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Abstract 

The objective of this study is to demonstrate that the addition of video to EEG-correlated 

fMRI for simultaneous recording can be done efficiently. We investigated the effect of plac-

ing EEG, video equipment and their required power supplies inside the scanner room, on 

EEG, video and MRI data quality, and evaluated video-EEG-fMRI by modelling a hand mo-

tor task. Gradient-echo echo-planner images (EPI) were acquired on a 3T MRI scanner at 

variable camera positions in a test object (with and without radiofrequency amplification), 

and human subjects. EEG was recorded using a commercial MR-compatible 64-channel cap 

and amplifiers. Video recording was performed using a two-camera custom-made system 

with EEG synchronization. An in-house script was used to calculate signal to fluctuation 

noise ratio (SFNR) from raw EPI, and the results compared in data from human subjects with 

and without concurrent video recording. Five subjects were investigated with video-EEG-

fMRI while performing hand motor task. The fMRI time series data was analysed using sta-

tistical parametric mapping based on the paradigm-prescribed block design and on an alterna-

tive video based block design. Introduction of the cameras did not alter the SFNR substan-

tially in the test object and human subjects. Video and EEG quality assessed by two expert 

observers also did not show any significant artefact. The SPM{T} maps from video based 

general linear models revealed additional BOLD responses in the expected locations for non-

compliant subjects with the paradigm design. We conclude that video-EEG-fMRI set up can 

be implemented without affecting the data quality significantly and may provide valuable in-

formation on actual behaviour that may be used for the analysis of fMRI data. 

 

 



Introduction: 

The recording and analysis of ictal events on EEG have a central role in the correct diagnosis 

of epilepsy. In addition simple partial seizures may not have a definite signature on scalp re-

corded EEG. In this respect video-EEG recording has proven to be pivotal in localizing the 

epileptogenic zone and seizure propagation with a good diagnostic yield (1-3).  

EEG-fMRI is an imaging technique involving the simultaneous recording of scalp EEG and 

fMRI data aimed mainly at capturing haemodynamic changes linked to specific features on 

the EEG. The simultaneous recording of the two types of signal (EEG and fMRI) with suffi-

cient quality requires specific hardware and software solutions to avoid or reduce interference 

between the EEG recording system and MR scanner (4-7).  In most applications, the fMRI 

data are analysed by building a general linear model (GLM) based on events of interest that 

are identified and classified on EEG. These events are convolved with the haemodynamic 

response function or other basis set along with temporal and dispersion derivatives to derive 

blood oxygen level dependent (BOLD) signal changes (8;9).The majority of EEG-fMRI stud-

ies have focussed on interictal epileptiform discharges (IED) which are generated by the irri-

tative zone (10) and may be different from the ictal onset zone (11). This indicates the need to 

study the haemodynamic correlates of seizures, which has been investigated in a relatively 

small number of cases mainly incidentally during studies aimed at the study of interictal 

events (9;12-19). In comparison, the ictal events were triggered by experimental manipula-

tion in a few cases of reflex epilepsy (16). 

The analysis of this type of data to reveal ictal BOLD changes remains a challenge due to the 

potential complexity of the events and effects of head movement. A variety of strategies have 

been applied to identify seizures during EEG-fMRI data acquisition, such as; EEG as a 

marker of seizure onset and offset (9;13-17;20-27), button pressing by the patient (9;26), di-
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rect observation of the patient (15;17), detection of an acoustic signal from the patient (15), 

eye tracking system (28) and concurrent but non-synchronized video recording (27;29-31). 

However, these methods may be unreliable as markers of the ictal events particularly in the 

absence of a data synchronization mechanism (16). 

We implemented synchronized video recording with EEG-fMRI as an attempt to combine the 

capability of video-EEG to detect and characterise ictal events with the localising power of 

fMRI. In particular, this should provide the opportunity to identify the onset and evolution of 

seizures semiologically and electrophysiologically (as for clinical video-EEG telemetry) al-

lowing greater precision and specificity in building models for the analysis of the fMRI time 

series. We propose the use of two video cameras; one capturing facial semiology (C1: scan-

ner bore mounted detachable camera), and a second one monitoring limb and body move-

ments (C2: wall-mounted non-detachable camera inside the scanner room). We investigated 

the compatibility of dual video recording synchronised with EEG-fMRI equipment inside a 3 

Tesla MR scanner based on the evaluation of possible noise production in EEG, video and 

MR data quality secondary to the introduction of the video recording equipment in the EEG-

fMRI data acquisition set up. We also evaluated video-EEG-fMRI in a hand motor paradigm 

to utilize supplementary information from video in fMRI data analysis. 

