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Abstract 
 

This thesis concerns the computational study of copper containing perovskites using 

electronic structure methods. We discuss an extensive set of results obtained using 

hybrid exchange functionals within Density Functional Theory (DFT), in which we vary 

systematically the amount of exact (Hartree-Fock, HF) exchange employed. The method 

has enabled us to obtain accurate results on a range of systems, particularly in materials 

containing strongly correlated ions, such as Cu2+. This is possible because the HF 

exchange corrects, at least qualitatively, the spurious self-interaction error present in 

DFT. 

The materials investigated include two families of perovskite-structured oxides, of 

potential interest for technological applications due to the very large dielectric constant 

or for Multi-Ferroic behaviour. The latter materials exhibit simultaneously ferroelectric 

and ferromagnetic properties, a rare combination, which is however highly desirable for 

memory device applications. 

The results obtained using hybrid exchange functionals are highly encouraging. Initial 

studies were made on bulk materials such as CaCu3Ti4O12 (CCTO) which is well 

characterised by experiment. The inclusion of HF exchange improved, in a systematic 

way, both structural and electronic results with respect to experiment. The confidence 

gained in the study of known compounds has enabled us to explore new compositions 

predictively. Interesting results have been obtained, and we have been able to identify 

new materials of potential interest, which represent clear new targets for future 

experimental studies. 
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Chapter 1 - Introduction 
 

This thesis is mostly concerned with the computational study of a class of isostructural 

materials, known as perovskites. Perovskites have the general composition ABZ3, where 

A and B are two different cations, and Z an anion, and receive their name from the 

mineral perovskite CaTiO3. Perovskites have attracted much attention since the 

discovery of ferroelectricity in barium titanate (BaTiO3) in 1945. Research on 

perovskites has led to the discovery of many interesting electronic properties. These 

include large dielectric constants, magnetic phases, colossal magnetoresistance (CMR) 

behaviour as well as conducting, semi-conducting and superconducting properties. The 

majority of these properties are not only interesting from an academic point of view, but 

also play a key role in technological applications.  If we consider for example materials 

exhibiting large dielectric constants, these are currently the key component for the 

miniaturisation of integrated circuits. It is the magnitude of the dielectric constant that 

will ultimately determine the miniaturisation of microelectronic circuits that are 

ubiquitous in consumer electronics. Other examples of practical applications of 

perovskites include ferroelectric materials in memory devices and superconductors in 

medical imaging equipment. Of particular interest are perovskites which display two or 

more of the above properties; one such example are magnetoelectric materials, which 

display an interplay of ferroelectric and ferromagnetic properties. Availability of 

magnetoelectric compounds opens up new applications, for instance the ability to store 

data magnetically as well as electronically. Some perovksites like BiMnO3 and SeCuO3 

are among the few known examples of magnetoelectric compounds. 

The range of useful properties exhibited by members of the perovskite family is vast, 

and will be discussed in more detail in chapter 4, with some attention to the electronic 

properties that enable these. 

Several perovskites are already implemented in devices used today. However, many 

materials which display potentially useful properties are not yet able to be exploited due 

to a lack of understanding at the atomic level. A large amount of research is targeted at 

not only rationalising observations and known effects in perovsites, but also to design 

new compositions with novel electronic behaviour. 
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During this PhD we have studied several perovskites which display fascinating 

electronic properties. The first material studied in detail is CaCu3Ti4O12 (CCTO) which 

displays one of the largest known dielectric constants. This makes it the ideal choice for 

device miniaturisation, however, the origin of such a high dielectric constant is still 

debated and hence we aimed to validate current theories. This study extends from 

CCTO to other isostructural materials, some known experimentally, such as 

CaCu3Ge4O12 and CdCu3Ti4O12, but others studied here for the first time (eg. 

SrCu3Zr4O12). The second class of materials studied in this thesis makes reference to 

Copper Selenite (SeCuO3) which has recently been shown to display magnetoelectric 

properties. 

 

Despite the very large number of perovskite-structured materials known, there are still 

gaps in the perovskite literature where adequate explanations have not been provided for 

some observed properties, or where potential new perovskite structures have not yet 

been synthesised. In some cases, synthesis requires extreme or at least unusual 

conditions; for example SeCuO3 can only be achieved under pressure, while phases with 

anions other than oxygen are air sensitive, or may require long and expensive synthesis 

conditions. It is increasingly common to assist experimental synthesis with 

computational studies, both to select the target materials for particular application areas, 

and also to understand the conditions at which the target solid is stable. Indeed 

computational chemistry has now become an indispensable tool in materials sciences, 

and it is this tool that we have taken advantage of during the PhD.  

Our studies have involved performing quantum mechanical calculations on the 

structural and electronic properties of copper containing perovskites. These studies have 

been performed using the CRYSTAL06 code which has allowed us to apply hybrid-

exchange functionals in density functional theory (DFT); this methodological choice is 

linked to the systematic failure of pure DFT functionals in describing well localised 

electronic states, such those of the d9 Cu2+ ions. 

 

As mentioned earlier, a section of this thesis is dedicated to discussing the properties of 

CCTO. The crucial feature of this perovskite is the large dielectric constant, k. This 

measurable observable describes the response of the solid to an applied electric field; in 

practice, an insulating solid polarises and screens the applied field. The dielectric 
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constant is the proportionality constant between applied and total (applied minus 

screening) fields. In the general case, the response is directional, and the dielectric 

constant is represented by a 3x3 tensor; in an isotropic case with polarisation parallel to 

the applied field, the tensor reduces to a constant, k. An alternative operational way to 

define k is by considering a non-conducting material between the two plates of a 

capacitor, the latter being a combination of two conductors carrying charges of equal 

magnitude and opposite sign. By placing a dielectric between the plates, the capacitance 

increases by a dimensionless factor, k, known as the dielectric constant. This constant 

varies from one material to another. The potential difference between the plates of a 

capacitor, if ΔV is the value in vacuo, is reduced to ΔV/k when a dielectric is 

introduced. We thus find that the advantages from introducing a dielectric are an 

increase in capacitance and maximum operating voltage. 

To describe the microscopic origin of the effect on introducing a dielectric we must 

consider the electric dipole moments. The electric dipole consists of two charges of 

equal magnitude but opposite sign separated by a given distance. If a uniform external 

field is applied to the dipole, the dipole experiences a torque which brings it into line 

with the field. However, we can distinguish between the cases of polar and non-polar 

molecules. Molecules are said to be polarised when a separation exists between the 

average position of the negative charges and the average position of the positive charges 

in the molecule. This condition is always present in some molecules eg. water and are 

thus known as polar molecules. Molecules that do not posses a permanent polarisation 

are called non-polar.  

Let us consider the case of a dielectric made up of polar molecules placed in the electric 

field between plates of a capacitor; the dipoles are randomly oriented in the absence of 

an electric field. Where an external field due to charges on the capacitor plates is 

applied, a torque is exerted on the dipoles causing them to partially align with the field. 

The dielectric can then be described as polarised. The temperature and magnitude of the 

applied field with determine the degree of alignment. 

If molecules of the dielectric are non-polar, the field due to the plates produces some 

charge separation and an induced dipole moment. These moments tend to align with the 

field and hence the dielectric is polarised. Therefore, we can polarise a dielectric with an 

external field regardless of whether the molecules are polar or non-polar. 
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Thus, when a dielectric material is placed between plates of a capacitor, the capacitance 

increases by the dielectric constant due to a decrease in the magnitude of the electric 

field and to a corresponding decrease in the potential difference between the plates. The 

decrease in the magnitude of the electric field arises from an internal electric field 

produced by aligned dipoles in the dielectric. The “normal” value of the dielectric 

constant varies with the type of material: a protic solvent like water has a dielectric 

constant of 80, aprotic solvents (hexane) have dielectric constant of ~2, while ionic 

solids vary in the range of 50-100. Ceramic samples of CCTO instead have been found 

to have a giant dielectric constant of k~105, hence the practical interest in the material. 

The atomic-scale behaviour that originates this giant k is however still under discussion. 

 

All the materials investigated in this thesis contain late transition metal ions, such as 

Cu2+. The local environment of these ions in the crystal is strongly affected by as 

electronic distortion, first studied in 1937 by Hermann Arthur Jahn and Edward 

Teller[1], while at UCL Chemistry, and now commonly known as the Jahn-Teller 

effect. The mechanism behind this distortion is briefly discussed here. The Jahn-Teller 

Theorem states that a non-linear molecule in a degenerate electronic ground state 

distorts in such a way as to remove the electronic degeneration. The Jahn-Teller effect is 

most commonly encountered in octahedral complexes of the transition metals and is 

common in Cu2+ containing systems. The d9 configuration of Cu2+, in octahedral 

coordination, gives three electrons in the two degenerate e2g orbitals. This gives a 

doubly degenerate electronic ground state and results in a distortion along one of the 

axes (consisting in an elongation of the bond along the z-axis). 

In octahedral systems the distortion is most pronounced when an odd number of 

electrons occupy the eg orbitals (ie. in d9, low spin d7 and high spin d4 complexes, all of 

which have doubly degenerate ground states). This is due to the eg orbitals involved in 

the degeneracy pointing directly at the ligands, so distortion can result in a large 

energetic stabilisation. Technically this effect should also occur when there is a 

degeneracy due to the electrons in the t2g orbitals (ie. configurations such as d1 or d2, 

both of which are triply degenerate). However, the effect is much less noticeable, as the 

bonding between the metal  t2g orbitals and the ligands is of π type, and with less 

efficient overlap than that of σ type between the metal eg orbitals and the ligands, 

resulting in a much smaller energy lowering of the distorted geometry. In tetrahedral 
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complexes, Jahn-Teller distortions are also small, due to the poor overlap between metal 

and ligands orbitals. 

 

Much of the work of this thesis looks into the rationalisation of the different magnetic 

ground states (AFM or FM) exhibited by the systems studied. One of the most popular 

theories to rationalise whether the magnetic interaction between two open-shell ions in a 

crystal is ferro- or antiferro-magnetic, is that derived by P Anderson, J Goodenough and 

J Kanamori[2], now known as the Anderson-Goodenough-Kanamori (AGK) rules. 

These rules apply to interatomic spin-spin interactions between two atoms, each 

carrying a net spin, that are mediated by virtual electron transfers directly between the 

atoms (direct exchange) and/or between a shared anion and the two open-shell ions 

(superexchange). A virtual electron transfer occurs between overlapping orbitals of 

electronic states that are separated by an energy E. Orthogonal orbitals do not overlap, 

so there is no electron transfer and the resulting interaction is ferromagnetic; it is 

responsible for the Hund highest-spin rule for the free atom or ion. The AGK rules state 

that superexchange interactions are antiferromagnetic where the virtual electron transfer 

is between overlapping orbitals that are each half-filled, but they are ferromagnetic 

where the virtual electron transfer is from a half-filled to an empty orbital or from a 

filled to a half-filled orbital. The AGK rules extend to predict an exact crossover angle 

within an M-O-M bridge which defines the point at which a system exhibits ferro or 

anti-ferromagnetism. This angle is ~135°; such a value is of interest in this thesis 

because an isostructural series of perovskites, (SexTe1-x)CuO3, has equilibrium Cu-O-Cu 

angles[3] that cross the limiting valued predicted by the AGK rules, and it is of interest 

to link how the measured (or calculated in our case)  magnetisation of the solid varies as 

a function of the Cu-O-Cu angles. 

The plan of the thesis is as follows: in Chapter 2 we introduce some concepts of 

crystallography which allow us to understand the models which are used to represent 

the structure of the perovskites studied in this work and the effect that this can have on 

their properties. In Chapter 3 we introduce the theories and models available to perform 

calculations on crystalline solids and justify the most appropriate for our particular 

studies. Chapter 4 looks at basis sets, why they are necessary and the factors which 

influence the choice of one over another. There are many computational codes which 
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incorporate the theories outlined in Chapters 2-4; in chapter 5 we discuss the code 

chosen for this PhD and outline some of the tools it contains which have been of 

particular use. Chapter 6 then provides a short review on the family of perovskites 

which outlines the structural and electronic properties of some known examples. This 

examines the literature which is relevant to this PhD and is designed to help put the 

following results chapters into context. We then move on to Chapter 7 where the 

structural and electronic properties obtained from bulk and surface calculations on 

several isostructural perovskites of the form AA’3B4Z12 (eg. CCTO) are presented. In 

Chapter 8 we present the results of bulk calculations on several Cu-containing 

perovskites of the ABZ3 form, using SeCuO3 as a reference compound. In this chapter 

we are particularly interested in electronic and magnetic properties, and the effect of 

cation substitution on the A and B site and anion substitution on the Z site of the 

pervoskite structure. In chapter 9 we present an overall conclusion of this work and we 

also highlight our suggestions for potential future work. 
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Chapter 2 - Crystalline Solids and Surfaces 
 

In this chapter, some definitions and notations of crystallography are outlined. The aim 

here is to introduce the models used for the study of the bulk and surfaces of the 

materials investigated during this PhD. It should be noted that this discussion is limited 

to crystalline solids. 

 

2.1 Crystal Lattices 

 

A crystal lattice is a mathematical concept, which can be described as an infinite pattern 

of points, each of which has the same surroundings in the same orientation. In 3-

dimensions, if any lattice point is chosen to be the origin, the position of any other 

lattice point can be defined by the vector T  such that: 

 

 T ma nb pc= + +  (2.1) 

 

where a, b and c are vectors often known as basis vectors, which form a parallelepiped 

that defines the unit cell of the lattice. These vectors describe the length of each side of 

the unit cell (a0, b0 and c0) and, together with the angles between them, are collectively 

known as the unit cell parameters. These angles are called α, β and γ, where α lies 

between b and c, β lies between a and c and γ lies between a and b. The unit cell is not a 

unique entity, it is chosen conveniently to reveal a crystal’s underlying symmetry. In 

equation (2.1), m, n and p are any rational numbers.  

 

There are 14 possible lattices (in 3-dimensions) which are known as Bravais lattices (or 

sometimes direct lattices). These have been illustrated in Figure 2.1. 
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Figure 2.1 The Bravais lattices. The a, b and c directions are as shown in the Triclinic case. 

Image adapted from ref. [4]. 

 

There are 7 different classes of a, b, c, α, β and γ that are needed to define all of the 

Bravais lattices. These are labelled in Figure 2.1. 

The Bravais lattices are further denoted by the number of lattice points contained in a 

unit cell. The simplest is known as the primitive lattice and is denoted as P in Figure 
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2.1. This is the smallest type of unit cell and the only one which contains only one 

lattice point. A unit cell that contains lattice points in the corner and in the centre of the 

cell (2 lattice points) is known as body-centred unit cell and is labelled I. A unit cell 

containing lattice points in the centre of each its faces (4 lattices points) is called a face-

centred unit cell and is labelled F. There are also unit cells containing a lattice point on 

one of the face centres which is called A-face centred if the faces cut the a-axes, B-face 

centred if the faces cut the b-axes and C-face centred if the faces cut the c-axes. 

 

2.2 Crystal Structures 

 

The Bravais lattices allow any crystal structure to be built by positioning one or more 

atoms on each lattice point. The atom or atoms that sit on each lattice point are usually 

called the basis or the motif. This is the smallest fragment of the crystal structure that, 

when repeated, can create the whole structure. The motif, for example, could be an atom 

or a molecule. Therefore, a crystal structure is formed of both a lattice and a basis. It is 

important to note here the distinction between the crystal lattice and crystal structure. A 

crystal lattice is simply a lattice of points in space formed by repeating units, a purely 

mathematical concept. The crystal structure is formed by placing a basis down on each 

point of a lattice. An identical arrangement and orientation of the basis is found at each 

lattice point. Hence the crystal is formed by repeating the basis in space according to a 

given Bravais lattice.[5] 

The axes used to describe the crystal structure are the same as those outlined so far. The 

position of an atom within the unit cell can be described by fractional coordinates. 

These provide a position which is a fraction (in each direction) of the unit cell lengths, 

a0, b0 and c0. So for example if we have an Oxygen atom at position (½, ½, ½) it is 

located halfway along the a axis, halfway along the b axis and halfway along the c axis, 

ie. it is located in the centre of the unit cell.[6] 

So far, we have seen how a unit cell can be constructed from one of fourteen different 

Bravais lattices by adding an atom or a set of atoms to each lattice point known as a 

basis. An entire crystal structure can then be constructed by repeating this unit cell in 3-

dimensions. Therefore, one can build a crystalline system by defining the unit cell type 
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(eg. Tetragonal), the unit cell parameters (a0, b0, c0, α, β and γ) and the fractional 

positions of all the unit cell atoms. 

We will now see how there are several symmetry operations available which lead to the 

existence of a finite number of classes known as point and space groups. 

 

2.3 Symmetry, Point Groups and Space Groups 

 

A solid, such as a crystal structure, can be classified in terms of the collection of 

symmetry elements that can be attributed to the given shape. Its internal symmetry can 

be described by the combination of axes of rotation and mirror planes. It is a collection 

of such symmetry operations, applied to a point in space (leaving one point fixed), that 

is given the name of a point group. The various possible symmetry elements under 

consideration are inversion centre, reflection plane, rotation axis and rotation-inversion 

axis. It should be noted that translation plays no part here since it does not leave one 

point fixed. The combination of these symmetry elements leads to 32 possible 

crystallographic point groups. 

As aforementioned, one can place a basis of atoms or molecules on the points of a 

Bravais lattice. It follows that adding these introduces more and more possible 

combinations of symmetry operations. The number of possible Bravais lattices, together 

with the various point groups, give a total of 230 different space groups. That is to say 

that by considering the combinations of the 32 point groups, the screw axes 

(simultaneous rotation and translation), glide planes (combination of a reflection and a 

translation in a plane) and the different Bravais lattices we arrive at 230 space groups. 

We can then attribute a particular real crystal to one of these space groups. Each group 

is represented by a combination of numbers, letters and symbols which are chosen to 

represent the symmetry elements of the structure.[7] 

The space group provides much information about a system including the type of unit 

cell and all or some of the fractional coordinates of the atoms in the cell. To fully build 

the crystal structure one must additionally known the type of atoms within the cell, the 

unit cell parameters and the fractional coordinates of the atoms that are not fixed by the 

space group symmetry.  
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2.4 Miller Indices 

 

The facets and internal planes through a crystal lattice or structure can be described by 

Miller Indices. If a unit cell of a crystal is defined by vectors a , b and c , then any 

crystal plane that intercepts the axes proportional to a/h, b/k and c/l respectively is 

denoted by its Miller indices (hkl). These indices describe not just one plane, but all 

parallel planes. The values of h, k and l are multiples of the unit cell lattice parameters, 

a0, b0 and c0. Therefore, the set of planes which lie parallel to the unit cell edge is given 

the relevant h, k or l value zero. Some examples of these Miller indices are the 001, 110 

and 111 planes which are illustrated in Figure 2.1. The 001 indices represent the set of 

planes that lie parallel to the a-axes and b-axes and intersect the unit cell at position 1c. 

Planes cutting the a-axes and b-axis at 1a and 1b are the 110 planes, and planes cutting 

the a-axes, b-axes and c-axes at 1a 1b and 1c are called the 111 planes. Indices of higher 

multiples of the axes exist, for example, the 122 planes will cut the unit cell edges at 1a, 

1/2b and 1/2c. 

 

 
Figure 2.2 Examples of some Miller indices of lattice planes a) 001, b) 110 and c) 111 

 

2.5 Reciprocal Lattice and Reciprocal Space 

 

For each Bravais lattice, a corresponding reciprocal lattice may be postulated which 

possesses the same symmetry. Where the Bravais lattice may be described as existing in 

real space, the reciprocal lattice exists in reciprocal space. This idea was created in order 

to simplify the process of describing the physical properties of many systems. 
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To derive the reciprocal lattice we define new lattice vectors * * *, ,a b c whose directions 

are perpendicular to the end faces of the Bravais lattice unit cell. The lengths of these 

new lattice vectors are the inverse of the perpendicular distance from the lattice origin to 

the end faces of the Bravais lattice unit cell. The reciprocal lattice points are associated 

with a set of planes described by the Miller indices (hkl). The position of the (hkl) spot 

in the reciprocal lattice is related to the orientation of these planes and the spacing 

between them, dhkl. In fact the lengths of the vectors of the reciprocal space can be 

written as: 

 

 
100 010 001

1 1 1* , * , *a b c
d d d

= = =  (2.2) 

 

For example, the cubic, tetragonal and orthorhombic lattices are equivalent to: 

 

 
0 0 0

1 1 1* , * , *a b c
a b c

= = =  (2.3) 

 

For crystals possessing different symmetries the relationship between the Bravais and 

reciprocal lattice is more complex; this detail is not relevant to this PhD. The important 

point to note is that the use of reciprocal space allows the physical properties of many 

systems to be more easily described. 

Just as the Bravais lattices have primitive cells, there is also a primitive cell of a given 

reciprocal lattice. This is called the first Brillouin zone. 

 

2.6 K-Points and the Brillouin Zone 

 

In order to understand the concepts of the next chapter it is convenient to introduce the 

concept of k-points here. There are an infinite number of k-points in the Brillouin zone. 

Electronic structure calculations performed on crystalline solids require the evaluation 

of integrals over the Brillouin zone, that cannot be performed analytically. This problem 

is overcome by the fact that k-points that are sufficiently close together contain similar 

information; we can therefore replace the integration with a summation over a finite 
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number of k-points. The amount of points required to obtain converged properties will 

depend on the size and nature of the system. For example, metallic systems tend to 

require more k-points (to capture the shape of the Fermi surface properly) than a large 

band-gap insulator. A common recipe for choosing the number of k-points was that 

developed by Monkhorst and Pack[8], which is particularly well suited for metallic 

systems, but is applied more generally to all crystalline solids.  

 

2.7 Modelling Solids and Surfaces 

 

We have now seen how a crystalline solid can be constructed by applying translational 

and point symmetry operations to a finite number of atoms describing its unit cell. 

During this PhD we have been interested in studying both bulk materials as well as their 

surfaces. Let us now discuss how this can be done in practice by making use of the 

concept of periodic boundary conditions (PBC). 

 

2.7.1 Bulk Calculations 

 

For the majority of this PhD, calculations were performed on the bulk properties of 

materials; an explicit description of each atom of a typical solid would involve 

calculations on a large amount of atoms, of the order of Avogadro’s number (~ 6x1023). 

Calculations on this scale are clearly not computationally feasible. We also have the 

issue of surface effects. Unless the chosen bulk size is adequately large (too large to 

simulate) the ratio between the number of surface atoms and total number of atoms 

would be large enough to cause surface effects to be more important than they should.  

 

These problems are overcome by the application of periodic boundary conditions (PBC) 

which enable crystalline solids to be characterised in a more manageable way. In this 

way a unit cell is chosen including the minimal number of atoms which contains the 

whole symmetry of the system. This is used with the lattice vectors indicating the size 

of the unit cell and the direction of replication to reproduce an infinite crystalline 

structure. This cell is able to interact with an infinite lattice of identical image cells 
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surrounding it in each Cartesian direction (leaving no surfaces). Any movement or 

action from an atom in the main cell is replicated precisely by the equivalent atoms in 

the surrounding ‘image’ cells. Here we have a situation where each particle interacts, 

not only with other particles in its cell but with their images in nearby cells. This is 

advantageous as information about the atoms in each cell do not need to be stored. It is 

only necessary to store information on the molecules in the unit cell. If an atom were to 

leave the cell there would be an equivalent atom entering from the opposite side. 

Therefore the entire solid is reproduced by just repeating this unit cell in all Cartesian 

directions. 

 

2.7.2 Surface Calculations 

 

The ability to perform calculations on surfaces and interfaces is extremely beneficial as 

this is where the most interesting properties are often observed. Surfaces are often 

complex and difficult to characterise experimentally. Therefore computational methods 

are extremely important in calculating properties of surfaces. 

The surface of a crystalline solid can be described by the Miller indices that define the 

crystal plane exposed, as introduced in section 2.4. However, Miller indices do not fully 

define the surface structure. 

Real surfaces are semi-infinite systems and therefore it would not be efficient to 

perform calculations of properties in this way. One way of modelling the surface 

involves representing two dimensional surfaces of a crystal as slabs of the material. 

Here, the crystal is considered as a stack of planes perpendicular to the surface (the 

direction perpendicular to the surface is usually indicated as z in surface studies) and a 

slab of finite thickness is cut out. Periodic boundary conditions are applied in the x and 

y planes of the material. Perpendicular to the slab the boundary condition is that the 

wavefunction decays to zero at a large enough distance from the slab. This is the 

method utilised during this PhD. An alternative representation of surfaces consists in 

using slabs separated by a finite layer of empty space, thus restoring 3D periodicity. 

This has not been of interest during this work and we will therefore not go into these 

details. 
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2.8 Magnetic Structures 

 

Magnetic order in bulk materials and their surfaces can have a large effect on the crystal 

structure. Let us therefore discuss magnetism and how it is incorporated into the 

crystallographic structures discussed above. 

It is possible to occupy positions of a crystal lattice with any element, some of which 

may contain unpaired electrons. As a result of the spin on these atoms we are presented 

with the phenomenon of magnetism where each atom has a magnetic dipole associated 

with it. These dipoles can exist with different alignments such as paramagnetic, 

ferrimagnetic, ferromagnetic (FM) or anti-ferromagnetic (AFM).[9] Paramagnetic 

compounds have magnetic dipoles which are completely unaligned in random 

directions. A ferromagnetic structure is one that undergoes a phase transition from a 

high temperature phase that does not have a macroscopic moment to a low temperature 

phase that has a spontaneous magnetisation. This spontaneous magnetisation remains 

even in the absence of an applied magnetic field. This is due the randomly aligned 

magnetic dipole moments of the atoms in the paramagnetic high temperature phase 

tending to line up in the same direction. This is shown in Figure 2.3 along with two 

other possible orderings, AFM and ferrimagnetic. Ferromagnetism has been 

successfully rationalised by two theories, the Curie-Weiss localised-moment theory[10] 

and the Stoner band theory of magnetism[11]. Weiss proposed that a “molecular field” 

acts to align magnetic moments and we now understand this to be the quantum 

mechanical exchange energy (see Chapter 3) which causes electrons with parallel spins 

(and therefore with parallel magnetic moments) to have a lower energy than electrons 

with anti-parallel spins. It is below a cut-off tempertature known as the Curie 

temperature, Tc, that the molecular field of a material is so strong that it remains 

magnetised even in the absence of an applied magnetic field (the analogous cut-off for 

AFM materials is known as the Neel temperature, TN, ie. the temperature above which 

an AFM material becomes paramagnetic). 

In an AFM structure the magnetic dipole moments of the atoms are ordered anti-parallel 

to one another. This leads to a net zero magnetisation and hence they are not as sought 

after for technological applications. There can often be more than one type of AFM 

arrangement available to a structure. For example, the magnetic dipoles can alternate in 

direction along the 111, 110 or 001 planes. Ferrimagnets are similar to AFM materials 
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in that the dipoles align antiparallel. The difference is that in a Ferrimagnet some of the 

dipole moments are larger than others so the material has a net overall magnetisation; 

hence these can be useful for device implementation. 

When describing an AFM structure it is not always possible to use the same unit cell as 

used for an isostructural paramagnetic or diamagnetic unit cell. For example if there are 

three magnetic ions in a unit cell it is not possible to have an equal number of spin up 

and down ions. Therefore a multiple cell must be created. In this example a double unit 

cell is the best solution from a computational point of view where the cell is doubled 

along one direction. This allows for three alpha and three beta spin and hence a proper 

AFM magnetic structure. 

 

 
Figure 2.3 Example of the possible ordering of dipoles in magnetic structures. Image adapted from 

ref. [12]. 
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Chapter 3 - Theoretical Methods 

3.1  Quantum Mechanics 

 

The properties of the materials being researched during this PhD strongly depend on the 

electrons in the system and need therefore to be addressed by quantum mechanical 

methods. Such techniques enable us to probe the electronic structure of a given system 

by solving the Schrödinger equation. The electron-electron interation makes this a 

difficult task as the unknown electron density of the system depends on itself, a problem 

known as many-body interaction. It has been tackled by several methods over the years, 

of which the two principle techniques applied to solids are Hartree-Fock (HF) theory 

and density functional theory (DFT). Both form an integral part of the work performed 

here, and they will be discussed in some detail in the following sections. 

 

In quantum mechanics it is the wavefunction that holds all of the physical information 

about a system. This is not measurable and can only be obtained by solving the time-

independent Schrodinger  equation[13]: 

 

                                ( , ) ( ) ( , )H r R E R r Rψ ψ=  

where:                     
22

2

0

( )
2 4

n n N
I

i
i i I Ii

Z e
H e e

m rπε
= − ∇ + + −∑ ∑∑                       (3.1) 

 

In this equation the wavefunction,ψ , depends on the set of locations, R of the nuclei 

and the electronic coordinates, r. H is the Hamiltonian, ie. the quantum mechanical 

operator that corresponds to the internal energy of the system. The terms in the 

definition of H (3.1) correspond to the kinetic energy of the electrons, the electron 

nuclei attraction and electron-electron interaction (with Coulomb and exchange 

components and indicated here simply as e-e). It may also contain a Coulomb 

internuclear repulsion term, but under the Born-Oppenheimer approximation (electrons 

move faster than nuclei and adapt instantly to a given nuclear configuration) the 

nucleus-nucleus repulsion can be treated as an additive classical term and removed from 

the Schrödinger equation. 
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In principle the Schrödinger equation (3.1) can be solved to obtain the desired 

properties of a given system. However, in practice, this is not straightforward: the 

potential experienced by each electron is influenced by all other electrons within a given 

system. Therefore, the problem lies in the equations which need to be solved, depending 

upon each other. The problem applies to systems of all sizes, from molecules to solids 

with the only exception of one electron systems which are obviously of limited practical 

interest. 

During this PhD we are interested in techniques which solve the many body problem for 

solids, which contain a number of atoms of the order of the Avagadro number (1023). 

Solving the Schrödinger equation directly for all electrons is clearly impossible, and 

approximations need to be made in order to make this task feasible. In fact, this task is 

impossible for even a two electron system and even in this case approximations need to 

be made. 

The motivation for solving this problem is clear when it is realised that once the 

electronic wavefunction and electronic energy are calculated, a wealth of other useful 

information about a given system is achievable. 

Techniques to solve the many-body problem have been suggested and introduce 

approximations in the Schrödinger equation. Those that we have applied in our work are 

based on a mean-field approximation that factorises the many-body equation into a set 

of one-electron equations, in which each electron of the system moves in the mean-field 

generated by all other particles. These are the HF and DFT theories discussed below. 

 

3.2 Hartree-Fock Theory  

 

The electron-electron potential energy in (3.1) is the main complication in electronic 

structure calculations. The first step here is to neglect this feature and define a new 

wavefunction, ψ ° , in which the electron-electron energy has been neglected[14]. We 

can then say that: 

 

 H Eψ ψ° ° = ° °  

where:                                              
1

n

i
i

H h
=

° = ∑                                                (3.2) 
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In (3.2) hi is known as the one-electron Hamiltonian for electron i. If we split the n-

electron equation (3.2) into n one electron equations we can expressψ ° as a product of n 

one electron wavefunctions of the form, ( , )o
a r Rφ . o

aφ is thus a solution of: 

 

 ( ) ( )o o o
i a a ah i E iφ φ=  (3.3) 

 

In this equation o
aE is the energy of one electron in orbital a, given by the product of an 

orbital wavefunction and spin functional.  The overall energy, E° , is the sum of the one 

electron energies and the overall wavefunction will be expressed as a product of one-

electron wavefunctions: 

 

 (1) (2)... ( )o o o o
a b z nψ φ φ φ=  (3.4) 

 

The assumption that the wavefunction can be built from a product of single electron 

wavefunctions is an approximation and does not satisfy the Fermi-Dirac statistics (also 

resulting in the Pauli exclusion principle[15]). This principle forbids the existence of 

two fermions at the same point in space with the same quantum numbers. It more 

specifically states that the total wavefunction (including spin) must be antisymmetric 

with respect to the interchange of any pair of electrons. To solve these problems the n-

electron wavefunction can be written not as  a simple product of one-electron spin 

orbitals, but as a Slater determinant[16] built on the n spin orbitals. The Slater 

determinant ensures that the Pauli principle is obeyed and can be written as: 

 

 

(1) (1) ... (1)
(2) (2) ... (2)1

... ... ... ...( !)
( ) ... ... ( )

o o o
a b z
o o o
a b z

o o
a z

n
N N

φ φ φ
φ φ φ

ψ

φ φ

=  (3.5) 

 

which is anti-symmetric under the interchange of any pair of electrons. The overall 

wavefunction can therefore be written as: 
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 (3.6) 

 

We have so far neglected the electron-electron interactions but any treatment of the 

electronic structure of a system must include this effect. The mean-field approximation 

treats the electron-electron interactions in an average way. This means that each 

electron moves in the electrostatic field due to the nuclei, and feels the effect of the 

average distribution of the other n-1 electrons. The combination of factorisation of the 

wavefunction into one electron orbitals and the mean field approximation gives rise to 

the Hartree-Fock (HF) method[17-20]. The HF wavefunction is given by a Slater 

determinant of the form of (3.6), in which electron-electron energy interactions are 

treated in an average way. We then use Variational theory, which involves minimising 

the Rayleigh ratio: 

 

 
*

*

( , ) ( , )

( , ) ( , )

x R H x R d x

x R x R d x

ψ ψ
ξ

ψ ψ
= ∫
∫

 (3.7) 

 

to derive the spin orbitals that yield the best n-electron determinantal wavefunction. 

This minimisation must be done under the constraint that spinorbitals be orthonormal. 

The lowest value of the Rayleigh ratio is identified with the ground state electronic 

energy for the selected nuclear configuration, R. The Hartree-Fock equations for the 

individual spin orbitals are given by: 

 

                                          ( ) ( )i a a af i iφ ε φ=                                                               (3.8) 

 

where:                               [ ]( ) ( )i i u u
u

f h J i K i= + −∑                                              (3.9) 

 

Solving equation (3.8) yields the spinorbitals ( )a iφ of energy aε , if  is the Fock operator. 

In equation (3.9) we have a sum over all spinorbitals, u, while uJ and uK are the 

Coulomb operator and exchange operator respectively: 
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 *
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r

φ φ φ φ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦
∫  (3.11) 

 

In (3.10), uJ , represents the Coulombic interaction of electron 1 with electron 2 in the 

orbital uφ . In (3.11), uK , takes into account the effects of spin correlation. In both 

equations we have: 

 

 
2

0
04

ej
πε

=  (3.12) 

 

From equation (3.9) we have the average potential energy of a given electron (in this 

case electron i) in the field due to all other electrons. As clear from (3.10) and (3.11), 

the unknown electron wavefunction φ  also enters the definition of forces. The HF 

equations must be solved iteratively via a self-consistent field (SCF) method. In this 

method, a trial set of spinorbitals is formulated to construct the Fock operator which are 

then used in the HF equations to produce a new set of spinorbitals. These new 

spinorbitals are put back through the method and the cycle continues until some 

numerical convergence criteria is satisfied. 

In solving these equations we will in theory end up with an infinite number of 

spinorbitalsφ u with energy, ε u. In practice we can only solve these equations for a 

finite number, m, of spinorbitals with m n≥  (n is the number of electrons in the system). 

When the SCF cycles are complete these m spinorbitals are arranged in order of 

increasing orbital energy with the n lowest energy spinorbitals called occupied orbitals 

and the other called virtual orbitals. The Slater determinant built from the occupied 

spinorbitals is the HF ground state wavefunction, denoted as 0Ψ . 

 

In closed-shell systems we can assume that the spatial components of the spinorbitals 

are the same for each pair of electrons. If we have n electrons there are then ½n spatial 

orbitals each doubly occupied by electrons in spin up (α) and spin down (β). This gives 

a total wavefunction known as a restricted HF wavefunction (RHF).  
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For open shell systems we can still treat the electrons in restricted formalism, forcing  

the spatial wavefunction for doubly occupied orbitals to be identical for spin up and 

down electrons, in a method called ROHF. 

However, the ROHF approximation often leads to an inaccurate variational ground state 

energy. Open shell systems can be better treated using an unrestricted HF (UHF) 

formalism in which the eigenstates for α and β electrons are solved independently. The 

one disadvantage of the UHF method is that UHF wavefunction is not an eigenfunction 

of the spin operator, S2. 

 

For practical implementations, we need to define a basis that can be used to describe the 

spin-orbitals aφ . Let us consider a basis set of M basis functions, jθ . φ  can be defined 

as a linear combination of these basis functions, θ , whose coefficients, jic , are 

unknown: 

 

 
1

M

i ji j
j

cφ θ
=

= ∑  (3.13) 

 

The problem of calculating the wavefunction is equivalent to finding the 

coefficients, jic . Using the matrix representation of operators f and h in the basis set, θ , 

equations (3.8) and (3.9) can be re-written as: 

 

 
1 1

M M

ij ja a ij ja
j j

F c S cε
= =

=∑ ∑  (3.14) 

 

where:                                         *
11(1) (1)ij i jF f d rθ θ= ∫ , *

1(1) (1)ij i jS d rθ θ= ∫  

 

In these equations S is the overlap matrix and F is the Fock matrix. Equation (3.14) is 

known as the Roothaan equations. We can write in matrix notation: 

 

 ε=FC SC  (3.15) 
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whereε is an MxM diagonal matrix of the orbital energies ε a, and C is an MxM matrix 

composed of elements jac . Introducing a transformation matrix, X, to generate an 

orthonormal basis set from our initial basis set, equation (3.15) can be rewritten as: 

 

 ' ' 'ε=F C C  (3.16) 

where   

 †' =F X FX  (3.17) 

and  

 
1
2

−
=X S  (3.18) 

 

The solution to (3.16) is obtained via an SCF approach, a cyclic procedure, outlined in 

Figure 3.1, that is repeated until the specified convergence criteria is met. 

The choice of a suitable basis set is discussed in Chapter 4. 

 

 



31 

 

 

 
Figure 3.1 Schematic description of the HF SCF cycle procedure. The last procedure is repeated 

until some convergence criteria is met. 
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3.2.1 Limitations of HF theory 

 

The HF ground state wavefunction does appear to be theoretically very sound and gives 

satisfactory results in many cases, however it does have limitations which have led to 

the development of new methods. Among these limitations is the fact that HF does not 

take into account the correlation existing between the movements of the electrons due to 

the independent particle model upon which it is based. The correlation energy, Ecorr, is 

defined as the difference between the exact energy of the system and that calculated by 

the HF approximation at the HF limit (with an infinite basis set). 

 

 0 0HF
corr exactE E E= − <  (3.19) 

 

Several methods, known as post-HF theories build on the HF wavefunction to generate 

more accurate solutions and account for the correlation energy. A separate alternative to 

study the electronic structure of a given system is represented by Density Functional 

Theory (DFT), which has been applied extensively in this thesis work and will be 

discussed in the next section. 

Before examining DFT however, it is important to mention that the accuracy of post-HF 

techniques is achieved at the expense of a large computational effort. For a system 

described by M basis functions, the cost of a HF calculation is proportional to M4 while 

post-HF methods scale with even higher powers of M (at least 5); by contrast DFT 

scales as M3 and is therefore the method of choice for large systems. 

