
Algebraic Description and Simultaneous
Linear Approximations of Addition in Snow 2.0.?

Nicolas T. Courtois1 and Blandine Debraize2,3

1 University College of London, Gower Street, London, UK
2 Gemalto, Meudon, France

3 University of Versailles, France

Abstract. In this paper we analyse the algebraic properties over the
field GF(2) of the addition modulo 2n. We look at implicit quadratic
equations describing this operation, and at probabilistic conditional lin-
ear equations. We show that the addition modulo 2n can be partly or
totally linearized when the output is fixed, and this for a large family of
outputs. We apply these results to analyse the resistance of the stream
cipher Snow 2.0 against algebraic attacks.

Key words: modular addition, multivariate quadratic equations, alge-
braic immunity, stream ciphers, Snow 2.0, algebraic cryptanalysis

1 Introduction

Many ciphers are based on mixing of S-Boxes, arithmetic and Boolean opera-
tions. One of the fastest arithmetic operations is addition modulo a power of 2,
that is handled very efficiently on modern processors. We will adopt the notation
‘�’ for this operation in this article, to differentiate it from the “exclusive-or”
which we denote ‘⊕’. The addition modulo 2n is used in block ciphers such as
TwoFish, hash functions such as MD5 and SHA 1 and in many stream ciphers.
Among stream ciphers, the most prominent example is Snow 2.0, which is today
a reference standardized software-oriented stream cipher.

The algebraic immunity is defined as the minimum degree for which one can
write multivariate equations mixing input bits and output bits (see [17]). It is an
important design criterion for S-boxes. However this criterion is not sufficient in
itself to define the resistance of an S-box against algebraic attacks. Indeed, the
modular addition is partly linear, thus it has the same algebraic immunity as
the exclusive or. Yet ‘�’ is stronger. For example, an interesting analysis of the
security of the stream cipher Snow 2.0 has been given in [5] by Billet and Gilbert.
They propose an attack on a modified version of the cipher, where the ‘�’ are
replaced by ‘⊕’ that is fully linear. But as ‘�’ cannot be described entirely by
linear relations, the attack could not be directly extended to the real cipher.

A generalisation of the notion of algebraic immunity has been studied in [1]
and [14]. It is concerned with implicit equations conditioned on the value of
the output or a part of the output. It has interesting applications in algebraic
cryptanalysis of stream ciphers as shown by Fischer and Meier in [14].

? Partly supported by the EU Commission via the ECRYPT network of excellence.

Algebraic properties of the addition modulo a power of two have previously
been studied in [5, 15, 19]. In [5], a quadratic description over GF(2) implying
carry bits is proposed. In this paper we propose a new notion called describing
degree to explore the algebraic properties of the ‘�’ in a more refined way. We
develop a description of this function as a set of implicit quadratic equations
over GF(2) without any additional variable. Then we study the question of how
equations can be partially linearized from the point of view of the attacker. For
this we use conditioned equations described in [14] to introduce a new method
to approximate the addition modulo 2n, that is the main contribution of this
paper. Actually one can view ‘�’ as an S-box in two different ways, and both
versions can be partially or totally linearized. One of the interests of these partial
linearization techniques is that they can improve considerably the complexities
of algebraic attacks, that can potentially be developed also for other ciphers.

One of the propositions of the authors in [5] to extend their method to the
real Snow 2.0 is to guess the carries of the modular addition. In this paper we go
further in the analysis of the security of this cipher against this type of attack. We
implement their proposition, and show that by using our linearization techniques
on ’�’ we obtain better results than by guessing the carries. In this paper we
consider KGSnow 2.0, that is the keystream generator part of the cipher, where
the initial state of the registers is considered as the key of the cipher. We compare
our results to the classical time-memory trade-off attack on KGSnow 2.0.

In Section 2 we recall and define various notions of algebraic immunity, in
Section 3 we study algebraic deterministic descriptions of ’�’, and these can be
partially linearized as shown in Section 4. In Section 5 we explain how to handle
algebraic cryptanalysis and our basic algorithm. Based on all these, an analysis
of KGSnow 2.0 is presented in Section 6.

2 Preliminaries

2.1 Notation

Let us consider three n-bit words (xn−1, . . . , x0), (yn−1, . . . , y0) and (zn−1, . . . , z0)
with z0 being the low-order bit. The modular addition

(x, y) 7→ z = x � y mod 2n

is a T-function (see [16]), as each bit zi of the output only depend on the bits
x0, · · · , xi, y0, · · · , yi. This T-function can be described the following way by (∗)
and (∗′), using new variables that are carry bits, represented by the (n− 1)-bit
word c = (cn−1, . . . , c1):

(∗)

z0 = x0 + y0

z1 = x1 + y1 + c1

z2 = x2 + y2 + c2

...
zi = xi + yi + ci

...
zn−1 = xn−1 + yn−1 + cn−1,

(∗′)

c1 = x0y0

c2 = x1y1 + (x1 + y1)c1

...
ci = xi−1yi−1 + (xi−1 + yi−1)ci−1

...
cn−1 = xn−2yn−2 + (xn−2 + yn−2)cn−2

2.2 Descriptive Algebraic Representation Criteria for S-boxes
We first recall important notions in algebraic cryptanalysis:
Definition 1. A system of equations is said to be overdefined if the rank of the
system equations is strictly larger than the number of variables.

Let S : {0, 1}n → {0, 1}m be an S-box.
Definition 2. An I/O equation for S is a nonzero algebraic equation r(x, y) = 0
that holds with probability 1, i.e. for every pair (x, y) such that S(x) = y.

