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Motivated by the need for a theoretical study in a planar geometry that can easily be implemented
experimentally, we study the pressure driven Poiseuille flow of a shear banding fluid. After discussing
the “basic states” predicted by a one dimensional calculation that assumes a flat interface between
the bands, we proceed to demonstrate such an interface to be unstable with respect to the growth
of undulations along it. We give results for the growth rate and wavevector of the most unstable
mode that grows initially, as well as for the ultimate flow patterns to which the instability leads. We
discuss the relevance of our predictions to the present state of the experimental literature concerning
interfacial instabilities of shear banded flows, in both conventional rheometers and microfluidic
channels.

PACS numbers: 47.50.+d, 47.20.-k, 36.20.-r.

I. INTRODUCTION

Complex fluids have internal mesoscopic structure that
is readily reorganised by an imposed shear flow. This
reorganisation in turn feeds back on the flow field, re-
sulting in strongly nonlinear constitutive properties. In
some systems this nonlinearity is so pronounced that
the underlying constitutive curve relating shear stress
Txy to shear rate γ̇ in homogeneous flow is predicted
to have a region of negative slope dTxy/dγ̇ < 0 [1, 2].
In this regime, an initially homogeneous flow is unsta-
ble to the formation of coexisting shear bands of differ-
ing local viscosities and internal structuring, with band
normals in the flow-gradient direction y [3]. The signa-
ture of this transition in bulk rheometry is the presence
of characteristic kinks, plateaus and non-monotonicities
in the composite flow curve [4]. Explicit observation
of the bands is made using local rheological techniques
such as flow birefringence [5] and NMR [6, 7], ultra-
sound [8, 9], heterodyne dynamic light scattering [9, 10]
or particle image [11] velocimetry. Using these meth-
ods, the existence of shear banding has been firmly es-
tablished in a wide range of complex fluids, including
wormlike [4, 5, 6, 12, 13, 14, 15, 16, 17, 18, 19] and
lamellar [20, 21, 22, 23, 24, 25] surfactants; side-chain liq-
uid crystalline polymers [26]; viral suspensions [27, 28];
telechelic polymers [29]; soft glasses [30, 31, 32]; polymer
solutions [33]; and colloidal suspensions [34].

Beyond the basic observation of shear banding, ex-
periments with enhanced spatial and temporal resolu-
tion have more recently revealed the presence of complex
spatio-temporal patterns and dynamics in many shear
banded flows [8, 24, 25, 33, 35, 36, 37, 38, 39, 40, 41, 42,
43, 44, 45, 46, 47, 48, 49]. In many such cases, the bulk
stress response of the system to a steady imposed shear
rate (or vice versa) is intrinsically unsteady, showing ei-
ther temporal oscillations or erratic fluctuations about
the average (flow curve) value. Local rheological mea-

surements reveal such signals commonly to be associated
with a complicated behaviour of the interface between
the bands [8, 24, 33, 35, 36, 39, 41, 42, 43, 47, 48, 49].
The majority of these measurements have been in one
spatial dimension (1D), normal to the interface between
the bands. However 2D observations in Refs. [47, 48]
explicitly revealed the presence of undulations along the
interface, in a boundary driven curved Couette flow, ac-
companied by Taylor-like vortices [49]. The undulations
were shown to be either static or dynamic, according to
the imposed flow parameters.

Theoretically, instability of an initially flat interface
between shear bands was predicted in boundary driven
planar Couette flow in Refs. [50, 51, 52]. In this
work, separate 2D studies in the flow/flow-gradient (x-
y) [50, 51] and flow-gradient/vorticity (y-z) [52] planes
revealed instability with respect to undulations along the
interface with wavevector in the flow and vorticity direc-
tions respectively. In both cases the mechanism for insta-
bility was suggested to be a jump in normal stress across
the interface [53].