 

3.3 Density Functional Theory (DFT) 

 

In the late 1920’s L. H. Thomas[21] and E. Fermi[22] took a different approach to 

Hartree in solving the many body problem. Instead of working with the wave function, 

they considered utilising a physical observable to determine the ground state properties 

of a system. Knowing that the Hamiltonian depends only on the positions and atomic 

numbers of the nuclei and the total number of electrons, it became obvious that a useful 

physical observable would be the electron density ρ (the main advantage being that the 
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density is a function of three coordinates only, whereas the wavefunction depends on 

3N coordinates). By integrating the density over all space we find the total number of 

electrons, N: 

 

 ( )N r drρ= ∫  (3.20) 

 

So on one hand we have Hartree-Fock theory, which utilises the wavefunction, and on 

the other we have density functional theory (DFT) which uses the electron density as its 

fundamental variable. The two quantities are related, with the density given by the 

square of the wavefunction. 

 

One of the first attempts at solving the many problem using the electron density as the 

fundamental variable is given by the Thomas-Fermi theory. This method started by 

considering a system of non-interacting electrons with uniform density, acted on by a 

potential, V(r). The total energy is formed of the kinetic energy and potential energy 

parts: 

 

 Tot kin potE E E= +  (3.21) 

    

For a uniform electron gas, the total energy can be expressed as: 

 

 
52
3( ) ( ) ( )totE r dr V r r dr

m
α ρ ρ= +∫ ∫  (3.22) 

 

where 3
2

2 )3(
10
3 πα = . 

 

This expression for the total energy only depends on the total electronic density, ρ .  It is 

said to be a functional of the density.  

We must now add further terms to include the effect of electron-electron interactions. 

This has several components, first the coulomb interaction given by: 
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where a factor of one half has been included to eliminate over counting. 

 

The second contribution to the electron-electron interaction is exchange. Unlike the 

Hartree Fock method, where the exchange energy is evaluated exactly, exchange is 

approximated in Thomas-Fermi theory. In the uniform gas of interacting electrons the 

exchange energy per unit volume of position is described by[23, 24]: 

 

 
42
3

0

( )
4X
e rβε ρ
πε

= −  (3.24) 

 

If we then integrate over the whole system the exchange energy is: 

 

 
42
3

0

( )
4X
eE r drβ ρ
πε

= − ∫  (3.25) 

 

Correlation is defined as the difference between the exact electron-electron interaction, 

and the contributions from Coulomb and exchange terms given by (3.23) and (3.25). It 

can also be expressed as a functional of ρ . An example is that proposed in 1938 by 

Wigner[25]: 

 

 

4
3

1
3

( )0.056
0.079 ( )

C
rE dr

r

ρ

ρ
= −

+
∫  (3.26) 

 

It is however, convenient for now to leave the correlation energy in general terms, and 

simply denote it as EC. We can then express the total energy as: 
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 (3.27) 

 

It is important to note that (3.23), (3.25) and (3.27) describe a homogenous electron gas 

in which energies are obtained locally. This idea is at the basis of the local density 

approximation (LDA), discussed in more detail in section 3.3.2. 

 

We need to minimise the total energy under the condition that the number of electrons 

in the system is constant. ie. Nrdr =∫ )(ρ . This means we minimise such that, 

constant
( )

Etot
r

δ μ
δρ

= = . 

This minimisation is not straightforward as we are dealing with a function whose 

argument is also a function and therefore known as a ‘functional’. We therefore use the 

mathematical theory of functional differentiation together with the theory of Lagrange 

undetermined multipliers, to obtain the chemical potential, μ, as: 

 

 
2 12 2 2
3 3

0 0

5 ( ') 4( ) ( ) ( )
3 4 ' 4 3 C

e r er V r d r r
m r r
α ρ βμ ρ ρ μ

πε πε
= + + − +

−∫  (3.28) 

 

If we group all but the first term and denote it as the effective potential, )(rVeff , then we 

can see the difference between a system of non-interacting electrons and a system of 

interacting electrons are as follows: 

for non-interacting electrons we can write: 

 

 
22
35 ( ) ( )

3
r V r

m
αμ ρ= +  (3.29) 

 

while for interacting electrons we incorporate the last three terms of equation (3.28) into 

an effective potential Veff(r), yielding: 
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3 effr V r
m
αμ ρ= +  (3.30) 

 

We can see here that the difference between the two cases lies in a modification of the 

potential. 

 

The Thomas-Fermi theory gives correct results only in limited circumstances. It predicts 

the dependence of the total energy on the number of electrons, N, as being monotonic, 

but it neglects chemical bonding effects between atoms. Its historic merit is to point the 

way to DFT. 

 

3.3.1 Hohenberg-Kohn Theorems and Kohn Sham Equations 

 

The fundamental idea at the basis of the Thomas-Fermi theory is that the energy of a 

given system can be described exclusively in terms of its electronic density. Thirty 

years later the mathematical proof of this concept was established by P. Hohenberg and 

W. Kohn[26]. This proof was split into two theorems discussed below. 

 

Let us consider a collection of an arbitrary number of electrons and nuclei, enclosed in a 

large box and moving under the influence of an external potential V(r) and the mutual 

interaction. The Hamiltonian of such a system can be described as: 

 

 ˆ ˆ ˆ ˆH T U V= + +  (3.31) 

 

 

where the first term is the kinetic energy, the second describes the electron-electron 

interaction and the third is the interaction of electrons with the nuclei and the external 

potential. 

 

The first Hohenberg-Kohn theorem[26] states that the external potential is univocally 

determined by the electronic density, besides an additive constant. A uniform shift in 

V(r) by an arbitrary constant has no physical effect. This is best proved by turning the 
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statement around and prove this is true via reductio ad absurdum. It was indeed shown 

that it is impossible for two different potentials (differing by more than an additive 

constant) to give the same ground state density, ie. if ( ) '( ) cV r V r− ≠  then we end up 

with different ground states.  

 

The first Hohenberg-Kohn theorem proves that all properties of a system can be 

calculated from its electronic density, but does not show us how to calculate the density 

of a system. Hohenberg and Kohn’s second theorem shows us that the density obeys a 

variational principle, ie. given an external potential V(r), the electronic density of the 

system is the one that minimises the energy (subject of course to the constraint of 

describing the correct number of electrons). Since the ground state energy, ie. the 

expectation value of H
∧

 given by equation (3.31), is a functional of the density, ( )rρ , 

also the single contributions to H
∧

can be expressed as functionals of ( )rρ . We therefore 

have: 

 

 [ ( )] ( ) ( ) [ ( )]gE r V r r dr F rρ ρ ρ= +∫  (3.32) 

 

 where 

 

 F T U
∧ ∧ ∧

= +  (3.33) 

 

represents the kinetic energy and electron-electron interactions. [ ]F ρ is a universal 

functional, valid for any number of particles and any external potential. Because the 

fundamental quantity is the electron density, the method based on Hohenberg-Kohn 

(HK) theorems is also known as DFT. 

 

If [ ]F ρ was a known and relatively simple functional of ρ , determining the ground 

state energy and density, in a given external potential, would be rather easy. It would 

only require the minimisation of a functional of the three dimensional density function. 

However, the functional form of F is unknown, and the main limitations of DFT consist 
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in providing accurate enough working formulations of F. Let us now see how such 

working formulations can be achieved. 

 

Because of the long range Coulomb interaction, it is convenient to separate out from 

[ ( )]F rρ  the classical Coulomb energy between electrons and write: 

 

 [ ( )] [ ( )] [ ( )]F r T r U rρ ρ ρ= +  (3.34) 

 

where T[ρ] is the kinetic energy of a system of non-interacting electrons and U[ρ] is the 

interaction energy. The energy can then be expressed as: 

 

 [ ( )] ( ) ( ) [ ( )] [ ( )]totE r V r r dr T r U rρ ρ ρ ρ= + +∫  (3.35) 

 

The true ground state is found by minimising with respect to ( )rρ , using a Lagrange 

multiplier to constrain the number of electrons, to obtain: 

 

 [ ( )] [ ( )]( )
( ) ( ) ( )
totE T r U rV r
r r r

δ δ ρ δ ρ μ
δρ δρ δρ

= + + =  (3.36) 

 

We can also introduce an effective potential: 

 

 [ ( )]( ) ( )
( )eff

U rv r V r
r

δ ρ
δρ

= +  (3.37) 

 

from which (3.36) can be written as: 

 

 [ ( )] ( )
( ) eff

T r v r
r

δ ρ μ
δρ

+ =  (3.38) 

 

The constant (chemical potential) comes from the fact that we minimise under the 

constraint that the number of electrons is constant.  
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By making explicit the electron-electron interaction in [ ( )]U rρ , the energy for a system 

of interacting electrons is given by: 

 

 
2

0

( ) ( ')[ ( )] ( ) ( ) [ ( )] ' [ ( )]
8 'tot xc

e r rE r r V r dr T r drdr E r
r r

ρ ρρ ρ ρ ρ
πε

= + + +
−∫ ∫∫ (3.39) 

 

In practice, the kinetic energy functional [ ( )]T rρ  for the system of interacting electrons 

is approximated by the solution for a system of non-interacting electrons; while the 

term [ ( )]xcE rρ contains all the terms that are not exactly known. It takes into account the 

difference between the kinetic energy functional for the non-interacting system and the 

equivalent functional for the interacting system, the exchange interaction between 

electrons and the electron-electron correlation energy. It is usually referred to as 

exchange and correlation energy. 

 

The Kohn-Sham method defines a practical way to solve the DFT equations; it 

introduces a one-electron Hamiltonian in the same form of the Schrödinger equation, 

that yields one-electron orbitals ψn as solutions of the one-electron Kohn-Sham 

equation. 

 

 
2

2 ( ) ( ) ( ) ( )
2 n eff n n nr v r r r

m
ψ ψ ε ψ−

∇ + =  (3.40) 

 

and:  

 

 2( ) ( )n
n

r rρ ψ= ∑  (3.41) 

 

The theory on which DFT is based is formally exact however it relies on the knowledge 

of the exchange and correlation functional whose exact definition is unknown. The most 

important step is therefore to decide on a suitable approximation for [ ( )]xcE rρ . The 

main aims of modern DFT are in defining ever more accurate approximations for Exc, a 

topic discussed in section 3.3.2.  
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The Kohn-Sham equations yield the mathematical framework for finding the ground 

state density and energy of a many-body electron problem using standard independent 

particle methods. These equations are solved self-consistently, in the same way as 

discussed earlier for the HF method. The procedure is schematically shown in Figure 

3.2. The first step is to guess the electron density, ( )rρ , and use it to calculate the 

effective potential veff(r). The Kohn-Sham equation can then be solved to obtain the 

occupied one electron orbitals, ψn, which in turn define a new density outρ . This 

procedure is then repeated until we achieve self-consistency, ie. ( ) ( )out inr rρ ρ= to 

within a chosen numerical accuracy[27]. 



41 

 

 

 
Figure 3.2 Schematic description of the SCF cyclic procedure in solving the Kohn-

Sham equations. 
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3.3.2 Exchange and Correlation Functionals 

 

The main aim of modern DFT is in making ever improving approximations to the 

exchange-correlation functional, [ ( )]xcE rρ , of the Kohn-Sham equations. The simplest 

of these is known as the local density approximation (LDA)[26]. The main idea behind 

the LDA was to consider an inhomogeneous electric system as locally homogeneous, 

and then use, at each point in space, the exchange and correlation hole corresponding to 

the homogeneous electron gas (known to a very good accuracy) with the same density. 

The exchange-correlation energy is simply calculated by integrating over all space with 

the exchange-correlation energy density at each point assumed to be the same as in the 

homogeneous electron gas with that density. 

In a real non-uniform system described by electronic density ( )rρ , at each r there is an 

exchange-correlation energy given by [ ( )] ( )xc r rε ρ ρ . The total exchange-correlation 

energy can be described by: 

 

 [ ( )] [ ( )] ( )xc xcE r r r drρ ε ρ ρ= ∫  (3.42) 

 

This is the local density approximation (LDA). Despite its simplicity, the LDA is in fact 

able to achieve relatively accurate results for metallic solids with delocalised electrons. 

It does however have several shortcomings. In atoms where the electrons are quite 

localised the electronic densities are poor. Binding energies are consistently 

overestimated, and bond distances underestimated, in the LDA compared to 

experimental values. Another shortcoming of the LDA is that the local formulation of 

the energy expression does not account for the electronic redistribution in bonds, 

excluding chemistry from the functional expression. 

The next generation of functionals were aimed at solving the problem of the 

inhomogenities in the electronic density that are present within the LDA functional. 

This was done by expanding locally the functional dependence of Exc on ( )rρ to include 

gradient and higher order derivatives. In general, a gradient expanded exchange-

correlation energy can be expressed as: 
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 2[ ( )] [ ( )] ( ) [ ( ), ( ), ( ),...]xc xc xcE r r r F r r r drρ ε ρ ρ ρ ρ ρ= ∇ ∇∫  (3.43) 

 

where Fxc is a factor that modifies the LDA functional to consider the variation 

of ( )rρ at the reference point. Methods that include the gradient of the density in r are 

known as generalised gradient approximations (GGA), while functionals that contain 

second derivatives of ( )rρ in r (and eventually a correction to the kinetic energy 

functional) are called meta-GGA. The dependence of [ ( )]xcE rρ  on the gradient (or 

higher) derivatives of ( )rρ is done in a parametric way. GGA functionals are still local 

in a mathematical definition, and do not account for non-local effects at longer ranges. 

Higher order expansions of (3.43) have been developed, but it was learnt that these 

expansions can easily violate some of the conditions required for the exchange and 

correlation holes (such as the negativity of the exchange density or the self interaction 

cancellation). It was Perdew[28] who showed that by including these conditions to 

functionals that originally did not, yielded an excellent improvement in the exchange 

energies. The definition of GGA functionals is not unique, and a very large number of 

GGA functionals have been proposed (often referred to as a functional zoo). These 

functionals differ both in the number of parameters they contain (of course, a large 

number of parameters increases the flexibility but may limit transferability) and how 

they are calculated. 

In general terms GGA functionals have been obtained via two different methods: in one 

case the dependence of the functional on the gradient of the electronic density is 

performed via analytic functions, whose parameters are fitted to experimental data such 

as structural parameters, formation energies, thermochemical data etc. Clearly, in this 

case, the quality of results for classes of molecules or solids different to the reference 

data cannot be guaranteed. The second method is to determine the dependence of the 

functional on the gradient via some exact sum rules. 

 

A widely used GGA exchange functional was developed by Becke in 1988[29]. Here he 

used the method of fitting parameters to experimental data. This is commonly used in 

conjunction with a correlation functional derived completely independently from the 

LDA in 1988 by Lee, Yang and Parr (LYP)[30]. Together these exchange and 

correlation functionals form the commonly used BLYP functional. 
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Another well known family of GGA functionals is that proposed by Perdew, in which 

the most used choice, at present, is the formulation proposed by Perdew, Burke and 

Ernzerhof[31] (PBE) in 1996. The PBE functional is very satisfactory from a theoretical 

point of view as it includes many of the conditions for the exchange-correlation hole 

sacrificing only those deemed energetically less important. It is a functional derived 

without containing any fitting parameters. During this PhD, only the LDA, BLYP and 

PBE functionals have been considered. 

 

In general it has been found that the GGA’s improve upon binding and atomic energies 

and bond lengths and angles over the LDA. However the performance of these 

functionals varies depending on the materials under study. For example, semi-

conductors are marginally better described within the LDA than in GGA, except for the 

binding energies. GGA’s are known to not satisfy some asymptotic behaviour and 

therefore there is a limit in the accuracy that the GGA’s can achieve. The main reason 

for this is that the non-locality of the exchange term is not fully taken into account. 

However, in systems with well localised electrons a problem known as the self-

interaction error, discussed in more detail in section 3.3.3, plays a major part in limiting 

the accuracy of the functionals. Neither the LDA or GGA functionals compensate for 

the self-interaction error. This self-interaction error is a large limitation of DFT and one 

which we need to consider very carefully when choosing the appropriate method for the 

calculations performed during this PhD. Therefore, the self-interaction error is 

important to be understood and hence this problem is discussed in a separate section. 

 

3.3.3 Limitations of DFT – the self interaction error 

 

Much of the work to be performed in this PhD is aimed at the study of ‘strongly 

correlated’ materials displaying unusual electronic and magnetic properties. The 

problem in describing strongly correlated systems with standard DFT lies in the self-

interaction. In a true system, each electron interacts with every other electron other than 

itself.  In HF and DFT all electrons are described as having a Coulomb interaction with 

all others, but also with themselves, via the Hartree term. The Coulomb interaction of 

one electron with its own electron density is commonly referred to as “self-interaction”. 
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This term has a non-local mathematical formulation. In HF theory this is corrected by 

the exchange term, which exactly cancels the spurious Coulomb self-interaction. 

However in DFT we have a correction via the exchange functional that doesn’t exactly 

cancel the Coulomb interaction of each electron with its own charge density. This 

systematic error of DFT results in most cases in small qualitative errors in the solution; 

it does however have catastrophic consequences for systems with well localised 

electronic states. Such failure is linked to the functional form of the spurious self 

interaction term, which is proportional to: 

 

 1 2

12

( ) ( )r r
r

ρ ρ
 (3.44) 

and scales as 1/r12. 

When r12 is small (localised electrons) the error is large; in practice, the DFT energy is 

lowered by reducing r12 ie. by increasing electronic localisation. In strongly correlated 

systems, this change is often accompanied by a change of the ground electronic state 

from insulating to conducting, and large errors in the calculated electron density and 

energy. Obviously, the inability to estimate the correct ground electronic state for a 

class of systems is a serious drawback of DFT. 

The self-interaction problem is tackled by a number of methods that try to introduce an 

orbital-independent, non-local term in the DFT equations, that eliminates the spurious 

self-interaction effects. One such method is given by hybrid HF/DFT functionals, where 

a fraction of HF exchange can be combined to the DFT to compensate for the spurious 

self-interaction, and is discussed in more detail in section 3.5. It should be noted that the 

exact amount of HF exchange to be included in the hybrid depends on the system of 

study and on the particular observables we aim to calculate. The effect this has on the 

ability to reproduce experimentally derived data is interesting to study and will be 

looked at during this work. 

 

3.4 Wavefunctions vs Densities 

 

The fundamental difference between HF and DFT is that DFT optimises (in a 

variational sense) the electron density, while HF optimises a wavefunction. To 
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determine a particular molecular property using DFT, we need to know how this 

property depends on the density. However, to determine the same property using a 

wavefunction we need to know the correct quantum mechanical operator. This leads to 

an advantage of HF over DFT as there are more well characterised operators then there 

are generic property functionals of the density.  

Another of the main factors that could influence the choice of one method over the other 

lies in the computational efficiency of the two. If the number of basis functions used to 

represent the orbitals is N, DFT scales no worse than N3. This is faster than HF theory 

by a factor of N and significantly better than other methods that, like DFT, include 

electron correlation[32]. With regards to correlation, DFT is clearly superior as 

correlation is not included at all in the HF method. 

 

 

3.5 Hybrid DFT/HF Methods 

 

Within strongly correlated systems we have discussed how the lack of self-interaction 

correction to the Hartree term is a limitation to the accuracy that can be achieved by 

LDA and GGA functionals. Only when an explicit orbital dependence is included in the 

DFT formulation can the electron self-interaction be corrected. This problem has been 

tackled via several methods such as the self-interaction corrected (SIC) LDA[33, 34], 

exact exchange (EXX)[35] functionals and the LDA+U[36] method. Hybrid density 

functionals are another way to correct the self-interaction error. Hybrid functionals 

make use of the HF theory, in which the self-interaction cancellation between Coulomb 

and exchange contributions is exact. Combining DFT and HF formulations of the 

exchange forces provides a method of reducing the extent of the self-interaction error. 

For the work carried out in this PhD, it is this HF-DFT method that we make use of. 

The advantage of this method lies in its convenience. As the one electron forms of HF 

and DFT in the Kohn-Sham formulism (3.40) hold the same shape, it is straightforward 

to combine the two. This way we are taking advantage of computational tools that are 

already in place, although hybrid exchange cannot be justified on first-principles, and 

needs an empirical treatment. 
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The first hybrid exchange functional was introduced by Becke who made use of the 

adiabatic connection formula to show how to continuously transform the HF into the 

DFT formulation of the exchange functional. The exchange and correlation functional in 

hybrid exchange methods can be generally written as: 

 

 (1 )hyb HF DFT DFT
xc x x cE E E Eα α= + − +  (3.45) 

 

Here the parameter α is varied in order to achieve the most accurate result for a given 

system or observable. The first hybrid exchange formulations are the Becke half and 

half functional where α=0.5[37], and the three-parameter B3LYP functional[38] (that 

was actually first derived as B3PW, but transferred from the PW to the LYP correlation 

functional without changes). The parameters of B3LYP, including α, have been fitted to 

structure and thermochemistry of molecular databases. Attempts to define α from first 

principles also exist, such as the PBE0 hybrid exchange proposed by Perdew. 

Inclusion of the HF exchange in order to accomplish, to some extent, self-interaction 

correction into the DFT formalism has reportedly achieved a noticeable improvement in 

results over standard DFT. While hybrid exchange functionals are now accepted as the 

best performing DFT choice for molecules, the situation is still less clearly defined for 

solids. A first systematic attempt at assessing the performance of hybrid DFT for solids 

is described by Cora et al.[39]. In this extensive review, the properties of hybrid 

exchange functionals in describing crystalline solids was presented, with a particular 

emphasis on transition metal compounds. A consistent study of the structural and 

electronic properties of several compounds was performed for a range of HF-DFT 

hybridisation steps. Clear trends were found in these properties with the most important 

being that the inclusion of HF exchange increases the degree of electronic localisation 

in the solution. This causes a systematic increase in the ionicity of the materials, a 

systematic decrease of the lattice parameter and increase of the elastic constants and 

bulk moduli. The important result was that whenever HF and standard (LDA/GGA) 

DFT functionals yield systematic errors with opposite sign with respect to experiment, 

“the formulation of hybrid functionals improves the accuracy of the calculations”. This 

is the case for band gaps, magnetic coupling constants, phonon spectra and all 

properties that depend on the extent of electronic localisation at perfect or defective 

lattice sites. It was found that this was particularly important at lattice defects that break 
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the translational symmetry of the crystal as, in this case, non orbital-dependant DFT 

functionals appear unable to localise the defect states. This is true of even simple 

matrices as MgO. Importantly it was also found that the best percentage of HF exchange 

included in the formulation differs depending on a combination of the system and 

property under investigation. High weights of HF exchange always ensured 

convergence of the solution to the correct ground electronic state which was not always 

true of low HF components (<20% HF exchange). Generally the optimum weight of HF 

exchange for a solid-state specific hybrid functional is higher than the 20% optimised in 

the B3LYP formulation for molecular species and much closer to Becke’s half and half 

hybrid with 50% HF exchange. 

The hybrid HF-DFT functionals are now the most accurate available[40], they are the 

method of choice for quantum mechanical calculations in particular in strongly 

correlated systems. In this thesis work we shall build on results presented in ref.[39], to 

consider new solids and observables of practical interest. 
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Chapter 4 - Basis Sets 
 

In the description of the Quantum Mechanical methods given in Chapter 3, a difficulty 

has been neglected. To solve the Hartree Fock or Kohn-Sham equations in practice, we 

must produce a mathematical representation of the one electron orbitals. This is 

accomplished via the definition of basis functions, ( )j rθ , that describe real space. The 

ensemble of function jθ chosen is called a basis set.  The HF or KS orbitals can be 

written generically as a linear combination of these basis functions: 

 

 
1

( ) ( )
M

i ji j
j

r c rφ θ
=

= ∑  (4.1) 

 

Here there is a sum running over all basis functions up to the size of the basis set, M, 

and cji are the expansion coefficients of the ith orbital. To obtain the exact electronic 

wavefunction it would require a complete basis set; in practice an infinite number of 

basis functions, which is not computationally possible. Therefore, a suitable choice of 

finite basis set needs to be used. There are several forms of basis set of which the most 

commonly used to study solids are planewaves and Gaussian-type orbitals, described in 

the following subsections. 

 

4.1 Plane Wave Basis Sets 

 

In a periodic system there are an infinite number of electrons; by using Bloch’s theorem 

we can treat this infinite system of electrons as a system of periodically repeated unit 

cells where equivalent electrons in neighbouring cells are related to one another by a 

phase factor. 

 

 .
, ( ) ( ) ik r

j k jr u r eΨ =  (4.2) 
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where   

 ( 1) ( )j ju r u r+ =  (4.3) 

 

k is a wavevector confined to the first Brillouin Zone and uj(r) is a periodic function 

which describes the periodicity of the potential (in this case the periodicity of the crystal 

lattice). It is clear from equation (4.2) that a suitable choice of basis set is formed by 

plane waves eik.r, which directly satisfy Bloch’s theorem, and have the added advantage 

of being orthonormal, making the calculation of integrals required in the Schrödinger or 

Kohn-Sham equations trivial. 

In general, any function in real space can be written as the Fourier transform of a 

function in reciprocal space. Due to the periodicity of ( )ku r  there are two implications. 

First, the vectors of this Fourier transform are restricted precisely to the reciprocal 

lattice vectors, G. Secondly, the Fourier transform becomes a Fourier series[41]. The 

wavefunctions for the different eigenstates, j, can be written as: 

 

 . ( ).
, ,( ) ik r i k G r

j k j k
G

r e c Geφ += +∑  (4.4) 

 

In theory one requires an infinite number of k-points, but in practice the values of the 

wavefunction at two points in reciprocal space are identical if sufficiently close. One 

can then therefore calculate the wavefunction using a finite number of k-points. 

Furthermore, a free electron with wavevector (k+G) has energy: 

 

 
2 2

2

( )
8c

h k GE
mπ
+

=  (4.5) 

 

This means that the size of a basis set formed by plane waves can be defined by just one 

parameter, the cutoff energy. The advantage over other forms of basis set is that the size 

can be adjusted via just one parameter. The truncation of the basis set will ultimately 

lead to an error in the computed physical quantities but the advantage is that this error 

can be decreased by just increasing the cutoff energy. In other forms of basis sets where 

the basis functions are not orthogonal, such as with Gaussians, increasing the number of 

basis functions can lead to over completeness.  
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The problem with Plane Waves is that they are solutions to the Schrödinger equation in 

the presence of a constant potential. Close to the atomic nuclei the external potential is 

far from constant and cannot be described by a single Plane Wave. Therefore a large 

number of Plane Waves must be used to describe these regions correctly. One solution 

to this issue is to describe the region with rapidly varying density around the nuclei with 

a Pseudopotential (see section 4.3). 

 

4.2 Gaussian Basis Sets 

 

In 1950 S.F. Boys[42] made a big step in making computational calculations more 

feasible with the introduction of Gaussian-type orbitals. Gaussians have the great 

advantage that all the three and four centre Coulomb integrals can be computed 

analytically. The Gaussian-type orbitals are of the form: 

 

 
2

( ) ( ) ( ) ( ) cr ri j k
cijk c c cr r x x y y z z e αθ − −− = − − −  (4.6) 

 

In this equation (xc, yc, zc) are the Cartesian coordinates of the centre of the Gaussian at 

rc, α is a positive exponent and i, j and k are non-negative integers. The numbers i, j and 

k determine the angular dependence of the Gaussian, they are related to the angular 

quantum number of the solutions of the H atom. When they sum to zero we have an s-

type Gaussian, when they sum to one we have a p-type and when they sum to two we 

have a d-type Gaussian and so on. The biggest advantage of GTO’s is that the product 

of two Gaussians at different centres is equivalent to a single Gaussian function centred 

at a point between the two. Therefore the two-electron integrals (necessary to compute 

both HF and DFT Hamiltonians) on three and four different atomic centres can be 

calculated analytically. One disadvantage of GTO’s lies in the fact that they are not 

orthonormal, and may give rise to spurious effects, such as the one known as the basis 

set superposition error (BSSE)[43]. Two atoms in a spatial proximity will have 

overlapping basis functions, resulting in atoms “borrowing” basis functions from nearby 

atoms to describe their own electronic density, thus achieving a better variational 

description in molecules (or solids) than when isolated. Therefore, as a result of the 
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BSSE, the basis set quality will depend on the geometry of the system, which can be 

particularly problematic. 

 The Gaussian basis functions contain exponents α that can be optimised variationally; 

given a number of Gaussian functions, they can therefore be chosen to be of optimal 

form for the system under investigation. The basis sets with their optimised exponents 

can then be used for performing calculations. The simplest type of basis set is called a 

minimal basis set where one function is used to represent each of the occupied orbitals 

of a given atom. The problem with the minimal basis sets is that they are not flexible 

enough to describe molecules and solids where electrons participate in chemical 

bonding and become polarised. Therefore, we need extensive basis sets to achieve better 

accuracy. We can improve upon this situation in two ways; the first is by using double-

zeta or triple-zeta basis sets. Here each basis function in the minimal basis set is 

replaced by two or three basis functions respectively. There is also a split-valence basis 

set which is a compromise between achieving a better accuracy than with a minimal 

basis set but also reducing the larger computational cost required with double and triple-

zeta basis sets. This describes each valence atomic orbital by two basis functions while 

each inner-shell atomic orbital is represented by a single basis function. The second way 

of improving the basis set quality, known as adding polarisation functions, is to add 

Gaussians which describe orbitals which are unoccupied in the atom in order to provide 

an accurate description of polarisation. 

The relative simplicity of the algebra of Gaussian functions makes them a favourite 

basis set; however, they are too smooth (they have zero derivative at the origin) in 

correspondence of the nuclei. The correct solutions for the H atoms, to which atomic 

orbitals make reference, are discontinuous at the nucleus where the wavefunction has a 

cusp. This situation is reproduced by an exponential decay, e-αr. A basis function of this 

form is referred to as a Slater type orbital. However, multi-centre integrals cannot be 

calculated analytically with Slater orbitals. A solution consists in combining Gaussian 

and Slater-type orbitals: for each AO, especially in the core region, we use not a single 

GTO, but a linear combination of GTO’s, in such a way as to reproduce the nuclear 

cusp, but retaining the possibility of calculating integrals analytically. Such linear 

combinations of Gaussians are known as STO-nG, where n indicates the number of 

Gaussian-type orbitals combined linearly to reproduce one Slater-type orbital. 
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Another method is to use fixed linear combinations of primitive Gaussians, where the 

coefficients and exponents are optimised to reproduce the atomic ground state orbitals at 

a level of theory, such as HF. These are known as contracted Gaussian-type orbitals. 

As the contraction coefficients are fixed, contraction basis functions are most useful to 

represent core orbitals. A large advantage of contracted Gaussian-type orbitals is that 

they count as a single basis function and hence the size of the Hamiltonian matrix is 

enormously reduced. 

 

4.3 Pseudopotentials 

 

Pseudopotentials were developed with the aim of keeping the simplicity of the plane 

wave approach but attempting to solve the problem of the non-constant potential close 

the nuclei. This was first tackled by considering the fact that most properties of crystals 

depend mostly on the valence electrons and very little on the core electrons. There is 

also very little overlap between their respective wavefunctions. We can therefore say 

that the distribution of the core electrons does not change if the atoms were moved to a 

different chemical environment. The most common pseudopotential approach is 

therefore one where the core electrons are assumed to be frozen and the core electron 

distribution of the isolated atom is kept in the crystal environment. Here we 

immediately have the useful advantages of having less eigenstates of the HF and KS 

equations to be calculated and less electrons have to be treated. This treatment also 

largely reduces the energy scale meaning that energy differences between atomic 

configurations are numerically more stable. 

Pseudopotentials are therefore based on two observations; firstly, the core states are not 

crucial for describing chemical bonding and secondly, a good description of the wave 

functions inside the core region is not absolutely necessary. The idea of replacing the 

ionic core potential with a pseudopotential came into light. Here the nucleus is 

described together with its core electrons to simplify the approach.  

Pseudopotentials can be employed with plane waves, but also with the Gaussian-type 

orbitals discussed previously.  
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Chapter 5 - Choice of Computational Code 
 

In Chapter 3 we have seen that mathematical tools exist for solving the many-body 

problem. These have now been incorporated into several computational codes which 

allow the user to perform Quantum mechanical calculations on molecules, solids and 

surfaces. Some of these include WIEN2k[44], VASP[45-47] and GAMESS-UK[48]. In 

this PhD, the CRYSTAL06[49] code has been used, which has been developed 

primarily at the University of Torino and the Daresbury Laboratory. CRYSTAL06 is 

used to compute the electronic structure of periodic systems within Hartree Fock (HF) 

and Density Functional Theory (DFT). The code also allows the use of several 

exchange and correlation functionals as well as HF and DFT hybrid mixing. This code 

was chosen largely for this feature, as it is the platform that offers the most efficient 

implementation of hybrid exchange for systems described under periodic boundary 

conditions. This PhD has involved studying strongly correlated materials, and the 

implementation of hybrid HF to DFT mixing has been shown provide improved 

accuracy without greatly increasing computational cost. To date, most studies of the 

structural and electronic properties of perovskite materials have been performed using 

hybrid functionals built on the Becke exchange with the LYP correlation functional (the 

B3LYP case optimised for molecules being a special case of this series). In this work 

we studied the effect of using various ‘user defined’ hybrid functionals on the prediction 

of electronic and structural properties of copper containing perovskites. 

CRYSTAL06 allows the use of many tools to assist in obtaining the required data from 

first principles calculations. Some of the tools which have been important and used 

throughout the calculations performed in this PhD are outlined in the following 

subsections. 

 

5.1 Self-consistent mixing techniques 

 

We have seen, in section 3.3.1, how the Kohn-Sham equations are solved self-

consistently. However, one cannot simply take the output density after one cycle and 

put it directly into the next cycle. We can see this if we first denote the deviation from 
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the correct density at any cycle as δn. We can then say that the error in the output 

density to linear order in the error in the input, near the solution, is given by: 

 

  

 ( 1)( )out out inn n n n nδ χ= − = + −  (5.1) 

 

where: 

 

 1
out out in

in in in

n n v
n v n

δ δ δχ
δ δ δ

+ = =  (5.2) 

 

The function, χ , can be calculated. Clearly the best choice for the new density is one 

that would make the error zero[27]. If we know all parts of (5.1) then it can be solved to 

find the ground state density, n: 

 

 1 ( )in out in
i i in n n nχ−= − −  (5.3) 

 

If (5.3) were exact we would arrive at the solution and the SCF cycle would stop, but it 

is not exact.  

The CRYSTAL06 code allows the use of two different mixing techniques which have 

been used throughout this PhD, linear mixing and the Broydon method. 

 

5.1.1 Linear Mixing 

 

The simplest approach to calculating the best fraction of the output density to put back 

in for the next cycle, is known as linear mixing. This expression enables the calculation 

of an improved density to put back in as 1
in
in + at cycle 1i + : 

 

 1 (1 ) ( )in out in in out in
i i i i i in n n n n nα α α+ = + − = + −  (5.4) 

 

which only works if α<1. 
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5.1.2 Broyden Mixing 

 

There are several iterative methods currently available to improve SCF convergence. 

One of the most sophisticated methods developed is Broyden’s quasi-Newton-Rhapson 

method[50, 51]. The main advantage of this technique is that the self-consistent 

procedure is generally completed with far fewer iterations than that achieved with linear 

mixing. Here, at each iteration i, the input density for the next cycle is given by an 

equation analogous to (5.3) except that χ is replaced by the approximate Jacobian: 

 1
1 ( )in in out in

i i i i in n J n n−
+ = − −  (5.5) 

 

The Jacobian is determined using the secant equation (finite difference equation); see 

reference [52] for further information. 

Since then Srivastava[53] improved upon this by deriving a method that avoids NxN 

matrix storage issues as well as multiplications. With this method only m vectors of 

length N are required where m is the number of iterations. Although this method proved 

successful it does have one drawback, as it not only allows the current iteration to 

update the inverse Jacobian, but it can also override information from previous 

iterations arbitrarily with information from the current iteration. Vanderbilt and 

Louie[54] created a modified version of Broyden’s method in which information from 

all previous cycles is included. This method showed improvements over the standard 

Broyden method but does not address the problem of NxN matrices. It was Johnson[55] 

who modified this method to eliminate the problem of the large NxN matrices to obtain 

a similar computational scheme to Srivistana. Here the advantages of both the methods 

are incorporated into one. Figure 5.1 shows a comparison of the linear mixing and 

Broyden methods in converging on energy. In this case we can see how the Broyden 

method approaches the convergence energy difference much faster than the smoother 

linear mixing approach (using Broyden the convergence criteria is satisfied in under 70 

cycles where the linear mixing method needs more than 600 iterations). 
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Figure 5.1 Convergence on energy using the Broyden and linear mixing methods under the 

same convergence criteria. This is an example from one of our calculations on CoSeO3. 

 

 

5.2 Analysis of the Electronic Density 

 

Much information can be gained from the electronic wavefunction resulting from a 

calculation performed using CRYSTAL06. In particular, the density of states and 

Mulliken charges have been of interest during this work. These are outlined below.  

 

5.2.1 Population Analysis 

 

One of the possible ways in which the electronic wavefunction can be analysed is to 

calculate a population analysis. This is beneficial as the derivation of the atomic charges 

allows a simple description of the bonding in the system examined. Various methods 

have been developed to perform such analysis. In general we can distinguish two types 

of charges, static and dynamic. 
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The static charges are usually based on the partitioning of the ground state electronic 

density in contributions attributed to the various atoms. While for an isolated atom the 

charge is a well defined concept, it is not the same for a polyatomic system, where the 

result obtained depends on the arbitrary choice made during the attribution of an 

electron to a certain atom. 

On the contrary, the dynamic charges are directly connected to the change of 

polarization resulting from an atomic displacement. As this change of polarization is in 

theory measurable in experiments (ie. in infrared spectroscopy intensities), a dynamic 

charge is easily interpretable. 

During this PhD we have been interested in static charges for which we have used the 

method known as the Mulliken population analysis. 

 

5.2.2 Density of States 

 

It can be frequently useful to obtain information regarding the density of states (DOS) 

of a given system. The DOS describes the number of states at each energy level that are 

available to be occupied. It can be given as unit energy, E, or per unit volume, Ω. 

 

 , ,
,

1( ) ( ) ( )
(2 )

cell
i k i kd

i kk BZ

E E dk E
N

ρ δ ε δ ε
π
Ω

= − = −∑ ∫  (5.6) 

 

In (5.6) ,i kε is the energy of an electron (or phonon). (5.6) is the number of independent 

particle states per unit energy. 

The DOS can be combined with the Mulliken population analysis to yield contributions 

from single atoms (or orbitals) to the energy states in a given interval; this is known as 

projected DOS or p-DOS. 

 

5.2.2.1 Mulliken Charges 

 

This method of population analysis was developed in 1955 by Mulliken[56] and can be 

readily applied to calculations employing local basis sets, such as STO’s and GTO’s. 
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This analysis provides the total effective number of electrons in each atomic orbital and 

thus the values for the effective charge on each atom. This is done by calculating the 

atomic charge in each element of the density matrix Pij and dividing it equally among 

the two atomic orbitals involved i and j. The electronic charge in each atom is then the 

sum of the contributions from all the atomic orbitals of its basis set. Let us see how this 

is done in practice. 

