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Abstract. Keeloq is a lightweight block cipher that is massively used
in the automobile industry [13,14,32,33]. KeeLoq has two remarkable
properties: it is periodic and has a very short block size (32 bits). Many
different attacks on KeeLoq have been published in recent years [9, 16, 10,
11, 6]. In this paper we study a unique way of attacking KeeLoq, in which
the periodic property of Keeloq is used in to distinguish 512 rounds of
KeeLoq from a random permutation. Our attacks require the knowledge
of the entire code-book and are not among the fastest attacks known on
this cipher. However one of them works for 100 % of all keys, including
so called “strong keys”, see [16]. In general it is important to show how
many different attacks are possible on a weak cipher such as KeeL.oq.
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1 Introduction

KeeLoq was designed in the 1980’s by Willem Smit from South Africa [37]. It is a
block cipher used in wireless devices that unlock the doors of cars manufactured
by Chrysler, Daewoo, Fiat, GM, Honda, Jaguar, Toyota, Volvo, Volkswagen,
etc...[13,14,32,33]. In 1995 KeeLoq was sold to Microchip Technology Inc for
more than 10 million US dollars (which is documented in [13]). Following Mi-
crochip, [34], the specification of KeeLoq is “not secret” but is patented and was
released only under license. The question of whether one can really break into
cars, and how, is a secondary one in a scientific paper. The main question is
what ciphers be broken, how, and due to what properties, and how to design
better ciphers.

KeeLoq operates with 32-bit blocks and 64-bit keys. Compared to typical
block ciphers that have a few carefully-designed rounds, this cipher has 528
extremely simple rounds with extremely few intermediate variables (in our for-
mulation one per round). Also, only one bit of the state is modified in each
round. As a result, KeeLoq can be implemented very efficiently in hardware. It
has been sometimes conjectured, that ciphers which require a small number of
gates to implement, will be vulnerable to algebraic cryptanalysis, see [25,19].
Indeed, several “direct” algebraic attacks are studied in [16] and the simplicity



of KeeLoq makes it breakable by simple algebraic attacks for up to 10 rounds.
More generally, we wonder what key recovery attacks are possible for KeeLoq?
We believe that all attacks on this unusual cipher are interesting, not merely the
fastest attacks, as they should also be applicable to other similar ciphers.

An important observation allows really efficient attacks on KeeLoq: the cipher
has a periodic structure with a period of 64 rounds. This allows several rather
successful attacks on KeeLoq, in spite of the fact that it has 528 rounds. In
general the complexity of many attacks simply does not depend on the number
of rounds of the cipher.

This paper is organised as follows. In Section 2 we discuss the unusual prop-
erties of ciphers with small blocks and the known plaintext requirements of our
attacks. In Section 3 we describe the cipher. In Section 4 we introduce some
useful results. In Section 5 we present a slide-algebraic attack that uses the pe-
riodicity of KeeLoq and SAT solvers. The first step of this attack is reused in
Section 6 where we present a correlation attack with the same complexity, that
works for more keys but requires the entire code-book (as opposed to 60 % of
it). In Section 7 we discuss strong keys in KeeLoq. In Appendix A, we present
some experimental results which justify claims made in the text.

1.1 Notation
We will use the following notation for functional iteration:

F ()= f(fC- f(2) )
——

n times

2 On the Philosophy of Block Ciphers With Small Blocks

Abstractly, a block cipher is a function F : K x P — C where K is the keyspace,
P is the plaintext-space and C is the ciphertext-space. In most cases in practice,
these are bit strings, and one can rewrite this as E : {0,1}% x {0,1}"" —
{0, 1}ec. The stereotype is that {p = {x = ¢, but this is almost never the case
in practice, as shown by the following examples.

— IDEA lp = lc = 64,0 = 128.

— DES lp = {c = 64,0k = 56.

— Two-key triple DES ¢p = o = 64, = 112.

— Blowfish {p = {c =64,k € {O7 . ,448}

— RC5 lp =l =€ {32,64,128} , i € {0, ...,2040}.

— AES, Mars, RC6, Serpent, Twofish {p = £c = 128,/ € {128,192, 256}.

— KeeLoq {p = lo = 32,0 = 64.

The ciphers with {p < ¢ have several interesting properties not shared
by those with £p > fx. This question has not received much attention in the
cryptographic community so far, and the particularities of the case {p < lg
become really very important when £p is small, for example in KeeLoq. We
believe that it is important to understand this somewhat curious situation better.

Let the code-book of a cipher F under a key k be the set of all 2¢7 pairs (P, C)
such that E(k, P) = C. If 27 <« 2% it takes less time to compute the entire
code-book than to do the exhaustive key search. Therefore, a natural question



would be why, precisely, would one want to recover the key if it is possible to
have the entire code-book? From the point of view of theory and security model,
this question was recently studied by Pornin and Granboulan in Section 5 of
[28]. In this paper we look at it in a similar way but from the point of view
practical real-life applications and their security. We will give several examples
of such applications.