While these predictions provide a good starting point,
there remains the possibility that the interfacial undula-
tions observed in Refs. [47, 48, 49] originate instead in
curvature driven effects such as a bulk viscoelastic insta-
bility of the Taylor Couette [54] type in the high shear
band, as discussed in Ref. [49]. These were neglected in
the planar calculations of Refs. [50, 51, 52] (Other pos-
sibilities, also neglected, include free surface instabilities
at the open rheometer edges; and an erratic stick-slip
motion at the solid walls of the flow cell. We shall not
consider these further in what follows here either.)

In principle, therefore, either (or both) of (at least) two
possible mechanisms could underlie the observed interfa-
cial undulations: (i) a bulk viscoelastic Taylor Couette
like instability of the strongly sheared band, or (ii) in-
stability of the interface between the bands, driven by
the normal stress jump across it. Of these, scenario (i)
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FIG. 1: Left) Dotted line: homogeneous constitutive curve
for a = 0.3, η = 0.05. Thick solid line: composite flow curve
for one-dimensional planar shear banded Couette flow (data
already published in Ref. [50]). Selected stress Tsel = 0.506.
Thin solid line: parametric plot of local shear stress Txy(y) =
Σxy(y) + ηγ̇(y) = G( 1

2
− y) against local shear rate γ̇(y) for

one-dimensional planar shear banded Poiseuille flow with l =
0.00125, G = 2.0.
Right) Halved pressure gradient versus total throughput for
one-dimensional planar Poiseuille flow with a = 0.3, η = 0.05,
l = 0.0025. This shows a kink at the onset of banding at
G/2 = Tsel as expected.

can only arise in a curved geometry. Experiments in pla-
nar shear could therefore in principle help discriminate
between these scenarios, by eliminating the curvature re-
quired for (ii). However they are technically difficult to
implement in a boundary driven setup.

There thus exists a clear need for theoretical predic-
tions in a planar flow geometry that could easily be im-
plemented experimentally. An obvious candidate com-
prises pressure driven flow in a rectilinear microchan-
nel of rectangular cross section with a high aspect ratio
Lz/Ly ≫ 1. Indeed, such experiments have recently been
performed [55, 56, 57], as discussed in more detail below.
With this motivation in mind, in this paper we study
the planar Poiseuille flow of a shear banding fluid driven
along the main flow direction x by a constant pressure
drop ∂xP = −G. For simplicity we assume the fluid to
be sandwiched between stationary infinite parallel plates
at y = {0, Ly}, neglecting the lateral walls in the z direc-
tion, and so taking the limit Lz/Ly → ∞ at the outset.
Our main contribution will be to show an interface be-
tween shear bands to be unstable in this pressure driven
geometry, as it is in the boundary driven planar Couette
flow studied previously [50, 51, 52]. We will furthermore
give results for the growth rate and wavevector associ-
ated with the early stage kinetics of this instability, as

well as the ultimate flow patterns to which it leads.

The paper is structured as follows. After introducing
the rheological model and boundary conditions in Sec. II,
we calculate in Sec. III the one-dimensional (1D) shear
banded states that are predicted when spatial variations
are permitted only in the flow gradient direction y, arti-
ficially assuming translational invariance in x and z, and
accordingly assuming a flat interface between the bands.
These form the “basic states” and initial conditions to be
used in the stability calculations of the rest of the paper.

In Sec. IV we study the linear stability of these 1D
basic states with respect to small amplitude perturba-
tions with wavevector qxx̂ in the flow direction. As in
the case of boundary driven flow studied previously, we
find an undulatory instability of the interface between
the bands [50, 51, 52]. Results are then presented for the
ultimate nonlinear dynamical attractor in this x-y plane,
from simulations that adopt periodic boundaries in x.
This exhibits interfacial undulations of finite amplitude
that convect along the flow direction at a constant speed.
In Sec. V we turn instead to the flow-gradient/vorticity
plane y-z, likewise demonstrating linear instability of the
interface with respect to small amplitude perturbations
with wavevector qzẑ. We also give results for the ulti-
mate nonlinear flow state, which in this plane is steady.
Directions for future work, which will include full 3D cal-
culations, are discussed in Sec. VI.