First, the electrons are divided up amongst the atoms according to the degree to which 

different atomic orbital basis functions contribute to the overall wavefunction[32]. If we 

write the total number of electrons, N, as: 

 

 ( ) ( )j j
j

N r r drψ ψ= ∑  (5.7) 

 

and use the expansion of jψ  in terms of atomic orbitals defined in Chapter 4 - we 

obtain: 

 

 
,

2

( ) ( )

     =

jr j js s
j r s

jr jr js rs
j r r s

N c r c r dr

c c c S

φ φ

≠

=

⎛ ⎞
+⎜ ⎟

⎝ ⎠

∑∑

∑ ∑ ∑
 (5.8) 

 

In (5.8) r and s index basis functionφ , and S is the overlap matrix derived in section 

3.2; jrc is the coefficient of basis function r in the molecular orbital j. Mulliken 

suggested that the electrons associated with the single basis functions in (5.8) belong 

only to the atom relevant to that basis function. Electrons shared between basis 

functions are placed equally on the two atoms corresponding to r and s. If we also 

divide the basis functions up over atoms, k, we can calculate the atomic population, Nk 

via: 

 

 2
k

,
N = jr jr js rs

j k r k r k s k
c c c S

∈ ∈ ∈ ∈

⎛ ⎞
+⎜ ⎟

⎝ ⎠
∑ ∑ ∑  (5.9) 

 

Consequently we can then define the Mulliken partial atomic charge: 
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 k k kq Z N= −  (5.10) 

 

where Z is the nuclear charge. 

This method is obviously just an approximation and hence has shortcomings. Firstly, we 

have assumed that each basis function can be associated with an atomic centre. 

Therefore if we use basis functions that are not centred on the nuclei it is not applicable. 

Secondly, the Mulliken method is heavily basis set dependent, but provides useful 

qualitative information on bonding in the system studied.  
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Chapter 6 - Perovskites 
 

A perovskite is any material with the same crystal structure as that of the natural 

mineral, calcium titanium oxide (CaTiO3), originally found in the ural mountains of 

Russia in 1839 by Gustav Rose. This mineral was named after the Russian mineralogist, 

L. A. Perovski. 

Perovskites have the general formula ABZ3, where A and B are cations of different 

sizes (A larger than B) and Z is the anion. The B ions can be 3d, 4d or 5d transition 

metal ions taking an octahedral coordination. The perovskite structure is displayed by 

many oxides, several of which have technological applications. The properties required 

for such applications are strongly dependent on the coordination and connectivity of 

ions in the perovskite structure, making it important to be well understood. 

 

6.1 Structure and Distortions 

 

In this section we first discuss the ideal perovskite structure, before moving on to look 

at deviations from the ideal form and the reasons behind these structural distortions. 

Distortions within the perovskite structure reduce the symmetry, which is essential for 

producing the interesting magnetic and electric properties observed in eg. the 

ferroelectric tetragonal form of BaTiO3[57]. There are many reviews of perovskites, 

with examples being found in the following references [58-62]. In this chapter we 

describe a sample of the literature on perovskites with the aim of highlighting some of 

the most interesting and relevant work to set out the context of this PhD and assist with 

the understanding of the following chapters. 

 

The ideal perovskite structure crystallises with cubic symmetry in the Pm3m space 

group. The A cation in the perovskite structure is 12-coordinated and the B cation is 6-

coordinated. The structure can be looked at as being a network of corner shared BZ6 

octahedra where all B-Z-B angles are 180ο. However, it is common to have deviations 

from the ideal structure and stoichometry. In fact the ideal perovskite structure is quite 

rare and even the mineral perovskite itself has some distortion. The idealised perovskite 
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cubic structure is typified not by CaTiO3 but by SrTiO3 (space group Pm3m, 

a=3.905Å). This is displayed below in Figure 6.1. In SrTiO3, Sr2+ occupies the A site in 

12 fold coordination and Ti4+ ions are on the B site forming a 3D corner sharing 

network of TiO6 octahedra.  

 

 
Figure 6.1 Ideal cubic structure of the perovskite SrTiO3. The corner sharing TiO6 octahedra is 

visible as are the Sr2+ ions in twelve fold coordination, shown in blue. 

 

The anion, Z in the perovskite structure is often oxygen, but perovskites containing 

other anions such as F-, Cl- or S2- are also known. 

Partial occupation of the A or B site is also a possibility. For example, partial 

occupation of the A site is realised in the cubic tungsten bronzes AxWO3 (A=alkali 

metal, 0.3 ≤ x ≤ 0.93). This is discussed later. 

As mentioned earlier, it is common to observe perovskites which display deviations 

from the ideal structure. There are several factors that can drive distortions in the 

perovskite lattice which we shall now discuss. Firstly, the deviation can be rationalised 
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by size effects. In this case structural distortions are dictated by the ratio of A and B 

ionic sizes, and electronic configuration of the metal ions. Two main distortion types are 

observed, one linked with the off-centering of the B ions in the BZ6 octahedra, the other 

with tilting of the BZ6 octahedra in the structure. If we first consider the ideal cubic 

case, the lattice parameter a0 is related to the ionic radii, RA, RB and R0 by the following 

equation: 

 

 0 0 02( ) 2( )A Ba R R R R= + = +  (4.1) 

 

 

This allows us to define the Goldschmidt tolerance factor, t,  as: 

 

 0 0( ) / 2( )A Bt R R R R= + +  (4.2) 

 

which rationalises the distortion. Cases with t < 1 give rise to tilting modes, while 

materials with t > 1 show B off centering modes. The ideal cubic phase requires t=1. 

The ideal perovskite SrTiO3 has a tolerance factor very close to the ideal value of 1 

which explains its stability in the cubic phase. Another example of a perovskite with t=1 

is KFeF3. Examples of perovskites with t<1 include CaTiO3, GdFeO3 (t=0.81) and 

SrZrS3. This occurs due to a smaller than ideal A cation, which causes a tilting of the 

BZ6 octahedra. Such a distortion leads to a closing up of the dodecahedral interstices. 

The A cation may also relax towards a side of the dodecahedral interstice to further 

reduce the AZ equilibrium bond distance. Examples of perovskites with a tolerance 

factor >1 include instead BaZrO3, BaNiO3 and CsGeCl3 where t=1.04, 1.13 and 1.03 

respectively. This situation is achieved by combining a large A and small B ion, which 

leads to a contraction of the BZ6 octahedra. In this case hexagonal variants of the 

perovskite structure are also stable, which include some degree of face sharing between 

BZ6 octahedra leading to the formation of cavities where the A ions fit better. BaNiO3 

can be said to be of ideal hexagonal type with only hexagonal stacking of the close 

packed layers. However, many perovskites exist with different sequences of hexagonal 

and cubic close packed layers. 
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It should be noted here that the tolerance factor equation assumes purely ionic bonding. 

As perovskites are not truly ionic, the tolerance factor serves only as an estimate.  

 

Symmetry lowering distortions in perovskites may also be dictated by electronic effects, 

such as Jahn-Teller distortions of open shell transition metal ions. Perovkites containing 

ions with an odd number of electrons in the eg orbitals for instance will experience this 

effect, including high spin d4 Mn3+ and Fe4+ and d9 ions eg. Ni3+ and also Cu2+. 

Structural distortions driven by Jahn-Teller active ions at the B site are known for 

several perovskites; an example is AMnO3 (where A=Ln, Pr and Nb). Here, Mn3+ ions 

with high-spin 3d4 configuration are subject to a Jahn-Teller distortion that causes an 

axial elongation of the MnO6 octahedra. An extreme case of Jahn-Teller distortion is 

given by d9 ions such as Cu2+. Cu2+ are rare in perovskite materials, though examples 

exist such as CaCu3Ti4O12 (CCTO) and CuSeO3 (which are of central interest to this 

thesis) where the strong stability of the Cu2+ in square planar coordination drives the 

structural distortion. In CCTO the Cu2+ ions occupy the 12 coordinated sites and drive a 

tilting of the TiO6 octahedra to achieve this coordination environment. In CuSeO3, 

instead, Cu2+ is in the octahedral sites, and originates a Jahn-Teller distortion of the 

CuO6 octahedra. We can also observe distortions of perovskites containing either a d0 

transition metal (Ti4+, Nb5+, W6+ etc.) or a lone pair cation (with a polarisable s2 outer 

valence shell occupied, such as Pb2+, Bi3+, Sn2+, Se4+, Te4+ etc.) where the distortion has 

been attributed to second order Jahn-Teller effects[63-69]. For octahedrally coordinated 

d0 transition metals, the empty d orbitals of the metal mix with the filled p orbitals of 

the ligands upon off centering of the metal in its coordination octahedron. In the case of 

lone pair cations it is believed that the interaction of the s and p-orbitals of the metal 

cation with the oxide anions is critical for lone-pair formation[70-75]. This has an 

important consequence on the structure as the lone pair pushes the cation off-centre in 

the 12 coordinated sites, generating an electric dipole in the structure. An example of 

the latter distortion is observed in CuSeO3 where the lone pair of the SeO3
2- ions creates 

SeO3 trigonal pyramidal units. The distortion observed in CuSeO3 is thus due to a 

combination of the lone pair chemistry of Se4+ and the stability of Cu2+ in square planar 

environment. 
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Figure 6.2 The unit cell of CuSeO3, displaying the square planar coordination of Cu2+ (blue) and 

the SeO3 trigonal pyramidal units (oxygen in red and selenium in green). 

 

 

Another factor that can cause distortions in perovskites involves changing the 

composition from the ideal ABZ3. Possibilities for this lie in anion or cation 

deficiencies. Examples of A ion deficient materials are common in the family of 

bronzes, obtained by partial intercalation of alkali metal or other very electropositive 

ions (A) in the empty dodecahedral interstices of group 6 trioxides (WO3 and β-MoO3). 

The bronzes have the composition AxBO3. An interesting example of these is NaxWO3 

as by increasing x, and hence the fraction of W reduced to 5+ oxidation state, leads to 

an increased conductivity. Conductivity, in the W bronze, NaxWO3 is controlled by the 

single parameter, x[76], which is a simple example of how the electronic properties of 

perovskites can be controlled by chemical modification. An example of Z deficient 

perovskite can be found in SrFeO3-x[77, 78] which is often substoichiometric due to the 

presence of O vacancies. Anion vacancies can in general be achieved by doping with 

low valent ions, partial reduction of the transition metal or by heating a sample in a 
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reducing environment. It has been shown that the oxygen content in SrFeO3-x varies 

between 2.5 and 3 (ie. x ranges between 0 and 0.5); x also corresponds to the fraction of 

Fe ions in 3+ oxidation state. At high values of x the oxygen vacancies order so that 

FeO5 pyramids are formed. The SrFeO3-x compounds are examples of defect perovskites 

important for oxygen ion conduction since the process of vacancy hopping is the most 

common mechanism for this property. 

Because the perovskite structure is very common among transition metal compounds, it 

is relatively easy to form solid solutions in which either (or both) the cation positions 

are occupied by 2 or more types of ions. Such solid solutions can be disordered, for 

instance in a number of compounds with interesting dielectric properties such as PZT 

(PbZr1-xTixO3) and PMN (PbMg1/3Nb2/3O3)[79] or ordered. The latter case is found in 

the class of double perovskites, A2BB’Z6 that contain stoichiometric amounts of the two 

B ions which are strictly alternating in the octahedral sites, with examples such as 

Sr2FeMoO6[80] and Bi2MnNiO6 or K2NeAlF6. Ordered solid solutions at the A site are 

also known, with a relevant example being CCTO. Here the A sites are occupied by ¼ 

Ca and ¾ Cu ions in long-range ordered alternation. In CCTO it is possible for the 

octahedra to tilt in such a way that there exists a square planar coordination for three 

quarters of the A cations explaining the observed stability of the 3:1 ratio of Cu2+ and 

Ca2+ ions. In this case the Cu atoms are four coordinated with the O atoms and a square 

is formed with a Cu atom at the centre. To produce the square planar A sites a large tilt 

is needed; in CCTO the Ti-O-Ti angles are reduced from the ideal180ο to 141ο.  
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Figure 6.3 Perovskite structure of CCTO showing the tilting of the octahedra. The Calcium and 

Copper atoms in green and pink sit on the A and A’ sites respectively. The Titanium atoms are on 

the B site in grey (in the middle of the octahedral) and the Oxygens atoms occupy the Z sites in red. 

  

6.2 Properties of Perovskites 

 

We have seen how the variations in structure in terms of defects and distortions 

combined with the perovskites ability to accommodate nearly every element of the 

periodic table can give rise to a great variety of structures. In turn many exhibit some 

interesting and often unique properties, that can be modified by any of the structural 

distortions or chemical modifications discussed in section 6.1 above. 

 

6.2.1 Dielectric Properties 

 

The dielectric properties of perovskites have been studied in detail since the discovery 

that perovskites such as BaTiO3 and PbTiO3[81] possess unusually high dielectric 

constants. This feature is desired for, amongst other things, capacitative components in 
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microelectronics. The high dielectric constant of PbTiO3 and BaTiO3 is based on 

collective polar displacements of the metal ions (on the B site of the perovskite) with 

respect to the oxygen sublattice and hence is linked to ferroelectricity. 

Another group of perovskite-structured materials which exhibit large dielectric 

constants of practical interest are known as relaxor ferroelectrics. These are examples of 

disordered solid solutions, such as PbZn1/3Nb2/3O3-xPbTiO3[82] and PbMg1/3Nb2/3O3-

xPbTiO3 (PMN), which not only show large dielectric constants but also a pronounced 

frequency dispersion and a variation of the dielectric constant as a function of 

temperature. 

Giant dielectric constant materials have now found great importance for use in device 

implementation eg. as metal-oxide semi-conducting field effect transistors 

(MOSFET’s). In such cases the dielectric constant will ultimately determine the 

miniaturisation of such components. It is the perovskite CaCu3Ti4O12[83] that currently 

displays the largest known dielectric constant of ~104-105[84-86]. The mechanism 

behind this property is not yet clear, with a barrier layer capacitor model being one of 

the possible origins claimed in the literature. Another example is the Li-ion conductor 

compound La0.67Li0.25Ti0.75Al0.25O3[87]. 

 

6.2.2 Ferroelectricity, Ferromagnetism and Multifeorroicity 

 

A ferroelectric crystal exhibits a spontaneous electrical polarisation that can be switched 

by the application of an electric field. Such behaviour is observed in BaTiO3, 

SrTiO3[88] and KNbO3[89] as well as other perovskites. In the case of BaTiO3, this 

behaviour can be attributed to the t>1 factor (t=1.06). which means that the Ti4+ ion is 

slightly too small for the octahedral void of the structure, and can rattle in the octahedral 

interstice. Neighbouring Ti4+ ions will undergo similar displacements resulting in the 

formation of a net dipole and a macroscopic polarisation if the ferroelectric state is long 

range ordered. Ferroelectric materials have two stable minima where the macroscopic 

polarisation is in opposite directions which can be switched via the application of 

external electric fields. These two states can be denoted 0 or 1 which recalls the Boolean 

algebra based on the binary arithmetics on which computers are built. A single bit of 

memory can be based on a 0 or a 1 and hence ferroelectric materials find use in memory 
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devices[90]. The study of these materials has increased rapidly over the last decade due 

to the realisation that such phenomenon can be hugely beneficial for device 

implementation. Other than in memory devices such applications include tranducers 

(due to their piezoelectricity) and capacitors (due to their high dielectric 

permittivity)[12]. 

A ferromagnetic crystal exhibits instead a spontaneous magnetisation, which arises 

through the presence of open shell transition metal ions with with parallel spin 

polarisation, and can be switched by the application of a magnetic field. Similarly to 

materials displaying ferroelectric behaviour, ferromagnetic materials have received 

attention over the last decade due to their potential use in technological applications. 

This behaviour has been observed in several perovskites, including CuSeO3. As well as 

displaying ferroelectric behaviour, BiMnO3 has also been confirmed to be 

ferromagnetic in the same phase. Such a material is described as being multiferroic. 

Nickel iodine boracite Ni3B7O13I was the first ferromagnetic ferroelectric material to be 

discovered[91]. This was followed by a synthesis of several more multiferroic boracite 

compounds. 

Multiferroic magnetoelectrics are extremely rare. An explanation for this lies in the fact 

that, in general, the transition d metal ions (which are essential for magnetism) reduce 

the tendency for off-centre ferroelectric distortion. Therefore, an additional structural or 

electronic driving force must be present for ferroelectricity and ferromagnetism to exist 

simultaneously[12]. Magnetoelectric Multiferroics are heavily sought after as these 

combined properties open up a whole new set of possibilities for technological 

application. As well as being a ferromagnet, CuSeO3 has also been claimed to display 

ferroelectricity, and hence is classed as a multiferroic[92]. 

 

6.2.3 Semi-Conductivity, Conductivity and High T Superconductivity 

 

Many perovskites exist that exhibit a range of interesting and useful conducting 

properties. For example KNbO3 exhibits semi-conducting properties. Many perovskites 

have been found to display conducting properties which can be rationalised  by 

examining the electronic configuration of the B ion. eg. SrTiO3 with d0 Ti4+ ions is 

insulating since it does not have any electrons in the conduction band. On the other 
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hand LaNiO3 with the d7 Ni3+ and LaCuO3 with d8 Cu3+ are both conductors. A 

particularly interesting example is LaCoO3 where the d6 configuration will cause a split 

in the conduction band between the filled t2g and the eg orbital leading to an insulator at 

the ground state. 

High temperature superconductivity presents a fascinating area of perovskite research 

since the discovery, decades ago, that some pervoskites exhibit superconductivity at 

high temperatures (high Tc). In fact the structure of high Tc cuprates contain perovskite 

structured sub-units which are responsible for the electronic properties. 

The first discovered high Tc was the perovskite-related material La2-xBaxCuO4[93]. 

 

The perovskite structure is clearly common to a range of multifunctional materials of 

which a few representative examples are summarised in Table 6.1. 

 

Table 6.1 Examples Perovskites exhibiting some of the many intereting physical properties 

available to the structure. The table includes some potential practical applications of such 

materials. 

Structure Physical Property Possible/Actual Application 

PbZe1-xTixO3 Piezoelectric Ultrasound 

CaCu3Ti4O12 Dielectric Resonators 

Pg3MgNb2O9 Dielectric Capacitors 

BaTiO3 Ferroelectric Computer Memory 

SeCuO3 MultiFerroic Memory Devices 

Ba1-xLaxTiO3 Semi-Conductor Transistors 

Y0.33Ba0.67CuO3-x Superconductor Medical Imaging 

SrTiO3 Insulator Microelectronics 

BaInO2.5 Ionic Conductor Electrolyte in Solid Oxide Fuel Cells 

Ba2MgTa2O9 Highest Melting Point Space Craft 
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Chapter 7 - AA3’B4Z12 Type Perovskites 
 

7.1 Cu3CaTi4O12 (CCTO) 

 

The main aim of modern microelectronics has been to deliver increasingly smaller, 

faster and cheaper devices. These devices are made from semiconductors using a 

process known as photolithography, a process used in microfabrication to selectively 

remove parts of a thin film or the bulk of a substrate by using light to transfer a 

geometric pattern from a photomask to a light-sensitive chemical on the substrate. The 

semi-conductor industry as a whole has relied on the continuous improvement in circuit 

performance. For this to happen, the components of these circuits have had to achieve a 

continuous reduction in size. In particular it has been decrease in the size of the key 

component, the metal oxide semi-conductor field effect transistor (MOSFET) which has 

enabled the use of more transistors on a given chip and hence increased power and 

speeds[94]. A MOSFET consists of two semi-conducting parts separated by a dielectric 

insulator (or gate dielectric). There are more complex designs, but for the purposes of 

this chapter the simple schematic displayed below adequately describes the MOSFET 

design. 

 

 
Figure 7.1 Pictorial representation of an N-channel MOSFET. The gate dielectric is located below 

the metal gate contact. 
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The gate dielectric material that has allowed the success in miniaturisation so far has 

been silicon dioxide, SiO2. The transistors have decreased in size owing to the reduction 

in thickness of the silicon dioxide gate down to about 1.5nm. A limitation to this 

reduction has now been reached in the form of leakage current flowing through the 

structure of the metal-oxide semiconductor via a quantum mechanical tunnelling 

mechanism[95, 96]. Furthermore, it has been shown that the tunnelling probability 

increases exponentially as the thickness of the silicon dioxide is reduced[97]. This 

material has therefore run its course as the material of choice for capacitive 

componentry. In order to decide on the best way forward it is best to start by looking at 

the capacitance of a parallel plate capacitor (the gate oxide in a MOSFET can be 

modelled as such). The capacitance, C, is given by: 

 

 0k A
C

t
ε

=  (7.1) 

 

where 0ε is the permittivity of free space (a constant), A is the capacitor area, k is the 

relative dielectric constant of the material used (eg. silicon dioxide) and t is the 

thickness of the capacitor oxide insulator. As we have now reached a limit for reducing 

t, another way to increase the capacitance is to use a material with a higher k value. For 

this reason there have been many recent efforts in investigating potential high-k gate 

dielectrics. As a number of oxides with the perovskite structure are known for their 

remarkable ability to exhibit high dielectric constants, these have been heavily targeted 

as new gate dielectric materials. However, dielectric constants higher than 1000 are 

mostly associated with field induced phase transitions at morphotropic phase 

boundaries, and the magnitude of k displays a peak as a function of environmental 

conditions such as temperature, which is clearly not ideal for most applications. 

The perovskite-related oxide CaCu3Ti4O12 (CCTO)[83] has recently attracted attention, 

due to the material (in ceramic forms) showing an extraordinarily high dielectric 

constant at room temperature of about 104-105[84-86]. This high k value also shows 

good stability over the large temperature range from 100 to 600K. The dielectric 

constant abruptly drops by three orders of magnitude to a value of around 100 upon 

lowering the temperature below 100 K. This reduction of k shows a Debye-like 

relaxation with a single relaxation time. No structural or ferroelectric transition has been 
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observed in this temperature range, which is unlike common ferroelectric ceramics. The 

absence of ferroelectric like distortions has been attributed to the tilting of TiO6 

octahedra for the accommodation of the unusual square planar Cu ions on the A sites.  

 

 
Figure 7.2 Image of CCTO displaying the tilting of the TiO6 octahedra (in green). 

 

It has been suggested that the dielectric behaviour of CCTO is intrinsic (where the drop 

would be measured in a perfectly stoichometric, defect-free, and single-domain crystal 

of CCTO), while others believe it is due to extrinsic effects, such as twin boundaries 

structure, Maxwell-Wagner relaxation[98], as well as barrier layer capacitor (BLC) 

effects. Amongst the proposed mechanisms, arguments in support of intrinsic effects 

have almost been eliminated, and it is the BLC model that has proved most popular. 

However, the atomic level mechanism for the BLC behaviour is yet to be confirmed. 

The BLC requires semi-conducting grains separated by insulating boundaries. BLC’s 

are of use in assisting the miniaturisation of circuits due to their small size and large 

capacitance[99, 100]. It is the semi-conductive BaTiO3 that has largely dominated the 

field of BLCs, with fabrication enabling one to obtain extremely high capacitance per 

unit area. To obtain BLCs, a two step sintering process is required: firstly the ceramics 

are sintered into a semi-conductive state by firing them in a reducing atmosphere. The 

surfaces of the semi-conductive discs can be reoxidised to form surface BLC’s by either 

annealing the semiconducting ceramics in air or in oxygen atmosphere at a temperature 

lower than the sintering temperature. Otherwise, some metal oxides can be printed on 
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the surfaces of the semiconducting ceramics and then diffused into the grain boundary 

to create an insulating boundary layer, leading to a second phase BLC[101]. The second 

phase BLC’s contain all the desired features of a good capacitor. However, there are 

some rather large drawbacks of this type of capacitor, including poor reproducibility 

and complicated multistage processing routes required. If the high dielectric constant of 

CCTO can be confirmed to be due to the BLC model and hence associated with an 

intrinsic feature of the crystal structure, this would mean that BLC’s could be formed 

without needing to apply the aforementioned two step sintering process. The main 

advantage of CCTO in this respect is that the electrical microstructure can be developed 

in a single processing step in air. 

 

The structure of CCTO was determined from neutron powder diffraction data fourty 

years ago[102] and has since been confirmed and refined in the space group Im3 (No. 

204)[84]. CCTO’s crystal structure is body-centred cubic with four ATiO3 perovskite 

units per primitive cell. Here, Calcium and Copper share the A site, Titanium occupies 

the B site and Oxygen is on the Z site. The CCTO structure is shown in Figure 7.3. 
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Figure 7.3 Unit cell of the body centred cubic perovskite CCTO, in the Im3 space group. 

The TiO6 octahedra are shown in blue. Ca ions in green and the Cu ions are in pink. 

 

From neutron diffraction experiments, CCTO has been confirmed as an 

antiferromagnetic insulator, with a Neel temperature TN=25K and Weiss constant, θw=-

34K. The 40 atom crystallographic unit cell is also the primitive cell of the spin 

structure, which is double the primitive 20 atom cell of a non-magnetic CCTO structure. 

 

 

7.1.1 Computational Study of Bulk CCTO 

       

As clear from the discussion of section 7.1, the structural and electronic features of bulk 

CCTO are well known by experiment. However, its electronic properties leading to the 

high dielectric constant and possibly to BLC effects are less well understood. One of the 

aims of our study was to obtain a complete set of quantitative data on the structural and 

electronic properties of CCTO. The study was performed using CRYSTAL06, which 

enables the use of hybrid functionals within DFT. Cu2+ is a typical ‘strongly correlated’ 
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ion, with well localised electronic states which provide a challenge for local DFT; 

CCTO is therefore suitable to test hybrid exchange functionals. Throughout this study I 

have used three different DFT formulations, namely the LDA, BLYP[29, 30] and 

PBE[31] exchange-correlation functionals. It is known that, despite its simplicity, the 

LDA produces accurate results for properties of metallic solids. However it has been 

reported to overestimate binding energies by up to 20-30% and severly underestimate 

bond distances for insulating solids resulting in over compressed geometries. GGA 

functionals such as PBE and BLYP were designed to improve on the weaknesses of the 

LDA but do fail to tackle the self interaction problem, which is addressed by the 

inclusion of the orbital-dependent HF exchange. 

HF, DFT and various exchange-correlation functionals have different abilities in 

reproducing experimentally derived properties of materials. We therefore aim to 

produce a complete set of data for bulk CCTO, covering a full range of HF to DFT 

mixing for the LDA, PBE and BLYP exchange-correlation functionals. We then aim to 

understand the trends produced from the calculations and perform a quantitative 

comparison to experimentally derived values for different properties of CCTO. In 

particular we want to conclude on the best hybrid exchange functionals for producing 

accurate lattice parameters and bond distances, magnetic coupling constants (Neel 

Temperatures) and Bulk moduli. Given that different fractions of HF to DFT mixing 

and hybrid functionals will perform differently in describing various properties of bulk 

CCTO, it is a range of initial starting conditions that we wish to conclude on. We can 

then use this information to enable a more efficient study of more complex situations 

such as the surfaces of CCTO. By ultimately looking at the surfaces of CCTO we hope 

to shed further light on the mechanism behind the observed dielectric constant, and to 

confirm speculations and atomic level mechanisms responsible for the BLC behaviour. 

 

7.1.1.1 Computational Details. 

 

The DFT exchange-correlation contribution was evaluated by numerical integration 

over the unit cell volume. Radial and angular points of the grid were generated through 

Gauss-Legendre radial quadrature, and Lebedev two-dimensional angular point 

distributions. A pruned grid with 75 radial and 974 angular points was used for all 
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calculations. Truncation thresholds of (10-7, 10-7, 10-7, 10-7, 10-14) were employed for the 

selection of integrals in the Coulomb and exchange series[103], while SCF convergence 

thresholds were set to 1.0x10-7 Hartree for both eigenvalues and total energies. These 

convergence thresholds ensure high numerical accuracy for  the calculations[103, 104]. 

Geometry optimizations were repeated until internal consistency was achieved upon 

restart, and have been checked against the root-mean-square (RMS) and absolute value 

of the largest component for both gradients and nuclear displacements[49]. The 

Gaussian basis sets used to describe the crystalline orbitals were obtained from the 

online library of CRYSTAL06[105] and are included in the appendix. The initial lattice 

parameter and fractional coordinates of the unit cell were those derived experimentally 

by Subramanian et al[84]. 

Integration of the wavefunction in the irreducible Brillouin Zone (IBZ) of reciprocal 

space is required to calculate the electron density; this integration is replaced by a 

numerical sum over a finite number of k points. It is necessary to make an appropriate 

choice on the number of k points required as to limit computational expense but 

represent the properties as accurately as possible retaining numerical accuracy[49]. Test 

calculations using the PBE hybrid functional with 40% HF exchange were performed 

using Pack-Monkhorst grids for integration in reciprocal space, with k-point nets of 4 x 

4 x 4  and 8 x 8 x 8; results are displayed in Table 7.1. It can be seen that the structural 

and electronic properties are identical in the two cases. It is therefore sufficient to use a 

4 x 4 x 4 k point sampling grid, which is the value chosen for all our subsequent 

calculations. 
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Table 7.1 Comparison of the structural and electronic properties of CCTO using two different k 

point grids. Calculations performed using hybrid exchange built on the PBE functional with 40% 

HF exchange.  a0 is the equilibrium lattice parameter in Å; XO and YO are the fractional 

coordinates of the O ions (the other coordinates are fixed by space group symmetry); R is the 

equilibrium bond distances in Å; ∆E is the energy difference between FM and AFM structures in 

mH; q are the net atomic charges and Spin are the spin atomic charges both in |e| for each ion 

calculated with a Mulliken partition scheme. 

 

k-points a0 XO YO RCu-O R'Cu-O RCa-O RTi-O ∆E qCu qo qTi SpinCu SpinO 

4x4x4 7.356 0.3024 0.1809 1.971 2.761 2.592 1.947 0.00018 1.74 -1.43 2.54 0.798 0.028 

8x8x8 7.356 0.3024 0.1809 1.970 2.761 2.593 1.947 0.00017 1.74 -1.43 2.55 0.802 0.029 

 

 

7.1.1.2  Geometry Optimisations for the FM and AFM phases of bulk CCTO 

 

Calculations on the bulk structure of CCTO were performed using the LDA, PBE and 

BLYP exchange-correlation functionals each with a variable fraction of HF exchange, 

ranging from 0% to 100% in 20% increments. Such calculations are not 

computationally expensive, but as it is likely that there will be a smooth change of the 

calculated properties as a function of the fraction of HF exchange, a more extensive 

sampling of hybrid exchange mixing is unlikely to be necessary. 

The FM and AFM structure of CCTO were both studied for the complete range of 

hybrid functionals, in order to conclude on the most stable magnetic phase and provide 

an FM and AFM energy difference to enable the calculation of the magnetic coupling 

constants. Full geometry optimisations have been performed for both FM and AFM 

magnetic structures; however the equilibrium geometry of the two phases is usually 

identical to within the numerical thresholds used in our geometry optimisations. 

The results for this extensive set of calculations are reported in Table 7.2-7.7. All values 

are displayed as a function of HF exchange (HF%). Gaps in the results are present due 

to the difficulty in converging calculations using high fractions of HF exchange in the 

AFM phase. 
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Table 7.2 Results for the FM phase of bulk CCTO, using hybrid exchange functionals built on the 

LDA functional. Symbols and units as in table 7.1. 

HF% a0 XO YO RCu-O R'Cu-O RCa-O RTi-O ∆E qCu qo qTi SpinCu SpinO 

0 7.307 0.3038 0.1763 1.927 2.766 2.567 1.945 5.81 1.57 -1.31 2.34 0.531 0.106 

20 7.309 0.3032 0.1782 1.940 2.757 2.570 1.940 0.88 1.64 -1.37 2.44 0.669 0.074 

40 7.315 0.3028 0.1799 1.953 2.750 2.576 1.938 0.25 1.72 -1.41 2.52 0.777 0.034 

60 7.325 0.3022 0.1814 1.966 2.747 2.582 1.937 0.08 1.78 -1.47 2.62 0.859 0.033 

80 7.336 0.3016 0.1827 1.979 2.745 2.587 1.937  1.81 -1.50 2.69 0.901 0.023 

100 7.349 0.3011 0.1839 1.991 2.745 2.593 1.937  1.84 -1.54 2.76 0.927 0.018 

 
Table 7.3 Results for the AFM phase of bulk CCTO, using hybrid exchange functionals built on the 

LDA functional. Symbols and units as in table 7.1. 

HF% a0 XO YO RCu-O R'Cu-O RCa-O RTi-O qCu qo qTi SpinCu SpinO 

0 7.306 0.3039 0.1761 1.926 2.766 2.566 1.945 1.56 -1.31 2.34 0.497 0.088 

20 7.309 0.3032 0.1782 1.940 2.757 2.571 1.940 1.63 -1.36 2.44 0.667 0.075 

40 7.315 0.3028 0.1799 1.953 2.750 2.577 1.938 1.72 -1.42 2.53 0.783 0.051 

60 7.325 0.3022 0.1814 1.966 2.747 2.582 1.937 1.78 -1.47 2.62 0.860 0.035 

 
Table 7.4 Results for the FM phase of bulk CCTO, using hybrid exchange functionals built on the 

BLYP functional. Symbols and units as in table 7.1. 

HM% a0 XO YO RCu-O R'Cu-O RCa-O RTi-O ∆E qCu qo qTi SpinCu SpinO 

0 7.523 0.3030 0.1786 2.001 2.836 2.646 1.996 3.15 1.57 -1.33 2.41 0.557 0.094 
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20 7.462 0.3028 0.1797 1.991 2.807 2.627 1.978 0.55 1.65 -1.39 2.49 0.692 0.069 

40 7.414 0.3025 0.1807 1.985 2.783 2.612 1.962 0.18 1.73 -1.43 2.56 0.795 0.041 

60 7.374 0.3021 0.1817 1.981 2.764 2.600 1.949 0.08 1.78 -1.47 2.63 0.865 0.032 

80 7.339 0.3017 0.1825 1.978 2.748 2.588 1.938 0.05 1.81 -1.50 2.69 0.903 0.023 

100 7.309 0.3014 0.1830 1.974 2.734 2.578 1.929  1.84 -1.53 2.74 0.925 0.018 

 
Table 7.5 Results for the AFM phase of bulk CCTO, using hybrid exchange functionals built on the 

BLYP functional. Symbols and units as in table 7.1. 

HF% a0 XO YO RCu-O R'Cu-O RCa-O RTi-O qCu qo qTi SpinCu SpinO 

0 7.522 0.3030 0.1785 2.000 2.836 2.645 1.996 1.57 -1.33 2.41 0.537 0.087 

20 7.462 0.3028 0.1797 1.991 2.807 2.627 1.978 1.65 -1.39 2.49 0.690 0.070 

40 7.414 0.3025 0.1807 1.985 2.783 2.612 1.962 1.72 -1.43 2.57 0.797 0.048 

60 7.374 0.3021 0.1817 1.981 2.764 2.600 1.949 1.78 -1.47 2.63 0.865 0.033 

80 7.339 0.3017 0.1825 1.978 2.748 2.588 1.938 1.82 -1.50 2.69 0.903 0.025 

 

 
Table 7.6 Results for the FM phase of bulk CCTO, using hybrid exchange functionals built on the 

PBE functional. Symbols and units as in table 7.1. 

HF% a0 XO YO RCu-O R'Cu-O RCa-O RTi-O ∆E qCu qo qTi SpinCu SpinO 

0 7.456 0.3031 0.1786 1.982 2.810 2.623 1.978 3.25 1.59 -1.34 2.41 0.563 0.092 

20 7.401 0.3027 0.1798 1.975 2.783 2.606 1.961 0.57 1.66 -1.39 2.49 0.699 0.067 
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40 7.356 0.3024 0.1809 1.971 2.761 2.592 1.947 0.18 1.74 -1.43 2.54 0.798 0.028 

60 7.320 0.3020 0.1818 1.968 2.743 2.580 1.935 0.07 1.79 -1.47 2.62 0.869 0.030 

80 7.286 0.3015 0.1827 1.965 2.727 2.569 1.924   1.83 -1.50 2.68 0.906 0.022 

100 7.256 0.3014 0.1835 1.962 2.711 2.561 1.914   1.85 -1.53 2.73 0.928 0.017 

 

Table 7.7 Results for the AFM phase of bulk CCTO, using hybrid exchange functionals built on the 

BLYP functional. Symbols and units as in table 7.1. 

HF% a0 XO YO RCu-O R'Cu-O RCa-O RTi-O qCu qo qTi SpinCu SpinO 

0 7.455 0.3031 0.1785 1.981 2.810 2.623 1.978 1.59 -1.34 2.40 0.543 0.085 

20 7.401 0.3027 0.1798 1.975 2.783 2.606 1.961 1.66 -1.39 2.49 0.697 0.068 

40 7.356 0.3024 0.1809 1.970 2.761 2.592 1.947 1.74 -1.44 2.56 0.803 0.047 

60 7.320 0.3020 0.1819 1.968 2.743 2.580 1.934 1.79 -1.47 2.62 0.870 0.032 

 

 

Let us now discuss these results, highlighting trends and commenting on how the 

calculated data compare to experiment.  

 

7.1.1.3 Structural Properties 

 

Table 7.2-7.7 provide structural data for CCTO calculated using the hybrids built on the 

LDA and GGA (BLYP and PBE) functionals over a complete range of HF to DFT 

hybrid exchange mixing for the FM and AFM phases. Firstly we examine the trend in 

the equilibrium lattice parameter, and compare the results with the experimentally 

derived value. The structure is imposed in these calculations to belong to the Im3 cubic 
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body-centered space group as derived from experiment. We have however performed Г-

point phonon calculations after each geometry optimisation to confirm that this choice 

is a proper minimum with respect to symmetry lowering distortions. Depending on the 

choice of functional and amount of HF used, the equilibrium lattice parameter is 

predicted to range between 7.523 and 7.256Å, and is shown in Figure 7.4. 

 

 
Figure 7.4 Equilibrium lattice parameter against the fraction of HF exchange for the 

BLYP, PBE and LDA functionals. 

 

Here we can see that the LDA functional, having never been tested in hybrid functionals 

before, over-compresses the geometry and lets it expand slightly as the component of 

HF exchange is increased. It can be seen that the LDA never actually allows the lattice 

parameter to expand enough to achieve the experimental value of 7.391Å[84]. This is a 

very different behaviour to the two hybrids built on the GGA functionals, which can be 

seen to overestimate the lattice parameter at the pure DFT limit, and to compress the 

geometry as the component of HF exchange is increased. It can also be seen from the 

above graph that the BLYP and PBE functionals show trends which are identical, but 

shifted by a constant magnitude due to the BLYP functional overestimating the lattice 

parameter more than PBE. It is also interesting to see that the LDA shows a much 

smaller change in lattice parameter over the range of HF exchange than that of the GGA 

functionals. 
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It should be noted here that the trends show very smooth curves for all results; hence 

sampling at 20% increments in the fraction of HF exchange was sufficient to extract the 

required information.  

It is clear from Figure 7.4 that the best range of hybrid functionals in reproducing the 

known experimental lattice parameter of CCTO lies within the BLYP and PBE 

functionals at a fraction of HF exchange of approximately 30-60%. 