2.1 Brute-Force Generic Attacks on Ciphers with Small Blocks

Key recovery attack on block ciphers with very small blocks are more or less
interesting depending on the circumstances. We see three distinct scenarios.

Scenario 1 - Theoretical. From a theoretical perspective, we can assume that the
adversary is very powerful and has chosen-plaintext oracle access to the cipher
and a very large (usually unrealistic) quantity of memory. Then if the block size
is small, one can judge that the security of block cipher is 2™*(“x-£r) "and once
the adversary recovers and is able to store the entire code-book, one can consider
that the adversary has no interest in actually recovering the original key. From a
scientific point of view, of course, the key-recovery process remains interesting in
its own right. Moreover, in practice, even in this extreme scenario, the actual key
can be very valuable because it may lead to a master key — having one is a very
common practice in the industry — which key would compromise the security on
a much wider scale.

Scenario 2 - Practical. This is a known-plaintext attack, and even if the block
size is very small the known-plaintext attack is mot equivalent to a chosen-
plaintext attack, not only because storage may be limited, but more importantly
because not all plaintexts actually arise in real life (there is some padding and a
specific probability distribution of possible data). Here the adversary can recover
a number of plaintext-ciphertext pairs that can be, for example up to 50 % of
all possible pairs, but he cannot hope to recover all pairs. Importantly, the value
of pairs he does not have may be very large, while the value of pairs he already
has is (by definition) very small. Here the key recovery allows the adversary to
have all possible pairs, some of which potentially very valuable, or to recover a
master key, even more valuable.

To summarize, in the first (theoretical) scenario the security of the block
cipher is 2™n(¢x-P) while in the second more practical scenario, the security is
2¢x whatever is the block size. In the next section we present several practical
application scenarios which illustrate the importance of key recovery for ciphers
with small blocks and a larger key size. This is meant to motivate further detailed
study of key recovery in ciphers such as KeeLoq.

Scenario 8 - Even more realistic. In many real-life situations, the code-book can
be noisy, and contain errors. This can be because of transmission errors, human
errors such as selecting the wrong encryption key, inadvertent interference with
another system or another (active) attacker, or a defensive voluntary injection
of dummy messages to frustrate the attackers. Then again, the key recovery, as
long as it can tolerate a certain number of errors, will be the only way to know
which messages were genuine.



2.2 Key Recovery vs. Applications of Ciphers with Small Blocks

Scenario One: Military Code-book Ciphers with small blocks can be used to
generate code-books for old-style but very practical military or diplomatic com-
munication methods that do not require any machine to encrypt messages. We
can note that the question how these code-books are generated is generally ig-
nored, yet humans cannot be trusted to produce randomness “off-the-cuftf”, an
the traditional military solution of using octohedral dice to produce bits 3 at a
time is too slow to be practical for code-books beyond a certain size. Therefore,
using a block cipher with small blocks seems to be a default and very sensible
solution to this problem. In particular, a good code-book will be also a poly-
morphic cipher, one with several ciphertexts per each plaintext. Then, it can be
used in such a way that the same code-words are rarely or never re-used. Then
even if we know 99.9 % of the code-book, and only two values are not known,
the practical “value” of the missing information can be very, very high.

A practical scenario is as follows: imagine that the CIA has reconstructed
60 % of the code-book of the most dangerous terrorist on the planet. The code-
book is short and used to encrypt short messages over the phone and very
few messages are ever sent. In theory, for a short random message, they have
a 40 % chance to understand nothing. In addition it could be a polymorphic
code-book so that every message has several versions. With such a system, the
terrorist can communicate with his sergeants with the security of a one-time
pad, if he thinks about never re-using the same code-word twice to send the
same message, knowing that after-the-fact a detailed enquiry about the terrorist
attack will always allow one to determine both the plaintext and the ciphertext,
each used only once. We can imagine that the code-book was generated using
a cipher like KeeLoq and the source code is known'. Then no new message can
ever be decrypted, and key recovery is the only option. This holds even if the
block size is very small, for example one can use 8-bit blocks to command a
series of attacks (e.g. in ASCII). We have here an example of a cipher, with its
prescribed usage mode, that is in fact a perfectly secure system (in the sense of
information-security) except if the recovery of the master key can be done.

A similar method can be used to design computer viruses that spread unno-
ticed and later use a perfectly secure communication method to make a coordi-
nated world-wide large scale cyber-attack that can hardly be detected by looking
at communications on the network (messages are random strings). Here finding
the initial source code and then recovering the master key would be maybe the
only way to prove the origin of the attack.

Scenario Two: LORI-KPA/LORI-CPA Consider the notion of Left-or-Right-
Indistinguishability in either Known-Plaintext Attack, or Chosen-Plaintext At-
tack [5]. There are two plaintexts, either known to the attacker, or chosen by the
attacker, which we will denote as “active”. The attacker can then make “poly-
nomially many” queries, and submit plaintexts of his choice for encryption. We

! Perhaps it was generated using a commercial implementation of a cipher, or some-
body found the source code on an old hard drive, and either way everything is known
except the key.



can translate this definition to a “concrete security” treatment when the security
parameter (key length) is fixed, and allow the attacker to request, in fact, the
encryption of any plaintext, except the two which are active. Therefore one can
consider that the code-book is actually known to the adversary, for all but two
values. Such a scenario is also explicitly considered in Section 5 of [28].