The notion of Algebraic Immunity (also sometimes called Graph Algebraic
Immunity or I/O degree) has been introduced by Carlet, Meier and Pasalic [17].
Definition 3. The algebraic immunity AI is defined by the minimum degree of
an I/O equation for S.

The algebraic immunity of the modular addition is clearly 1, because of
the linear equation mixing the least significant bits described at Section 2.1:
z0 = x0 + y0. The algebraic immunity of the exclusive or is also 1, yet typically
� will be cryptographically much stronger than ⊕. We see that the algebraic
immunity is not always the best criterion to define the resistance of an S-box
against algebraic attacks. Two other important properties of an S-box are:
1. The minimal degree d such that the S-box is entirely defined by equations

of degree at most d.
2. The number of such linearly independent equations of degree at most d.

We define a new criterion to describe the first property :
Definition 4. The minimal degree d such that the S-box is entirely defined by
equations of degree at most d is called describing degree (DD) of S.

The notion of algebraic immunity is based on the existence of an I/O degree
equation. But if for a function F some equations of minimal degree d exist,
however all these degree d equations may not define the function F . As we have
seen, the algebraic immunity of ‘�’ is 1 but as this function is not defined by
the only one linear equation z0 = x0 + y0, its describing degree is 2.

2.3 Criteria for Conditioned Algebraic Representation of S-boxes
Conditional algebraic I/O equations emerge as an important tool in cryptanalysis
of stream ciphers as illustrated by Krause, Armknecht, Fischer and Meier [1, 14].
Definition 5. Let us assume n > m. Given some fixed output y, a y-conditional
I/O equation for S is a nonzero algebraic equation ry(x) = 0 that holds with
probability 1 for every x such that S(x) = y.

The relevant notion of conditional algebraic immunity is defined by Fischer
and Meier [14] as follows:
Definition 6. Given some fixed output y, let d be the minimum degree of a y-
conditional I/O equation. The conditional algebraic immunity CAI of S is the
minimum of d over all y in GF (2)m.

Similarly, we adapt our describing degree criterion:
Definition 7. Given some fixed output y, let d be the minimum degree such that
the equation S(x) = y is entirely defined by conditional I/O equations of degree
at most d. The minimal d over all y in GF (2)m is called conditional describing
degree (CDD) of S.

3 Describing Degree of the Addition Modulo 2n

In this section, we show that the addition modulo a power of two can be described
by quadratic I/O equations over GF(2). We give a “describing” set of quadratic
equations and compute many extra equations.

We note that there are several ways to consider � as an S-box function. If
we consider three n-bits words x, y and z, the equation

x � y = z

leads to two possible functions P, M of type {0, 1}2n → {0, 1}n:
– P : (x, y) 7→ z
– M : (x, z) 7→ y and M′ : (y, z) 7→ x that is exactly the same function.

3.1 Equations with no Extra Variables

Proposition 1. The Describing Degree is 2 for both P and M.

Proof. Looking at the equation (∗) and (∗′) of Section 2.1, we notice that all the
carry bits ci from (∗′), can be expressed as linear combinations of other variables
using (∗), and eliminated. The resulting equations remain quadratic and there
is no extra variable at all:

(#)

z0 = x0 + y0

z1 = x1 + y1 + x0y0

z2 = x2 + y2 + x1y1 + (x1 + y1)(x1 + y1 + z1)
...
zi = xi + yi + xi−1yi−1 + (xi−1 + yi−1)(xi−1 + yi−1 + zi−1)
...
zn−1 = xn−1 + yn−1 + xn−2yn−2 + (xn−2 + yn−2)(xn−2 + yn−2 + zn−2)

At this stage, these equations entirely define the function �, but are not
overdefined (this will change below). Yet they are already quite sparse. Apart
from the linear terms, only products of type AiBi or AiBi−1 do appear with A
being x or y, and with B being x, y or z. The number of terms is only O(n)
instead of O(n2) for a generic system of quadratic equations.

3.2 Additional Equations

Many other quadratic equations do exist for the adders modulo 2n. Their exis-
tence can be derived as follows:
– For any n, from (#) we have 1 linear and n− 1 quadratic equations.
– Then there are 3n additional equations that come from the fact that you

can multiply the linear equation by any variable and it becomes quadratic.
However it turns out that the dimension of the vector space spanned by
these equations is only 3n − 1 because of the following linear dependency:
(z0 + x0 + y0) = z0(z0 + x0 + y0) + x0(z0 + x0 + y0) + y0(z0 + x0 + y0)

– We also have 2 equations that come from the fact that you can multiply
z1 = x1 + y1 + x0y0 by x0 or by y0.

– Then for each of the n − 2 remaining equations, one gets 3 additional
quadratic equations. This is because the equation:

zi = xi + yi + xi−1yi−1 + (xi−1 + yi−1)(xi−1 + yi−1 + zi−1)
= xi + yi + xi−1 + yi−1 + xi−1yi−1 + xi−1zi−1 + yi−1zi−1

can be multiplied by (xi−1+yi−1), by (xi−1+zi−1) and also by (yi−1+zi−1).
These three new equations are linearly dependent and their rank is two. Thus
we get 2(n− 2) additional equations.
In the extended version of this paper, we prove that all the 6n− 3 quadratic

equations described above are linearly independent.

4 Conditional Linear Equations for ‘�’

By fixing z for P, and y for M, we obtain conditional equations of degree at
most 2, with at least 2 linear equations. In some cases, when the n − 2 least
significant bits of z are 1 for P, and when the n− 2 least significant bits of y are
0 for M, it can be completely linearized. That is what we show in section 4.1.

At section 4.2, we refine this result by showing that for both P and M, if
the output contain r consecutive bits of the same value 0 or 1 (whatever the
value it is for both P and M), we obtain a set of r + 2 linear equations that are
simultaneously true with a certain probability.