 

To further analyse the structure we now discuss the equilibrium bond distances. The Ti 

cations are sixfold coordinated by equidistant oxygens, with a bond length (RTi-O) 

predicted to be between 1.914 and 1.996Å depending on the functional and amount of 

HF exchange used. The Ca atoms are surrounded by 12 equidistant oxygens, with bond 

distances (RCa-O) predicted in the range 2.561-2.646Å, again depending on the 

functional and amount of HF exchange. This regular environment is as expected for A 

cations in the ideal perovskite structure. However, the tilted octahedra do result in a 

very different environment for each Cu ion, which is coordinated by a planar 

arrangement of 4 nearest neighbour O atoms with distances between 1.926-2.001Å (RCu-

O), 4 oxygens at a distance of between 2.711-2.836Å (R’Cu-O) and 4 oxygens at a much 

further distance of more than 3Å, which we do not discuss here. The exact prediction 

depends on the choice of exchange-correlation functional and amount of HF included in 

the theory. 

To examine these trends the Cu-O, Ti-O, and Ca-O bond distances have been displayed 

in Figure 7.5, Figure 7.6 and Figure 7.7. 
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Figure 7.5 Shortest Copper-Oxygen bond distances against the fraction of HF exchange 

for the difference hybrid functionals examined. 

 

 
Figure 7.6 Titanium-Oxygen bond distances against the fraction of HF exchange for the 

different hybrid functionals examined. 
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Figure 7.7 Calcium-Oxygen bond distances against the fraction of HF exchange for the 

different hybrid functionals examined. 

 

The corresponding Cu-O, Ti-O and Ca-O bond distances obtained via experiment[84, 

102] are 1.968, 1.961 and 2.604Å respectively, and are marked by the continuous 

horizontal lines on the above graphs.  

It is clear that despite reports of the LDA producing good results for metallic solids with 

delocalised electrons, it tends to underestimate bond distances in materials with well 

localised electronic states such as in CCTO. 

It can be seen here that the different bond distances show trends different from the 

lattice parameter and from each other as a function of HF exchange. Most noticeably, 

the Ti-O bond distance is underestimated with respect to experiment by the LDA, but 

instead of allowing the distance to expand as more HF is introduced we see a change of 

opposite sign. 

Individual bond distances are best reproduced by different hybrid functionals with 

differing amounts of HF exchange. Therefore the most accurate formulation to 

reproduce experimentally derived structural data must be obtained as a compromise 

among cell and fractional parameters. As the equilibrium lattice parameter has been 

discussed above, let us now examine the bond distances, starting with Cu-O. From 

Figure 7.5 it can be seen that this is reproduced using the LDA and PBE hybrid 

functionals with approximately 60% HF exchange. Similarly from Figure 7.6 and 
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Figure 7.7 it can be deduced that the BLYP and PBE functionals best describe the Ti-O 

and Ca-O bond distances between approximately 20-40% and 20-60% HF exchange 

respectively. 

 

It is also of interest to compare the ratio of the Ca-O/Ti-O, Cu-O/Ti-O and Ca-O/Cu-O 

bond distances, in order to see the effect of the HF exchange on the relative size of the 

ions. As commented earlier in Chapter 4, relative ionic sizes play a fundamental role in 

describing distortions of the perovskite structure via the tolerance, t and are therefore of 

interest also for CCTO. 

 

 
Figure 7.8 Changes of the Ca-O/Ti-O, Cu-O/Ti-O and Ca-O/Cu-O ratios of bond distances 

as a function of HF exchange calculated using the BLYP functional, with respect to the 

pure DFT limit, taken as reference.  

 

It can be seen in Figure 7.8 that there is a relative increase in size of the calcium and 

copper ions, with respect to titanium, as more HF exchange is introduced. This is due to 

the self-interaction in DFT; in this case, the self interaction affects the electron density 

on the oxygen, which is delocalised over the covalent Ti-O bonds as opposed to the 

calcium or copper ions which are more ionic. As a consequence the titanium ions in the 

pure DFT solution acquire electron density and appear relatively large in size. The 

introduction of HF exchange corrects for this effect, leaving less d electrons on the 
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titanium ion, and leading to a relative decrease in the size of titanium compared to 

copper/calcium. This finding is consistent with studies of other perovskite structures 

such as Barium Titanate[39], and is confirmed by a Mulliken population analysis of the 

electron density (Table 7.2-7), which shows that titanium becomes increasingly more 

ionic on increasing the HF exchange component. 

 

 

Having successfully converged bulk calculations for CCTO, the bulk modulus of the 

material was then studied. This was obtained by calculating the total energy as a 

function of unit cell volume and by fitting the calculated energy values to the 3rd order 

Birch Murnaghan equation of state (EOS)[106]. The study was done by performing 

several calculations, each with a fixed lattice parameter at values chosen in increasing 

steps of 0.05Ǻ around the value deduced from the full geometry optimisations. This set 

of calculations was repeated using each of the hybrid functionals discussed earlier. 

An example of an energy-volume curve, from which the bulk moduli were derived, is 

shown in Figure 7.9 for the F0.6PBE functional. Throughout the range of results, steps 

were taken to reduce numerical noise; the numerical accuracy achieved can be clearly 

seen in the smoothness of the curve in Figure 7.9. 

 

 
Figure 7.9 Total energy against lattice parameter using PBE with 60% HF exchange. 
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Fitting data similar to those of Figure 7.9 for the full range of hybrid functionals 

(BLYP, PBE and LDA) provided the bulk modulus data, displayed in Figure 7.10. 

 

 
Figure 7.10 Bulk modulus of CCTO as a function of HF exchange for the BLYP, PBE and 

LDA hybrid functionals. 

 

The values predicted by the LDA series are clearly overestimated and show little change 

on varying the fraction of HF exchange; the overestimation is associated with the 

overbinding of the LDA. In contrast the BLYP and PBE functionals show an increase in 

bulk modulus on increasing the fraction of HF exchange. The LDA has been shown 

previously in this report, to expand on various bond distances and the equilibrium lattice 

parameter with increasing HF. Since the value of B is defined as: 
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and is inversely proportional to the equilibrium volume, an expansion of V0 would be 

expected to cause a decrease of B. We notice however that the bulk modulus increases, 

indicative of the lower electronic polarisability and hence higher electronic hardness on 

increasing HF exchange. 
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7.1.1.4  Electronic Properties 

 

Let us now discuss the electronic structure of CCTO. All the values discussed in this 

section refer to the equilibrium structure for each of the hybrid functionals examined. 

Firstly, it can be seen in the columns reporting the spin on the copper and oxygen ions 

in Table 7.2-7.7, that the spin is most evenly spread out over the atoms for the pure DFT 

solution; as we increase the percentage of HF exchange the spin is increasingly 

localised on the copper. For example, let us consider Table 7.6, which reports the FM 

phase of CCTO using the PBE exchange-correlation functional. For 0% HF exchange 

we have a spin of 0.56|e| localised on the copper and 0.09 on each of the oxygen atoms; 

at 100% HF most of the spin is on the copper (0.93 unpaired electrons) with only 0.017 

unpaired electrons on the oxygen atoms. This is due to the fact that the solution with a 

localised charge is unstable in DFT because of the self-interaction error and the energy 

is lowered by delocalising charge, leaving us with a metallic solution, which is the 

incorrect ground state. 

This trend can be seen pictorially by plotting a spin density map in the plane containing 

one copper and its four nearest oxygen ions. The spin density map, in Figure 7.11 

below, shows how the spin on the copper and oxygen atoms varies as the percentage of 

HF to DFT mixing is increased. Note the smaller number of isodensity lines on the 

oxygens for the solution with 100% HF exchange compared with the 0% case. 

 

 
Figure 7.11 Spin density maps for increasing HF to DFT mixing using the PBE hybrid 

functional. Isodensity density lines drawn between -0.1 and 0.1 au. at intervals of 0.01. 
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The magnetic structure is a second observable influenced by the spin localisation. 

Magnetic superexchange is defined as the electronic interaction between two spin 

polarised ions mediated by a common ligand[107]. In CCTO we have copper ions 

interacting with one another via a central oxygen ion. In DFT, this interaction is 

overestimated as it gives a more covalent distribution, which allows a more efficient 

superexchange. This can be readily seen in tables 7.2, 7.4 and 7.6, in the column 

reporting energy differences (ΔE) between the AFM and FM phase. In the pure DFT 

solution the energy difference is greatest and it decreases as more HF exchange is 

introduced, moving closer to the correct solution until it then begins to overcorrect. This 

can be seen more clearly in Figure 7.12 below. 

 

 
Figure 7.12 AFM and FM energy difference against the fraction of HF exchange for the 

BLYP, PBE and LDA functionals. 

 

Here we can also see that the two GGA exchange-correlation functionals show almost 

identical results, while the LDA overestimates the experimental value more than the 

GGA’s. We should note here that this is the typical dependence of ΔE on the HF 

fraction that we expect to see for a superexchange type of interaction[39].  
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The experimental value of the energy difference between FM-AFM phases has been 

derived using the mean field approximation for the Neel temperature (known from 

transport, Raman and neutron diffraction experiments as 25K)[108-110]. From Figure 

7.12 it is possible to see that the FM-AFM energy difference is reproduced most 

accurately at around 25-30% HF exchange by all three hybrid functionals. 

 

From the change in FM and AFM energies reported in Table 7.2-7 it is possible to 

deduce the coupling constant of CCTO and therefore the Neel temperature predicted by 

the theory. 

 

The magnetic order temperature can be derived using the Ising model and using the spin 

for Cu2+ as ½. The energy of the different magnetic phases is given by: 

 

 0 0
,

1
4

z z
ij i j ij

i j ij

E E J S S E J= + = + ±∑ ∑  (7.3) 

 

where E0 is the reference energy of a hypothetical phase in which the spin-spin 

interaction is excluded and i and j are nearest neighbour magnetic ions, that interact 

with an effective magnetic coupling constant Jij. 

Since each pair of nearest neighbour ions in the FM phase have parallel spins and in the 

AFM phase they have antiparallel spins, the energy for FM and AFM states can be 

expressed as: 

 

 0 4FM ij
nE E J= +  (7.4) 

 

 0 4AFM ij
nE E J= −  (7.5) 

 

 

where n is the number of nearest neighbour pairs of Cu ions in each unit cell. Further 

neighbours do not need to be included as the coupling constant J decreases rapidly with 

the distance between the ions i and j.  
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In the CCTO unit cell there are three copper atoms, each of which has four nearest Cu 

neighbours, giving twelve pairs which needs to be halved to count each interaction only 

once. By subtracting equations (7.4) and (7.5) and by replacing n=6 we have: 

 

 3 4 0.5 3
2FM AFM ij

x xE J J−Δ = =  (7.6) 

                                           

The AFM energy used here is the one corresponding to a primitive unit cell of material, 

consisting of one CaCu3Ti4O12 formula unit.  

As mentioned previously, Transport, Raman and Neutron diffraction experiments 

indicate that CCTO has a Neel temperature of 25K. The experimental J value can then 

be extrapolated from this by using the mean field approximation for temperature 

induced magnetic order and taking into account thermal fluctuations[111] leading to the 

following equation:  

 

 
22.25

N
b

S JT
k

≈  (7.7) 

 

 

where the spin, S, on Cu2+ is ½.  

 

It should be noted that, from the results analysed so far the electronic properties of 

CCTO are described almost identically by the three hybrid functionals throughout the 

range of Hartree Fock exchange. Atomic charges, spin and the change in AFM to FM 

energies are deduced to be very similar when described by BLYP, PBE and the LDA. 

Therefore we can say that it is only the percentage of HF exchange which is important 

in describing the electronic properties of a material, in contrast to the equilibrium 

structure discussed earlier, which showed a clear dependence both on the fraction of HF 

exchange and the type of exchange-correlation functional used. 

 

If we take the BLYP functional as an example, throughout the range of 0-100% HF 

exchange, equation (7.7) predicts the Neel temperature to be in the range of 2-100K. 

The most accurate description is obtained using the F0.2BLYP, which gives TN=22K. As 
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the energies we are dealing with are relatively small, it follows that there may be large 

numerical errors associated with calculations which use them. Therefore the Neel 

temperature predicted from QM calculations and the mean field approximation can be 

considered as reasonably accurate for a wide range of HF exchange, covering between 

20 and 60% HF percentage.   

 

It has been suggested in the literature[112] that the AFM ordering of spins in CCTO can 

be attributed to a superexchange involving Cu-O-Ti-O-Cu paths as displayed in Figure 

7.13. 

 

 
Figure 7.13 Unit cell of CCTO displaying the Cu-O-Ti-O-Cu superexchange mechanism proposed 

as the reason for an AFM ground state. The Cu atoms are in square planar coordination with 

oxygen and are displayed in blue. The Ti4+ ions are in octahedral coordination with oxygens and are 

displayed in green. 

 

However our calculations show that this is unlikely to be the case since the spin moment 

localised on the Ti4+ cation is negligible. This can be seen in the spin density plot 

calculated using the F0.4PBE functional, shown in Figure 7.14, which indicates that Ti is 

inactive in the spin-coupling mechanism. 
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Figure 7.14 Spin density on the Ti4+ ions of CCTO which are pictured looking down the 001 planes 

of the cubic unit cell. This was calculated using the F0.4PBE functional. Isodensity lines drawn 

between -0.1 and 0.1 au. in intervals of 0.01. 

 

Let us now discuss the density of states (DOS) plots, which can provide useful 

information on band gaps, and composition of states in the valence and conduction 

bands. Figures 7.15-7.18 show the calculated density of states for CCTO; we limit here 

to the range of HF exchange between 20 and 60% as this is when the calculated 

structure and electronic properties find better correspondence to experiment. 
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Figure 7.15 Density of States of bulk CCTO using the BLYP hybrid functional at 20, 40 

and 60% HF exchange from top to bottom. The projected DOS on the Ca, Cu, Ti and O 

basis set, and the total DOS are shown, with total divided by ten for ease of presentation. 



96 

 

 

It should be noted here that the states at the top of the valence band are predicted to be 

mostly from the oxygen atoms at 60% HF exchange; however, when the amount of HF 

is reduced, the copper atoms appear to make more of a contribution. The main 

composition of the DOS at the bottom of the conduction band is predicted to come from 

the titanium atoms with 60% HF exchange, changing to copper when the amount of HF 

in the formulation is reduced. In fact the results predict the minimum energy excitation 

to move from copper-copper to oxygen-copper and oxygen-titanium transitions at 20, 

40 and 60% HF exchange respectively. Figure 7.15 also shows how these calculations 

predict the occupied copper d states to shift down in energy, overlapping the oxygen 2p 

states when using more and more HF exchange. The solid changes therefore from a 

Mott Hubbard type insulator at 20% HF exchange to a charge transfer material at 60% 

HF exchange. Similar trends are observed for each of the DFT functionals examined, ie. 

BLYP (Figure 7.15), PBE (Figure 7.17) and LDA (Figure 7.18). 

 

The empty d states on the copper atoms can be seen in the energy range between 

approximately 0 and 0.2 Hartree. This is presented more clearly in Figure 7.16, which is 

an expansion of the bottom of the conduction band for the hybrid BLYP functionals.
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Figure 7.16 Density of states of CCTO bulk using the BLYP hybrid functional at 20, 40 

and 60% HF exchange in the energy range of -0.05 – +0.3 Hartree (bottom of the 

conduction band). 
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Figure 7.17 Density of States of CCTO bulk using the PBE hybrid functional at 20, 40 and 60% HF 

exchange from top to bottom. The projected DOS on the Ca, Cu, Ti and O basis set, and the total 

DOS are shown, with the total divided by ten for ease of presentation. 
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Figure 7.18 Density of States of CCTO bulk using the LDA hybrid functional at 20, 40 and 60% 

HF exchange from top to bottom. The projected DOS on the Ca, Cu, Ti and O basis set, and the 

total DOS are shown, with the total divided by ten for ease of presentation. 
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Figures 7.15, 7.17 and 7.18 provide further evidence for the similarity observed in the 

electronic properties of CCTO between the hybrid functionals built on the BLYP, PBE 

and LDA. For example, the band gap can be seen to increase as more HF exchange is 

introduced for the range of hybrid functionals used. The value of the band gap has 

similar magnitude in each case. The empty d states on the copper atoms also appear to 

shift in an almost identical way, independently of which local exchange-correlation 

functional is used for the DFT component. As an example of the magnitude of the band 

gap of CCTO; the gap calculated with the F0.4PBE functional is 6.19eV. 

 

7.1.1.5  Conclusions on bulk CCTO 

 

It is clear from our results that the choice of functional in DFT affects the prediction of 

the electronic and structural properties of a given system (in this case CCTO).  

It should be noted first that our choice of sampling different hybrid exchange 

functionals at discrete increments of 20% in the fraction of HF exchange is sufficient, as 

the results show smooth trends. 

The predicted electronic properties of CCTO show similar behaviour throughout the 

range of HF to DFT hybrid exchange mixing for the PBE, LDA and BLYP hybrid 

functionals. This suggests that for future calculations the choice of DFT functional is 

non-critical, but a good choice concerning the fraction of HF exchange is. In contrast, 

the structural properties of CCTO over the range of HF exchange displayed quite 

different behaviour depending on the choice of exchange-correlation functional. The 

LDA initially predicts an overcompressed geometry, allowing it to relax at a rate which 

is not rapid enough to reach the experimentally derived lattice parameter as the amount 

of HF exchange is increased. The two hybrids built on the BLYP and PBE GGA 

functionals do succeed in predicting the experimental value of structural properties such 

as the lattice parameter and copper-oxygen bond distances, starting from an oversized 

geometry and reducing it until it is eventually over compressed as more HF exchange is 

introduced. Even though the BLYP and PBE functionals show a similar trend, BLYP 

overestimates the PBE values of the lattice parameter throughout the range of HF 

exchange, and the shortest copper-oxygen bond distance is overestimated by 0.08Ǻ and 

0.02Ǻ respectively at the pure DFT limit. The choice of DFT functional, in the role of 
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reproducing experimentally derived structural properties of CCTO, is therefore 

important. 

Individual properties of CCTO, both structural and electronic, are described best using 

hybrid functionals with differing amounts of HF exchange. However, for each 

observable investigated here, hybrid exchange functionals always show a closer match 

to experiment than predicted by the corresponding pure-DFT study. In order to assess 

the best-performing functional it is necessary to find a suitable compromise in the 

description of each individual property. In this respect we note that the difference in the 

total energy of the FM and AFM structures is best predicted using hybrids with 

approximately 20% HF exchange. The bulk modulus is generally overestimated and is 

only described accurately using BLYP with almost pure DFT. The most accurate 

prediction for the lattice parameter and bond distances is made when using either PBE 

at approximately 20-30% HF exchange or BLYP at approximately 60% HF exchange. 

The LDA does not correctly describe the lattice parameter but makes an accurate 

prediction for the copper-oxygen bond distance at 80% HF exchange. 

Overall, the best compromise corresponds to hybrid exchange functionals built on the 

GGA exchange and correlation formulations of BLYP and PBE and a fraction of HF 

exchange between 20% and 60%. 

 

7.1.2 Surface Calculations 

 

The ability to study surfaces and interfaces is important as many interesting 

observations are made there. In the particular case of CCTO, the BLC model suggested 

to explain the high dielectric constant requires us to understand the electronic structure 

of surfaces and interfaces. Surfaces are typically complex, defective and often poorly 

characterised. Therefore, theory has a major role to play in characterising their 

properties. 

 

In order to investigate the unusual dielectric properties of CCTO, its surface was studied 

computationally using the same techniques employed for studying the bulk material and 

discussed earlier. The primary aim of these calculations was to deduce the correct 

ground electronic state of CCTO surfaces. All surface calculations have been performed 
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on the FM phase of CCTO, since it is computationally less expensive than the AFM 

phase, and it has been shown in the bulk to have an identical equilibrium structure. Only 

the functionals that have been found as best performing in the study of bulk CCTO will 

be employed here for the CCTO surfaces. These correspond to hybrid-exchange 

formulations built on the BLYP GGA description and including a fraction of HF 

exchange between 20% and 60%. This range is justified by our bulk calculations as it 

was shown to be the best performing in terms of reproducing experimentally derived 

properties on the bulk of CCTO. It was also concluded that the choice of exchange-

correlation functional, on which the hybrids were built, made little difference in terms 

of reproducing the electronic properties of the bulk. Therefore, only one of the two 

GGA functionals employed for bulk CCTO will be employed here to study the 

electronic properties of the surface. 

 

The calculations were performed taking the external 001 surface as the plane of study. 

A condition for surface stability is the absence of electric dipoles perpendicular to the 

surface; this is satisfied by the 001 orientation of CCTO in which subsequent planes 

have composition alternately of CaCu3O4 and TiO2, as shown in Figure 7.19. Each of 

these 001 planes is charge neutral. The 001 surface of CCTO can be cleaved to expose 

either a CaCu3O4 plane or a TiO2 one; in our work we have initially chosen the first 

option as it is here that the surface chemistry of the Cu2+ ions is most likely to affect the 

properties. 

 

Due the increased expense of surface, compared to bulk calculations it is important to 

choose an appropriate slab thickness; the slab should however include enough layers to 

yield converged surface properties. 
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Figure 7.19 001 planes of the CCTO structure in the z direction. 

 

In a surface study, CRYSTAL groups the atoms according to their coordinate (z) 

perpendicular to the surface orientation. When the CCTO unit cell is oriented in such a 

way as to have the z coordinate perpendicular to the surface orientation  (001 in our 

case), the atoms of the CaCu3O4 plane appear at the same z coordinate, while the TiO2 

layer has each atom at slightly non equal z values due to the tilting of the TiO2 

octahedra. In CRYSTAL terminology, each TiO2 001 plane comprises of 5 atomic 

layers. 

We performed calculations in which both slab surfaces terminate in a CaCu3O4 layer, 

and the slab comprises either a plane of symmetry or an inversion operation at the 

centre. This choice is essential to avoid the appearance of dipole moments perpendicular 

to the surface. The cations of the outermost layer are arranged as shown in Figure 7.20. 

The surface unit cell has three Cu ions in the outermost layer, which are labelled as 

Cu(2), Cu(3) and Cu(4). We compared initially the results obtained with slabs 19 and 25 
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atomic layers thick (corresponding to approximately 11.1 and 14.8 Å) to examine the 

convergence of surface properties. 

 
Figure 7.20 Outermost layers at the cleaved 001 surface of CCTO; the Cu and Ca ions 

exposed at the surface are labelled  Ca(1), Cu(2)-Cu(4).  

 

The structural and electronic properties calculated for the two slab thicknesses are 

almost identical. For example, if we examine the structural data calculated using the 

F0.4BLYP functional, the calcium, copper and titanium to oxygen bonds exposed at the 

surface were predicted to be 2.61, 1.98 and 1.96Ǻ respectively with both slab 

thicknesses. The change in position of the three outermost surface coppers with respect 

to the unrelaxed surface is also very similar using both slab thicknesses: the Cu (3) and 

Cu (4) atoms drop into the surface by 0.38Å and 0.24Å respectively for a 19 layers slab, 

and 0.39Å and 0.24Å respectively for a 25 layer slab. The Cu (2) atom is predicted to 

move outwards from the surface by 0.03Ǻ and 0.02Ǻ for slabs 19 and 25 layers thick 

respectively. 

With respect to the electronic properties, we can see in the form of a DOS plot (Figure 

7.21) that the outermost Cu and O ions have very similar contributions in the 19 and 25 

layer slabs. 
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Figure 7.21 Calculated DOS of the 001 surface of CCTO using the BLYP hybrid 

functional with 40% HF exchange using 19 (bottom) and 25 (top) layer slabs. 

 

The number of unpaired electrons on the three outer Cu2+ ions and their atomic spins 

were identical in 19 and 25 slab layer models. Using 19 layers the net charges were 

predicted to be 1.718, 1.531 and 1.606|e| while with 25 layers we derived 1.718, 1.532 

and 1.606 for Cu (2), Cu (3) and Cu (4) respectively. The spin on these outermost 

surface coppers was predicted to be 0.788, 0.588 and 0.666|e| using a 19 layer slab and 

0.788, 0.588 and 0.666|e| for the 25 layer slab. 

 

The above data show that surface properties have converged for the 19 atomic layer 

thick slab, and therefore all subsequent studies have been performed with this slab. 
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Similar to the bulk study, the 001 surface has been investigated with different hybrid 

exchange functionals; following the bulk results, however, we limit to the range of 20-

60% HF exchange and only the BLYP (GGA) DFT functional. 

 

The calculations were performed allowing both structural and electronic relaxation to 

take place, but the lattice parameters were contrained to those obtained in the bulk 

calculations (for each functional), as the surface periodicity of a true material is dictated 

by the lattice parameters of the underlying bulk material. 

 

7.1.2.1 Surface Relaxation 

  

Let us now begin by discussing the structural results. The structure of the first six layers 

of the surface is presented pictorially in Figure 7.20 where the local environment of the 

outermost surface coppers can be seen. The Cu (2) ion retains all four short Cu-O bonds 

of the bulk environment, and is in a square planar environment, while Cu (3) and Cu (4) 

have just two short Cu-O bonds each oriented away from the surface. In addition, two of 

the intermediate Cu-O bonds are cleaved in the Cu(3) environment, and two of the long 

Cu-O bonds for Cu(4). All three copper atoms sit at the same height when the surface is 

unrelaxed. 

Let us now examine the relaxed surfaces. Employing the F0.2BLYP hybrid functional, 

the Cu (2) ion in the optimised structure is predicted to have 4 equidistant nearest 

neighbour oxygens at 1.88Å, Cu (3) has two short bonds of 1.86Ǻ whilst Cu (4) has two 

short 1.88Ǻ bonds. The Cu (2) is predicted to stay at its original surface position but Cu 

(3) and Cu(4) are predicted to drop below the surface by 0.59Å and 0.23Å. 

When using the F0.4BLYP hybrid functional the Cu (2) is predicted to have 4 equidistant 

nearest neighbour oxygens at 2.00Å, Cu (3) has two short bonds of 1.80Å whilst Cu (4) 

has two short 1.85Ǻ bonds. The Cu (2) atom is predicted to move out of the surface by 

0.03Å with the Cu (3) and Cu (4) atoms moving into the surface by 0.38Å and 0.24Å 

respectively upon surface relaxation. 

When the F0.6BLYP hybrid functional is used the Cu (2) is predicted to have 4 

equidistant nearest neighbour oxygens at 1.98Å, Cu (3) has two bonds of 1.98Å whilst 

Cu (4) has two short 1.82Ǻ bonds. The Cu (2) atom is predicted to move outwards from 
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the surface by 0.04Å with the Cu (3) and Cu (4) atoms moving into the surface by 

0.21Ǻ and 0.24Ǻ respectively. The differences observed with the three functionals are 

much larger than expected from the early study of bulk CCTO and may indicate a 

different chemical behaviour of the Cu ions in the three cases. 

 

Let us now discuss the electronic properties, starting with those performed using the F-

0.2BLYP hybrid functional. The net atomic charges for the copper ions 2, 3 and 4 were 

predicted to be 1.670, 1.084 and 1.457 respectively. It must be stressed here that we do 

not expect to achieve formal charges, but these values seem to imply a non equal charge 

for coppers 2-4. This is corroborated by the spin charges of 0.057, 0.005 and 0.492|e|, 

where the very small value on Cu(2) and Cu(3) is not compatible with the open shell d9 

configuration of Cu2+. The two Cu involved may possibly have formed a Cu-Cu bond at 

the surface or disproportionated into Cu1+ and Cu3+. The former option is disproved by 

the negligble Cu(2)-Cu(3) overlap population of 0.000|e| and by their very different net 

charges. The disproportionation is instead supported by the DOS projected onto the 

three surface Cu ions (Figure 7.22). The presence of one empty state in both α  and β  

spin levels for Cu(2) shows that this ion is now in 3+ oxidation state, while Cu(3) has 

no empty d level and is therefore in oxidation state +1. Such a disproportionation is 

consistent with atomic relaxation, total and spin charges listed in the above structural 

analysis. The local environment of the three surface copper ions could be the reason 

behind the disproportionation: the different coordination number of Cu(2) with four 

nearest neighbour oxide ions at short distance and Cu(3) with only two short bonds 

splits the relative energy of the respective d levels by a sufficient amount to seed the 

electron transfer from Cu(2) to Cu(3). 

Once we have identified the surface redox behaviour described above, a number of new 

calculations have been undertaken, with different initial oxidation states for the surface 

and sub-surface Cu ions; they all converged in the same sequence of Cu3+, Cu1+, Cu2+ 

discussed above, thus increasing our confidence that this is the ground electronic state 

for the (001) surface. We also performed a study forcing the SCF convergence to a 

Cu2+, Cu2+, Cu2+ surface configuration. This is possible by constraining the number of 

unpaired electrons in the solution. We found that the Cu3+, Cu1+, Cu2+ 

disproportionation was more stable by 0.362eV. By symmetry there is a 

disproportionation at both upper and lower surfaces of our slab model and hence the 
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disproportionation energy of 0.362eV corresponds to that of both surfaces and the 

disproportionation energy per pair of Cu ions is of 0.181eV. All calculated surface 

energies will be presented as energy differences for the whole slab (ie. summing the 

contributions from upper and lower surfaces) throughout this thesis.  

The study of disproportionated surfaces with the F0.2BLYP functional is further 

extended to examine the effect of the lattice parameter on the tendency for the surface to 

disproportionate. This is discussed in section 7.1.2.3. 

 

We now discuss the results using the F0.4BLYP functional. Let us examine first the 

predicted net atomic charges and spins. For coppers 2, 3 and 4 the net charges were 

predicted to be 1.718, 1.531 and 1.606 and the spins were 0.788, 0.588 and 0.666|e|. In 

this case the Cu 2-4 arrangement is predicted to be Cu2+, Cu2+, Cu2+ and no 

disproportionation is observed, although the non equal coordination environment of the 

three copper ions at the surface does effect net and spin charges. 

 

Finally we examine the results from calculations using the F0.6BLYP functional. The net 

atomic charges are predicted to be 1.708, 1.032, 1.717|e| for Cu 2, 3 and 4 respectively, 

from which we expect to have a Cu2+, Cu1+, Cu2+ arrangement. 

As Cu1+ is closed shell we expect it to have no spin density. The calculation predicts a 

spin of 0.788, 0.004 and 0.788 on coppers 2, 3 and 4 respectively confirming the Cu2+, 

Cu1+, Cu2+ arrangement. With this arrangement we need one hole for charge balance. 

The spin charges on the four surface oxygen ions are high (~0.310), so the spin has been 

put here. Further evidence for the existence of this arrangement is found from the DOS 

plot in Figure 7.22. This DOS plot shows how copper 3 is the main contributor to the 

top of the valence band and its levels are shifted at a higher energy compared with the 

other Cu ions at the surface. This situation is consistent with a reduced Cu1+ state of the 

copper. Using the F0.6BLYP functional we observe therefore a charge transfer from the 

surface oxygens to one of the surface copper ions.  

The presence of defect states in the band gap, both in the disproportionated surface 

obtained with 20% HF exchange and with O to Cu charge transfer achieved using 60% 

HF exchange, indicates clearly that electron trap states are associated with CCTO 

surfaces. The n-type semi-conductivity of bulk CCTO is therefore expected to be 



109 

 

 

destroyed at surfaces, as required for the BLC model for the high dielectric constant of 

CCTO. 

 

 
Figure 7.22 DOS Calculated for the 001 Surface of CCTO using the BLYP functional with 

20-60% HF exchange. 
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7.1.2.2 TiO2 Termination of the 001 Surface 

 

In the previous section we have observed a redox chemistry at the 001 surface of 

CCTO. We have discovered that surface effects are very sensitive to the choice of 

theory and we have proposed that they could be due to the way in which the surface has 

been cleaved. In all of the aforementioned surface calculations, the surface has been 

cleaved to expose three Cu ions at the outer surface. This leaves one Cu remaining in 

square planar coordination with four oxygens at a short distance and the other two 

surface coppers with just two short Cu-O bonds each. In order to investigate the 

possibility that the observed surface effects are due to the way in which the surface is 

cleaved, we performed a new set of calculations leaving a TiO2 (001) layer (shown in 

Figure 7.19) exposed at the top and bottom layer. These calculations were performed 

using F0.2BLYP, F0.4BLYP and F0.6BLYP functionals. All computational details 

remained the same and a slab of 23 layers of thickness (12.2Å) was used (closest to the 

19 layer slab used in previous calculations for the new surface cleavage). The Cu ions 

are now in the subsurface layer and are fully coordinated. 

No disproportionation or charge transfer involving the Cu ions in the surface was 

observed, independently of what theory we use. This is consistent with the model that 

the surface redox activity of CCTO is due to the local environment of the outermost Cu 

ions when the surface is cleaved to expose Cu. The result we obtain here is a Cu2+, Cu2+ 

and Cu2+ electronic configuration for the equivalent Cu ions that are found to 

disproportionate in our previous calculations. The DOS for these calculations clarify 

this result and are displayed in Figure 7.23. 

Subramanian et al.[84] first proposed that the origin of the high dielectric constant 

observed in CCTO is a barrier layer mechanism related to the ceramic microstructure. 

Sinclair [113] et al. later provided evidence for the barrier layer model via in depth 

analysis of the materials microstructure obtained by impedance measurements, however 

the subject is still a matter of controversy. The results we have presented here provide a 

strong case for the high dielectric constant being rationalised by a barrier layer capacitor 

model. In the previous section we have reported evidence of redox chemistry being 

present at the 001 surface of CCTO which would generate defect states in the surface 

band gap. These would trap mobile charge carriers at the surface and therefore support 

the proposed BLC model. The results presented here, where TiO2 layers are exposed at 
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the surface, indicate clearly that a disproportionated surface would most likely require 

Copper containing layers to be exposed. We therefore expect that the terminating layer 

in the stable surfaces are important to the materials dielectric properties. The schematic 

of Figure 7.24 outlines how our model supports the BLC model. 
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Figure 7.23 DOS for the 001 Surface of CCTO cleaved to expose TiO2 units. These 

calculations have been performed using the BLYP functional with 20, 40 and 60% HF 

exchange. 
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Figure 7.24 Schematic showing how the observed chemistry at the 001 surface of CCTO supports 

the IBLC model. 

 

 

7.1.2.3 Effect of Lattice Constant on Surface Electronic Properties 

 

In section 7.1.2 we have shown evidence for a self disproportionation of Cu ions at the 

001 surface of CCTO, and have shown how this effect is due to the different 

coordination environment of the outermost Cu ions generated by the surface cleavage. 

The crystal-field splitting of the Cu2+ d levels may be expected to depend on the 

distance between Cu and its neighbouring oxygens, and in practice on the lattice 

parameter of the solid. The latter may be varied experimentally by doping, for instance 

replacing a fraction of the Ca2+ ions with smaller Mg2+ or larger Sr2+ ions. Reports exist 

that such modifications of the composition do indeed influence the effective dielectric 

constant of doped CCTO ceramics[114-117], and it is therefore of interest to understand 

the effect of a change in the lattice parameter on the stability of the surface 

disproportionation investigated earlier. 

We performed surface calculations (with Cu exposed at the surface) on the 001 surface 

of CCTO at varying lattice parameter between 7.35Å and 7.55Å. The rest of the 

geometry was allowed to relax in each case. The initial geometry for each calculation 

was taken from a geometry optimisation on the bulk structure at fixed lattice parameter. 

For each lattice parameter two calculations were performed. In one, the electronic 

configuration was started at the stable Cu3+, Cu1+ and Cu2+ disproportionation discussed 

earlier and the other was held to Cu2+, Cu2+ and Cu2+ for Cu(2), Cu(3) and Cu(4) 

respectively (Figure 7.20). From this set of data, we can investigate the dependence of 
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disproportionation on the lattice constant. These calculations were all performed using 

the F0.2BLYP, as this is the choice of theory that predicted the surface 

disproportionation in our original calculations. The results are shown in Figure 7.25 

below. 

 

 
Figure 7.25 Energy difference between calculations converged with surface Cu ions in 

configuration 2+, 2+, 2+ and those converged to the disportionated 3+, 1+, 2+ state against 

the lattice constant. 

 

 

These results confirm the disproportionated 001 surface as the stable ground state for 

CCTO over a range of lattice parameters; they also show a clear dependence of 

disproportionation energy on lattice spacing, thus confirming our analysis that the 

driving force for disproportionation is the different crystal field splitting of the Cu2+ 

levels at the different surface sites. Increasing the lattice parameter of CCTO makes the 

outermost surface Cu ions less likely to disproportionate, and vice versa. The more we 

compress the structure, the more the surface is likely to disproportionate. By 

extrapolating from these results, we predict that a 2+,2+,2+ surface will be more stable 

when the lattice parameter exceeds approximately 7.86Ǻ, well above the equilibrium 
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value for CCTO of 7.384Ǻ, but also larger than any change than can be achieved by 

doping CCTO. 

 

7.1.2.4  Conclusions on the CCTO 001 surface 

 

The 001 surface of CCTO was studied using a slab model, with a thickness of 19 layers. 

The BLYP functional was employed with three different amounts of HF exchange 

(F0.2BLYP, F0.4BLYP and F0.6BLYP) and the surface chemistry was predicted to be 

different in each case. Redox chemistry was observed using 20% HF, yielding 

Cu1+/Cu3+ ions at the surface, 40% predicted a Cu2+, Cu2+, Cu2+ arrangement of the 

outermost surface coppers, and using 60% we observed charge transfer from oxygen to 

copper. The observed behaviour is attributed to the local environment of the copper 

atoms. This theory is backed by our calculations on the 001 surface of CCTO where Ti 

is exposed at the surface. These calculations show that when Cu is not directly exposed 

at the surface and all Cu ions are in square planar coordination with four short Cu-O 

bonds, no disproportionation is observed. We also observed that if we compress the 

lattice parameter of CCTO the surface becomes more likely to disproportionate.  

It is clear the way we define forces has a big impact on the surface electronic structure. 

However, an active redox chemistry of the CCTO surface is common to all three hybrid 

functionals in our work. 

The stability of different copper oxidation states enables a rationalisation of the colossal 

dielectric constant experimentally observed in CCTO ceramics. The redox chemistry 

generates defect states in the band gap at the surface, which effectively trap any mobile 

charge carrier at the surface, thus supporting the internal barrier layer capacitor model 

(BLC) as the origin of the dielectric properties. 

In the following sections we shall perform studies into materials isostructural to CCTO, 

such as CdCu3Ti4O12 (CdCTO) and CaCu3Ge4O12 (CCGO) and investigate their surface 

chemistry. The former (CdCTO) has a dielectric constant (K) of 409[84] while the 

dielectric constant of the latter (CCGO) has not yet been reported in the literature. 

Comparing calculated results for isostructural materials that do and do not display 

colossal dielectric screening may shed further light onto the origin of this behaviour. 
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7.2 CdCu3Ti4O12 (CdCTO) 

 

Here and in the following sections, we discuss a number of materials isostructural to 

CCTO, that have been investigated during this PhD. One example of these is 

CdCu3Ti4O12 (CdCTO)[83, 84, 102]. CdCTO has the same crystal structure as CCTO 

but yet displays a different dielectric constant of 409[118]. The difference between 

CCTO and CdCTO ceramics has been addressed in several studies, with the goal of 

shedding light on the mechanism driving the high dielectric constant of CCTO. Holmes 

et al.[118] for example, compared the optical conductivity of CCTO and CdCTO. The 

only real difference they discovered was the extent of the charge transfer from Ca/Cd to 

O atoms, which cannot account for the large difference in dielectric constant. He et. 

al.[119] looked at the lattice dielectric response of CCTO and CdCTO from first 

principles. They concluded that there was no fundamental difference in their intrinsic 

properties. Also, Ma et. al.[120] looked at CdCTO under pressure (up to 55.5GPa) and 

compared its compressibility to that of CCTO. Again this work did not unveil the 

mechanism that effects the different permittivity. 