We note that if a message has been transmitted and it is not found in the
code-book, then it is clearly one of the remaining two. This message can be
of vital importance, yet it might not be possible to determine which of the
remaining two it is. Key recovery would accomplish this.

If the reader doubts the practicality of this scenario, where most of a code-
book is known and only a few values remain, consider the following. According
to David Kahn [30], in 1942, the United States decrypted many messages en-
crypted with the famous “Purple” cipher, forecasting an attack at “AF.” There
were only a few possible targets, and so a very short list of candidates was made
and Midway Island seemed the most reasonable choice. The Americans needed
however a confirmation to be 100 % confident, because they planned to strike
with every available aircraft carrier, and a mistake would be a tremendous waste
of scarce resources. The US Navy decided to send a message about water supply
on Midway, using their own code that they knew to be broken be the Japanese.
Very soon another message about “AF” was sent over Japanese channels, de-
scribing the problem with the water. Consequently, overwhelming force was sent
Midway and Japan’s offensive power at sea was castrated, which had a pivotal
impact on winning the World War II.

Scenario Three: Manufacturer Sub-Keys One usage of KeeLoq in automobiles
could be to take a 32-bit string called a “manufacturer key”, and a 32-bit string
called a “per-automobile” key, and concatenate them to form a key for each au-
tomobile. This means that the automobile manufacturer can produce a machine
to recover the key for this particular vehicle in 232 operations, but all other
attackers cannot, if the key remains unknown for every automobile. If the code-
book is known for one automobile, then that specific automobile can be stolen.
But if a key recovery is then performed, both keys are recovered and thus every
automobile of that manufacturer could then be much more easily stolen, using
232 rather than 24 test encryptions.

Incidentally, a more secure way of accomplishing the above is to generate
a “manufacturer key” kjp; randomly, and let the per automobile key be ks =
E(kp, s), where s is the serial number of the car. Here there would be no obvious
attack.

¢

Scenario Four: Short but Private Data Suppose short strings must be encrypted
with high security. In the USA, social security numbers (SSN’s) are 9 digits, and
this can be encoded in Binary Coded Decimal (BCD) with 36 bits. Of course, one
can use AES (F with £x = {p = {c = 128) and encrypt the 36 bits padded with
92 bits of zeroes or a fixed padding, or even with a padding that is a function
of the SSN. But then this defines an induced E’ with £ = 128, {p = 36 and
£c = 128. This is related to the idea of “nuggets” as presented in [1].



Scenario Five: Fast Shuffling and Anonymity Given a random permutation o
on the set of n elements, one can trivially shuffle a list of n objects. This is
needed in many areas, most notably in scrambling data to preserve the privacy
of patients in medical research. Note that sending each item 7 to the spot o (i) is
sufficient for a random shuffle and takes @(n) time total; for a large n this is much
better than assigning a random number to each item and then sorting, which
would take ©@(nlog,n) time. One can do this by using o(i) = E(i, k) mod n.
But, especially if n is a power of 2, this induces a block cipher with high £x (to
protect anonymity) but with small block size £, = £, = log, n.

Scenario Six: Assigning Account Numbers to People A bank or a stock-broker
can assign random-looking account numbers to their unique identifiers such as
their name plus date of date of birth or their social security number. In these
applications every single new plaintext-ciphertext pair is valuable to the attacker,
and one single pair can be worth much more than any other pair (a particularly
wealthy customer can be targeted).

Scenario Seven: Scratch Cards and Software Serial Numbers Block ciphers with
small blocks are used by the industry to generate so called scratch cards, that are
used for example to obtain calling credit on a mobile phone. The permutation is
use to associate random-looking and unique (hard to forge) numbers on scratch
cards, to unique account identifiers that are typically the numbers 0, 1,2, 3,4, .. ..
The same method is sometimes used to obtain unique serial numbers for software.
This avoids keeping a database of all existing serial numbers which can replaced
by a short piece of code (not very secure) or a secure cryptographic hardware or
token with embedded key (much more secure).

2.3 KeeLoq Code-book - Practical Considerations

We have not touched upon the issue of how the code-book can be obtained in
the case of Keeloq and automobile applications. Either it can be obtained from a
remote encryption oracle, or simply harnessing the circuitry without being able
to read the key in order to clone the device. While this may sound like a practical
attack scenario, in practice the devices are simply too slow to obtain this. It is
also noteworthy that since each plaintext is 2° bits long, and there are 232 of
them, the entire code-book is 237 bits or 16 Gigabytes. This amount of RAM is
already available on high-end PC’s at the time of writing.