II. MODEL AND GEOMETRY

The generalised Navier–Stokes equation for a viscoelas-
tic material in a Newtonian solvent of viscosity η and
density ρ is

ρ(∂t + v.∇)v = ∇.(T − P I) = ∇.(Σ + 2ηD− P I), (1)

where v(r, t) is the velocity field and D is the symmet-
ric part of the velocity gradient tensor, (∇v)αβ ≡ ∂αvβ .
Throughout we will assume zero Reynolds’ number ρ = 0.
The pressure field P (r, t) is determined by enforcing in-
compressibility,

∇ · v = 0. (2)

The quantity Σ(r, t) in Eqn. 1 is the extra stress con-
tributed to the total stress T(r, t) by the viscoelas-
tic component. We assume this to obey the diffusive
Johnson-Segalman (DJS) model [58, 59]

(∂t + v · ∇)Σ = a(D ·Σ + Σ · D) + (Σ · Ω + Ω ·Σ) + 2G0D−
Σ

τ
+

ℓ2

τ
∇2

Σ. (3)

Here a is a slip parameter, G0 is a plateau modulus, τ
is the viscoelastic relaxation time, and Ω is the antisym-

metric part of the velocity gradient tensor. The diffusive
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term ∇2
Σ is needed to correctly capture the structure

of the interface between the shear bands, with a slightly
diffusive interfacial thickness O(l), and to ensure unique
selection of the shear stress at which banding occurs [60].

Within this model we study flow between infinite flat
parallel plates at y = {0, Ly}. The fluid is driven in
the positive x direction by a constant pressure gradient
∂xp = −G, the plates being held stationary. At the
plates we assume conditions of zero flux normal to the

wall ~̂n.∇Σαβ = 0 ∀ α, β for the viscoelastic stress (al-
though other choices are possible [61]), with no slip and
no permeation for the fluid velocity. Throughout we use
units in which G0 = 1, τ = 1 and Ly = 1. Unless other-
wise stated we use a (dimensionless) value η = 0.05, sug-
gested by the experiments of Refs. [55]. We take a = 0.3,
although our results are quite robust with respect to vari-
ations in this quantity. An order of magnitude estimate
suggests l = O(10−3) [62].

III. ONE-DIMENSIONAL BASIC STATE

In this section we discuss the flow curves and shear
banded states predicted by 1D calculations that allow
spatial variations only in the flow-gradient direction y,
assuming (often artificially) translational invariance in
the flow direction x and vorticity direction z. As a warm-
up discussion to the case of planar Poiseuille flow (PPF)
that forms the primary interest of this paper, we review
first the more familiar case of planar Couette flow (PCF).

In steady 1D PCF, the shear stress Txy is uniform
across the flow cell. This follows trivially from solving
Eqn. 1 in this geometry. Within the (often artificial)
assumption of a similarly homogeneous shear rate field,

corresponding to a velocity field v = γ̇y~̂x, the consti-
tutive relation is then given by Txy(γ̇) = Σxy(γ̇) + ηγ̇,
where Σxy(γ̇) follows as the xy component of the solu-
tion of Eqn. 3 obtained by assuming stationarity in time
and homogeneity in space. See the dotted line in Fig. 1
(left). For an applied shear rate in the region of nega-
tive slope dTxy/dγ̇ < 0, homogeneous flow is predicted
to be linearly unstable with respect to the formation of
shear bands. The steady state composite flow curve is
then shown by the thick solid line in the same figure.
For shear stresses Txy < Tsel (resp. Txy > Tsel), where
the selected stress Tsel = 0.506 for the particular choice
of parameters in Fig. 1, the system shows homogeneous
flow on the low shear (resp. high shear) branch of the
constitutive curve. Applying a value of the shear rate γ̇
in the window between these branches, we obtain shear
bands that coexist at the selected stress Txy = Tsel.