4.1 Conditional Describing Degree of ‘�’
Proposition 2. The Conditional Describing Degree is 1 for both P and M.

Proof. For M, this result is straightforward: we put y = 0, and the relation
becomes completely linear as we have x = z.

For P, we put z = 2n − 1, and we see that the first carry c1 = 0, because
x0 ⊕ y0 = 1 ⇒ x0 � y0 < 2. Then we prove recursively that all the carries of
this function are zero and that: ∀i xi ⊕ yi = 1. Finally, these equations clearly
describe exactly all possible input values that lead to the chosen fixed output
for this S-box (for both M and P).

In fact y = 0 is not the only value for y such that the relationM(x, z) = y can
be entirely described by linear equations. Our simulations showed that exactly 4
values of y have this property: the values for which the n−2 least significant bits
of y are zero. This can be proven as follows : as the carry cn−2 is 0, the equation
of the second most significant bit of the modular addition is zn−2 = xn−2⊕yn−2.
If yn−2 = 0, the same result holds for the most significant bit equation: zn−1 =
xn−1⊕yn−1. If yn−2 = 1, we have: cn−1 = bxn−2+yn−2+cn−2

2 c = bxn−2+1
2 c = xn−2.

Then the most significant bit equation is zn−1 = xn−1 ⊕ yn−1 ⊕ xn−2.
The same way, z = 2n − 1 is not the only value for z such that P(x, y) = z

can be fully described by linear equations. Our simulations showed that the 4
values of z such that its n−2 least significant bits are 1 have the same property.
This can be proven in a similar way as for M.

When we fix the output, the number of linear equations describing P and
M is at least 2 and in many cases it is more than 2. One can observe that (this
point will be developed later) :

– For P, this depends on the number of consecutive 1 in the least significant
bits of the binary representation of z. If there are r consecutive 1 and r ≤
n− 2, the number of linear equations is r + 2.

– For M, this depends on the number of consecutive 0 in the least significant
bits of the binary representation of y. If there are r consecutive 0 and r ≤
n− 2, the number of linear equations is r + 2.

4.2 Probabilistic Conditional Properties of ‘�’

We will now give two general theorems on the number of probabilistic conditional
equations for P and M. Let S : {0, 1}n → {0, 1}m be an S-box.

Definition 8. A set E of equations is said to be p-probable for S if the probability
that all equations in E are simultaneously true, taken over the set of all pairs
(x, y) such that S(x) = y, is equal to p.

Theorem 1. Let z be a fixed output for P.

– If z has r consecutive 1s from the bit i ≥ 0 to the bit i + r− 1 ≤ n− 1 in its
binary representation, then there is a p-probable set E of r + 2 (only r + 1 if
i + r − 1 = n − 2, and r if i + r − 1 = n − 1) linear equations for P, with
p = 1

2 + 1
2i+1 .

– If z has r consecutive 0s from the bit 0 to the bit r − 1 ≤ n − 1 in its
binary representation, then there is a p-probable set E of r + 2 (only r + 1 if
r − 1 = n− 2, and r if r − 1 = n− 1) linear equations for P, with p = 1

2 .
– If z has r consecutive 0s from the bit i ≥ 0 to the bit i + r− 1 ≤ n− 1 in its

binary representation, then there is a p-probable set E of r + 2 (only r + 1 if
i + r − 1 = n − 2, and r if i + r − 1 = n − 1) linear equations for P, with
p = 1

2 −
1

2i+1 .

A symmetrical result holds for M when replacing 0s by 1s:

Theorem 2. Let y be a fixed output for M.

– If y has r consecutive 0s from the bit i to the bit i + r − 1 ≤ n − 1 in its
binary representation, then there is a p-probable set E of r + 2 (only r + 1 if
i + r − 1 = n − 2, and r if i + r − 1 = n − 1) linear equations for M, with
p = 1

2 + 1
2i+1 .

– If y has r consecutive 1s from the bit 0 to the bit r − 1 ≤ n − 1 in its
binary representation, then there is a p-probable set E of r + 2 (only r + 1 if
r − 1 = n− 2, and r if r − 1 = n− 1) linear equations for M, with p = 1

2 .
– If y has r consecutive 1s from the bit i ≥ 0 to the bit i + r− 1 ≤ n− 1 in its

binary representation, then there is a p-probable set E of r + 2 (only r + 1 if
i + r − 1 = n − 2, and r if i + r − 1 = n − 1) linear equations for M, with
p = 1

2 −
1

2i+1 .

For proofs of Theorem 1 and 2 we refer to Appendix A.

Remark. In both theorems 1 and 2, the assertions are true with probability 1 if
we fix another constraint. For assertion 1 and 3, this constraint consists in fixing
the carry ci to 0. For assertion 2 of Theorem 1, it consists in fixing x0 to 0, and
for assertion 2 of Theorem 2 , in fixing x0 to 1 (this also implies that the first
carry bit c1 is 0). This can be seen in the proof in Appendix A. A randomly
chosen linear equation is true for M or P with probability close or equal to
1
2 . The interest of our theorems is that they allow to obtain r, r + 1 or r + 2
linear equations that are simultaneously true with probability close to 1

2 . Thus in
cryptanalysis, one is able to, if certain constraints are added, to partially linearize
the modular addition. Adding a large number of linear equations to a quadratic
system allows to eliminate many variables, and is expected to make it in general
easier to solve, at least for known Gröbner bases algorithms. This concept of
simultaneous linear approximations is very different from Linear Cryptanalysis
with multiple characteristics, and to the best of our knowledge has not been
studied before.