 

The structure of CdCTO is well known and has been refined to the Im3 space group. 

Just like CCTO, it exhibits a perovskite like supercell structure with two elements (in 

this case Cd and Cu) on the A sites, Ti on the B site and O in the Z site. CdCTO is also 

an AFM insulator[121] and thus requires a double unit cell to accommodate its spin 

structure. 

 

7.2.1 Bulk CdCTO 

 

In section 7.1 we reported the computational study of the bulk structure and surface 

properties of CCTO. We found that the electronic structure of the 001 surface depends 

on the choice of theory. However, we do observe some redox chemistry which can 

rationalise the giant dielectric constant in CCTO by supporting the proposed BLC 

model. We acknowledge that the observed effect could be related to the way in which 

the surface has been created by cleaving the bulk to expose three Cu ions in differing 
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coordination environments. For this reason we have studied the surface of CdCTO 

which is isostructural to CCTO but does not exhibit such a large dielectric constant.  

As for CCTO, also for CdCTO we first studied the bulk material using a range of hybrid 

functionals in order to deduce the best definition of forces in bulk CdCTO, and then 

apply to the description of the surface. The range of functionals used and the 

computational details are the same as outlined in section 7.1.1, and results of geometry 

optimisations on the bulk solid are summarised in Table 7.8-Table 7.10 below. The 

symbols and units are as in Table 7.1. 

 
Table 7.8 FM Results for the hybrids built on the LDA functional. All symbols and units are as in 

Table 7.1. 
HM% ao Xo Yo Rcu-o R'

cu-o Rcd-o Rti-o ΔE qcu qo qti spincu spino 

0 7.312 0.3062 0.1773 1.921 2.752 2.587 1.948 6.13 1.58 -1.27 2.32 0.525 0.096 

20 7.312 0.3051 0.1791 1.935 2.746 2.587 1.943 0.94 1.64 -1.33 2.41 0.663 0.074 

40 7.317 0.3044 0.1802 1.947 2.742 2.589 1.940 0.26 1.71 -1.38 2.50 0.775 0.051 

60 7.326 0.3035 0.1826 1.961 2.740 2.592 1.939 0.09 1.77 -1.43 2.57 0.853 0.034 

80 7.338 0.3027 0.1833 1.975 2.739 2.596 1.938 0.05 1.81 -1.47 2.64 0.900 0.024 

100 7.351 0.3020 0.1847 1.988 2.740 2.600 1.938 0.03 1.84 -1.50 2.71 0.927 0.018 

 
Table 7.9 FM Results for the hybrids built on the BLYP functional. All symbols and units are as in 

Table 7.1. 
HM% ao Xo Yo Rcu-o R'

cu-o Rcd-o Rti-o ΔE qcu qo qti spincu spino 

0 7.529 0.3051 0.1797 1.996 2.823 2.666 1.999 3.26 1.57 -1.30 2.41 0.552 0.095 

20 7.466 0.3045 0.1806 1.987 2.796 2.643 1.980 0.58 1.65 -1.36 2.49 0.690 0.070 

40 7.416 0.3040 0.1814 1.981 2.774 2.625 1.964 0.18 1.72 -1.40 2.55 0.796 0.047 

60 7.375 0.3035 0.1822 1.977 2.756 2.611 1.951 0.08 1.78 -1.44 2.60 0.863 0.032 

80 7.341 0.3029 0.1828 1.974 2.742 2.597 1.940 0.05 1.81 -1.46 2.64 0.900 0.024 

100 7.307 0.3025 0.1835 1.970 2.726 2.586 1.929 0.05 1.83 -1.49 2.67 0.922 0.019 

 
Table 7.10 FM Results for the hybrids built on the PBE functional. All symbols and units are as in 

Table 7.1. 
HM% ao Xo Yo Rcu-o R'

cu-o Rcd-o Rti-o ΔE qcu qo qti spincu spino 

0 7.461 0.3052 0.1796 1.977 2.798 2.642 1.981 3.37 1.59 -1.31 2.40 0.559 0.091 

20 7.404 0.3044 0.1806 1.971 2.773 2.621 1.963 0.60 1.66 -1.36 2.48 0.695 0.067 

40 7.357 0.3040 0.1815 1.965 2.751 2.605 1.948 0.19 1.74 -1.40 2.53 0.799 0.045 

60 7.318 0.3034 0.1825 1.963 2.733 2.591 1.935 0.08 1.79 -1.43 2.58 0.864 0.031 

80 7.285 0.3029 0.1834 1.962 2.717 2.579 1.924 0.05 1.82 -1.46 2.61 0.901 0.023 

100 7.256 0.3024 0.1839 1.959 2.705 2.568 1.915 0.03 1.84 -1.48 2.65 0.923 0.018 
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Observed trends and comparisons to experiment are discussed separately for structural 

and electronic properties in the following sub sections. 

 

7.2.1.1 Structural Properties 

 

Let us start by presenting the equilibrium lattice parameter and Cu-O, Ti-O and Cd-O 

bond distances in graphical form, highlighting and discussing the differences between 

these results and those obtained for CCTO. 

 

 

 
Figure 7.26 Equilibrium lattice paramater against HF mixing for the BLYP, PBE and 

LDA functionals. 

 

The experimentally derived lattice constant of CCTO and CdCTO are very similar and 

we can see here that the hybrid functionals make almost identical predictions for the two 

cases, with the most accurate prediction achieved using the PBE and BLYP functionals 

between 20 and 60% HF exchange.  
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Figure 7.27 Shortest Copper-Oxygen bond distances against the fraction of HF exchange 

for the BLYP, PBE and LDA. 

 

 
Figure 7.28 Titanium-Oxygen bond distances against the fraction of HF exchnage for the 

BLYP, PBE and LDA. 

 

 



120 

 

 

 
Figure 7.29 Cadmium-Oxygen bond distances against the fraction of HF exchange for the 

BLYP, PBE and LDA. 
 

 

As was the case with CCTO, the structure was imposed in our calculations to belong to 

the Im3 space group. We however confirmed that this is a proper minimum via Г-point 

phonon calculations. 

The experimentally derived bond distances are very similar for the cases of CCTO and 

CdCTO. It can be seen from the above graphs that the PBE, BLYP and LDA functionals 

make almost identical predictions for the two materials. These findings are consistent 

with the literature[118, 119], which reports no structural difference between the two 

materials. There is therefore no structural consideration that could explain the intriguing 

difference between their dielectric constants. 

 

The bulk modulus of CdCTO obtained using the PBE, BLYP and LDA functionals with 

40% HF exchange are 249, 250 and 262GPa respectively, which are consistent with that 

derived experimentally by Yanzhang et al.[122] of 235±7 GPa. The corresponding 

values for CCTO are 220, 209 and 259 for the respective functionals and the 

experimentally derived value being 212GPa. 
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7.2.1.2 Electronic Properties 

 

Similar electronic properties were observed in CdCTO as they were in CCTO. We start 

by looking at the energy difference between the FM and AFM phases, illustrated, for 

the full range of hybrid functionals, in Figure 7.30. Here the experimental value has 

been calculated from the experimentally known Neel temperature (25K) and by using 

the Ising model with the mean field approximation as outlined in section 7.1.1.4. 

 

 

 
Figure 7.30 FM and AFM phase energy difference as a function of HF exchange for the 

BLYP, PBE and LDA functionals. 

 

Our calculations confirm the AFM phase of CdCTO as the most stable. The results are 

also in agreement with those of CCTO, confirming that the choice of local DFT 

functional is not critical in describing the bulk electronic properties, however results are 

sensitive to the amount of HF exchange included. The best correspondence to 

experiment is found at approximately 25% HF exchange. We should also note here that 

similarly to the case of CCTO, the above trend for CdCTO is what we expect for a 

superexchange-type of interaction. 
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Let us now discuss the DOS calculated for CdCTO, limiting our discussion here to 

results obtained using the BLYP functional, and between 20-60% HF exchange. Results 

are shown in Figure 7.31. 
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Figure 7.31 Density of States of bulk CdCTO using the BLYP hybrid functional at 20, 40 and 60% 

HF exchange from top to bottom. The contribution of Cd, Cu, Ti, O to the DOS and its total value 

are shown separately with the total divided by ten for ease of presentation. 
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The main difference between CCTO and CdCTO in terms of the density of states relates 

to the Ca/Cd contribution. In CCTO there is a large contribution to the conduction band 

by the calcium ions, while Cd has a semi-core band due to the 3d electrons which are 

relatively low in energy, but has a non-zero contribution to the valence and conduction 

bands. This feature, however, does not affect the Cu-Ti-O states that are virtually 

identical in CCTO and CdCTO. The calculated band gap has minor differences; for 

instance at the F0.4PBE level it is calculated as 6.19eV in CCTO and 5.75eV in CdCTO. 

This is, however, unlikely to affect the electronic structure. The rest of the DOS states 

in CdCTO are almost identical to the case of CCTO with no significant differences. 

 

One of the few differences between CCTO and CdCTO can be seen in the net atomic 

charge on the Ca/Cd ions, tabulated below for a range of functionals, which indicates a 

more covalent Cd-O than Ca-O interaction, consistently with the DOS analysis given 

earlier. 

 

Table 7.11 Net atomic charges on the Ca and Cd atoms of CCTO and CdCTO 

respectively.  

Functional qCa qCd 

F0.2-PBE 1.718 1.387 

F0.4-PBE 1.762 1.468 

F0.6-PBE 1.798 1.538 

F0.2-BLYP 1.715 1.389 

F0.4-BLYP 1.759 1.468 

F0.6-BLYP 1.794 1.537 

. 

The significant difference seen in the net atomic charges on the Ca/Cd atoms is 

consistent with that reported in the literature by Holmes et al.[118] and Matos et al. 

[123], although the difference reported in reference [123] was greater than that we 

found here (qCa-qCd ~1).  

 

To conclude on the electronic properties of bulk CdCTO, we have first confirmed that 

the stable order is AFM. We have also shown that there are no intrinsic differences 

between CCTO and CdCTO which could rationalise the large difference in their 

dielectric constants.  
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In the same way as observed in our calculations on CCTO, the use of hybrid functionals 

has helped in gaining a better agreement with the experimentally observed properties of 

bulk CdCTO, than standard DFT. 

Following the analysis of the structural and electronic properties we can conclude that 

the best range of theory consists in the use of either the BLYP or PBE functional in the 

range of 20-60% HF exchange. Therefore, in the same way as was done with CCTO, we 

shall use the BLYP functional with 20, 40 and 60% HF exchange for performing a 

study of the CdCTO 001 surface. We hope that this will shed light onto the redox 

chemistry we observed during our study of CCTO. 

In agreement with other studies on bulk CdCTO, we have seen that there is little 

intrinsic difference between this material and CCTO. The fact that CCTO displays a 

very large dielectric constant and CdCTO does not, casts further support on the 

conlcusions that the mechanism behind this property is extrinsic, such as the formation 

of boundary-layer capacitors. 

 

7.2.2 Surface Calculations 

 

We used the same computational method as described for CCTO in section 7.1.2 to 

study the 001 surface of CdCTO. Let us begin by discussing the structural results from 

these calculations. 

The structure of the first six layers of the surface is essentially the same as in the case of 

CCTO (with Ca replaced with Cd) and therefore, Figure 7.20 will serve the purpose of 

displaying the local environment of the outermost surface copper ions. The surface has 

been cleaved in the same way as for CCTO, leaving Cu(2) in square planar coordination 

and Cu(3) and Cu(4) with only two short bonds. We observed the same relaxation in the 

case of CdCTO as we did for CCTO, using all three hybrid functionals, and therefore 

have no substantial structural differences to note.  

 

Let us now discuss the electronic properties. We start with those performed using the F-

0.2BLYP hybrid functional. The net atomic charges for Cu 2, 3 and 4 were predicted to 

be 1.669, 1.092 and 1.459 and the spins 0.043, 0.005, 0.492 respectively.  
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This is similar to the prediction for CCTO with a Cu3+, Cu1+, Cu2+ disproportionation 

observed at the 001 surface. Using the F0.4BLYP functional the net charges were 

predicted to be 1.715, 1.538 and 1.608 with spins of 0.785, 0.594 and 0.667 for Cu 2, 3 

and 4 respectively. Again this is similar to CCTO and a Cu2+, Cu2+, Cu2+ arrangement is 

observed. Finally, the results from calculations using the F0.6BLYP functional predict 

the Cu ions to have 1.715, 1.034, 1.712 net charges with spins of 0.798, 0.003 and 0.781 

respectively, yielding a Cu2+, Cu1+, Cu2+ arrangement which is identical to that of 

CCTO. This is seen more clearly in the DOS plot of figure 7.32. 

Upon comparing the disproportionation energy at the 001 surface of CCTO with that 

achieved at the equivalent surface of CdCTO, described above, we do however find that 

the CCTO disproportionation energy is much larger (0.362eV) than that of CdCTO 

(0.113eV). Therefore the disproportionation observed at the surface of CCTO is 

energetically more stable than we predict for the CdCTO surface, indicating that the 

surface-layer effect is more pronounced in CCTO than in CdCTO. This is the only 

indication in support of the different dielectric constant observed for the two materials, 

and is once more consistent with the BLC model. 
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Figure 7.32 DOS calculated for the 001 surface of CdCTO using the BLYP functional with 

20-60% HF exchange. 

 

We can also compare the spin density on the 001 surface of CCTO and CdCTO. This is 

shown in Figure 7.33. 
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Figure 7.33 Spin density on the 001 Cu exposed surface of  CCTO and CdCTO. Calculated with the 

F0.2BLYP functional. The spin density with a value of 0.005 e-/Å3 is shown in yellow; a 2D 

projection parallel to the surface is also shown through a set of surface oxygens. 

 

  

The figure confirms that there is little difference between the spin density at the surface 

of CCTO and CdCTO; however the Cd ion appears more polarisable than Ca; for 

instance the isodensity lines in the 2D projections on the oxygen between Cu(4) and Cd 

ions are more symmetric than between Cu(4) and Ca in CCTO. In figure 7.33 we can 

clearly see the spin density on the Cu(4) ion while the other two surface Cu ions are 

closed shell and with little spin density, providing further evidence of the surface 

disproportionation. 

In our view the reduced stability of the surface disproportionation in CdCTO compared 

to CCTO is due to the higher polarisability of the Cd ions at the surface, that confer 

greater electronic flexibility to the 2+, 2+, 2+ structure of CdCTO compared to CCTO. 

 

7.2.2.1 Conclusions on CdCTO 

 

A similar study to that performed on the surface of CCTO was performed on the surface 

of CdCTO. The 001 surface was studied with a slab thickness of 19 layers. The same 
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dielectric behaviour is observed for bulk CCTO and CdCTO, but our calculations also 

show that the disproportionation of surface Cu2+ pairs into Cu1+ and Cu3+, crucial for the 

BLC behaviour, is much more favourable for CCTO than for CdCTO. Therefore the 

different dielectric constant of CCTO and CdCTO may be attributed to the different 

surface chemistry. The chemical composition of surfaces and interfaces may further 

explain the difference; we consider that the difference in the dielectric constants could, 

at least in part, be attributed to the layer in which the stable surface terminates and 

depend on the relative amount of Cu ions directly exposed at the surface. 

 

7.3 CaCu3Ge4O12 (CCGO) 

 

Another AA’3B4Z12 type perovskite isostructural to CCTO and well characterised 

experimentally is CaCu3Ge4O12 (CCGO)[124]. The specific interest in CCGO lies in its 

ferromagnetic ground state, with a Curie temperature of 13K [125]. No report of 

unusual dielectric properties exists for CCGO.  

Ferromagnetism in CCGO was discovered experimentally and then confirmed by first 

principle calculations[125]. A FM ground state of the Cu2+
 spins within the perovskite 

structure is of particular technological interest and is very rare in the literature. 

CCGO is isostructural to CCTO and hence belongs to the Im3 space group with Ca and 

Cu ions occupying the A (at the ratio 1:3) site in a double cubic unit cell. The Cu ions 

form CuO4 planes which are perpendicular to one another and Ge is octahedrally 

coordinated by O ions with the GeO6 tilted to enable the square planar coordination of 

Cu2+, as in CCTO.  

 

7.3.1 Structural and electronic properties of Bulk CCGO 

 

In earlier sections dedicated to AFM perovskite compounds, CCTO and CdCTO, the 

use of hybrid functionals has been shown to lead to better agreement with experiment 

than standard DFT with respect to the structural and electronic properties. In this section 

we extend our hybrid DFT study to the FM perovskite CCGO, and specifically aim to 

understand the reason for the different magnetic ground state. Comparison of CCTO 
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and CCGO may provide a useful additional test for the hybrid functionals. As for CCTO 

and CdCTO we shall examine the Cu-terminated 001 surface of CCGO to investigate if 

the same surface redox chemistry discussed for CCTO and CdCTO is also available for 

CCGO. It is further of interest to understand if the surface chemistry can disrupt the FM 

coupling among Cu2+ ions. 

As for CCTO and CdCTO we shall employ a full range of HF exchange fraction in the 

study of bulk CCGO, but limit surface calculations to those providing the best match to 

experiment. The basis set for Ge is an all electron (97631/7631/61) contraction taken 

from the online database of the code and originally derived to study Ge4+ ions in 

framework oxides such as Ge-doped zeolites, GeS2 and GeO2[126]. 

 

Full geometry optimisations have been performed on bulk CCGO, and results 

summarised in Table 7.12-Table 7.14, divided by the choice of exchange-correlation 

functional. Results only cover the range of 0-60% HF exchange due to the difficulty in 

converging calculations employing a higher fraction of HF exchange. We have seen in 

previous sections, however, that the most relevant change is between 20 and 60% which 

is covered here for CCGO. Only the FM phase has been studied with hybrids built on 

the LDA. 

 

Table 7.12 FM Results for the hybrids built on the BLYP functional. Symbols and units as 

in table 7.1. 
HM% a0 XO YO RCu-O R'Cu-O RCa-O RGe-O ∆E qCu qo qGe SpinCu SpinO 

0 7.389 0.3014 0.1835 1.998 2.761 2.607 1.949 -0.49 1.57 -1.00 1.41 0.596 0.099 

20 7.298 0.3010 0.1852 1.984 2.718 2.579 1.921 -0.16 1.64 -1.08 1.57 0.704 0.073 

40 7.228 0.3005 0.1867 1.975 2.685 2.557 1.899 -0.04 1.72 -1.15 1.73 0.797 0.050 

60 7.170 0.2998 0.1882 1.970 2.657 2.538 1.881 0.00 1.77 -1.22 1.87 0.860 0.035 

 

Table 7.13 FM Results for the hybrids built on the PBE functional. Symbols and units as 

in table 7.1. 
HM% a0 XO YO RCu-O R'Cu-O RCa-O RGe-O ∆E qCu qo qGe SpinCu SpinO 

0 7.312 0.3012 0.1844 1.982 2.727 2.582 1.926 -0.50 1.59 -1.00 1.38 0.602 0.097 

20 7.230 0.3008 0.1859 1.970 2.689 2.557 1.902 -0.16 1.66 -1.07 1.54 0.710 0.071 

40 7.166 0.3003 0.1873 1.962 2.658 2.536 1.882 -0.04 1.74 -1.15 1.69 0.803 0.049 

60 7.114 0.2996 0.1887 1.958 2.634 2.519 1.865 0.00 1.84 -1.21 1.79 0.865 0.033 
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Table 7.14 FM Results for the hybrids built on the LDA functional. Symbols and units as 

in table 7.1. 
HM% a0 XO YO RCu-O R'Cu-O RCa-O RGe-O 

0 7.159 0.3016 0.1834 1.935 2.675 2.527 1.889 

20 7.138 0.3012 0.1849 1.938 2.659 2.523 1.880 

40 7.125 0.3007 0.1865 1.945 2.647 2.521 1.873 

60 7.119 0.2999 0.1881 1.955 2.638 2.520 1.868 

 

 

Let us now compare these results to experimentally derived data, starting with the 

equilibrium structure. The lattice constant, Cu-O, Ge-O and Ca-O bond distances are 

presented in Figure 7.34-Figure 7.37. Not surprisingly, the overall behaviour is similar to 

what was already observed for CCTO and CdCTO; we shall therefore highlight only the 

differences between this case and the earlier results for the isostructural compounds. 

 

 

 
Figure 7.34 Equilibrium lattice parameter against the fraction of HF exchange for the 

BLYP, PBE and LDA functionals. The experimental value is displayed as a continuous 

blue horizontal line and was derived by Ozaki et al. [124]. 



132 

 

 

The lattice parameter of CCGO known from experiment, 7.202Å[124], is more than 2% 

smaller than that for CCTO, 7.391Å and CdCTO, 7.348Å[84]; this difference is 

reproduced in our calculations. The hybrid functional comprising the PBE exchange-

correlation functional and 20% HF exchange, for instance, yields an equilibrium value 

of 7.230Å for CCGO, 7.401Å for CCTO and 7.404Å for CdCTO. A small difference 

between the trends observed for CCTO and CCGO is shown by the hybrid functionals 

built on the LDA; pure LDA underestimates the CCGO lattice constant and the structure 

compresses further on increasing the fraction of HF exchange in the hybrid functional 

while for CCTO and CdCTO we observed a small expansion of the structure. It is 

encouraging to note that the experimental equilibrium lattice parameter of CCTO, 

CdCTO and CCGO is reproduced in our calculations using the same amount of HF 

exchange for all three materials; roughly 25% for PBE and 50% for BLYP. 

Individual bond distances show the same trends already discussed for CCTO and 

CdCTO; in particular the Ge-O bond distances have the same behaviour observed 

earlier for the octahedral ions of CCTO and CdCTO, ie. Ti: there is a substantial 

decrease on increasing the fraction of HF exchange when using the GGA functionals, 

and a nearly constant value for the case of LDA. Results on CCGO also confirm that the 

change of Cu-O bond distances are much less pronounced than that of Ge-O and Ca-O, 

and overall agreement with experiment is achieved for the GGA functionals, using a 

fraction of HF exchange of 20-60%. 

 



133 

 

 

 
Figure 7.35 Shortest Copper-Oxygen bond distances against HF mixing for the BLYP, 

PBE and LDA functionals. The experimental value is shown as a continuous horizontal 

blue line. 

 

 
Figure 7.36 Germanium-Oxygen bond distances against HF mixing for the BLYP, PBE 

and LDA functionals. The experimental value is shown as a continuous horizontal blue 

line. 
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Figure 7.37 Calcium-Oxygen bond distances against HF mixing for the BLYP, PBE and 

LDA functionals. The experimental value is shown as a continuous horizontal blue line. 

 

It is generally accepted that a set of rules, known as the Anderson-Goodenough-

Kanemori (AGK)[2, 127] rules, can be used to rationalise whether a FM or AFM 

magnetic order is stable, by analysing the way in which superexchange depends on the 

angles between Cu ions mediated by an O ligand in the perovskite structure. It is 

generally assumed that a critical angle of 135° separates FM and AFM ordering. 

However it has been found that this angle can vary from material to material, with an 

example being in the continuous solid solution between SeCuO3 and SeTeO3 where 

Subramanian et al. found the stable magnetic order to change from FM to AFM at an 

angle of 127.5°[3]. Given that CCTO and CCGO have different magnetic ground states 

it is useful here to compare the Cu-O-Cu angles within the two structures and observe if 

any significant difference which could be used to rationalise this feature. In Table 7.15 

we have summarised the three different Cu-O-Cu angles within the CCGO and CCTO 

crystal structures for a subset of the hybrid functionals employed. As mentioned before, 

the CCGO and CCTO structures are formed of tilted GeO6 octahedra leading to a 

distorted Cu2+ environment in the 12-coordinated sites of the perovskite lattice, with 

four short (~2Å), four intermediate (~2.8Å) and four long (~3.2Å) Cu-O bond distances. 

In turn each O2- ion has one Ca and three Cu nearest neighbour cations in the 12 
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coordinated sites. The three Cu ions correspond to one short, one intermediate and one 

long Cu-O bond. The Cu-O-Cu angles reported here are the angles formed between the 

short-medium (SM), short-long (SL) and medium long (ML) Cu-O bond distances. The 

experimental values in Table 7.15 are those derived by Boch et al.[102] and Ozaki et 

al.[124] for CCTO and CCGO respectively. 

 

 
Table 7.15 Cu-O-Cu angles formed between short-medium, short-long and medium-long Cu-O 

differences. 

Material-Method SM (deg.) SL (deg.) ML (deg.) 

CCGO-F0.2PBE 100.7 176.8 76.1 

CCGO-F0.4PBE 100.6 177.0 76.4 

CCGO-F0.6PBE 100.5 177.2 76.7 

CCGO-Expt. 100.7 176.9 76.1 

CCTO-F0.2PBE 100.7 175.8 75.0 

CCTO-F0.4PBE 100.7 175.9 75.2 

CCTO-F0.6PBE 100.7 176.1 75.4 

CCTO-Expt. 100.9 175.7 74.8 

 

 

The results in Table 7.15 show that there is very little difference in the Cu-O-Cu angles 

of CCGO and CCTO. The largest difference of approximately 1° is found between the 

two materials in the angles corresponding to the short-long and medium long Cu-O 

bonds. These values are however substantially different from the threshold value of 

135° predicted by the AGK theory, and it is very unlikely that such a small change in 

the angle between CCTO and CCGO can account for the difference between the two 

magnetic ground states. 

 

 

Let us now discuss the electronic properties, which are of particular interest for CCGO 

since it has a different magnetic ground state from CCTO and CdCTO. We limit 

attention here to the GGA functionals and start by examining the relative stability of the 
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FM and AFM phases. A plot of the energy difference between FM and AFM solutions 

is reported in Figure 7.38.  

 

 
Figure 7.38 FM and AFM energy difference against the fraction of HF exchange for the 

BLYP and PBE functionals. The experimentally derived value is marked with a horizontal 

blue line. 

 

The experimental value has been calculated as for CCTO, using the known Curie 

temperature of 13K[125] and using a mean-field approximation within an Ising model 

with a single magnetic coupling constant, J. Our calculations clearly predict the FM 

phase to be the correct ground state for CCGO, in agreement with experiment. The 

change of J as a function of HF exchange fraction is as we expect for a superexchange 

type of interaction, and is similar to that observed for CCTO. The choice of functional is 

again not important in predicting the electronic properties, with the PBE and BLYP 

functionals predicting nearly identical energy differences at each fraction of HF 

exchange. 
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Let us now further analyse the electronic properties by discussing the DOS calculated 

for CCGO bulk using the BLYP hybrid functional in the range of 20-60% HF exchange. 

This is plotted in Figure 7.39. 
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Figure 7.39 DOS calculated for CCGO using the BLYP functional and 20, 40 and 60% HF 

exchange. 
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Upon comparison to CCTO and CdCTO we observe a different band gap for CCGO. 

For example, using the F0.4PBE functional we calculate the gap to be 7.31eV, 6.19eV 

and 5.75eV for CCGO, CCTO and CdCTO respectively. We also note that the Ge 

empty states are much higher in energy than the empty Ti 3d orbitals. This feature 

results in the states at the bottom of the conduction band using 60% HF exchange to be 

predicted of Cu character, and not of Ti character as in CCTO. 

  

It has been claimed that the Ferromagnetism observed in CCGO can be attributed to the 

contribution of Ti in the superexchange interaction being different to that of Ge[128]. 

Our calculations appear to rule this out as a possibility, as we predict a negligible 

amount of spin polarisation on both the Ti ions of CCTO and Ge ions of CCGO. For 

example using the F0.4PBE functional the spin polarisation calculated with a Mulliken 

analysis corresponds to 0.07 unpaired electrons on Ti and 0.003 unpaired electrons on 

Ge, which appears to be too low to invoke an effective involvement of either Ti or Ge in 

magnetic coupling across a Cu-O-Ti-O-Cu unit in which the two spin polarised ions are 

separated by four bonds. The negligible spin polarisation on Ti and Ge is further 

evidenced by the spin density plots shown in Figure 7.40, drawn in one of the equatorial 

planes of the TiO6 octahedra in CCTO and GeO6 octahedra in CCGO. The different 

ground magnetic state of CCTO and CCGO, albeit correctly reproduced by our 

calculations, cannot therefore be attributed to a specific chemical interaction, or 

structural feature of the two solids. 
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Figure 7.40 Spin density plot for the FM phases of CCTO and CCGO highlighting the 

contribution of the B-site ions (Ti and Ge). Isodensity lines drawn between -0.1 and 0.1 

au. in intervals of 0.01. 

 

7.3.1.1 Conclusions on bulk CCGO 

 

The application of hybrid density functionals to the study of bulk CCGO enabled us to 

achieve good agreement with experiment. As was observed for CCTO, the geometry is 

too expanded when using the PBE and BLYP GGA functionals. Inclusion of HF 

exchange into the formulation yields better correspondence to experiment until the self-

interaction error in local DFT is eventually overcorrected and the geometry is over 

compressed. The optimum amount of HF exchange for predicting the geometry is 

heavily dependent on the parameter in question and the functional used. The optimum 

value is however the same for CCTO, CdCTO and CCGO since trends are systematic 

across this class of isostructural compounds. 

We predict the magnetic ground state of CCGO to be FM, in agreement with 

experiment, independently of the choice of hybrid exchange functional. We find very 

little difference in the Cu-O-Cu angles between CCTO and CCGO and hence rule out 

the dependence of the superexchange on the Cu-O-Cu (as defined by the AGK rules) 

angle as the reason for the difference in the magnetic ground state of the two 

compounds. 

 



141 

 

 

7.3.2 Surface Calculations 

 

For consistency with the surface calculations on CCTO and CdCTO, also for CCGO we 

performed calculations on the 001 surface, employing the BLYP functional with 20, 40 

and 60% HF exchange. All computational details were the same as those outlined in 

section 7.1.1.1. The 001 surface was cleaved to expose a CaCu3O4 plane and slabs with 

19 layers of thickness were used to enable the convergence of all properties whilst 

minimising computational expense. The calculations were performed allowing both 

structural and electronic relaxation but the lattice parameters were constrained to those 

optimised in the bulk calculations. Details of the surface structure are identical to those 

of CCTO, illustrated in Figure 7.20. Perhaps not surprisingly, we find that both 

structurally and electronically, CCGO behaves in a very similar way to CCTO and 

CdCTO. 

 

The net atomic charges for the surface Cu ions calculated with the F0.2BLYP functional 

are +1.677, +1.072 and +1.496|e| with spin charges of 0.072, 0.038 and 0.541|e| 

respectively. We thus find a disproportionation similar to that observed in CCTO and 

CdCTO, which confirms the local environment of the outermost Cu ions as the 

chemical driving force for the chemical rearrangement. We performed calculations with 

this functional forcing a 2+, 2+, 2+ surface environment, and found that the difference 

in energy between this surface and the disproportionated one is 0.203eV, compared to 

0.362eV for CCTO and 0.113eV for CdCTO.  

Using the F0.4BLYP functional we observed no disproportionation or charge transfer, a 

result that is consistent with that observed for CCTO and CdCTO. This is evidenced by 

charges of +1.717, +1.567 and +1.666|e| and spin charges of 0.787, 0.629 and 0.737|e| 

for the surface Cu ions. 

We then used the F0.6BLYP functional and again deduced results which are consistent 

with those obtained from the study of CCTO and CdCTO with an O to Cu charge 

transfer confirmed by net charges of +1.697, +1.030 and +1.751|e| and spin charges of 

0.773, 0.007 and 0.827|e| for the surface Cu ions. 

 

In conclusion, our surface calculations show that all three isostructural materials 

materials (CCTO, CdCTO and CCGO) show some redox chemistry at their 001 



142 

 

 

surfaces. Therefore, their different dielectric constants cannot be explained by this 

feature only. It could however be explained by a different surface termination of these 

materials and in particular by the type and number of Cu ions in different surface 

environments. We cannot investigate explicitly the relative stability of different surface 

terminations, as these would require slabs with different overall chemical composition 

and therefore leave this as a speculative conclusion open to further experimental or 

computational validations. 

 

The sensitivity of the ground electronic state to the definition of forces in hybrid-

exchange calculations is in our view indicative of the richness of surface redox 

chemistry of CCTO, CdCTO and CCGO. Such a sensitivity to the hybrid exchange 

formulation has not been observed for the bulk calculations. Other than the application-

oriented conclusion discussed above, we would like to underline some important 

methodological implications of our results. We have proven that hybrid-exchange DFT 

does work for bulk solids with well-localised electrons (strongly correlated materials); 

we have further shown that the equilibrium structure of the solid is affected by both 

amount of HF exchange and choice of local DFT functional, while the electronic 

properties depend only on the amount of HF exchange and not on the local (LDA,GGA) 

exchange and correlation functional chosen. We have also shown that defects and 

surfaces pose less structural constraints than the bulk and are more stringent tests to the 

accuracy of hybrid-exchange calculations. Of course, any experimental characterisation 

work able to discriminate among different surface oxidation states of CCTO, CdCTO or 

CCGO would provide valuable detail, not only to assess the validity of our conclusions, 

but also in determining which hybrid-exchange formulation is best suited to study the 

electronic structure of complex ceramic surfaces. 
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7.4 Further Analysis of Magnetic Exchange in CCTO and 

CCGO 

 

In previous sections we have presented details of the electronic structure of CCTO and 

CCGO, where we predict different magnetic ground states, AFM for CCTO and FM for 

CCGO. This difference between the two isostructural compounds is yet to be 

rationalised and here we aim to investigate the possible differences in magnetic 

exchange between the two materials. Although the energy differences between the FM 

and AFM phases plotted for CCTO in Figure 7.12 and CCGO in Figure 7.38 display a 

behaviour that we expect for a superexchange interaction involving a single J parameter, 

we aim to look in more detail here at other possible magnetic exchange mechanisms that 

could explain the observed magnetic behaviour. 

To this goal, it is useful to start by examining the local environment and connectivity of 

Cu and O ions in CCTO and CCGO, responsible for superexchange interactions. The 

relevant features are shown in Figure 7.41, where only CCGO is shown for pictorial 

purposes. The local environment of Cu2+ has been amply discussed earlier for CCTO, 

and CCGO has similar qualitative features. The tilting of the (Ti/Ge)O6 octahedra leads 

to a distorted Cu2+ environment in the 12-coordinated sites of the perovskite lattice, with 

four short (~2Å), four intermediate (~2.8Å) and four long (~3.2Å) Cu-O bond distances. 

In turn each O2- ion has one Ca and three Cu nearest neighbour cations in the 12 

coordinated sites. The three Cu ions correspond to one short, one intermediate and one 

long Cu-O bond. All oxygens are symmetry equivalent in CCTO and CCGO and hence 

have identical environment, at least when the magnetic phase is neglected. The single J 

Ising model adopted earlier to characterise the magnetic coupling in CCTO and CCGO, 

only considers the superexchange coupling between the Cu ions with short and 

intermediate Cu-O bond lengths, and implicitly neglects any involvement of the Cu2+ 

ions with the largest Cu-O bond distance (>3Å). The short-medium (SM), short-long 

(SL), and medium-long (ML) Cu-O-Cu angles are tabulated for CCTO and CCGO 

along with the corresponding short (S), medium (M) and long (L) Cu-O bond distances 

in Table 7.16. These distances have been calculated using the BLYP functional with 0-

60% HF exchange. 
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Table 7.16 Cu-O-Cu angles and corresponding Cu-O bond distances of CCGO and CCTO, 

calculated using the BLYP functional with 0-60% HF exchange. The angles are in degrees and the 

distances in angstroms. 

Functional SM angle SL angle ML angle S bond  M bond L bond 

CCGO-BLYP 100.6 176.3 75.7 1.998 2.761 3.229 

CCGO-F0.2BLYP 100.6 176.6 76.0 1.984 2.718 3.178 

CCGO-F0.4BLYP 100.6 176.9 76.3 1.975 2.685 3.138 

CCGO-F0.6BLYP 100.5 177.1 76.6 1.970 2.657 3.101 

CCTO-BLYP 100.7 175.7 74.8 2.000 2.836 3.323 

CCTO-F0.2BLYP 100.7 175.8 75.0 1.991 2.807 3.290 

CCTO-F0.4BLYP 100.7 175.9 75.2 1.985 2.783 3.260 

CCTO-F0.6BLYP 100.7 176.1 75.4 1.981 2.764 3.236 

 

 

The single J Ising model appears to work accurately for CCTO and CCGO. The 

coupling constant between the two Cu ions at short and medium distance is labelled as 

J1 in Figure 7.41. In this section we examine whether the single-J Ising model is 

sufficient to capture all details of magnetic coupling in CCTO and CCGO. The first 

extension that we considered consists in an Ising model in which magnetic coupling 

between Cu2+ ions is still pairwise additive, but superexchange through the long Cu-O 

bonds is no longer neglected. This leads to a model with three independent coupling 

constants (J’s) associated with the short-medium Cu-O bonds (J1), short-long Cu-O 

bonds (J2) and medium-long Cu-O bonds (J3), as displayed in Figure 7.41.  The energy 

of such a model will be given by an extension of equation (7.3) with three different 

values of J. 

 

 

 0 1 1 2 2 1 2 3 1 2
1 2 3

FM
J pairs J pairs J pairs

E E J S S J S S J S S= + + +∑ ∑ ∑  (7.8) 

 

where the sums extend to all unique pairs of Cu ions in the unit cell that are connected 

via an O ion with the correct bond distances (eg. short and intermediate for J1 etc.). In 

practice, because the environment of all the O ions is identical, each O of the unit cell is 

responsible for one J1, one J2 and one J3-type superexchange interaction. In the broken 

symmetry approach, the three values of J can be derived by calculating the energy of 
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four different magnetic orders (not linearly dependent on each other). The two magnetic 

phases already discussed, and used to produce the energy difference plots of CCTO and 

CCGO, correspond to a full FM order, and to an AFM phase in which the Cu ions in 

alternate 111 planes have opposite spins. We have chosen two additional AFM phases, 

in which the Cu ions have alternate spin along the 001 and 110 crystal planes; both are 

described by a double primitive unit cell and are therefore the simplest from a 

computational point of view. 

 

The energy of the four magnetic phases examined, according to equation (7.8), above, is 

given by the following expressions in terms of J1-3, considering that each double-

primitive unit cell contains 24 oxygens, and S for Cu2+ is ½.  

 

 0 1 2 36 6 6FME E J J J= + + +  (7.9) 

 111 0 1 2 36 6 6AFME E J J J= − + −  (7.10) 

 001 0 1 2 32 2 2AFME E J J J= + − +  (7.11) 

 110 0 1 2 32 2 2AFME E J J J= − − −  (7.12) 

 

We note here that the energy difference between two pairs of phases is linearly 

dependent. We have in fact: 

 

 111 1 312 12FM AFME E J J− = +  (7.13)

 001 110 1 34 4AFM AFME E J J− = +  (7.14) 

 

 

This is not surprising, as in each pair one phase can be obtained from the other by 

reversing the spin of Cu ions in alternate 111 planes. A similar relation is found with the 

simplified one-J model (that corresponds to the assumption J2=0 and J3=0). An 

additional magnetic phase needs therefore to be considered if we want to employ our 

electronic structure calculations to estimate the value of each J. Before doing this, 

however, it is useful to examine results. By comparing the calculated energy of the four 

phases we have in fact a way of estimating simultaneously the numerical accuracy of 

our calculations, and whether the 3J model describes our results. 
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Figure 7.41 Local environment of the O2- ions in CCGO.  This displays the three Cu-O-Cu 

angles that are present throughout the structure. 