 

 

 

 

 

 



Materials and Methods: 

This study was conducted at the MRI Unit, National Society for Epilepsy, Chalfont St Peter, 

UK. The effect of video cameras on EEG-fMRI data quality was assessed in a test object (17 

cm diameter spherical plastic vessel filled with a doped agar gel, Dielectric, Inc., Madison, 

WI, USA) and human subjects. The test object was scanned with variable camera position 

(C1 at positions P1: edge of scanner bore and P2: inside the scanner bore and C2 switched on 

(S1)) and without cameras (C1 at P0: removed from the scanner room and C2 switched off 

(S0)).   

 

EEG and fMRI data was acquired with video cameras in place (C1 at P2 and C2 at S1) in 12 

subjects, and without video cameras in 12 subjects (C1 at P0 and C2 at S0), from August 

2008 to April 2009. Subjects gave informed written consent in accordance with the require-

ments of the Joint Research Ethics Committee of the National Hospital for Neurology and 

Neurosurgery (UCLH NHS Trust) and UCL Institute of Neurology, Queen Square, London, 

UK.   

MRI Acquisition:  

Subjects were fitted with an EEG cap (see below), ear plugs and their head immobilised using 

a vacuum cushion. They were asked to remain still with eyes closed. Images were acquired 

using a 3T GE Signa® Excite HDX echospeed MRI scanner (GE, Milwaukee, USA) with a 

standard transmit/receive head coil. Five minute sessions of gradient echo T2*-weighted sin-

gle-shot echo-planar images (EPI) were performed with radiofrequency (RF) amplifier 

switched on and off for test object. Twenty minute EPI sessions were performed for human 

subjects with RF amplifier switched on. Image parameters were as follows: TE = 30 ms, TR 

= 3000 ms = Flip angle = 90º, 44 2.4mm-thick slices with 0.6 mm gap; FOV = 24x24 cm2, 

matrix: 64x64. 



EEG Acquisition and Processing:  

In human subjects, scalp EEG was recorded during MR scanning using a 64 channel MR-

compatible electrode cap (BrainCap MR, Easycap, Herrsching-Breitbrunn, Germany), ac-

cording to the extended international 10-20 system. Signals were amplified by 2x32 MR-

compatible amplifiers (BrainAmp MR plus, Brain Products, Munich, Germany) with a gain 

of 1500, band-pass filter settings: 0.016Hz-1kHz, 16-bit digitization (0.5uV resolution) and 

sampling rate of 5kHz. EEG data was transmitted from the amplifiers to the recording com-

puter located in the control room via fibre-optic cable. EEG and MR scanner clocks were 

synchronized. Two additional electrodes were used to record electroocculogram (EOG) and 

electrocardiogram (ECG). Electrode impedance was kept below 10kOhms. 

Video Monitoring and Recording:  

Two cameras were used to monitor and record the subject’s behaviour during MR scanning 

(schematic representation in Figure 1). An MR-compatible camera (MR-Cam 12M, MRC 

Systems GmbH, Heidelberg, Germany) (C1) was positioned inside/around the bore of the 

scanner focusing on the subject’s face, recording facial expressions and head movements. 

The video signals from C1 were transmitted to the recording computer placed outside the 

scanner room through shielded cable and low-pass filter (LPF) (1MHz) (MRC Systems 

GmbH, Heidelberg, Germany) to provide RF shielding. The LPF box was also grounded to 

the scanner room shield. 

A second video camera (Handicam DCR-HC51E, Sony Corporation, San Diego, CA, USA) 

(C2) was positioned on the wall facing the scanner bore allowing a view of the subject’s en-

tire body. The video signals from C2 to the recording computer were transmitted using a cus-

tom-built filter system consisting of electric power supply sockets for camera and optical fire 

wire (IEEE 1394B) repeater (OFR), an LPF (BLP-1.9, 50Ω DC to 1.9 MHz) and OFR trans-



mitter box enclosed in an aluminium box. Both C2 and filter box were permanently attached 

at a safe distance of 3m and a height of 2.5m in front of the scanner. 