5 Algebraic Cryptanalysis and Application to KGSnow

5.1 Overview of Algebraic Cryptanalysis

Algebraic cryptanalysis is usually made of two stages:

1. Writing the equations describing the problem of the recovery of the key.
This stage determines the complexity of the second stage.

2. Solving the polynomial system. The most usual family of algorithm for
solving polynomial systems is the XL and Gröbner bases family. XL ([7])
and Gröbner bases algorithms like F4 ([12]) and F5 ([13]) are based on the
same idea of expansion of the system followed by an elimination step.
– During the expansion the equations are multiplied by monomials of a

chosen degree.
– The elimination is a Gaussian elimination applied to the expanded sys-

tem where each monomial is considered as a variable.
This principle is applied once in XL whereas it is applied several times for
F4 and F5 with additional clever tricks to decrease the number of equations
in the Gaussian elimination.

The theoretic bound for the complexity of XL,F4 and F5 algorithm depends
on the maximal degree d of the polynomials manipulated during the computation
of the algorithm. The most important cost in these algorithms is the complexity
of the (most costly step) Gaussian elimination, that is bounded by M3, where
M = 1 + n +

(
n
2

)
+ ... +

(
n
d

)
is the number of monomials of degree less than d (n

being the number of variables).
Some work has been done to compute the value of this degree for a given

system by Diem in [10] and Bardet, Faugère and Salvy in [4]. But it is not relevant
for non random systems such as the systems derived from cryptographic systems.
What is well-known and proved by [4] is that the more overdefined the system
is, the lower this degree is. Thus, experimentation plays still an important role
in evaluating which overdefined systems of equations derived from cryptographic
systems can be solved and how.

5.2 Description of ElimLin and Simulations on KGSnow 2.0
In our experiments on KGSnow 2.0. we are heavily limited by the computational
power available and in this paper we limit the maximal degree for the polynomi-
als used during our computations to a very small value that is 2. We handle all
our computations with a very simple algorithm for solving polynomial systems
over GF(2) that is called ElimLin. A high-level description of ElimLin is given
in Algorithm 5.1. It is hard to make a fast and memory efficient implementation
of this algorithm, and serious research is needed about how to handle sparse
Gaussian elimination and how do we store equations in memory in ElimLin. It
appears that (with our current version already) we do not obtain better results
with the F4 version of the computer algebra system MAGMA (see [21]) than
with the simple ElimLin.

Algorithm 5.1 ElimLin algorithm
INPUT: a system S of GF(2)-equations {p1, ..., pm} describing an ideal I
Apply a total order on the monomials of S
S ←− Gaussian elimination(S)
L←−Number of linear equations in S
while L > 0:

for i = 1 to L:
v ←− greatest variable of the linear equation li
l′i ←− li ⊕ v
Substitute v by l′i in all the equations of S except from li

Apply a total order on the monomials of S
S ←− Gaussian elimination(S)
L′ ←− Number of linear equations in S
L←− L− L′

return S

ElimLin in Cryptanalysis of KGSnow 2.0
In our simulations on KGSnow 2.0 we write the I/O equations describing the
update of the LFSR and FSM, and the output of the cipher occurring for some
consecutive clocks (from 11 to 18 consecutive clocks). The equation describing
the addition modulo 232 are those described at section 3. The equations describ-
ing the 32 bits S-box are directly derived from the 39 I/O quadratic equations
describing the AES S-box (see [8]). We fix some bits belonging to the states of
the FSM, and apply ElimLin on this system.

We consider here that brute force is the exhaustive search of the LFSR and
FSM initial states (576 bits). If we fix all but a key bits, an attack will be faster
than brute force if the running time is less than 2aE, where E is the time to
check one potential possibility for the initial state. Given a sufficient number
of output bits, heuristically about |LFSR| + [R1| + |R2| + ε, (as in [2]), this
system has a unique solution that gives these ’key’ bits. Exact figures are hard
to evaluate because they depend on an optimised implementation of the cipher.
Here we will assume that one encryption takes 300 CPU clocks and that the
CPU runs at 3 GHz. Then E ≈ 2−35 hours. Thus, if we fix all key bits except
35, an attack done in less than 1 hour on a PC will be faster than brute force.

If we fix all except 40 key bits, any attack done in less than (approximately) 1
day, will be faster than the exhaustive search of the initial LFSR and FSM bits.

6 Analysis of Snow 2.0 and KGSnow 2.0

KGSnow 2.0 is the keystream generator part of Snow 2.0. In this part we give
a short description of Snow 2.0 and recall the analysis of the security of this
cipher given in [5] and propose new ways to investigate this security by studying
KGSnow 2.0 and using our results of sections 3 and 4.

6.1 Description of Snow 2.0
Snow 2.0 is a reference standardized software-oriented stream cipher. It is be-
lieved quite secure and is quite fast: less than 6 CPU cycles per byte on a PC,
which is roughly about 3 times faster than RC4 and 4 times faster than AES,
cf. [20]. We give a brief description of Snow 2.0; see [11] for details. Snow 2.0
stream cipher is based on one linear feedback shift register made of 16 elements
from GF (232) (that can also be seen as a binary LFSR with 512 bits), and a
finite state machine composed of 2 states of 32 bits each, nonlinearly clocked.

The output of the FSM is given by the equation:

zt ⊕ st = (st+15 � R1t)⊕R2t (1)

and the update of the FSM is given by:

R1t+1 = st+5 � R2t (2)

R2t+1 = S(R1t), (3)

where S represents the S-box. This 32 bits S-box is made of four parallel Rijndael
S-boxes followed by the MixColumn operation (see [9]). The Rijndael S-box can
be described by 39 I/O quadratic equations, see [8]. The MixColumn transfor-
mation is GF(2) linear then the entire S-box can be described by 156 quadratic
I/O equations. The length of the key is 128 or 256 bits and the initialisation
of the key is nonlinear. Our contribution, in section 6.3 essentially consists in
analysing KGSnow 2.0.