 

The numerical results obtained for CCTO using the hybrid functional built on BLYP 

with 40% HF exchange are summarised in Table 7.17. We see using these data, that the 

energy difference EFM-EAFM111 is 0.00018Ha while EAFM001-EAFM110 is  

-0.00023Ha. Clearly the ratio between these two energy differences is not 3, as required 

by equations (7.13) and (7.14); they have roughly the same magnitude and opposite 

sign.  
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We can also look at the relevant energies obtained for CCGO, and we find that: EFM-

EAFM111=-0.000040Ha, while EAFM001-EAFM110=0.00000062Ha. This is clearly in contrast 

with the results of equations 7.13-14 and hence the model does not provide numerically 

correct results for CCGO either. 

The disagreement between model and calculated results may have two possible reasons; 

either the numerical accuracy of our data is insufficient (energy differences are small, of 

the order 10-4Ha compared to the total unit cell energy of ~104Ha), or the Ising model 

based on the pair-wise additivity of three superexchange couplings does not describe 

CCTO and CCGO. We have first addressed the numerical accuracy issue: each 

magnetic phase has been calculated using different initial electronic configurations; in 

particular CRYSTAL enables us to obtain each AFM order by starting from the FM 

phase, and reversing the spin of selected Cu ions. Also, the energy of the FM phase has 

been calculated using the reduced symmetry of each of the AFM orders examined. The 

results obtained for CCTO are presented in Table 7.17 in rows entitled “SPINEDIT” 

and “symm.” respectively. None of these changes introduce differences in the calculated 

energies; the largest change being of ~3x10-6 Ha. Energy differences between magnetic 

phases are instead of 2x10-4 Ha and our results are therefore sufficiently accurate from a 

numerical point of view.  

Having ruled out the numerical accuracy as the reason for the non-agreement of 

calculated results with the Ising model, we need to conclude that it is the 1-J and 3-J 

Ising model with pairwise additivity of interactions that is unsuitable to describe the 

subtleties of CCTO and CCGO. 

 
Table 7.17 Energies of the various magnetic phases of CCTO considered for the 3 J analysis. 

Magnetic Order Energy (Hartree) 

FM -19800.83500813

FM double cell -19800.83500687

FM-AFM111symm. -19800.83500536

FM-AFM001symm. -19800.83500590

FM-AFM110symm. -19800.83500589

AFM111SPINEDIT -19800.83518399

AFM001SPINEDIT -19800.83504486

AFM110SPINEDIT -19800.83481472
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Table 7.18 Energies of the various magnetic phases of CCGO considered for the 3 J analysis. 

Magnetic Order Energy (Hartree) 

FM -29620.44460143

AFM111 -29620.44456154

AFM001 -29620.44445351

AFM110 -29620.44445413

 

This breakdown of pairwise addivity is known in other cuprates, for instance in the high 

Tc perovskite-related structure of La2CuO4[129, 130] often referred to as an anti-

ferromagnet. Here, deviation from pairwise additivity in magnetism has been 

rationalised with a cyclic term (4-body interaction)[129, 131]. Such a cyclic term does 

not however appear to be relevant in the CCTO and CCGO structures.  

Let us make reference to the O2- environment shown in Figure 7.41. Because each O ion 

mediates between three Cu2+ ions, it is reasonable to explore a 3-body term in the 

magnetic Hamiltonian, J123, that represents a magnetic energy through each O ligand of 

the CCTO and CCGO structure. Because the three Cu ions are differentiated by their 

Cu-O bond distances, we introduce different types of J123 constants in which spins 

identified as 1, 2 and 3 refer respectively to the spin of copper with the short, 

intermediate and long bond distances around the reference oxygen. The number of 

possible spin combinations is 23=8, which leads to 8 different 3-body coupling constants 

(J+++, J++-, J+-+, J-++, J+--, J-+-, J- -+, J- - -); we can however assume symmetry with respect 

to inversion of all 3 spins around the same O (ie. J+++=J---, J++-=J--+ and J+--=J-++). This 

equivalence has actually been verified by running pairs of calculations in which the spin 

of all Cu ions has been reversed, which yield identical results (to 10-9 Ha) This leaves 4 

distinct 3-body coupling constants, J+++, J++-, J+-+ and J-++ and we write a new spin-

Hamiltonian in the form: 

 

 0E E n J n J n J n J+++ +++ ++− ++− +−+ +−+ −++ −++= + + + +  (7.15) 

 

Where nijk is the number of oxygen ions in the unit cell with three Cu neighbours in spin 

i, j, k (or –i, -j, -k) in order of increasing Cu-O distance. We note here that S (spin of 

Cu) has disappeared from the model, as now the energy depends on the oxygen, not 

copper, ions that mediate the three-body superexchange interaction. Analysis of the 

calculated spin density of both CCTO and CCGO suggests that the new model is 
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reasonable; the multipolar expansion of the spin density on each O is complex, and has 

non-zero poles up to 6th order in a multipolar expansion of the charge density that 

depend on the magnetic environment of the oxygen. 

 

To solve equation (7.15) we need to consider five different magnetic phases; there are 

now four spin exchange parameters and the hypothetical energy of a phase without 

magnetic coupling, Eo hence five equations are required to solve for all five variables. 

We still consider the four magnetic phases used for the multiple J analysis discussed 

earlier, EFM, EAFM111, EAFM110 and EAFM001,  and now introduce a fifth arbitrary magnetic 

phase in which the first five Cu ions in the crystallographic unit cell are spin up and the 

sixth copper is in a spin down state. We label the energy of this phase as E51. Counting 

the number of different 3 body terms for these phases to obtain n+++, n++-, n+-+ and n-++ 

for each of the five magnetic orders we obtain: 

 

 0 3FME E J+++= +  (7.16) 

 111 0 3E E J+−+= +  (7.17) 

 110 0 1 1 1E E J J J++− +−+ −++= + + +  (7.18) 

 001 0 1 1 1E E J J J+++ ++− −++= + + +  (7.19) 

 51 0 1.5 0.5 0.5 0.5E E J J J J+++ ++− +−+ −++= + + + +  (7.20) 

 

Unfortunately, the determinant of the matrix of the above equations is zero and hence 

we do not have a unique solution to J+++, J++-, J+-+ and J-++. Further analysis of these 

expressions yields the linear dependences: 

 

 001 111 1103 3AFM FM AFM AFME E E E= − +  (7.21) 

 

and  

 51 1102 AFM FM AFME E E= +  (7.22) 

 

By considering all possible permutations of spin up and down on the six Cu ions of the 

unit cell we can define a crystallographic cell with 2 Cu’s with spin up and 4 Cu’s with 
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spin down; if we label the six Cu ions as Cu1-6, this phase is found when the Cu ions 1 

and 2 are in the spin up and all others in the spin down state. We label this phase as E42. 

 

 42 0 0.5 0.5 1.5 0.5E E J J J J+++ ++− +−+ −++= + + + +  (7.23) 

 

However, also this new phase is linearly dependent on the EFM and EAFM110 phases such 

that: 

 

 42 1102
3
FM

AFM
E

E E= +  (7.24) 

 

The linear dependence relationship is retained also when considering larger unit cells of 

the structure; therefore we cannot form enough non-linearly dependent equations to 

solve for unique solutions of J+++, J++-, J+-+ and J-++. However, at this stage we can put 

the calculated energies for the aforementioned magnetic phases into the equalities 

expressed by equations (7.21), (7.22) and (7.24) to check if, in principle, this 3-body 

exchange model provides numerically accurate results for CCTO and CCGO. Results 

can be seen in Table 7.19 and 7.20. 

 
Table 7.19 Value of the left hand side (LHS) and right hand side (RHS) of equations 7.21, 7.22 and 

7.24 for CCGO, in Hartrees. The energies were calculated using the F0.4PBE functional. 

Equation LHS RHS 

7.20 -59240.889047 -59240.889055 

7.21 -88861.333360 -88861.333402 

7.24 -88861.333532 -88861.333543 

 
 

Table 7.20 Value of the left hand side (LHS) and right hand side (RHS) of equatons 7.21, 7.22 and 

7.24 for CCTO, in Hartrees. The energies were calculated using the F0.4PBE functional. 

Equation LHS RHS 

7.21 -59402.505134 -59402.505268

7.22 -39601.669965 -39601.669822 

7.24 -39601.669629 -39601.669672
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Here we find that the identities 7.21, 7.22 and 7.24 are reproduced with much higher 

numerical accuracy than that achieved for the pairwise Ising model, to approximately 

10-5 Hartree for CCTO and CCGO. As discussed earlier, 10-5 Ha is the intrinsic 

accuracy of our calculations, as demonstrated earlier with results presented in Table 

7.17. The 3-body superexchange model seems to work for both CCTO and CCGO, and 

is certainly more successful than the 3 J analysis in describing the magnetic coupling. 

However, to find unique solutions to J+++, J++-, J+-+ and J-++ more linearly independent 

equations are required. To this goal we have considered triple unit cells, in which the 

primitive unit cell is tripled in one lattice direction. This cell contains nine Cu ions and 

the possible spin up and down permutations lead to 15 unique solutions. All the 

solutions allowed are still linear combinations of those given by equations 7.16-7.20. 

The underlying symmetry of CCTO and CCGO, in fact, does not enable us to obtain the 

individual values of the 3-body coupling constants, however large cell and complex 

magnetic order we may set in our calculations. While this conclusion may appear not 

entirely satisfactory, the fact that the identities 7.21-7.24 are satisfied by CCGO 

indicates, at least in a semi-quantitative way, that magnetic coupling in this material is 

not pairwise additive, and requires many-body interaction terms. It is our understanding 

that the different ground magnetic state between CCTO and CCGO is linked to the three 

body terms, which we cannot evaluate individually but are able to explain the different 

behaviour calculated and observed experimentally. 

 

 

7.5 New Compositions: CaCu3Zr4O12, SrCu3Zr4O12 and 

SrCu3Ti4O12. 

 

The class of AA’3B4Z12 perovskites has shown rich electronic behaviour, leading to 

useful functional properties (dielectric, magnetic, surface redox chemistry). We now 

extend our computational study predictively to new compositions not yet synthesised 

experimentally, and to observe if novel properties can be introduced. In particular we 

replace the Ca and Ti ions of CCTO with larger ones (Calcium with Strontium and 

Titanium with Zirconium) to obtain CaCu3Zr4O12 (CCZO), SrCu3Zr4O12 (SCZO) and 

SrCu3Ti4O12 (SCTO). Following the prediction from section 7.1.2.3 we consider that an 
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increase in lattice parameter may lead to different surface behaviour of Cu2+. Another 

goal is to identify new materials with a FM ground state, which are extremely rare in the 

literature and are of considerable academic and technological interest.  

We start by discussing results obtained from calculations on the perovskite structure of 

CaCu3Zr4O12 (CCZO), which has not yet been synthesised and is not reported either 

experimentally or theoretically in the literature. We limit the DFT study here to the 

hybrid functionals built on the GGA definitions and omit the LDA which has 

consistently proven worse in CCTO, CdCTO and CCGO. Convergence criteria and 

other computational details were consistent with those used for all previous calculations 

and the basis set for Zr and Sr were taken from the online database for the CRYSTAL 

code. As there are no experimental structural parameters to start from, we used the cell 

parameters derived by Subramanian et al.[84] for CCTO as a starting point. We also 

force the structure to belong to the Im3 space group making it isostructural to CCTO, 

CdCTO and CCGO. 

As there is no experimental data on this compound, we studied the FM and AFM phases 

with spins alternating along the 111, 110 and 001 planes in order to determine the stable 

magnetic structure. 

 
Table 7.21 Results for CCZO, using the hybrids built on the PBE functional 

HM% a0 XO YO RCu-O R'Cu-O RCa-O RZr-O 
∆EFM-

AFM111 

∆EFM-

AFM110 
∆EFM-

AFM001 
qCu qo qZr SpinCu SpinO 

0 
7.846 0.3088 0.1668 1.991 3.014 2.754 2.118 2.44 -2.20 2.10 1.59 -1.47 2.81 0.581 0.096 

20 
7.801 0.3091 0.1675 1.981 2.991 2.742 2.105 0.45 -0.29 0.28 1.66 -1.53 2.91 0.699 0.071 

40 
7.763 0.3091 0.1682 1.975 2.972 2.732 2.093 0.15 -0.14 0.05 1.74 -1.58 3.00 0.797 0.048 

60 
7.733 0.3089 0.1689 1.972 2.956 2.723 2.083 0.07 -0.07 0.00 1.79 -1.62 3.08 0.863 0.033 

80 
7.705 0.3086 0.1695 1.970 2.943 2.713 2.094 0.06 -0.06 0.00 1.83 -1.66 3.15 0.901 0.024 
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Table 7.22 Results for CCZO, using the hybrids built on the BLYP functional 

HM% a0 XO YO RCu-O R'Cu-O RCa-O RZr-O 
∆EFM-

AFM111 
∆EFM-

AFM110 
∆EFM-

AFM001 
qCu qo qZr SpinCu SpinO 

0 
7.917 0.3087 0.1673 2.012 3.039 2.780 2.136 2.40 -2.15 2.09 1.57 -1.47 2.82 0.575 0.098 

20 
7.867 0.3091 0.1678 2.000 3.015 2.767 2.122 0.43 -0.27 0.26 1.65 -1.53 2.92 0.693 0.072 

40 
7.826 0.3092 0.1683 1.992 2.995 2.755 2.110 0.14 -0.13 0.04 1.72 -1.58 3.01 0.793 0.049 

60 
7.793 0.3090 0.1690 1.987 2.978 2.745 2.099 0.06 -0.06 0.00 1.78 -1.62 3.09 0.859 0.034 

80 
7.763 0.3088 0.1695 1.984 2.964 2.734 2.089 0.05 -0.05 0.00 1.82 -1.66 3.16 0.898 0.025 

 

Let us now discuss these results, beginning with the structural parameters. 

Our calculations impose CCZO to belong to the body centred cubic space group Im3. 

We have performed Г-point calculations for each case and can confirm that this choice 

is a proper minimum with respect to symmetry lowering distortions. Let us first 

examine the trend in the equilibrium lattice parameter as a function of HF exchange. 

This was predicted to be between 7.705Å and 7.917Å depending on the choice of 

theory. This range is shown in Figure 7.42.  
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Figure 7.42 Equilibrium lattice parameter of CCZO against HF exchange for the BLYP 

and PBE functionals. 

 

The BLYP and PBE functionals behave very similarly to the cases of CCTO, CdCTO 

and CCGO: they predict a larger unit cell with pure DFT and they both compress the 

geometry with similar gradients upon inclusion of more HF exchange. Making the 

assumption that the hybrid functionals act similarly in describing CCZO as they do for 

CCTO and CCGO, we predict the actual lattice parameter to be approximately 7.80Å. 

This is a 6% increase from the case of CCTO whose lattice parameter is 7.39Å. 

 

Let us now examine the bond lengths calculated using the F0.4PBE functional. The Zr 

cations are sixfold coordinated by equidistant oxygens with a bond length predicted to 

be 2.110Å for CCZO, 8% larger than the equivalent for CCTO (Ti-O = 1.947Å). The 

Zr-O distance as a function of HF exchange is plotted for CCZO in Figure 7.43. The Ca 

atoms are surrounded by 12 equidistant O atoms with bond lengths predicted to be 

2.732Å and 2.592Å for CCZO and CCTO respectively (a 5% increase). Due to the 

tilting of the ZrO6 octahedra, each Cu atom is coordinated by a planar arrangement of 4 

nearest oxygen atoms with distances predicted to be 1.992Å and 1.971Å for CCZO and 

CCTO (a 1% increase), 4 oxygens at a further distance of 2.995Å and 2.761Å for 
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CCZO and CCTO respectively (an 8% increase) and 4 oxygens at a much further 

distance.  

 

 

 
Figure 7.43 Zirconium-Oxygen bond distances as a function of HF exchange for the BLYP 

and PBE functionals. 

 

The Zr substitution has an effect also on the tilting of the octahedral: for CCTO we 

obtain tilt angles of 19.14° when using the F0.4PBE functional. When using the same 

functional for CCZO the distortion is predicted to be larger, with a tilt angle of 22.0°, 

due to the larger size mismatch between Ca2+ and Cu2+ and the octahedral ion Zr4+. It is 

reasonable to expect such a distortion to have important effects on the magnetic order. 

 

Let us now examine the electronic properties of CCZO. All the values in this section 

refer to the equilibrium structure for each of the hybrid functionals examined. 

Calculations were performed on the FM phases and a set of AFM phases, including 

those having up and down spins alternating along the 111, 001 and 110 planes. The 

energy difference between FM and AFM (111, 110 and 001) phases as a function of the 

HF percentage in the hybrid functional is shown in Figure 7.44. The energies calculated 



156 

 

 

using the PBE and BLYP functionals were very similar and we therefore plot only the 

PBE data here. 

 

 
Figure 7.44 Relative energy of different magnetic phases of CCZO, with respect to the FM 

state taken as a reference, plotted as a function of HF exchange for the PBE functional. 

 

We predict the magnetic ground state to be AFM, with spins alternating along the 111 

planes. The AFM phase with spins aligned along the 001 planes is energetically the 

second most stable phase and the FM phase is more stable than the AFM110 phase. The 

dependence of the energy on the percentage of HF exchange display the behaviour that 

we expect for a superexchange-type mechanism. 

 

 

Let us now examine the DOS calculated for CCZO using the PBE functional with 20, 

40 and 60% HF exchange. 
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Figure 7.45 Density of states calculated using the PBE functional with 20, 40 and 60% HF 

exchange from top to bottom. The DOS of the Ca, Cu, Zr and the total are displayed. The 

total is divided by ten for ease of presentation. 

 



158 

 

 

The most noticeable effect from these results is a significant increase in valence electron 

density on the Cu2+ ions as we increase HF exchange. The bottom of the conduction 

band is still Cu using the F0.6PBE functional, a result similar to what we observed for 

CCGO and due to the Zr 4d states being higher in energy compared to the Ti-3d states. 

This feature also causes an increase of the calculated band gap, which using the F0.4PBE 

functional is of 6.84eV in CCZO compared with 6.19eV, 5.75eV and 7.31eV for CCTO, 

CdCTO and CCGO respectively. 

 

 

Let us now introduce a new system, where Calcium (Ca2+) is replaced by Strontium 

(Sr2+) on the A site to yield SrCu3Zr4O12, or SCZO. Similarly to CCZO, this perovskite 

has not yet been synthesised, so we performed a geometry optimisation in the Im3 space 

group followed by Г-point frequency calculations to confirm the chosen symmetry. We 

used the all electron Sr basis set taken from the online database for the CRYSTAL code. 

We present the structural and electronic results for BLYP and PBE functionals in Table 

7.23 and Table 7.24 respectively. We consider here the FM, AFM111, AFM001 and 

AFM110 phases in the range of 0-80% HF exchange. 

  
Table 7.23 FM results for hybrids built on the PBE functional. 

HM 

(%) 

a0 

(Å) 
Xo Yo Rcu-o (Å) R'cu-o (Å) Rca-o (Å) Rzr-o (Å) 

ΔEFM-

AFM111 

ΔEFM-

AFM001 

ΔEFM-

AFM110 
qcu (a.u) qo (a.u) qzr (a.u) spincu spino 

0 7.874 0.3098 0.1681 1.999 3.012 2.776 2.124 2.25 2.02 -2.11 1.59 -1.48 2.81 0.584 0.095 

20 7.827 0.3101 0.1688 1.988 2.989 2.764 2.111 0.42 0.27 -0.28 1.66 -1.54 2.91 0.702 0.070 

40 7.789 0.3102 0.1695 1.982 2.969 2.753 2.099 0.14 0.05 -0.13 1.74 -1.59 3.00 0.801 0.047 

60 7.758 0.3100 0.1701 1.978 2.953 2.743 2.089 0.08 0.00 -0.06 1.80 -1.63 3.08 0.866 0.032 

80 7.730 0.3097 0.1707 1.976 2.940 2.734 2.079 0.03 0.00 -0.01 1.83 -1.67 3.15 0.903 0.023 

 

 
  

Table 7.24 FM results for hybrids built on the BLYP functional. 
HM 

(%) 

a0 

(Å) 
Xo Yo Rcu-o (Å) R'cu-o (Å) Rca-o (Å) Rzr-o (Å) 

ΔEFM-

AFM111 

ΔEFM-

AFM001 

ΔEFM-

AFM110 
qcu (a.u) qo (a.u) qzr (a.u) spincu spino 

0 7.947 0.3097 0.1686 2.020 3.037 2.802 2.143 2.22 2.00 -2.10 1.57 -1.48 2.82 0.578 0.097 

20 7.896 0.3101 0.1690 2.007 3.013 2.789 2.129 0.40 0.25 -0.27 1.65 -1.54 2.92 0.696 0.072 

40 7.854 0.3103 0.1696 1.999 2.992 2.777 2.116 0.14 0.04 -0.12 1.73 -1.59 3.01 0.797 0.048 

60 7.820 0.3102 0.1703 1.994 2.975 2.767 2.105 0.07 0.00 -0.06 1.79 -1.63 3.09 0.863 0.033 

80 7.790 0.3100 0.1708 1.990 2.961 2.757 2.096 0.02 0.00 -0.01 1.82 -1.67 3.16 0.900 0.024 
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We start by examining the structural properties, and in particular the lattice parameter 

and the bond distances involving the newly introduced element, ie Sr2+, which are 

displayed in Figure 7.46 and Figure 7.47. 

 

 
Figure 7.46 Equilibrium lattice parameter as a function of HF exchange for the BLYP and 

PBE functionals. 
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Figure 7.47 Sr-O bond distance as a function of HF exchange for the BLYP and PBE 

functionals. 

 

 

Structurally we find little difference between CCZO and SCZO. Perhaps surprisingly 

replacing Ca2+ with the much larger Sr2+ ion causes a very small expansion of the lattice 

parameter, of only 0.02Å. The lattice parameter and bond distances show identical 

trends to the isostructural materials discussed earlier. 

  

The tilting of the octahedra is increased upon comparison to CCTO by the substitution 

of Ca and Ti with Sr and Zr. For example, using the F0.4PBE functional the tilt is 

predicted to be 19.1° for CCTO and 21.9° for SCZO. The tilting predicted for SCZO in 

this case is smaller than for CCZO (22.0°) following the substitution of Ca with Sr, due 

to the larger Sr being a better match than Ca for Zr in the octahedral site. 
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Figure 7.48 Energy difference between the FM and AFM phases against the fraction of HF 

exchange for SCZO calculated using the PBE functional. 

 

We start our analysis of the electronic properties by examining the difference in energy 

between the FM and AFM(111, 110 and 001) phases which is presented in Figure 7.48. 

Results are similar to those for CCZO: the AFM phase with spin alternating along the 

111 planes is the most stable phase. The AFM001 phase is more stable than the FM 

phase which is in turn more stable than the AFM110 phase. The magnitude of the 

energy differences between the FM and AFM phases is almost identical in CCZO and 

SCZO, but about 50% smaller than in CCTO, suggesting very small values for the Neel 

temperature (less than 15K). The trend in energy difference is as we expect for a 

superexchange type of interaction. 

 

Let us now discuss the DOS calculated for SCZO using the PBE functional, shown in 

Fig 7.49. 
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Figure 7.49 Density of states of SCZO calculated using the PBE functional with 20, 40 and 

60% HF exchange from top to bottom. The projected DOS of the Ca, Cu, Zr ions and the 

total DOS are displayed. The total is divided by ten for ease of presentation. 
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Here we note very little difference in the band gap upon comparison with CCZO 

(6.84eV and 6.83eV for CCZO and SCZO respectively). The comparison of structural 

and electronic properties suggest that Ca and Sr behave in an identical fashion in the 

CCZO/SCZO matrix and may be expected to form readily a solid solution of the two 

phases. 

 

The final cation replacement that we examine in this class of materials is SCTO, 

obtained from CCTO by replacing Ca with Sr. Similarly to CCZO and SCZO, also 

SCTO has not yet been synthesised, and hence the aim of our study was to screen its 

behaviour. We applied the PBE and BLYP functionals to this study in the range of 0-

80% HF exchange. The results are summarised in Table 7.25 and Table 7.26. 

 
Table 7.25 FM results for hybrids built on the PBE functional. 

HM 

(%) 
a0 (Å) Xo Yo Rcu-o (Å) R'cu-o (Å) Rsr-o (Å) Rti-o (Å) 

ΔEFM-

AFM111 

ΔEFM-

AFM001 

ΔEFM-

AFM110 
qcu (a.u) qo (a.u) qti (a.u) spincu spino 

0 7.491 0.3048 0.1805 1.992 2.805 2.654 1.987 2.97 2.68 -1.42 1.59 -1.35 2.41 0.565 0.091 

20 7.436 0.3045 0.1816 1.984 2.778 2.637 1.969 0.53 0.31 -0.20 1.67 -1.40 2.49 0.701 0.066 

40 7.389 0.3042 0.1829 1.980 2.754 2.623 1.954 0.16 0.03 -0.13 1.74 -1.44 2.55 0.804 0.044 

60 7.352 0.3037 0.1838 1.977 2.736 2.610 1.942 0.07 0.01 -0.08 1.79 -1.47 2.61 0.869 0.030 

80 7.319 0.3033 0.1846 1.975 2.721 2.599 1.931 0.03 0.00 -0.04 1.83 -1.50 2.66 0.905 0.022 

 
Table 7.26 FM results for hybrids built on the BLYP functional. 

HM 

(%) 
a0 (Å) Xo Yo Rcu-o (Å) R'cu-o (Å) Rsr-o (Å) Rti-o (Å) 

ΔEFM-

AFM111 

ΔEFM-

AFM001 

ΔEFM-

AFM110 
qcu (a.u) qo (a.u) qti (a.u) spincu spino 

0 7.560 0.3047 0.1806 2.011 2.830 2.678 2.005 2.90 2.57 -1.38 1.57 -1.35 2.42 0.557 0.094 

20 7.500 0.3045 0.1816 2.001 2.802 2.659 1.986 0.49 0.28 -0.17 1.65 -1.40 2.50 0.694 0.069 

40 7.450 0.3042 0.1826 1.995 2.778 2.644 1.971 0.14 0.02 -0.1 1.73 -1.44 2.57 0.801 0.046 

60 7.409 0.3039 0.1836 1.991 2.758 2.631 1.958 0.06 0.00 -0.07 1.78 -1.47 2.61 0.864 0.032 

80 7.374 0.3034 0.1844 1.987 2.742 2.618 1.946 0.02 0.00 -0.03 1.81 -1.50 2.67 0.902 0.023 

 

 

We begin by presenting the lattice parameter as a function of HF exchange, shown in 

Figure 7.50. The trend is similar to that observed for CCTO; the geometry is 

compressed as more HF exchange is included and the BLYP functional predicts a larger 

unit cell than the PBE functional. The equilibrium lattice parameter for SCTO 

(extrapolating from the trend of CCTO, CdCTO and CCGO) is of 7.43Ǻ; this represents 

an expansion from 7.38Ǻ of CCTO due to the larger Sr2+ ion compared to Ca2+. We 

note however that the effect of the Ca/Sr replacement on the lattice parameter is much 

smaller than that of the Ti/Zr substitution in CCZO/SCZO. Tilting of the TiO6 or ZrO6 
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octahedra enables the perovskite lattice to partially accommodate a strain introduced by 

the size mismatch on the A site. 

 

 

 
Figure 7.50 Lattice parameter of SCTO calculated using the BLYP and PBE functionals with 

between 0 and 60% HF exchange. 

 

 

The difference in energy between the FM and AFM111, AFM110 and AFM001 

magnetic phases of SCTO is shown in Figure 7.51. 
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Figure 7.51 Energy difference between the FM and AFM phases of SCTO against the 

fraction of HF exchange calculated using the PBE functional. 

 

 

The relative order of the four phases is the same as observed for CCZO and SCZO, but 

the energy difference is comparable to that calculated for CCTO. Comparison therefore 

of the four compositions indicates that magnetic coupling is more effective for the Ti-

containing solids than for the Zr analogues. 

 

The DOS calculated for SCTO using the PBE functional with 20-60% HF exchange is 

reported in figure 7.32 for completeness, but it shows no relevant feature to address. 
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Figure 7.52 Density of states of SCTO calculated using the PBE functional with 20, 40 and 60% HF 

exchange from top to bottom. The DOS of the Sr, Cu, Ti, O and the total are displayed. The total is 

divided by ten for ease of presentation. 
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7.5.1 Conclusions on the study of CCZO, SCZO and SCTO 

 

We performed predictive calculations on the perovskite compounds CCZO, SCZO and 

SCTO, obtained from CCTO by replacing Ca with Sr and/or Ti with Zr. These materials 

are isostructural to CCTO; the unit cell parameters vary considerably, especially upon 

introduction of Zr in the octahedral site. CCZO and SCZO are approximately 7% larger 

than CCTO and SCTO due to the relatively large Zr4+ ions. The substitution of Ca with 

Sr has instead a less pronounced effect, of less than 0.5%, on the lattice parameter. 

The introduction of Sr2+ and Zr4+ into the A and B sites of the perovskite lattice, does 

not affect the magnetic ground state; CCZO, SCZO and SCTO were predicted to be 

AFM111 as CCTO. Replacement of Ti by Zr reduces by approximately 50% the value 

of the magnetic coupling constants (JS), while replacement of Ca with Sr has no effect 

on magnetic coupling. Overall the electronic properties of the new compositions are 

expected to be similar but inferior to those of CCTO due to the decreased value of the 

J’s. 

 

 

7.6 Study of CaCu3Ti4S12 (CCTS) 

 

In the previous section we have investigated the properties of new perovskites obtained 

from CCTO by cation replacements; it is also possible for anions other than O2- to adopt 

the Z site of the perovskite structure, although perovskites with other anions are far less 

studied than oxides. One alternative of potential interest for CCTO is the sulphide 

anion, S2-, which is isoelectronic with the oxide ion and thus enables a 1:1 substitution. 

In this section we report results on the study of CaCu3Ti4S12 (CCTS), where we aim to 

investigate the substitution of O2- with the larger S2- on the structural and electronic 

properties. Sulfides usually have smaller band gaps than oxides, a condition that leads to 

more extreme dielectric properties; it is also unclear whether Cu2+ and S2- can coexist in 

the same lattice, or if the lower oxidation states Cu1+/S1- are stable. These features are 

suitable for a computational study, and here we apply the expertise gained in the earlier 

sections to the CCTS sulphide. 
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In Table 7.27 and Table 7.28 we present a summary of results for CCTS, obtained using 

the BLYP and PBE functionals and between 0-60% HF exchange. The basis set used for 

S is an all-electron 8-63111G developed by Bredow et al[132]. 

 
Table 7.27 FM results for hybrids built on the PBE functional. 

HM 

(%) 
a0 (Å) Xs Ys Rcu-s (Å) R'cu-s (Å) Rsr-s (Å) Rti-s (Å) 

ΔEFM-

AFM111 

ΔEFM-

AFM001 

ΔEFM-

AFM110 
qcu (a.u) qs (a.u) qti (a.u) spincu spins 

0 8.987 0.3095 0.1706 2.298 3.420 3.176 2.417 21.65 21.58 12.00 1.45 -1.13 1.87 0.239 0.129 

20 8.967 0.3090 0.1728 2.310 3.397 3.175 2.405 5.70 5.60 2.50 1.47 -1.17 1.96 0.387 0.114 

40 8.954 0.3088 0.1747 2.319 3.378 3.177 2.396 2.80 2.58 0.19 1.54 -1.22 2.05 0.537 0.093 

60 8.936 0.3082 0.1765 2.329 3.361 3.173 2.386 1.10 1.00 0.05 1.66 -1.28 2.12 0.700 0.061 

 

 
Table 7.28 FM results for hybrids built on the BLYP functional. 

HM 

(%) 
a0 (Å) Xs Ys Rcu-s (Å) R'cu-s (Å) Rsr-s (Å) Rti-s (Å) 

ΔEFM-

AFM111 

ΔEFM-

AFM001 

ΔEFM-

AFM110 
qcu (a.u) qs (a.u) qti (a.u) spincu spins 

0 9.132 0.3092 0.1706 2.338 3.477 3.225 2.456 21.53 21.47 11.86 1.42 -1.12 1.86 0.233 0.133 

20 9.101 0.3087 0.1729 2.347 3.449 3.220 2.440 5.65 5.54 2.45 1.44 -1.16 1.95 0.375 0.120 

40 9.075 0.3085 0.1746 2.352 3.426 3.217 2.428 2.77 2.54 0.17 1.51 -1.21 2.03 0.518 0.100 

60 9.055 0.3081 0.1762 2.359 3.408 3.214 2.418 1.08 0.96 0.04 1.63 -1.26 2.11 0.682 0.066 

 

 

Let us first examine the structure, in particular the equilibrium lattice parameter which 

is plotted in Figure 7.53. As already observed for all the cation replacements, an 

increase in HF exchange causes a contraction of the equilibrium lattice spacing; there 

are however substantial differences between CCTO and CCTS. First, the unit cell size 

has a very large expansion, from 7.38Ǻ in CCTO to 8.97Ǻ in CCTS, (using the PBE 

functional at 25% HF exchange) an increase of over 1.5Ǻ (or over 20%). Second, the 

difference between the BLYP and PBE series of hybrid functionals is more pronounced 

than for the oxides; this result is in line with observations in the literature, that indicate 

that the performance of BLYP degrades rapidly on increasing atomic number of the 

anion, while PBE is more robust across groups of the periodic table. Third, the decrease 

in lattice parameter is less pronounced for the sulphide than the oxide; in the PBE 

series, the compression upon increasing the HF fraction from 0-60% in CCTO is of 

1.8%, and only of 0.56% in CCTS. The BLYP series yield analogous results. 
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Figure 7.53 Equilibrium lattice parameter of CCTS calculated using the BLYP and PBE hybrid 

exchange functionals with between 0-60% HF exchange. 

 

 

Let us now examine the electronic properties, beginning with the DOS calculated for 

CCTS using the PBE functional with 20, 40 and 60% HF exchange, shown in Figure 

7.54. 
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Figure 7.54 Density of states calculated using the PBE functional with 20, 40 and 60% HF exchange 

from top to bottom. The DOS of the Ca, Cu, Ti, S and the total are displayed. The total is divided 

by ten for ease of presentation. 
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Plotted on the same energy scale as for our previously described perovskites, we notice 

the relatively small band gap of CCTS. This gap also opens relatively little upon 

increasing the amount of HF exchange. Using 40% and 60% HF exchange we observe a 

band gap and hence an insulating state. In these cases we obtain Cu2+ and S2- states. The 

situation at 20% HF exchange is much less clear. To understand this better we look at a 

more detailed DOS with 20% HF shown in Figure 7.55. 

 

 
Figure 7.55 Density of states calculated using the PBE functional with 20% HF exchange. The DOS 

of the Cu, S and the total are displayed. The total is divided by ten for ease of presentation. 

 

Here it looks as if S, at the top of the valence band, overlaps slightly with the Cu2+ 

empty d-level at the bottom of the conduction band. This can be seen more clearly from 

the band structure in Figure 7.56. 
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Figure 7.56 Band structure of CCTS calculated using the PBE functional with 20% HF exchange. 

The Fermi level is indicated by the dashed red line. 

 

When starting from DFT and increasing the amount of HF exchange in the hybrid 

functional, the S level overlaps with the Cu level yielding a metallic state, when we use 

20% HF exchange we get a slight overlap, which disappears with higher fractions of HF 

exchange until we achieve the insulating states observed with 40% and 60% HF 

exchange. 
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Let us now examine the difference in energy between the FM and possible AFM phases. 

This is shown in Figure 7.57. 

 

 
Figure 7.57 Energy difference between the FM and AFM phases against the fraction of HF 

exchange for SCTO calculated using PBE functional. 

 

 

Here we predict the ground state to be the AFM111 phase. The FM phase is the least 

stable of all phases considered. Thus the replacement of O with S does not alter the 

magnetic properties. However, the difference in energy between the FM and AFM states 

is far larger in CCTS than CCTO, with an almost 7-fold increase. This feature could 

mean the material could find practical use in device applications as the order 

temperature is expected to be substantially higher. 
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7.7 Conclusions on Chapter 7 

 

In this chapter we have presented the results from calculations on the perovskite 

compound CCTO and various isostructural compounds with different electronic 

properties. We have employed hybrid density functionals for this study, and by 

systematically increasing the fraction of HF exchange we have shown an improvement 

in both structural and electronic results with respect to experiment. In general we found 

that an increase in HF exchange led to a decrease in bond distances when using the 

BLYP and PBE GGA functionals but an increase when using the LDA. Using the 

BLYP and PBE functionals, agreement to experiment was usually achieved with 

between 20-60% HF exchange whereas the LDA often failed to find agreement to 

experiment at any amount of hybrid exchange mixing. A similar behaviour was 

observed for the electronic properties, but in this case the LDA and GGA results were 

very similar. We also noted that the choice of functional does affect the predicted 

structural parameters but has little effect on the electronic properties.  

The surface of CCTO was studied in order to investigate its colossal dielectric constant 

and the possible existence of a barrier layer mechanism. We found that the behaviour of 

the surface was very sensitive to the choice of theory but we did observe redox 

chemistry, with the surface Cu ions disproportionating or undergoing a charge-transfer 

reaction with the surface oxygens. The surface redox activity generates trap states that 

prevent the mobility of charge carriers and kill the n-type conductivity of CCTO; our 

findings are thus in support of the Barrier Layer effect. 

We studied several compounds isostructural to CCTO, such as CCGO, which despite 

their structural similarity show very different magnetic behaviour; CCTO is AFM and 

CCGO has a FM ground state. The behaviour of the parameters of bulk CCGO as a 

function of HF exchange was qualitatively similar to that observed for CCTO. We then 

studied the surface of CCGO and found a similar disproportionation to that observed for 

CCTO. This study was also extended to CdCTO and a similar disproportionation was 

also observed. However, the difference in disproportionation energy for the three 

materials showed that CCTO is more likely than CdCTO and CCGO to undergo surface 

redox steps. 

We extended our study to new compositions, where Ca2+ and Ti4+ were replaced with 

Sr2+ and Zr4+ to form CCZO, SCZO and SCTO, none of which has previously been 
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studied. These compounds were found to be stable within the Im3 space group with 

respect to symmetry lowering distortions. We found an expansion of the cell compared 

to CCTO, as expected for the larger Zr4+ and Sr2+ ions. Our calculations predicted the 

ground state to be AFM for all three compounds. The AFM phase with spins alternating 

along the 111 planes was found to be most stable. 

