, doUSBencryptedWrite, 0); //
entity (sync_USBreveal, doUSBreveal, 0); //
//
entity (sync_USBexposure, doUSBexposure, 0); //
entity (sync_USBloss, doUSBloss, 0);
entity (sync_USBreplace, doUSBreplace, 0);
entity (sync_LosePassword, doLosePassword, 0);
entity (sync_ChangePassword, doChangePassword, 0);
entity (sync_USBautoDelete, doUSBautoDelete, 0);
hold(runTime); // simulation run time
// Final Reckoning!!
confidentiality_loss := exposures * data_amount_exposed;
try [exposures > 1] then {
mean_time_between_exposures :=
(time_of_last_exposure - time_of_ first_exposure) / (exposures - 1);
} etry [] then {

// There are very few exposures - too few to calculate an average for.
// so in this case the average time becomes total maximum amount of time available

mean_time_between_exposures :=

}

trace ("confidentiality_loss=%v",

trace ("mean_time_between_exposures=%v",

runTime;

confidentiality_loss);

(sp?)

// Compute individual score before the last output
local var indSc = 0; // a demos idiosyncracy
syncV (indScore, [], [indSc]);

individualScore := indSc;

trace ("score_dt=%v",

score_dt) ;

56

mean_time_between_exposures) ;

trace ("score_e=5%v", score_e);
trace ("score_d=5%v", score_d) ;
trace ("score_ns=%v", score_ns) ;
trace ("individualScore=%v", individualScore);

// Compute organization’s utility function

local var orgU = 0; // local var because of syncV
syncV (utility, [], [orgUl);

orgUtility := orgU;

trace ("utility_a=sv", utility_a);

trace ("utility_c=%v", utility_c);

trace ("orgUtility=%v", orgUtility);

demos_sample_tick := demos_sample_tick + 1; // get final output

close;

57

sample