KGSnow 2.0. has the same design as Snow 2.0, but we ignore the key and
IV setup, this meaning that we consider that the key of KGSnow 2.0. is the
initial state of the registers when the first keystream bits are produced. This is
because with algebraic attacks, the values we are looking for are the values of
these registers as they are the solution of the systems of equations, and especially
because we do not even know today concerning the security of Snow 2.0 against
algebraic attacks if these attacks are able to recover this state faster than its
exhaustive search.

6.2 Previous Work
The best known attacks on Snow 2.0 are distinguishing attacks. In [18], it is
shown that it possible to distinguish an output keystream of Snow 2.0 of length

2174 words from a truly random sequence with workload 2174. No key recovery
attack on this cipher have been found so far.

In [5], Billet and Gilbert analyse the security of the cipher by replacing the
addition modulo 232 by ‘⊕’. It is then possible to break the modified cipher by
linearization with a complexity of 251. They use the fact that the describing
degree of the S-box is 2, added to the fact that with the replacement of the ‘⊕’
by ‘�’, it is possible to eliminate all the FSM memory bits except the initial
ones. They proposed two ways to exploit this result for the real Snow 2.0.:
– The first one consists in guessing the carries of the addition modulo 232, or

to look for the most probable case, that is when all the carries are 0. We have
implemented this approach by fixing some carries in the system of equations.
But by applying our algorithm (see section 5.2) on such systems we could
never recover the initial state fast enough to perform an attack more efficient
than the exhaustive search. In section 6.3 we improve this method by using
our results of section 4.1.

– The second one consists in introducing the carry bits of the two modular
additions ‘�’ at each clock. This allows to build a system of quadratic equa-
tions describing the initial state. But in this case it is not possible anymore
to totally linearize the system of equations, the attacker has to apply a poly-
nomial system solving algorithm like Gröbner bases algorithms to recover
the initial state. We give an overview of this kind of algorithm and their
complexities in Section 5. This second approach can be much improved by
our analysis of the modular addition proposed in part 3. Indeed, as we ex-
plain in Section 5, the more overdefined the polynomial set is, the better
the complexity of solving the system becomes. The equations produced by
our method implies exactly the same number of variables and provides 189n
quadratic equations for each � instead of 31n. Another advantage comes
from the fact that these equations are very sparse.
As the theory is very poor concerning the complexity of algorithms like

Gröbner Bases algorithms, the effectiveness of this kind of attacks remains ex-
tremely unclear. An interesting question that has not been answered so far con-
cerning this type of attack is the following: is an algebraic attack able to break
KGSnow 2.0? We show at section 6.3 that by using the algebraic properties of
‘�’, the answer is yes.

6.3 Towards an Optimal Linearizing Attack
In [5], the authors propose to linearize the � by guessing the carries. We fixed
17 × 31 + 17 × 31 carries of consecutive clocks and applied ElimLin on the
system of the linearized equations coming from the 34 � and the quadratic I/O
equations describing the 17 uses of the S-box. We suppose that when the carries
are fixed, the solving part behaves the same way as if all the carries were zero.
The probability for this event to happen for 16 consecutive clocks, as proposed
in [5], is : (3

4)31∗17(2
3)31∗15 ' 2−497. (The approximation of this probability in

[5] is too large, as all the random variables are not independent). ElimLin had
not finished its computations after 80 hours. Then this attack is not faster than
the exhaustive search of the initial state.

We show in this part that guessing the consecutive values of the register
R1 and using the properties of ’�’ described at section 4 seems to be a much
better strategy. This is our contribution. We use here the word ’linearizing’
to differentiate from linearization attacks where the term linearization means
considering each monomial as a variable. Here the concept is completely different,
as we do not increase the number of variables.
First Attack We observe that in the design of KGSnow 2.0 (this coming from
the design of Snow 2.0) , the fact that for a given t, R2t+1 only depends on
R1t: by guessing R1t, one gets immediately R2t+1. Then, by guessing several
consecutive values of R1, we obtain also several consecutive values of R2. With
this method we still do not completely linearize the equations: each time the
value of R1t is known, by equation 1 we just know that we get at least 2 linear
relations, the other ones remaining quadratic. But each time the values of R2t

and R1t+1 are simultaneously known, we obtain the values of 32 bits of the
internal state. The known values and linear relations between the internal state
bits are also linear relations between the bits of the initial state of the LFSR
as each bit of the internal sequence can be expressed as a linear expression of
the initial LFSR state bits. The same way, the quadratic relations between the
internal state bits means that we have quadratic equations between bits of the
initial state of the LFSR as a composition f ◦ l where f is a degree 2 boolean
function and l a linear boolean function is still a degree 2 function.

If we guess 10 consecutive R1s (320 bits to guess), we obtain an overdefined
system of linear equations and quadratic equations implying only the bits of
the 512 initial state bits of the LFSR. These equations come from 17 additions
modulo 232. As each ‘�’ provides an amount of information of 32 bits, the
information provided by this quadratic and linear boolean function is enough to
recover the 512 initial state bits of the LFSR.

By applying any Gröbner bases algorithm on this system of equations, we
obtain the initial state bits. No method is known to compute compute a theoret-
ical complexity for this multivariate polynomial system solving part. Under the
hypothesis that this system can be solved at degree 2, a theoretical complexity
would be O(251). In practice we could solve such systems with an algorithm
called ElimLin described in Section 5.2 in 2.4 minutes on a PC, which is much
faster than the theoretical complexity.