Oddly, the 64-bit key size implies that the exhaustive search is actually fea-
sible in practice, and hackers and car thieves implement it with FPGA’s [13].
Such an attack requires only 2 known plaintexts (one known plaintext does not
alone allow one to uniquely determine the key, which is another consequence of
the unusually small block size). We note that while 232 encryptions is difficult to
obtain with the original chips that are quite inexpensive and slow, with FPGA’s
as much as 254 encryptions is feasible. This is because the FPGA’s are faster
and do a great deal of parallel processing.



3 The Cipher Description

The specification of KeeLoq can be found in [13,14,33,9,2, 16]. Initially, the
specification found [13, 14] was mistaken, as opposed to [33,9] but now all avail-
able sources agree on the updated specification.

The KeeLoq cipher is a strongly unbalanced Feistel construction in which the
round function is “compressing” and has only one bit of output. Consequently,
in one round, only one bit in the “state” of the cipher is changed. Alternatively,
it can viewed as a modified shift register with non-linear feedback, in which
the fresh bit computed by the Boolean function is additionally XORed with
(only) one key bit in each round. The cipher has a total of 528 rounds. The
encryption procedure is periodic with a period of 64 and it has been “cut” at
528 rounds, with 528 = 512 4+ 16 = 64 x 8 + 16. The fact that 528 is not a
multiple of 64 prevents a direct application of “slide attacks” [29, 8, 7]. However
more advanced slide attacks remain possible as we will see in this paper and in
other known attacks on KeeLoq [9, 16,10, 11, 6].

Let kg3, ..., ko be the key. In each round, it is bitwise rotated to the right,
with wrap around. Therefore, during rounds ¢, + 64,¢ + 128, .. ., the 64-bit key
register is the same. If we denote the first 64 rounds by fi(z), then KeeLoq is

Ey(@) = g (1P (@)

with gx(x) being a 16-round final step, and Ej(x) being all 528 rounds. The last
“extra” 16 rounds of the cipher use the first 16 bits of the key (by which we
mean kis, ..., ko) and gi is a functional “prefix” of fj.

The main (and only) non-linear component is a Boolean function with the
truth table given in Table 11 of [33]. This truth table is encoded by “3A5C742E”
in [13] which should be read as follows: NLF(a,b,c,d, ) is equal to the i*" bit of
that hexadecimal number, where i = 16a + 80+ 4¢ + 2d + e. Thus (a, b, ¢, d, e) =
(0,0,0,0,0) gives ¢ = 0 and the function outputs the least significant (rightmost)
bit of of “3A5CT42E”. With (1,1,1,1,1) we get the most significant leftmost) bit
number of “3A5C742E” | i.e. i = 31. The corresponding algebraic normal form
(ANF) of this function is given by [9]:

NLF(a,b,c,d,e) =d®e® ac P ae G bc® be @ cd ® de @ ade @ ace G abd ® abe

The main shift register has 32 bits, (unlike the key shift register with 64 bits),
and let L; denote the leftmost or least-significant bit at the end of round 4, with
Lg being its initial value. At the end of round 528, the least significant bit is
thus Lsog, and then let Lsog, Lssg, - - -, Lss9 denote the 31 remaining bits of the
shift register, with Ls59 being the most significant. Let kg3, ke2, - - - , k1, ko be the
key and the initial content of the key register. The complete KeeLoq encryption
process is fully described on Fig. 1 (this correspond to the decryption process
that is described by Fig. 12 in [33]).
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KeeLoq Encryption

1. Initialize with the plaintext: Lsi,..., Lo = P31,..., P
2. Fori=0,...,528 —1do

Lit32 = ki mod 64 ® Li ® Lit16 ® NLF(Liy31, Lit26, Li+20, Lit9, Lit1)
3. The ciphertext is C’g17 N ,CO = L559, ey L528.

Fig. 1. KeeLoq Encryption




4 Useful Combinatorial Facts

4.1 Random Functions, Random Permutations and Fixed Points
Given a random function from n-bits to n-bits, the probability that a given
point has i pre-images is ~ 1/(ile), in the limit when n — oo. (Furthermore,
as a random variable, the number of pre-images has a Poisson distribution with
the average number of pre-images being A = 1).

This distribution can be applied to derive statistics on the expected number
of fixed points of a (random) permutation. It is also expected to work for 'not
exactly random’ permutations that we encounter in cryptanalysis of KeeLoq. In
particular let fi(x) be the first 64 rounds of KeeLoq. Assuming that fi(z) ® x
is a pseudo-random function, we look at the number of pre-images of 0 with this
function. This gives immediately:

Proposition 4.1. The first 64 rounds of KeeLoq have 1 or more fixed points
with probability 1 — 1/e ~ 0.63.

Proposition 4.2. The first 64 rounds of KeeLoq have 2 or more fixed points
with probability of 1 —2/e = 0.26.

Experiments to verify this were performed, some of which are described in
Appendix A.

4.2 On the Expected Number of Cycles in a Random Permutation

It is well known (for example, see [37]) that:
Proposition 4.3. The expected number of cycles in a decomposition of permu-
tation on n bits into disjoint cycles is equal to Han where Hy, = Z?:o 1/i is the
k-th Harmonic Number. We have Hy = Ink + v where v =~ 0.577216. .. is the
Euler-Mascheroni constant.