The video output signals from C1 and C2 were different being analogue and digital respec-

tively. An ADVC110–High-Quality, Bi-Directional Analogue/Digital Video Converter 

(Thomson Worldwide, Cergy Pontoise Cedex, France) converted digital video signals from 

C2 to analogue video signals. Analogue video signals from both video cameras were fed into 

a video multiplexer (HA-402TX Quad Processor, Ultima Precision Co Ltd, Taiwan) for pic-

ture-in-picture video format. A ADVC110–high quality, bi-directional analogue/digital video 

converter (Thomson Worldwide, Cergy Pontoise Cedex, France) converted the analogue to 

digital video signals for display and input to the recording computer. The video images were 

recorded synchronously with the EEG (Brain Vision Recorder, Brain Products, Munich, 

Germany). The above-described video input system has a maximum transmission delay of ≈ 

150ms as specified by the manufacturers. 

Experimental Design for Hand Motor Task  

Five subjects undergoing video-EEG-fMRI were asked to perform repetitive finger thumb 

opposition task starting with left hand, followed by right hand and then rest, each lasting 30 

seconds over a period of 5 minutes. The subjects were instructed to focus on the head coil 

mirror through which they could see the radiographers in control room and follow the cue for 

changing hands and rest.  

Data Analysis: Image, EEG and Video Quality 

We calculated the signal to fluctuation noise ratio (SFNR) to evaluate MR data quality in re-

lation to the presence of video recording. The SFNR was defined as mean signal intensity of 

a voxel divided by temporal standard deviation of the same voxel. The region of interest was 



defined as the central 11x11x11 voxels (Figure 2A) of the volume which were always se-

lected automatically presuming the phantom / subject head is at the centre of the field of view 

during image acquisition. At a second step multiple SFNR values were calculated by dividing 

the mean signal intensity by the temporal standard deviation of the difference between two 

adjacent volumes.  The SFNR in raw EPI were calculated using an in house script written in 

Matlab version 6.5 R13 (MathWorks, Natick, MA, U.S.A.) and Statistical Parametric Map-

ping2 (SPM2) software (available from: http://www.fil.ion.ucl.ac.uk/spm) running on a Dell 

Inspiron 1525 under Red Hat Linux 9. The script also displayed standard deviation (SD) 

summary maps and created movies of raw EPI with RF amplifier switched off for review. We 

used Mann-Whitney test (SPSS version 13) to compare SFNR from EPI acquired at variable 

camera positions in the test object, as well as from EPI acquired with and without video re-

cording in human subjects. EEG data was corrected for scanning and pulse artefacts (4;5), 

and synchronized video-EEG was reviewed visually by two expert observers using Brain Vi-

sion Analyzer (BVA) software version 2 (Brain Products GmbH, Munich, Germany). 

Hand Motor Task  

The fMRI time series data was analysed using SPM5. The EPI time series were realigned, 

normalized and spatially smoothed with a cubic Gaussian Kernel of 8 mm full width at half 

maximum. Two general linear models (GLM) were built to determine the presence of ex-

perimental condition related BOLD effects. A first GLM was built based on the specified 

block design with a canonical basis set. A second GLM was built based on review of the 

video to identify left and right hand finger tapping blocks, convolved with canonical basis set. 

Scan realignment parameters from image pre-processing were included as confounds in both 

the GLMs and SPM{T} maps were generated (corrected for family wise error: thresholded at 

p < 0.05, uncorrected: thresholded at p < 0.001). 

 



Results: 

Visual inspection of the movie of raw EPI image time series with RF amplifier switched off 

did not reveal any artefact, spike noise or electrostatic interference, and comparison of SD 

maps of the time series with and without RF amplification in test object did not reveal any RF 

interference for any of the camera configurations (Figure 2A). The difference between SFNR 

estimates for cameras at variable positions (P1, P2, S1, P0 and S0) was not statistically sig-

nificant (Figure 2B).  