In steady 1D PPF driven by a pressure drop ∂xP =
−G, Eqn. 1 dictates the shear stress to be linear across
the flow cell: Txy = −G(y − 1

2
). Well away from any

interfaces (the almost vertical regions in Fig. 2, right) the
value of the shear rate γ̇ then follows as the lower (resp.
upper) solution branch of the same relation Txy(γ̇) =
Σxy(γ̇)+ηγ̇ discussed above for PCF, in the regions where
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FIG. 2: Left) Velocity profiles in one-dimensional planar
shear banded Poiseuille flow for a = 0.3, η = 0.05, l = 0.0025.
Increased throughputs correspond to increased applied pres-
sure gradients G = 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0.
Right) Corresponding shear rate profiles, which follow as the
spatial derivative of the velocity profiles.

|Txy| < Tsel (resp. |Txy| > Tsel). This leads to the steady
flow states shown in Fig. 2, which are shear banded for
all values of the applied pressure drop G > 2Tsel shown.
In bulk rheology, the signature of the transition to shear
banded flow is the pronounced kink seen in the composite
flow curve of Fig. 1 (right).

The 1D shear banded flows discussed in this section
will form the basic states and initial conditions for the
stability studies of the rest of the paper. In Sec. IV
we will consider 2D flow in the x-y plane, with periodic
boundaries in the flow direction x, and assuming transla-
tional invariance in z. In Sec. V we will turn to 2D flow
in the y-z plane, with periodic boundaries in the vorticity
direction z, and assuming translational invariance in x.

IV. FLOW, FLOW-GRADIENT PLANE

In this section we relax the assumption of transla-
tional invariance in the flow direction x and perform
a two-dimensional study in the flow/flow-gradient (x-
y) plane. As before we consider flow between closed
walls at y = {0, Ly}, driven by a constant pressure drop
∂xp = −G. The boundaries in x are taken to be periodic.
For simplicity, translational invariance is still assumed in
the vorticity direction z.

Our study comprises two parts. In Sec. IV A we study
the linear stability of the 1D shear banded basic states of
Fig. 2 with respect to perturbations that have infinitesi-
mal amplitude and a wavevector qxx̂ in the flow direction.
We will show these basic states to be linearly unstable to
such perturbations in most regimes. An initial condi-
tion comprising shear banded flow with a flat interface is
thereby predicted to evolve towards a 2D state that has
modulations along the interface, via the growth of these
perturbations. In Sec. IVB we study the model’s full
nonlinear dynamics in this x-y plane, giving results for
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FIG. 3: Top) Dispersion relation of growth rate ω versus
wavevector qx during the initial stage of 2D instability, start-
ing with a 1D shear banded planar Poiseuille basic state.
In each case a = 0.3, η = 0.05, G = 4.0. Circles: ex-
tracted from early time dynamics of the full nonlinear code.
Groups of data upward correspond to l = 0.02, 0.015, 0.01,
0.005. Within each group, data are shown for (Dt, Nx, Ny) =
(0.000025, 200, 400), (0.0000125, 200, 400), (0.000025, 400,
800). These are mostly indistinguishable, demonstrating
convergence with respect to grid and timestep. Dashed
lines: cubic splines through the data for (Dt, Nx, Ny) =
(0.000025, 200, 400), as a guide to the eye. Lx = 4.0 in each
case. Solid line: results of analytical calculation in the true
limit l → 0. Crosses: extrapolation of the l 6= 0 results to
l = 0 using the scaling ω(qx, l) = ω(qx, l = 0) − a(qx)l.
Bottom) Growth rate (left) and wavevector (right) at the
peak of dispersion relations as a function of the pressure drop
G, calculated analytically in the limit l → 0.

the ultimate 2D flow state that is attained once these
modulations have grown to, and (as we shall demon-
strate) saturated at, a finite amplitude.

Before presenting our results we discuss briefly our nu-
merical method. In previous work the full nonlinear dy-
namics of the DJS model in boundary driven PCF were
simulated by SMF in the flow/flow-gradient plane [63],
assuming translational invariance in the vorticity direc-
tion. During the course of that study, the code was
carefully checked against an earlier calculation of the
linear stability of an interface between shear bands in

FIG. 4: Greyscale snapshots of the order parameter Σxx(x, y)
at a representative time t = 60.0 on the ultimate nonlinear
attractor for a = 0.3, η = 0.05, l = 0.005 for Lx = 4.0 and
G = 2.0, 4.0, 6.0, 8.0 (top four subfigures downwards) with
Dt = 0.000025, Nx = 200, Ny = 400. Bottom subfigure is for
G = 4.0 with a longer cell Lx = 6.0 (so Nx = 300).