For example, when n = 8 we expect to have 6 (disjoint) cycles on average,
and when n = 32 we expect to have 23 cycles on average.

5 Algebraic and Slide Attack on KeelLoq

Several direct algebraic attacks on KeeLoq have been proposed and studied in
[16], in this paper we will recall and re-use essentially one of them.

5.1 Pure Algebraic Attacks

The goal of an algebraic attack, is to recover the key of the cipher by solving
a system of multivariate equations given a small quantity of known, chosen or
random plaintexts, as in [19]. Unlike for stream ciphers [20], very few such attacks
are actually very efficient on real-world block ciphers. For example, DES can be
broken for up to 6 rounds out of 16, see [25]. For KeeLoq, on the other hand,
many more rounds can be directly attacked, due to its simplicity.

One method is to write KeeLoq as a system of equations, and is described
in [16]. The same paper studies to what extent these equations can be solved
in practice by two families of methods. With Grobner bases (and similar but
simpler) techniques, it is possible to break up to 128 rounds of KeeLoq. An-
other family of techniques are attacks with conversion of the MQ problem to



a well-known logical CNF-SAT problem using the methods of [26], and solving
the resulting satisfiability problem by one of the existing SAT solver packages,
for example MiniSat 2.0. [35]. In this way, and with modern SAT solvers, it is
possible to break as many as 160 rounds of KeeLoq, we refer to [16] for more
details and in [2] there is a chapter that explains how SAT solvers actually work.

It can be seen that, with the conversion of [26] and modern SAT solvers,
when the number of rounds is not too large, the key can be obtained almost
instantly. In this paper we will only use the following fact:

Proposition 5.1 (Example 6 of [16]). For 64 rounds of KeeLoq and 2 known
plaintexts, the full 64-bit key is recovered by conversion to SAT and MiniSat 2.0.
in about 0.3 s.

Several complete working examples of equations can be downloaded from [15]
and with MiniSat 2.0. being freely available [35] it is easy to check these results.

5.2 Comparing Algebraic Attacks on KeeLoq to Brute Force

Fact 5.1. An optimised assembly language implementation of r rounds of KeeLoq
is expected to take about 4r CPU clocks. For justification, see footnote 4 in [9].

Thus, the complexity of an attack on r rounds of KeeLoq with k bits of the
key should be compared to 4r x 2= which is the expected complexity of the
brute force key search. For example, for full KeeLoq, the reference complexity
for the exhaustive key search is about 27 CPU clocks.

Assuming that the CPU runs at 2.5 GHz, one can execute about 243 CPU
clocks per hour (if only one CPU core is used). Thus a brute force attack on
KeeLoq requires 232 hours per core, or 0.5 millions of CPU-years.

5.3 Owur Combined Slide and Algebraic Attack A

In this attack we will guess the first 16 bits of the key namely ko, ..., k15, and
construct a distinguisher between f,gg) and a random permutation.

Preliminary Remarks. We assume that there are at least two fixed points
for fi(x), which happens with probability 0.26 (cf. Proposition 4.2). In the re-
maining cases this attack fails (but one can apply the Attack B). Under this
assumption, we expect that there will be about 6 fixed points for f,is) (). We did
computer simulations to confirm this figure, see Appendix A.

Recall f,gs) consists of the first 512 rounds of KeeLoq. The attacker will try

to guess which, out of the 6, are fixed points for f;(-). The probability that the

~1
guess is correct is about (g) ~ 1/15. Instead of guessing, the attacker will try

all subsets of 2 out of 6 points (6 plaintexts) until the right pair is used, which
requires about 15 tries and about 15/2 on average.



Stage 1 - Recover 16 Key Bits with a Distinguisher. Let B be a per-
mutation on 32 bit words. From Proposition 4.3, assuming that it behaves as a
random permutation, we expect that B has about 23 cycles. Half of them should
have even sizes, and half odd—or 11.5 each. When we compose B with itself,
all cycles that are of even size split into two pieces, that can be of either even
or odd size depending on whether the initial cycle size was congruent to 0 or 2
modulo 4. All cycles of odd size remain intact (but points are permuted). Thus,
we expect that the number of even cycles will be divided by 2. In summary we
would expect to see 17.75 odd cycles and 5.75 even cycles.

Consider what happens when this composition operation is repeated 3 times:

B — B* - B* - B%.

We expect that B® has 11.5 — 5.75 +— 2.8 + 1.4 which is about 1 cycle of
even size left. Note that a cycle of B must be of length 0 mod 16 to be of even
length for B2. Otherwise, if it is of length 1,2,...15 mod 16 then it will be of
odd length for B8. This property allows one to distinguish between f,gs) and a
random permutation that should have about 11-12 even length cycles.

The proposed distinguisher works as follows. If there are 6 or more even-
length cycles, we say it is the wrong key-prefix. Otherwise we say that ko, . .., k15
is correct.

