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We use an electron thermometer to measure the temperature rise of approximately 2� 105 electrons in
a two-dimensional box, due to heat flow into the box through a ballistic one-dimensional (1D)
constriction. Using a simple model we deduce the thermal conductance ��Vg� of the 1D constriction,
which we compare to its electrical conductance characteristics; for the first four 1D subbands the heat
carried by the electrons passing through the wire is proportional to its electrical conductance G�Vg�. In the
vicinity of the 0.7 structure this proportionality breaks down, and a plateau at the quantum of thermal
conductance �2k2

BT=3h is observed.
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The fabrication of tunable constrictions in high mobility
two-dimensional electron gases (2DEGs) has allowed the
study of transport in clean one-dimensional (1D) wires.
This leads to an important result [1,2] in mesoscopic
physics: the observation of quantized plateaus in units of
G0 � 2e2=h in the electrical conductance characteristics
G�Vg�. In the only reported measurements [3] of the ther-
mal conductance in similar GaAs based wires, plateaulike
structures in ��Vg� were obtained as the 1D subbands were
depopulated. In this Letter we refine the device and tech-
nique used previously [3] so that we can directly compare
��Vg� to electrical conductance measurements G�Vg�.
Such a comparison is important because if both charge
and energy are transported by electrons, there is a universal
relation between � and G known as the Wiedemann-Franz
(WF) relation

 

�
GT
�
�2k2

B

3e2 � L0; (1)

where L0 is the Lorenz number and T is the temperature.
Equation (1) predicts that the observation of conductance
plateaus (in units of G0) should be matched by steps in the
thermal conductance, quantized in units of L0T �G0 �
�1:89� 10�12 W=K2�T. In addition it has been theoreti-
cally shown that in 1D the quantization of the thermal
conductance is universal for thermal carriers that obey
boson [4], fermion, or anyon statistics [5]. Careful low
temperature measurements on suspended dielectric wires
have demonstrated [6] this universality for phonons
(bosons).

We find that over most of the gate voltage characteristics
of a 1D wire the thermal conductance � follows the elec-
trical conductance G according to Eq. (1). In the vicinity of
the 0.7 structure there is a breakdown of the WF relation,
giving an unexpected plateau in thermal conductance at
L0T�G0=2�. The 0.7 structure is a reproducible feature
observed near 0:7G0 in the conductance characteristics
G�Vg� of clean 1D samples. There is growing experimental

evidence that it has a spin origin: there is an enhanced g
factor as the 1D subbands are depopulated [7], in a strong
parallel magnetic field the 0.7 structure evolves [7–9] into
the usual spin-split plateau at G0=2, and the 0.7 structure
moves down to G0=2 as the density is decreased [10,11].
Recent shot-noise measurements [12] show that the 0.7
structure could be interpreted assuming two conducting
channels which have different transmission probabilities.
Unusually the 0.7 structure becomes stronger with tem-
perature [7], a result most clearly demonstrated [13] in
etched samples which have strong lateral confinement. The
0.7 structure could be interpreted [7,8] as a spontaneous
static spin polarization within the lowest 1D subband, but
the plateaulike structure occurs at 0:7G0 rather than at
e2=h, and moreover the temperature dependence suggests
that the 0.7 structure is not a ground-state property. There is
no single mechanism for the 0.7 structure, static [7], dy-
namic [9], or otherwise, that can account for all the ex-
perimental observations.

In previous thermal conductance [3] and thermopower
[14,15] measurements, electrons on one side of the 1D
constriction were heated above the lattice temperature TL
by passing a current IH through the electron gas in that
region. The electron-electron scattering rate is much faster
than all other rates, and so electrons in the heating channel
equilibrate at a local temperature TH � TL ��T. We
modify the device of Molenkamp et al. [3] by introducing
a closed electron box, whose temperature Tbox is measured
from the thermopower in the linear regime [14,16]. The
electrons in the closed box have a well-defined temperature
and for a given IH it produces larger thermovoltages than
the more open structures, for example, when constriction C
is not defined.

We present results for a sample fabricated from a wafer
grown by molecular beam epitaxy. The 2DEG is 100 nm
below the sample surface, with a carrier density of 3�
1011 cm�2 and a mobility of 5� 106 cm2=Vs. To avoid
switching effects, the sample was cooled down with a
positive voltage applied to the gates [17]. Three other
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samples showed results similar to those presented here.
Figure 1 shows a schematic of the 6 �m� 10 �m box,
about which there are three split-gates, each with a gap that
is 0:5 �m long and 0:65 �m wide. A current IH of fre-
quency f � 32 Hz heats electrons in the heating channel
to a temperature TH � TL � �T. Hot electrons can enter
the box through A, the sample constriction, and leave via
constrictions B and C. In steady state the heat flows in and
out of the box are equal:

 �A�TH � Tbox� � ��B � �C��Tbox � TL�; (2)

and the increase in the box temperature is given by

 �T �
�A

�A � �B � �C
�T; (3)

where �i is the thermal conductance of the ith constriction.
B and C are known as the thermometer and reference
constrictions, and are used to measure the temperature
Tbox. The temperature rise �T within the box generates a
thermovoltage in both B and C; however, if constriction C
is put on a plateau its contribution is zero [14]; the ther-
movoltage measured at frequency 2f is solely due to
constriction B

 Vbox
th � SB�Tbox � TL� � SB�T: (4)

The thermopower SB is proportional to the average of the
temperatures on either side of constriction B, allowing

Eq. (4) to be rewritten as

 Vbox
th � cB�T2

box � T
2
L�; (5)

where the calibration constant, cB � 15 �V=K2, is deter-
mined by dc source-drain voltage measurements of the
subband spacing [14]. When constriction A is not defined,
the electron thermometer is in direct contact with the
heating channel; the magnitude of thermovoltage at this
gate voltage, VHth , is a measure of TH through the relation

 VHth � cB�T
2
H � T

2
L�: (6)

Equations (3) and (4) show that measurements of Vbox
th �Vg�,

and hence �T, lead directly to the thermal conductance
�A�Vg�, provided we know �T and we make certain as-
sumptions about �B and �C.

Figure 2 shows raw thermovoltage Vbox
th �Vg� data taken

as the gate voltage Vg of constriction A is swept, while
constrictions B and C are set atGB � 1:5G0 andGC � G0,
respectively. The steps in Vbox

th are aligned with those in the
conductanceGA (top trace), confirming that the structure in
Vbox

th is due to the 1D subbands. Traces (a)–(d) were
obtained with heating currents IH � 0:2–1 �A, and the
corresponding temperature rise in the heating channel
�T � 15–100 mK was calculated using Eq. (5).

The thermovoltage Vbox
th shown in Fig. 2 follows the

shape of the conductance characteristics GA�Vg�; as well
as the steps, the definition of constriction A at Vg � 0:3 V
can be seen in all the traces [18]. At Vg � 0:5 V both
constriction A and the box are not defined, and the electron
thermometer is in direct contact with the heating channel;
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FIG. 2. The thermovoltage Vbox
th of the electron box together

with the conductance GA, measured at a lattice temperature
TL � 0:27 K using heating currents of (a) IH � 0:2 �A,
(b) 0:3 �A, (c) 0:5 �A, and (d) 1 �A. The corresponding
temperature rise �T � 15, 30, 55, and 100 mK, respectively,
were estimated using a source-drain calibration of the subbands.
At TL � 0:27 K the thermovoltage approximately scales with I2

H
up to IH � 1 �A.
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FIG. 1. Schematic of the device and setup for thermal con-
ductance measurements. Electrons in the heating channel are
heated to TH � TL � �T by a current IH; hot electrons pass
through the sample constriction (A) into the box, where the
temperature Tbox � TL � �T is determined by the thermovolt-
age Vbox

th generated across the thermometer and reference con-
strictions (B and C, respectively). Electrons can only pass
through the constrictions labeled A, B, and C; the much narrower
channels are pinched off.
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we define Vbox
th �Vg � 0:5 V� � VHth , and TH is obtained

using Eq. (6). Energy loss from the heated electrons to
the lattice via the electron-phonon interaction (/T5) have
been quantified [14], and can be neglected for T < 0:5 K.
To ensure that the measurements of both �A and Vbox

th are in
the linear regime, the heating in the channel is limited to
�T < 100 mK.

It is not possible to measure �A, �B, and �C indepen-
dently, and so we assume that the thermal conductance of
each constriction �j (j � A, B or C) is proportional to its
electrical conductance Gj,

 �j � �jGj
�T; (7)

where �j is a constant and �T is the average of the tem-
peratures on either side of the jth constriction. If the WF
ratio is the same for all three constrictions, �A � �B �
�C � �, Eq. (2) can be written as

 

~GA � �GB �GC�
T2

box � T
2
L

T2
H � T

2
box

� �GB �GC�
Vbox

th

VHth � V
box
th

;

(8)

where Vbox
th �Vg� is measured as a function of the gate

voltage on A, and VHth is the thermovoltage when constric-
tion A is not defined. By fixing GB and GC at known
conductances (usually constriction B is on a riser and C
is on a plateau) the quantities VHth and Vbox

th on the right side
of Eq. (8) can be measured. The left side of Eq. (8) is
written as ~GA, which is the expected conductance of con-
striction A as derived from thermal measurements. ~GA�Vg�
has the dimensions of conductance, and will be compared
to the electrical conductance GA�Vg�.