PCF [50, 51], providing a stringent check that the non-
linear code was working correctly. A straightforward two-
line modification adapts that code to the pressure driven
PPF of interest here.

A. Linear stability analysis

In each run of this modified code we start with an ini-
tial condition comprising a 1D banded state of Sec. III,
corresponding to shear banded flow with a flat interface
between the bands. To this state we add 2D pertur-
bations of tiny amplitude. By monitoring, in this fully
nonlinear code, the early-time growth of the Fourier com-
ponents exp(iqxx) exp(ωt) of the perturbation, we can
extract the dispersion relation ω(qx) that characterises
the linear instability of the 1D basic state. These nu-
merical results for this dispersion relation are shown by
dashed lines in Fig. 3 (top), for different values of the
interfacial thickness l. As can be seen, at any fixed value
of qx the growth rate shows a linear dependence on l:
ω∗(l, qx) = ω∗(l = 0, qx) − a(qx)l where the intercept
ω∗(l = 0, qx) plotted versus qx accordingly forms the
dispersion relation extrapolated to l = 0, shown by the
crosses in Fig. 3 (top). The value l = 0 cannot be ac-
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FIG. 5: Top) Snapshot of interface height h(x) for a = 0.3,
η = 0.05, l = 0.005, Lx = 4.0 and G = 2.0 at six times
equally spaced by ∆t = 0.05265. Dt = 0.000025, Nx = 200,
Ny = 400. Inset: the same data plotted versus transformed
coordinate x − ct revealing simple convective motion with a
constant wavespeed c.
Bottom) Diamonds: wavespeed c versus pressure drop G,
obtained by performing the transformation shown in Fig. 5.
a = 0.3, η = 0.05, l = 0.005, Lx = 4.0 for runs with Dt =
0.000025, Nx = 200, Ny = 400. Circles: fluid velocity vx at
interface, taken from the 1D banded profiles of Fig. 2.

cessed in this full nonlinear code, because this limit is
pathological in shear banding fluids. However, analytical
linear stability calculations can nonetheless still be per-
formed in this limit [51]. The solid line in Fig. 3 (top)
accordingly shows the results of a truly linear analytical
stability calculation, performed by HJW in the true limit
l → 0. As can be seen, this indeed agrees well with the
extrapolation of the numerical results to l = 0. Because
the l 6= 0 and l = 0 calculations were performed indepen-
dently by the two authors, and using different methods,
this provides a good cross check between both sets of
results.

Because of the linear nature of this stability system,
any eigenvector can be separated into sinuous and vari-
cose contributions, in which the perturbation to the flow
field across the channel is odd (snake-like) and even
(sausage-like) respectively. Each of these is an eigen-
vector in its own right. In the l = 0 calculations, this
separation is carried out explicitly. We find that the sin-

uous (snakelike) modes are always more unstable than
varicose ones. Because our interest is in the most un-
stable mode, the l = 0 results presented here are all for
sinuous perturbations. (In our runs of the full code for
l 6= 0, we do not impose any such symmetry a priori.
Instead, it emerges naturally from the full system.)

The location of the peak in the dispersion relation is
shown as a function of pressure drop G in Fig. 3 (bot-
tom), for the l = 0 calculation. As can be seen, for
values of G well within the banding regime the growth
rate ω = O(1), comparable to the linear viscoelastic re-
laxation time, and the wavelength λx = 2π/qx = O(2),
comparable to twice the gap width. This is consistent
with the presence of secondary velocity rolls [48, 49] of a
wavelength comparable to the gap width, and also con-
sistent with the dominant wavelength seen in our non-
linear results discussed in Fig. 4 below. (Such velocity
rolls will be shown explicitly in our corresponding study
of the flow-gradient/vorticity plane in Fig. 7 below.) As
the applied shear rate approaches the low shear branch
from above, and the width of the high shear bands ac-
cordingly tends to zero, the growth rate and wavelength
of the most unstable perturbations also tend to zero.