Even if this method seems much better than the guess of the carries, it does
not completely linearize the equations. Actually we are able to do it by using
the conditional properties of ‘�’ described at Section 4.2.

Improvement of the Attack In this part the idea is to go through the
keystream to look for the most interesting case instead of guessing the in-
formation. We will use the facts described in theorem 1 and theorem 2 that
11...11 = 232 − 1 being an output of P and M simultaneously linearize both
operations with almost the same probability, (as 11...11�1 = 00...00 mod 232),
and the trivial fact that 0 being an output of P linearizes the operation.

We look for the case when R11 = 0, R12 = 232 − 1, R13 = 0, R14 = 0, R15 =
0, R16 = 0, R17 = 0, R18 = 0, R19 = 0 by going through the keystream. These

constraints on the R1is are essentially constraints on the internal sequence: we
need that
– s5 = −R20 mod 232,
– s6 = −1−R21 mod 232,
– s7 = −S(0) mod 232,
– s8 = −S(232 − 1) mod 232,
– for 9 ≤ i ≤ 13 , si = −S(0) mod 232.

As the LFSR is clocked by a primitive feedback polynomial, the period of the
internal sequence is 2512 − 1 and the probability for this constraint to happen
is 2−288. We know that we are at the right place on the keystream when the
system of equations is solved and provides the right initial state of the LFSR.

Let us suppose these constraints are verified. The same way as the previous
attack, we obtain 224 GF(2) linear relations implying only initial LFSR state
bits by equation (2). Each time R1 is 0, from clock 3 to 9, we obtain 32 GF(2)
linear relations in the initial LFSR state bits by equation (1), that is an amount
of 224 linear equations. By equation (2) at clock 1 we have:

s6 � R21 = 111 · · · 1.

Then from the proof of proposition 4.1 we obtain :
R21 = s6 ⊕ 111 · · · 1.

By replacing R21 by s6 ⊕ 111 · · · 1 and R11 by 0 in equation (1), we obtain
32 new GF(2) linear relations in the initial LFSR state bits. Finally by using
Theorem 2 (Section 4) for equation (1) at clock 2, we obtain 32 linear relations
in the LFSR initial state bits with probability 1

2 . To obtain a probability 1, it
is enough to add another constraint on the internal sequence: we need that the
least significant bit of s2⊕z2⊕S(0) is zero. This is because we have by equation
(1) at step 2:

s2 ⊕ z2 ⊕ S(0) = s17 � (232 − 1),
then, as in proof of theorem 1, we obtain:

(s2 ⊕ z2 ⊕ S(0)) � 1 = s17.

If the least significant bit of s2 ⊕ z2 ⊕ S(0) is zero, there is no carry with
probability 1 in this modular addition. As z2 is known, it is a constraint on the
least significant bit of s2.

The total number of linear equations is 512. If we assume that these equa-
tions are linearly independent, the system can be solved by a simple Gaussian
reduction. But this Gaussian reduction can be performed as a precomputation
step: during the precomputation the keystream bits are not known and become
variables. We then obtain each initial LFSR state bit as a linear combination of
the 9× 32 keystream bits variables that are used in the 512 equations described
above. Then the final step consists in replacing the keystream variables by their
real values and verifying that the LFSR initial state bits are correct. This would
give a final time complexity of about 2288.

If the rank of the system is r < 512, we precompute r initial state bits as
linear boolean functions of the keystream variables and the last 512 − r initial
state variables. The complexity is then multiplied by 2512−r as we have to guess
the last 512− r variables. Actually our simulations showed that this rank is 504.

We show in Appendix B, that by using theorem 1, it is possible to compute at
least two more linear equations in the LFSR initial state bits. The final time
complexity of this attack is then at most 2294.

The drawback of this method compared to the first one we have proposed is
of course the huge amount of necessary keystream bits, about 2288 × 32 = 2293.
This amount can be reduced because, as we explain in section 4, fixing only the
30 least significant bits of the 9 states R1t have the same linearizing properties
as fixing all the bits. We just guess the 2 most significant bits of R11, · · · , R19

instead of looking for their right value. We store a 218 entries lookup table in
which we set the values of the key depending on the keystream variables for each
value of the 18 bits coming from the 2 most significant bits of each R11, · · · , R19.
The time complexity is the same but the keystream requirements are lower, about
2275 bits. The space complexity is quite small, (about 16 Gb to store the table).

In [3], a time-memory trade-off is proposed, with TM = N and D = T ,
where T is the time complexity, M the memory, D the data and N the number
of possible states. We can compare our method with this attack on KGSnow 2.0
with the precise parameters of our method. We show in Table 1 that we obtain
better results with our attack. In [6] a better time-memory-data trade-off is
proposed: N2 = TM2D2, with the following constraint: D2 ≤ T . Because of this
constraint, in principle it is impossible to compare this attack with ours.

Table 1. Our attack on KGSnow 2.0 vs. general time-memory trade-off

Babbage time-memory trade-off

Our best attack

time memory keystream

2302 2295 2287

2294 237 2275

Remark We have made some computations on KGSnow 2.0 to try to improve
this attack by guessing fewer variables. We have written the system of equations
describing 9 consecutive clocks of KGSnow 2.0. In this system we fixed all the
bits of R11, R13, R14, R15, R16, R17, R18, R19 to 0 except from the most
significant bits, and the five most significant bits of R19, and we fixed the 31
least significant bits of R12 to 1. We were able to recover the initial LFSR
state bits in 2.08 hours. The total complexity is here 2311 (see Section 5.2 for
details on the computation of the total complexity). We could not obtain a better
complexity than 2311 by fixing less variables, this meaning that we were not able
to improve the complexity of the theoretical attack described above.