1. Assume that the entire code-book is stored in 16 Gigabytes of RAM.
2. Guess 16 bits of the key.

(a) Apply gk_l(l) to the entire code-book, get a complete table for f(S)(~). This
may require another 16 Gigabytes of RAM (or instead, one can notice that
here the code-book is read sequentially so a very fast hard drive can also be
used for the code-book).

(b) Check the cycle lengths: start from a random not-yet-used point, cycle through
the whole cycle and mark each point as used. This requires extra 2 Gigabytes
of RAM. There is an early abort so that there is no need to compute the exact
number of cycles, namely:

i. If there are 6 or more even length cycles go back to Step 2.

(We note that before this early abort happens, about 12 (larger) cycles
are found with expected sizes decreasing roughly by a factor of (2/3) each
time. So a time of about Zio((l/?)) -(2/3)")~" & 770 is spent on random
sampling through the whole space looking for a random not-yet-used point,
which is truly negligible.)

ii. With probability 27'® the guess of 16 bits of the key is good, and only in
this exceptional case do we not have an early abort. If there are only 5 or
fewer even length cycles, we will consider that the guessed 16 bits of the
key are correct.

Table 1. Pseudocode for Stage 1 used in Attacks A and B

The probability of a false positive is equal to the probability that some 6
cycles in B have length that are multiples of 16, as only such cycles can still be
of even size after splitting into two 3 times. This probability is p = 1676 = 2724,

Our distinguisher has a very low threshold, only 6, yet the resulting prob-
ability of a false positive p = 2724 is clearly sufficient to be able to uniquely
determine which 16-bit key is the right key. At the same time, since the expected



number of even cycles in a random permutation is about 11.5, the probability
of the right key being not detected — a false negative — which requires having
only 5 or fewer even-sized cycles for a random permutation is extremely low and
will be neglected. But as an approximation, suppose that there were exactly 23
cycles. Then the probability of having less than six even length cycles is identical
to having exactly zero, or exactly one, or exactly two, up to exactly five, and
thus can be computed from the binomial distribution. These cases are mutually
exclusive and collectively exhaustive. Since a cycle is expected to be even or odd
with probability one-half, this comes to

i=5 i 23—i
23\ (1\" (1

3 ( _ ) <2) (2> =277 . 44552 ~ 27750 ~ 0.0053....
2

i=0

The success rate of this part of the attack is close to 1 and we expect that
exactly one 16-bit key will be found.

In order to implement the distinguisher, we need to compute the sizes of
all cycles for a permutation on 232 elements. Since we assumed that plaintext-
ciphertext pairs are stored in a table, and the access time is 16 CPU clocks, this
will take time roughly equal to 236 CPU clocks, For each point not previously
used, we explore the cycle and count how many elements it has. Then we start
with a random point not previously used. The total memory used is 16+2 Giga-
bytes with an extra 2 Gigabytes needed to remember which points were already
used. The fact that we can reject a key when 6 even-size cycles are already found
avoids systematically computing all cycles, only the biggest ones, and allows for
an early abort. A pseudo-code with additional explanations is given in Table 1.

The complexity of an optimised version of this attack should be 236 CPU
clocks per guessed 16-bit key, or 216436 total in worst case, and 2'°+36 total on
average. To summarise, given about about 60 % of the entire code-book of 232
known plaintext (this is explained in Appendix A), at Stage 1 of the attack gives
us 16 bits of the key ko, ..., k15 with the workfactor of about 2°! CPU clocks on
average which is about 240 KeeLoq encryptions.

1. Assume that the entire code-book is stored in 16 Gigabytes of RAM.
2. With Stage 1 recover 16 bits of the key.
3. Determine the fixed points of flig)(.) using the code-book, and call this set F.
4. For each possible pair (p;,p;) € F, with ¢ < j
(a) Assume that f(p;) = p; and also f(p;) = p;.
(b) Write equations accordingly.
(c) Solve them (this takes about 0.3 seconds, cf. Proposition 5.1).
(d) If a key results, see if it is correct and if so, terminate.
(e) Otherwise repeat for the next pair.
Table 2. Pseudocode for the Whole Attack A

Stage 2 - Recover the Missing 48 Bits. The first idea would be to use brute
force. The complexity is however 24811 which is already too much in comparison
to our Stage 1. Instead we proceed exactly as in Proposition 5.1 except that we
now actually know 16 bits of the key, and know the resulting approximately 4
fixed points of f,gs). Here again we will assume that there are two fixed points
for fr. This is true for 26 % of the keys. We need to guess which (out of these



approximately 4 points) are the fixed points of f, see pseudocde in Table 2, and
then we solve a system of equations corresponding to 64 rounds of KeeLoq and
2 known plaintexts. This takes 0.2 s ~ 22® CPU clocks with MiniSat 2.0.