We also investigated the effect of replacing O with S in the CCTO structure. As a result 

we observed a large increase in the unit cell lengths but also a 7-fold increase of 

magnetic coupling, which makes CCTS a material of practical interest. 
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Chapter 8 - ABZ3 Type Perovskites 
 

We have discussed the perovskite structure (Chapter 4) and how its flexibility allows 

many elements to fit within its structural framework, to give rise to a large variety of 

properties. In the majority of materials, the charge of the B-site cation is equal or higher 

than that of the A-site cation; commonly observed valence combinations of the A and B 

cations are 3-3 (eg. YAlO3 and BiCoO3), 2-4 (CaTiO3) and 1-5 (KNbO3). However, 

there are also a small number of perovskite oxides with the valence combination 4-2, 

containing divalent transition metal oxides on the B, site that make reference to 

SeCuO3. Such 4-2 perovskites are rare, and other possible combinations such as 

ThCuO3 and CeZnO3 have never been achieved experimentally. The few 4-2 

Perovskites described so far contain a p element on the A site ie. Se4+, Te4+. The 

covalent A-O bonds and the lone pair electrons of Se4+ and Te4+ which are able to fill 

the space on the A site, contribute to the stability of the crystal structure.  

In this chapter we present results on a set of 4-2 perovskites, containing Se4+ as the A-

site cation. The parent compound is SeCuO3, that has recently been shown to have 

magnetoelectric behaviour[84]. Examples with other 2+ transition metal ions also 

known experimentally are given for comparison. 

 The aims and objectives of this chapter are to shed further light on the ferroelectric, 

ferromagnetic and multiferroic properties of SeCuO3. 

 

8.1 SeCuO3 

 

Copper selenite (SeCuO3) was first synthesised at high pressure in 1975 by Kohn et 

al[133]. X-ray powder patterns showed that the unit cell is orthorhombic and has been 

assigned to the Pnma space group. This has been more recently confirmed by 

Subramanian et al.[3]. The structure is that of a highly distorted perovskite, where the 

Se4+
 ions occupy the larger A sites with the transition metal ion Cu2+ on the B sites. We 

stress here that Cu was in the A site in the CCTO structure and now occupies the B site. 

We shall therefore examine the effect this has on the materials properties. The SeCuO3 

structure is composed of corner shared CuO6 octahedra forming a 3D network, with the 
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Se4+ in the 12 coordinated cavities. The ideal perovskite structure contains A cations in 

12 fold coordination, however the small size and strong covalent nature of Se4+ pulls in 

3 of the 12 oxygen atoms, producing SeO3 groups which tilt the CuO6 octahedra and 

bend M-O-M angles (M=Cu in this case) away from the ideal 180° to a range of 120° -

130°. This is the smallest observed for any perovskite. There is also a large distortion in 

Cu-O distances varying in the range from 1.9-2.6Å due to the Jahn-Teller effect caused 

by the d9electronic configuration of Cu2+.  

 

 

 
Figure 8.1 SeCuO3 unit cell displaying the tilting of the CuO6 octahedra and the [SeO3]2- groups. 

Oxygen is in red, Selenium in green and Copper in blue. The figure also displays the copper chains. 

 

The magnetic ground state of SeCuO3 has been found to be ferromagnetic, with a Curie 

temperature of TC=25K[133]. All subsequent studies have found agreement with this 

claim, however the reason for the ferromagnetic ordering is subject to debate.  

The unit cell contains two symmetry unique O atoms, which we label as O(1) and O(2). 

Each oxygen is involved in a Cu-O-Cu bridge which can be distinguished by the Cu-

O(1)-Cu and Cu-O(2)-Cu angles. In a magnetic oxide of transition-metal ions 

possessing unpaired electrons (in this case Cu2+), the spin exchange interactions 
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between adjacent Cu2+ ions are either of superexchange type (involving Cu-O-Cu paths) 

or of the direct exchange type. A set of rules known as the Anderson-Goodenough-

Kanemori (AGK) rules can be employed to provide approximate values for the 

superexchange interaction sign and strength considering the electronic configuration of 

the M ions (in this case Cu2+) and the M-O-M angle only[2, 127, 134, 135]. From the 

AGK rules it results that for Cu2+ an M-O-M angle greater than ~135° will lead to an 

AFM ground state, with a FM ground state for values of the M-O-M angle below this 

critical value. According to the AGK rules, the cut off angle of 135° can be used to 

explain the FM ground state of SeCuO3 since both the Cu-O(1)-Cu (or α1) and Cu-O(2)-

Cu (or α2) angles are below the threshold value and have been experimentally measured 

as 122° and 127.1° by Subramanian et al[3]. The same authors also investigated a 

continuous solid solution between SeCuO3 and the isostructural TeCuO3, which has an 

AFM ground state. By substituting Selenium by Tellerium on the A sites they were the 

first to show a FM-AFM transformation controlled by a single microscopic parameter. 

They reported that α1 remained approximately constant at ~123° for both materials and 

thus FM in both cases. They found however that α2 changed from 127° to 130.5° from 

x=0 to x=1 in the continuous solution of Se1-xTexCuO3. They were also able to 

determine a crossover angle between the FM and AFM superexchange of 127.5°, 

significantly lower than the aforementioned AGK value and thus suggesting that the 

AGK rules have at most a qualitative application. Subramanian et al. proposed therefore 

that it is the effect of α2 on the superexchange that determines the magnetic ground 

state. However, there have since been two computational studies involving a spin 

exchange analysis that contradict this assignment. Villesuzanne. et al[136]  studied the 

difference in the spin exchange parameters of both FM SeCuO3 and FM TeCuO3, 

considering the spin exchange associated with the α1 and α2 Cu-O-Cu angles as well as 

direct contributions within the unit cell. The spin exchange associated with α1 and α2 can 

be called J1 and J2 respectively. They found that there was virtually no difference in J2 

between the two materials; it was instead J1 that displayed a change of sign from FM to 

AFM when moving from SeCuO3 and TeCuO3. This result suggests that it could be the 

dependence of the superexchange on α1 that is responsible for the observed FM-AFM 

transition and not α2 as suggested in ref. [3]. In agreement with the aforementioned 

experiment conducted by Subramanian et al, the angle that J1 relates to (α1) remains 

almost constant from SeCuO3 to TeCuO3. This suggests that perhaps it is not the 
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dependence of the superexchange on any Cu-O-Cu angle but in fact an entirely different 

reason for the observed ferromagnetism. Iniquez et al.[137] performed a similar 

computational study of the SeCuO3 and TeCuO3 perovskites using the PBE functional 

within DFT and also the LDA+U method, to provide a more accurate treatment of the 

3d electrons of Cu2+. They found agreement with the conclusions of Villesuzanne et al, 

ie. the superexchange angles have little influence on the magnetic couplings of these 

systems. Furthermore, they considered both the SeCuO3 solid in the TeCuO3 structure 

and vice versa and found evidence that it is the structure and not the chemical 

composition that determines the magnetic ground states of these two systems. The 

authors propose that the observed FM to AFM transition is due to the position of the Se 

or Te cations relative to the superexchange Cu-O-Cu paths, and show reasonable 

evidence of this by the way of variable Se/Te-O distances and their effect on the 

magnetic ground state. As the Se/Te cation approaches the O(1) atom it acts like a 

‘magnetic valve’ and reduces the superexchange contribution to the magnetic coupling, 

as illustrated in Fig 8.2. 

 

 
Figure 8.2 Se/Te-O bond distance which has been suggested as the parameter that controls 

the ground magnetic state of Cu(Se/Te)O3. 

 

It should also be noted that there are different AFM phases available to the SeCuO3 and 

TeCuO3 structures; these are commonly labelled as A-AFM, C-AFM and G-AFM 

phases, in which the spins are ordered as shown in Figure 8.3, where we also display the 

FM phase for completeness. The two aforementioned theoretical works by Villesuzanne 

and Iniquez agree with each other, but disagree with the experimental work of ref [3] on 
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the most stable magnetic phase for CuTeO3. The computational studies predict the FM 

phase as the ground state for SeCuO3 and A-AFM for TeCuO3, while experiment 

indicates FM and C-AFM respectively. Further to this, Yu et al[138] studied the two 

perovskites computationally within the LSDA regime and found agreement with the 

earlier computational studies on the A-AFM ground state of TeCuO3. We should also 

mention here the experimental work of Escamilla et al[139], who studied the 

substitution of Cu2+ with Mn2+ to form a continuous solid solution SeCu1-xMnxO3, 

which  changed magnetic ground state from FM to AFM. They found that all Cu/Mn-O-

Cu/Mn angles remained constant throughout the solution, further suggesting that the 

ferromagnetic behaviour is not due to the effect of the M-O-M angle on the 

superexchange. 
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Figure 8.3 The FM and AFM spin phases considered for the ABZ3 perovskites in this PhD.  

For this purpose, only the Cu atoms are shown in the unit cell. The FM diagram also 

displays the J1 and J2 exchange parameters that are considered (relating to the Cu-O(1)-

Cu and Cu-O(2)-Cu angles respectively. 

 

One of the most interesting suggestions found in the literature is that made by Lawes et 

al. [92]. They suggest that the perovskite SeCuO3 could exhibit multiferroic behaviour. 

Also Subramanian et al.[3] suggest that there is magnetoelectric coupling in SeCuO3. 

However, ferroelectricity is formally forbidden by the Pnma centrosymmetric space 

group of SeCuO3, which clearly leaves open questions on the interplay between 

structural and electronic degrees of freedom in SeCuO3 and related materials that we 

aim to study computationally. 
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8.1.1 Aims of the Study and Computational Details 

 

As discussed in the introduction to this chapter, the perovskite structured SeCuO3 

displays interesting magnetic properties which are not only of academic interest but also 

make the material potentially useful for technological applications. In order to maximise 

the potential of this structure it is important to fully understand its electronic and 

magnetic properties, both of which are subject to debate. The high pressure conditions 

required to synthesise this material are no doubt among the reasons for the lack of good 

quality experimental data. The strongly correlated Cu2+ ions of SeCuO3 also make an 

accurate analysis difficult for computational methods based on local DFT. We therefore 

studied the structural, electronic and magnetic properties of SeCuO3 using hybrid 

density functionals. Through this study we aimed to tackle the uncertainties of the 

structure, particularly the magnetic structure, whilst providing a good test for the hybrid 

functionals. 

 

The computational details were similar to those reported in Chapter 5 for CCTO. It is 

necessary to make an appropriate choice of k points as to limit computational expense 

but represent the properties accurately. We found that k-point nets of 4x4x4 were 

sufficient to converge all properties as shown Table 8.1, which displays the unit cell 

parameters calculated with the F0.4PBE functional for k-point nets of 4x4x4 and 8x8x8. 

The Gaussian basis sets used to describe the crystalline orbitals were obtained from the 

online library of the CRYSTAL code[105] other than that used for selenium which was 

developed by Towler [140]. The accuracy of this basis set was confirmed by repeating 

calculations using an independent basis set derived by Ahlrichs[141]. The comparison 

of the unit cell parameters calculated with the two independent basis sets and the 

F0.4PBE functional is shown in Table 8.2. The initial lattice parameter and fractional 

coordinates of the unit cell employed in full geometry optimisations were those derived 

by Subramanian et al[3]. 
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Table 8.1 Comparison of unit cell parameters calculated with the F0.4PBE functional with k-point 

nets of 4x4x4 and 8x8x8. 
HF% a b c Se(X) Se(Z) O1(X) O1(Z) O2(X) O2(Y) O2(Z) 

4x4x4 5.830 7.367 5.253 0.0344 0.0005 0.0712 0.3233 0.1983 0.0742 -0.1080 

8x8x8 5.833 7.365 5.254 0.0346 0.0005 0.0713 0.3232 0.1983 0.0742 -0.1080 

 

 
Table 8.2 Comparison of unit cell parameters calculated with the F0.4PBE functional with two 

independent basis sets developed by Towler and Alrichs. 
Method a b c Se(X) Se(Z) O1(X) O1(Z) O2(X) O2(Y) O2(Z) 

Towler 5.830 7.367 5.253 0.0344 0.0005 0.0712 0.3233 0.1983 0.0742 -0.1080 

Alrichs 5.844 7.387 5.224 0.0344 0.0005 0.0713 0.3242 0.1993 0.0752 -0.1070 

 

 

8.1.2 Structural Results 

 

Similarly to our work on CCTO discussed in chapter 7, also for SeCuO3 we studied the 

FM and three AFM phases shown in Figure 8.3 using hybrid exchange functionals built 

on the PBE, BLYP and LDA functionals within DFT and a range of HF exchange 

between 0 and 100% in 20% increments. Some gaps exist in our results at high fractions 

of HF exchange due to the difficulty in achieving SCF convergence. All three AFM 

structures shown in Figure 8.3 were studied across the range of HF exchange to 

investigate if the ground magnetic state is sensitive to this parameter. We begin by 

presenting and discussing the structural results. The structure was constrained to belong 

to the experimentally derived Pnma space group; we have however performed Г-point 

phonon calculations to confirm that this choice represents a proper minimum, at least 

with respect to symmetry lowering distortions within the primitive unit cell (composed 

of 4 formula units or 20 atoms). An example of phonon frequencies, calculated with the 

F0.4PBE hybrid functional, is tabulated in Table 8.3. Clearly there is no imaginary mode 

and the three rigid translations are calculated to have a frequency of 5cm-1 that indicates 

good numerical accuracy. 
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Table 8.3 Phonon analysis for SeCuO3 calculated using the F0.4PBE functional. The 60 modes are 

tabulated with the corresponding frequencies. 

Mode Freq. (cm-1) Mode Freq. (cm-1) Mode Freq. (cm-1) 

1 5 21 242 41 508 

2 5 22 244 42 510 

3 2 23 265 43 527 

4 118 24 274 44 559 

5 133 25 302 45 565 

6 141 26 304 46 574 

7 145 27 309 47 576 

8 152 28 335 48 597 

9 176 29 338 49 764 

10 176 30 347 50 772 

11 183 31 381 51 780 

12 184 32 424 52 787 

13 191 33 431 53 793 

14 196 34 438 54 803 

15 201 35 445 55 811 

16 208 36 451 56 865 

17 216 37 456 57 875 

18 235 38 465 58 876 

19 238 39 467 59 886 

20 240 40 479 60 904 

 

 

Within the Pnma space group there are four symmetry unique atoms at the following 

fractional coordinates: Cu (0, 0, 0.5), Se (XSe, 0.25, ZSe), O(1) (XO(1), 0.25, ZO(1)) and 

O(2) (XO(2), YO(2), ZO(2)). The optimised parameters and bond distances are reported in 

tables 6.4-6, where the symbols and units are as described for CCTO in Chapter 5. The 

gaps in the experimental data are due to these particular parameters not being available. 
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Table 8.4 Equilibrium structure for SeCuO3, calculated using hybrid exchange functionals built on 

the PBE local formulation. 
HF% a b c Se(X) Se(Z) O1(X) O1(Z) O2(X) O2(Y) O2(Z) 

0 5.910 7.504 5.295 0.0323 -0.0018 0.0739 0.3291 0.1981 0.0721 -0.1171 

20 5.882 7.400 5.312 0.0360 0.0027 0.0732 0.3274 0.1998 0.0727 -0.1074 

40 5.830 7.367 5.253 0.0344 0.0005 0.0712 0.3233 0.1983 0.0742 -0.1080 

60 5.794 7.330 5.207 0.0324 -0.0012 0.0690 0.3202 0.1963 0.0752 -0.1084 

Expt. 5.970 7.331 5.290        

 

 

 

 

 

Table 8.5 Equilibrium structure for SeCuO3, calculated using hybrid exchange functionals built on 

the BLYP local formulation. 
HF% a b C Se(X) Se(Z) O1(X) O1(Z) O2(X) O2(Y) O2(Z) 

0 6.007 7.630 5.409 0.0400 0.0025 0.0749 0.3304 0.2024 0.0731 -0.1108 

20 5.961 7.513 5.401 0.0410 0.0051 0.0737 0.3278 0.2030 0.0738 -0.1039 

40 5.913 7.464 5.340 0.0396 0.0036 0.0721 0.3242 0.2016 0.0752 -0.1034 

60 5.874 7.423 5.285 0.0376 0.0016 0.0703 0.3211 0.1996 0.0762 -0.1039 

80 5.837 7.379 5.238 0.0354 -0.0001 0.0681 0.3187 0.1975 0.0768 -0.1045 

 
CuO6 octahedra  SeO8 polyhedra      

Cu-O1 x2 Cu-O2 x2 Cu-O2 x2 Se-O1 Se-O1 Se-O2 x2 Se-O2 x2 Se-O2 x2 Cu-O1-Cu Cu-O2-Cu 

2.164 2.494 1.966 1.786 2.936 1.775 3.228 2.922 123.64 129.59 

2.142 2.520 1.939 1.754 2.928 1.741 3.242 2.884 122.59 128.42 

2.132 2.494 1.932 1.723 2.913 1.717 3.204 2.865 122.15 127.87 

2.123 2.465 1.933 1.699 2.901 1.697 3.166 2.845 121.86 127.48 

2.113 2.437 1.933 1.681 2.888 1.682 3.133 2.822 121.66 127.19 

 

 

 

 

 

CuO6 octahedra  SeO8 polyhedra      

Cu-O1 x2 Cu-O2 x2 Cu-O2 x2 Se-O1 Se-O1 Se-O2 x2 Se-O2 x2 Se-O2 x2 Cu-O1-Cu Cu-O2-Cu 

2.128 2.403 1.965 1.769 2.859 1.765 3.123 2.845 123.64 129.30 

2.109 2.454 1.932 1.738 2.868 1.730 3.169 2.817 122.60 128.87 

2.104 2.424 1.927 1.709 2.855 1.707 3.125 2.804 122.18 128.41 

2.096 2.399 1.928 1.687 2.845 1.690 3.093 2.786 121.89 128.00 

2.090 2.521 1.919 1.607 2.842 1.843 3.081 2.682 122.00 127.10 
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Table 8.6 Equilibrium structure for SeCuO3, calculated using hybrid exchange functionals built on 

the LDA local formulation. 
HF% a b c Se(X) Se(Z) O1(X) O1(Z) O2(X) O2(Y) O2(Z) 

0 5.738 7.164 5.172 0.0172 -0.0041 0.0676 0.3310 0.1927 0.0677 -0.1215 

20 5.757 7.208 5.221 0.0271 0.0000 0.0690 0.3283 0.1969 0.0705 -0.1108 

40 5.783 7.280 5.223 0.0318 0.0005 0.0691 0.3247 0.1980 0.0733 -0.1077 

60 5.818 7.341 5.235 0.0351 0.0007 0.0691 0.3212 0.1984 0.0755 -0.1049 

80 5.854 7.396 5.254 0.0380 0.0010 0.0691 0.3180 0.1989 0.0774 -0.1021 

 

 
CuO6 octahedra  SeO8 polyhedra      

Cu-O1 x2 Cu-O2 x2 Cu-O2 x2 Se-O1 Se-O1 Se-O2 x2 Se-O2 x2 Se-O2 x2 Cu-O1-Cu Cu-O2-Cu 

2.030 2.300 1.934 1.757 2.731 1.757 2.987 2.656 123.40 130.29 

2.052 2.382 1.907 1.731 2.785 1.722 3.069 2.708 122.96 129.40 

2.076 2.407 1.911 1.707 2.828 1.703 3.097 2.760 122.47 128.57 

2.099 2.432 1.920 1.689 2.867 1.688 3.126 2.802 121.93 127.67 

2.121 2.461 1.930 1.676 2.905 1.676 3.157 2.840 121.66 127.19 

 

 

The dependence of the equilibrium lattice parameters, a, b and c of the orthorhombic 

unit cell on the hybrid exchange definition are displayed in Figure 8.4. They show a 

trend similar to what was discussed earlier for CCTO, with a cell contraction on 

increasing HF exchange for the GGA functionals, and a small expansion for hybrids 

built on the LDA. The structural anisotropy is slightly overestimated computationally, 

with a and c lattice parameters underestimated, and b overestimated, with respect to 

experiment. 
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Figure 8.4 Equilibrium lattice parameters of SeCuO3 as a function of HF exchange, calculated 

using the BLYP, PBE and LDA functionals.  

 

As discussed earlier in this section, in the SeCuO3 structure the A cation is not in the 

usual perovskite 12-fold coordination, as the Se4+ pulls in 3 of the 12 oxygens forming 

[SeO3]2- trigonal pyramidal units, inducing a large tilt of the CuO6 octahedra. 

Our results indicate that Se4+ in SeCuO3 is best described not as an isolated ion in the 

perovskite lattice, but as part of a molecular ion [SeO3]2- (selenite). The three short Se-O 

bonds, for instance, have a large Mulliken overlap population (0.100|e| at the F0.4PBE 

level) while the other Se-O bonds have negligible or even negative overlap population. 

The main structural difference between theory and experiment is noticed in the bond 

lengths within the [SeO3]2- units. This molecular ion is found experimentally to have 

two longer (1.843Å) and one shorter (1.607Å) bonds while theory predicts three almost 

identical bond lengths, with intermediate values between the experimental 

measurements (see Figure 8.5, eg. using the F0.4PBE functional we obtain 2x 1.707Å 

and 1x 1.709Å). Se-O bond distances are shown schematically in Figure 8.6 as a 

function of HF exchange. 
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Figure 8.5 Experimentally derived (left) and calculated (right) [SeO3]2- unit in SeCuO3. Calculation 

was performed using the F0.4PBE functional. 

 

 

 
Figure 8.6 Se-O bond distances involved in the [SeO3]2- formation. The unit is formed of two equal 

length Se-O bonds (in blue) and one different length Se-O bond (in red). 
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Theory favours therefore a higher symmetry than experiment regarding the Se-O bonds 

lengths. The relevant bond distances are not presented in the earlier computational 

papers[136-138] and hence we cannot make a comparison here. 

 

Since Se has received relatively little attention in solids studied computationally with 

local orbital basis sets, we have repeated our initial calculations (obtained with Towler’s 

basis set) with the one proposed by Ahlrichs[141] to make sure that such disagreement 

in Se-O bond distances is not an artefact of the basis set. We found very good internal 

consistency between the two basis sets. For example, if we compare the Se-O bonds (r1 

and r2) calculated with the F0.4PBE functional, we predict 1.707Å and 1.709Å using 

Towler’s basis set and 1.707Å and 1.712Å with Ahlrichs.  

Having eliminated the basis set as a source of error, our results suggest that it may be 

worth to revisit the experimental structural determination of the [SeO3]2- units. We have 

seen earlier that the position of Se or Te relative to the oxygens may play a role in the 

Cu-O-Cu superexchange, and this is therefore an important feature of the solid. 

 

We have previously discussed that there are two Cu-O-Cu angles within the SeCuO3 

orthorhombic unit cell that could possibly contribute towards a superexchange 

mechanism that would rationalise the stable FM state. These angles are labelled Cu-

O(1)-Cu and Cu-O(2)-Cu, and our relevant calculated results compared to experiment 

are displayed in Figure 8.7. 

 



190 

 

 

 

 
Figure 8.7 Cu-O(1)-Cu and Cu-O(2)-Cu angles within the SeCuO3 unit cell calculated using the 

BLYP and PBE functionals between 0-80% HF exchange. The experimental values are those 

experimentally derived by Subramanian et al.[3]. 

 

The agreement with experiment is overall satisfactory, particularly for the Cu-O(1)-Cu 

angle which is best reproduced using the F0.5BLYP/PBE functionals. We find 

reasonable agreement with the Cu-O(2)-Cu angle given the highly distorted nature of 

the perovskite, although its value is overestimated by up to 3° at the local DFT limit. 

We note however that the Cu-O(2)-Cu angle decreases by approximately 3° in the range 

of HF exchange considered in our work. If this parameter does effectively control the 

FM/AFM nature of superexchange, as suggested in ref.[3], we expect the calculated 

ground magnetic state of SeCuO3 to have a pronounced dependence on the hybrid 

functional choice, a feature that we shall investigate in greater detail in the following 

discussion. 

 

Before moving on to examine the electronic properties, the Jahn-Teller distortion inside 

the CuO6 octahedra deserves analysis. This distortion results in very different Cu-O 

distances, as shown in Figure 8.8.  Cu2+ is clearly in a square planar environment, as 
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expected for a d9 ion, with two trans Cu-O(2) bonds substantially longer than the four 

equatorial Cu-O bonds.  Comparison of the calculated Cu-O distances in the CuO6 

octahedra against experimentally derived values are displayed in Figure 8.9. 

 

 

 
Figure 8.8 Jahn-Teller distorted CuO6 octahedra calculated using the F0.4PBE functional. 



192 

 

 

 

 

 
Figure 8.9 Cu-O bond distances of the Jahn-Teller distorted CuO6 octahedra. The experimental 

values are displayed as continuous horizontal blue lines. 

 

We observe a relatively small error in the equatorial bonds, with the features already 

discussed in detail for CCTO: a small underestimation of the bond lengths at pure LDA 

level, and overestimation in GGA; with hybrid exchange corrections these distances 

change in the right direction towards the experimental data. The longer Cu-O(2) 

distances are instead underestimated, by as much as 10% at pure LDA level, but also at 

GGA level. The longest Cu-O bonds generated by the Jahn-Teller distortion are weak 

interactions in the solid; LDA is well known to overbind such non-bonded pairs, but 

also the decrease of Cu-O distances at GGA level may be a direct result of BSSE (see 

Chapter 3). 
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8.1.3 Electronic Properties 

 

Let us now examine the electronic properties of SeCuO3, and in particular the magnetic 

ground state. We have calculated the FM and three different AFM phases, indicated as 

A, C and G-type as shown in Figure 8.3. We limit our discussion here to calculations 

performed using hybrid exchange built on the BLYP and PBE GGA functionals.  

Results are summarised in Table 8.7, while the relative energies of the magnetic phases 

examined are shown in Figure 8.10. 

 
Table 8.7 Electronic Properties of SeCuO3 calculated using the BLYP and PBE hybrid functionals; 

∆E is the energy difference between FM and AFM structures in mH per double unit cell; q are the 

net atomic charges and Spin are the spin atomic charges both in |e| for each ion calculated with a 

Mulliken partition scheme. 

Functional ΔEFM-G-AFM ΔEFM-C-AFM ΔEFM-A-AFM qCu qSe qO(1) qO(2) SpinCu SpinSe SpinO(1) SpinO(2)

PBE -2.30 -2.05 -1.71 1.576 1.823 -1.212 -1.093 0.575 0.033 0.096 0.148

F0.2-PBE -1.12 -0.97 -0.92 1.661 1.951 -1.277 -1.167 0.713 0.021 0.070 0.098

F0.4-PBE -0.40 -0.34 -0.32 1.744 2.060 -1.337 -1.234 0.822 0.014 0.046 0.059

F0.6-PBE -0.16 -0.15 -0.10 1.796 2.156 -1.348 -1.284 0.883 0.011 0.031 0.037

BLYP -2.44 -2.11 -1.85 1.561 1.851 -1.213 -1.099 0.571 0.031 0.098 0.150

F0.2-BLYP -1.14 -1.05 -0.97 1.648 1.978 -1.279 -1.173 0.708 0.020 0.072 0.100

F0.4-BLYP -0.41 -0.36 -0.34 1.732 2.087 -1.340 -1.240 0.818 0.014 0.048 0.060

F0.6-BLYP -0.16 -0.15 -0.14 1.786 2.184 -1.388 -1.291 0.880 0.011 0.033 0.038

F0.8-BLYP -0.08 -0.08 -0.07 1.818 2.271 -1.428 -1.330 0.913 0.009 0.024 0.027

 

The magnetic ground state of SeCuO3 is found to be the FM phase in both the BLYP 

and PBE series, and independently on the amount of HF exchange employed in the 

hybrid functional formulations. The relative energy of the FM and AFM phases does 

depend on the amount of HF exchange, and the behaviour is similar to that discussed in 

Chapter 5 for CCTO, with the energy difference decreasing in a hyperbolic-like fashion 

on increasing the HF exchange fraction. As already discussed in Chapter 5, this 

behaviour is typical of superexchange interactions. In this respect, the variation of the 

Cu-O-Cu angles (see Figure 8.7) as a function of HF exchange appears to play no role 

in the sign of superexchange coupling between Cu ions; the value of 127° for Cu-O(2)-

Cu suggested as a threshold for a FM/AFM switch in the experimental work of 

Subramanian[3] is not observed in our calculationss, which therefore agree with the 
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earlier computational studies[136-138]. We can confirm therefore that SeCuO3 has a 

FM ground state, independently on the Cu-O-Cu angles, at least in the range of 120-

130° observed in our calculations with different hybrid functionals. Results for the 

hybrid functionals built on PBE or BLYP formulations are virtually identical, again as 

already observed for CCTO; in Figure 8.10 we have only plotted the BLYP results, for 

clarity. 

 

 

 
Figure 8.10 Energy difference (Hartree per double unit cell) between the FM and AFM (A, C and 

G-type) phases calculated using the BLYP functional between 0% and 80% HF exchange. 

 

Let us now consider the relative energy of the three AFM phases, and the effective 

coupling parameters J1 and J2 between Cu ions introduced earlier (see Figure 8.3). 

Among the AFM phases, the relative energy is found to vary in the order of A<C<G; 

the energy differences are small and again decay rapidly on increasing the HF exchange 

fraction. No reversal of phase stability is observed on varying the HF exchange. Of the 

previous computational studies of SeCuO3, only Villesuzanne[136] reports the relative 
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energy of the three AFM phases, indicating the A-type as the stable AFM order, in 

agreement with our work. 

 

The spin polarisation in each symmetry unique atom of the structure, calculated with a 

Mulliken partition scheme, is shown in Table 8.7. It is important to notice that the spin 

polarisation is higher on O(2) than O(1), approximately by a factor of 1.5. On the basis 

of the relative spin polarisation of O(1) and O(2), it is reasonable to expect magnetic 

coupling to be stronger via the Cu-O(2)-Cu bridge than via O(1), or in other words to 

have |J2|>|J1|. 

In order to quantify magnetic coupling in SeCuO3 we performed a J analysis of the unit 

cell, using an Ising effective spin Hamiltonian containing the two coupling parameters 

J1 (corresponding to superexchange through O(1)) and J2 (superexchange through O(2)), 

and making the assumption that these will be the largest contributors to the magnetic 

order. We neglect direct exchange and super exchange involving the longest Cu-O bond 

distances, ie. the axial ones in the Jahn-Teller distorted CuO6 octahedra. The energies of 

three different ordered spin states ie. FM, A-AFM, and C-AFM will be expressed as a 

2-J Ising Hamiltonian, as: 

 

 0 1 1 2 2 1 2
1 2J J

E E J S S J S S= + +∑ ∑  (8.1) 

 

The sums extend to all unique pairs of Cu ions in the primitive unit cell linked via O(1) 

and O(2) bridges. There are four Cu and twelve O atoms in the unit cell, four O atoms 

are of O(1) type involved in the J1 coupling, and eight of O(2) type involved in the J2 

coupling. We take S=±1/2 and analyse the spin states (up or down) in each Cu-O-Cu 

path for the considered magnetic phases to obtain: 

 

 0 1 22FME E J J= + +  (8.2) 

 0 1 22A AFME E J J− = − +  (8.3) 

 0 1 22C AFME E J J− = + −  (8.4) 

 

which provides: 
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 24FM C AFME E J−− =  (8.5) 

 1 22 4C AFM A AFME E J J− −− = −  (8.6) 

and also: 

 

 12FM A AFME E J−− =  (8.7) 

 

 

Which can be solved to give: 

 

 1 2
FM A AFME E

J −−
=  (8.8) 

 

 2
( )

4
FM C AFME E

J −−
=  (8.9) 

 
Table 8.8 Spin exchange parameters (mH) of CuSeO3 calculated using the BLYP and PBE 

functionals with between 0 and 80% and 0 and 60%  HF exchange respectively. 

Functional J1 J2 

BLYP -0.93 -0.53 

F0.2-BLYP -0.49 -0.26 

F0.4-BLYP -0.17 -0.08 

F0.6-BLYP -0.07 -0.04 

F0.8-BLYP -0.04 -0.02 

PBE -0.89 -0.51 

F0.2-PBE -0.46 -0.24 

F0.4-PBE -0.16 -0.09 

F0.6-PBE -0.05 -0.04 

 

 

Despite the spin polarisation being higher on O(2) than O(1) we find here that the 

strength of J1 is approximately twice that of J2. If we examine the Cu-O-Cu angles in 

Tables 8.4-6 we see that the Cu-O(1)-Cu is always smaller than Cu-O(2)-Cu, by 
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approximately 5.7°. According to the AGK rules of superexchange, decreasing the 

angle away from the threshold AFM/FM value favours more and more an FM 

superexchange. Our results are therefore in qualitative agreement with the AGK rules. 

Even if the spin polarisation appears higher for O(2) than O(1), FM type superexchange 

is stronger through the O(1) bridges in the SeCuO3 structure. Therefore, despite the 

claims of ref. [3], where it is suggested that the Cu-O(2)-Cu angle is the reason behind 

the ferromagnetism of SeCuO3, if the dependence of superexchange on the Cu-O-Cu 

angles can rationalise ferromagnetism in SeCuO3 it would be mostly via a Cu-O(1)-Cu 

bridge. We find qualitative agreement with the previous computational study which 

reports a J analysis ie. that of Villesuzzane et al.[136], in that both spin exchange 

parameters favour a FM ground state. However, the authors find a similar magnitude to 

the strength of J1 and J2 but our calculations predict J1 to be approximately twice as 

strong as J2. 

 

Let us now discuss the density of states; the example calculated using the F0.4PBE 

hybrid functional is shown in Figure 8.11, including separate projections on the 

symmetry unique Cu, Se, O(1) and O(2) atoms of the SeCuO3 unit cell. 
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Figure 8.11 DOS  for SeCuO3, calculated using the F0.4BLYP hybrid functional. 

 

The band gap calculated with this functional is 6.06eV, and corresponds to an insulating 

ground state. The Cu(d) levels overlap with the O(2p) states in the middle of the valence 

band, while the first unoccupied level corresponds to the empty d atomic orbital of Cu2+. 

These results yield a charge-transfer type insulator, similar to what was observed in 

CCTO when using 40% HF exchange. The empty Se states are approximately 1.2eV 

above the empty Cu-d level. 

 

It has been suggested that SeCuO3 exhibits multiferroic (magnetoelectric) behaviour. 

However a ferroelectric behaviour is not compatible with the centrosymmetric space 

group that SeCuO3 has been found to adopt. 

While the magnetic order in CuSeO3 is clearly due to the localised spin on the Cu2+ d9 

ions, the origin of possible ferroelectric distortions are related to the electronic structure 

of the Se4+ ions. Se4+
 is one of a number of ions that occupy the 12-coordinated sites 

known to favour ferroelectric-like distortions; others are Pb2+ and Bi3+. The polarisable 

s valence shell generates an electric dipole in the structure when the Pb2+, Bi3+ or Se4+ 

ions are displaced off-centre in the 12-coordinated site. Pb2+and Bi3+ are more ionic than 
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Se4+, and their off-centering is small and driven only by electrostatic forces. In the case 

of Se4+ examined here, instead, the formation of a molecular ion [SeO3]2- involves 

covalent Se-O bonding and generates more pronounced distortions. It is possible that 

the valence 5s electrons on selenium play an important part in the polarisation of the 

structure. To characterise this feature we have calculated three-dimensional charge 

density plots around the [SeO3]2- pyramidal units, which are shown in Figure 8.12. The 

polarisation of the s electrons away from the Se-O bonds is clearly visible and suggests 

that indeed Se4+ may give rise to ferroelectric like polarisations, although this is not 

present in the centrosymmetrical Pnma space group determined experimentally. In fact, 

the different (but symmetry equivalent) Se ions in each unit cell displace in opposite 

directions in a fashion more similar to an antiferroelectric, rather than ferroelectric 

distortion. It is not unreasonable however to imagine that a displacement of Se (induced 

by an external field) modifies both polarisation and magnetic coupling, and hence that 

SeCuO3 is indeed magneto-electric, although a direct calculation of such effect  requires 

a geometry optimisation in the presence of a field, which is at present not possible to 

perform. 

 

 

 
Figure 8.12 3D charge density maps highlighting the unshared electron pair of selenium in the 

[SeO3]2- unit. 
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8.1.4 Conclusions on SeCuO3 

 

We have applied hybrid exchange density functional theory to the study of SeCuO3. Our 

structural results find good agreement with experiment and the trend in structural 

parameters as a function of HF exchange shows a similar behaviour to that reported in 

Chapter 7 for CCTO. The largest structural difference between our theory and 

experiment lies in the relative bond distances within the Selenite ions. Also the Cu-

O(2)-Cu angle is overestimated, by up to 3° with respect to experiment; this is 

significant as experimental work suggests that the FM ground state of SeCuO3 can be 

explained by the Cu-O(2)-Cu angle, with an angle of less than 127.5° required to yield 

an FM rather than an AFM ground state. Despite our results achieving higher angles 

than the proposed 127.5° FM-AFM cut-off angle, we predict a FM ground state for 

SeCuO3 and agree on the relative stability of the FM, A,C and G-type AFM states with 

the earlier theoretical work of Villesuzanne et al.[136]. A spin exchange analysis of 

SeCuO3 shows that the strength of the superexchange interaction is twice as strong via 

the Cu-O(1)-Cu than the Cu-O(2)-Cu bridge, a result that can be explained via the AGK 

rules and the equilibrium values of the Cu-O-Cu angles.  

 

In order to investigate the difference in the magnetic couplings between the isostructural 

FM SeCuO3 and AFM TeCuO3 we attempted to apply our hybrid exchange functionals 

to the study of TeCuO3. Unfortunately this study was problematic due to the difficulty 

in defining a reliable basis set for Te. We were unable to achieve good enough 

convergence on the properties to comment on the small energy differences between the 

different magnetic phases of TeCuO3. 

 

 

8.2 SeBO3 (B=Ni, Mn and Co) 

 

As an extension to the study of SeCuO3, in this section we consider the case where Se4+ 

occupies the A site and Ni2+, Mn2+ and Co2+ individually occupy the octahedral B site to 
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form SeNiO3, SeMnO3 and SeCoO3 respectively, all of which have been synthesized 

experimentally, but have received little attention, despite the interest generated by the 

observation of magnetoelectric effects in the isostructural SeCuO3. Experimentally, this 

is probably due to the high pressure (6-8GPa) and temperature conditions required to 

synthesise these pervoskites. Computationally the problem lies in the strong on-site 

Coulomb and exchange interactions between neighbour transition metal ions due to the 

localised nature of the d electrons and the associated self-interaction error in DFT. Our 

hybrid exchange DFT calculations are aimed at filling this gap.  

In the following sections we discuss the study of SeNiO3, SeMnO3 and SeCoO3. Nickel, 

Manganese and Cobalt Selenites (SeNiO3, SeMnO3 and SeCoO3) were originally 

synthesised over 30 years ago by Kohn et al. [133, 142]. These perovskites have more 

recently been studied experimentally by Munoz et al. [143, 144]. These studies 

implemented neutron diffraction data complemented by susceptibility and 

magnetisation measurements. The neutron diffraction patterns are described by the 

authors as “reasonably good” in spite of the relatively small amount of sample (0.5g). 

Kohn et al. and Munoz et al. believe the SeNiO3, SeMnO3 and SeCoO3 structures to be 

isostructural to SeCuO3 and thus belong to the orthorhombic Pnma space group. All 

three compounds are described by the authors as having AFM ground states (TN=104K 

for SeNiO3 and TN=54K for SeCoO3 [143]). Munoz et. al.[143] found the most stable 

AFM order to be the G-AFM phase for all three compounds. This was more recently 

confirmed by Cao et al.[145] for SeNiO3 in a computational study via the LSDA+U 

method. There has yet to be a computational study of either SeMnO3 or SeCoO3. The G-

type AFM ground state of SeMnO3 was however confirmed experimentally by 

Escamilla et al.[139] who studied the continuous solid solution Se(Cu1-xMnx)O3.  