7 Conclusion

In this paper we study multivariate linear and quadratic properties over GF(2) of
the addition modulo 2n. We propose a new method for describing this operation
as an overdefined system of implicit boolean equations of degree 2. We also
introduce the concept of multiple and simultaneous linear approximations. This
concept is different from Linear Cryptanalysis with multiple characteristics: we
show how to partially or completely linearize the boolean equations describing
this function by setting appropriate specific constraints on the output or/and
one of the inputs.

These properties can be used to design conditional linearizing attacks on
ciphers that use additions modulo 2n. We propose an example of application in
cryptanalysis of KGSnow 2.0, the keystream generator part of Snow 2.0. Given
the specific structure of KGSnow 2.0, we have found a combination of constraints,
such that the number of linear equations obtained is large compared to their cost.
This allows us to recover the key of KGSnow 2.0 within 2294 operations. This
is not much more than the exhaustive search of the 256 bits key of Snow 2.0
compared to what we could have expected from an extension of the Billet-Gilbert
attack of [5] on the real cipher, or more generally to what we could have expected
from an algebraic attack on this type of cipher. It is also more efficient than the
classical time-memory trade-off attack TM = N . This shows that the key of
Snow 2.0 should not be longer than in the current specification.

Acknowledgments: It is clear that the addition modulo 2n can be described
by a system of quadratic equations with extra variables (carries), see [5]. However
the idea that this can also be achieved without introducing any extra variable is
not trivial and was owe it to Josef Pieprzyk and (independently) Philip Hawkes.

References
1. Frederik Armknecht, Matthias Krause: Constructing Single- and Multi-output

Boolean Functions with Maximal Algebraic Immunity. ICALP (2) 2006: Springer
LNCS 4052, pp. 180-191

2. Gwenolé Ars, Jean-Charles Faugère: An Algebraic Cryptanalysis of Nonlinear Fil-
ter Generators using Gröbner Bases, INRIA research report, available at https:

//hal.ccsd.cnrs.fr/.
3. S. Babbage. A Space/Time Tradeoff in Exhaustive Search Attacks on Stream Ci-

phers European Convention on Security and Detection, IEE Conference Publica-
tion No. 408, 1995.

4. M. Bardet, J-C. Faugère and B. Salvy, On the complexity of Gröbner basis compu-
tation of semi-regular overdetermined algebraic equations, in Proc. International
Conference on Polynomial System Solving (ICPSS,Paris,France), pp.71-75.

5. Olivier Billet, Henri Gilbert: Resistance of Snow 2.0 against Algebraic Attacks.
CT-RSA 2005, Springer LNCS 3376, pp. 19-28.

6. Alex Biryukov, Adi Shamir. Cryptanalytic Time/Memory/Data Tradeoffs for
Stream Ciphers. ASIACRYPT 2000: Springer LNCS 1975, pp. 1-13.

7. Nicolas T. Courtois, Adi Shamir, Jacques Patarin, Alexander Klimov: Efficient
Algorithms for solving Overdefined Systems of Multivariate Polynomial Equations.
Eurocrypt 2000, Springer LNCS 1807, pp. 392-407.

8. Nicolas Courtois and Josef Pieprzyk: Cryptanalysis of Block Ciphers with Overde-
fined Systems of Equations, Asiacrypt 2002, Springer LNCS 2501, pp. 267-287.

9. J. Daemen, V. Rijmen, The Block Cipher Rijndael , Smart Card Research and
Applications, Springer LNCS 1820, pp 277-284.

10. Claus Diem, The XL-algorithm and a conjecture from commutative algebra, ASI-
ACRYPT 2004, Springer LNCS 3329, pp 323-337.

11. Patrik Ekdahl, Thomas Johansson, A new version of the stream cipher SNOW,
SAC 2002, Springer LNCS 2595, pp. 47-61. Available from http://www.it.lth.

se/cryptology/snow/

12. Jean-Charles Faugère: A new efficient algorithm for computing Gröbner bases (F4),
Journal of Pure and Applied Algebra 139 (1999) pp. 61-88. See www.elsevier.com/
locate/jpaa

13. Jean-Charles Faugère: A new efficient algorithm for computing Gröbner bases with-
out reduction to zero (F5), Workshop on Applications of Commutative Algebra,
Catania, Italy, 3-6 April 2002, ACM Press.

14. Simon Fischer and Willi Meier: Algebraic Immunity of S-boxes and Augmented
Functions, FSE 2007, Springer LNCS 4593, pp 366-381.

15. Louis Goubin: A Sound Method for Switching between Boolean and Arithmetic
Masking. CHES 2001: Springer LNCS 2162, pp. 3-15.

16. Alexander Klimov, Adi Shamir: A New Class of Invertible Mappings. CHES 2002:
Springer LNCS 2523, pp 470-483.

17. Willi Meier, Enes Pasalic, Claude Carlet: Algebraic Attacks and Decomposition of
Boolean Functions. In Eurocrypt 2004, Springer LNCS 3027, pp. 474-491

18. Kaisa Nyberg, Johan Wallén: Improved Linear Distinguishers for SNOW 2.0. FSE
2006: Springer LNCS 4047, pp 144-162.

19. Joseph H. Silverman, Nigel P. Smart, Frederik Vercauteren: An Algebraic Approach
to NTRU (q = 2n) via Witt Vectors and Overdetermined Systems of Nonlinear
Equations.SCN 2004: Springer LNCS 3352, pp 278-293.