The probability of correctly guessing which two fixed points of flgs) are fixed

points for fj is (2)71 = 1/15 as explained earlier. Thus the total complexity of
this stage is in expectation about 15/2 - 228 ~ 23! CPU clocks. and we expect
that for the wrong pair of fixed points no solution will be found (there are 48
bits of key left to be found determined by the 64 bits of the two fixed points).
The first stage that requires about 25! CPU clocks dominates the attack.
Summary of Attack A. Given about 60 % of the entire code-book (see Ap-
pendix A) this attack succeeds with probability 0.26 i.e. for 26 % of keys (cf.
Proposition 4.2). The running time is about 2°! CPU clocks which is about 240
KeeLoq encryptions. This attack is also described in [2].

6 Attack B: A Correlation Attack on KeeLoq

In this attack we will replace Stage 2 by another attack that works for all possible
keys, not only 26 % of keys. However it requires the entire code-book (as opposed
to 60 % of it). The attack uses the following basic facts.

The NLF used can be approximated by a linear combination of two input
variables, since it is 1-resilient but not 2-resilient.
Proposition 6.1. For the nonlinear KeeLoq function NLF and uniformly dis-
tributed x4, x5, 22 € GF(2):

P?"{NLF((E47$37:L'2,1'1,$0) =0 | To Dx1 = 0} =
Pr{NLF(z4,25,22,21,20) =1 | 2o @21 =1} = 3 + %.

If four of five input bits are known, NLF is an affine function of one variable:

Proposition 6.2. For the nonlinear KeeLoq function NLF with zqg, z1, T2, T3
known and z, unknown:

NLF<J:47 r3,T2,T1, Jjo) = C1T4 @ €0,
where ¢; and ¢y are known constants dependent on xq, x1, 2, 3.

Proposition 6.3. Given (z,y) with y = hi(x), where hj represents up to 32
rounds of KeeLoq, one can find the part of the key used in hj in as much time
as it takes to compute hy.

Justification: This is because for [up to] 32 rounds, by looking forwards and
backwards, we see that all state bits inside the cipher are directly known, from
either the plaintext or the ciphertext. Thus the key bits are obtained directly:
we know all the inputs of each NLF, and we know the output of it XORed with
the corresponding key bit.

Proposition 6.4. Given ko, ..., ks and (a, 8) with 8 = fr(a), ksz, ..., kes can
be derived with a complexity of computing fi (64 rounds) with k& known.

Justification: Follows directly from the previous proposition, with 32 fist key
bits known, we can remove the first 32 rounds.



Description of the Attack B
Stage 1 - Recover 16 Key Bits. The same as in Attack A and Table 2.

Stage 2 - Recover extra 16 Key Bits with Linear Cryptanalysis. Now
the first 16 key bits kg, ..., k15 are known. As in Attack A, by applying gkfl()

to the entire code-book we get a complete table for f,iS)() that is stored in 16
Gigabytes of RAM. This is a completely periodic cipher architecture E} (z) =

,58) (z) which is vulnerable to slide attacks. Now we proceed as follows:

1. First we choose and fix a random 32-bit input a; (can be the same in the
whole attack) and guess 3; = fx(a1) (average 23! and max. 232 possibilities
to be checked). Now, as in classical slide attacks [8], we observe that one such
pair allows one to compute many other such pairs as follows: (a1, Bi+1) =
( ,28) (o), ,£8)(ﬂi)). For each guess of #; a “slide group” is defined as the
set of couples G, 5, = {(i,3:) : Bi = fr(ci)},. We note that from our
formula above, a “slide group” of size N is generated with 2(N — 1) table
lookups.

2. Using G4, g, the next 16 key bits ki, ..., k31 can be obtained by applying
the correlation step outlined below. For the sake of simplicity we only show
how to obtain k16 and k3o here. All the further operations are very similar.
The least significant output bit Lgs at the output of fj is equal to:

L¢y = NLF(Lgs, Lsg, Lsa, La1, Lsz) @ Lo @ Lug ® kgo =
NLF(Les, Lss, Lsa, La1, L33) ® NLF (La7, La, L3g, Las, L17)®
Li6 @ (k32 @ k16),

where L3y was eliminated. Here all the L;, i < 48, are known (because
16 key bits are known) and the only nonlinear expression with unknown
variables NLF(Lgs, Lss, Lsa, La1, L33) can be efficiently approximated by
the sum Ly; @ L3z of two known values using Proposition 6.1. By looking at
this equation just for few pairs from the “slide group”, we get ki @ k32 by
majority voting.

The next output bit Lgs of fi can be written as follows:

Les = NLF(Lgy, Lsg, Ls3, Laz, Lza) ® L3z @ Lag ® k3
= NLF(Lga, Lsg, Lss, Laa, L3a) ® L33 ® co ® L17®
cikie ® k17 @ ka3

where L,g is expressed as an affine function on k16 and k17 using Proposi-
tion 6.2 with known constants ¢y and ¢; dependent on the input. Statistically,
one half of the elements in G, g, give ¢; = 0 which leads to the recovery
of k17 @ k33 by majority voting as outlined above. The other half of inputs
gives ¢; = 1 and recovers kig ® k17 ® ks3. Now ki1 and k3o can be directly

computed.
By proceeding iteratively for the next 14 output bits L;, 65 < i < 79,
of fi and using Propositions 6.1 and 6.2, one obtains all kg, ..., k3;. Our

experiments show that a “slide group” of size N = 28 is enough for the whole



correlation step to succeed with a high probability. Thus, the complexity of
Stage 2 of the attack (the first 16 key bits being known in advance) is about
231(16(2N — 2) + 16N)/528 ~ 2355 KeeLoq encryptions, if a single table
lookup requires 16 CPU cycles.