For a small range of pressure drops 1.20 < G < 1.52,
two peaks are evident in the dispersion relation (not
shown). For G ≤ 1.3 the peak with the larger value of qx

is the more unstable, with crossover to dominance of the
lower qz peak for G ≥ 1.32. This causes a “kink” in the
plot of ω∗ against G at G ≈ 1.3, only just discernible in
Fig. 3.

B. Ultimate nonlinear dynamics

At long times the instability described above saturates
at the level of finite amplitude undulations along the in-
terface. Representative greyscale snapshots of the sys-
tem’s eventual state are shown in Fig. 4. As can seen in
Fig. 5 (top), the interfacial undulations convect along the
positive x direction with constant speed. This speed is
plotted as a function of pressure drop in Fig. 5 (bottom),
and is comparable, but not exactly equal, to the value of
the fluid velocity at the interface. As noted above, our
l 6= 0 code does not impose any sinuous/varicose symme-
try. Indeed, the ultimate nonlinear attractor can be seen
in Fig. 4 to be dominated by a mode that is neither fully
sinuous not fully varicose.

V. FLOW-GRADIENT, VORTICITY PLANE

In this section we turn attention to the flow-
gradient/vorticity (y-z) plane, now assuming transla-
tional invariance in the flow direction x. As usual we
assume closed walls in y, and (for simplicity) periodic
boundaries in z. We will return in the conclusion to dis-
cuss briefly the implications of having focused only on
2D studies in this paper.
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FIG. 6: Top) Dispersion relation of growth rate ω versus
wavevector qz during the initial stage of 2D instability, start-
ing with a 1D shear banded planar Poiseuille basic state. In
each case a = 0.3, η = 0.05, G = 4.0. Thin solid lines: calcu-
lated by linear stability analysis using the method of Ref. [52],
with lines upward corresponding to l = 0.0035, 0.003, 0.0025,
0.002, 0.0015. Thick solid lines: extrapolation of the l 6= 0
results shown by each of the thin solid lines to l = 0 using the
scaling ω(qx, l) = ω(qx, l = 0)−a(qx)l. Indistinguishability of
the thick lines demonstrates the validity of this scaling. Cir-
cles: extracted from early time dynamics of the full nonlinear
code for l = 0.0035.
Bottom) Growth rate (left) and wavevector (right) at the
peak of dispersion relation as a function of the pressure drop
G for l = 0.003, 0.0025, 0.002, 0.0015 (sets upwards in left
hand figure).

A. Linear stability analysis

We consider first the linear stability properties of the
1D basic states of Fig. 2 with respect to fluctuations with
wavevector in the vorticity direction, exp(iqzz + ωt). To
do so we perform a truly linear calculation, calculating
the eigenmodes of the stability matrix that is obtained
by linearising the full nonlinear equations about the basic
state. This linearisation problem was in fact studied pre-
viously in the flow-gradient/vorticity plane in the context
of planar Couette flow in Ref. [52]. The same linearised
code can be used here, simply inserting the new pres-
sure driven basic state as an input to the elements of the
matrix.

The resulting dispersion relations ω(qz) are shown in
Fig. 6 (top). As is evident, at each value of qz the growth
rate increases linearly with decreasing values of the inter-
facial width l, allowing us to extrapolate to the case l = 0
(thick line in Fig. 6, top), as in the case of the x-y plane
above. The location ω∗, k∗ of the peak in the dispersion
relations is plotted as a function of the pressure drop G
in Fig. 6, bottom. As can be seen, for large values of the
interfacial width l the instability is absent (all ω∗ < 0).
For intermediate values of l there is a window in G be-
tween the onset of shear banding and the onset of this
interfacial instability. The size of this window decreases
with decreasing l, and we believe would extrapolate to
zero as l → 0, such that all shear banded states are lin-
early unstable in the limit of a thin interface.