Similarly to SeCuO3 there is a large distortion and tilting of the (Ni/Mn/Co)O6 

octahedra. This tilting has been reported to be larger in SeMnO3 than SeNiO3 due to a 

higher tolerance factor (t, defined in chapter 6). The lattice parameters were also found 

to be larger in the Mn case due to the larger ionic radii of the high spin Mn2+ ion 

(0.83Å) compared to Ni2+ (0.69Å). Similarly to what we observed earlier for SeCuO3 

the Se4+ is responsible for pulling three oxygen atoms out of the SeO12 polyhedra to 

form short covalent bonds and yielding [SeO3]2- trigonal pyramidal units in which the 

three short Se-O bonds involved (~1.7Å for each compound) are highly covalent in 
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character. Thus the SeO3 units form discrete molecular ionic entities, hence from a 

chemical point of view the SeMO3 perovskites examined here should be referred to as 

metal selenites. Similarly to the case of SeCuO3 the [SeO3]2- trigonal pyramidal units 

contain a highly polarisable lone 4s2 electron pair on Se. Let us now examine our results 

for each of the SeMO3 compounds. In all of the calculations discussed in the following 

sections, we performed full geometry optimizations, starting from the most recent 

structure refinements obtained in the neutron diffraction studies of Munoz et al.[144]. 

The space group has been chosen as Pnma, but Γ-point phonon calculations were 

performed to check that the choice of space group was correct. 

 

 

8.2.1 SeNiO3 

 

For this study we compare our calculated results summarised in Table 8.9 with the more 

recent structural parameters refined by Munoz et al. The first observation when 

comparing the structure of SeNiO3 with SeCuO3 discussed earlier is the absence of Jahn 

Teller-like distortions in the NiO6 octahedra. This result is consistent with the high spin 

d8 electronic configuration of Ni2+, that is stable in an undistorted octahedral 

environment. The spread of Ni-O bond distances in SeNiO3, in both calculated and 

experimental results, is less than 0.1Å, compared with over 0.5Å for the Cu-O bond 

lengths in SeCuO3. 

The Se4+ ions are involved in selenite molecular ions; we notice in fact three very short 

Se-O bonds of approximately 1.7Å, while the nine remaining Se-O distances are above 

2.7Å. As in SeCuO3, our calculations predict three similar Se-O bond lengths; for 

instance using the F0.4PBE hybrid functional we obtain two Se-O(2) bonds of 1.723Å 

and one Se-O(1) bond of 1.714Å. These results compare very favourably with the high 

quality neutron diffraction data, that yield bond distances of 1.728Å and 1.716Å. They 

also reinforce our conclusion in section 8.1.4 that the disagreement between theory and 

experiment on the relative Se-O bond distances in SeCuO3 should be attributed to the 

poor quality of the experimental diffraction pattern and subsequent structural 

refinement, and not to the theory results. 
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As in SeCuO3, also in SeNiO3 there are two non symmetry equivalent oxygen ions in 

the unit cell, labelled as O(1) and O(2), that are responsible for superexchange coupling 

with different Ni-O-Ni angles. In the experimental structure refinement the Ni-O-Ni 

angles are 123° and 131° around the oxygen atoms O(1) and O(2) respectively. This 

distorted structure is consistent with that of SeCuO3 and can be rationalised by the 

abnormally small Se4+ cation (0.64Å) on the A site of the perovskite lattice, engaged in 

Selenite molecular ions [SeO3]2- that cause a large off-centre displacement of Se in the 

12-coordinated site of the perovskite lattice. The M-O-M angles are similar in SeCuO3 

and SeNiO3; the large tilting of octahedra observed in these materials is therefore driven 

primarily by the chemistry of the Se4+ ions, and not by the eventual Jahn-Teller 

distortion of the MO6 octahedra. 

 

Let us now consider magnetism in SeNiO3. As mentioned earlier, despite the similar 

structure, SeNiO3 has a different ground magnetic state from SeCuO3, the latter being 

FM while SeNiO3 has a G-AFM order. In our work, we have studied the FM and the 

three AFM phases already introduced for SeCuO3 (see Figure 8.3). Separate geometry 

optimisations have been performed for each magnetic order, but no relevant difference 

is found on the nuclear coordinates for different magnetic phases. We therefore present 

the results obtained from the FM phase only.  

 
Table 8.9 Structural Paramaters for SeNiO3 calculated using the LDA, BLYP and PBE functionals 

with between 0-60% HF exchange. 
    NiO6 octahedra  SeO8 polyhedra      

Functional a b c Ni-O1 x2 Ni-O2 x2 Ni-O2 x2 Se-O1 Se-O1 Se-O2 x2 Se-O2 x2 Se-O2 x2 Ni-O1-Ni Ni-O2-Ni 

LDA 5.714 7.260 4.900 2.033 2.089 2.015 1.754 2.665 1.763 2.805 2.675 126.40 132.48 

F0.2-LDA 5.741 7.349 4.900 2.063 2.107 2.034 1.718 2.719 1.730 2.843 2.734 125.87 131.37 

F0.4-LDA 5.775 7.413 4.915 2.088 2.129 2.051 1.697 2.761 1.707 2.878 2.777 125.20 130.21 

F0.6-LDA 5.813 7.462 4.932 2.108 2.152 2.066 1.682 2.799 1.690 2.910 2.811 124.51 129.27 

PBE 5.893 7.537 5.010 2.113 2.155 2.081 1.766 2.791 1.773 2.915 2.813 125.95 131.70 

F0.2-PBE 5.860 7.515 4.975 2.114 2.152 2.077 1.728 2.794 1.738 2.913 2.816 125.44 130.71 

F0.4-PBE 5.832 7.481 4.948 2.109 2.149 2.072 1.702 2.793 1.711 2.910 2.809 124.90 129.90 

F0.6-PBE 5.807 7.436 4.922 2.102 2.144 2.066 1.681 2.789 1.690 2.903 2.796 124.35 129.39 

BLYP 5.968 7.684 5.077 2.153 2.196 2.102 1.780 2.846 1.786 2.968 2.885 126.25 131.45 

F0.2-BLYP 5.928 7.644 5.036 2.148 2.188 2.096 1.742 2.842 1.751 2.959 2.880 125.65 130.42 

F0.4-BLYP 5.896 7.597 5.005 2.141 2.183 2.090 1.714 2.837 1.723 2.951 2.868 125.00 129.65 

F0.6-BLYP 5.867 7.549 4.978 2.133 2.177 2.084 1.692 2.831 1.701 2.943 2.852 124.49 129.09 

Experiment 5.879 7.525 4.937 2.116 2.158 2.069 1.716 2.793 1.728 2.920 2.838 125.55 130.52 
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Table 8.10 Electronic  properties of SeNiO3 calculated using the PBE functional with between 0-

60% HF exchange. 
Functional ΔEFM-(A-AFM) ΔEFM-(G-AFM) ΔEFM-(C-AFM) qNi qSe qO(1) qO(2) SpinNi SpinSe SpinO(1) SpinO(2) 

PBE 3.48 11.28 7.85 1.632 1.943 -1.203 -1.185 1.606 0.038 0.121 0.117 

F0.2-PBE 0.90 3.64 2.53 1.730 2.065 -1.276 -1.259 1.756 0.020 0.075 0.075 

F0.4-PBE 0.32 1.58 1.13 1.792 2.171 -1.331 -1.316 1.840 0.013 0.049 0.049 

F0.6-PBE 0.12 0.84 0.63 1.830 2.268 -1.375 -1.362 1.886 0.009 0.035 0.035 

 

 

Let us now discuss the energy difference between the FM and AFM phases, which is 

reported in Table 8.10 and shown in Figure 8.13. Calculations have only been 

performed with hybrid functionals built on the PBE formulation, as we have seen 

several times already that energy differences between magnetic phases are identical 

when using the BLYP and PBE functionals, and only depend on the fraction of HF 

exchange employed. 

 
Figure 8.13 Difference in Energy between the FM and 010, 101 and 111 AFM phases calculated for 

SeNiO3 using the PBE functional between 0-60% HF exchange. 

 

Our results clearly predict an AFM order, with the ground state represented by the G-

AFM phase. This in agreement with both the experimental work of Munoz et al.[143] 

and the theoretical data published by Cao et al[145]. We also predict the FM phase to be 
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the least stable magnetic phase among those studied and the A-AFM phase to be the 

least stable among the AFM magnetic orders. 

By applying the same Ising spin Hamiltonian described for SeCuO3 (see equations 8.8 

and 8.9) we calculate effective coupling parameters J1 and J2 as reported in Table 8.11.  

 
Table 8.11 J values calculated using the PBE functional. The values are in mH. 

Functional J1 J2 

PBE 1.74 2.82 

F0.2-PBE 0.45 0.91 

F0.4-PBE 0.16 0.40 

F0.6-PBE 0.06 0.21 

 

These results show that J2 is roughly twice as strong as J1 and both exchange parameters 

favour an AFM ground state. This result is in contrast to SeCuO3 where J1 is calculated 

to be approximately twice the strength of J2 and both exchange parameters favour an 

FM ground state. Again, the relative value of J1 and J2 in in qualitative agreement with 

the AGK rules, in that an increase of the M-O-M angle makes an AFM interaction 

stronger. It is however unclear why similar coordination geometries and M-O-M angles 

promote a FM superexchange in SeCuO3 and an AFM superexchange in SeNiO3. It is 

also of interest to note that the spin polarisation of O(1) and O(2) is similar in SeNiO3, 

while it was higher on O(2) for SeCuO3. 

 

8.2.2 SeMnO3 

 

Let us now discuss the third isostructural SeMO3 material, ie. the manganese selenite 

SeMnO3 for which our calculated results are compared with the most recently derived 

experimental structural parameters [143] in Table 8.12. Interestingly Escamilla et al. 

found that the Cu-O-Cu angles involving the two non-equivalent oxygen atoms, O(1) 

and O(2), did not change throughout the Se(Cu1-xMnx)O3 series of solid solutions, 

which is consistent with our belief that the interesting magnetic properties of these 

materials do not depend on small changes of the M-O-M angles. SeMnO3 has been 
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reported to have a G-type AFM ground state. The Neel temperature of 53.5K is about 

half that measured for SeNiO3. 

 

As with Nickel Selenite we studied not only the FM phase of SeMnO3 but also the three 

AFM phases (A-AFM, C-AFM and G-AFM). We used the LDA, BLYP and PBE 

functionals with 0, 20, 40 and 60% HF exchange. However we limit to the F0-0.6PBE 

functional range for our study of the electronic properties. All other computational 

details remain the same as for previous calculations. 

 

 
Table 8.12 Structural results for SeMnO3 calculated using the LDA, BLYP and PBE funcitonals 

with between 20-60% HF exchange. 
    MnO6 octahedra  SeO8 polyhedra      

Functional a b c Mn-O1 x2 Mn-O2 x2 Mn-O2 x2 Se-O1 Se-O1 Se-O2 x2 Se-O2 x2 Se-O2 x2 Mn-O1-Mn Mn-O2-Mn 

LDA 5.904 7.566 5.130 2.153 2.211 2.108 1.742 2.793 1.758 2.949 2.828 121.31 129.25 

F0.2-LDA 5.961 7.657 5.128 2.191 2.232 2.139 1.709 2.843 1.723 3.000 2.887 121.76 128.14 

F0.4-LDA 6.001 7.722 5.133 2.160 2.250 2.160 1.690 2.882 1.701 3.031 2.930 121.20 127.09 

F0.6-LDA 6.041 7.773 5.142 2.235 2.270 2.175 1.676 2.922 1.686 3.060 2.965 120.81 126.32 

PBE 6.097 7.897 5.219 2.242 2.284 2.169 1.756 2.932 1.769 3.061 2.996 123.12 128.50 

F0.2-PBE 6.088 7.856 5.183 2.244 2.276 2.179 1.720 2.929 1.732 3.068 2.988 122.10 127.57 

F0.4-PBE 6.064 7.800 5.157 2.238 2.269 2.180 1.694 2.921 1.705 3.063 2.970 121.20 126.89 

F0.6-PBE 6.035 7.742 5.136 2.229 2.262 2.176 1.675 2.912 1.685 3.055 2.947 120.56 126.43 

BLYP 6.171 8.049 5.281 2.282 2.328 2.181 1.771 2.990 1.783 3.111 3.075 123.71 128.35 

F0.2-BLYP 6.155 7.991 5.237 2.278 2.313 2.194 1.734 2.980 1.746 3.109 3.056 122.54 127.39 

F0.4-BLYP 6.127 7.924 5.204 2.269 2.302 2.195 1.707 2.968 1.717 3.100 3.032 121.67 126.68 

F0.6-BLYP 6.095 7.857 5.177 2.257 2.291 2.192 1.686 2.955 1.695 3.089 3.005 121.03 126.20 

Experiment 6.093 7.864 5.143 2.249 2.275 2.173 1.695 2.928 1.721 3.067 3.003 122.30 127.30 

 

 
Table 8.13 Electronic properties of SeMnO3 calculated using the PBE funcitonal with between 20-

60% HF exchange. 
Functional ΔEFM-A-AFM ΔEFM-G-AFM ΔEFM-C-AFM qMn qSe qO(1) qO(2) SpinMn SpinSe SpinO(1) SpinO(2) 

PBE 4.00 7.66 5.00 1.670 1.847 -1.180 -1.165 4.722 0.060 0.069 0.074 

F0.2-PBE 1.11 3.06 1.94 1.720 1.970 -1.238 -1.225 4.813 0.037 0.048 0.051 

F0.4-PBE 0.81 2.09 1.09 1.758 2.079 -1.287 -1.275 4.861 0.026 0.036 0.038 

F0.6-PBE 0.39 1.25 0.75 1.787 2.178 -1.329 -1.318 4.890 0.019 0.029 0.031 
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From Table 8.12 it can be seen that we find good agreement with experiment with 

respect to all structural parameters. The lattice parameters of SeMnO3 are larger than in 

SeNiO3 due to an increase in ionic radii. We also find that with Mn on the B site the 

structure is more distorted than with Ni and the Cu-O-Cu angles lie somewhere between 

the case of B=Mn and B=Ni. For instance, using the F0.4PBE functional the B-O(1)-B 

angle is 121°, 122° and 125° for B=Mn, Cu and Ni respectively. The B-O(2)-B angle is 

predicted to be 127°, 128° and 130° for the same order of ions on the B site. These 

angles are remarkably similar in the cases of B=Cu or Mn, yet SeMnO3 is not reported 

to have the same ground state magnetic order as SeCuO3. This adds further curiosity to 

the role of the Cu-O-Cu superexchange in the ferromagnetism of Copper Selenite. 

In a comparative computational study of FM SeCuO3 and AFM TeCuO3 Iniquez et 

al.[137] found evidence that the exchange parameters J1 and J2 are largely independent 

of their respective Cu-O-Cu angles. They rationalised the difference in magnetic ground 

state by the distance between the O-Se/Te ions (Figure 8.2) which increases upon Te 

substitution (Cu-Se=1.75 Å, Cu-Te=1.90Å). They suggested that the substitution of 

these ions acted like a magnetic valve switching on and off the ferromagnetism. In the 

cases studied here, namely SeMO3 where M=Cu, Ni and Mn, we can eliminate this 

effect as a rationalisation of the difference in magnetic properties in these materials. Our 

calculations predict the relevant O-Se distances as being almost identical in these cases 

(1.709Å, 1.711Å and 1.705Å respectively). 

 

To discuss the electronic properties of SeMnO3 we begin by examining the difference in 

energy calculated for the A-AFM, C-AFM and G-AFM phases. We present here the 

results obtained using the PBE functional with between 0-60% HF exchange. 
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Figure 8.14 Difference in energy between the FM and AFM 010, 111 and 101 phases of SeMnO3 

calculated using the PBE hybrid functional with 0-60% HF exchange. 

 

 

We find agreement here with all experimental and computational literature, with a G-

AFM ground state for SeMnO3. There is no published experimental work comparing the 

relative stability of the different AFM phases to make reference to. However, our results 

predict all the AFM phases to be more stable than the FM phase and the A-AFM to be 

the least stable phase. This is consistent with our finding for SeNiO3.  

 

The effective coupling constants, J1 and J2, as calculated for SeCuO3 and SeNiO3 are 

reported in Table 8.14. 
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Table 8.14 Efffective coupling constants calculated using the PBE functional. All values mH. 

Functional J1 J2 

PBE 2.00 1.92 

F0.2-PBE 0.56 0.49 

F0.4-PBE 0.41 0.27 

F0.6-PBE 0.20 0.19 

 

 

These results show that both effective exchange parameters favour an AFM order, 

similarly to SeNiO3; however the two exchange parameters have similar strength in this 

case. The values of J1 and J2 in SeMnO3 and in particular of J2 are smaller in SeMnO3 

than in SeNiO3 (for instance, using the F0.4PBE hybrid functional exchange, J2 was 0.40 

mHa in SeNiO3 and 0.27 mHa in SeMnO3), an effect which is roughly proportional to 

the ratio of Neel temperatures in SeNiO3 and SeMnO3 known from experiment. 

Superexchange is therefore stronger for Ni2+ than for Mn2+ ions. 

 

8.2.3 SeCoO3 

. 

Only one experimental study on SeCoO3 is available, the lack of experimental studies of 

this compound is due to the high pressure and temperature conditions required to 

synthesise the structure. There is yet to be any computational study of this perovskite 

and thus we decided to examine its structural and electronic properties.  

We used the PBE DFT functional with 40% HF exchange to perform a full geometry 

optimization of the crystallographic unit cell. We limit to this hybrid functional as it has 

performed well in our previous studies of perovskites.  

Co2+ is a d7 ion that can exist in low spin (t2g
6 eg1, with 1 unpaired electron) and high 

spin (t2g
5 eg2, with 3 unpaired electrons) electronic configuration, so we initially 

performed calculations on both to conclude on the most stable. The high spin 

configuration was found to be significantly more stable than the low spin one, by 

~0.5eV per unit cell, and therefore we present the results only for calculations of 

SeCoO3 with high spin Co2+. As in previous sections, we performed calculations not 
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only on the FM but also on the A-AFM, C-AFM and G-AFM phases. The structural 

results are displayed in Table 8.15 along with the experimental values. 

 
Table 8.15 Structural results for SeCoO3 calculated using the F0.2-PBE functional. 

    CoO6 octahedra  SeO8 polyhedra      

Method a b C Co-O1 x2 Co-O2 x2 Co-O2 x2 Se-O1 Se-O1 Se-O2 x2 Se-O2 x2 Se-O2 x2 Co-O1-Co Co-O2-Co 

F0.4-PBE 5.894 7.544 5.037 2.139 2.201 2.093 1.701 2.846 1.710 2.965 2.845 123.75 129.06 

Experimental 5.930 7.596 5.029 2.151 2.214 2.083 1.715 2.861 1.715 2.981 2.878 123.96 129.55 

 

 

Structurally we find excellent agreement with experiment and a Γ point phonon analysis 

confirmed that the orthorhombic Pnma space group is the correct choice. The M-O-M 

angles are, on average, only ~1° larger in SeCoO3, compared to SeCuO3, with M-O(1)-

M predicted to be 122.2° and 123.8° and M-O(2)-M predicted as 128.4° and 129.1° for 

Cu and Co respectively. 

 

The electronic properties are presented in Table 8.16. 

 
Table 8.16 Electronic structure of SeCoO3 calculated using the F0.2-PBE functional. 

Functional 
ΔEFM-

(A-AFM) 

ΔEFM-(G-

AFM) 

ΔEFM-(C-

AFM) 

J1 J2 
qCo qSe qO(1) qO(2) SpinCo SpinSe SpinO(1) SpinO(2) 

F0.4-PBE 0.32 1.27 1.26 0.15 0.32 1.777 2.140 -1.315 -1.301 2.833 0.008 0.0528 0.0528 

 

 

In agreement with the experimental study by Munoz et al.[144] we find the G-AFM 

ground state to be the most stable. The effective exchange parameters, J1 and J2, are 

both AFM. We predict the A-AFM to be the least stable AFM phase with all AFM 

phases more stable than the FM phase. 

 

 

8.2.4 Conclusion on the SeBO3 Compounds (B=Ni, Mn and Co) 

 

In conclusion we have studied the structural and electronic properties of the highly 

distorted perovskites SeNiO3, SeMnO3 and SeCoO3. We performed our study using 
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hybrid functionals with the strongly correlated Ni/Mn/Co2+ ions providing a suitable 

test. For SeNiO3, we found excellent agreement with experiment regarding the structure. 

The M-O-M angles are observed to vary very little from M=Cu to Ni (Cu-O(1/2)-Cu ~ 

122° and 128°, Ni-O(1/2)-Ni ~ 124° and 129° respectively) thus we find it unlikely that 

the ferromagnetism of SeCuO3 can be rationalised by the angular dependence of 

superexchange. We find agreement with previous experimental and theoretical studies 

on the correct ground state of SeNiO3 (G-AFM). For SeMnO3 we also found good 

structural agreement with experimental studies. There were no structural observations 

that could rationalise the difference in magnetic properties between SeMnO3 and 

SeCuO3. Electronically we found the ground state to be the G-AFM type, consistent 

with previous experimental studies. 

 

8.3 SeBS3 (B=Cu, Ni and Mn) 

 

In the previous section we have discussed the structural, electronic and magnetic 

properties of SeBO3 perovskites with different transition metal ions on the B site. There 

have been no studies to date on the effect of substituting other anions in place of O2- in 

these pervoskites. This is due to the difficult task of synthesising these materials at high 

pressure. It is however, a field where ab-initio modelling can investigate predictively 

whether such materials would be of any practical interest. 

We studied the substitution of O2- with S2- to form the series of perovskites SeBS3 

where B=Cu, Ni and Mn, and investigated the effect of the substitution on the structural, 

electronic and magnetic properties. Here we limited our study to using the F0.4PBE 

functional, which has generally found the best correspondence to experiment during our 

studies. In each sulphide material we started from the structure of the equivalent oxide 

as no other data is available. We kept the same starting tolerances and computational 

parameters as for our previous studies. 

We start our discussion here by presenting the structural results, which are summarised 

with comparison to their oxide equivalents. 
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Table 8.17 Structural results for the SeBS3 (B=Cu, Mn, Ni) perovskites calculated using the F0.4PBE 

functional. 
    BZ6 octahedra  SeZ8 polyhedra      

Material A b c B-Z1 x2 B-Z2 x2 B-Z2 x2 Se-Z1 Se-Z1 Se-Z2 x2 Se-Z2 x2 Se-Z2 x2 B-Z1-B B-Z2-B 

SeCuS3 7.253 8.823 6.308 2.478 2.877 2.317 2.250 3.423 2.190 3.839 3.337 125.74 135.19 

SeCuO3 5.830 7.367 5.253 2.104 2.424 1.927 1.709 2.855 1.707 3.125 2.804 122.18 128.41 

SeNiS3 7.199 9.009 5.861 2.522 2.532 2.443 2.222 3.255 2.205 3.516 3.355 126.54 137.79 

SeNiO3 5.832 7.481 4.948 2.109 2.149 2.072 1.702 2.793 1.711 2.910 2.809 124.90 129.90 

SeMnS3 7.526 9.347 6.101 2.661 2.667 2.586 2.210 3.411 2.202 3.730 3.528 122.37 134.81 

SeMnO3 6.064 7.800 5.157 2.238 2.269 2.180 1.694 2.921 1.705 3.063 2.970 121.20 126.89 

 

Optimisations of the thioselenite compounds were performed in the Pnma space group, 

but as for the corresponding oxide compounds, we performed Г-point phonon 

calculations to confirm that this was a proper minimum with respect to symmetry 

lowering distortions. 

Due to the larger sized S2- anion compared to O2- we expect an increase in the structural 

parameters upon substitution of S for O. This is exactly what we observe, eg. we 

observe a ~24% increase for lattice parameter a, ~20% increase for b and ~18% increase 

for c for each perovskite. The perovskites exhibit different distortions with a smaller 

tilting of the BS6 octahedra. For example for SeCuO3 and SeCuS3 the Cu-O-Cu angles 

open up by as much as 10°. The bond distances in the BS6 octahedra are also all 

enlarged by approximately 20% compared to BO6. The structures contain [SeS3]2- 

trigonal pyramidal units and the effect of S replacing O in all of the compounds results 

in ~30% increase in the bond lengths involved in these units. Three Se-S bonds are still 

substantially shorter than the others, and their bond population is high, so that in the 

SeBS3 perovskites we can identify a thioselenite ion SeS3
2- analogous to the selenite 

SO3
2- present in the oxides. The B-S(2)-B angle is increased by approximately 8° in 

each sulfide, however, the B-S(1)-B angle increases by a different amount in each case 

and we find ~3°, ~2° and ~1° increases for Cu, Ni and Mn respectively. 

We should note here that according to ref. [3], where it is claimed that it is an increase 

in the Cu-O-Cu angle that switches the magnetic ground state from FM to AFM, we 

should find an AFM ground state for SeCuS3. Upon substitution of O with S the Cu-

S(2)-Cu angle increases significantly, to 135°, well above the cut off angle of 127.5° 

that is suggested for the FM/AFM crossover. 
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Let us now examine the electronic properties, starting with a comparison of the relative 

energy of FM and AFM phases. These results are shown in Table 8.18. 

 
Table 8.18 Electronic properties of SeCuS3, SeNiS3 and SeMnS3 calculated using the PBE 

functional with 40% HF exchange. 

Material ΔEFM-111 ΔEFM-101 ΔEFM-010 qB qSe qO(1) qO(2) SpinB SpinSe SpinO/S(1) SpinO/S(2) 

SeCuO3 -0.40 -0.34 -0.32 1.744 2.060 -1.337 -1.234 0.822 0.014 0.046 0.059 

SeCuS3 -1.23 -2.63 -0.97 1.523 0.749 -0.895 -0.688 0.546 0.008 0.167 0.139 

SeNiS3 7.48 6.31 1.10 1.696 0.756 -0.808 -0.822 1.718 0.006 0.107 0.085 

SeMnS3 7.18 5.82 5.18 1.596 1.696 -0.923 -0.893 4.801 0.024 0.057 0.059 

 

The effective coupling constants J1 and J2 can also be calculated via equations 8.8 and 

8.9. These are shown with comparison to SeCuO3, in Table 8.19. 

 
Table 8.19 Effective coupling constants calculated using the F0.4PBE functional. 

Functional J1 J2 

SeCuO3 -0.16 -0.09 

SeCuS3 -0.49 -0.66 

SeNiS3 0.55 1.58 

SeMnS3 2.59 1.46 

SeNiO3 0.16 0.40 

SeMnO3 0.41 0.27 

 

Interestingly the ground state of SeCuS3 is FM. The substitution of S2- for O2- has 

increased the structural parameters by approximately 20% and significantly altered the 

Cu-Z(2)-Cu angle. Despite this change, the magnetic ground state is the same in 

SeCuO3 and SeCuS3. It therefore seems unlikely that any change in magnetic order 

upon cation or anion substitution in the perovskite structure can be attributed to a 

change in the Cu-O(2)-Cu angle as suggested in ref. [3]. It rather seems an intrinsic 

property of Cu-Cu superexchange mediated by a selenite or thioselenite ion. 

Upon comparing results for SeCuO3 and SeCuS3 we notice that S is much more 

covalent; there is much more spin on S than O and therefore there is a much stronger 

superexchange. We observe an increase in the FM/AFM energy difference by at least a 

factor of three. This much larger energy difference for S leads to a much higher Tc and 

hence SeCuS3 could be extremely promising for practical device applications. 
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Figure 8.15 DOS for SeCuS3 with projections on the Se, Cu, S(1) and S(2) atoms. The total is shown 

divided by ten. 

 

 
Figure 8.16 DOS for SeCuO3 with projections on the Se, Cu, O(1) and O(2) atoms. The total is 

shown divided by ten. 
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Let us now examine the DOS for SeCuS3, calculated using the BLYP functional with 

40% HF exchange, shown in Figure 8.15 DOS for SeCuS3 with projections on the Se, 

Cu, S(1) and S(2) atoms. The total is shown divided by ten. 
 

 
Figure 8.16 DOS for SeCuO3 with projections on the Se, Cu, O(1) and O(2) atoms. The total is 

shown divided by ten. 

 which can be compared with that of SeCuO3 in Figure 8.11 (and repeated in Figure 

8.16 for easier comparison). We notice a much smaller gap for SeCuS3 than was 

observed for SeCuO3, however SeCuS3 is still insulating. The occupied Cu2+ band is 

below the anion levels, while the bottom of the conduction band is formed by the empty 

Cu2+-d level but less separated from the empty S levels than from O in SeCuO3. 

 

In conclusion, we studied the effect of replacing O with S on the structural and 

electronic properties of the SeBS3 perovskite family (B=Cu Mn and Ni). The effect of 

this substitution on the structure was to increase bond distances and lattice parameters 

by approximately 20%. This also led to a decrease in the octahedral distortion with 

angles opening up by as much as 10°. Electronically we obtain some interesting results 

with each material predicted to have the same magnetic ground state as its oxide 
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equivalent but magnetic coupling increased threefold. The retention of the same 

magnetic ground state in Oxides and Sulfides is particularly interesting for the case of 

SeCuS3 where the Cu-S(1)-Cu and Cu-S(2)-Cu angles open up by 4° and 7° 

respectively. In the experimental works of Subramanian et al.[3] a change in Cu-O-Cu 

angle of approximately 1° (from the continuous solid solution of FM SeCuO3 and AFM 

TeCuO3) is discussed as being important in explaining the different magnetic ground 

states. Here, for SeCuO3 and SeCuS3 we predict a FM ground state for both materials 

despite the relatively large change in Cu-O-Cu angle. 

One of the most interesting observations was the large increase (by a factor of at least 3) 

in the energy difference between FM and AFM phases from SeCuO3 to SeCuS3. This 

larger energy difference will result in a much higher Tc which gives this perovskite 

large potential for use in technological devices. 

 

 

8.4 Conclusions on Chapter 8 

 

In this chapter we described calculations performed on the isostructural compounds 

ABZ3 (where A=Se, B=Cu, Ni, Mn, Co and Z=O, S). We initially discussed 

calculations on copper selenite SeCuO3 where we found the magnetic ground state to be 

FM, in agreement with experiment. Following an analysis of SeNiO3, SeMnO3 and 

SeCoO3 we find the AFM phase to be the most stable for all three perovskites. The 

difference in the magnetic ground state between these perovskites and SeCuO3 has been 

attributed in the literature to the superexchange dependence on the Cu-O(1)-Cu and/or 

Cu-O(2)-Cu angles. Our studies have shown that this explanation is not satisfactory to 

rationalise such large differences in magnetic behaviour. It has also been reported in 

ref.[2] that it is the Cu-O(2)-Cu and not the Cu-O(1)-Cu angle which is responsible for 

the difference in magnetic order. An analysis of the two relevant coupling constants 

contradicts this claim and we find that superexchange is stronger via the Cu-O(1)-Cu 

bridge by a factor of two. 

We performed studies into the aforementioned perovskites with O replaced by S. This 

resulted in considerably expanded geometries with respect to their oxide equivalents (by 
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approximately 20%). We found SeCuS3 to be FM, however the Cu-S(2)-Cu and the Cu-

S(1)-Cu angles opened up by more than 5° which provided further suggestion that the 

FM ground state cannot be rationalised simply by the superexchange dependence on 

these angles. 
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Chapter 9 - Conclusion 
 

This PhD thesis has been concerned with the computational study of copper containing 

perovskites using modern electronic structure methods, and in particular we have 

performed an extensive test of hybrid exchange functionals within DFT. Applications 

cover  two main classes of materials, discussed separately in chapters 7 and 8: both are 

perovskite-structured and have general composition AA3'B4Z12 and ASeZ3. 

 

Let us first summarise the major results obtained from the study of the AA3'B4Z12 

perovskites; the reference compound for this family is CaCu3Ti4O12 (CCTO), of 

technological interest for its very large dielectric constant. We initially studied bulk 

CCTO, whose structure is well characterised by experiment, with a range of different 

hybrid functionals. The aim here was to provide a reliable test for the performance of 

the hybrid functionals and determine the functional in best agreement with experiment 

to apply to the study of more complex structures, such as surfaces and interfaces. The 

mechanism enabling the high dielectric constant of CCTO is still not entirely 

understood, but it is believed to be linked to surface and interface effects via a barrier-

layer capacitor model. In terms of the bulk material, we found excellent agreement with 

experiment. The hybrid functionals built on the GGA (PBE and BLYP) DFT 

functionals, in the range of 20-60% HF exchange found best agreement with 

experiment; hence we employed these functionals to study CCTO surfaces. At the 001 

surface of CCTO we observed interesting redox chemistry, whose details however 

depend crucially on the amount of HF exchange used: a disproportionation of Cu2+ into 

Cu1+ and Cu3+ is observed when using 20% HF exchange, while 60% HF leads to 

charge transfer from surface Cu to surface O ions. Both surface redox reactions yield 

surface states able to effectively trap mobile charge carriers and hence kill the n-type 

conductivity of bulk CCTO. This finding is in agreement with the barrier layer model 

used to rationalise the dielectric properties of CCTO. We then extended our study to the 

isostructural CdCTO and CCGO to see if the same surface disproportionation was 

observed in cases where the large dielectric constant is not observed experimentally. 

The same disproportionation was found in all the isostructural materials, which suggests 
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that it is an intrinsic property of materials exposing under coordinated Cu ions in 

different surface environments. However we did find that the disproportionation energy 

is much more favourable in CCTO than CdCTO or CCGO. We considered different 

magnetically ordered phases in bulk CCTO, and applied Ising models to derive the 

magnetic coupling constants of the material. The single J model on which our initial 

energy analysis was based, is not correct; extension to multiple J models and especially 

three-body coupling parameters are required to describe magnetism in CCTO.  

We extended our study to new isostructural compositions which have not yet been 

synthesised. These are SrCu3Ti4O12, SrCu3Zr4O12 and CaCu3Zr4O12. These materials 

were found to be stable in the Im3 space goup. The unit cell parameters are found to 

vary considerably in these new compounds, especially upon introduction of Zr in the 

octahedral site. We find CCZO and SCZO to be approximately 7% larger than CCTO 

and SCTO. SCTO is only slightly larger (approx. 0.5%) than CCTO. We found that the 

substitution of Sr2+ and Zr4+ into the A and B sites of the perovskite lattice does not 

affect the magnetic ground state and SCTO, SCZO and CCZO were all predicted to be 

AFM. Replacement of Ti by Zr reduces the magnetic coupling constants by a factor of 

1/2, while replacement of Ca with Sr has no effect on the magnetic coupling. Overall 

the electronic properties of these new compositions are expected to be similar, but 

inferior to those of CCTO. 

We also looked at the effect of substituting O2- with S2- on the Z site of the perovskite, 

to form CaCu3Ti4S12 (CCTS). The result here was that CCTS has a large increase in 

lattice parameters compared with CCTO, but more interestingly it exhibits a 7-fold 

increase in the magnetic coupling. This gives it potential use for practical applications. 

We extended our study of perovskites by examining various structures of the form 

ABZ3 where the charge on the A site cation is larger than the B site cation with a 4-2 

valence combination. We started by examining the structural and electronic properties 

of SeCuO3. Structurally we found a large disagreement with experiment in terms of the 

relative bond distances within the selenite ions. Experiment predicts two long and one 

short bond distance where as our calculations find that three similar length bond 

distances are more stable. Our calculations also predict the Cu-O(2)-Cu angle to be 3° 

larger than reported by experimental studies. This is a significant difference as the 

experimental study rationalises the FM ground state of SeCuO3 by the value of the Cu-
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O-Cu angles, according to the Goodenough-Kanemori rules. In the experimental study 

the authors identify a cut-off angle between FM and AFM ground magnetic states as 

127.5°. We find instead a FM ground state to be stable for SeCuO3 using a wide range 

of hybrid functionals with different equilibrium values of the Cu-O-Cu angles, 

contradicting the rationalisation proposed by Subramanian et al. 

 

We also studied of SeMnO3, SeNiO3 and SeCoO3. For these materials we found 

excellent agreement to experiment with respect to the materials structure. We found that 

these compounds all have a FM ground state in agreement with the literature. We found 

very little difference in the Cu-O-Cu angles between the SeBO3 (B=Cu, Mn, Ni and 

Co). Thus we concluded that it is unlikely that such a small change in angle can be 

responsible for the large difference in the magnetic structure of these compounds. 

 

Our research was then directed towards the structural and electronic properties of 

SeCuS3, SeMnS3 and SeCoS3. A study of these materials has never been performed 

before and therefore we deemed it of interest to examine their potential properties. The 

results of these calculations are very promising; the materials were found to be stable 

within the Pnma space group. Structurally we observe a large increase of the lattice 

parameters of approximately 20% compared to the respective oxides. Interestingly we 

find the same FM ground state for SeCuS3 and SeCuO3 despite the S substitution 

significantly increasing the Cu-S(1/2)-Cu angles. This confirms that the Cu-S-Cu angles 

cannot rationalise the difference in magnetic structures. One of the most interesting 

results from this study is in the threefold increase of the FM/AFM energy. This energy 

difference results in a much larger Tc which gives the SeCuS3 perovskite a considerable 

potential as a FM material. 

 

Some very useful general learning outcomes were achieved during this PhD. One of the 

most encouraging results was the general success of the hybrid functionals which 

provided both quantitatively and qualitatively good results throughout the materials 

investigated. 
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From a methodological perspective, we have clearly shown that in the computational 

study of bulk compounds, the equilibrium structure depends on both amount of HF 

exchange employed and choice of ‘local’ exchange and correlation (xc) functional in 

DFT. Instead, when the electronic properties of bulk systems are concerned, the main 

features depend only on the amount of HF exchange used, and not on the particular 

choice of DFT xc functional. Hybrids built on PBE, BLYP and LDA choices yield 

nearly identical results for the electronic properties of each bulk materials studied. 

Defects and surfaces pose more stringent tests to the accuracy of hybrid-exchange 

calculations: even small variations in the amount of HF exchange may cause a different 

ground electronic state (as observed for the CCTO surfaces). This result is somewhat 

indicative of the rich surface and defect chemistry of transition metal oxides, where 

several electronic states of comparable energy are often present; even a small variation 

in the definition of forces may reverse their relative stability and converge the solution 

to a different state. 

The accuracy of results with respect to experiment were very promising and hence we 

moved to the study of materials which have not yet been experimentally synthesised, 

‘predictively’. An example of these are the Sulfides. These materials proved to be 

extremely promising for their magnetic and dielectric properties. The results from these 

materials have provided some useful data and set some clear targets for experimental 

studies. 

Despite the wealth of useful results produced during this PhD, there are of course areas 

of study which we could have approached, given more time. An example of this lies in 

our study of CCTO. Our study of the 001 surface unveiled some interesting redox 

chemistry. However, this study could be extended to investigate other surfaces and 

grain boundaries. Future studies could be useful in shedding further light on the 

interesting dielectric properties displayed by CCTO. Future work also appears of 

interest for perovskite-structured sulfides, where our initial calculations revealed the 

potential for new and improved dielectric and magnetic properties. 
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