The SFNR for 12 subjects without the camera ranged from 26.7 to 73.9 with a mean of 50.9 

(95% CI; 42.5 – 59.3), and SFNR for 12 subjects with camera ranged from 33.7 to 75.7 with 

a mean of 49.5 (95% CI; 42.9- 56.2). The comparison of SFNR from raw EPI of human sub-

jects with / without camera showed no significant difference (p > 0.05) (Figure 2C). 

Visual inspection and comparison of the video and EEG inside and outside the MR scanner 

did not reveal any RF or electromagnetic interference artefact as assessed by expert observers 

with experience in EEG-fMRI (Figure 3A).  

BOLD activations were observed in expected hand motor areas which were concordant for 

both analysis strategies in 4/5 subjects. Review of video revealed that subject 4 performed the 

task randomly alternating between right and left hand. The paradigm-based block design 

analysis did not reveal any significant BOLD response. Incorporation of video-derived in-

formation in the second GLM showed significant BOLD activations in the motor cortex 

[Left: Cluster Size = 18, Voxel t = 5.7 (Z equivalent = 5.2), Right: [Cluster Size = 18, Voxel t 

= 5.8 (Z equivalent = 5.2)] and supplementary motor cortex (SMA) [Cluster Size = 98, Voxel 

t = 6 (Z equivalent = 5.5)]. By lowering the threshold, SPM{T} maps (uncorrected for FWE) 

for paradigm-based block design revealed BOLD activations around motor cortex [Right: 

Cluster Size = 509, Voxel t = 4.87 (Z equivalent = 4.57), Left: Cluster Size = 178, Voxel t = 
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4.15 (Z equivalent = 3.95)] and SMA [Cluster Size = 136, Voxel t = 4.36 (Z equivalent = 

4.14)]. In comparison, SPM{T} maps for the second video based GLM showed BOLD re-

sponse in hand motor cortex [Right: Cluster Size = 689, Voxel t = 4.52 (Z equivalent = 4.26), 

Left: Cluster Size = 764, Voxel t = 5.7 (Z equivalent = 5.2)], SMA [Cluster Size = 4587, 

Voxel t = 6 (Z equivalent = 5.52)] and pre-motor cortex [Right: Cluster Size = 4587, Voxel t 

= 5.78 (Z equivalent = 5.29), Left: Cluster Size = 523, Voxel t = 5.13 (Z equivalent = 4.77)] 

(Figure 3B).  

 

 

 

 

 

 

 

 

 

 

 

 

 



Discussion and Conclusion 

We evaluated the effect of using two powered video cameras on simultaneously acquired 

EEG and fMRI data quality. Our results demonstrate that there was no significant deteriora-

tion of the data quality and therefore simultaneous video-EEG-fMRI was implemented suc-

cessfully. 

Generally, in-built and standard camera systems provided by MR manufacturers have limita-

tions including low video quality/resolution and limited view of the patient’s body (32). 

Though video recording has been employed previously to record patient’s behaviours during 

EEG-fMRI data acquisition (27;29-31), but to the best of our knowledge there has been no 

report on the effect of this on the image quality. Moreover, the video recordings were not 

synchronized with the EEG thus raising the issue of possible delay between video and EEG 

signals. Hence, the information obtained from video to be included in the design matrix for 

fMRI data analysis may become unreliable specially on the temporal scale. The video com-

ponent of the video-EEG-fMRI system proposed in this report is compatible with the EEG 

recording system, thus providing synchronised video-EEG which is in turn synchronized with 

the MR scanner clock and scan acquisition. In this manner, EEG sampling remains constant 

relative to the scanner gradient switching and facilitates (33) the removal of imaging (Brain 

Vision Analyzer, Brain Products, Munich, Germany) and pulse artefact (4;5). Furthermore, 

the video recording system enables us to record two different views of the patient. One cam-

era records the subject’s facial expressions and head movement and the second camera re-

cords body and limb movements. The necessary equipment includes commercially available 

and custom made equipment and the set up can be assembled and disassembled in any MRI 

suite. In comparison to other camera systems established in an MRI scanner environment 

(32;34) the current system does not need any additional mirrors to reflect images of the pa-

tient or extra illumination of the subject. The image of the subject is recorded directly and the 



ambient scanner room and bore lighting provide sufficient luminescence to record video 

(Figure 3A). 