These truly linear results were checked for consistency
against the linearised dynamics of a fully nonlinear code,
which directly simulates the full 2D dynamics of the
model in the yz plane. (The main use of this code is
to generate the results in the next subsection.) In each
run of this nonlinear code we used as an initial condi-
tion the 1D basic state of Fig. 2, subject to small 2D
fluctuations in the y-z plane. By monitoring the early-
time growth of the Fourier components exp(iqzz) exp(ωt)
we extracted the dispersion relation ω(qz) for the linear
(in)stability of the 1D basic state. As shown by the circles
in Fig. 6, good agreement is found with the true linear
stability calculation described in the previous paragraph.
This provides a stringent cross check between our linear
stability calculation and our nonlinear code.

B. Ultimate nonlinear attractor

In previous work we simulated the full nonlinear dy-
namics of the DJS model in 2D plane Couette flow in the
flow-gradient/ vorticity (y-z) plane [52], assuming trans-
lational invariance in the flow direction x. A straightfor-
ward two-line modification allows this code to be adapted
to the case of pressure driven flow of interest here. As de-
scribed in the previous section, we performed a series of
runs of this code starting with a 1D basic state, subject
to small 2D perturbations. We consider in this section
the ultimate state that the system attains at long times.
In each case, the instability was found to saturate in a
steady state with finite amplitude undulations along the
interface (Fig. 7, top). Such undulations have recently
been imaged experimentally in the pressure driven flow
of wormlike micelles in microchannels of high aspect ra-
tio [57]. Associated with these undulations is a secondary
flow comprising the velocity rolls shown in the second
subfigure (Fig. 7, bottom).

VI. SUMMARY AND OUTLOOK

In this work, we have studied the pressure driven pla-
nar Poiseuille flow of a shear banding fluid sandwiched
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FIG. 7: Order parameter Σxx(y, z) greyscale (top) and veloc-
ity map showing secondary flow in y-z plane (bottom): snap-
shot at time t = 1895 in steady state for a = 0.3, η = 0.05,
l = 0.0015 for Lx = 4.0 and G = 2.0 with Dt = 0.05,
Nz = 1000, Ny = 1066.

between infinite stationary flat parallel plates. Using a
combination of linear stability analysis and direct numer-
ical simulation, we have shown an initially flat interface
between shear bands to be unstable with respect to the
growth of undulations along it. The early time growth
rate of these undulations scales as the reciprocal stress
relaxation time of the fluid, and the corresponding wave-
length is comparable to the separation of the plates. At
long times the undulations saturate in a finite amplitude,
cutoff by the nonlinear effects of shear.

Throughout our study we have neglected any in-flow
and out-flow effects at the start and end of the channel,
assuming a well established flow field that is free from
end effects. Associated with this is our assumption that
the spatial limits relevant to this established flow field
correspond to the temporal limit t → ∞ in each run
of our code. We have furthermore neglected the effect
of any lateral walls in the z direction, taking from the
outset the limit Lz/Ly → ∞. In practice one might ex-
pect lateral walls to impose a further loss of translational
symmetry in the z direction, as explored in Ref. [57].
Perhaps most importantly, in conducting separate two-

dimensional studies in the x − y and y − z planes, we
have neglected the possibility that exists in three spatial
dimensions of nonlinear interactions between the qx and
qz modes. Indeed, although the qx modes have much
faster growth rates than the qz modes in the early time
(linear) growth regime, they are cut off more aggressively
at nonlinear order by the effects of shear. This results in
comparable amplitudes for the qx and qz models in the
ultimate attractors of our separate 2D studies. It there-
fore seems unlikely that 3D effects cannot be neglected,
as we shall explore in future. We mention finally that
the constitutive model used in the present work is highly
oversimplified, in particular in having a Newtonian high
shear branch.

Recent experiments in microchannel flow used 1D ve-
locimetry imaging to reconstruct the local flow curves of a
shear banding wormlike micellar surfactant solution [56].
Surprisingly, these curves were found to be non-universal,
failing to collapse when plotted for different applied pres-
sure gradients on a single plot. Possible explanations of
this observation, to be explored in future work, include: a
larger ratio l/Ly than considered here; coupling between
flow and concentration; and the effects of secondary 3D
flows.
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