Because of their different grounding requirements GA

and ~GA are measured on different gate sweeps, neverthe-
less their pinch-off voltages agree to within 20–30 mV.
Figure 3(a) shows traces of ~GA (offset horizontally) com-
pared to the electrical conductance GA, where the thermal
data is taken with constriction B fixed at GB � 1:5G0 and
the reference constriction C is set at GC � 5G0 [trace (i)],
4G0 [trace (ii)], and 3G0 [trace (iii)]. The increase in the
box temperature, �T, as determined by Eq. (3) is different
for each of the three traces, yet the same thermal conduc-
tance behavior for constriction A is obtained, showing the
validity of the technique. In comparison to GA, which
shows conductance plateaus at multiples of G0 � 2e2=h,
there are three plateaus in ~GA which occur (to within 10%–
15%) at similar multiples of G0. The conductance charac-
teristics GA�Vg� in Fig. 3(a) show a 0.7 structure that
increases in strength with temperature; there is, however,
no corresponding 0.7 structure in the ~GA�Vg� traces.

Figure 3(b) shows in detail the conductances closer to
pinch off, where again for clarity the ~GA traces have been
shifted to the right. The thermal conductances were mea-
sured at the lattice temperature TL � 0:27 K for different

heating currents. At the lowest IH (trace A) there is a
discernible half plateau at e2=h in ~GA, which corresponds
in gate voltage to the 0.7 structure in GA. The noise on the
half-plateau in trace A is due to fluctuations in the mea-
sured voltage, Vbox

th � 0:019� 0:002 �V, and the associ-
ated value of the thermal conductance is ~GA � �0:54�
0:06�G0. Therefore, the plateaus in ~GA can be measured
with an accuracy better than 10%; the corresponding con-
ductance plateaus in GA are determined with greater accu-
racy (<5%). With increasing IH, traces B to E show less
noise in ~GA, and the half plateau in the thermal conduc-
tance is better resolved and its quantized value drifts down
to 0:45G0, a result that was obtained in all four samples and
is reminiscent of the downward trend of the height of the
0.7 structure with temperature [7,13]. This unexpected half
plateau in the thermal conductance was measured both in
the linear regime, �TH � Tbox�=TL 	 0:1, but also persists
into the nonlinear regime where �TH � Tbox�=TL 	 0:7.
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FIG. 3. (a) The thermally derived conductance ~GA�Vg� and
electrical conductance GA�Vg� of constriction A at TL �
0:27 K. Left solid line: conductance GA�Vg�. Measurements of
~GA�Vg� were obtained with IH � 1 �A, GB � 1:5G0, and GC �

5G0 [trace (i)], GC � 4G0 [trace (ii)], and GC � 3G0 [trace
(iii)]. For clarity successive traces have been shifted by 0.3 V
to the right. (b) Close-up of the thermal and electrical conduc-
tances near pinch off, showing that at the gate voltage corre-
sponding to the 0.7 structure, ~GA exhibits a half plateau. Far left
traces: GA�Vg� at TL � 0:3 K (solid line) and TL � 1:2 K
(dashed line). Traces A–E: ~GA�Vg� at TL � 0:27 K for heating
currents IH � 0:2, 0.4, 1, 2, and 3 �A; the corresponding �T are
calculated to be 26, 66, 133, 193, and 234 mK. The ~GA�Vg�
traces A and B were obtained with GB � 1:5G0 and GC � 3G0;
traces C–E were obtained with GB � 1:5G0 and GC � 2G0.
The small spikes in traces D and E close to pinch off (marked
with a 
) only occur at high IH, and are due to a capacitative
coupling that can be avoided if dc measurements are performed.
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When the half plateau in the thermal conductance is just
distinguishable, the heat flow through constriction A is _Q�
��TH�Tbox��6 fW, more than 2 orders of magnitude
smaller than previous measurements [3].

In the single-particle picture a breakdown of the WF
relation is possible if the transmission probability t�E� of
the constriction varies rapidly compared to the thermal
energy difference across the constriction; however, calcu-
lations show [19] that for the realistic saddle-point poten-
tial model of the constriction there is no breakdown. First
we discuss our thermal results for high conductances, G>
G0, where single-particle theory prevails. Figure 3(a)
shows the measured behavior with no adjustable parame-
ters—there is an alignment of the first three conductance
plateaus (GA � G0; 2G0, and 3G0) with those in ~GA, where
the latter quantity is calculated from Eq. (8) assuming that
all three constrictions behave similarly. The observed
alignment cannot be interpreted as an absolute confirma-
tion of Eq. (1) because it is not known whether the constant
of proportionality � [see Eq. (7)] is equal to the Lorenz
number L0. However, in the light of theoretical predictions
[5] for the quantization of � for electrons, there is no reason
why the WF relation should not be obeyed on the plateaus
G>G0.