Stage 3 - Recover remaining 32 Key Bits. The remaining 32 key bits are
recovered using Proposition 6.4. Each 64-bit key candidate corresponding to the
current guess of J; is tested using known plaintext-ciphertext pairs for KeeLoq.

Summary of Attack B. Given 232 known plaintexts, this attack succeeds for
all keys with probability very close to 1. As in Attack A, the first stage still
dominates the attack and the running time is about 2°!' CPU clocks which is
only about 2%° KeeLoq encryptions.

Remark: Though the Stage 1 of this attack, works given about 60 % of the
code-book (as in Attack A), the whole attack really needs more or less the whole
code-book. This is because we have to guess 32 bits of 3; and generate a slide
group of size 2% for each guess.

7 Strong Keys in KeeLoq

Following [16], the manufacturer or the programmer of a device that contains
KeeLoq can check each potential key for fixed points for fi (232 plaintext have
to be checked). If it has any, that key can be declared “weak” and never used.
A proportion of 63 % of all the keys will be weak, and following [16], removing
these weak keys will change the effective key space from 64 bits to 62.56 bits.
This is a small loss, in many scenarios perfectly acceptable. Unfortunately, this
fix removes only our Attack A. The Attack B still works.

8 Conclusion

In this paper we presented two attacks on KeeLoq, a block cipher that is in
widespread use throughout the automobile industry and that is used by millions
of people every day. One particularity of this cipher is that the block size is
unusually small, only 32 bits. It is therefore feasible to compute and store the
entire code-book, which leads to many interesting attacks and considerations
that only occur for ciphers with small blocks.

In particular, the small block size combined with the periodic structure of
KeeLoq, allows one to distinguish 528 rounds of KeeLoq from a random per-
mutation, and this independently from the strength of the cipher and its key
length. This is quite interesting: iterating even an extremely strong cipher on
small blocks gives a cipher that will be distinguishable from a random permu-
tation. Starting from this fact, two cycling attacks on Keeloq are proposed in
this paper.

Our Attack A uses an algebraic cryptanalysis step with SAT solvers. It re-
quires the knowledge of about 60 % of the entire code-book of 232 known plain-
texts, works for 26 % of keys and is equivalent to about 24° KeeLoq encryptions.



Our attack B is a correlation attack that has the same complexity, it is better
in that it works for all keys, yet it requires the whole code-book. It is interesting
to note that attacks that use sliding properties can be quite powerful because
typically their complexity simply does not depend on the number of rounds of
the cipher. Very similar attacks can be designed for most iterated ciphers.

Nonetheless, due to the short key size in Keeloq, and given that it is rather
difficult to obtain a large quantity of plaintexts, in practice the best attack on
KeeLoq remains the brute force that requires only two known plaintexts.
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A Simulations on Fixed Points and Random
Permutations

In this section we do some computer simulations to justify certain claims, about
permutations and fixed points, made in text. In Attack A, we need to know
how many fixed points, on average, do we expect for 8 when we assume that f
already has at least 2 fixed points. The answer is about 6 fixed points.

It is also interesting to know what is the percentage of the plaintext space
that must be searched, in order to find enough fixed points of (8, such that at
least two of these are also fixed points for f. Our experiments show that n = 60%
of the plaintext space must be explored on average.

In our experiment, we generated random permutations f of domain size 22
through 2'6. We checked for fixed points by exhaustion. If that permutation
indeed had zero or one fixed points, then we denoted this an abort. Then for
those permutations that did not abort (i.e. those with two or more fixed points),
we iterated through the domain to see at what value the second fixed point was
found. We also counted the number of fixed points of f, and the number of fixed
points of f(® and computed their average. For a random permutation f the
number of fixed points of f is denoted ni, and the the number of fixed points
for f8 is denoted ns.

Table 3. Fixed points of random permutations and their 8th powers

Size of the Domain 212 212 213 o1 215 216
Experiments 1000 10,000 10,000 10,000 10,000 100,000
Aborts (n1 < 2) 780 7781 7628 7731 7727 76,824
Good Examples (n1 > 2) 220 2219 2372 2269 2273 23,176
Average nq 2.445 2447 2.436 2.422 2425 2.440
Average ns 4.964 5.684 5.739 5.612 5.695 5.746
Average Location 2482 2483 4918 9752 19,829 39,707

Percentage (1) 60.60% 60.62% 60.11% 59.59% 60.51% 60.59%



The nomenclature “average location” indicates how many domain points of
f had to be tried before finding two points that are both fixed points of f and
f8 also.