20. Results of ESTREAM project benchmarks of ESTREAM stream ciphers com-
pared to AES-CTR, RC4 and Snow 2.0, available at http://www.ecrypt.eu.org/
stream/perf/#results

21. MAGMA, High performance software for Algebra, Number Theory, and Geometry,
— a large commercial software package: http://magma.maths.usyd.edu.au/

A Proofs of Theorem 1 and 2

Proof (Proof of Theorem 1.). We first prove by induction on i ≥ 1 that, the
carry bit ci in the addition x � y = z (see section 2.1 for notations) is equal
to 0 with probability 1

2 + 1
2i+1 . This assertion is true when i = 0, as we always

have c0 = 0. Let us call pi the probability that the carry bit ci = 0. We have:
ci = bxi−1+yi−1+ci−1

2 c (the condition on z does not affect the bits at positions
0 . . . i − 1 that are random and independent bits). If ci−1 is 0, then pi has a
probability 3

4 to be 0. If ci−1 is 1, then pi has a probability 1
4 to be 1. Thus we

have :

pi = 3
4 × pi−1 + 1

4 × (1− pi−1) = 1
2pi−1 + 1

4 (4)

Now if the assertion is true at rank i− 1, by using equation (4), we compute
pi = 1

4 + 1
2·2i + 1

4 = 1
2 + 1

2i+1 , i.e. the assertion is true at level i.
If i > 0 and the carry ci of the addition x�y = z is 0, and zi = 1, ..., zi+r = 1,

we show that we obtain r + 2 linear I/O equations for P if i + r − 1 ≤ n − 3,
r + 1 linear equations if i + r − 1 = n − 2 and r if i + r − 1 = n − 1 in the
same way as in the proof of Proposition 4.1, namely we simply have xi ⊕ yi = 1
because ci = 0, and then successively we can show that xi+1 ⊕ yi+1 = 1 which
in turn implies ci+1 = 0, which in turn gives xi+2 ⊕ yi+2 = 1, then ci+2 = 0
etc. This gives r + 1 equations as it goes up to the position i + r, where we
have xi+r ⊕ yi+r = zi+r. Moreover, the carry bit ci+r+1 = bxi+r+yi+r+ci+r

2 c.
Then if zi+r = 1, ci+r+1 = 0. If zi+r = 0, ci+r+1 = b 2xi+r

2 c = xi+r, and we
obtain zi+r+1 = xi+r+1⊕yi+r+1⊕xi+r. In both cases we obtain one more linear
equation, that gives a total of r+2 linear equations, except when i+r−1 = n−1
in which case we get only r, and when i + r − 1 = n− 2 we get r + 1.

We can observe that when i = 0, p = 1 and we get the same equations as we
always have c0 = 0, in particular when i = 0 and r ≥ n − 2 we get again the
Proposition 4.1.

To prove the second and third assertion of Theorem 1, we need to observe
that y � (ȳ �1) = 0, where ȳ is the result of bitwise complementation of y. Thus
we have:

x � y = z ⇔ z � (ȳ � 1) = x ⇔ (z � 1) � ȳ = x (5)

In the case of the second assertion, the r least significant bits of z are 0. Then
z � 1 becomes z⊕ 1 and c′1 = b ȳ0+1

2 c, that is 0 with probability 1
2 . We obtain by

induction that if c′1 = 0, yj ⊕ xj ⊕ 1 = 0 for 1 ≤ j ≤ r − 1 and yr ⊕ xr ⊕ zr = 0.
With the least significant bit equation y0 ⊕ x0 = 0 we obtain r + 1 equations.
Another equation comes from the fact that the carry cr+1 = bxr+yr+cr

2 c. This
implies that if zr = 1, cr+1 = 0 and if zr = 0, cr+1 = xr. As the carry cr+1

can be linearly described in both cases, we obtain one more linear equation
zr+1 = xr+1 ⊕ yr+1 ⊕ cr+1. We then obtain a total of r + 2 linear equations,
except when r− 1 = n− 2 in which case we get one less, and when r− 1 = n− 1
in case we get two less.

For the third assertion, we consider the carry c′′i in the addition of three
numbers: z � 1 � ȳ = x. We assume that c′′i = 0 and zi = 0, ..., zi+r−1 = 0, we
also obtain by induction r+2 (or r+1 if i+r−1 = n−2, or r if i+r−1 = n−1)
linear I/O equations: yj ⊕ 1⊕xj = 0 for i ≤ j ≤ i+ r− 1, yi+r⊕ zi+r⊕xi+r = 0
and yi+r+1 ⊕ zi+r+1 ⊕ xi+r+1 ⊕ ci+r+1 = 0 where the carry ci+r+1 is zero or
xi+r, depending on the value of zi+r.

Here the first carry c′′1 = b z0+ȳ0+1
2 c has a probability 1

4 to be 0. The other

carries c′′j can be computed as : c′′j = b zj−1+ȳj−1+c′′j−1
2 c. The probability that

c′′i = 0 for z � ȳ � 1 = x is computed by induction in the same way as for the
first assertion and gives a probability p′′i = 1

2 −
1

2i+1 .

Proof of Theorem 2. Appears in the extended version of this paper.

B Additional Linear Equations in Attack on KGSnow 2.0

Let us consider the equation (2) (section 6.1) at step 9. According to theorem 2,
as R29 is known, the two least significant bits of R110 can be expressed as linear
expressions of the initial state bits. Depending on the value of R29, more bits of
R110 may be expressed in such a way.

In equation (1) at step 10, we can now substitue the two least significant bits
of R110 by these linear expressions. Now we observe that in this equation (1), the
value of s10 is known as it depends on the value of R16 that has been guessed.
Then the value of z10 ⊕ R210 ⊕ s10 is know. This implies by theorem 1 that we
have two linear boolean equations mixing only initial state bits. Depending on
the value of R29 and z10 ⊕R210 ⊕ s10, we may have more linear expressions.