Luttinger liquid behavior is expected in long clean 1D
wires, and the resulting spin-charge separation causes the
electrical and thermal conductances to behave differently,
giving a breakdown of the WF relation which clearly
demonstrates non-Fermi liquid behavior [20]. In shorter
1D constrictions there is no accepted microscopic mecha-
nism for the 0.7 structure. One theoretical prediction [21]
for the thermal conductance, that there are structures in
�=�L0T� at G0=4 and 3G0=4, has not been observed in this
study. In the Landauer-Büttiker formalism the thermal
conductance is calculated [19] to be � � TG0�kB=e�2�R
1
0 t�E�@f=@E�

2dE, where � � �E� EF�=kBT, f��� �
�exp��� � 1��1 is the Fermi function, and EF is the
Fermi energy. In a phenomenological model [8] assuming
a density dependent spin gap, calculations of the electrical
conductance G � �G0

R
1
0 t�E�@f=@EdE show some

similarity to G�Vg� measurements of the 0.7 structure.
We find that calculations using such a model give a struc-
ture at � � L0T � 0:7G0; that is, the Wiedemann-Franz
relation is obeyed and it is not possible to obtain simulta-
neous plateaus at G � 0:7G0 and � � L0T�G0=2�.

Experimentally, a plateau at e2=h � G0=2 has been
measured in the electrical conductance of low density
wires [10] and longer wires [8], but it is not known whether
this is a full spin polarization or some other state. A
mechanism for this e2=h plateau in G�Vg� has been put
forward by Matveev [22], where the 1D wire is modeled as

a Wigner crystal in which there are separate charge and
spin degrees of freedom. The electrical resistance has
contributions from both, with the spin contribution being
temperature dependent and going to zero when T ! 0.
Within this model, the thermal conductance is expected
[23] to show a half plateau at �=�L0T� � G0=2.

In summary, we have demonstrated a new technique to
measure the rise in temperature (typically 10–100 mK) of
	2� 105 electrons in a box, due to the heat flow in and
out of the box through ballistic 1D conductors. The heat
flow into the box through one of the 1D conductors is
measured, and its thermal conductance characteristics
��Vg� have been deduced. For G>G0 the Wiedemann-
Franz relation is obeyed, in line with theoretical expecta-
tions. For G<G0 there is no analogue in ��Vg� to the 0.7
structure in G�Vg�, but a half plateau is observed at � �
L0T�G0=2� in all four samples. This half plateau, which is
measured in both the linear and nonlinear regimes, should
be considered in future theoretical models of the 0.7
structure.

This work was supported by the Engineering and
Physical Sciences Research Council (UK).

[1] B. J. van Wees et al., Phys. Rev. Lett. 60, 848 (1988).
[2] D. A. Wharam et al., J. Phys. C 21, L209 (1988).
[3] L. W. Molenkamp et al., Phys. Rev. Lett. 68, 3765 (1992).
[4] J. B. Pendry, J. Phys. A 16, 2161 (1983).
[5] L. G. C. Rego and G. Kirczenow, Phys. Rev. Lett. 81, 232

(1998); Phys. Rev. B 59, 13 080 (1999).
[6] K. Schwab et al., Nature (London) 404, 974 (2000).
[7] K. J. Thomas et al., Phys. Rev. Lett. 77, 135 (1996); Phys.

Rev. B 58, 4846 (1998).
[8] D. J. Reilly et al., Phys. Rev. B 63, 121311(R) (2001).
[9] S. M. Cronenwett et al., Phys. Rev. Lett. 88, 226805

(2002).
[10] K. J. Thomas et al., Phys. Rev. B 61, R13365 (2000).
[11] S. Nuttinck et al., Jpn. J. Appl. Phys. 39, L655 (2000).
[12] P. Roche et al., Phys. Rev. Lett. 93, 116602 (2004).
[13] A. Kristensen et al., J. Appl. Phys. 83, 607 (1998).
[14] N. J. Appleyard et al., Phys. Rev. Lett. 81, 3491 (1998).
[15] N. J. Appleyard et al., Phys. Rev. B 62, R16275 (2000).
[16] N. J. Appleyard et al., Physica (Amsterdam) 6E, 534

(2000).
[17] M. Pioro-Ladriere et al., Phys. Rev. B 72, 115331 (2005).
[18] Bias cooling shifts the definition voltage from 0 to 0.3 V.
[19] H. van Houten et al., Semicond. Sci. Technol. 7, B215

(1992).
[20] R. Fazio et al., Phys. Rev. Lett. 80, 5611 (1998).
[21] T. Rejec et al., Phys. Rev. B 65, 235301 (2002).
[22] K. A. Matveev, Phys. Rev. Lett. 92, 106801 (2004).
[23] K. A. Matveev (private communication).

PRL 97, 056601 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
4 AUGUST 2006

056601-4