The wall camera which is a commercially available camera provided a wider view of the pa-

tient’s body. It was mounted at a sufficient distance (3 metres) from the scanner so that it 

does not interfere with the scanner’s magnetic field which could result in artefacts and de-

graded image quality. An in-house built power and data line filter was used to reduce any 

electromagnetic interference from the power supply and data inputs of the wall camera. The 

conversion of digital electrical signals to optical signals was performed to ensure that electri-

cal signals do not contribute to the noise production and eliminate the possibility of transmis-

sion of unwanted RF signals through the Faraday cage. 

MR image quality assessment is routinely performed by calculating SNR (35) and specifi-

cally SFNR for functional time series (36;37). The bore camera was tested by the manufac-

turers (MR-Cam 12M, MRC Systems GmbH, Heidelberg, Germany), in a Siemens 1.5 Tesla 

Symphony scanner using fast gradients sequences on a water phantom. The manufacturer 

calculated mean and SD of noise in the MR images to evaluate the interference caused by the 

camera and found that this remained stable (personal communication). In this study, we 

tested two cameras in a 3 Tesla MRI scanner with an EPI sequence on a test object and hu-

man subjects for video-EEG-fMRI. We did not observe any significant artefact production 

due to the video recording. The SFNR was not significantly altered by the video recording. 

Similarly video recording inside MR scanner was also free of any major artefact. Thus, video 

recording can be implemented without any significant decline in the data quality. 

The information provided by the video recording may be used efficiently for modelling and 

data analysis in subjects not complying with the experiment design. This is evident from the 

results of the finger tapping motor paradigm whereby incorporation of information provided 

by video recording into the design matrix revealed additional clusters of BOLD activations in 



SMA and pre-motor cortex. These findings are concordant with previously published findings 

for the brain areas responsible for finger tapping (38-40). We propose that the additional in-

formation provided by video will specifically be very useful in the studies of epileptic events. 

In conclusion, the compatibility of video cameras with EEG-fMRI equipment was evaluated 

here, and no significant deterioration in image quality was detected in the fMR images or in 

the EEG quality. The incorporation of video will be useful for event related analyses of motor 

activity that is not amenable to block-design analyses and future studies will benefit from the 

opportunity to use video-EEG-fMRI for studying ictal and interictal epileptic events. 
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Figure Legends: 

Figure 1:  

(A) Circuit Diagram (B) System Set up 

Figure 2:  

(A) Display of single slices of echo planner images (EPI) in the test object 

at variable camera positions. Region of interest (ROI) is shown in the centre (marked 

red). Mean time courses for different acquisitions with radiofrequency (RF) amplifier 

on and off are also shown. 

(B) Mean SFNR (95% Confidence Interval) (CI) calculated from different 

volumes of EPI from a test object with RF amplifier on and off, at variable camera 

positions. The difference between SFNR at variable camera position was not statisti-

cally significant: [RF On; C1 @ P0, C2 @ S0 VS C1 @ P1, C2 @ S1: p = 0.2, C1 @ 

P0, C2 @ S0 VS C1 @ P2, C2 @ S1: p = 0.7, RF Off; C1 @ P0, C2 @ S0 VS C1 @ 

P1, C2 @ S1: p = 0.1, C1 @ P0, C2 @ S0 VS C1 @ P2, C2 @ S1: p = 0.8]. (C1 = 

Scanner bore mounted detachable camera, C2 = Wall-mounted camera inside the 

scanner room, P0 = C1 removed from the scanner room, P1 = C1 at the edge of scan-

ner bore, P2 = C1 inside the scanner bore, S0 = C2 switched off, S1 = C2 switched 

on). 

(C)  Mean SFNR with 95% CI from EPI in human subjects (12 Subjects 

with and 12 subjects without camera). The difference between SFNR in two groups 

was not statistically significant (p = 0.6). 

 



Figure 3:  

(A) Representative sample of Synchronized Video-EEG  

(B) Subject 4: BOLD activations for left and right hand finger tapping overlaid 

on normalized EPI (i) paradigm specific block design analysis revealed BOLD re-

sponses around primary motor cortex in subject 4 (being non-compliant to the para-

digm design).  (ii) Incorporation of video information about timing of finger tapping 

into video based block design GLM, revealed additional BOLD responses in primary 

motor cortex, supplementary motor cortex and pre-motor cortex. 
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